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Abstract

We present an efficient numerical method to determine optimal portfolio

strategies under time- and state-dependent drift and proportional transaction

costs. This scenario arises when investors have behavioral biases or the actual

drift is unknown and needs to be estimated. The numerical method solves

dynamic optimal portfolio problems for time-horizons of up to 40 years. It

is applied to measure the value of information and the loss from transaction
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1. Introduction

Numerical methods for dynamic portfolio optimization under proportion-

al transaction costs typically assume that the drift of the risky asset is con-

stant. However, a non-constant, state-dependent and/or time-varying drift

enters the dynamic portfolio problem in many scenarios. For instance, if

the drift is constant but unobservable to the investor, it can be estimated

with the Kalman-Bucy filter. This leads to a portfolio optimization problem

where the drift depends on time and the most currently observed stock price,

see Rogers (2001), Lundtofte (2006), Danilova et al. (2010). The drift is also

state-dependent when contrarian investors optimize portfolios under the as-

sumption that prices are mean-reverting; for instance when an investor is a

victim of the Gambler’s fallacy, see, e.g., Shefrin (2008). Similarly, investors

who aim at following market trends will include a state-dependent drift in

their portfolio optimization.

It turns out that in these cases an investor’s optimal trading strategy

strongly depends on the forecasting function used to predict asset prices.

This poses a numerically demanding problem which is addressed here. Our

paper proposes an efficient numerical method to solve finite-horizon portfolio

optimization problems with transaction costs and time- and state-dependent

drift. The method has time-complexity of O(N2.5) whereas a discrete-time
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dynamic programming algorithm that directly solves the value function of the

optimization problem, see, e.g., Davis et al. (1993, Eq. (6.5)) or Monoyios

(2004, Eq. (40)), has time-complexity O(N5). Our method allows us, for

instance, to study 40-year investment horizons with time steps of 4-day length

on a basic laptop computer.

There are several numerical methods for solving the dynamic portfolio

problem with a constant drift under proportional transaction costs. Davis

et al. (1993) proposed a backward recursive dynamic programming method

which has seen a number of improvement in recent years. For instance,

Monoyios (2004) provides an analytical approximation to the optimal deci-

sion in the final period which allows starting recursion from a smaller range of

stock holdings thereby increasing numerical efficiency.1 Zakamouline (2005,

2006) proposes bounds on stock holdings which reduces computing time to

determine optimal holdings on a given discretization of the state space. An-

other method is to solve the Hamilton-Jacobi-Bellman (HJB) equations of

optimization problems by appropriate finite difference schemes, see, for exam-

ple, Chellathurai and Draviam (2007) and Herzog et al. (2013). In addition,

Atkinson and Quek (2012) derive first order conditions for the optimal strat-

egy and approximate the solution using perturbation analysis. Lensberg and

Schenk-Hoppé (2013) use genetic programming algorithm to derive analytic

approximations of trading strategies in a feedback form. These algorithms

1The behavior of optimal stock holdings close to the terminal time matters for the

proper initialization of the backward induction. Since the benefit of portfolio rebalancing

quickly decreases close to the terminal time, the no-trade region increases dramatically

which causes numerical issues, see, e.g., Monoyios (2004).
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work well for short time-horizons, typically less than one year, and when

the number of periods is small. Our paper fills this gap in the literature by

proposing a method that works for non-constant drift and long time-horizons.

The main challenges arising from a state-dependent drift, specifically for

long time-horizons, are that the search for an optimal decision has to be

carried out for all nodes of an approximating binomial tree and that the state-

dependent no-trade region requires widening the range of stock holdings.

This increases the likelihood of over- and underflow arising for the exponential

utility function (i.e., values become too large or too small to be represented

on a computer) as pointed out by Clewlow and Hodges (1997), see also

Zakamouline (2006). For a constant drift, in contrast, the no-trade region

(in terms of the amount of wealth invested in stocks) is independent of stock

prices at time t. One only needs to search for the no-trade region for a single

node of the a binomial tree at time t, see Monoyios (2004, p. 902).

To overcome the challenges, we develop a fast and accurate approximation

to the optimization problem, which is achieved by combining four aspects in

our approach: (a) reducing dimensionality, (b) scaling the objective function,

(c) carrying out local rather than global searches for optimal trading deci-

sions, and (d) non-equidistant discretization of the state space. As in most

papers in this field, we solve the model on the assumption that investors have

constant absolute risk aversion (CARA) utility (i.e., a negative exponential

utility function) and that there is only one risky and one riskfree asset.

We apply the numerical method in a detailed study of the true costs

of market frictions using the indifference principle. The analysis reaps the

full benefit of the approach because measuring these costs involves taking
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averages over many realizations of the parameter value of the stock price drift.

For each realization, one has to calculate optimal trading strategies and carry

out Monte Carlo simulations. In general, we find that the optimal investment

behavior strongly depends on whether the drift is state-dependent. A state-

dependent drift leads to a more volatile no-trade region than that with a

constant drift under proportional transaction costs which, in turn, entails

more aggressive trading.

First, we measure the value of information by comparing realized utility

of different types of investors. It turns out that information is most valuable

to the least risk-averse investor, and that cautious trend-followers do almost

as well as investors who estimate the drift from observations.

