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Abstract

I consider an economy with fossil fuel and renewable energy and energy

storage, and search for the conditions that lead to welfare improvements

when energy is stored. I then solve for the optimal decision rule and

analyze the long-run tendencies of the economy-energy variables. The

findings are threefold. First, energy storage is fostered by the convexity

of the marginal utility (prudence), the marginal cost function for fossil

fuel energy, and the degree of intermittency. Second, considering a low

penetration of renewable energy to the power grid, energy storage is not

welfare improving if the fossil fuel energy cost function is linear. Third,

energy storage creates an added value to renewable energy investments

when actively used. By showing the influence that energy storage can have

on energy generation and investment decisions, I hope that the current

work can be influential in a more generous treatment of energy supply in

future energy-economy-climate models.
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1 Introduction

The cost of renewable energy has been decreasing since the 1980s.1 This may

lead to optimism regarding the transformation of the energy industry. However,

the growing concerns over man-made global warming show that the penetration

of renewable energy to the power grid has only been gradual and insufficient to

cover the increasing global energy demand.2 As a result, fossil fuels still account

for more than three quarters of global energy use and it is estimated that they

will account for 78% by 2035 (EIA, 2011).

The real challenge may be found in the intermittent and variable nature

of renewable energy that can cause difficulties in accessing energy when it is

needed. If tomorrow’s electric power grid is expected to contain a considerable

amount of renewable energy, then the grid’s stability, reliability and security

may be at risk due to intermittency. In avoiding the exposure to such risks,

energy storage technology (including (electrochemical) battery storage) will play

a crucial role in the decades to come. Therefore, its modeling for long-term

economic and policy analysis becomes an integral issue.3

Considering precautionary motives (prudence) and fossil fuel energy industry

cost structures, the first aim of the current study is to construct an analytical

framework and study the effects that an energy storage decisions can have on

economic welfare and show how energy storage can contribute to the value of

renewable energy investments when actively used. In view of the analytical

results, my second aim is to show that the problem can be fully solved numer-

ically in a long-term horizon and then calculate the long-run tendencies of the

economic variables.

This study makes two primary contributions to the literature. To the best

of my knowledge, it is the first to consider prudence in the energy economics

literature. Second, considering the literature on precautionary savings, it is the

first to analyze the effect of convex marginal cost function on savings decisions.

1As an example, the average PV module price (in constant 2005 prices) dropped from
about 22$/W in 1980 to less than 1.5$/W in 2010. See Figure 3.17 in Arvizu et al. (2011).

2As is stated in IPCC (2013), it is with 95-100% probability that human influence has been
the dominant source of the observed warming since the 1950s.

3Intermittency can be dealt with using renewable energy portfolios, for example portfolios
of wind and solar farms. However, finding suitable land areas, convenient wind sites, and
inadequate and costly transmission infrastructure are some of the difficulties.
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The remainder of the paper is structured as follows. Section 2 reviews the

related literature. Section 3 presents the model and evaluates it under different

scenarios. Calibration and simulation results are presented in Section 4. This

is then followed by Section 5 where a discussion regarding the value of capacity

increments in renewable energy is made. Numerical simulations for the value

of capacity increments are presented in Section 6. Section 7 concludes. The

description of the numerical method and a sensitivity analysis is presented in

the Appendix.

2 Related Literature

The literature on energy storage to date has primarily focused on pumped hy-

droelectric storage.4 Crampes and Moreaux (2001) develop an economic model

that focuses on storage in the form of reservoirs for hydropower generation,

which have a deterministic supply and compete with a thermal producer. The

authors address the optimal energy mix and examine its compatibility with

market mechanisms when the two producers compete. They show that optimal

energy generated from the thermal station is determined by the industry specific

costs and the intertemporal specification of utility.

In a two-period framework developed by the same authors, (Crampes and

Moreaux, 2010) consider the optimal use of a pumped storage facility that con-

sists of thermal and hydro energy technologies. In their model, hydro energy

is generated from controlled inflows that require energy from the thermal tech-

nology. After solving for the optimal allocation, they show that there are social

gains from storing water in an off-peak interval (where more energy from the

thermal source is generated than consumed), which can then be used in the

peak interval (where energy consumption will be more than energy generation).

Considering various cases such as fossil fuel or renewable energy generation

with pumped hydroelectric storage, the economic fundamentals of the storage

technology in a two-period model are examined by Forsund (2012). Given the

growing interest in Norwegian hydroelectric reservoirs on the grounds that they

will allow for a higher penetration of renewable energy into the European power

4An early paper on the management of an hydropower plant given uncertain inflows of
water is that of Koopmans (1958).
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grid, the paper also examines the effect of trade in electricity between regions.

It finds that unless there are sufficiently large interconnection systems, the price

differentials between the regions diminish. As a consequence, this reduces the

scope for trade.

When there is a certain number of large conventional plants that have to

be online (such as combined cycle gas turbines or the equivalent), intermittent

wind energy and a planning horizon of 36 hours (hence one model period consti-

tutes one hour), Tuohy and O’Malley (2011) show that, when modeling energy

generation and dispatch of the power system, accounting for the intermittency is

important in capturing the benefit of the flexibility offered by pumped storage.

Accordingly, intermittent wind makes energy storage more attractive and its

role becomes more significant when wind power is curtailed due to high wind.

The role of hydro storage in enabling a greater penetration of renewable

energy into the grid has been investigated in Kanakasabapathy (2013), where

the author looks at the impact of pumped storage energy trading on the sum of

consumer and producer surplus of the individual market in a static model. The

results show that while energy trading by pumped storage plants improve wel-

fare in general, the economic implications for consumers and individual energy

generators can be different.

In Korpaas et al. (2003) a method for the scheduling and operation of en-

ergy storage for wind power is presented.5 Solving the optimization problem

using dynamic programming, they show that energy storage enables wind power

plant owners to take advantage of variations in the spot price, which in the end

increases the value of wind power in electricity markets.

In a stylized model of energy investment and generation with two sources of

energy, Ambec and Crampes (2012) address the optimal energy mix and analyze

the optimal capacity investments in the absence of a storage technology. Hence,

the focus is on the economics of the interplay between thermal and intermittent

renewable energy and their capacities. After characterizing the optimal energy

dispatch and capacities, they look at the economic policies that achieve first-best

and second-best policies in decentralized markets.

In Van de Ven et al. (2011), the focus is on the decisions to satisfy the

demand either directly from the grid or from the energy stored in batteries

5The analyzed duration of the model is 1 year, where each period constitutes 1 hour.

4



when the energy demand and prices are variable. Modeling the problem as

a Markov decision process, they calculate a threshold to which the battery is

charged whenever it is below the threshold, and discharged whenever it is above.

Our project, while sharing several characteristics of these papers, will depart

from them in a significant way. In the presence of intermittency and balancing

services, we investigate analytically the conditions that will cause welfare im-

provements when energy is stored, and show how prudence and the third-order

derivative of the fossil fuel energy cost function can stimulate energy storage

decisions. We also solve numerically for the optimal energy mix and storage

decisions, i.e., the optimal decision rule, which we then supplement with Monte

Carlo simulations in order to evaluate the long-run tendencies of the decision

and state variables. Furthermore, we analyze how energy storage influences

the value of renewable capacity increments and quantify this using numerical

simulations.

3 The Model

Consider an infinite horizon economy with a representative consumer. There is

a single-commodity, i.e., energy, which can be supplied from fossil fuels, renew-

ables and energy storage systems:

Qt = Qdt + ztQct −Rt.

where Qt is energy consumption, Qdt is fossil fuel energy, Qct is the level for the

renewable energy, zt ∈ [0, 1] is current weather condition (normalized to one)

that is known prior to taking economic decisions, and Rt represents the energy

storage decision.6 When R is positive, energy is stored in order to be used in

the following periods, and when it is negative the stored energy is used.

The equation of motion for the stored energy is the following:

St+1 = φSt +Rt,

where St is the level of stored energy at time t. Whenever energy is stored, a

certain percentage of it will be lost in time. This is captured by the round-trip

6We abstract from exhaustibility of fossil fuels.
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efficiency parameter, φ ∈ (0, 1), which is the ratio of the energy recovered to

the initially stored energy.

