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Abstract: In this paper, we propose a likelihood ratio and Markov chain based method to 

evaluate density forecasting. This method can jointly evaluate the unconditional forecasted 

distribution and dependence of the outcomes. This method is an extension of the widely 

applied evaluation method for interval forecasting proposed by Christoffersen (1998). It is 

also a more refined approach than the pure contingency table based density forecasting 

method in Wallis (2003). We show that our method has very high power against incorrect 

forecasting distributions and dependence. Moreover, the straightforwardness and ease of 

application of this joint test provide a high potentiality for further applications in both 

financial and economical areas.  
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I. Introduction  

One of the most distinguished applications of the econometric model is forecasting, and the 

evaluating procedures to assess different forecasting methods occupy the same importance. 

There exists three categories in constructing the ex ante forecasting and evaluating the 

forecasting based on ex post realisation: point forecasting, interval forecasting and density 

forecasting. The point forecasting provides a single possible outcome such as the expected 

mean or median. The evaluation includes the Euclidean distance metric such as the mean 

squared error (MSE), mean average error (MAE) and in the decision-theoretical  framework.  

There are several examples in the literature of the evaluation of a point estimate (Wallis, 

1995; Diebold and Lopez, 1996; Gneiting, 2011). However, the point forecast only provides a 

possible outcome and ignores most of the uncertainty. A more advanced forecasting method is 

interval forecasting which can evaluate the probability that an outcome will fall within a 



stated interval (Granger et al., 1989; Chatfield, 1993). The related research into the evaluation 

of interval forecasting exploded after Christoffersen (1998) proposed a complete theory to 

evaluate the interval forecast. The evaluation procedure in Christoffersen (1998) is based on 

the likelihood ratio test (LRT) and due to the additivity of the likelihood ratio test, the method 

can jointly test the unconditional coverage and independence by testing the correct 

conditional coverage. This test and its extensions (Clements and Taylor, 2003; Engle and 

Manganelli, 2004; Berkowitz et al., 2011; Dumitrescu et al., 2011) are most widely used to 

evaluate an interval forecast, especially in the value-at-risk (VaR) analysis which can be 

viewed as a one-sided interval forecast.  

Although the interval forecasting identifies a certain degree of uncertainty of the outcomes, it 

can basically be viewed as a “two points” point forecast with each point being the interval 

endpoint. In contrast, density forecasting, which explicitly states the possible density 

distribution, makes future statistical inference of the ex post outcomes possible. Tay and 

Wallis (2000) carried out an explicit survey of the density forecasting and pointed out the 

necessity of a complete and accurate forecast probability statement in macroeconomic 

forecasting such as inflation and output growth, financial forecasting such as portfolio returns 

and risk management and volatility The literature on evaluating the uncertainty of the density 

forecast is limited and mainly based on the idea of the probability integral transform (PIT) or 

its extension (Diebold et al., 1998; 1999; Tay and Wallis, 2000; Berkowitz, 2001). This test is 

actually a new type of goodness of fit test and it lacks an analytical illustration to evaluate the 

internal dependence of the data. Wallis (2003) subsequently proposed Pearson chi-squared 

based statistics which can evaluate the goodness of fit and independence at same time. 

However, Wallis (2003) mainly recast the likelihood ratio based interval forecast by 

Christoffersen (1998) into the framework of a Pearson chi-squared test and the detailed theory 

of the density forecast is not developed in this work. Moreover, the evaluation method of 

Wallis (2003) is a chi-squared test rather than a LRT, it lacks the property of additivity and 

makes the joint test for distribution and independence imprecise. This paper will extend the 

likelihood ratio based method of Christoffersen (1998) analytically to evaluate density 

forecasting. Due to the additivity of the LRT, our method can jointly test the unconditional 

distribution and independence. We show that this test has very high power against 

distributional bias and dependence and we provide the R program for ease of application.  

The paper can be divided into the following sections: section II gives a brief introduction to 

the likelihood interval forecast, section III describes our evaluation method for density 



forecasting and section IV details the Monte Carlo experiment. The conclusion can be found 

in the last section.  