Second, we measure the loss in utility due to transaction costs as the

indifference price of an investor. This is the maximum amount of money

an investor is willing to pay up front to avoid incurring transaction costs

of a certain size. It turns out that in general the loss in utility due to

proportional transaction costs is about twice as large as the direct expenses

incurred. From a welfare perspective, transaction costs are perceived as most

detrimental by naive investors who do not revise their initial estimates of the

drift at time-horizons longer than six years. In the long run naive investors

are the most active traders and usually hold wrong beliefs. At time-horizons

shorter than five years, transaction costs strongly affect the learning investor

as his estimate of the drift varies drastically in the short run.

Third, we examine the impact of the length of the investment time-

horizon. Although uncertainty about the true drift cannot be removed over

a finite time-horizon, learning about the drift reduces the loss in utility due
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to the uncertain drift (comparing with that with known drifts) by 1/3rd in

one year and by 4/5th in ten years compared to a naive investor. Learning

also reduces the loss in utility caused by transaction costs (comparing with

that without transaction costs) by 1/2 over a 10-year time-horizon.

Section 2 presents the model. The numerical method is explained in

detail in Section 3 and applied in Section 4 to quantify the economic costs of

transaction costs and investment under various assumption on the dynamics

of a state-dependent drift. Section 5 concludes.

2. Model

We consider an investor who maximizes utility from wealth at a terminal

time by trading in two assets. A riskfree bond with a constant, continuously

compounded interest rate r, and a risky stock. The investor assumes that the

dynamics of the stock price S(t) is given by a stochastic differential equation

of the form

dS(t) = µ
(
t, S(t)

)
S(t)dt+ S(t)σdW (t), S(0) = S0 (1)

with a constant volatility σ > 0 and standard, one-dimensional Brownian

motion W (t). The function µ(t, S) is the drift of the stock price. If this

function is a constant, the model reduces to a standard geometric Brownian

motion (the Black-Scholes model). We are interested in the case where the

drift function is time- and state-dependent.

We consider a situation in which the true dynamics of the stock price may

be unknown to investors: The actual drift is a random variable m(ω) which

is determined at the initial time and fixed over the entire investment horizon
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but unobservable to investors. The true stock price dynamics is given by

dS(t) = m(ω)S(t)dt+ σS(t)dW (t). (2)

If the structure of the price dynamics is known (but the realization of the

drift is not), one can use observed stock prices to estimate the value of m(ω).

Assume that m(ω) is independent of the Brownian motion W and normally

distributed with mean µ0 and variance γ0 > 0. Then the Kalman-Bucy filter

gives the estimate

µL(t, S(t)) =
γ0σ

2

σ2 + γ0t

(
µ0

γ0
+

t

2
+

1

σ2
log(S(t)/S0)

)
(3)

This estimate takes the form µ(t, S(t)), and hence entails a dynamics as

defined in (1).

Investors who are not aware of the structure of the price dynamics make

forecasts in sub-optimal ways. We will consider two specific types of investors.

The first is a naive investor who assumes that the dynamics is given by (2)

with m(ω) = µ0 (its mean). The second type of investor suffers from a

behavioral bias and estimates the value of the drift as:

µa(t, S(t)) = µ0 + a arctan
(
(µ0 − σ2/2) t− log(S(t)/S0)

)
. (4)

We refer to the parameter ‘a’ as the investor’s sentiment. It measures the

investor’s confidence in his initial estimate µ0. If the parameter a is positive

then the investor believes that the price will revert to the predicted mean:

A higher than predicted return is forecast to lead to a drift smaller than µ0.

The investor’s decision is contrarian. It can be interpreted as the result of

overconfidence about the ability to predict the stock price dynamics. If the

parameter a is negative, the investor will revise the initial estimate upwards
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if the returns are higher than predicted (resp. downwards if returns are lower

than µ0). The investor is a trend follower; he places more trust in the market’s

view about stock price dynamics than his own view.

We define

Definition 2.1. Informed investors observe the realization of the random

drift m(ω) at the initial time.

Learning investors use (3) to estimate the realization of the random drift

m(ω).

Naive investors assume m(ω) = µ0 and do not revise the estimate.

Biased investors use (4) to forecast stock prices.

Trading in the stock incurs proportional transaction costs λ ∈ [0, 1). A

purchase of y shares at time t costs y(1 + λ)S(t) ≥ yS(t) while a seller

of y shares receives only y(1 − λ)S(t) ≤ yS(t). It is customary (see for

instance Davis et al. (1993)) to describe the investor’s trading strategy via

two non-decreasing right-continuous processes L(t) and M(t) representing,

respectively, the cumulative number of shares bought and sold over time

interval [0, t]. The dynamics of portfolio positions (x(t), y(t)), where x(t) is

the value of bonds held and y(t) is the number of shares, is given by the

differential equations

dx(t) = rx(t)dt− (1 + λ)S(t)dL(t) + (1− λ)S(t)dM(t),

dy(t) = dL(t)− dM(t).

Given an initial position (x0, y0), the investor maximizes the expected

utility of the wealth at time T > 0 obtained by following a trading strategy
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(L(t),M(t)):

max
(L,M)

E
{
U
(
x(T ) + y(T )S(T )

)}
.

We impose two standard assumptions: there are no liquidation costs of the

portfolio at the terminal time T and the investor has CARA utility function

given by

U(w) = − exp(−αw), (5)

where α is the risk aversion coefficient.

In the case of an informed investor, this utility maximization problem is

classical (see the discussion above). The same is true for a naive investor. For

learning investors one can show that it is optimal to estimate the true drift

using (3) and to solve the optimization problem under the stock price dynam-

ics given by (1) with µ(t, S(t)) = µL(t, S(t)).2 Biased investors’ optimization

problem mimics behavioral decision making.