The timing of the model is depicted in Figure 1. At the beginning of period

t, the economy inherits stored energy, St. Having observed St and the weather

conditions, zt, the fossil fuel and renewable energy decisions, Qdt and Qct, are

made. After taking into account the loss in stored energy, (1−φ)St, and Qdt and

Qct, the levels for energy storage, Rt, and, therefore, energy consumption, Qt,

are decided. We assume that the production and consumption almost coincide

so that no energy is lost in this process. Given the energy storage decision, Rt,

the level of stored energy transferred into period t+1 is St+1 = φSt +Rt.

t

St

zt

Qdt, Qct

Qt, Rt

φSt

t+1

St+1 =φSt+Rt

zt+1

Qdt+1, Qct+1

Qt+1, Rt+1

φSt+1

t+2

St+2

Figure 1: Timing of the model

We assume that energy demand is stationary (Førsund, 2007, Ch. 9). U(Qt)

is the per period utility function, which satisfies the standard monotonicity and

concavity assumptions. Preferences over energy consumption take the additively

separable form given by:

E

[ ∞∑
t=0

δtU(Qt)

]
, (1)

where 0 < δ < 1 is the discount factor and E(·) denotes the expected value with

respect to the probability distribution of the random variables {Qt}∞t=1.

The unit cost of fossil fuel energy is either constant, C ′d(Qd) > 0, C ′′d (Qd) = 0,

increasing, C ′d(Qd) > 0, C ′′d (Qd) > 0, C ′′′d (Qd) = 0, or increasingly-increasing,

C ′d(Qd) > 0, C ′′d (Qd) > 0, C ′′′d (Qd) > 0 where C ′d(Qd), C
′′
d (Qd) and C ′′′d (Qd) are

the first, second and third-order derivatives, respectively, of the cost function

with respect to Qd.
7 When the unit cost is constant, one can relate this to a

constant-cost industry, in which the input price (price of fossil fuels), is con-

stant.8 On the other hand, when the cost function is convex, this resembles

7We do not consider concave cost functions.
8As an example, think of a fossil fuel power plant that does not have market power and

therefore takes the price as given (assume that the industry has a long-term agreement re-
garding the price of the inputs, which makes it secure against changes in fossil fuel prices).
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an increasing-cost industry.9 Moreover, when the third-order derivative of the

cost function is strictly positive, C ′′′d (Qd) > 0, we will call this an increasingly

increasing cost industry. Lastly, Cc(Qc) is the cost function for the renewable

energy generation. As the cost structure for the renewable energy will be dis-

cussed later on, we do not make any assumption regarding its functional form

at the moment.

When solving the energy generation problem, the aim is to maximize (1),

the intertemporal welfare of the representative agent, through energy generation

and energy storage. For S0 being the inherited energy and z0 the initial weather

condition, the planner’s problem, formulated in the form of a Bellman equation,

is the following:

V (St, zt) = max
{Qt,Qdt,Qct,Rt,St+1}

{
U(Qt)− Cd(Qdt)− Cc(Qct) + δEz [V (St+1, zt+1)]

}
s.t Qt = Qdt + ztQct −Rt,

St+1 = φSt +Rt,

Q̄d ≥ Qdt ≥
¯
Qd,

Q̄c ≥ Qct ≥ 0,

S̄ ≥ St ≥ 0,

S0 ≥ 0, 1 ≥ z0 ≥ 0,

(2)

where V (St, zt) is the value function, which is the maximum attainable sum

of the current and future rewards given the current (inherited) level for stored

energy, St and current weather conditions, zt. Having observed zt, the economy

produces Qdt and Qct, and decides whether to store or use the stored energy

Rt. When Qdt, Qct and Rt are chosen, the energy consumption becomes Qt =

Qdt + ztQct −Rt.

Future weather conditions, z′ ≡ zt+1 ∈ [0, 1] are imperfectly known ex ante

and the surrounding uncertainty is removed only at the end of the current period

–after Qdt, Qct and Rt are determined. Ez denotes the expectation operator over

the distribution for z′, which satisfies the i.i.d property, is described by a density

function f(z), and the distribution function corresponding to f(z) is denoted by

9Assume that there is a unique merit order of using individual generators, so that first
the power plants with the lower marginal costs of energy generation would be brought on line
(like a coal-fired power plant), followed by costlier ones (such as a natural gas power plant
with carbon capture and storage).
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F (z) : z′ ∼ F (z) = Pr(z′ ≤ z). z′ being stochastic makes the renewable energy

generation random. In other words, even though energy can be generated from

wind turbines when there is enough wind or from solar panels when the sun is

brightly shining, these sources are beyond our control and can only be forecasted

with some degree of accuracy, hence with some degree of uncertainty.

Q̄d, Q̄c and S̄ are the capacity constraints for fossil fuel energy, renewable

energy, and energy storage, respectively. We assume a big enough capacity for

fossil fuel energy throughout the analysis such that it never binds.
¯
Qd is the

minimum level of fossil fuel energy generation to avoid ramp-up problems.10

We focus only on the cases in which renewable energy operates at its capacity

at all times, ztQ̄c for t = 0, 1, 2, ...,∞: once there is an installed capacity for

renewable energy, the unit cost of renewable energy becomes so low that we can

take it as zero (Ambec and Crampes, 2012; Førsund and Hjalmarsson, 2011).

Hence, for C ′c(Qc) = 0, the only cost in generating renewable energy is the

opportunity cost of not generating more energy than Q̄c.

Given that F (z) and the model parameters are time invariant, the problem

is stationary, i.e., the problem faced by the planner at every period is identical:

Vt(S, z) = Vt+y(S, z) for all y > 0. Therefore, we shall drop the time sub-

scripts and use primes to denote next-period values (not to confuse with partial

derivatives). Then the dynamic stochastic decision problem has the following

structure. At every period, the planner observes the state of the economy, i.e.

how much energy storage has been inherited and the state of the weather condi-

tions, say how strong the wind blows and the sun shines, denoted by (S, z), and

decides on the optimal actions (Q,Qd, R, S
′). Therefore, the planner searches

for an optimal decision rule {Q∗(S, z), Q∗d(S, z), R∗(S, z), S′∗(S, z)} that solves

V (S, z).11

Our problem is not fully tractable analytically. Therefore, we leave the

problem of finding the optimal decision rule to the numerical section. However,

this does not preclude us from analyzing the welfare effects of engaging in energy

storage in the absence of stored energy. We will therefore assume that there is

no inherited energy, S = 0, and energy is not stored, R = 0, hence S′ = 0, and

10Once shut down, it can take a long time to ramp-up a fossil fuel power plant, which may
then lead to a power shortage.

11As we assume no externalities, it is straightforward to implement the socially optimal
allocation in a decentralized equilibrium.
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then ask whether or not a marginal increase in S′ is welfare improving.

The Bellman equation is the following:

V (S, z) = max
Qd

{
U(Qd + zQ̄c − S′ + φS)− Cd(Qd) + δEz′ [V (S′, z′)]

}∣∣
S′=0

s.t Qd ≥
¯
Qd,

(3)

for which FOC wrt Qd gives:

U ′(Q)− C ′d(Qd) ≤ 0, (4a)

U ′′(Q)− C ′′d (Qd) < 0, (4b)

where the second expression gives the second-order condition for a maximum.

Let the optimal decision (the optimal response function) be Qd(S, z). Then

for κ (κ = z, z′) we have:

Qd(S, κ) =
¯
Qd, if U ′(

¯
Qd + κQ̄c + φS) ≤ C ′d(

¯
Qd),

Qd(S, κ) >
¯
Qd, otherwise U ′(

¯
Qd + κQ̄c + φS) > C ′d(

¯
Qd),

(5)

where in the first conditional statement, the marginal cost of generating the

fossil fuel energy is bigger than the marginal utility coming from its consumption

when Qd =
¯
Qd. Hence, there is a corner solution for the fossil fuel energy. In the

second conditional statement, the solution is interior. Therefore, U ′(Q(S, κ)) =

Cd(Qd(S, κ)).

The first conditional statement implies that there is a threshold level z̄(Q̄c)

(slightly abusing notation, we write z̄(Q̄c,
¯
Qd, S) as z̄(Q̄c)),

z̄(Q̄c) ≡
U ′−1(C ′d(

¯
Qd))−

¯
Qd − φS

Q̄c
, (6)

such that for z > z̄(Q̄c), the renewable energy generation, zQ̄c, takes high

enough values so that Qd has a corner solution. On the other hand, when

z < z̄(Q̄c), i.e., when the renewable energy generated is low, then Qd(S, z) >
¯
Qd.

