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Abstract

Despite linear programming and duality have correctly been incorporated in algorithms

to compute the nucleolus, we have found mistakes in how these have been used in a broad

range of applications. Overlooking the fact that a linear program can have multiple op-

timal solutions and neglecting the relevance of duality appear to be crucial sources of

mistakes in computing the nucleolus. We discuss these issues and illustrate them in mis-

taken examples collected from a variety of literature sources. The purpose of this note

is to prevent these mistakes propagate longer by clarifying how linear programming and

duality can be correctly used for computing the nucleolus.

Keywords: Game theory; Nucleolus; Cost allocation; Linear programming; Duality.

∗Preprint for the Discussion Series of the Department of Business and Management Science, NHH
Norwegian School of Economics, March 2014. For an update on this article please contact the authors.

1



1 Introduction

One of the main solution concepts in cooperative game theory is the nucleolus, proposed by

Schmeidler (1969). A number of approaches have been developed in order to compute it,

as reviewed by Leng and Parlar (2010) and Çetiner (2013). Although linear programming

and duality have been correctly used in several approaches (e.g. Fromen (1997); Hallefjord

et al. (1995); Kimms and Çetiner (2012)), we have found that the nucleolus has been

wrongly computed over the years in a wide variety of contexts. The mistakes appear to

be caused by overlooking the possibility that a linear program can have multiple solutions,

and by neglecting the use of the dual solution as a valuable source of information in such

cases. In this note, we discuss these issues and illustrate them in six examples taken from a

variety of literature sources. The examples correspond to applications of cooperative game

theory in insurances (Lemaire, 1991), joint development of projects (Kruś and Bronisz,

2000), production and transportation planning (Sakawa et al., 2001), electricity markets

(SatyaRamesh and Radhakrishna, 2009), mobiles in broadcast transmission (Hasan et al.,

2011), and manufacturing (Oh and Shin, 2012). It came to our attention that similar

errors have appeared in such a wide range of applications. Our purpose in this note

is to clarify how linear programming and duality can be used to correctly calculate the

nucleolus, thus to prevent an even larger propagation of these errors.

2 Cooperative games and linear programming

Let N = {1, . . . , n} be the set of players and K the set of all non-empty subsets of N . The

characteristic function v : K → R assigns to each coalition S in K the cost of coalition

S. A preimputation or cost allocation vector x = (x1, . . . , xn) assigns to each player j in

N a quantity xj such that
∑

j∈N xj = v(N); that is, the cost of the grand coalition N is

split among its members according to the allocation x (xj ∈ R ∀j ∈ N). An allocation

vector x satisfies rationality if
∑

j∈S xj ≤ v(S) ∀S ∈ K. The core of the game is the set

of preimputations that satisfy the rationality conditions.

Define the excess of coalition S at x as ε(x, S) = v(S) −
∑

j∈S xj. The excess is a

measure of how satisfied a coalition S is with the cost allocation x. The larger the

excess of S, the more satisfied coalition S is. Define the excess vector at x as e(x) =

(ε(x, S1), . . . , ε(x, Sm)), where the sets Si represent the coalitions in K\N and m = 2n−2.

For an excess vector e ∈ Rm, define a mapping θ such that θ(e) = y, where y ∈ Rm is

the vector which results from arranging the components of e in a non-decreasing order.

A vector y = (y1, . . . , ym) is said to be lexicographically greater than another vector

ȳ = (ȳ1, . . . , ȳm) if either y = ȳ or there exists h ∈ {1, . . . ,m} such that yh > ȳh and

yi = ȳi ∀i < h (if h = 1, it is enough that yh > ȳh). We annotate y ≽ ȳ.