Stochastic differential equations with drift of the form (3) or (4) do not

satisfy the standard conditions for existence and uniqueness of solution. We

therefore provide a result that establishes existence of a unique solution in

both cases.

2The justification of this reasoning is based on two concepts: the separation principle

(Fleming and Rishel 1975, Theorem 11.2) and a Kalman-Bucy filter, see Øksendal (2003,

Chapter 6). Denoting by G the filtration generated by the stock prices, the separation

principle states that the original optimization problem is equivalent to the one with the

drift replaced by its best estimate in the squared error sense, i.e., the conditional expec-

tation E(m|Gt). The theory of Kalman-Bucy filtering justifies the formula (3) for this

conditional expectation.
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Lemma 2.2. Assume that µ : [0, T ]× (0,∞) → R is a continuous function

that satisfies a logarithmic growth condition

|µ(u, S)| ≤ M
(
1 + | log(S)|

)
, S > 0, u ∈ [0, T ],

and a logarithmic Lipschitz condition

|µ(u1, S1)− µ(u2, S2)| ≤ M | log(S1)− log(S2)|,

where S1, S2 > 0, u1, u2 ∈ [0, T ], for some constant M > 0. Then there is

a unique strong solution to the stochastic differential equation (1) for every

initial condition S > 0.

Proof. Øksendal (2003, Theorem 5.2.1) implies that under the assumptions

of the lemma there is a unique strong solution to the stochastic differential

equation

dZ(u) =
(
µ(u, eZ(u))− σ2

2

)
du+ σdW (u), Z(t) = 0. (6)

By Itô’s formula the process S(u) = S(t)eZ(u)−Z(t), u ≥ t, satisfies (1), i.e., it

is a strong solution to this equation. To prove uniqueness, assume that there

is another strong solution to (1), denoted by S̄(u), u ≥ t, with S̄(t) = S(t)

and S̄(u) ̸= S(u) for u > t. Define Z̄(u) = log(S̄(u)/S̄(t)). Again, by Itô’s

formula Z̄(u) satisfies (6) and is different from Z(u). This contradicts the

uniqueness of the solution to (6). �
Denote by V (t, s, x, y) the value function corresponding to the utility

optimization problem. This is the highest expected utility achievable by an

investor whose portfolio at time t consisting of x units of cash and y shares
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of the risky stock priced at S(t) = s:

V (t, s, x, y) = sup
(L(u),M(u))

E
{
U
(
x(T )+y(T )S(T )

)
|S(t) = s, x(t) = x, y(t) = y

}
.

In the simplest case when the drift function is constant, µ(t, s) ≡ µ̄ (a con-

stant), the value function is characterized as a unique continuous viscosity

solution of an HJB equation, see Davis et al. (1993):3

max
{
Vy − (1 + λ)sVx; −Vy + (1− λ)sVx;

Vt + rxVx + µ̄sVs +
σ2

2
s2Vss

}
= 0

(7)

with the terminal condition V (T, s, x, y) = U(x + ys) (subscripts in (7) de-

note partial derivatives). Solving this equation is usually carried out using

numerical approximation. For general drift functions, a HJB representation

is not known. We therefore take a different route to study optimal invest-

ment when the drift function is state- and time-dependent. In this paper,

approximations are designed for the control problem itself.

3. Numerical Approach

We present a direct approach to solve the utility optimization problem for

time- and state-dependent drift. The stock price model will be discretized in

both time and space, and the approach invokes Bellman’s dynamic program-

ming principle. Similar to the pricing of options, the programming starts

from the final time and works recursively backwards in time until it reaches

the initial time.

3This result requires a restriction of the set of available trading strategies (L(t),M(t)):

the liquidation value at any time must be greater than or equal to a fixed constant.
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Let time be discretized in steps of length ∆t with ∆t = T/N where N

is the number of time steps. At each time-point the investor has to choose

whether to trade and, if yes, how many units of stock to trade. The cash

holdings are determined by the self-financing condition. The expected utility

derived from each possible trading choice is determined by the value function.

To select the trading decision that maximizes expected utility, the investor

solves the maximization problem:

V (t, s, x, y) = max
{
E
(
V (t+∆t, S(t+∆t), er∆tx, y)|S(t) = s

)︸ ︷︷ ︸
benefit from not trading, ∆y = 0

,

max
∆y>0

E
(
V (t+∆t, S(t+∆t), er∆t(x−∆y × s(1 + λ)), y +∆y)|S(t) = s

)︸ ︷︷ ︸
benefit from buying ∆y > 0 shares

, (8)

max
∆y>0

E
(
V (t+∆t, S(t+∆t), er∆t(x+∆y × s(1− λ)), y −∆y)|S(t) = s

)︸ ︷︷ ︸
benefit from selling ∆y > 0 shares

}

where the maximization is over the type of trade and the corresponding

volume to be traded.

One might conjecture that the spatial discretization of the stock price

process is complicated when its drift is state-dependent. However, one can

use a standard binomial tree approximation due to Cox, Ross and Rubin-

stein and define adjusted probabilities for the up- and down-movement of the

discretized stock price. The benefit is that the stock-price model is still a

recombining tree. Specifically, we use the following binomial model. Define

the coefficients u = 1/d = eσ
√
∆t, and set the process

S(t+∆t) =

 uS(t) with probability p(t, S(t)) = [eµ(t,S(t))∆t − d]/[u− d]

dS(t) with probability 1− p(t, S(t))

(9)
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A natural discretization of the state space of money and stock holdings

is given by the set Mx ×My with Mx = {xj : xj = x+ jδx ≤ x̄, k ∈ N} and

My = {yk : yk = y + kδy ≤ ȳ, k ∈ N} with given minimum and maximum

values.

