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Abstract 

In terms of social networks, split graphs correspond to the variety of interpersonal and 

intergroup relations. In this paper we analyse the interaction between the cliques (socially strong 

and trusty groups) and the independent sets (fragmented and non-connected groups of people) as 

the basic components of any split graph. Based on the Semi-Lagrangean relaxation for the k-

cardinality assignment problem, we show the way of minimizing the socially risky interactions 

between the cliques and the independent sets within the social network. 
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1. Introduction 

The understanding of how social networks are currently forming, what kinds of relations exist 

and the possible ways to formalize, predict and manipulate these networks through their internal 

mechanisms and structures are important in many socio-economic settings. Socially generated 

networks are different from any other types of networks in terms of their internal structure, 

interaction mechanisms and the tools employed to analyze them. Jackson & Rogers (2007) 

consider the large-scale social networks as dynamic models in trying to understand how random 

social networks are. They argue that different situations where social network structures “…play 

a central role include scientific collaborations among academics, joint research ventures among 

firms, political alliances, trade networks, the organization of intrafirm management, the sharing 

of information about job opportunities…”. Trying to understand the formation of social 
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networks, they present a dynamic model where the nodes in the social network form the relations 

in two ways: (1) randomly and (2) by searching locally through the structure. 

The main feature of any social network is its natural intention for the formation of the internal 

communities and modules. The analysis of social networks’ modularity is one of the most 

challenging problems in the area of social network analysis. According to Newman (2006), “the 

problem of detecting and characterizing this community structure is one of the outstanding issues 

in the study of networked systems”. In this paper Newman shows the spectral algorithm for 

community detection as one of the efficient methods. 

The analysis of split graphs, as one of the common structures in terms of social networks’ 

modularity detection, represents the special interest for us in the current research. 

2. Split Graphs n Social Networks 

The split graph is a graph that can be partitioned into the disjoint union of a clique and an 

independent set (Merris 2003). In terms of social networks, split graphs reflect the realistic 

interpersonal and intergroup relations. It is very common to see social groups whose members are 

closely interrelated by similar ideas and interests, such as religion, research, education, level of 

income etc. In terms of graph theory, these social groups form the structures called cliques (Luce 

& Perry 1949). Finding the maximum clique, as the largest possible subgroup of closely related 

people in the social network, is an important step in the network’s analysis. It corresponds for 

searching of the most powerful group of people in the network. The problem of finding the 

maximum clique is NP-complete, and deterministic polynomial time algorithms do not exist 

(Östergård 2002). However, finding the maximum clique in small graphs is not problematic. 

In contrast to cliques, independent sets in graphs, representing the sets of nodes with no edges 

connecting them (Boppana & Halldórsson 1992), correspond to the socially fragmented and non-

interrelated groups of people. Mostly, the people in the independent sets do not know each other; 

have no common interests or may even compete with each other. Finding the maximum 

independent set is an NP-hard optimization problem (Robson 1986). 

3. Concept of Trust in Social Networks 

Trust is the key concept in any social network. It is a basis for the formation of social groups and 

coalitions, identification of the most powerful nodes in the network, and it is the determinant for 
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the information flow in the social network (Adali, Escriva, Goldberg, Hayvanovych, Magdon-

Ismail, Szymanski & Williams 2010). 

When a person has to decide whether to trust the other person or not, the decision about trust is 

influenced by a set of different factors. Following (Adali et al. 2010), there are three basic 

decision components: (1) personal predisposition to trust, (2) previous relationship with the 

person and his relatives, friends, colleagues etc. (3) the opinion about the decisions and actions 

previously made by a third person. 

Trust measuring in social networks is a complex process, and there are many trust models in the 

literature. For example, Abdul-Rahman & Hailes (2000) proposed the trust model in virtual 

communities based on the idea of measuring trust employing the mechanism of the experience 

and reputation of the network members. Considering trust as the “subjective degree of belief 

about agents” (McKnight & Chervany 1996; Misztal 1996), Abdul-Rahman & Hailes (2000) 

show how to measure trust degrees and how to assign trust weights. 

Another approach was invented by Aberer & Despotovic (2001). They present the algorithms of 

trust measuring based on the computation of the agent’s reputation. The research shows a specific 

way of evaluating trustworthiness based on the local trust computations. 

Adali et al. (2010) represent the metrics of trust based on the analysis of the dyadic relations. 

They describe the idea of behavioral trust measures, which are based on determining the 

communication behavior of agents in the social network. The represented methods of the 

behavioral measures of trust were tested based on the Twitter network data.   

Any trust relation is basically affiliated with the risk of making a wrong decision when 

communicating with the other persons in the social network. Buskens (2002) in the book “Social 

Networks and Trust” provides some examples about the risks of trust within the “social context” 

of trust relations. 

