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Abstract

Motivated by the problems of the conventional model in rational-
izing market data, we derive the equilibrium interest rate and risk
premiums using recursive utility in a continuous time model. We
consider the version of recursive utility which gives the most unam-
biguous separation of risk preference from time substitution, and use
the stochastic maximum principle to analyze the model. This method
uses forward/backward stochastic differential equations. With exis-
tence granted, the market portfolio is determined in terms of future
utility and aggregate consumption in equilibrium. The equilibrium
real interest rate is also derived, and the the model is shown to be con-
sistent with reasonable values of the parameters of the utility function
when calibrated to market data, under various assumptions.

KEYWORDS: The equity premium puzzle, the risk-free rate puzzle,
recursive utility, the stochastic maximum principle.
JEL-Code: G10, G12, D9, D51, D53, D90, E21.

1 Introduction

Rational expectations, a cornerstone of modern economics and finance, has
been under attack for quite some time. Questions like the following are
sometimes asked: Are asset prices too volatile relative to the information

∗Norwegian School of Economics, Bergen, Norway. The first version of the paper was
presented at the international conference ”The Social Discount Rate” held in Bergen in
May, 2012, and organized by K̊are Petter Hagen in cooperation with the Ministry of
Finance, Norway. Special thanks to Thore Johnsen, Steinar Ekern, Gunnar Eskeland,
Darrell Duffie, Bjørn Eraker, Bernt Øksendal, and Rajnish Mehra for valuable comments.
Any remaining errors are mine.
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arriving in the market? Is the mean risk premium on equities over the riskless
rate too large? Is the real interest rate too low? Is the market’s risk aversion
too high?

Mehra and Prescott (1985) raised some of these questions in their well-
known paper, using a variation of Lucas’s (1978) pure exchange economy
with a Kydland and Prescott (1982) ”calibration” exercise. They chose the
parameters of the endowment process to match the sample mean, variance
and the annual growth rate of per capita consumption in the years 1889 -
1978. The puzzle is that they were unable to find a plausible parameter pair
of the utility discount rate and the relative risk aversion to match the sample
mean of the annual real rate of interest and of the equity premium over the
90-year period.

The puzzle has been verified by many others, e.g., Hansen and Singleton
(1983), Ferson (1983), Grossman, Melino, and Shiller (1987). Many theories
have been suggested during the years to explain the puzzle, but to date there
does not seem to be any consensus that the puzzles have been fully resolved
by any single of the proposed explanations 1.

We reconsider recursive utility in continuous time along the lines of Duffie
and Epstein (1992a-b). In the first paper two versions of recursive utility were
established, where one one version was analyzed by the use of dynamic pro-
gramming. The version left out is the one that gives the most unambiguous
separation of risk preference from time substitution, which is the one we an-
alyze in this paper. In doing so we use the stochastic maximum principle.
The resulting model we solve, and present both risk premiums and the equi-
librium interest rate. The method we use allows the volatilities in the model
to be both time and state dependent.

Aside from this relaxation of the standard assumptions, we use the basic
framework developed by Duffie and Epstein (1992a-b) and Duffie and Skiadas
(1994), which elaborate the foundational work by Kreps and Porteus (1978)
and Epstein and Zin (1989) of recursive utility in dynamic models. The data
set we use to calibrate the model is the same as the one used by Mehra and
Prescott (1985) in their seminal paper on this subject. These suggest that
the volatilities mentioned above are not the same.

1Constantinides (1990) introduced habit persistence in the preferences of the agents.
Also Campbell and Cochrane (1999) used habit formation. Rietz (1988) introduced fi-
nancial catastrophes, Barro (2005) developed this further, Weil (1992) introduced non-
diversifiable background risk, and Heaton and Lucas (1996) introduce transaction costs.
There is a rather long list of other approaches aimed to solve the puzzles, among them
are borrowing constraints (Constantinides et al. (2001)), taxes (Mc Grattan and Prescott
(2003)), loss aversion (Benartzi and Thaler (1995)), survivorship bias (Brown, Goetzmann
and Ross (1995)), and heavy tails and parameter uncertainty (Weitzmann (2007)).
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We also analyze the version treated in Duffie and Epstein (1992a) using
our method, and obtain the same risk premiums. In addition we have an
expression for the real interest rate.

Generally one can not assumed that all income is investment income. We
assume that one can view exogenous income streams as dividends of some
shadow asset, in which case our model is valid if the market portfolio is
expanded to include the new asset. In reality the latter is not traded, so
the return to the wealth portfolio is not readily observable or estimable from
available data. We indicate how the model may be slightly adjusted under
various assumptions, when the market portfolio is not a proxy for the wealth
portfolio.

Besides giving new insights about these interconnected puzzles, the re-
cursive model is likely to lead to many other results that are difficult, or
impossible, to obtain using, for example, the conventional, time additive
Eu-model. One example included in this paper is that we can explain the
empirical regularities for Government bills.2

It has been a goal in the modern theory of asset pricing to internalize
probability distributions of financial assets. To a large extent this has been
achieved in our approach. Consider the logic of this Lucas-style model. Ag-
gregate consumption is a given diffusion process. The solution of a system
of forward/backward stochastic differential equations (FBSDE) provide the
main characteristics in the probability distributions of future utility. With
existence of a solution to the FBSDE granted, market clearing finally de-
termines the characteristics in the market portfolio from the corresponding
characteristics of the utility and aggregate consumption processes.

The paper is organized as follows: Section 2 starts with a brief intro-
duction to recursive utility in continuous time, in Section 3 we derive the
first order conditions, Section 4 details the financial market, in Section 5
we analyze the main version of recursive utility. In Section 6 we summarize
the main results, and present some calibrations. Section 7 explores various
alternatives when the market portfolio is not a proxy for the wealth portfo-
lio, Section 8 points out some extensions, and Section 9 concludes. In the
Appendix we present a derivation for the ordinally equivalent version, using

2There is by now a long standing literature that has been utilizing recursive preferences.
We mention Avramov and Hore (2007), Avramov et al. (2010), Eraker and Shaliastovich
(2009), Hansen, Heaton, Lee, Roussanov (2007), Hansen, Heaton, Lee (2008), Hansen
and Scheinkman (2009), Wacther (2012), Bansal and Yaron (2004), Campbell (1996),
Bansal and Yaron (2004), Kocherlakota (1990 b), and Ai (2012) to name some important
contributions. Related work is also in Browning et. al. (1999), and on consumption see
Attanasio (1999). Bansal and Yaron (2004) study a richer economic environment than we
employ.
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the stochastic maximum principle.

2 Recursive Stochastic Differentiable Utility

In this section we recall the essentials of recursive, stochastic, differentiable
utility along the lines of Duffie and Epstein (1992a-b) and Duffie and Skiadas
(1994).

We are given a probability space (Ω,F ,Ft, t ∈ [0, T ], P ) satisfying the
’usual’ conditions, and a standard model for the stock market with Brownian
motion driven uncertainty, N risky securities and one riskless asset (Section
5 provides more details). Consumption processes are chosen form the space
L of square integrable progressively measurable processes with values in R+.

The stochastic differential utility U : L→ R is defined as follows by two
primitive functions: f : [0, T ]× R× R→ R and A : R→ R, where R is the
real line.

The function f(t, ct, Vt, ω) corresponds to a felicity index at time t, and A
corresponds to a measure of absolute risk aversion (of the Arrow-Pratt type)
for the agent. In addition to current consumption ct, the function f depends
on utility Vt, and it may also depend on time t as well as the state of the
world ω ∈ Ω.

The utility process V for a given consumption process c, satisfying VT = 0,
is given by the representation

Vt = Et

{∫ T

t

(
f(t, cs, Vs)−

1

2
A(Vs)Z(s)′Z(s)

)
ds
}
, t ∈ [0, T ] (1)

where Et(·) denotes conditional expectation given Ft and Z(t) is an Rd-
valued square-integrable progressively measurable volatility process, to be
determined in our analysis. Here d is the dimension of the Brownian mo-
tion Bt. Vt is the remaining utility for c at time t, conditional on current
information Ft, and A(Vt) is penalizing for risk.

Recall the time-less situation with a mean zero risk X having variance
σ2, where the certainty equivalent m is defined by Eu(w +X) := u(w −m)
for a constant wealth w. Then the Arrow-Pratt approximation to m, valid
for ”small” risks, is given by m ≈ 1

2
A(w)σ2, where A(·) is the absolute risk

aversion associated with u. We would expect this analogy to work well in a
continuous-time model with Brownian driven uncertainty.