A direct algorithm for determining the value function and the optimal

trading strategy proceeds as follows.

Define the value function at the terminal time as the realized utility. Set

V (T, s, xj, yk) := U(xj +yks) for all values s of the discretized stock prices

in period T and all portfolio holdings (xj, yk) ∈ Mx ×My.

For t = T −∆t, ..., 0

For all values of the discretized stock price s = S(t) at time t

For all values (xj, yk) ∈ Mx ×My

Given the functions V (t+∆t, ...), find the highest value in (8)

obtained over all values ∆y such that yk + ∆y ∈ My. V (t +

∆t, ...) is approximated by linear interpolation since exp(r∆t)[xj∓

∆ys(1±λ)] is typically not an element of Mx. Denote the max-

imum value V (t, s, xj, yk).

End For

End For

End For

The computational complexity of the direct method is of the orderO(N2×

Mx × My × My) or O(N5).4 The factor N2 arises because the algorithm

4We letMx andMy linearly depend on time steps N to ensure that the grid sizes δx and

δy approach 0 when ∆t is close to 0 with increasing N . Letting step sizes grow at the same

rate is not necessarily optimal, it depends on the accuracy/order of the approximations in
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loops through all points on the stock price lattice, the factor Mx×My is due

to the loop through the grid of portfolio holdings, and the final factor My

comes from the ∆y-search. This is slow; doubling the number of steps in all

dimensions makes the computation time grow by a factor of 32.

The range ofMx×My is usually large in order to include optimal solutions

for all possible states (t, S(t)) on the lattice. The above standard numerical

method uses an equidistant grid and searches for optimal solutions in the

whole set.

As a benchmark, suppose the direct algorithm is implemented in a high-

level language such asMatlab on a typical laptop computer. Running through

a binomial lattice with T = 1 year and time steps of 1 day takes 5 - 10 mil-

liseconds. Using a grid of one million points Mx = My = 100 (think of this

as percentage points of wealth in money resp. stock) would take about 2

hours. This is not a computationally feasible approach since reasonable out-

puts require high-resolution grids and thousands of simulations of a random

drift.

Five measures are employed to reduce running time of simulations:

Reducing dimension. When measuring utility by the negative expo-

nential function (5), the value function V can be written in the form

V (t, s, x, y) = H(t, s, y) exp (−αx exp[r(T − t)]) , (10)

where H(t, s, y) is defined by H(t, s, y) := V (t, s, 0, y), see, e.g., Davis et al.

(1993) or Monoyios (2004). This representation allows reducing the dimen-

the different dimensions. But it seems futile to hope for anything beyond linear. The free

boundary nature of the problem also seems likely to rule out second order accuracy.
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sion of the optimization problem by one. However, this measure carries a

potential cost. Suppose an investor’s money and stock holdings are large

(in absolute terms) but offsetting in terms of value. Then the exponent of

the exponential utility function implied by H(t, s, y) will include the product

of a very large stock holding and a large stock price. This can cause nu-

merical over- or underflow errors in the computer program, which are dealt

with by our following function H(t, s, y) scale, along with local search and

non-equidistant discretization that speeds up the program.

Function H(t, s, y) scale. To handle the over- or underflow issues we

scale the value function H(t, s, y) by

G(t, s, y) := V (t, s,−ys, y) = H(t, s, y) exp (αys exp[r(T − t)]) .

Then we solve a discrete time dynamic programming equation for the value

function G(t, s, y) similar to (8) with the terminal condition G(T, s, y) = −1.

Local ∆y-search. The solution toH(t, s, y) is known to have a particular

structure. The space of stock holdings is split into three regions: buy, no-

trade and sell. If the stock position is either in the buy or sell region, a

trade is initiated that leads to a stock position on the closest boundary of

the no-trade region. If the stock position is inside or on the boundary of the

no-trade region, the investor does not change his stock position.

In the case of a constant drift (Monoyios 2004, p. 902) the upper boundary

(above which one sells) and the lower boundary (below which one buys) of

the no-trade region at a given time t can be both defined by market values

of stock positions. It is therefore sufficient to determine the optimal trade in

all time-t nodes with a node (t, S) to find the two boundaries.
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With a state-dependent drift, this observation no longer holds true: If

the forecast of the drift is revised depending on the current stock price,

then the no-trade region will depend on this information. One therefore has

to determine a no-trade region in each node (t, S). This is computationally

costly. A numerically efficient approach, which we implement, is to determine

the boundaries of the no-trade region through searching over a local range

of y. The local range denoted by [φb(t, S), φs(t, S)] is determined by an

appropriate extension of the boundaries at the successive nodes.

Non-equidistant y-discretization. The structure of optimal trading

strategies suggests that it is not efficient to have an equidistant discretization

of the y-space. The set of discretization points should be denser close to

the boundaries of the no-trade region. We therefore use a symmetric, non-

equidistant discretization.

The set is centered at Merton’s closed-form solution for the case of a

constant drift and no transaction costs, which is denoted by φM(t, S). The

value of drift µ is given by investors (possibly an actual value or an estimate).