Note in some contexts the characteristic function v is defined as a benefit instead of cost

and the excess as a measure of dissatisfaction instead of satisfaction. Both perspectives

can be approached in equivalent ways. We rather adopt the cost perspective, since most of
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the recent interest for cooperative games in Operations Research comes from cost sharing

problems in collaborative logistics. Also, our attention focus in games with a non-empty

core. A main question in these games is how the players should share the cost v(N) when

collaborating in the grand coalition N . The nucleolus is one of the most used solution

concepts for this problem. The prenucleolus is a related concept which for games with

non-empty core coincide with the nucleolus.

2.1 The prenucleolus

The prenucleolus of a game with non-empty core is the preimputation x which lexico-

graphically maximizes the excess vector, that is, θ(e(x)) ≽ θ(e(x̄)) for all preimputation

x̄. In order to compute the prenucleolus, let us first consider the following linear pro-

gramming model, which looks for a preimputation x = (x1, . . . , xn) that maximizes the

minimum excess ε among all the coalitions.

max ε (1)

s.t. ε+
∑
j∈S

xj ≤ v(S) ∀S ⊂ N,S ̸= ∅ (2)∑
j∈N

xj = v(N) (3)

ε ∈ R, xj ∈ R ∀j ∈ N (4)

Objective function (1) maximizes ε. Constraints (2) impose that such ε cannot be

greater than the excess of any coalition. Thus, (1) and (2) together provide that ε is

exactly equal to the minimum excess. Constraint (3) is the efficiency condition, which

provides that the the cost of the grand coalition v(N) is split among its players according

to the allocation x. Constraints (4) state the nature of the variables. We refer to this

model simply as P .

The solution to P is not necessarily unique. As we will illustrate in the numerical

examples, it may occur that more than one allocation x leads to the optimal objective

value. In addition, a solution of P provides an allocation that maximizes the lowest excess,

but not necessarily the second or any subsequent lowest excess.

The prenucleolus can be found by solving a sequence of linear programs (LPs), as

in the algorithm by Fromen (1997) which we briefly outline below. The first LP in the

sequence corresponds to P . Let ε1 be the optimal objective value of P . The k-th LP
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(k > 1) in the sequence is formulated as follows:

max εk (5)

s.t. εk +
∑
j∈S

xj ≤ v(S) ∀S ⊂ N : S /∈ Fk (6)

εi +
∑
j∈S

xj = v(S) ∀S ∈ Fi, i ∈ {1, . . . , k − 1} (7)∑
j∈N

xj = v(N) (8)

εk ∈ R, xj ∈ R ∀j ∈ N (9)

In this k-th LP, objective function (5) and constraints (6) provide that the k-th min-

imum excess εk is maximized. Constraints (7) state that the excess of the coalitions con-

tained in set Fi must be equal to the optimal objective value εi to the i-th LP. Constraints

(8) and (9) state conditions for the efficiency and nature of the variables, respectively.

The set Fi is the set of all coalitions for which the excess constraint (6) is satisfied with

equality sign for all the solutions to the i-th LP. Thus, the excess of the coalitions in Fi

must be fixed to εi in the k-th LP in the series for all k > i, as expressed in constraint (7).

The set Fk is simply the union of all the coalitions for which its excess has been fixed in a

previous LP in the sequence, that is, Fk =
∪

i<k Fi. Note by defining F1 = ∅ and omitting

constraints (7) for k = 1, one recovers the first problem P in the sequence. A key issue is

how to find the set Fi, and here is where dual linear programming plays a relevant role.

The dual of P , which we will refer as model D, can be formulated as follows:

max
∑
S∈K

v(S) · yS (10)

s.t.
∑

S∈K\N

yS = 1 (11)

∑
S∈K:j∈S

yS = 0 ∀j ∈ N (12)

yS ≥ 0 ∀S ∈ K \N, yN ∈ R (13)