If, for each consumption process ct, there is a well-defined utility process
V , the stochastic differential utility U is defined by U(c) = V0, the initial
utility. The pair (f, A) generating V is called an aggregator.
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Since VT = 0 and
∫
Z(t)dBt is is assumed to be a martingale, (1) has the

stochastic differential equation representation

dVt =
(
− f(t, ct, Vt) +

1

2
A(Vt)Z(t)′Z(t)

)
dt+ Z(t)dBt. (2)

If terminal utility different from zero is of interest, like for applications to
e.g., life insurance, then VT may be different from zero. U is monotonic and
risk averse if A(·) ≥ 0 and f is jointly concave and increasing in consumption.
A may also depend on time t.

The preference ordering represented by recursive utility is usually as-
sumed to satisfy A1: Dynamic consistency, in the sense of Johnsen and
Donaldson (1985), A2: Independence of past consumption, and A3: State
independence of time preference (see Skiadas (2009a)).

In this paper we consider two specifications: The first has the Kreps-
Porteus utility representation, which corresponds to the aggregator of a CES
type

f1(c, v) =
δ

1− ρ
c1−ρ − v1−ρ

v−ρ
and A1(v) =

γ

v
(3)

If, for example, A1(v) = 0 for all v, this means that the recursive utility
agent is risk neutral. This is the main version that we analyze.

The parameters are assumed to satisfy ρ ≥ 0, ρ 6= 1, δ ≥ 0, γ ≥ 0, γ 6= 1
(when ρ = 1 or γ = 1 logarithms apply). The elasticity of intertemporal
substitution in consumption is denoted by ψ = 1/ρ. The parameter ρ we
refer to as the time preference parameter. The version (3) yields the desired
disentangling of γ from ρ.

An ordinally equivalent specification can be derived as follows. When the
aggregator (f1, A1) is given corresponding to the utility function U1, there
exists a strictly increasing and smooth function ϕ(·) such that the ordinally
equivalent U2 = ϕ ◦ U1 has the aggregator (f2, A2) where

f2(c, v) = ((1− γ)v)−
γ

1−γ f1(c, ((1− γ)v)
1

1−γ ), A2 = 0.

The function ϕ is given by

U2 =
1

1− γ
U1−γ
1 , (4)

for the Kreps-Porteus specification. It has has the CES-form

f2(c, v) =
δ

1− ρ
c1−ρ − ((1− γ)v)

1−ρ
1−γ

((1− γ)v)
1−ρ
1−γ−1

, A2(v) = 0. (5)
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The reduction to a normalized aggregator (f2, 0) does not mean that in-
tertemporal utility is risk neutral, or that the representation has lost the abil-
ity to separate risk aversion from substitution (see Duffie and Epstein(1992a)).
The corresponding utility U2 retains the essential features, namely that of
(partly) disentangling intertemporal elasticity of substitution from risk aver-
sion. This is the (standard) version analyzed previously by Duffie and Epstein
(1992a) using dynamic programming.

The normalized version is used to prove existence and uniqueness of the
solution to the BSDE (2), see Duffie and Epstein (1992b) and Duffie and
Lions (1992).

It is instructive to recall the that the conventional additive and separable
utility has aggregator

f(c, v) = u(c)− δv, A = 0. (6)

in the present framework (an ordinally equivalent one). As can be seen, even
if A = 0, the agent of the conventional model is not risk neutral.

2.1 Homogeniety

The following result will be made use of below. For a given consumption
process ct we let (V

(c)
t , Z

(c)
t ) be the solution of the BSDE{

dV
(c)
t =

(
− f(t, ct, V

(c)
t ) + 1

2
A(V

(c)
t )Z(t)′(c)Z(t)(c)

)
dt+ Z(t)(c) dBt

V
(c)
T = 0

(7)

Theorem 1 Assume that, for all λ > 0,
(i) λ f(t, c, v) = f(t, λc, λv); ∀ t, c, v, ω
(ii) A(λv) = 1

λ
A(v); ∀ v

Then
V

(λc)
t = λV

(c)
t and Z

(λc)
t = λZ

(c)
t , t ∈ [0, T ]. (8)

Proof By uniqueness of the solution of the BSDEs of the type (7), all we

need to do is to verify that the triple (λV
(c)
t , λZ

(c)
t , λKt(·)(c)) is a solution of

the BSDE (7) with ct replaced by λct, i.e. that
d(λV

(c)
t ) =

(
− f(t, λct, λV

(c)
t ) + 1

2
A(λV

(c)
t )λZ(t)′(c)λZ(t)(c)

)
dt

+λZ(t)(c) dBt; 0 ≤ t ≤ T

λV
(c)
T = 0

(9)
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By (i) and (ii) the BSDE (9) can be written
λdV

(c)
t =

(
− λf(t, ct, V

(c)
t ) + 1

2
1
λ
A(V

(c)
t )λ2Z(t)′(c)Z(t)(c)

)
dt

+λZ(t)(c) dBt; 0 ≤ t ≤ T

λV
(c)
T = 0

(10)

But this is exactly the equation (7) multiplied by the constant λ. Hence (10)
holds and the proof is complete. �

Remarks 1) Note that the system need not be Markovian in general, since
we allow

f(t, c, v, ω); (t, ω) ∈ [0, T ]× Ω

to be an adapted process, for each fixed c, v.
2) Similarly, we can allow A to depend on t as well 3.

Corollary 1 Define U(c) = V
(c)
0 .Then U(λc) = λU(c) for all λ > 0.

Notice that the aggregator in (3) satisfies the assumptions of the theorem.

3 The First Order Conditions

In the following we solve the consumer’s optimization problem. The con-
sumer is characterized by a utility function U and an endowment process
e. For any of the versions i = 1, 2 formulated in the previous section, the
representative agent’s problem is to solve

supc∈LU(c)

subject to

E
{∫ T

0

ctπtdt
}
≤ E

{∫ T

0

etπtdt
}
.

Here Vt = V c
t and (Vt, Zt) is the solution of the backward stochastic differen-

tial equation (BSDE){
dVt = −f̃(t, ct, Vt, Z(t)) dt+ Z(t) dBt

VT = 0.
(11)

Notice that (11) covers both the versions (3) and (5), where

f̃(t, ct, Vt, Z(t)) = fi(ct, Vt)−
1

2
Ai(Vt)Z(t)′Z(t), i = 1, 2.

3although not standard in Economics.
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Existence and uniqueness of solutions of the BSDE is treated in the general
literature on this subject. For a reference see Theorem 2.5 in Øksendal and
Sulem (2013), or Hu and Peng (1995). For the equation (11) existence and
uniqueness follows from Duffie and Lions (1992).

For α > 0 we define the Lagrangian

L(c;α) = U(c)− αE
(∫ T

0

πt(ct − et)dt
)
.

Important is here that the quantity Z(t) is part of the solution of the BSDE.
Later we show how market clearing will finally determine the corresponding
quantity in the market portfolio as a function of Z and the volatility σc
of the growth rate of aggregate consumption. This internalizes prices in
equilibrium.

In order to find the first order condition for the representative consumer’s
problem, we use Kuhn-Tucker and either directional (Frechet) derivatives
in function space, or the stochastic maximum principle. Neither of these
principles require any Markovian structure of the economy. The problem is
well posed since U is increasing and concave and the constraint is convex. In
maximizing the Lagrangian of the problem, we can calculate the directional
derivative 5U(c;h), alternatively denoted by(5U(c))(h), where 5U(c) is
the gradient of U at c. Since U is continuously differentiable, this gradient
is a linear and continuous functional, and thus, by the Riesz representation
theorem, it is given by an inner product. This we return to in Section 5.3.

Because of the generality of the problem, let us here utilize the stochastic
maximum principle (see Pontryagin (1972), Bismut (1978), Kushner (1972),
Bensoussan (1983), Øksendal and Sulem (2013), Hu and Peng (1995), or Peng
(1990)): We then have a forward/backward stochastic differential equation
(FBSDE) system consisting of the simple FSDE dX(t) = 0;X(0) = 0 and
the BSDE (11). The Hamiltonian for this problem is

H(t, c, v, z, y) = yt f̃(t, ct, vt, zt)− απt(ct − et), (12)

where yt is the adjoint variable. Sufficient conditions for an optimal solu-
tion to the stochastic maximum principle can be found in the literature, see
e.g., Theorem 3.1 in Øksendal and Sulem (2013). Hu and Peng (1995) also
study existence and uniqueness of the solution to coupled FBSDE. A unique
solution exist in the present case provided there is a unique solution to the
BSDE (11); again Duffie and Lions (1992) is the appropriate reference.