The non-equidistant grid has larger step-sizes away from the center φM(t, S).

For a given (t, S)-node and the local range [φb(t, S), φs(t, S)], we first define

the radius

Φ(t, S) := max {φM(t, S)− φb(t, S), φs(t, S)− φM(t, S)} . (11)

Then we define the set of discretization points as:

y(t, S, k) = φM(t, S) +
Φ(t, S)(
My

2

)ϖ

(
k − My

2

) ∣∣∣∣k − My

2

∣∣∣∣ϖ−1

, (12)
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where

φM(t, S) =
µ− r

er(T−t) ασ2 S

is the Merton (1971) solution. The coefficient ϖ > 1 controls the level of

dispersion.5 Numerical experiments have revealed that an appropriate choice

of the coefficient ϖ is 1.6.6

Low-level language. Implementation in a low-level language, e.g.,

C++, gives a speed-up of a factor approximately 10.

Numerical illustration. We use the following values of parameters as

a base case for our numerical results: drift drawn from normal distribution

with mean µ0 = 0.15 and variance γ0 = 0.04, volatility σ = 0.25, proportional

transaction cost rate λ = 0.01, initial stock price S0 = 15, risk aversion

α = 0.1, interest rate r = 0.03, time-horizon T = 1 year, and discretization

parameters ∆t = 0.01, My = 3,500 and ϖ = 1.6.

Figure 1 demonstrates the joint effect of transaction costs and state-

dependent drift. It shows one realization of the optimal trading strategy

for a 40-year time-horizon. The effect is substantial as evidenced by the high

variability of the boundaries of the no-trade region. The volatility of these

5If ϖ = 1, the grid degenerates to the equidistant discretization, while if ϖ is large,

the points are too concentrative in the neighbor of the center.
6The maximum in (11) ensures that the y grid is wide enough. Although φM (t, S)

may not be the center of [φb(t, S), φs(t, S)], it is the center of [y(t, S, 0), y(t, S,My)] which

would include a few extra points outside [φb(t, S), φs(t, S)]. The two end points y(t, S, 0)

and y(t, S,My) correspond to the value of (12) with k = 0 and k = My respectively. See

Wang (2010, Sect. 3.6.4) for details.
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Figure 1: Dynamics of the no-trade region with state-dependent drift µL(t, S(t))

within T = 40 years horizon. The squares indicate transaction times. N trans is

the total number of transactions.

boundaries reflects changes in the learning investor’s estimate of the drift.

For instance, the boundaries move downwards around 30 years in response

to a fall in the stock price, and move upwards from about 35 years when

the stock price recovers. With a known, constant drift, these boundaries

(when measured in terms of the amount of wealth invested in stocks) are

hyperbola-like curves that are independent of the stock price.

Comparison with Monoyios (2004)’s results. Verification of our method is

carried out by comparing numerical results with those reported in Monoyios

(2004). The comparison is for the simple case of a known, constant drift
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which is considered in the latter paper. Table 1 reports the two boundaries

of the no-trade region at the initial time for different transaction costs. We

calculate results with our method under both equidistant and non-equidistant

discretization. In all three scenarios and for different transaction costs the

calculated boundaries coincide up to 3-4 significant digits.

The non-equidistant discretization requires fewer points on the y-grid

than the equidistant discretization, which substantially shortens the run-

time of the program. Our approach works efficiently because we take state-

dependent non-equidistant discretization on a small local range of y-values.

The discretization equation (12) produces a great number of points with

the precision up to 0.0001 around the area where the no-trade region is

most probably located. The distance between grid points increases gradually

towards the two end-points of the local range of y-values.7 As a result, it

suffices to set My = 3,500 to achieve similar results to those obtained by the

standard equidistant discretization that requires from about 0.27 million to

about 2.38 million grid points, depending on the full range of y-values, see

the last row in Table 1.

We also compare the performance of non-equidistant and equidistant dis-

cretizations in the case of the state-dependent drift µL(t, S(t)). Figure 2

shows that the most stable results are obtained under the non-equidistant

discretization. The precision of the approximation increases gradually as the

number of time steps increases. Equidistant discretizations exhibit a more

volatile behavior.

7See Wang (2010, Figures 3.5 and 3.6) for an example of the frequency histogram and

the diagram of varying precision of y-values.
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λ=0.005 λ=0.01 λ=0.02 λ=0.03

Monoyios [0.3866, 0.5780] [0.3499, 0.6197] [0.2702, 0.7196] [0.1813, 0.8243]

Equidistant [0.3870, 0.5772] [0.3510, 0.6193] [0.2708, 0.7137] [0.1851, 0.8161]

Non-equidistant [0.3864, 0.5763] [0.3527, 0.6209] [0.2720, 0.7177] [0.1826, 0.8113]

Range of y [-10.748, 16.213] [-24.622, 30.443] [-56.800, 64.677] [-109.43, 128.71]

Table 1: Boundaries of no-trade region at t = 0. The binomial lattice is as

in Monoyios (2004, p. 896). The first row and the parameters are taken from

Monoyios (2004, Table 1): r = 0.1, ∆t = 0.02, µ = 0.15 (known drift γ0 = 0),

σ = 0.25, S0 = 15, α = 0.1, T = 1 year. The second row uses the equidistant

discretization with ∆y = 0.0001, while the third row uses the non-equidistant

discretization (12) with My = 3,500 and ϖ = 1.6. The last row presents the

ranges of y grid determined by equations (A.2) and (A.5) in Monoyios (2004).