II. Likelihood ratio and Markov chain based interval forecast 

For ex post realisation 1 2( , ... )TY y y y , the ex anti interval forecast made at time 1t   is 

1 1 1( ) [ ( ), ( )]t t t t t tC p L p U p    where p is the probability of coverage. Define the indicator 

variable 1{ }T
t tI   as 
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, where 1tI   when the ex post realization lies inside 

1( )t tC p  and 0tI   otherwise. Christoffersen (1998) constructed a test framework to evaluate 

whether 1 1 1( ) [ ( ), ( )]t t t t t tC p L p U p    is a “efficient” interval forecast with respect to the past 

information  1 1, ,...t t tI I   by testing whether 1( )t tE I p  . The evaluation framework 

includes three tests:  

1. The unconditional coverage test statistic ucLR : to test whether the first order 

moment expected value of indicator sequence 1{ }T
t tI   is equal to the coverage rate. The 

test ignores the dependence of tI  and the null hypothesis is ( )tE I p , while the 

alternative hypothesis is ( )tE I p  . Define 0n  as the number of  tI  which lie in 

the coverage rate and 0n  as the number of  tI  which lie outside the coverage rate as 

0 ( 0)tn Nr I  , 1 ( 1)tn Nr I  . The likelihoods under the null and alternative 

hypotheses are 0 1(1 )n n
pL p p   and 0 1

ˆ ˆ ˆ(1 )n nL     respectively, where the relative 

hit frequency 1

0 1

ˆ
n

n n
 


 is the maximum likelihood estimate (MLE) of  . Then the 

likelihood ratio based test statistic 2

ˆ

2 log (1)p
uc

L
LR

L

  �  under null hypothesis. 

Christoffersen (1998) mentioned that the pure unconditional coverage test will have 

very low power and is inefficient when 1{ }T
t tI   is clustered in a time dependent fashion. 

Thus this author further introduced an independence test and also a joint test for 

independence and unconditional coverage.   

2. The independence test statistic indLR : to test whether tI  is distributed independently 

over the whole period. This test is important as it takes into account the higher-order 

moment dynamics of  1{ }T
t ty  , such as the autocorrelations.  In practical applications 



such as volatility forecasting, independence means that there is no cluster of violation 

in the volatile intervals and there is no tenuity in the tranquil intervals. The likelihood 

ratio based test statistic indLR  is constructed using a two state first order Markov 

Chain. We will provide a detailed illustration of indLR  later when we construct our 

density forecasting evaluation method which is based on a  k state Markov chain.  

3. Conditional coverage test statistic ccLR : to test whether the forecasting interval has 

correct conditional coverage in the form of 1( )t tE I p  .  As the test of 

unconditional coverage and independence will not affect each other, this conditional 

coverage test  is the combination of unconditional coverage test and independence test. 

Due to the additivity of the LRT statistics (Bera and McKenzie, 1985), we have 

cc uc indLR LR LR 
 
which can jointly test the randomness and correct coverage, while 

the test of individual subcomponents can still be retained. 

The LRT by Christoffersen (1998) has been followed by several developments in the literature 

(Clements and Taylor, 2003; Engle and Manganelli, 2004; Berkowitz et al., 2011; Dumitrescu 

et al., 2011) in terms of both theoretical extensions and applications. One reason for the 

popularity of this type of test is that it can discover both the first order moment (bias) and the 

second order moment (correlation dynamics) of the forecast. This idea can be extended to 

evaluate the density forecast and this paper will construct the likelihood and Markov chain 

based tests for evaluating the density forecast. 