From duality theory, when the optimal value of a dual variable is positive, the inequal-

ity constraint associated to this variable must hold with equality at any optimal solution

of P . Therefore, given a solution to P the set F1 can be formed by all the coalitions S

for which yS is positive in the corresponding solution to D. Analogously, for a general k,

the set Fk can be formed by all the coalitions such that the dual variable associated to

constraint (6) is positive in the corresponding optimal solution to the dual problem of the

k-th LP in the sequence. In order to find the prenucleolus, the solution process proceeds

until a k where the LP has a unique solution. At the latest, such unique solution will be

obtained when constraints (7) and (8) define a system of n independent linear equations.
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2.2 The nucleolus

Define the setX by all the allocation vectors which satisfy the efficiency condition and also

the individual rationality constraint xj ≤ v({j}) ∀j ∈ N . The nucleolus is an allocation

vector x ∈ X whose excess vector is lexicographically greatest, that is, θ(e(x)) ≽ θ(e(x̄))

for all x̄ ∈ X. Incorporating the individual rationality constraint in the LPs defined in

Section 2.1, conduces to the nucleolus. The corresponding dual problem is formulated

similarly as problem D, but needs to add a decision variable ȳj ≥ 0 associated to the

rationality condition for all j ∈ N . Consequently, the term
∑

j∈N v({j}) · ȳ{j} must be

added in objective function (10), and also ȳj must be added in the left-hand side of

constraint (12) for all j ∈ N . The nucleolus can be found by solving the corresponding

sequence of LP in analogous way as for the prenucleolus. Schmeidler (1969) proves that

the nucleolus consists of a single point. As we focus in games with non-empty core, the

nucleolus and the prenucleolus coincide. (In other type of games, these concepts may be

defined as a set instead of a unique point.)

3 Numerical examples

In this section we present six examples taken from a variety of contexts in the literature,

where the nucleolus has been wrongly calculated. We identify two main sources of error.

First, overlooking the fact that the solution to model P is not unique. Second, given that

a particular solution to the i-th LP in the sequence, the set Fi has been wrongly computed

as the set of all coalitions whose excess is equal to εi at such particular solution.

We use the notation v̂(S) for referring to the characteristic function of games where

the players share benefits instead of costs (the LP models for these games remain the

same as in Section 2.1 by defining v(S) = −v̂(S)).

3.1 Insurances

Lemaire (1991) presents several examples on how cooperative game theory can be used

in the context of insurance companies. The Example 3 on his article illustrate a problem

where different associations can collaborate by investing in common funds. The data and

results for this example are shown in Table 1.

The allocation x̄ solves the first LP of the sequence, but not the second one. This same

example was used in an earlier article (Lemaire, 1984), where the same author states that

in order to compute the nucleolus one has to solve a linear program which is equivalent to

P . A fact that is omitted by the author is that this model may have multiple solutions.

In the solution we obtain for the first LP in the series, there are three coalitions with

the lowest excess ε1 = 6562.5, but only two optimal dual values are positive (y1 and y6).

By defining F1 = {1, 6} and running the second LP, we obtain the solution x which is

the correct nucleolus for this game. Note from the excess vectors in non-decreasing order

shown in Table 1, the excess vector at x is lexicographically greater than the excess vector
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Table 1: Data, correct and wrong results for the game on insurances by Lemaire (1991)

Correct Wrong

c S v̂(S) x c ε x̄ c̄ ε̄
1 {1} 46 125.0 52 687.5 1 6 562.5 52 687.5 1 6 562.5
2 {2} 17 437.5 24 468.8 6 6 562.5 24 937.5 3 6 562.5
3 {3} 5 812.5 12 843.8 2 7 031.3 12 375.0 6 6 562.5
4 {1,2} 69 187.5 3 7 031.3 2 7 500.0
5 {1,3} 53 812.5 4 7 968.8 4 8 437.5
6 {2,3} 30 750.0 5 11 718.8 5 11 250.0
7 {1,2,3} 90 000.0

at x̄, since their two first components are equal but the third component of the former is

greater than the third component of the latter (7031.3 > 6562.5).