We finally consider the relationship between computation time and nu-

merical accuracy. Figure 3 shows results for the non-equidistant discretiza-

tion with local search in the case of the state-dependent drift µL(t, S(t)). All

observations are close to a straight line with slope −0.4 (taking logarithms

of both variables): The approximation error is O(1/N) and computational

complexity is O(N1/0.4). This means that to halve the numerical error, com-

puting time is increased by a factor of 2(1/0.4) ≈ 5.7. The numerical result

demonstrates that our algorithm has the time-complexity around O(N2.5)

while the direct method is O(N5).
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Figure 2: Value functions at initial time versus the number of time N with the

state-dependent drift µL(t, S(t)), where N = 20 + i × 20, i = 0, 1, · · · , 20. Other

parameters are the same as the base case.

4. Results

The numerical solution technique is applied to study the effects of trans-

action costs and uncertainty about the drift over investment time-horizons

of up to 10 years. We consider the four types of investors introduced in Sec-

tion 2: informed investors (knowing the actual value of the randomly drawn

drift), learning investors (learning about the true value of the drift through

filtering), naive investors (no revision of initial estimate of the drift) and bi-

ased investors (varying from strongly trend-following to strongly contrarian,

depending on the value of sentiment parameter a).
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Figure 3: Convergence with non-equidistant discretization with the state-

dependent drift µL(t, S(t)). The x-axis shows the physical computation time, and

the y-axis reports the absolute error of the calculated initial value function V . The

error is defined as |V − V̂ | and V̂ is taken as the approximation of the true value of

value function. The value of V̂ is obtained using a lattice with a sufficiently small

step length ∆t.

Our numerical results provide three main insights of practical relevance:

• Not knowing the true stock price dynamics leads to large losses in

utility for less risk-averse investors, strongly biased investors, and naive

investors (in decreasing order).

• Learning generally reduces the loss in utility caused by uncertainty

about the true drift.
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• Lower trading volumes due to transaction costs explain about half of

the total loss in utility. The other half is caused by transaction-cost

payments.

When comparing the choices of different investors that are in the same

situation or of identical investors that are in different situations, one has to

take into account two aspects. First, quantifying an investor’s gain or loss

should be done using monetary units: This allows expressing differences in

utility as the value of contract that, for instance, provides the investor with

information about the drift or frees an investor from having to pay transaction

costs. These values are defined as the amount of wealth that an investor has

to pay (needs to receive) at initial time in order to be indifferent between two

situations. Second, naive investors and investors with biases make trading

decisions that are not optimal. Such an investor will see his average realized

utility being lower than the one expected ex ante. We therefore take realized

rather than perceived utility when measuring losses relative to an informed

investor in monetary equivalents.

Section 4.1 considers the value of knowing the realization of the drift and

the true stock price dynamics (’value of information,’ for short) and Sec-

tion 4.2 analysis the true (economic) cost of proportional transaction costs.

4.1. Value of information

For each investor type, the average realized utility is given by

R(x) := EµŪµ(x)

where x is the initial money endowment (the initial share endowment is

zero). Eµ denotes expectation with respect to µ which has the distribution
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N (µ0, γ0). The realized utility Ūµ is determined by the realized stock price

path, the investor’s realized trading strategy (L,M), and the utility function

U defined in (5):

Ūµ = E
{
U
(
x(T ) + y(T )S(T )

)
| (L,M)

}
.

Since the average utility an investor expects to achieve cannot be lower than

the actually realized one, one has

R(x) ≤ EµVµ(0, S0, x, 0),

where Vµ(0, S0, x, 0) is the value of expected utility. For naive and biased

investors, the inequality will, in general, be strict as these investors make

incorrect assumptions about the stock price dynamics, overestimating the

utility their trading strategy will deliver. However, an informed investor’s

average realized utility satisfies

RF(x) = EµV
F
µ (0, S0, x, 0),

where V F
µ (0, S0, x, 0) is the expected utility which the investor maximizes

under knowledge of the value of µ. For a learning investor, who always uses

µ0 as prior for the drift estimate at the initial time,

RL(x) = V L(0, S0, x, 0).

The monetary value of being informed rather than having to learn the

true drift over time from observations is:

IEL(x) = sup{c ≥ 0
∣∣RL(x) ≤ RF(x− c)}. (13)
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This maximum amount a learning investor can pay to obtain the true value of

µ without being worse off can be interpreted as a information equivalent (IE).

If the realization of the randomly drawn drift could be purchased then IEL(x)

were the highest price a learning investor is willing to pay to be certain about

the value µ. Since the utility function (5) is CARA, the measure defined in

(13) is actually independent of the monetary endowment x.

As the value functions of these two investors satisfy (10), one finds

IEL =
1

α
exp(−rT ) log

(
HL/EµH

F
µ

)
with HL and HF

µ corresponding to the reduced form value functions of the

learning investor and the informed investor. The information equivalent IEL

is approximated numerically using the value functions derived in Section 3.

An approximation ĤF of the expected value EµH
F
µ is calculated as follows:

1. Draw independently Mµ values from the distribution N (µ0, γ0). These

are realizations of the drift.

2. For each random draw µi, calculate the value function HF
µi

by solving

the portfolio optimization problem (8) with (10).

3. Calculate

ĤF =
1

Mµ

Mµ∑
i

HF
µi
.