Now let us ask what will be the welfare effect if S′ is increased marginally
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from zero:

∂ {V (S, z)}
∂S′

∣∣∣∣
S′=0

=
∂
{
U(Qd + zQ̄c − S′ + φS)− Cd(Qd) + δEz′ [V (S′, z′)]

}
∂S′

∣∣∣∣∣
S′=0

,

which gives:

∂ {·}
∂S′

∣∣∣∣
S′=0

= −U ′(Qd(S, z) + zQ̄c + φS) + δ Ez′
[
∂V (S′, z′)

∂S′

]∣∣∣∣
S′=0

(7)

From the Envelope Theorem, only the direct effect of a marginal change in

the state variable matters on the value function. Given that we evaluate the

problem when S′ = 0, the derivative of the associated value function w.r.t S

shows:

V1(S, z) = φU ′(Qd(S, z) + zQ̄c + φS),

where V1(·) is the derivative of the value function with respect to its first ar-

gument. This is the Benveniste-Scheinkman (Envelope Theorem) condition.

Iterating this one period forward gives:

V1(S′, z′) = φU ′(Qd(S
′, z′) + z′Q̄c + φS′).

By plugging this result in (7), one gets:

∂ {·}
∂S′

∣∣∣∣
S′=0

= −U ′(Qd(S, z) + zQ̄c + φS) + δφEz′
[
U ′(Qd(0, z

′) + z′Q̄c)
]
. (8)

As we restrict the analysis to S = 0, and hence assume no inherited energy,

then from (8) we have:

∂ {·}
∂S′

∣∣∣∣
S′=0

= −U ′(Qd(0, z) + zQ̄c) + δφEz′
[
U ′(Qd(0, z

′) + z′Q̄c)
]
. (9)

By decomposing the term into realizations of z′, such that there is a corner

solution for Q′d, i.e., z > z̄(Q̄c), and realizations for which there is an interior

solution, so that U ′(Qd(0, z
′) + z′Q̄c) = C ′d(Qd(0, z

′)) (see equations (5) and
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(6)), Ez′
[
U ′(Qd(0, z

′) + z′Q̄c)
]

can then be presented as:

Ez′
[
U ′(Qd(0, z

′) + z′Q̄c)
]

=Ez′ [C ′d(Qd(0, z
′))|z′ < z̄)] Pr(z′ < z̄)

+ Ez′
[
U ′(

¯
Qd + z′Q̄c|z′ > z̄)

]
Pr(z′ > z̄).

(10)

Let g(z′)
def
= C ′d(Qd(0, z

′)) and h(z′)
def
= U ′(

¯
Qd+z′Q̄c). Taking the expectation

of a second-order Taylor approximation around ž ≡ E[z′|z′ < z̄] for the former

and ẑ ≡ E[z|z′ > z̄] for the latter gives:

E[g(z′)] ' g(ž) +
1

2
g′′(ž)σ2

ž ,

E[h(z′)] ' h(ẑ) +
1

2
h′′(ẑ)σ2

ẑ ,

(11)

where σ2
ž and σ2

ẑ are the conditional variances of the random variable z′ given

z′ < z̄ and z′ > z̄, respectively.

We are interested in calculating g′′(ž) and h′′(ẑ). Firstly, g′(z′) = C ′′d (Qd(0, z
′))∂Qd(0,z′)

∂z′ ,

where,

∂Qd(0, z
′)

∂z′
=

U ′′(Q(0, z′))Q̄c
C ′′d (Qd(0, z′))− U ′′(Q(0, z′))

< 0, (12)

Following (12) one gets,

g′′(z′) = C ′′′d

(
∂Qd(0, z

′)

∂z′

)2

+ C ′′d
∂2Qd(0, z

′)

∂z′2
, (13)

and,

∂2Qd(0, z
′)

∂z′2
=

Q̄2
c

(C ′′d − U ′′)3

(
C ′′d

2
U ′′′ − U ′′2C ′′′d

)
,

where U ′′′(·) is the third-order derivative of the utility function.

Using these results, one then arrives at the following expression for g′′(ẑ):

g′′(z′) = Q̄2
c

[
(C ′′d )

3

(C ′′d − U ′′)3
U ′′′ +

(−U ′′)3

(C ′′d − U ′′)3
C ′′′d

]
. (14)

where the term in the square brackets is a weighted average of U ′′′(·) and C ′′′d (·).
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Lastly,

h′(z′) = Q̄cU
′′(

¯
Qd + z′Q̄c), (15a)

h′′(ẑ) = Q̄2
cU
′′′(

¯
Qd + ẑQ̄c). (15b)

Using the results from the second-order Taylor approximation, (11), (14) and

(15b), (10) becomes the following:

Ez′
[
U ′(Qd(0, z

′) + z′Q̄c)
]

=

(
C ′d(Qd(0, ž)) +

1

2
g′′(ž)σ2

ž

)
Pr(z′ ≤ z̄)

+

(
U ′(

¯
Qd + ẑQ̄c) +

1

2
h′′(ẑ)σ2

ẑ

)
Pr(z′ > z̄).

(16)

From (9),(14),(15b) and (16), the welfare effect of increasing S′ marginally from

zero when S = 0 can then be shown as:

∂ {·}
∂S′

∣∣∣∣
S′=0

= −U ′(Qd(0, z) + zQ̄c)

+ δφ

[(
C ′d(Qd(0, ž)) +

1

2
Q̄2
c

[
(C ′′d )

3

(C ′′d − U ′′)3
U ′′′ +

(−U ′′)3

(C ′′d − U ′′)3
C ′′′d

]
σ2
ž

)
Pr(z′ ≤ z̄)

+

(
U ′(

¯
Qd + ẑQ̄c) +

1

2
Q̄2
cU
′′′(

¯
Qd + ẑQ̄c)σ

2
ẑ

)
Pr(z′ > z̄)

]
.

(17)

Following equation (17), we can establish the following:

Proposition 3.1. If the cost of engaging in energy storage is sufficiently low

and the benefit expected from storing energy is sufficiently high, energy storage

is welfare improving. Convexity in the marginal utility, i.e., prudence, and in

the marginal cost function in fossil fuel energy generation, and the degree of

intermittency are factors that foster energy storage decisions.

Notice from the expression given by (17), the value on the RHS diminishes

in the absence of prudence. Therefore, the convexity of marginal utility is a

crucial factor that increases the willingness of the economy to engage in energy

storage.

One other thing we can notice from expression (17) is that a convex marginal

cost of fossil fuel energy does play a significant role in determining the impact

of uncertainty on the optimal energy storage strategy. Surprisingly, it can be
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seen that even in the absence of prudence, a non-negative C ′′′d alone is necessary

for “precautionary” saving of energy.

Notice that the decision to engage in energy storage given the intermittency

(uncertainty) in renewable energy relates to the literature on precautionary

saving, where a positive third-order derivative of the utility function governs

the precautionary behavior. The analysis regarding the precautionary saving

under uncertainty was first introduced by Leland (1968) and Sandmo (1970).

A modern treatment of precautionary saving can be found in Kimball (1990),

where he coins the term ‘prudence’ when the marginal utility of consumption

is convex, and shows that prudence is sufficient for a demand in precautionary

savings in standard intertemporal models of consumption.

Regarding the convexity of the marginal cost, one can imagine an implicitly

assigned capacity constraint –an upper bound– on the fossil fuel energy, which

will induce the effect from convexity to become predominant when fossil fuel

energy is required to take high generation levels. As a consequence, for a limited

fossil fuel energy capacity, such an effect can be quite fundamental.

As a special case, assume that z = z′ = 0. This is to say that the renewable

energy either does not exist or is completely inefficient. This will naturally

cause fossil fuel energy generation to be over its ramp-up level, Qd >
¯
Qd, and

E[z] = ž = ẑ = σ2
z = σ2

ž = σ2
ẑ = 0, where σ2

z is the variance of the probability

distribution for z′. Moreover, Pr(z′ ≤ z̄) = 1, while Pr(z′ > z̄) = 0. As a result,

the latter term in (9) becomes:

δφEz′
[
U ′(Qd(0, z

′) + z′Q̄c)
]

= δφC ′d(Qd(0, 0)).

Using (16), we then have the following welfare effect when S′ is increased

marginally from zero:

∂ {·}
∂S′

∣∣∣∣
S′=0

= −(1− δφ)C ′d(Qd(0, 0)) < 0. (18)

From (18), we can establish the following corollary:

Corollary 3.2. If an economy does not have access to renewable energy, then

storing energy is welfare deteriorating.
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The intuition is that as the resource used for storing energy comes from

fossil fuel energy generation, the marginal resource, then the unit cost of storing

energy is C ′d(Qd(0, 0)). When energy is stored, its present value adjusted for the

discount factor and the loss in energy becomes δφC ′d(Qd(0, 0)). Comparing the

cost of storing energy to its value adjusted for the discount factor and the round-

trip efficiency, it is seen from (18) that energy storage is suboptimal: storing

energy in the ground (or in the fuel itself) is more efficient. As a result, energy

consumption, Q, equals fossil fuel energy generation, Qd, in every period.