 

III. Likelihood ratio and Markov chain based density forecast evaluations 

The main trend in evaluating the density forecast (Diebold et al., 1998; 1999; Tay and Wallis, 

2000; Berkowitz, 2001) is built on a seminar paper of Diebold et al. (1998) and is based on 

the PIT. The main idea is that when the ex anti forecasted distribution   1
( )

T

t t t
s y


 is the correct 

forecasting, then for the ex post realisation 1 2( , ... )TY y y y , we have 

( ) . . . (0,1)
ty

t tz s u du i i d U


  � . Deviation from i.i.d. means that the ex anti forecast under the 

assumption of independence fails to capture the underlying correlated dynamics for the 

model, and the deviation of (0,1)U  gives a wrong ex anti forecast distribution. However, their 

test for independence is built on the visual graph of correlograms, by checking if there exists 

serial correlation in tz , and it lacks theoretical analysis. Thus, their test of whether tz  is 



uniformly distributed is actually a goodness of fit test. Just as the independence of tI  is an 

important aspect to evaluate whether the interval forecast is efficient, we need a more 

sophisticated method that just correlograms to additionally check the independence of the 

distribution. This idea of combining the goodness of fit and independence tests is later 

presented in Wallis (2003a), where they recast the interval evaluation method of 

Christoffersen (1998) into a framework of contingency table based Pearson chi-squared test. 

However, their test still concentrates on interval forecasting evaluation based on contingency 

tables for small samples and no theoretical derivation of the likelihood ratio based density 

forecasting evaluation is proposed. Our proposed method will fill this gap and extend the 

likelihood ratio evaluation method for interval forecast to density forecast. The method is still 

constructed using three aspects: a test for goodness of fit, a test for independence and a joint 

test for goodness of fit and independence.  

1. Unconditional density test statistic udLR : consider the ex post outcome 

1 2( , ... )TY y y y  which is generated by the distribution ( )tf y  and the ex anti 

forecasted density ( )ts y . The range of  ty  is 0[ , ]nI I  with 0 < t nI y I . We divide 

0[ , ]nI I  into k mutually exclusive states as 
0 1 1

1

[ , ,...., , ]k n

k

I I I I
 and let the number of ty  

lies in state i  be in . Note that the interval forecasting is a special case where 2k   

and the test statistic ucLR  is actually based on the likelihood from a binomial 

distribution. To evaluate whether ( )ts y  is the unbiased density distribution is 

equivalent to testing ( ) ( )t tf y s y . Under the null hypothesis ( ) ( )t tf y s y ,  

1 2( , ,..., )kN n n n  follows a multinomial distribution 1( , ... )kmultinom T p p  with event 

probability 
1
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  .  Thus, the likelihood function under the null hypothesis 

is 1
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  . The likelihood function under the 

alternative hypothesis is 1
1

1

!
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 , where ˆ /i ip n T  is the MLE of the 

event probability over the whole parameter space. The LRT statistic is 

ˆ2 log( ( ) / ( ))udLR L p L p   and udLR 2 ( 1)k � under the null hypothesis. Just as the 

unconditional coverage test statistic ucLR  in interval forecast,  udLR  can only discover 

the biasedness of the forecasted distribution with the null hypothesis being 



( ) ( )t ts y f y ,  and it can be viewed as a pure goodness of fit test. When taking the 

past information  1 1, ,...t t ty y    into account and setting the null hypothesis as 

1( ) ( )t t ts y f y  , udLR  will have no power if there is dependence of the higher order 

moments in 1{ }T
t ty  . 

2. Independence test statistic InddLR : Wallis (2003a) mentioned that the test for 

independence in the interval forecast can be extended to the density forecast without 

further analytical derivations. The following will provide a detailed illustration. The 

independence is tested against a k state first order Markov chain. Let 

1Pr(  state  state )ij t ty j y i    . Then the Markov chain is specified with the 

transition probability matrix 
11 1
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events that a state i  is followed by a state j  as 1( ; & )ij t t tn Nr y y j y i   . Then the 

likelihood function under the alternative hypothesis for the whole process is 
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MLE of  ij .  Under the null hypothesis of independence, the outcome in the present 

time will not be influenced by the past information. Thus, when the outcome ty  lies in 

state j , the nearest outcome 1ty   has the same probability of lying in any state and 

this can be denoted as 1 2 ...j j kj j      . Thus, 
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the probability that an outcome lies in state j  and jn  is the number of outcomes that 

lies in state j , the MLE of j  is  ˆ j
j

n

T
    with j jn n . Therefore, the approximate 

likelihood function under the null hypothesis is 0
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. The LRT for independence 



is then 2 20
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� . We notice that 0
ˆ ˆ( ) ( )L L p   and this 

relationship will simplify the joint test statistics in the following paragraph.  