The adjoint equation is{
dYt = Y (t)

(
∂f̃
∂v

(t, ct, Vt, Z(t)) dt+ ∂f̃
∂z

(t, ct, Vt, Z(t)) dBt

)
Y0 = 1.

(13)
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If c∗ is optimal we therefore have

Yt = exp
(∫ t

0

{∂f̃
∂v

(s, c∗s, Vs, Z(s))− 1

2

(∂f̃
∂z

(s, c∗s, Vs, Z(s))
)2}

ds

+

∫ t

0

∂f̃

∂z
(s, c∗s, Vs, Z(s)) dB(s)

)
a.s. (14)

Maximizing the Hamiltonian with respect to c gives the first order equation

y
∂f̃

∂c
(t, c∗, v, z)− απ = 0

or

απt = Y (t)
∂f̃

∂c
(t, c∗t , V (t), Z(t)) a.s. for all t ∈ [0, T ]. (15)

Notice that the state price deflator πt at time t depends, through the adjoint
variable Yt, on the entire optimal paths (cs, Vs, Zs) for 0 ≤ s ≤ t. (The
economy may be allowed to be non-Markovian since f̃(·) may also be allowed
to depend on the state of nature.)

When γ = ρ then Yt = e−δt for the aggregator (6) of the conventional
model, so the state price deflator is a Markov process, the utility is additive
and dynamic programming is often used. (To actually solve the associated
Bellman equation in continuous time models, most of the coefficients (volatil-
ities) must be assumed to be constants.)

For the representative agent equilibrium the optimal consumption process
is the given aggregate consumption c in society, and for this consumption
process the utility Vt at time t is optimal.

We now have the first order conditions for both the versions of recursive
utility outlined in Section 3. We analyze the non-ordinal version, denoted
Model 1, with aggregator given by (3). The ordinally equivalent version (5)
is analyzed in the Appendix.

4 The financial market

Having established the general recursive utility of interest, in his section
we specify our model for the financial market. The model is much like the
one used by Duffie and Epstein (1992a), except that we do not assume any
unspecified factors in our model.

Let ν(t) ∈ RN denote the vector of expected rates of return of the N given
risky securities in excess of the riskless instantaneous return rt, and let σ(t)
denote the matrix of diffusion coefficients of the risky asset prices, normalized
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by the asset prices, so that σ(t)σ(t)′ is the instantaneous covariance matrix
for asset returns. Both ν(t) and σ(t) are progressively measurable, ergodic
processes.

The representative consumer’s problem is, for each initial level w of wealth
to solve

sup
(c,ϕ)

U(c) (16)

subject to the intertemporal budget constraint

dWt =
(
Wt(ϕ

′
t · ν(t) + rt)− ct

)
dt+Wtϕ

′
t · σ(t)dBt. (17)

Here ϕ′t = (ϕ
(1)
t , ϕ

(2)
t , · · · , ϕ(N)

t ) are the fractions of total wealth Wt held in
the risky securities.

Market clearing requires that ϕ′tσ(t) = (δMt )′σ(t) = σM(t) in equilibrium,
where σM(t) is the volatility of the return on the market portfolio, and δMt
are the fractions of the different securities, j = 1, · · · , N held in the value-
weighted market portfolio. That is, the representative agent must hold the
market portfolio in equilibrium, by construction.

The model is a pure exchange economy where the aggregate consumption
process ct in society is exogenously given, and the single agent optimally
consumes ct = et in every period, i.e., the agent optimally consumes the en-
dowment process et at every date t. The main issue is then the determination
of prices, including risk premiums and the interest rate, consistent with this
behavior.

In the above we have interpreted the market portfolio as a proxy for
the wealth portfolio, a common assumption in settings like this. This may,
however be inaccurate. We return to this in Section 7.

5 The analysis for the nonordinal model

We now turn our attention to pricing restrictions relative to the given optimal
consumption plan. The first order conditions are

απt = Yt
∂f1
∂c

(ct, Vt) a.s. for all t ∈ [0, T ] (18)

where f1 is given in (3). The volatility Z(t) and the utility process Vt satisfiy
the following dynamics

dVt =
(
− δ

1− ρ
c1−ρt − V 1−ρ

t

V −ρt

+
1

2

γ

Vt
Z ′(t)Z(t)

)
dt+ Z(t)dBt (19)
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where V (T ) = 0. This is the backward equation.
Aggregate consumption is exogenous, with dynamics of the form

dct
ct

= µc(t) dt+ σc(t) dBt, (20)

where µc(t) and σc(t) are measurable, Ft adapted stochastic processes, satis-
fying appropriate integrability properties. We assume these processes to be
ergodic, so that we may ’replace’ (estimate) time averages by state averages.

The function f̃ of Section 4 is given by

f̃(t, c, v, z) = f1(c, v)− 1

2
A(v)z′z,

and since A(v) = γ/v, from (13) the adjoint variable Y has dynamics

dYt = Yt
({ ∂
∂v
f1(ct, Vt) +

1

2

γ

V 2
t

Z ′(t)Z(t)
}
dt− A(Vt)Z(t) dBt

)
, (21)

where Y (0) = 1. From the FOC in (45) we obtain the dynamics of the state
price deflator. We now use the notation f for f1 for simplicity (except in the
Appendix, where f is f2). We also use the notation Z(t)/V (t) = σV (t), valid
for V 6= 0. By Theorem 1 the term σV (t) is homogeneous of order zero in c.

We then seek the connection between Vt and σV (t) and the rest of the
economy. Notice that Y is not a bounded variation process, and by Ito’s
lemma

dπt = fc(ct, Vt) dYt + Yt dfc(ct, Vt) + dYtdfc(ct, Vt). (22)

By the adjoint and the backward equations this is

dπt = Yt fc(ct, Vt)
(
{fv(ct, Vt) +

1

2
γσ′V (t)σV (t)}dt− γσV (t)dBt

)
+ Yt

∂fc
∂c

(ct, Vt) dct + Yt
∂fc
∂v

(ct, Vt) dVt + dYtdfc(ct, Vt)

+ Yt

(1

2

∂2fc
∂c2

(ct, Vt) (dct)
2 +

∂2fc
∂c ∂v

(ct, Vt) (dct)(dVt) +
1

2

∂2fc
∂v2

(ct, Vt) (dVt)
2
)
.

(23)

Here

fc(c, v) :=
∂f(c, v)

∂c
= δc−ρvρ, fv(c, v) :=

∂f(c, v)

∂v
= − δ

1− ρ
(1− ρc1−ρvρ−1),

∂fc(c, v)

∂c
= −δρc−(1+ρ)vρ, ∂fc(c, v)

∂v
= δρvρ−1c−ρ,

11



∂2fc
∂c2

(c, v) = δρ(ρ+ 1)vρc−(ρ+2),
∂2fc
∂c ∂v

(c, v) = −δρ2vρ−1c−(ρ+1),

and
∂2fc
∂v2

(c, v) = δρ(ρ− 1)vρ−2c−ρ.

5.1 The risk premiums

Denoting the dynamics of the state price deflator by

dπt = µπ(t) dt+ σπ(t) dBt, (24)

from (23) and the above expressions we obtain the drift and the diffusion
terms of πt as

µπ(t) = πt
(
− δ − ρµc(t) +

1

2
ρ(ρ+ 1)σ′c(t)σc(t)

+ ρ(γ − ρ)σ′c(t)σV (t) +
1

2
(γ − ρ)(1− ρ)σ′V (t)σV (t)

)
(25)

and
σπ(t) = −πt

(
ρσc(t) + (γ − ρ)σV (t)

)
(26)

respectively.
Notice that πt is not a Markov process since µπ(t) and σπ(t) depend on

πt, and the latter variable depends on consumption and utility from time
zero to time t.

Interpreting πt as the price of the consumption good at time t, by the first
order condition it is a decreasing function of consumption c since fcc < 0.

The risk premium of any risky security with return process R is given by

µR(t)− rt = − 1

πt
σπ(t)σR(t). (27)

It follows immediately from (26) and (27) that the formula for the risk pre-
mium of any risky security R is

µR(t)− rt = ρ σc(t)σR(t) + (γ − ρ)σV (t)σR(t). (28)

This is our basic result for risk premiums.
It remains to connect σV (t) to observables in the economy, which we do

below. Before that we turn to the interest rate.
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5.2 The equilibrium interest rate

The equilibrium short-term, real interest rate rt is given by the formula

rt = −µπ(t)

πt
. (29)

The real interest rate at time t can be thought of as the expected exponential
rate of decline of the representative agent’s marginal utility, which is πt in
equilibrium.