Suppose now that the renewable energy exists and is efficient. As another

special case, let there be no intermittency problem and let z take the same level

at every period: z = z′ = E[z] = E[z′]. Therefore, σ2
z = σ2

ž = σ2
ẑ = 0. If

z < ž, then Qd(0, z) >
¯
Qd and U ′(Qd(0, z) + zQ̄c) = C ′d(Qd(0, z)) at all times.

Following this, from (17) one arrives at the following:

∂ {·}
∂S′

∣∣∣∣
S′=0

' −(1− δφ)C ′d(Qd(0, z)) < 0. (19)

Conversely, if z > ž, then U ′(
¯
Qd+zQ̄c) ≤ C ′d(

¯
Qd) and Qd(0, z) =

¯
Qd always.

As a result, from (17), one gets:

∂ {·}
∂S′

∣∣∣∣
S′=0

' −(1− δφ)U ′(
¯
Qd + zQ̄c) < 0. (20)

Following (19) and (20), we can establish the following corollary:

Corollary 3.3. In an economy with fossil fuel and renewable energy, storing

energy is welfare deteriorating in the absence of the intermittency problem.

Intermittency in renewable energy, hence uncertainty in the levels of energy

generated by the renewable energy capacity, is the cause that assigns a positive

value to energy storage. Without it, it will only be welfare deteriorating to

engage in energy storage.

Suppose now that the renewable energy is intermittent (back to the real-

ity). In such a setting, one can come across a setup in which z < z̄ always.

This is to say that, the penetration of renewable energy into the power grid

is low and after deducting the ramp-up level for fossil fuel energy generation,

the renewable energy generation can never be enough to satisfy the remaining

14



energy demand for the economy: zQ̄c < z̄Q̄c = U ′−1(C ′d(
¯
Qd) −

¯
Qd). This re-

sults in Pr(z′ > z̄) = 0, and therefore, from (16), Ez′
[
U ′(Qd(0, z

′) + z′Q̄c)
]

=(
C ′d(Qd(0, ž)) + 1

2g
′′(ž)σ2

ž

)
. Given that there is an interior solution for Qd in

the economy, hence U ′(Qd(0, z) + zQ̄c) = C ′d(Qd(0, z)), one can write (17) as:

∂ {·}
∂S′

∣∣∣∣
S′=0

= −C ′d(Qd(0, z)) + δφ

(
C ′d(Qd(0, ž)) +

1

2
g′′(ž)σ2

ž

)
(21)

As a starting point, suppose that z = ž. We then have:

∂ {·}
∂S′

∣∣∣∣
S′=0

= −(1− δφ)C ′d(Qd(0, z)) +
1

2
δφg′′(ž)σ2

ž (22)

It can be seen that U ′′′ > 0 or C ′′′d > 0 is a necessary condition for engaging

in energy storage. Therefore, convexity in the marginal utility (prudence) and

in the marginal cost function play a major role in energy storage decisions.

Additionally, if z > ž, then Qd(0, z) < Qd(0, ž), and it becomes more likely to

engage in storing energy. Conversely, if z < ž, then Qd(0, z) > Qd(0, ž), and

storing energy may be welfare deteriorating.

If one assumes a linear cost function, from (14), one gets g′′(ž) = 0. Then

(22) becomes:
∂ {·}
∂S′

∣∣∣∣
S′=0

= −(1− δφ)cd < 0, (23)

where cd = C ′d(Qd(0, z)), which is a positive constant, is the marginal cost of

generating fossil fuel energy when the cost function is linear.

Corollary 3.4. If the renewable energy capacity, Q̄c, is small so that the fossil

fuel energy generation is always above its ramp-up level, Qd >
¯
Qd, and the fossil

fuel energy cost function is linear, i.e., there is a constant-cost fossil fuel energy

industry, then storing energy is welfare deteriorating and therefore is never

optimal. Prudence, the positive third-order derivative of the utility function,

loses its impact on storage decisions.

The result follows from (23).

The intuition is that in an economy in which the penetration of the renewable

energy to the power grid is low, the dirty carrier generates energy over the ramp-

up level and becomes the source for energy storage. This naturally means that
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the present value adjusted for the discount factor and the loss in energy becomes

δφcd, which is smaller than cd. It can then be seen from (23) that energy storage

turns out suboptimal. Hence, although the renewable energy is stochastic, there

is indeed no real risk in the economy as long as the dirty carrier has no barriers

to produce energy in the following period. Therefore, storage technology will

not be employed even if it is perfectly efficient.

Now assume that the renewable energy capacity is considerably high and

there is a favorable distribution for z such that Qd =
¯
Qd at all times. Here, we

depart from the previous assumption, z ∈ [0, 1], and assume z ∈ (z̄, 1], as if the

wind never subsides and is always above z̄. Considering the welfare effects of a

marginal increase in S′ we have:

∂ {·}
∂S′

∣∣∣∣
S′=0

= −U ′(
¯
Qd + zQ̄c) + δφEz′

[
U ′(

¯
Qd + z′Q̄c)

]∣∣
S′=0

. (24)

Given that Pr(z′ ≤ z̄) = 0 (and Pr(z′ > z̄) = 1), one gets the following welfare

effect from a marginal increase in S′ using (17):

∂ {·}
∂S′

∣∣∣∣
S′=0

= −U ′(
¯
Qd + zQ̄c) + δφU ′(

¯
Qd + ẑQ̄c) +

1

2
δφQ̄2

cU
′′′(

¯
Qd + ẑQ̄c)σ

2
z .

(25)

To fix ideas, suppose that the current realization of z coincides with its

expected future realization, i.e., z = ẑ. Then:

∂ {·}
∂S′

∣∣∣∣
S′=0

= −(1− δφ)U ′(
¯
Qd + ẑQ̄c) +

1

2
δφQ̄2

cU
′′′(

¯
Qd + ẑQ̄c)σ

2
z . (26)

One sees that U ′′′ is a necessary condition for storage to be optimal in this

case. Due to the concavity of the utility function, if z > ẑ, then U ′(
¯
Qd+zQ̄c) <

U ′(
¯
Qd+ ẑQ̄c) and it becomes more likely that the economy will engage in energy

storage. Conversely, if z < ẑ, then U ′(
¯
Qd+zQ̄c) > U ′(

¯
Qd+ẑQ̄c), and it becomes

less likely to start storing energy.
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4 Numerical Analysis

In solving the dynamic stochastic decision problem given by (2), we employ

dynamic programming based on Bellman’s principle of optimality: regardless of

the decisions taken to enter a particular state in a particular stage, any optimal

policy has the property that the remaining decisions given the stage resulting

from the current decision must constitute an optimal policy. Hence, we look for

an optimal decision rule {Q∗(S, z), Q∗d(S, z), Q∗c(S, z), R∗(S, z), S′∗(S, z)}, which

solves V (S, z).

In order to make sure that the numerical problem has a solution and this so-

lution is unique, we establish the contraction property of the dynamic program.

The right hand side of the Bellman equation is a mapping of the value function

V (·) and V = TV is a fixed point of the mapping, where T is a function mapping

V into itself. For there to be a unique solution to the dynamic programming

problem, we need show that the mapping for the Bellman equation above is

indeed a contraction mapping. In showing that a mapping is a contraction, we

make use of Blackwell’s sufficient conditions for a contraction (see Appendix A).

Proposition 4.1. The energy generation and storage model we work with

satisfies Blackwell’s sufficient conditions for a contraction. Therefore there exists

a unique fixed point for the mapping of the value function, i.e., a unique solution

to the dynamic programming problem.

Proof. See Appendix B.

4.1 Calibration

Our purpose with the simulations is not to provide a comprehensive quantita-

tive evaluation. Rather, we want to highlight the roles different industry cost

structures and precautionary motives can play in an economy equipped with

fossil fuel and renewable energy, and energy storage capacities.

Suppose there exists an economy in which the level of energy consumption

is Q = 450MW/h (megawatts per hour), which is supplied by a fossil fueled
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power plant initially.12 Then the fossil fuel energy generation, Qd equals energy

consumption, Q: Q = Qd = 450MW/h.

In the economy the energy demand is assumed to be stable. As hourly

energy generation data can bias the analysis, we focus on weekly data: Q =

Qd = 450 MW/h × 24h/d × 7d/w = 75600 MW/w = 75.6GW/w, where h,d,w

stand for hour, day, week, respectively.13 For ease of notation, we drop ‘per time

period’ notation and focus only on the thermal unit, GW. We take an annual

discount rate of 5%. This corresponds to a weekly discount factor, δ = 0.9991.