3.2 Joint projects

Kruś and Bronisz (2000) consider a cooperative game where different agents are interested

in the implementation of a project. The authors outline an algorithm for calculating the

nucleolus (and other nucleoli variants). Although the algorithm is correct and the authors

acknowledge that the solution to a model in the sequence of LP may not have a unique

solution, how the dual values can be used in the the definition of the sets Fi is not detailed.

Instead, they refer the reader to Christensen et al. (1996), who correctly incorporates the

information on the dual values in the solution process.

The characteristic function of the example in Kruś and Bronisz (2000) is shown in

the third column of Table 2. The first and second columns of the table show an index

c ∈ {1, . . . , 2n − 1} that we use to refer to each coalition and the players who conform

them, respectively. The next three columns show the correct nucleolus solution x we have

computed for this example, and the excess vector in non-decreasing order together with

the index of each coalition in this vector. The last three columns show the solution x̄

given by Kruś and Bronisz (2000), and the corresponding excess vector.

The allocation x̄ = (0.96, 0.26, 0.18, 0.49) is one of the multiple optimal solutions to

model P . The optimal objective value to this model is ε1 = 0.18. For the allocation x̄,

the excess of four coalitions (3, 8, 12 and 14) equals ε1. By defining F1 = {3, 8, 12, 14},
constraints (7) and (8) conform a system of linear equations whose unique solution is x̄,

so there is no need to solve more LPs in the sequence.

The optimal solution we obtain for the dual problemD in this example is y3 = y12 = 0.5

and yc = 0 ∀c ∈ K \ {3, 12}. Then, we define F1 = {3, 12}, which determines a unique

value for x3. By solving the corresponding second LP, we obtain ε2 = 0.38667 and positive

optimal dual values for y11, y13 and y14. By fixing the excess of these three coalitions to

ε2 and using the efficiency condition and the allocation for x3 previously obtained, the

unique allocation x = (0.75, 0.48, 0.18, 0.47) is found, which is the nucleolus of this game.
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Table 2: Data, correct and wrong results for the game on joint projects by Kruś and
Bronisz (2000)

Correct Wrong

c S v̂(S) x c ε x̄ c̄ ε̄

1 {1} 0.00 0.75 3 0.18 0.96 3 0.18

2 {2} 0.00 0.48 12 0.18 0.26 8 0.18

3 {3} 0.00 0.18 11 0.39 0.18 12 0.18

4 {4} 0.00 0.47 13 0.39 0.49 14 0.18

5 {1,2} 0.68 14 0.39 9 0.24

6 {1,3} 0.24 8 0.40 2 0.26

7 {1,4} 0.75 9 0.45 11 0.37

8 {2,3} 0.26 4 0.47 4 0.49

9 {2,4} 0.51 7 0.48 5 0.54

10 {3,4} 0.07 2 0.48 10 0.60

11 {1,2,3} 1.03 5 0.56 13 0.61

12 {1,2,4} 1.53 10 0.58 7 0.70

13 {1,3,4} 1.02 6 0.69 6 0.90

14 {2,3,4} 0.75 1 0.75 1 0.96

15 {1,2,3,4} 1.89

Note in Table 2, the first and second lowest excesses are the same for both solutions x

and x̄, but the third lowest excess ε = 0.39 at x is greater (and thus better regarding the

nucleolus notion of fairness) than the third lowest excess ε̄ = 0.18 at x̄.

3.3 Production and transportation planning

Sakawa et al. (2001) deal with a problem on production and transportation planning

based on a real case of a housing material manufacturer. The authors acknowledge the

usefulness of solving a sequence of linear programs for calculating the nucleolus, and also

mention that by examining the optimal solution of the dual problem one can identify

which constraints must hold with the equality when solving such LPs. However, there

is no explicit mention to what this examination consists on. They present data for a

5-player game, where each player represents one city or sale base in the network of the

manufacturer. The characteristic function of this game, as well as our solution x and their

solution x̄, are shown in Table 3.