Similar to (13), we can approximate the monetary value of being an informed

investor rather than a naive investor or a biased investor. For naive and bi-

ased investors, one first needs to solve the optimization problem to determine

their trading strategies. Using these strategies one can determine realized u-

tility in a Monte Carlo simulation. To obtain the average realized utility one
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Figure 4: Information equivalents for different levels of risk aversion.

has to repeat this procedure for many independent draws of µ. In addition,

these calculations have to be carried out for different levels of risk aversion

and, if the investor is biased, for different degrees of sentiment. The effi-

cient numerical method introduced in Section 3 allows us to perform these

simulations in a matter of hours.

Figure 4 depicts information equivalents for different levels of risk aversion

and different investor types. The lowest values are obtained for a learning

investor. This observation confirms that empirical estimation of the drift

using a filter is beneficial. The highest values are associated with aggres-

sive trend-followers and contrarian investors while less aggressive ones have

information equivalents close to that of the naive investor.
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Information equivalents are decreasing in the risk aversion: more risk-

averse investors of any type, receive lower benefits from knowing the true

drift. For instance, the more risk-averse investors with α = 0.5 are only

willing to pay from 1/6th to 1/4th as much as the less risk-averse investors

with α = 0.1 to remove uncertainty about the actual drift. At first sight

this might be surprising as higher risk-aversion is generally associated with

higher willingness to pay in order to avoid risk. The opposite is true here as

higher risk aversion leads to less investment in the stock, see also Liu and

Loewenstein (2002); Liu (2004); Muthuraman and Kumar (2006). Cvitanić

et al. (2006) also find that the certainty equivalents that they examine achieve

the highest values for the lowest risk aversion in different setups.

The sentiment parameter a has a marked impact on information equiva-

lents, cf. Figure 4, which warrants a more detailed analysis. Figure 5 shows

the result for the information equivalent with the sentiment parameter a in

(4) varying between −2 (strongly trend-following) and 0.5 (strongly contrar-

ian). The information equivalent is a U-shaped function of a. Its minimum

is obtained for a mildly trend-following investor. For the parameter values

considered here, the minimum is obtained for a degree of sentiment a ≈ −0.4.

Mild trend-following therefore mimics the optimal filtering. As a result, the

trading strategy of an investor whose estimate of the drift is derived from

cautious interpolation of an observed (short-term) trend, is close to that of

a learning investor.

The effect of the investment time-horizon on the information equivalent

is studied in Figure 6. It shows annualized information equivalents which

are defined as IE · erT/T as IE is defined at the initial time. First, the
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Figure 5: Information equivalents of biased investors with different values of

parameter a (see (4)): naive investor (a = 0), trend-follower (a < 0) and contrarian

investor (a > 0).

naive investor has more to gain from knowing the true drift than the learn-

ing investor, and the annualized benefit is fairly constant across different

investment horizons. In contrast, the annualized information equivalent of a

learning investor is decreasing in the investment horizon. This reflects the

gain in knowledge from filtering which reduces conditional variance when the

investment horizon increases. It also provides a hedge against unfavorable

realizations of the drift (Brennan 1998).

The information equivalent is strictly positive even at a 10-year invest-

ment horizon. The lesson is that the true drift is difficult to estimate and one
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Figure 6: Annualized information equivalents for different investment horizons.

Learning investor (triangles) and naive investor (squares).

cannot eliminate uncertainty about the drift within this finite time-horizon.

Therefore, learning about the drift via filtering has benefits even in the long

run as the estimation error decreasing slowly with time. Previous studies

of the case without transaction costs find substantial utility gains when in-

vestors take an optimal dynamic strategy with learning, see Xia (2001) and

Cvitanić et al. (2006).8 Our results under transaction costs show that a naive

8Using the optimal strategy with learning, Xia (2001) shows that investors can im-

prove their welfare by from 15% to 100%, and Cvitanić et al. (2006) report that certainty

equivalents increase from 2.93% to 215.73%. A quantitative comparison between their re-

sults and ours is inappropriate sine the models and values of parameters are substantially
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investor with a 1-year horizon can reduce the loss due to uncertainty about

the true drift by 1/3rd when adopting a filtering strategy; with a 10-year

horizon the loss is reduced by 4/5th.

4.2. Transaction costs

Trading strategies are usually very sensitive to transaction costs. We

therefore explore the impact of these costs in detail. Figure 7 shows the

utility of a learning investor under different transaction cost scenarios. The

top graph (horizontal line) is the benchmark case of no transaction costs.

The bottom graph is the utility of a learning investor who incurs proportional

transaction costs. Utility is decreasing as the proportional transaction cost

increases which coincides with findings in previous studies (see, e.g. Gennotte

and Jung 1994; Balduzzi and Lynch 1999). In the range 0.5% to 2% the loss

in utility is approximately linear.

This loss in utility is caused by two effects of transaction costs: (a) a direct

effect due to the additional expense incurred and (b) an indirect effect due to

less trading on the asset allocation. In our model, we can quantify these two

separate effects by stripping out the first one by reimbursing all transaction

costs (with interest) at the final period. Of course the investor optimizes

the dynamic portfolio strategy without knowing about this reimbursement

as otherwise the scenario is identical to the no transaction cost case. The

result is the middle graph in Figure 7 which is about halfway (except those

below halfway cases for the small cost rate λ < 0.01) between the zero-cost

and positive-cost without reimbursement case.

different.
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Figure 7: Maximum expected utility of a learning investor who faces no transac-

tion costs (top graph) and positive transaction costs with reimbursement (middle

graph) and without reimbursement (bottom graph).