In order to find an expression for rt in terms of the primitives of the
model, we use (25). We then obtain the following

rt = δ + ρµc(t)−
1

2
ρ(ρ+ 1)σ′c(t)σc(t)−

ρ(γ − ρ)σcV (t)− 1

2
(γ − ρ)(1− ρ)σ′V (t)σV (t). (30)

This is our basic result for the equilibrium short rate.
The potential for these two relationships to solve the puzzles should be

apparent. We return to a discussion later.
We proceed to link the volatility term σV (t) to observable quantities in

the market that can be estimated from market data.

5.3 The determination of the volatility of the market
portfolio.

In order to determine σM(t) from the primitives σV (t) and σc(t), first notice
that the wealth at any time t is given by

Wt =
1

πt
Et

(∫ T

t

πscs ds
)
, (31)

where c is optimal. From Theorem 1 it follows that the non-ordinal utility
function U is homogenous of degree one. By the definition of directional
derivatives we have that

5 U(c; c) = limα↓0
U(c+ αc)− U(c)

α
= limα↓0

U(c(1 + α))− U(c)

α

= limα↓0
(1 + α)U(c)− U(c)

α
= limα↓0

αU(c)

α
= U(c),

where the third equality uses that U is homogeneous of degree one. By the
Riesz representation theorem it follows from the linearity and continuity of

13



the directional derivative that, by the first order condition

5U(c; c) = E
(∫ T

0

πtc
∗
t dt
)

= W0π0 (32)

where W0 is the wealth of the representative agent at time zero, and the last
equality follows from (31) for t = 0. Thus U(c) = π0W0.

Let Vt = V
(c)
t denote future utility at the optimal consumption for our

representation. Since also Vt is homogeneous of degree one and continu-
ously differentiable, by Riesz’ representation theorem and the dominated
convergence theorem, the same type of basic relationship holds here for the
associated directional derivatives at any time t, i.e.,

5Vt(c; c) = Et

(∫ T

t

π(t)
s cs ds

)
= Vt(c)

where the Riesz representation π
(t)
s for s ≥ t is the state price deflator at

time s ≥ t, as of time t. As for the discrete time model, it follows by results
in Skiadas (2009a) that with assumption A2, implying that this quantity is
independent of past consumption, the consumption history in the adjoint
variable Yt is ’removed’ from the state price deflator πt, so that π

(t)
s = πs/Yt

for all t ≤ s ≤ T . By this it follows that

Vt =
1

Yt
πtWt. (33)

This connects the dynamics of V to the rest of the economy. By the product
rule,

dVt = d
(
Y −1t

)
(πtWt) + Y −1t d(πtWt) + dY −1t d(πtWt). (34)

where
d(πtWt) = Wtdπt + πtdWt + dπtdWt (35)

Ito’s lemma gives

d
( 1

Yt

)
=
(
−
( 1

Yt

)(
fv(ct, Vt)+

1

2
γσ′V (t)σV (t) +

γ2

Yt
σ′V (t)σV (t)

)
dt+

1

Yt
γσV (t)dBt (36)

From the equations (34)-(36) it follows by the market clearing condition
ϕ′t · σ(t) = σM(t) that

VtσV (t) =
1

Yt

(
πtWtγσV + πtWtσM(t)− πtWt

(
ρσc(t) + (γ − ρ)σV (t)

))
(37)
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From the expression (33) for Vt we obtain the following equation for σV

σV (t) = γσV (t) + σM(t)− (ρσc(t) + (γ − ρ)σV (t)

from which it follows that

σM(t) = (1− ρ)σV (t) + ρσc(t). (38)

This is the internalization of Wt : The volatility of the market portfolio is a
linear sum of the volatility of future utility and the volatility of the growth
rate of aggregate consumption, both parts of the primitives of the economic
model.

This relationship can now be used to express σV (t) in terms of the other
two volatilities as

σV (t) =
1

1− ρ
(σM(t)− ρσc(t)). (39)

Alternatively, and somewhat easier, we can use the relation VtYt = πtWt and
the product rule directly to find these results.

Inserting the expression (39) into (28) and (30) we obtain the risk premi-
ums

µR(t)− rt =
ρ(1− γ)

1− ρ
σ′c(t)σR(t) +

γ − ρ
1− ρ

σ′M(t)σR(t), (40)

and the short rate

rt = δ + ρµc(t)−
1

2

ρ(1− γρ)

1− ρ
σc(t)

′σc(t) +
1

2

ρ− γ
1− ρ

σ′M(t)σM(t) (41)

respectively.
The expression for the risk premium was derived by Duffie and Epstein

(1992a) based on dynamic programming, assuming the volatilities involved
to be constants. The expression for the real interest rate is new to this paper.

The version treated by Duffie and Epstein (1992a) is the ordinally equiv-
alent one based on (5), which was claimed to be better suited for dynamic
programming. We show in the Appendix that under the assumptions of this
paper the results are the same for both versions of recursive utility.

6 Summary of the model

Taking existence of equilibrium as given, the main results in this section are
summarized as

Theorem 2 For the non-ordinal model specified in Sections 2-5, in equilib-
rium the risk premium of any risky asset is given by (40) and the real interest
rate by (41).
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The resulting risk premiums are linear combinations of the consumption-
based CAPM and the market-based CAPM at each time t. The original
derivation of the CAPM as an equilibrium model was given by Mossin (1966).
His derivation was in a time-less setting, where the interest rate plays no role.

When the time preference ρ = 0 in Theorem 2, only the market-based
CAPM remains. Accordingly, this model can be considered a dynamic ver-
sion of the market-based CAPM, with the associated interest rate given by
(41). In the present setting with recursive utility we denote this model by
CAPM++. Below we also calibrate this version to the data summarized in
Table 1 below.

The last two terms in the short rate has, together with the expression for
the equity premium, the potential to explain the low, observed values of the
real rate. These terms are also interesting when it comes to precautionary
savings. It is easy to see that when ρ < 1, then precautionary savings result
when 1

ρ
> γ > ρ: An increase in the variability of the consumption growth

rate, or the variability of the wealth portfolio, both lead to a decrease in the
real interest rate rt. This would be the analogue of a prudent agent in the
conventional model. This also seems a plausible interrelationship between
these two parameters for another reason: When γ > ρ the agent prefers
early resolution of uncertainty to late (see Fig. 1).

The risk premium decreases as σc(t) increases when γ > ρ and ρ < 1.
The conventional model can only predict an increase in the risk premium
when this volatility increases. When σM(t) increases in this situation, the
interest rate decreases and the risk premium increases. The same happens if
γ < ρ and ρ > 1. The conventional model has no answers for this.

6.1 Calibrations

In Table 1 we present the key summary statistics of the data in Mehra and
Prescott (1985), of the real annual return data related to the S&P-500, de-
noted by M , as well as for the annualized consumption data, denoted c, and
the government bills, denoted b 4.

Here we have, for example, estimated the covariance between aggregate
consumption and the stock index directly from the data set to be .00223.
This gives the estimate .3770 for the correlation coefficient 5.

Since our development is in continuous time, we have carried out stan-
dard adjustments for continuous-time compounding, from discrete-time com-
pounding. The results of these operations are presented in Table 2. This

4There are of course newer data by now, but these retain the same basic features. If
our model can explain the data in Table 1, it can explain any of the newer sets as well.

5The full data set was provided by Rajnish Mehra.
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Expectat. Standard dev. Covariances

Consumption growth 1.83% 3.57% cov(M, c) = .002226
Return S&P-500 6.98% 16.54% cov(M, b) = .001401
Government bills 0.80% 5.67% cov(c, b) = −.000158
Equity premium 6.18% 16.67%

Table 1: Key US-data for the time period 1889-1978. Discrete-time com-
pounding.

gives, e.g., the estimate κ̂Mc = .4033 for the instantaneous correlation coef-
ficient κ(t). The overall changes are in principle small, and do not influence
our comparisons to any significant degree, but are still important.

Expectation Standard dev. Covariances

Consumption growth 1.81% 3.55% σ̂Mc = .002268
Return S&P-500 6.78% 15.84% σ̂Mb = .001477
Government bills 0.80% 5.74% σ̂cb = −.000149
Equity premium 5.98% 15.95%

Table 2: Key US-data for the time period 1889-1978. Continuous-time com-
pounding.