Trust is highly associated with the risk of interconnection with wrong, dangerous or suspicious 

people and it is therefore important to assess the trustworthiness of the relations in social 

networks. According to Aberer & Despotovic (2001), “this allows to compute directly the 

expected outcome respectively risk involved in an interaction with an agent, and makes the level 

of trust directly dependent on the expected utility of the interaction.” When discussing the 

problems of social exchange, Molm & Takahashi (2000) specifically consider risk and trust as 
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basic aspects in terms of classical exchange theory. According to that paper, the evaluation of 

trustworthiness is initially based on the analysis of risk and uncertainty of the exchange. 

4. Problem Description 

In the given research, we are specifically interested in the analysis of social networks with the 

risk of trust as the basic social factor in the interpersonal communications and socio-economic 

exchange. We do not concentrate on the idea of how to measure the trust (or the risk of trust) in 

the network. This is a topic for different research, and we have described some approaches in this 

area in Section 3 (“Concept of Trust in Social Networks”). Our goal is to analyse the social 

networks in terms of the weighted split graphs, where the edge weights correspond to the risk of 

trust between the nodes (i.e., persons) in the social network. By finding the maximum clique and 

one or more independent sets, we are minimizing the risk of interconnections between the 

maximum clique members and the members of the independent sets solving a k-cardinality 

assignment problem (Belik & Jörnsten 2014). In other words, we consider the clique as the 

socially powerful group of people, and we have the independent sets of people who wish to enter 

the clique (to become members of the clique). In general, clique members do not wish persons 

from the “external world” to enter their “internal environment”. From the clique’s position, this is 

the risk that should be minimized or avoided completely. Nevertheless, complete avoidance is 

almost impossible, because social networks are not closed systems. In forming connections with 

the “external world”, clique members try to minimize their risk of interrelations. By applying 

Semi-Lagrangean relaxation for the k-cardinality assignment problem, we minimize the overall 

risks. The brief description of the Semi-Lagrangean relaxation for the k-cardinality assignment 

problem is represented in the following sections 5-6.  

The detailed explanation of the given mechanisms (including the testing) is provided in Belik & 

Jörnsten (2014). 
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5. The Integer Programming Formulation of the k-cardinality Assignment Problem 

The integer programming formulation of the k-cardinality tree problem is as follows: 

 

Min∑ ∑ 𝑐𝑖𝑗𝑗𝑖 𝑥𝑖𝑗 (1) 

Subject to:  

�𝑥𝑖𝑗 = 𝑘
𝑖𝑗

 (2) 

∑ 𝑥𝑖𝑗𝑖 ≤ 1  ∀ 𝑗 ∈ 𝐽 (3) 

∑ 𝑥𝑖𝑗𝑗 ≤ 1       ∀ 𝑖 ∈ 𝐼 (4) 

xij ∈ {0,1}  ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽 (5) 

6. Semi-Lagrangean Relaxation 

The formalization of the Semi-Lagrangean relaxation (Beltran et al. 2006) for the k-cardinality 

problem, relaxing the single equality constraint, was described in Belik & Jörnsten (2014) and 

has the following representation: 

Max SL(u) subject to u≥0, 

where ℒ (u) is defined by the following optimization problem: 

 

Min∑ ∑ 𝑐𝑖𝑗𝑗𝑖 𝑥𝑖𝑗 –u(∑ 𝑥𝑖𝑗 − 𝑘𝑖𝑗 ) (6) 

Subject to:  

∑ 𝑥𝑖𝑗 ≤ 𝑘𝑖𝑗     (7) 

∑ 𝑥𝑖𝑗𝑖 ≤ 1  ∀ 𝑗 ∈ 𝐽  (8) 

∑ 𝑥𝑖𝑗𝑗 ≤ 1       ∀ 𝑖 ∈ 𝐼            (9) 

xij ∈ {0,1}  ∀ 𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽  (10) 

7. Implementation 

Consider the illustrative example of a social network with 14 people. The structure of the 

network is represented in Fig. 1. The edges’ weights correspond to the risk of trust between the 

persons. 
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Fig. 1 Social network: illustrative example 

We analyse the given graph as the split graph looking for the maximum clique and the 

independent sets. The results of the analysis are represented in Fig. 2. 
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Fig. 2 Maximum clique and independent sets in the social network 

According to Fig. 2 we have the clique that consists of 5 persons (i.e., 7, 8, 9, 10, and 11) and two 

independent sets: persons 1, 2, 3, 4, 5, 6 in the first independent set and 12, 13, 14 – in the second 

independent set. The clique members have to communicate with the external groups minimizing 

the risk of being involved in the interconnections with persons that are out of the clique. 
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In terms of social networks, there can be different situations. For example, the clique is the 

research team in the university, where some research members are interested in hiring assistants 

for themselves from the set of students (i.e., independent set). Each clique member is interested in 

hiring the right person minimizing the overall risk for the clique of hiring the wrong student from 

the independent set. 