In order to compute the nucleolus x, we solve the first LP in the sequence and find

a solution where five coalitions are left with the lowest excess ε1 = 0.034, but only three

optimal dual variables are positive (y16, y21 and y30). Then, by defining F1 = {16, 21, 30}
and running the second LP, the solution we obtain has two positive optimal dual variables

(y9 and y26). Fixing the excess of these two coalitions, together with the excess of the
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Table 3: Data, correct and wrong results for the game on transportation and production
planning by Sakawa et al. (2001)

Correct Wrong

c S v̂(S) x c ε x̄ c̄ ε̄

1 {1} 0.060 0.165000 16 0.034 0.165239 9 0.034

2 {2} 0.168 0.320500 21 0.034 0.327849 30 0.034

3 {3} 0.030 0.084500 30 0.034 0.077235 25 0.034

4 {4} 0.249 0.374500 9 0.039 0.379218 21 0.034

5 {5} 0.000 0.055500 26 0.039 0.050459 16 0.034

6 {1,2} 0.378 25 0.042 20 0.038

7 {1,3} 0.144 28 0.042 29 0.038

8 {1,4} 0.408 15 0.044 26 0.044

9 {1,5} 0.182 29 0.046 15 0.044

10 {2,3} 0.337 20 0.050 14 0.045

11 {2,4} 0.538 27 0.053 3 0.047

12 {2,5} 0.279 3 0.055 27 0.048

13 {3,4} 0.383 5 0.056 28 0.049

14 {3,5} 0.083 18 0.056 5 0.050

15 {4,5} 0.386 14 0.057 18 0.059

16 {1,2,3} 0.536 10 0.068 10 0.068

17 {1,2,4} 0.747 22 0.074 13 0.073

18 {1,2,5} 0.485 13 0.076 19 0.076

19 {1,3,4} 0.546 19 0.078 23 0.077

20 {1,3,5} 0.255 23 0.082 22 0.078

21 {1,4,5} 0.561 24 0.083 24 0.090

22 {2,3,4} 0.706 12 0.097 7 0.098

23 {2,3,5} 0.379 1 0.105 12 0.099

24 {2,4,5} 0.668 7 0.106 1 0.105

25 {3,4,5} 0.473 6 0.108 6 0.115

26 {1,2,3,4} 0.906 17 0.113 17 0.125

27 {1,2,3,5} 0.573 4 0.126 4 0.130

28 {1,2,4,5} 0.874 8 0.132 8 0.136

29 {1,3,4,5} 0.634 2 0.153 2 0.160

30 {2,3,4,5} 0.801 11 0.157 11 0.169

31 {1,2,3,4,5} 1.000
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three previous coalitions and the efficiency constraint, define a system of equations whose

unique solution is the nucleolus x. Note that the excess vector at x is lexicographically

greater than the excess vector at x̄. While the absolute difference between the components

of x and x̄ appear to be small, their relative differences amount up to 9.1%, which in our

view is significant (specially since the allocations in this problem represent percentages

applied to a profit in the order of millions). Since the characteristic function of this game

is given with three decimal digits and the allocations with six decimal digits, one may

interpret that the differences in x and x̄ are merely due to numerical issues. However,

we discard this interpretation by an exhaustive exploration where we verified that small

perturbations of v(S) have relatively low effects in the nucleolus of the game.

3.4 Electricity markets

SatyaRamesh and Radhakrishna (2009) present a cooperative game to allocate the trans-

actional transmission losses in a problem on electricity markets. In their first case study,

they use a dataset from the IEEE 14-bus test system. The characteristic function for this

system is shown in Table 4. The allocation x̄ they report as the nucleolus is a solution to

Table 4: Data, correct and wrong results for the game on electricity by SatyaRamesh and
Radhakrishna (2009)