First we interpret the risky asset R as the value weighted market portfolio
M corresponding to the S&P-500 index. The conventional, additive Eu-
model we obtain from (40) and (41) when γ = ρ. We then have two equations
in two unknowns which provide estimates for the preference parameters by
the ”method of moments” 6. The result for the Eu-model is γ = 26.3 and
δ = −.015, i.e., a relative risk aversion of about 26 and an impatience rate
of minus 1.5%. This is the equity premium puzzle.

If we insist on a nonnegative impatience rate, as we probably should (but
see Kocherlakota (1990)), this means that the real interest rate explained by
the model is larger than 3.3% (when δ = .01, say) for the period considered,
but it is estimated, as is seen from Table 2, to be less than one per cent. The
EIS parameter is calibrated to ψ = .037, which is considered to be too low
for the representative individual.

There is of course some sampling error, so that these estimates are not
exact, but clearly indicates that something is wrong with this model.

6Indeed, what we really do here is to use the assumption about ergodicity of the various
µt and σt processes. This enables us to replace ”state averages” by ”time averages”, the
latter being given in Table 2.
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Calibrations of the model (40) and (41) are presented in Table 3, for
plausible ranges of the parameters. We have consider Government bills as
risk free.

γ ρ EIS δ

Standard Model 26.37 26.37 .037 - .014
δ = .010 fixed .005 1.61 .62 .010
δ = .015 fixed .460 1.34 .74 .015
δ = .020 fixed .900 1.06 .94 .020
δ = .023 fixed 1.15 .90 1.11 .023
δ = .030 fixed 1.74 .48 2.08 .030
δ = .035 fixed 2.14 .18 5.56 .035
ρ = .90 fixed 1.15 .90 1.11 .023
ρ = .80 fixed 1.30 .80 1.25 .025
ρ = .50 fixed 1.72 .50 2.00 .030
ρ = .40 fixed 1.86 .40 2.50 .031
CAPM ++ 2.38 0.00 +∞ .038
γ = 0.50 fixed 0.50 1.31 0.79 .015
γ = 1.05 fixed 1.05 .97 1.03 .040
γ = 1.50 fixed 1.50 .66 1.51 .027
γ = 2.00 fixed 2.00 .30 3.33 .033
γ = 2.30 fixed 2.30 .07 14.30 .036

Table 3: Various Calibrations Consistent with Table 2

As noticed, ρ can be constrained to be zero, in which case the model
reduces to what we have called the CAPM++:

µR(t)− rt = γ σM,R(t), rt = δ − γ

2
σ′M(t)σM(t).

The risk premium is that of the ordinary CAPM-type, while the interest rate
is new. This version of the model corresponds to ”neutrality” of consumption
transfers. Also, from the expression for the interest rate we notice that the
short rate decreases in the presence of increasing market uncertainty. Solving
these two non-linear equations consistent with the data of Table 2, we obtain

γ = 2.38 and δ = .038.

In the conventional model this simply gives risk neutrality, i.e., γ = ρ = 0,
so this model gives a risk premium of zero, and a short rate of r = δ.

The original equilibrium model developed by Mossin (1966) was in a
one period (a time-less) setting with consumption only on the terminal time
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point, in which case wealth equals consumption. Since there was no consump-
tion on the initial time, no intertemporal aspects of consumption transfers
arose in the classical model. This naturally corresponds to u(c) = c for
the the felicity index regarding consumption transfers, meaning ρ = 0 and
ψ = 1/ρ = +∞, and corresponding to perfect substitutability of consump-
tion across time.

When the instantaneous correlation coefficient κMc(t) of returns and the
aggregate consumption growth rate is small, our model handles this situation
much better than the conventional one. The extreme case when κMc(t) = 0
is, for example, consistent with the solution presented above for ρ = 0, which
gives reasonable parameter values for the other parameters.

Most of the plausible calibration points presented in Table 3 correspond
to γ > 1 > ρ and accordingly EIS > 1, for the data summarized in Table 2.
Accordingly, these are located in the early resolution part of the (ρ, γ)-plane
where γ > ρ.

However, the present version is also consistent with calibrations in the
region 0 < γ < ρ < 1, corresponding to late resolution. As an example, if
ρ = 1.1, this is consistent with δ = .02 and γ = .90. The square root utility
function is used in many examples in various textbooks (for the conventional
model). For γ = .5 the model calibrates to δ = .015 and ρ = 1.31, i.e., late
resolution but otherwise for reasonable values of the parameters (calibration
point Calibr 2 in Fig. 1).

6.2 Some new features of the model

It is reassuring that the risk premium of any risky asset depends on other
investment opportunities in the financial market, and not just on this asset’s
covariance rate with consumption.

It is also satisfying that the return rate on government bonds depend
on more than just the growth rate and the variance rate of aggregate con-
sumption, but also on characteristics of other investment opportunities in
the financial market.

Faced with increasing consumption uncertainty, the ’prudent’ consumer
will save and the interest rate accordingly falls in equilibrium (this is a fruit-
tree economy). This is precautionary savings, and takes place if (1−ργ)/(1−
ρ) > 0, which then becomes the natural definition of prudence for this version
of recursive utility. As typical examples, the calibration point Calibr 1 in Fig.
1 satisfies this requirement, as does the point CAPM++.

When the uncertainty of the return of the market portfolio increases,
the interest rate decreases provided γ > ρ and ρ < 1, or if γ < ρ and
ρ > 1, and otherwise increases. The point Calibr 1 satisfies the first of

19



these requirements, so does the point CAPM++, while Calibr 2 satisfies the
second.

If σM(t) increases, the equity premium increases and the interest rate
decreases when γ > ρ and ρ < 1.

This kind of discussion has no place in the conventional model, since when
ρ = γ there is no direct connection to the securities market (nor to the wealth
portfolio) in the expression for the risk premium (40). Similarly, the interest
rate in (41) has no connection to the wealth portfolio in the conventional
model.
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Figure 1: Calibration points in the (γ, ρ)-space

The discrete-time recursive model of Epstein and Zin (1989-91) is the
one that is mostly used in applications. This model does not calibrate as
well as the model of the present paper. In the discrete-time model certain
approximations are usually made to get risk premiums and the interest rate
in a simple form. As a result of these approximations, in particular the ones
made for the interest rate, the calibrations only become reasonable when the
impatience rate approaches 10 per cent. We conjecture that without these
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approximations the results would be more in line with the ones in the present
paper.

6.3 Government bills

In the above discussion we have interpreted Government bills as risk free.
With this in mind, there is another problem with the conventional, additive
Eu-model. From Table 2 we see that there is a negative correlation between
Government bills and the consumption growth rate. Similarly there is a
positive correlation between the return on S&P-500 and Government bills.

If we interpret Government bills as risk free, the former correlation should
be zero for the CCAPM-model to be consistent. Since this correlation is not
zero, then γ must be zero, which is inconsistent with the the above (and the
model).

The Government bills used by Mehra and Prescott (1985) have duration
one month, and the data are yearly, in which case Government bills are not
the same as Sovereign bonds with duration of one year. One month bills in
a yearly context will then contain price risk 11 months each year, and hence
the estimate of the real, risk free rate is, perhaps, strictly lower that 0.80%.
Whatever the positive value of the risk premium is, the resulting value of γ
is negative. With bills included, the conventional, Eu-model does not seem
to have enough ’degrees of freedom’ to match the data, since in this situation
the model contains three basic relationships and only two ’free parameters’.

The recursive model does much better in this regard, and yields more
plausible results as it has enough degrees of freedom for this problem.

Exactly what risk premium bills command we can here only stipulate.
For a risk premium of .0040 for the bills we have a third equation, namely

µb(t)− rt =
ρ(1− γ)

1− ρ
σc,b(t) +

γ − ρ
1− ρ

σM,b (42)

to solve together with the equations (40) and (41). With the covariance
estimates provided in Table 2, we have three equations in three unknowns,
giving the following values δ = 0.027, γ = 1.76 and ρ = 0.53. This risk
premium of the bills indicates that the estimate of the real rate is only .0040,
which may be a bit low, but these results are far better than the conventional,
additive Eu-model can provide.

This may have several important consequences. To mention just one,
recall the controversy around the Stern report, in which an estimate of 1.4
per cent for the real rate is suggested. Stern (2007) set the impatience rate
ρ = 0.001, and received critique for this as well. Based on the above, the real
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rate could have been set close to zero for climate related projects, and still
have good model, and empirical support.