Another example is the company that has to choose the specialists to hire from the number of 

trainees. In this case, the clique is the set of company departments looking for the trainees to be 

hired. For instance, the IT department is looking for a programmer from one set of trainees (i.e., 

first independent set); the finance department might be looking for the financial analyst from 

another set of trainees (i.e., second independent set) etc. 

Considering our split graph represented in Fig. 2 we have m=5, n=9, k=3, and the matrix of risks 

represented in  Table 1. 

Table 1. C-matrix of risks 

  
 

Indep. Set 1 Indep. Set 2 

  
1 2 3 4 5 6 12 13 14 

CL
IQ

U
E 

7 100 100 100 100 100 100 100 100 100 
8 23 100 33 100 100 100 100 12 32 
9 50 100 18 27 100 100 100 100 100 

10 100 100 100 100 100 100 100 100 100 
11 100 100 100 100 14 45 100 100 100 

 

In C-matrix of risks m is the number of clique members, n is the number of persons in the 

independent sets, k is the number of persons to be involved in the interconnection with clique 

members, which we assign to be equal to “3”. Weights in the matrix correspond to the level of 

risk with values in the range [0,100]. It is important to notice that if the edge between the member 

of the clique and the member of the independent set does not exist then the risk of making the 

interconnection is assigned to be “100” matching the highest level of risk and uncertainty. 

We solve the k-cardinality assignment problem based on the Semi-Lagrangean relaxation 

following the procedure described in Belik & Jörnsten (2014). 

The optimal Semi-Lagrangean multiplier is u*=18. The resulting cost matrix is represented in 

Table 2. 
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Table 2. Cost matrix 

  
Indep. Set 1 Indep. Set 2 

 
 1 2 3 4 5 6 12 13 14 

CL
IQ

U
E 

7 X X X X X X X X X 
8 X X X X X X X -6 X 
9 X X 0 X X X X X X 

10 X X X X X X X X X 
11 X X X X -4 X X X X 

 

In Table 2 all non-allowable assignments are marked by X. The solution to the problem is the 

“row-column” assignment 8-13, 9-3, and 11-5 of cardinality “3” with the objective function value 

equal to “-10”. The lower bound (LBD) is 54-10=44. The feasible solution (the upper bound) is 

also “44”. Therefore, the optimal solution has been found. 

The optimal Semi-Lagrangean multiplier u*=18 has a meaningful interpretation in terms of social 

networks. It corresponds to the highest risk of interconnection with non-clique members: the 

interconnection between person 9 from the clique and person 3 from the first independent set is 

the most risky one for the whole clique. Two other newly assigned interconnections i.e., person 

11 from the clique and person 5 from the first independent set; person 8 from the clique and 

person 13 from the second independent set, are less risky. In terms of social networks, it helps to 

formulate the prospective relation strategies with the new persons. For example, person 3 might 

be required to be controlled more than others or might be additionally trained. In general, solving 

the k-cardinality assignment problem, we minimize the risk of the clique members’ 

interconnections with the new persons. 

6. Interpretation of the Results in Terms of Social Networks 

The social meaning of the described mechanism for the minimization of risky intergroup 

interactions is important in terms of the trustworthiness analysis in social networks. The ability to 

detect the least risky relations between different types of social groups has a significant practical 

importance. Its central role is obvious in the research collaborations among scientists, joint 

ventures among companies, hiring new employees, and personnel management etc. 

The case, analyzed in section 5, represents a small social network with only 14 nodes. However, 

the real-world social networks are characterized by large-scale structures and the multifactor 

complex nature of the relations. The analysis of risks in the interpersonal and intergroup 
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communications is one important problem, but it is also important to know the ways of 

minimizing those risks. One of these ways has been shown in this paper. 

7. Conclusion 

In the given research we considered social networks in terms of split graphs. Since split graphs 

reflect the structure of many real-world social networks, we analyzed their internal mechanisms 

considering the risk of trust as the basic factor in the interpersonal and intergroup relations. In 

this paper we described the concepts of trust in section 3, explaining its exclusive importance. 

The risk of trust between the substructures of the split graph was our main concept of analysis. 

We represented the problem of the risk of trust minimization in terms of k-cardinality problem 

applying the Semi-Lagrangean relaxation to solve it. The mechanism is based on the research 

represented in Belik & Jörnsten (2014). The approached result shows the effective mechanism to 

minimize the risky interconnections that has to be established in the split graph due to the internal 

social requirements in the network. 
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