3. Conditional density test statistic cdLR : to test whether the conditional forecasted 

density distribution based on the past information 1( )t ts y   provides efficient 

forecasting of the data distribution.   As the conditional coverage test statistic ccLR  in 

the situation of interval forecasting, this test can be viewed as a combination of a 

goodness of fit test and a test for independence: we test whether ( ) ( )t ts y f y  and 

whether 1{ }T
t ty   is independent. The test statistic can be constructed based on the 

additivity of the LRT (Bera and McKenzie, 1985): the test statistic to test a joint 

hypothesis is the sum of the test statistics which test the components of the null 

hypothesis separately. Then the test statistic cdLR  which can jointly test the 

independence and goodness of fit is cd ud IndLR LR LR  . As : 
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Compared with udLR , which only has power against biased unconditional forecasted 

density and ignores the internal dependence of 1{ }T
t ty  , cdLR  has power against both 

misspecified density forecasting and internal correlation of the data series. Therefore, 

instead of only testing the first order moment unbiasedness of the forecasted 



distribution,  cdLR  can discover whether there exists higher order moment dynamics 

such as conditional heteroscedasticity dependent upon the data generating process.  

The cdLR  test can then be applied to evaluate the efficiency of the density forecasting. Under 

the null hypothesis 1( ) ( )t t ts y f y  , or ( ) ( )t ts y f y  and 1{ }T
t ty   is independent, 

2 ( ( 1))cd ud IndLR LR LR k k  � .  

To investigate the efficiency of the test statistics  udLR , InddLR  and cdLR , a Monte Carlo study 

is carried out in the next section. Due to that udLR  is essentially the goodness of fit test, we 

will compare it with two other popular goodness of fit tests include the Kolmogorov-Smirnov 

(KS) test and the PIT test, as no comparison of those methods have previously been made.   

IV.  Monte Carlo study   

The null hypothesis in the Monte Carlo study is that the forecasted density distributions ( )ts y  

are separately a normal distribution, t distribution and truncated Cauchy distribution, and the 

observations 1{ }T
t ty   are independent. These three distributions are chosen because based on 

the density function graph, they look very similar to each other and formal tests are needed. 

The data generation process (DGP) for  1{ }T
t ty   will be designed to check how the tests will 

perform from both size and power perspectives and this process can be divided into two cases:  

Case 1:  ~ . . . (0,1.2),   . . . (6),   . . . (0,1, -4, -4)ty i i d N i i d t i i d TCauchy  

Case 2: 
2

1 1;  0.4 0.15 0.45

~ . . . (0,1.2),   . . . (6),   . . . (0,1, -4, -4)
t t t t t t

t

y n h h y h

n i i d N i i d t i i d TCauchy
    

 

The DGP in Case 1 is used for the goodness of fit and independence test as there exists no 

higher order moment dependence in the data series, and we can investigate both size and 

power of all five test statistics. The DGP in Case 2 is used to investigate the power of the tests 

as there exists higher order moment dependence in the GARCH(1,1) process. The 

GARCH(1,1) model is also the typical model which has been applied in previous research to 

evaluate interval forecasting (Christoffersen, 1998; Clements and Taylor, 2003) and density 

forecasting (Diebold et al., 1998; Bao et al., 2007. To save space, we present only the results 

for a sample size of 1500; this sample size can already produce an unbiased size in most of 

the tests, instead of 4000 in Diebold et al. (1998).  The number of states k is initially chosen 



as the integer value of 21 log ( )T  and the interval length for each state interval is chosen as 

identical. If there exist empty bins based on the initial division, we combine the nearby bins 

until each bin contains observations. The Monte Carlo replication time is 1000 and results 

based on the DGP from Case 1 are as follows: 

Table 1: Size and power of the tests when DGP is independent 

  S                          t                                      Norm                             TCauchy 

DGP             t     Norm  TCauchy          t     Norm  TCauchy         t     Norm  TCauchy   