7 The market portfolio is not a proxy for the

wealth portfolio

In the paper we have focused on comparing two models, assuming the market
portfolio can be used as a proxy for the wealth portfolio. Suppose we can
view exogenous income streams as dividends of some shadow asset, in which
case our model is valid if the market portfolio is expanded to include the
new asset. However, if the latter is not traded, then the return to the wealth
portfolio is not readily observable or estimable from available data. Still
we should be able to get a pretty good impression of how the two models
compare, which we now attempt.

In the conventional model with constant coefficients the growth rate of
the wealth portfolio has the same volatility as the growth rate of aggregate
consumption. Taking this quantity as the lower bound for this volatility,
we indicate how the models compare when the market portfolio can not be
taken as a proxy for the wealth portfolio. Below we first set σW (t) = .05,
κc,W = .40 as before, and set κW,R = .70. The model can be written

µM(t)− rt =
ρ(1− γ)

1− ρ
σ′c(t)σM(t) +

γ − ρ
1− ρ

σ′W (t)σM(t), (43)

and

rt = δ + ρµc(t)−
1

2

ρ(1− ργ)

1− ρ
σ′c(t)σc(t) +

1

2

ρ− γ
1− ρ

σ′W (t)σW (t). (44)

Here M stands for the market portfolio and W for the wealth portfolio, so
that (43) is the equity premium. The calibrations are given in Table 4. The
results are in favor of low values of the impatience rate δ. Typical values
of γ fall between 2.7 and 4.5. The CAPM++ results when ρ = 0, and is
here consistent with a fairly high value of γ = 10.8, but with a reasonable
impatience rate of 1.7 per cent.

This value of .05 for the for the volatility of the wealth portfolio may be
somewhat low. A more reasonable one is likely to be somewhere in between
σc(t) and σM(t), so we suggest σW (t) = .10. We stipulate the correlation
coefficient κW,R = .80, and maintain the estimate of κc,W = .40. Calibrations
under these assumptions are given in Table 5. As can be seen from the table,
there is now a wide range of plausible solutions.
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Parameters γ ρ EIS δ

Recursive model
δ = 10−6 2.73 .91 1.10 10−6

δ = .001 3.30 .88 1.36 .001
δ = .010 7.86 .49 2.04 .010
δ = .015 9.92 .18 5.55 .015
ρ = 0.00 CAPM++ 10.80 .00 +∞ .017
ρ = .90 3.01 .90 1.11 .000
ρ = .85 3.85 .85 1.18 .002
ρ = .80 4.60 .80 1.25 .003
ρ = .70 5.89 .70 1.43 .006
γ = 2.80 2.80 .91 1.10 .000
γ = 3.50 3.50 .87 1.14 .001
γ = 4.00 4.00 .84 1.19 .002
γ = 4.50 4.50 .81 1.23 .003

Table 4: Calibrations of the model when σW (t) = .05,
κW,R = .70 and κc,W = .40.

The illustrations in this section give a fairly clear indication of how the
model performs when the market portfolio is not a proxy for the wealth
portfolio. Many additional examples could of course be given, and the model
can be extended and moved in various directions, as indicated by the extant
literature. However, the examples presented are fairly simple, and give a
reasonable illustration of how the recursive model behaves. Compared to
the conventional model the difference is dramatic. In solving puzzles, as few
features as possible should be altered at the time in order to discover what
made the difference.

8 Extensions

The recursive models analyzed in this paper has been extended to include
jump dynamics (Aase (2015)), which may be of particular interest in mod-
eling stock market movements. This approach allows for an additional pa-
rameter γ0 for risk aversion related to jump size risk, which can be different
from γ. A discrete time version has also been considered, and the results are
comparable (Aase (2013)). Also a heterogeneous model in continuous-time
give comparable results (Aase (2014)).
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Parameters γ ρ EIS δ

Recursive model
δ = .015 0.93 1.01 .99 .015
δ = .020 2.11 0.74 1.35 .020
δ = .025 3.26 0.44 2.27 .025
δ = .030 4.37 0.11 9.09 .030

ρ = .000 4.72 0.00 +∞ .032
ρ = .200 4.08 0.20 5.00 .029
ρ = .300 3.75 0.30 3.33 .027
ρ = .500 3.04 0.50 2.00 .024
ρ = .800 1.87 0.80 1.25 .019
ρ = .900 1.44 0.90 1.11 .017
ρ = .950 1.22 0.95 1.05 .016

γ = 1.01 1.01 .99 1.01 .015
γ = 2.00 2.00 .77 1.30 .020
γ = 2.50 2.50 .64 1.56 .022
γ = 3.00 3.00 .51 1.96 .024
γ = 3.50 3.50 .37 2.70 .026
γ = 4.00 4.00 .23 4.35 .028
γ = 4.50 4.50 .07 14.29 .030

Table 5: Calibrations of the model when σW (t) = .10,
κW,R = .80 and κc,W = .40.

9 Conclusions

We have addressed the well-known empirical deficiencies of the conventional
asset pricing model in financial and macro-economics. The continuous-time
recursive model is shown to fit data much better than the conventional Eu-
model. Our formal approach is to use the stochastic maximum principle and
forward/backward stochastic differential equations. This method can handle
state dependence.

In equilibrium the stochastic process of the market portfolio (or the wealth
portfolio) is determined from the stochastic processes of future utility and
the the growth rate of aggregate consumption.

With this in place, the model calibrates to plausible values of the param-
eters under reasonable assumptions.

Recursive utility in continuous time has two ordinally equivalent ver-
sions, where one version admits an unambiguous interpretation in the Kreps-
Porteus specification. This is the model we analyze in this paper. We show
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that both versions have the same risk premiums and short rates.
When the market portfolio is not a proxy for the wealth portfolio, our

results are still convincing, in fact, these seem the most interesting results
from the calibrations.

10 Appendix

10.1 The ordinally equivalent model analyzed by the
stochastic maximum principle

In this section we demonstrate how our method works for the ordinally equiv-
alent version (5). For this model the first order conditions are given by

απt = Yt
∂f

∂c
(ct, Vt) a.s. for all t ∈ [0, T ] (45)

where f̃(t, c, v, σ̃v) = f2(c, v) := f(c, v) is given in (5), and where the adjoint
variable Y (t) is

Yt = exp
(∫ t

0

∂f

∂v
(cs, Vs) ds

)
a.s. (46)

As can be noted, for this version the adjoint process is of bounded variation7.
The model for the aggregate consumption is the same as before, and the

process Vt is assumed to follow the dynamics

dVt
(1− γ)Vt

= µV (t) dt+ σV (t) dBt (47)

where

σ̃V (t) = (1− γ)VtσV (t), and µV (t) = − δ

1− ρ

(c1−ρt − ((1− γ)Vt)
1−ρ
1−γ

((1− γ)Vt)
1−ρ
1−ρ

)
.

Here we have called Z2(t) = σ̃V (t), and f2 = f for simplicity of notation.
When γ > 1 utility V is negative so the product (1 − γ)V > 0 a.s., which
gives us a positive volatility of V provided σV (t) > 0 a.e. From the FOC
(45) we then get the dynamics of the state price deflator:

dπt = fc(ct, Vt) dYt + Yt dfc(ct, Vt). (48)

7Originally the author derived this FOC using utility gradients based on a result of
Duffie and Skiadas (1994).
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Using Ito’s lemma this becomes

dπt = Yt fc(ct, Vt) fv(ct, Vt) dt+ Yt
∂fc
∂c

(ct, Vt) dct + Yt
∂fc
∂v

(ct, Vt) dVt

+ Yt

(1

2

∂2fc
∂c2

(ct, Vt) (dct)
2 +

∂2fc
∂c ∂v

(ct, Vt) (dct)(dVt) +
1

2

∂2fc
∂v2

(ct, Vt) (dVt)
2
)
.