Correct Wrong

c S v̂(S) x c ε x̄ c̄ ε̄
1 {1} 1.275 3.0893 3 1.3695 3.1764 3 1.3695
2 {2} 3.471 5.2853 4 1.3695 5.1981 4 1.3695
3 {3} 1.466 2.8355 1 1.8143 2.8355 2 1.7271
4 {1,2} 7.005 2 1.8143 1 1.9014
5 {1,3} 4.081 5 1.8437 5 1.9309
6 {2,3} 5.672 6 2.4488 6 2.3616
7 {1,2,3} 11.210

the first LP in the sequence, but not for the second one. In the solution we obtain for the

first LP, the dual variables with positive values are y3 and y4. By defining F1 = {3, 4},
the value of x3 is fixed and the second LP gives as solution the allocation x, which is the

correct nucleolus for this game.

3.5 Mobiles in broadcast transmission

Hasan et al. (2011) consider a game where the players represent mobiles which are in-

terested on receiving the same information from a base station. The information could

be, for example, the streaming transmission of a sport or cultural event. The cost for

broadcast transmission must be shared among the mobiles. Table 5 shows the data and

results for this game.
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Table 5: Data, correct and wrong results for the game on mobiles by Hasan et al. (2011)

Correct Wrong

c S v(S) x c ε x̄ c̄ ε̄
1 {1} 8 7.5 5 0 8 1 0
2 {2} 1 0.5 10 0 0 5 0
3 {3} 10 1.5 1 0.5 2 6 0
4 {4} 11 10.5 2 0.5 10 10 0
5 {1,2} 8 4 0.5 11 0
6 {1,3} 10 11 0.5 13 0
7 {1,4} 19 12 0.5 2 1
8 {2,3} 10 13 0.5 4 1
9 {2,4} 12 14 0.5 7 1
10 {3,4} 12 6 1 12 1
11 {1,2,3} 10 7 1 14 1
12 {1,2,4} 19 9 1 9 2
13 {1,3,4} 20 8 8 3 8
14 {2,3,4} 13 3 8.5 8 8
15 {1,2,3,4} 20

The allocation x̄ is a solution to the first LP in the series but not to the second one.

In the solution that we obtain for the first LP, there are seven coalitions whose excess is

ε = 0, but only two of the corresponding optimal dual values are positive (y5 and y10). By

defining F1 = {5, 10} and running the second LP, we obtain as solution the allocation x,

which defines a single allocation for all players and is the correct nucleolus for this game.

Note the excess vector at x is lexicographically greater than the excess vector at x̄, since

the first two components of the vectors are equal but the third component of x is greater

than the third component of x̄.

3.6 Manufacturing

Oh and Shin (2012) address a cost sharing problem on joint network-centric manufactur-

ing. They compute the nucleolus for an example using the characteristic function given

in Table 6. Their solution x̄ solves the first LP in the sequence (we neglect the last digit

of the excess), but fails to solve the second one. In the solution we obtain for the first LP,

y3 and y4 are the only dual variables with positive values. By defining F1 = {3, 4} and

solving the second LP, the optimal solution x is obtained, which is the correct nucleolus

for this game.
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Table 6: Data, correct and wrong results for the game on manufacturing by Oh and Shin
(2012)

Correct Wrong

c S v(S) x c ε x̄ c̄ ε̄
1 {1} 375 144 331 695.3 3 3 485.5 339 171.0 3 3 485.0
2 {2} 245 280 233 051.3 4 3 485.5 225 575.0 4 3 486.0
3 {3} 211 239 207 753.5 5 11 606.3 207 754.0 5 4 130.0
4 {1,2} 568 232 6 11 606.3 6 19 082.0
5 {1,3} 551 055 2 12 228.8 2 19 705.0
6 {2,3} 452 411 1 43 448.8 1 35 973.0
7 {1,2,3} 772 500

3.7 Computational aspects

We would like to conclude this section with some remarks on the computational imple-

mentation of the sequence of LPs. First of all, the explicit implementation of the dual

model is not needed as most optimization software can provide information on the dual

solution after the primal model has been solved. For example, in our computations we

used AMPL/CPLEX 12.6, which include a command called .dual for this purpose.