KS  0.048  0.740   0.999 0.735   0.001   1.000 1.000   0.926   0.042 

 PIT 0.050   0.827   1.000 0.736   0.001   1.000 1.000   0.926   0.042 

udLR 0.036   0.975   1.000 0.994   0.018   1.000 1.000   1.000   0.025 

InddLR 0.032   0.084   0.092 0.026   0.082   0.099 0.026   0.097   0.111 

cdLR 0.030   0.742   1.000 0.874   0.055   1.000 1.000   1.000   0.107 

 

In Table 1, the first line denotes the forecasted distributions ( )ts y  as the t distribution, normal 

distribution, and truncated Cauchy distribution. For each distribution, we evaluate the size and 

power for all five tests when the DGP (in the second line) are from Case 1. The underlined 

values correspond to the size of the tests. For a Monte Carlo simulation time of 1000, the 

approximate 95% confidence interval for the estimated size at 5% significant levels is 

0.05(1 0.05)
0.05 1.96* (0.0365,  0.0635)

1000


  .  Table 1 shows that when the aim is to test 

the goodness of fit, the size is unbiased in almost all tests.  The udLR  test has the highest 

power in the goodness of fit test while cdLR  has the next highest power. Thus, although cdLR  

is a joint test for biased distributions and independence, it still has high power when used as a 

pure goodness of fit test. The test of independence, InddLR  , shows a slightly inflated level of 

bias but this stays at  an acceptable level. We next investigate the power of all tests when the 

DGP is from Case 2; the results are shown in Table 2.  

Table 2: Power of the tests when DGP is not independent 

  S                          t                                      Norm                             TCauchy 

DGP             t     Norm  TCauchy          t     Norm  TCauchy         t     Norm  TCauchy   

 KS   0.070   0.914   1.000 0.969   0.005   1.000 1.000   0.969   1.000 

 PIT 0.071   0.934   1.000 0.970   0.005   0.974 0.886   0.969   1.000 



udLR 0.062   0.986   1.000 0.999   0.243   1.000 1.000   1.000   0.954 

InddLR 0.875   0.946   0.978 0.886   0.944   1.000 1.000   0.943   0.980 

cdLR 0.850   0.998   1.000 0.999   0.936   1.000 1.000   1.000   0.991 

 

In Table 2, the null hypothesis is unchanged but the DGP includes a second order moment 

dependence and therefore, all values in Table 2 correspond to the power perspective. The 

underlined values in Table 2 show that udLR , KS  and  PIT  have almost no power against 

dependence while both InddLR , cdLR  have very high power in all cases. Thus, the udLR , KS  

and  PIT tests can only discover whether the unconditional distributions are correct and 

cannot investigate the internal dependence of the data. InddLR  can be used to explore whether 

the observations are independent and  cdLR  can jointly test the independence and the 

biasedness of the distribution. Combined with Table 1, we can conclude that cdLR  is the most 

efficient test in three aspects: it is unbiased under the null hypothesis and it has power against 

both dependence and incorrect distributions.  In applications, we can carry out the evaluations 

step by step. The first step is to apply cdLR  to jointly  test the independence and goodness of 

fit. If the null hypothesis is not rejected, we can conclude that ( )ts y  is the proper distribution 

and the outcomes are independent.  However, if we reject the null hypothesis, we can further 

investigate whether the rejection is due to the dependence or incorrect distribution by 

applying udLR  and IndLR  separately. 

V. Conclusion 

This paper has proposed a test framework for the evaluation of density forecasting. The 

evaluation is built on the LRT statistics and the Markov chain. It is an extension of the interval 

forecasting evaluations of Christoffersen (1998). We show that in order to evaluate the 

efficiency of the forecasted distributions, the joint test cdLR  can test both the goodness of fit 

and the dependence, while udLR , KS  and  PIT only have power against biased distributions.  

The test statistic cdLR  is constructed using the additivity of the likelihood tests.  We also 

show that the components for cdLR  , which are udLR  and InddLR , have very high power 

against goodness of fit and dependence separately. We propose a three step evaluation process 

which can explore the full character of the underlying data generating process.  
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