For the fossil fuel power plant, we assume that the ramp-up level equals

¯
Qd = 8.4GW, corresponding to 50MW per hour. The capacity constraint for

fossil fuel power generation is given by Q̄d = 100.8GW corresponding to 600MW,

which, in the simulations, will not bind as Q = 75.6GW.

In the simulations, we will make use of a constant relative risk aversion

(CRRA) utility function, Q1−γ/(1 − γ), where γ and γ + 1 are the coefficients

of relative risk aversion and relative prudence, respectively. We take γ = 2.14

From the necessary first-order condition w.r.t Qd, given by (4a), we then have

Q−γ = C ′d(Qd). Assuming a linear cost function for fossil fuel energy, Cd(Qd) =

clQd, where cl is a constant, one then gets, cl = Q−γ . For Q = 75.6GW,

cl = 0.000175UoN (units of the numeraire). If, however, the cost function is

quadratic, we have Cd(Qd) = cqQ
2
d, where cq is another constant. Finally, for a

cubic cost function we have Cd(Qd) = ccQ
3
d, where cc is also a constant.

In order to be consistent in the analysis, we assume that when the fossil

fuel energy generation is at the ramp-up level, Qd =
¯
Qd, the marginal costs are

equal among the different cost functions. This then gives us:

cl = 2cq
¯
Qd = 3cc

¯
Q2
d (27)

12Although we do not aim for a comprehensive quantitative evaluation, it is still possible to
find a range of examples to associate with 450MW/h of energy consumption. As an example,
electricity peak demand in Uganda is around 450MW/h (EIU, 2013). Also, an island in
Greece, Agathonisi, has an annual electricity consumption of 450 MW/h (Kaldellis et al.,
2012).

131GW (gigawatt) = 1000 MW.
14(Heal, 2009) argues that γ ∈ [2, 6] would be a reasonable range.
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Hence, using the result that cl = 0.000175, we get:

cq =
cl

2
¯
Qd

= 1.0417 x 10−5 (28)

cc =
cl

3
¯
Q2
d

= 8.2672 x 10−7. (29)

For Qd >
¯
Qd, we then have cl < 2cqQd < 3ccQ

2
d.

Suppose that a wind farm with a maximum capacity of Q̄c = 100.8GW,

which corresponds to 600MW per hour is then introduced to the economy.15

Moreover, the economy gains access to energy storage technology with a max-

imum capacity of 100MW, which corresponds to S̄ = 16.8GW per week.16 We

first assume that 1% of stored energy would be lost every week, hence φ = 0.99.

We address the effects of different round-trip efficiency parameters by making

a sensitivity analysis in Appendix E.1.

As is discussed in the Appendix for method description (Appendix C.1), we

approximate the expected value for the intermittent renewable energy produc-

tion, Qc, using Gaussian quadrature nodes and weights. In determining the

weights and nodes (normalized wind speed), we make use of a beta distribution

defined on the interval [0, 1] and parametrized by two positive shape param-

eters, a and b. As an example, for a = 2 and b = 2, the probability density

function, f(z), for the beta distribution looks like the one in Figure 2.

Finally, in evaluating the long-run steady state behavior of the controlled

economic process, we will make use of Monte Carlo Simulations (see Appendix

C.1).

15The Fantanele-Cogealac Wind Farm, which opened in 2012 in Romania, and the Whitelee
Wind Farm, which opened in 2012 in the United Kingdom, have capacities of 108GW and
90.5GW, respectively.

16Considering battery storage, even though such a capacity is not present as of today, it is
achievable given the current battery technology. The biggest battery storage capacity exists
in west Texas located at 153 MW Notrees wind farm where 36 MW battery storage system
became operational in December 2012. The 36 MW battery storage is a scalable assembly
of thousands of 12 volt, 1 kWh, dry cell batteries based on a proprietary formula of alloys
including copper, lead and tellurium.
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Figure 2: Beta probability density function for the (normalized) wind speed
(a=2, b=2).

5 Simulation Results

Figure (3) presents the optimal decision rules for three different (linear, quadratic

and cubic) cost functions. To be consistent with our earlier analysis, we present

only the decision rules regarding the fossil fuel energy generation, Qd(S, z), and

energy storage that will be transferred to the next period, S′(S, z).

Considering the case with the linear cost function in generating the fossil

fuel energy one can see that when the wind strength is highest, i.e., z = 1, and

zQ̄c = 100.8GW, then it is optimal to generate the fossil fuel energy at its ramp-

up level (see Figure (3a)-i). It is also optimal to store energy up to its capacity,

16.8GW, which is an outcome independent of the level of stored energy in this

case (see Figure (3a)-ii). Furthermore, when the wind stregth is less than 0.5,

all stored energy will then be consumed, which is a result independent of how

much energy was transferred into the current period.

The optimal decision rules for the two remaining cases are quite distinct.

Inline with Proposition 3.1, one can see that the costlier it gets to generate

the fossil fuel energy, the lower the corresponding generation levels and the

higher the level of energy transferred into the next period.17 For example,

if z = .5 and there is no stored energy, then S′ = (0, 5.2, 6.9) gigawatts for a

constant-, increasing- and increasingly increasing-cost fossil fuel energy industry,

respectively.

17For all variations of z and S, while the fossil fuel energy generation takes its lowest values,
the energy levels transferred to the next period are the highest for a cubic cost function, i.e.,
C′′′d > 0.
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(a) Linear cost function (b) Quadratic cost function (c) Cubic cost function

Figure 3: Optimal decision rules for fossil fuel energy generation, Qd, and
energy storage, S′, for different cost functions.

A lower level of stored energy for each pair of z and S when the cost function

is linear can be attributed to the lower opportunity cost of not storing energy

in the current period: if the wind power is low and energy is not stored, then,

in case it is required, the cost of generating the required energy from fossil fuels

will not be too costly. However, this is not necessarily the case when the cost

function is nonlinear: if there is no stored energy and suddenly the wind ceases

to blow, then the economy would have to incur greater costs to get the desired

level of energy from fossil fuels.

Having solved for the optimal decision rules, we can examine the long-run

tendencies of the model variables. Here, we aim at computing the steady state

mean values for the model variables and analyze how they respond to different

specifications of the cost function and model parameters.

In doing this we simulate the representative paths for the model variables

using Monte Carlo simulations. Given that we work with a stationary distribu-

tion, i.e., that the transition probabilities are time invariant, we can argue that

our problem possesses a steady state distribution so that we can calculate the

steady state mean values for the variables we are interested in.
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Assuming three different cost functions in generating fossil fuel energy, the

results of the simulations are summarized by Figure 4a. As expected from the

previous discussion regarding the optimal decision rule, the fossil fuel steady

state (SS) mean levels are the smallest, approximately 10GW, for the case with

the cubic cost function. On the contrary, the SS mean value for the stored

energy is the highest, 10.2GW for the same case. Moreover, when one considers

the long-run tendencies given that the cost structure of the fossil fuel energy

industry is constant, i.e., a linear cost function, we see that the fossil fuel energy

SS mean takes its highest value, 27GW, while the stored energy gets much lower,

approximately 2GW. In line with Proposition 3.1, the simulation results show

the impact a positive third-order derivative of the cost function can have on

energy storage decisions.

Another fundamental result we got previously was the effect of prudence

on precautionary energy storage decisions. In looking at the effect of a more

prudent economy, we take γ = 3. The simulations show that a higher level of

prudence can alter the results significantly. Compared to the previous cases

with different cost structures, we see that a higher level of prudence can indeed

result in a much higher level of SS energy savings, even if the cost function is

linear (see Figure 4b).
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Figure 4: Steady state analysis - mean values
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6 Capacities

In doing the analysis regarding the value of capacity increments in renewable

energy, we make use of the steady state mean analysis, where we look at the

long-run tendency –the expected paths– calculated from the optimal decision

rule, {Q∗(S, z), Q∗d(S, z), R∗(S, z), S′∗(S, z)}, and the various realizations of the

random shocks. Under various scenarios, the Monte-Carlo simulations justify

that such steady state mean values can be calculated (see Figure 4).

Given that we deal with a stationary process and there exists a steady state

mean level for stored energy, µs, we can then show that the expected payoff at

each period is the same using the law of iterated expectations.