Second, some numerical issues may arise in the solution process. For example, when

fixing the excesses εk according to the equality constraints (7), the precision settings

of the solver may affect the solution. Also, when identifying the dual variables with

positive values, one may include certain tolerance to numbers that differ from zero by an

insignificant amount (e.g. 10−9), in order to avoid a wrong definition of the sets Fi.

Third, as well as the primal, the dual model may have multiple solutions. This might

affect the sequence through one gets to the nucleolus, but not the nucleolus itself (recall

this is unique).

Recently, Puerto and Perea (2013) develop an approach to compute the nucleolus by

solving only one LP, though of much larger dimension than the LPs in the sequential

approach. They also point out the computation may be affected by numerical precision

issues and propose a procedure to avoid them. Comparing the two approaches define a

possible avenue for future research.

4 Final remarks

We as readers and researchers can certainly tolerate the existence of errors in past liter-

ature. However, when we realized that several authors in several different contexts have

incurred in similar errors and obtained conclusions based on wrong results, we found

worthy to write this note in order to facilitate correctness in future works. Especially,

because of the growing interest that cooperative game solution concepts have captivated

in our field recently. It is fair to mention that when elaborating this note, we also verified
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that several other authors have calculated the nucleolus correctly (e.g. Frisk et al. (2010);

Lozano (2012); Lozano et al. (2013)).

Granot and Granot (1992) and Skorin-Kapov and Skorin-Kapov (2005) assert that a

method for computing the nucleolus by solving a sequence of LPs was “implicitly sug-

gested” by Schmeidler (1969). Whether an explicit algorithm in Schmeidler’s seminal

work would have prevented mistakes will remain unknown. We attempted to trace where

in the literature the errors originated. Although we do not have an answer for such ques-

tion, when preparing this note we found a number of fuzzy statements which might lead

to confusion. For example, Faigle et al. (2001) state that when solving the second LP in

the sequence one must fix the first lowest excess for “all coalitions that become tight at

ε = ε1”. Would this be interpreted as all coalitions for which constraint (2) is satisfied

with equality at an optimal solution of P , it may lead to a wrong nucleolus. Another

example is the highly cited manuscript by Lemaire (1984) that we mentioned in Section

3.1. He states that in order to compute the nucleolus “one has to solve the linear pro-

gram”, followed by a formulation which is equivalent to P . A mention to the possibility

of this LP having multiple solutions is omitted. Unfortunately, the LP in his Example

3 has multiple solutions and the author reports a wrong nucleolus. This manuscript is

curiously one of the first hits in Google Scholar when searching for “game theory” and

“cost allocation”. In his later article, Lemaire (1991) briefly mentions that the nucleolus is

computed by solving a finite sequence of linear programs, without any additional specifi-

cation on this sequence. However, he includes the same wrong example from the previous

manuscript. Lemaire cite an even earlier article by Hamlen et al. (1977), which presents a

single LP model (equivalent to P ) to compute the nucleolus for a 3-player game. Despite

the years gone by, these ambiguities appear to still induce errors in recent literature, as

SatyaRamesh and Radhakrishna (2009) and Hasan et al. (2011) cite Lemaire (1984) as

the basis for the allocation methods they use.

Finally, although our attention focused on the the nucleolus, several other similar nu-

cleoli variations have been given in the literature. For example, the same article by Kruś

and Bronisz (2000) include the weak nucleolus, the concession nucleolus, the proportional

nucleolus and the disruption nucleolus. These last two are also used by Lemaire (1984),

who unfortunately also reports a wrong solution for the proportional nucleolus. A similar

algorithm as for the nucleolus is generally used in order to compute these variations, being

the main difference the way in which the excess is defined. Therefore, we hope our note

will help to prevent errors not only in the computation of the nucleolus, but also in the

computation of all types of nucleoli.
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