(49)

Here

fc(c, v) :=
∂f(c, v)

∂c
=

δ c−ρ(
(1− γ)v

) 1−ρ
1−γ−1

,

fv(c, v) :=
∂f(c, v)

∂v
=

δ

1− ρ

(
c1−ρ

(
(1− γ)v

)− 1−ρ
1−γ (ρ− γ) + (γ − 1)

)
,

∂fc(c, v)

∂c
= − δ ρ c−ρ−1(

(1− γ)v
) γ−ρ

1−γ
,

∂fc(c, v)

∂v
= δ(ρ− γ) c−ρ

(
(1− γ)v

)− 1−ρ
1−γ ,

∂2fc
∂c2

(c, v) =
δ ρ (1 + ρ) c−ρ−2(
(1− γ)v)

1−ρ
1−γ−1

,
∂2fc
∂c ∂v

(c, v) =
ρ δ (γ − ρ) c−ρ−1(

(1− γ)
) 1−ρ

1−γ
,

and
∂2fc
∂v2

(c, v) =
δ (γ − ρ) (1− ρ) c−ρ(

(1− γ)v
) 1−ρ

1−γ+1
.

Denoting the dynamics of the state price deflator by

dπt = µπ(t) dt+ σπ(t) dBt, (50)

from (49) and the above expressions we now have that the drift and the
diffusion terms of πt are given by

µπ(t) = Yt

( δ2

1− ρ
(ρ− γ) c

2(1−ρ)−1
t ((1− γ)Vt)

− 2(1−ρ)
1−γ +1

− (1− γ)δ2

1− ρ
c−ρt ((1− γ)Vt)

− 1−ρ
1−γ+1 − δ ρ c−ρt ((1− γ)Vt)

− 1−ρ
1−γ+1 µc(t)

−δ c−ρt (ρ−γ) ((1−γ)Vt)
− 1−ρ

1−γ f(ct, Vt)+
1

2
δ ρ (1+ρ) c−ρt ((1−γ)Vt)

− 1−ρ
1−γ+1 σ′c(t)σc(t)

− δ ρc−ρt (ρ− γ) ((1− γ)Vt)
− 1−ρ

1−γ+1σcV (t)

− 1

2
δ (ρ− γ) (1− ρ) c−ρt ((1− γ)Vt)

− 1−ρ
1−γ+1 σ′V (t)σV (t)

)
, (51)
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and

σπ(t) = Yt δ c
−ρ
t

(
(−ρ)σc(t) ((1− γ)Vt)

− 1−ρ
1−γ+1+

(ρ− γ) ((1− γ)Vt)
− 1−ρ

1−γ ((1− γ)Vt)σV (t)
)

(52)

respectively.

10.2 The risk premium

The risk premium is as before given by

µR(t)− rt = − 1

πt
σRπ(t), (53)

where σRπ(t) is the instantaneous covariance of the increments of R and π.
Combining the FOC with the result in (52), the formula for the risk

premium in terms of the primitives of the model is accordingly given by

µR(t)− rt = ρ σRc(t) + (γ − ρ)σRV (t). (54)

This is a basic result of our analysis with recursive utility, and is seen to
be the same as for the nonordinal version based on (3) in terms of σV (t). We
return to the equilibrium determination of this term. Before we do that, we
give an expression for the equilibrium interest rate rt.

10.3 The equilibrium interest rate

The equilibrium interest rate rt is again given by the general formula

rt = −µπ(t)

πt
. (55)

In order to find an expression for rt in terms of the primitives of the
model, we use the formula for f(ct, Vt) from (5) in the expression for µπ(t)
in (51). We then obtain the following

rt = δ + ρµc(t)−
1

2
ρ
(
ρ+ 1

)
σ′c(t)σc(t)+

ρ(ρ− γ)σcV (t) +
1

2
(ρ− γ)(1− ρ)σ′V (t)σV (t). (56)

Again, this is the second basic result of our analysis with recursive utility,
and is seen to be the same as the one for the nonordinal version based on (3)
in terms of σV (t).

In order to link the volatility term σV (t) to an observable (or estimable)
quantity in the market, we use market clearing in the financial market, and
properties of recursive utility.
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10.4 The volatility of the market portfolio

First recall that the wealth at any time t is given by

Wt =
1

πt
Et

(∫ T

t

πscs ds
)
,

where c is optimal. Next recall the connection between the two ordinally
equivalent recursive utility representations that we deal with. It follows from
(4) that

5 U2(c; c) = U1(c)
−γ 5 U1(c; c)

= U1(c)
−γU1(c) = U1(c)

1−γ = (1− γ)U2(c). (57)

The second equality follows as in Section 5.3 since U1 is homogeneous of
degree one. It follows from the first order condition that

5U2(c; c) = E
(∫ T

0

πtct dt
)

= W0π0.

Let Ṽt(ct) and Vt(ct) denote future utility at the optimal consumption for
our current representation and the non-ordinal version of recursive utility,
respectively.

Moving to time t, the same, basic relationship holds here for the associ-
ated directional derivatives, using the dominated convergence and the Riesz
representation theorem

5Ṽt(c; c) = Et

(∫ T

t

π(t)
s cs ds

)
= V 1−γ

t = (1− γ)Ṽt.

where the state price deflator, conditional on information at time t, is given
by π

(t)
s = πs

Yt
for t ≤ s ≤ T . This shows that (1−γ)Ṽt = π

(t)
t Wt. Using market

clearing, by Ito’s lemma we deduce that σM(t) = (1−ρ)σV (t)+ρσc(t), which
is the important internalization of ”prices”. This can be ”inverted”, so we
may express σV (t) = (σM(t) − ρσc(t))/(1 − ρ) as well. These are the same
results that we obtained for the non-ordinal version of recursive utilility.

The conclusion is that for the recursive model, the two ordinally equiva-
lent version produces the same risk premiums and the same real short rate.

10.5 Conclusions for the ordinally equivalent version

We formulate our main results of this section:
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Theorem 3 For the ordinally equivalent model in (5), in equilibrium the
risk premiums of risky assets and the real interest rate are given by the same
expressions as for the non-ordinal version of recursive utility.

In this section we recover the expression for risk premium of Duffie and
Epstein (1992a), which they derive using dynamic programming. They do
not present the equilibrium real interest rate. Also in solving the associated
Bellman equation they need to assume constant coefficients in the stochastic
differential equations in order to provide explicit results, something we do
not need.

Our model for the stock market is simpler than the one used by Duffie
and Epstein (1992a), in that we do not require there to be a set of unspecified
factors.

These authors also claim that ”the unnormalized aggregator (f1, A1) is
convenient for obtaining the desired disentangling by changing A1 with f1
fixed. Such a separation is much less readily described in terms of the nor-
malized aggregator (f2, 0).” Therefore it is satisfying to have the complete
analysis also for the aggregator (f1, A1) under weaker assumptions.

We have demonstrated that, under our assumptions, these two versions
have identical risk premiums and short rates.

References

[1] Aase, K. K. (2015a). ”Recursive utility and jump-diffusions.” Working
paper no. 6, Department of Business, Norwegian School of Economics.

[2] Aase, K. K. (2014). ”Heterogeneity and limited stock market participa-
tion.” Working paper no 5, Department of Business, Norwegian School
of Economics.

[3] Aase, K. K. (2013). ”Recursive utility and the equity premium puzzle: A
discrete-time approach.” Working paper no 3, Department of Business,
Norwegian School of Economics.

[4] Ai, H. (2010). ”Information Quality and Long-run Risk: Asset Pricing
Implications.” The Journal of Finance, 64, 4, 1333-1367.

[5] Andersen, S., G. W. Harrison, M. I. Lau, and E. E. Rutström (2008)
”Eliciting risk and time preferences.” Econometrica 76, 3, 583-618.

[6] Avramov, D., S. Cederburg, and S. Hore (2010). Cross-Sectional Asset
Pricing Puzzles: An equilibrium perspective. Working Paper, University
of Maryland.

29



[7] Avramov, D. and S. Hore (2008). Momentum, information uncertainty,
and leverage - An explanation based on recursive preferences. Working
Paper, University of Maryland.

[8] Attanasio, O. P. (1999). ”Consumption.” Handbook of Macroeconomics
(Ed: J.B. Taylor and M. Woodford), V1, 741-812.

[9] Azeredo, F. (2007). ”Essays on aggregate economics and finance.” Doc-
toral dissertation, University of California, Santa Barbara.

[10] Barro, R. J. (2006). ”Rare disasters and asset markets in the twentieth
century.” Quarterly Journal of Economics 121, 3, 867-901.

[11] Bansal, R., and A. Yaron (2004). ”Risks for the Long Run: A Potential
Resolution of Asset Pricing Puzzles.” The Journal of Finance, 109, 4,
1481-1509.

[12] Bensoussan, A. (1983). Lectures on stochastic control. In: Lect. Notes
in Math. vol 972, 1-62. Springer, Berlin.