The difference between the reimbursement and the zero-cost benchmark

case is the deadweight loss from the proportional transaction cost. It mea-

sures the true economic cost of this friction. We find that the total effect

of the transaction cost is about twice (except the small cost rate λ < 0.01)

as large as the loss in utility due to less trading resulting from transaction

costs. The implications are that freely re-balancing portfolio significantly

contributes to investors’ expected utilities, and less re-balancing with costs

than that without costs brings about half (or more than half for λ < 0.01)

of the total loss in utility of this friction.
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The welfare impact of transaction costs is analyzed in more detail. To

capture the value from investing in a market without transaction costs, we

denote the corresponding gain to an investor of type · as

TE·(λ) = sup{c ≥ 0
∣∣EµV

·
µ,λ(0, S0, x, 0) ≤ EµV

·
µ,λ=0(0, S0, x− c, 0)}, (14)

where V ·
µ,λ(0, S0, x, 0) is the value of expected utility which an investor max-

imizes according to his perspective of the drift, i.e. the drift he takes when

solving his portfolio optimization problem, under proportional transaction

costs at a rate λ. The reasons of using expected utilities are explained later.

The CARA utility function (5) implies that the measure is independent of

the monetary endowment x. TE·(λ) is the maximum price an investor of

a given type is willing to pay to avoid incurring transaction costs at a rate

λ. This justifies the notion transaction-cost equivalent (TE). As the value

function satisfies (10), one has

TE·(λ) =
1

α
exp(−rT ) log

(
EµH

·
µ,λ/EµH

·
µ,λ=0

)
,

where H ·
µ,λ is the reduced form value function when the transaction cost rate

is λ. Only for an informed investor, does the value function depend on µ

following the distribution N (µ0, γ0). For all other types, one can drop the

expected value operator Eµ and the subscript µ of the value function.

In contrast to the above study of the value of information IE, we com-

pare here one investor (rather than two investors when calculating IE) in

two different situations with and without transaction costs. We do not need

to distinguish here whether the drift he takes is the true drift or not. In addi-

tion, average realized utility can be actually increased by transaction costs.

In fact, investors who maximize utility under incorrect assumption of the
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Figure 8: Annualized transaction-cost equivalents for different investment hori-

zons. Learning investor (triangles), naive investor (squares) and informed investor

(circles). The proportional transaction cost rate is given by the base case as

λ = 0.01.

stock price dynamics make subjectively optimal but objectively sub-optimal

trading decisions. When the cost discourages investors from making trades

that are objectively sub-optimal, transaction costs can increase realized av-

erage utility. Perceived utility however will never increase when transaction

costs increase. We therefore use perceived expected utility rather than aver-

age realized utility.

Figure 8 shows the effect of proportional transaction costs on three in-

vestor types. The transaction-cost equivalents are annualized to allow a
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meaningful comparison of investment over different time-horizons. This mea-

sure is approximately constant for the naive investor but slowly decreasing

for the informed investor and rapidly decreasing for the learning investor. For

time-horizons of up to 5 years, the learning investor is the one most strongly

affected by transaction costs. At a 1-year time-horizon, his willingness to

pay to avoid 1% transaction costs is almost 4 times that of the naive investor

and 3 times that of an informed investor. In the short run, the estimate

of the actual drift is inaccurate and can vary drastically, see also Lundtofte

(2006, 2008) for a related discussion.9 This increases the investor’s incentive

to trade and leads to higher transaction costs. Therefore a learning investor

is the most keen to remove these costs.

At longer time-horizons, the naive investor has the most to gain from

the absence of transaction costs as the misspecification of the drift leads to

excess trading compared to investors who either know or have learned enough

about the actual drift. For a learning investor, trading is slightly contrarian,

which leads to the lowest transaction-cost equivalent. For instance, a sudden

sharp drop (rise) in the stock price leads to a stock purchase (sale) from the

informed investor in order to keep holdings in the no-trade region. A learning

investor would at the same time lower (increase) the estimate of the drift and

therefore tends to make a smaller trade, incurring lower transaction costs.

As a result, the learning investor reduces the loss in utility implied by TE

by about 1/2 over a 10-year time-horizon compared with the naive investor.

9At short time-horizons of less than 5 years, the conditional variance of the filter, which

decreases with time, is relatively large compared to those over time-horizons of 10 years

and more.
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The observation on the benefit of learning mirrors those by Cvitanić et al.

(2006) who, in the case without transaction costs, find substantial utility

gains resulting from the optimal strategy with filtering, especially for long

horizons.

5. Conclusion

The efficient numerical algorithm introduced in the paper allows us to

solve portfolio optimization problems with state-dependent drift and long

time-horizons in the presence of proportional transaction costs. We apply the

method to explore scenarios in which investors (a) use past stock prices to

learn about the true (but unknown) drift, (b) react to stock price movements

as trend-followers or contrarians, or (c) are naive and ignore information that

is revealed over time.

The numerical results show that forecasting behavior has a strong im-

pact on trading in the presence of transactions costs. Using the indifference

principle, we quantify the value of information and the welfare effect of trans-

action costs. Information is most valuable to the least risk-averse investor,

and transaction costs are most detrimental to naive investors. The total loss

in utility from proportional transaction costs is generally about twice as large

as the direct cost incurred. In general, learning reduces the losses in utility

due to the uncertain drift and transaction costs, especially for long horizons.
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