In doing this, consider two value functions, one for the current period and

one for the following one at the steady state: {V (µs, zt), V (µs, zt+1)}. The

Bellman equation can then be shown as:

V (µs, zt) = max
Qdt

{
U(Qdt − ztQ̄c − (1− φ)µs)− Cd(Qdt) + δEzt+1

[V (µs, zt+1)]
}

(30)

Taking the expectation at time t gives:

Ezt [V (µs, zt)] = max
Qdt

{
Ezt

[
U(Qdt − ztQ̄c − (1− φ)µs)− Cd(Qdt)

]
+ δEzt

[
Ezt+1

[V (µs, zt+1)|zt]
]}

(31)

We can write the second term on the RHS of (31) as:

Ezt
[
Ezt+1

[V (µs, zt+1)|zt]
]

=Ezt
[∫ 1

0

V (µs, zt+1)fzt+1|zt(zt+1|zt)dzt+1

]
(32)

As the joint probability distribution, which, given the i.i.d property, can be

shown as fzt+1|zt(zt+1|zt) = fzt+1
(zt+1), we have:

Ezt [Ezt+1 [V (µs, zt+1)|zt]] =Ezt
[∫ 1

0

V (µs, zt+1)fzt+1(zt+1)dzt+1

]
=Ezt

[∫ 1

0

V (µs, zt)fzt(zt)dzt

]
=Ezt [V (µs, zt)]

(33)
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Using this result in (31) one gets:

Ezt [V (µs, zt)] =
1

1− δ
max
Qdt

{
Ezt

[
U(Qdt − ztQ̄c − (1− φ)µs)− Cd(Qdt))

]}
(34)

The max operator allows one to apply the Envelope Theorem. Taking the

derivative wrt Q̄c and iterating the resulting expression one period forward

gives:

Ezt+1

[
∂V (µs, zt+1)

∂Q̄c

]
=

1

1− δ
max
Qdt+1

{
Ezt+1

[
zt+1U

′(Qdt+1 − zt+1Q̄c − (1− φ)µs)
]}

(35)

Assuming Qd(µ
s, zt) >

¯
Qd (i.e., at steady state the fossil fuel energy takes

an interior value), taking the derivative of the value function, (30), wrt Q̄c and

substituting (35) to the resulting expression gives:

∂V (µs, zt)

∂Q̄c
=ztU

′(Q(µs, zt)) +
δ

1− δ
Ezt+1

[zt+1U
′(Q(µs, zt+1))] > 0 (36)

From the FOC wrt Qd we have U ′(Qd) = C ′d(Qd), which given the steady

state mean value µs is:

U ′(Q(µs, zt)) = C ′d(Qd(µ
s, zt)) (37)

Plugging this result in (36) one gets:

∂V (µs, zt)

∂Q̄c
=ztC

′
d(Qd(µ

s, zt)) +
δ

1− δ
Ezt+1

[zt+1C
′
d(Qd(µ

s, zt+1))] > 0 (38)

The comparative statics wrt µs gives:

∂Qd(µ
s, zt)

∂µs
= −(1− φ)

U ′′(Q(µs, zt)

C ′′d (Qd(µs, zt))− U ′′(Q(µs, zt)
> 0 (39)

This result indicates that for µs > 0, Qd(µ
s, zt) > Qd(0, zt), and hence, C ′d(Qd(µ

s, zt)) ≥
C ′d(Qd(0, zt)). From (38), this then implies:

∂V (µs, zt)

∂Q̄c
>
∂V (0, zt)

∂Q̄c
. (40)

Expression (40) leads to the following proposition:
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Proposition 6.1. The marginal gain from an increase in renewable energy

capacity increases in energy storage.

The result follows from (40).

From (39), an increase in the steady state level of stored energy will be

matched with an increase in the long-run level of fossil fuel energy when both

fossil fuel energy and energy storage take values between their boundaries. Un-

less the cost function is linear, this will cause a higher cost of energy generation,

i.e., a higher price for energy, which will then increase the revenues that will

accrue to both the renewable energy operators and new capacities for renewable

energy.

Corollary 6.2. If there is a constant cost fossil fuel energy industry, i.e., the

cost function in generating the fossil fuel energy is linear, then changes in the

level of stored energy will have no influence on the value of capacity increments

in renewable energy.

For proof, see Appendix D.

In order to find the expression we make use of in calculating the value of a

capacity increment in renewable energy, one can decompose equation (36) and

get:

∂V (µs, zt)

∂Q̄c
= ztC

′
d(Qd(µ

s, zt)) +
δ

1− δ

(
Cov(zt+1, C

′
d (Qd(µ

s, zt+1)))

+ E [zt+1]E [C ′d(Qd(µ
s, zt+1))]

)
.

(41)

Suppose that δ is close to 1, i.e., the future is heavily weighted. As the implicit

weight on the current period approaches 0 when δ approaches 1 (i.e. if δ → 1,

then δ/(1 − δ) → ∞), one can then disregard the current effect from a change

in Q̄c and get:

∂V (µs, zt)

∂Q̄c
=

δ

1− δ

(
Cov(zt+1, C

′
d (Qd(µ

s, zt+1))) + E [zt+1]E [C ′d(Qd(µ
s, zt+1))]

)
,

(42)

Taking the expectation of a second-order Taylor approximation for C ′d(Qd(µ
s, zt+1))
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around E[z] then gives:

∂V (µs, zt)

∂Q̄c
=

δ

1− δ

(
Cov

(
zt+1, C

′
d (Qd(µ

s, zt+1))
)

+ E [z]
(
C ′d (Qd(µ

s,E[z])) +
1

2
g′′(E[z])σ2

z

))
,

(43)

where g′′(·) is given by (14). The expression given by (43) is the one we make

use of in calculating the value of a capacity increment in renewable energy.

One can see from (43) that there are two opposing effects. The first term in

the parenthesis, which is the covariance between the fossil fuel energy and the

weather condition, is negative: as we have shown earlier, a higher z, hence a

higher level of renewable energy, causes a lower level of energy generated from

fossil fuels. The second term in the parenthesis, which is the product of the

expected value for z and the marginal cost of fossil fuel energy at the steady

state level for stored energy, is positive. From this second term, one can see

that a higher degree of prudence, convexity in the marginal cost for fossil fuel

energy and volatility in the weather conditions induce the value of renewable

energy capacity increments positively.

7 Capacities - Simulation Results

In order to make some real life comparisons, we convert UoN (units of the nu-

meraire, see p. 18) to US dollars. In calculating the dollar value of UoN, we use

the estimated average levelized cost of new generation coal power plants entering

service in 2018 and pick the average operating and management (O&M) cost of

a conventional coal power plant: 29.2$/MW (EIA, 2013). Converting this value

to GW per week gives $4.9056m. Thus, for cd = 0.000175UoN the numeraire is

worth $28.0368bn. As we did previously, we take an annual discount rate of 5

percent, which corresponds to a weekly discount factor of δ = 0.9991.

Making use of (43) and the dollar value of the numeraire, the net present

values for capacity increments for the constant cost and increasing cost fossil

fuel energy industries are presented on Table 1.

Assuming a quadratic cost function, hence an increasing cost industry (ICI)
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for the fossil fuel energy generation, the results show that in the absence of a

storage technology the value a 1MW/h wind turbine is expected to create in

its lifetime is $3.03m (0.1082UoN). An investor can then compare this to the

cost of a 1MW/h wind turbine in order to make a comparison. In the presence

of the storage technology for energy, this value jumps to $3.51m (0.1251UoN)

(approximately 16% higher value), which is a result in line with Proposition 6.1.

Table 1: Value of 1MWh windmill in the long run. ICI and CCI
stand for increasing-cost and constant-cost fossil fuel industries

Cost structure ICI CCI

Energy Storage $3.51m $2.62m
No Energy Storage $3.03m $2.62m

One can also see in Table 1 that for a linear cost function, hence a constant

cost industry (CCI), an additional wind turbine is worth the same, $2.62m,

regardless of the level of stored energy, which is a result that is inline with

Corollary 6.2.

We conclude this section with a word of precaution concerning the discount

rate and the maximum renewable energy capacity employed in the simulations.

As can be seen from Appendix E.2, the value of capacity increments in the re-

newable energy can be sensitive to the level of the discount rate used. Moreover,

the same value will also change with respect to the level of the existing renew-

able capacity (see Appendix E.3). However, determining the right discount rate

and the capacity to use in the simulations are beyond our scope here and can

be explored in depth in a separate paper.