[13] Borch, K. H. (1962). ”Equilibrium in a reinsurance market.” Economet-
rica 30, 424-444.

[14] Benartzi, S., and R. H. Thaler (1995). ”Myopic loss aversion and the
equity premium puzzle.” Quarterly Journal of Economics 110 (1), 73-
92.

[15] Bismut, J.-M. (1978). An introductory approach to duality in optimal
stochastic control. SIAM Rev. 20 (1), 62-78.

[16] Breeden, D. (1979). ”An intertemporal asset pricing model with stochas-
tic consumption and investment opportunities.” Journal of Financial
Economics 7, 265-296.

[17] Brown, S., W. N. Goetzmann, and S. A. Ross (1995). ”Survival.” Journal
of Finance 50(3), 853-873.

[18] Browning, M., L. P. Hansen, and J. J. Heckman (1999). ”Micro Data
and General Equilibrium Models.” Handbook of Macroeconomics (Ed:
J.B. Taylor and M. Woodford), V1, 543-633.

[19] Campbell, J. (1993). ”Intertemporal Asset Pricing without Consump-
tion Data.” American Economic Review 83, 487-512.

30



[20] Campbell, J. (1996). ”Understanding Risk and Return.” Journal of Po-
litical Economy 104, 298-345.

[21] Campbell, J. Y., and J. H. Cochrane (1999). ”By force of habit: A
consumption-based explanation of aggregate stock market behavior.”
Journal of Political Economy 107 (2), 205-51.

[22] Coccrane, J. H. (2008). ”Financial markets and the real economy.”. In
R. Mehra, ed. Handbook of Equity Risk Premium. Elsevier, Amsterdam.

[23] Constantinides, G. M. (1990). “Habit formation: a resolution of the
equity premium puzzle.” Journal of Political Economy 98, 519-543.

[24] Constantinides, G. M., J. B. Donaldson, and R. Mehra (2001) ”Junior
can’t borrow: A new perspective on the equity premium puzzle.” Quar-
terly Journal of Economics 107, 269-296.

[25] Cox, J., J. Ingersoll, and S. Ross (1985). ”An intertemporal general
equilibrium model of asset prices.” Econometrica 53, 363-384.

[26] Duffie, D. (1986). ”Stochastic equilibria: Existence, spanning number
and the ’no expected financial gain from trade’ hypothesis.” Economet-
rica 54, 1161-1183.

[27] Duffie, D. (2001). Dynamic Asset Pricing Theory, 3. ed., Princeton Uni-
versity Press, Princeton and Oxford.

[28] Duffie, D. and C. Skiadas (1994). ”Continuous-time security pricing.
A utility gradient approach.” Journal of Mathematical Economics 23,
107-131.

[29] Duffie, D., P.-Y. Geoffard, and C. Skiadas (1994). ”Efficient and equi-
librium allocations with stochastic differential utility.” Journal of Math-
ematical Economics 23, 133- 146.

[30] Duffie, D. and L. Epstein (1992a). ”Asset pricing with stochastic differ-
ential utility.” Review of Financial Studies 5, 411-436.

[31] Duffie, D. and L. Epstein (1992b). ”Stochastic differential utility.”
Econometrica 60, 353-394.

[32] Duffie, D., and P. -L. Lions (1992). ”PDE solutions of stochastic differ-
ential utility.”Journal of Mathematical Economics 21, 577-606.

31



[33] Epstein, L., and S. Zin (1989). ”Substitution, risk aversion, and the tem-
poral behavior of consumption and asset returns: A theoretical frame-
work.” Econometrica 57, 937-69.

[34] Epstein, L., and S. Zin (1991). ”Substitution, risk aversion, and the tem-
poral behavior of consumption and asset returns: An empirical analy-
sis.” Journal of Policital Economy 99, 263-286.

[35] Eraker, B., and Ivan Shaliastovich (2009). ”An Equilibrium Guide to
Designing Affine Pricing Models.” Mathematical Finance, 18 (4), 519-
543.

[36] Ferson, W. E. (1983). ”Expectations of real interest rates and aggregate
consumption: Empirical tests.” Journal of Financial and Quantitative
Analysis 18, 477-97.

[37] Guvenen, F. (2009). ”A parsimonious macroeconomic model for asset
pricing.” Econometrica 77, 6, 1711-1750.

[38] Grossman, S. J., A. Melino, and R. J. Schiller (1987). ”Estimating
the continuous-time consumption-based asset-pricing model.” Journal
of Business and Economic Statistics 5, 315-27.

[39] Hansen, L. P., and K. J. Singleton (1983). ”Stochastic consumption,
risk aversion, and the temporal behavior of asset returns.” Journal of
Political Economy 91, 249-65.

[40] Hansen, L. P. and J. Scheinkman (2009). ”Long Term Risk: An Operator
Approach.” Econometrica 77, 1, 177-234.

[41] Hansen, L.P., J. C. Heaton, N. Lee, and N. Roussanov (2007). ”Intertem-
poral Substitution and Risk Aversion.” Handbook of Econometrics Ch.
61, V. 6A, 3967-4056.

[42] Hansen, L. P., J. C. Heaton, and N. Li (2008). ”Consumption Strikes
back? Measuring Long-Run Risk.” Journal of Political Economy 116, 2
, 260-302.

[43] Heaton, J., and D. J. Lucas (1997). ”Market frictions, saving behavior
and portfolio choice.” Macroeconomic Dynamics 1, 76-101.

[44] Hore, S. (2008).”Equilibrium Predictability and other Return Character-
istics”. Working Paper, University of Iowa.

32



[45] Hu, Y. and S. Peng (1995). ”Solution of forward-backward stochastic
differential equations.” Probab. Theory Relat. Fields, 103, 273-285.

[46] Johnsen, T. H., and J. Donaldson (1985). ”The Structure of Intertempo-
ral Preferences under Uncertainty and Time Consistent Plans.” Econo-
metrica 53, 6, 1451-59.

[47] Kocherlakota, N. R. (1990a). ”On the ’discount’ factor in growth
economies. Journal of Monetary Economics 25, 43-47.

[48] Kocherlakota, N. R. (1990b). ”Disentangling the coefficient of relative
risk aversion from the elasticity of intertemporal substitution: An irrel-
evancy result.” The Journal of Finance 45, 175-190.

[49] Kocherlakota, N. R. (1996). ”The Equity Premium: It’s still a Puzzle.”
Journal of Economic Literature 34, 42-71.

[50] Koopmans, T. C. (1960). ”Stationary ordinal utility and impatience.”
Economctrica 28, 287-309.

[51] Kreps, D. (1988). Notes on the Theory of Choice. Underground Classics
in Economics. Westview Press, Boulder and London.

[52] Kreps, D. and E. Porteus (1978). Temporal resolution of uncertainty
and dynamic choice theory.” Econometrica 46, 185-200.

[53] Kreps, D. and E. Porteus (1979). ”Dynamic choice theory and dynamic
programming.” Econometrica 47, 91-100.

[54] Kushner, N. J. (1972). Necessary conditions for continuous parameter
stochastic optimization problems. SIAM J. Control Optim. 10, 550-565.

[55] Kydland, F. E., and E. C. Prescott (1982). ”Time to build and aggregate
fluctuations.” Econometrica 50, 1345-70.

[56] Lucas, R. (1978). ”Asset prices in an exchange economy.” Econometrica
46, 1429-1445.

[57] McGrattan, E. R., and E. C. Prescott (2003). “Average Debt and Equity
Returns: Puzzling?” The American Economic Review 93, 2, 392-397.

[58] Mehra, R., and E. C. Prescott (1985). ”The equity premium: A puzzle.”
Journal of Monetary Economics 22, 145-161.

33



[59] Mehra, R., and E. C. Prescott (2008). ”The Equity Premium: ABS’s”.
Chapter 1 of R. Mehra, ed. Handbook of Equity Risk Premium, 1-36,
Elsevier, Amsterdam.

[60] Mehra, R., and J. Donaldson (2008). ”Risk-Based Explanations of the
Equity Premium”. Chapter 2 of R. Mehra, ed. Handbook of Equity Risk
Premium, 37-99, Elsevier, Amsterdam.

[61] Mossin, J. (1966). ”Equilibrium in a capital asset market.” Econometrica
34; 768-783.

[62] Mossin, J. (1969). ”A Note on Uncertainty and Preferences in a Tem-
poral Context.” The American Economic Review 59, 1, 172-174.

[63] Øksendal, B. and A. Sulem (2013). ”Risk minimization in financial mar-
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