8 Conclusion and Discussion

In line with the global efforts to reduce CO2 emissions, renewables have an ex-

tensive potential to substitute for the fossil fuels. However, they also have their

shortcomings. One of them, maybe the most crucial one, is the intermittency

problem that can jeopardize immediate access to energy. One technology con-

sidered to alleviate, or even cause the intermittency problem to be negligible,

is energy storage. Yet the economics of energy generation lacks the treatment
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of intertemporal welfare decisions in the presence of intermittent renewable en-

ergy and energy storage technology. This may become a serious drawback, as

without taking this into account, long-term analysis and the policy decisions in

this respect can be biased and even misleading.18

By approaching the problem both analytically and numerically, we attempt

to fill this gap. Our analytical results show the conditions where prudence can

have considerable effect on energy storage decisions. We also show how the cost

structures, including the third-order derivative of the cost function in generating

the fossil fuel energy, can influence energy storage decisions.

Using numerical simulations, we then calculate the optimal decision rule,

i.e., optimal policy functions, which are vital in navigating decisions regarding

how much energy to generate from fossil fuels and how much to use from stored

energy (or how much to store). We use this policy tool to analyze the vari-

ables’ long-term tendencies, i.e., steady state mean levels. Our analytical and

numerical results also show that capacity increments are desired more when the

economy is expected to store a higher level of energy.

Our results not only reveal that prudence and a third-order derivative of the

cost function are important for energy storage decisions, but also show that a

prior knowledge of the prudence level and the cost-structure of the fossil fuel

industry can be quite fundamental in the optimal management of energy sources

and the evaluation of renewable energy investments.

Our study can be extended in several directions. First, one can extend the

current model by taking into account investment decisions in capacities. It is

also interesting to incorporate a climate module and investigate the effects of cli-

mate change and hence the climate policies on the use of fossil fuels, intermittent

renewable energy and energy storage. One can also consider R&D investments

and technological change and analyze how the use of different energy sources

and their technologies evolve over time depending on both climate and R&D

policies. Last but not least, a further investigation of the effects of prudence

and the cost structures on the economic decisions can be quite important not

18It is also important to note that the long-term policy suggestions of assessment models
need be taken with a grain of salt not only because they are big abstractions of complex
dynamics, but also the intermittency problem (thus, shorter time periods) and with it the
energy storage decisions are excluded. This can have cogent influence on the ongoing research
in assessment modeling and climate change, as their calculations and conclusions extend to
the near and distant futures.
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only in the literature in energy economics, but also in the literature on prudence

in general. The decentralization of the optimal allocation decisions by market

mechanisms and the investigation of how allocations are modified when risk

attitudes and time preferences change is another interesting avenue, which we

pursue in another paper.
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APPENDIX

A Blackwell’s sufficient conditions for a contrac-

tion

Theorem A.1. (Blackwell’s sufficient conditions for a contraction) Let X ⊆ Rl,
and let B(X) be a space of bounded functions f : X→ R, with supremum norm

‖·‖∞. Let T : B(X)→ B(X) be an operator satisfying

1.(Monotonicity) for f, g ∈ B(X) and f(x) ≤ g(x), ∀x ∈ X, implies (Tf)(x) ≤
(Tg)(x), ∀x ∈ X;

2.(Discounting) there exists some δ ∈ (0, 1) such that

[T (f + a)](x) ≤ (Tf)(x) + δa, all f ∈ B(X), a ≥ 0, x ∈ X.

Then T is a contraction with modulus δ.19

19(f + a)(x) is the function defined by (f + a)(x) = f(x) + a. For the proof we refer the
reader to Stokey (1989).
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B Application of Blackwell’s sufficient conditions

for a contraction to the model

Proof. Looking at the equation of motion for stored energy, S, one can see

that it takes its maximum value when energy consumption is null and z = 1:

Smax = (Qd+Qc)/(1− φ). This defines the state space X ⊆ [0, Q̄d+Q̄c] ⊆ R and

B(X) the function space of the bounded functions f : X → R with supremum

norm.

In the energy storage problem, we defined an operator T by:

(Tv)(S, z) = max
{Q,Qd,Qc,R,S′}

{
U(Q)− cd(Qd)− cc(Q̄c) + δEz [v(S′, z′)]

}
If v(S′, z′) ≤ v̂(S′, z′) for all values of S′, then the objective function for which

T v̂ is the maximized value is uniformly higher than the function for which Tv is

the maximized value, which makes the monotonicity requirement obvious. The

discounting requirement is also satisfied from the following:

(T (v + a))(S, z) = max
{Q,Qd,Qc,R,S′}

{
U(Q)− cd(Qd)− cc(Q̄c) + δEz [v(S′, z′) + a]

}
= max
{Q,Qd,Qc,R,S′}

{
U(Q)− cd(Qd)− cc(Q̄c) + δEz [v(S′, z′)]

}
+ δa

= (Tv)(S, z) + δa

C Numerical implementation of the model

C.1 Method description

We solve the dynamic stochastic decision problem by collocation method. In

doing this we approximate the value function by an approximant Ṽ (S) that is

parameterized by and solved for a vector of parameters, β.

Abstracting from intermittency, z, a function can be approximated by a

combination of n linearly independent basis functions, {ψi}ni=0, and basis coef-
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ficients, {β}ni=0, where n represents the number of collocation points:

F (x) ≈ F̃ (x) =

n∑
i=1

βiψi(x).

The interpolation problem in one dimension is then to find {β}ni=0 such that it

satisfies the function F at n interpolation points.

In vector notation this can be written as the following:

F (x) = ψ(x)β,

where Ψ(x) = [ψ1(x) ψ2(x) ψ3(x) . . . ψn+1(x)] is the Chebyshev Vandermonde

matrix, β = [β1 β2 β3 . . . βn+1]
′

and x = [x1 x2 ... xn+1]′,

Ψ(x) =



ψ1(x1) ψ2(x1) ψ3(x1) . . . ψn+1(x1)

ψ1(x2) ψ2(x2) . . . . . . ψn+1(x2)

ψ1(x3)
. . .

. . .
. . .

...
...

. . .
. . .

. . .
...

ψ1(xn+1) . . . . . . . . . ψn+1(xn+1)


.

Similarly, in approximating a value function, we search for a coefficient vec-

tor, β, that ensures that the approximant satisfies the Bellman equation and the

equilibrium conditions at the n collocation nodes (one can think of collocation

nodes as discrete “states of the economy”).

In our energy consumption and storage problem, we approximate a bivari-

ate function, V (S, z), as the planner considers the amount of stored energy

and weather conditions before taking decisions. Therefore, we need apply the

collocation method solution strategy in a multidimensional setting (i.e., multi-

dimensional interpolation).
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We solve (3) which is simplified to give:20

V (S, z) = max
{Qd,S′}

{(
Qd + zQ̄c + φS − S′

)1−γ
1− γ

− cd (Qd) + δEz [V (S′, z′)]

}
s.t 0 ≤ S ≤ S̄,

Q
¯ d
≤ Qd ≤ Q̄d.

We approximate the value function using Chebyshev polynomials.21 In doing

this we discretize z into K (zk for k = (1, 2, ...K)) and S into n collocation nodes

(Si for i = (1, 2, ..., n)). We determine the basis function coefficients for each

z and S. For n basis functions, there are going to be n basis coefficients, and

given K different weather states, the computational problem is to solve for K ·n
coefficients. Let us denote these coefficients by β = [β1 β2 . . . βK ], where

βz = [β1,z β2,z . . . βn,z]
′.

For each state of the weather, zk, and for each level of stored energy, Si, the

approximant is formed as follows:

V (Si, z) ≈ Ṽ (Si, z) =

n∑
j=1

βj,zψj(Si)

Given V (Si, z), we need to form the approximant to V (S′i, z
′
k) as well. In doing

this for Si and zk, we need to compute the level for the stored energy in the

period ahead, S′, and energy generation today Qd given the intervals S̄ ≤ S ≤ S̄
and Q

¯ d
≤ Qd ≤ Q̄d. Using these boundaries we construct a grid for fossil fuel

energy and energy storage, {Qdi,zk,l}
n
l=1 and

{
S′i,zk,l

}n
l=1

:

Qdi,zk = {Qdi,zk,1 Qdi,zk,2 . . . Qdi,zk,n}

S′i,zk = {S′i,zk,1 S
′
i,zk,2

. . . S′i,zk,n}

Given the approximants of the value function, we have (K · n) equations in

20The optimization here is done w.r.t Qd and S′ instead of Q,S′. This is due to the need for
assigning boundary values for fossil fuel energy generation and energy storage in the numerical
calculations.

21Chebychev basis polynomials in combination with Chebychev interpolation nodes can
yield extremely well-conditioned interpolation collocation equations that one can accurately
and efficiently solve. For a discussion regarding Chebychev basis functions and nodes, we refer
the reader to Judd (1992), Judd (1998) and Miranda and Fackler (2002).
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(K · n) unknowns:

n∑
j=1

βj,zψj(Si) = max
{Qd,S′}

{(
Qdi,zk,l + zQ̄c + φS − S′

)1−γ
1− γ

− cd (Qd)

+δ

K∑
k=1

n∑
l=1

ωkβj,zkψj(S
′
i,zk,m

)

}n
l=1

where in approximating the integral operation we replaced the continuous ran-

dom variable zk with its discrete counter part ωk, the weight functions, ωk,

using Gaussian quadrature scheme.22 The weight functions are defined over the

interval K. Quadrature nodes, here zk, for k = {1, 2, ...K}, and corresponding

quadrature weights ωk, for k = {1, 2, ...K} are selected such that 2K moments

are satisfied.23

Above, we showed the approximant for V (S′i, z
′
k) in its explicit form:

V (S′i, z
′
k) ≈ Ṽ (S′i, z

′
k) =

n∑
j=1

βj,zkψj(S
′
i,zk,l

)

=

n∑
j=1

βj,zkTj−1

[
2

(
S′i,zk,l − ¯

S

S̄ −
¯
S

)
− 1

]
for l = {1, 2, . . . , n}

where ψj(S
′
i,zk

) = Tj−1

[
2

(
S′
i,zk,l−¯

S

S̄−
¯
S

)
− 1

]
are the Chebyshev polynomial basis

functions.

Having explained how the polynomial interpolation can work, we now ex-

plain the procedure of how to calculate the basis function coefficients, β =

[β1 β2 . . . βK ]. First we need to make a guess for the initial values of the basis

functions’ coefficients: β0 = [β0
1 β

0
2 . . . β0

K ]. We then need to construct a grid

of Chebyshev nodes, un×1, and convert them into grid of stored energy, S. The

22For a weight function defined on an interval K,
∫
K zω(z)dz '

K∑
k=1

ωkzk.

23For the intermittent renewable energy production, Qc = zQ̄c, its expected value can be
calculated numerically as follows:

E [Qc] =

∫
K
zQ̄cω(z)dz ≈

K∑
k=1

ωmzmQ̄c
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mapping looks like the following:

u→ S ∈ [
¯
S, S̄], S =

S̄ +
¯
S

2
I +

S̄ −
¯
S

2
u

where I is a vector of ones, In×1.

For k = {1, 2, . . . ,K} and i={1,2,. . . ,n}, we construct a feasible grid of

energy generation Qd and S′i using Chebyshev nodes:

u→ Qd ∈ [
¯
Qd, Q̄d], Qdi,zk =

Q̄d +
¯
Qd

2
I +

Q̄d −
¯
Qd

2
u

u→ S′ ∈ [
¯
S′, S̄′], S′i,zk =

S̄

2
(I + u)

where the last equality resulted from
¯
S = 0.

For S′, we have the Chebyshev Vandermonde matrix: Ψ(S). Then

Ṽ (S, z) =

(
Qd,z + zQ̄c + φS − S′

)1−γ
1− γ

− cd (Qd,z) + δ

K∑
k=1

ωkΨ(S′)β0
k

Taking the maximal entries in Ṽ (S, z) we can construct Ṽ (β0) and update

the coefficients according to Newton-Raphson method (see Judd (1998)):24

β′ = β −
[
Ψ− Ṽ j(β)

]−1 [
Ψβ − Ṽ (β)

]
where Ṽ j is the Jacobian of the approximant. One can then use the iterative

update rule until the following difference gets to or smaller than a predetermined

tolerance level, ε:

β′ −
(
β −

[
Ψ− Ṽ j(β)

]−1 [
Ψβ − Ṽ (β)

])
< ε.

Long-run analysis After solving for the collocation coefficients, β, we can

estimate the evolution of the variables in the model. Using the grid we con-

structed for the stored energy S, the solution to the model gives us an implicit

policy rule: S′ = g(S, z).25

24Where β0 was a guess for the initial values of the basis functions’ coefficients
25Given Si and zk we now know what S′i,k is.
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By satisfying the convergence criteria, we also solve for S′ . We can use these

values to estimate the policy (transition) rule, hence solve for the Chebyshev

function coefficients, φ:

S′ = Ψφ→ φ = (Ψ′Ψ)
−1

Ψ′S′

Using these coefficients one can pick a random sequence for weather condi-

tions zt for t = 1, 2, . . . , T . One can then generate another sequence for S′:

St+1 = Ψ(St)φ

Suppose that we do this N times (for N large) by generating N pseudoran-

dom sequences for z.26 Given the policy functions we calculated, S′(S, z) and

Qd(S, z), and the initial states S0 and z0, we can then generate a representative

path from the N paths. Calculating the average value from the various pseudo-

random sequences, one would get representative paths for the model variables

in the long run. We will call this procedure a Monte Carlo Simulation.

C.2 Numerical implementation

We solve dynamic programming equation (2) by using collocation method and

update the collocation coefficients according to the Newton’s method (see Ap-

pendix C.1).27 We construct a 40 Chebychev polynomial basis functions by

forming 40 collocation nodes (4 nodes along S and 10 nodes along z dimension)

and 40 basis function coefficients. The Beta distribution for the intermittent

wind is approximated by Gauss-Legendre quadrature with 20 nodes.

The code is written in Matlab. We use CompEcon toolbox described in

(Miranda and Fackler, 2002) in generating and evaluating the Chebychev poly-

nomials, and doing the Monte Carlo simulations.

26Pseudorandom sequences are sequences that display some properties satisfied by random
variables, such as zero serial correlation and correct frequency of runs, although none satisfy
all properties of an i.i.d random sequence (Judd, 1992).

27The predetermined tolerance level for the convergence criterion 1 x 10−7.
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D Proof of Corollary 6.2

Proof. In order to see this, one can replace C ′d(Qd(S̄, zt)) with cd (see equation

(23)) in (38) and get:

∂V (S̄, zt)

∂Q̄c
=ztcd +

δ

1− δ
cdEzt+1

[zt+1] ,

which is a constant.

E Sensitivity Analysis

As the choice of the parameters, φ, the energy loss rate and γ, the coefficient

of relative risk aversion, can have significant effects on the results, it is worth

examining how changes in these parameters affect storage decisions. In doing

the analysis, the results are based on the case with Q̄c > Q∗ and increasing-

cost FFE generation industry (Q̄c = 108.8GW,Q̄d = 100.8GW,
¯
Qd = 8.4GW,

S̄ = 16.8GW,
¯
S = 0, γ = 2, δ = .98).

E.1 Round-trip efficiency parameter: φ

From Figure 5 one can see that all scenarios discern the same pattern and display

similar qualitative features. i.e., in the first few periods energy is accumulated

and stays roughly on its long-run expected level. However, the lower the round-

trip efficiency parameter is, the smaller is the room for energy storage, i.e., the

lower levels of φ imply less enthusiastic storage policies. As a result, for φ ≤ 0.4

energy storage becomes suboptimal.
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Figure 5: Sensitivity analysis for round-trip efficiency
parameter, φ

E.2 Discount rate

As the choice of the discount rate parameter can play a crucial role in the

simulations, it is worth examining how a change in this parameter can affect

the value in renewable energy (RE) capacity increments. Originally, the dis-

count rate that was employed in the simulations was %5. In this section, we

explore a wider range for it, ρ = {.02, .03, .04, .05, .06, .07, .08, .09, .1}. Figure 6

summarizes the results.

One can see that for ρ = .02, the value of a 1MW/h capacity increment in the

renewable energy is worth approximately $8.5m, which then drops to $3.51m

when ρ = .05. Lastly, for ρ = .1, this value gets below $2m. Although it is

evident that our calculations of the net present value of capacity increments are

sensitive to the discount rate, considerations regarding the appropriate choice

of the discount rate is beyond the scope of the our paper.
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Figure 6: Value of 1MW/h renewable energy (RE) capacity
increments for different discount rates

E.3 Renewable energy capacity

From Figure 7 it can be seen that the net present value of RE capacity incre-

ments change with respect to the available capacity. For a rather small capacity

of RE (here, 50MW/h), the net present value of a 1MW/h capacity increment

is $6.27m. As the fossil fuel energy would be generated at the ramp-up level of

50MW/h for rather big capacities of RE, this value then drops to and stabilizes

at $2.6m.
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Figure 7: Value of 1MW/h renewable energy (RE) capacity
increments given available RE capacities
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