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Abstract 

To serve the needs for integrating economic considerations into management decisions in 

ecosystem frameworks, we need to build models that capture observed system dynamics and 

incorporate existing knowledge of ecosystems while at the same time serve the needs of 

economics analysis. The main constraint for models to serve in economic analysis is 

dimensionality. In addition, models should be stable in order to apply in long-term 

management analysis. We use the ensemble Kalman filter to fit relatively simple models to 

ecosystem or foodweb data and estimate parameters that are stable over the observed 

variability in the data. The filter also provides a lower bound on the noise terms that a 

stochastic analysis require. In the present article, we apply the filter to model the main 

interactions in the Barents Sea ecosystem. 
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1 Introduction 

Whilst traditional fisheries management has had limited success (Ludwig et al. 1993, 

Worm et al. 2006), interest in and need for ecosystem-based management of fisheries 

increases (Holland et al. 2010, Kaufman et al. 2004, May et al. 1979). Economists has 

spent considerable time and effort on studying efficiency and optimality of fisheries 

management and more generally renewable resource management models, but the 

bioeconomics literature has had little impact on real-world fisheries management (Squires 

2009). Perhaps the main reason for the lack of impact are the over-simplified biological 

models typically used. While simple models enhance tractability, the models cannot 

capture the observed dynamics of fish stocks. When it comes to ecosystem-based 

management, it is obvious that the staple, single-species model in bioeconomics has 

limited, if any, interest. As such, much of the work in population dynamics, which has 

had a much larger impact on policy (Wilen 2000), has also focused on single- species 

models.  Thus, the management of most fisheries today is based upon single-species 

concepts.  A case in point is the central position of the maximum sustainable yield 

concept in the Johannesburg Declaration on Sustainable Development (United Nations 

2002).  Maximum sustainable yield is a staple single-species concept which leads astray 

in an ecosystem setting (see Kaufman et al. 2004, p. 694, and references therein, see also 

Ludwig et al. 1993, p. 17, and May et al. 1979, p. 267). While population dynamics has 

been the main scientific influence on management decisions, one may ask whether the 

sole influence is warranted. We subscribe to the criticism raised by Hannesson (2007, p. 

699), that ‘age-structured models introduce idiosyncratic elements of uncertainty’ 

through unknown parameters, and believe that the much more tractable aggregated 

biomass models are more relevant ‘when they can be reconciled with reality.’ Tractability 

becomes ever more important when the dimensionality of the problem increases. The aim 
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of our present efforts is exactly to demonstrate how aggregated biomass models can be 

reconciled with the reality of marine ecosystems. 

We use the ensemble Kalman filter (Burgers et al. 1998, Evensen 2003) to fit a 

marine ecosystem model to data. The ensemble Kalman filter is a data assimilation 

method much used in meteorology and oceanography; sciences which deal with large, 

high-dimensional, and chaotic systems. Evensen (2003) reviews both theoretical 

developments and applications of the ensemble Kalman filter and related methods; 

Evensen (2009) covers more recent developments. The method can be seen as an 

extension of the classical Kalman filter to a large class of nonlinear models. The 

fundamental idea is to use a Markov Chain Monte Carlo approach to solve the 

Fokker-Planck (or Kolmogorov’s) equation which governs the time evolution of the 

model.  The model is written as a stochastic differential equation, and both the model 

and observations are assumed to contain noise.  Importantly, the method facilitates 

simultaneous estimation of poorly known parameters (Evensen 2009, p. 101). With the 

ensemble Kalman filter, relatively simple models can capture much of the complexity 

observed in marine ecosystems. We brielfy describe the ensemble Kalman filter and 

apply it to a three-species model of the Barents Sea ecosystem. 

Several different data assimilation methods, usually variational adjoint methods, have 

been suggested to fit aggregated biomass models to data (see Ussif et al. 2003, and 

references therein).  On the other hand, Grønnevik and Evensen (2001) applied different 

ensemble-based data assimilation techniques to age-structured fish stock assessment 

models; among them, the ensemble Kalman filter. An advantage of the ensemble 

Kalman filter when compared to variational adjoint methods is that it does not rely on 

direct optimization, and all observations are not processed simultaneously. Instead, 

variable and parameter estimates are updated sequentially according to the filtering 



SNF Working Paper No. 04/14 

3 
 

procedure. The ensemble Kalman filter also facilitates flow-dependent noise attribution; 

flow-dependent (or rather, state-dependent) noise processes, it turns out, are 

fundamental in capturing the dynamics of marine ecosystems. 

If, as in Ussif et al. (2003), there is a known or easily identified functional 

relationship between biological variables and the exploitation strategy, the filter can also 

estimate economic parameters (the exploitation rate).  Similarly, the filter applies to a 

number of related problems, not only in bioeconomics, but in economics more generally. 

The ensemble Kalman filter fits, in an efficient manner, nonlinear, aggregated biomass, 

ecosystem models to data.  It also estimate the model error, which can be translated into 

uncertainty in model predictions. Combined with developments in high-dimensional, 

stochastic optimization, we believe the filter can make bioeconomic analysis relevant for 

real-world fisheries management decisions. The main criticism, over-simplified biological 

models, loses much of its force when the explanatory power of the fitted biomass models 

matches, and even competes with, that of age-structured models. The potential of the 

ensemble Kalman filter reaches further. It has the ability to process large amounts of data 

in high-dimensional systems with large numbers of poorly known parameters (see 

Evensen 2003, and references therein) and it should be of interest to any researcher 

working with large and volatile systems; from macroeconomics to population dynamics 

and beyond. 

 

2  The Ensemble Kalman Filter 

Our theoretical presentation of the ensemble Kalman filter is based upon the theory in 

Evensen (2003, 2009). We depart from the continuous time state-space model: 

     ( )          

   ( )    

(1) 

(2) 
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An incremental change    in the state variable (or n-vector)   is the sum of the drift 

term  ( )    and the stochastic diffusion term     . The diffusion term represents model 

error, which is inadequacy in  ( ) and potential parameter uncertainty. When   is an 

aggregated biomass vector,  ( ) is the multi-dimensional growth function (        ). 

  is generaly an operator (     ) and the   stochastic, Brownian increments in    

are independent, identical, and normal distributed with mean zero and variance   . The 

measurement functional  ( ) relates the state vector to the observations  . When the state 

vector is directly observed, the measurement functional is the identity operator.   is a 

normal distributed error term with mean zero and covariance  . Equation (1) is called 

the state equation; equation (2) is called the measurement or observation equation. 

The ensemble Kalman filter is a sequential filter method and works as follows. The 

model is integrated forward in time until measurements become available. 

Measurements are used to update the model. The updated model is then further 

integrated until the next measurement time.  In the theoretical literature, the update 

step is called the analysis, thus the notation    for the updated state vector.  The 

forward integrated model (the forecast) is denoted    .    is the covariance of the 

model forecast;    is the covariance of the model analysis. 

The ensemble Kalman filter uses, as the name suggests, an ensemble of model states; a 

cloud of points in the state-space, to represent the probability density function at any 

given time. With a Markov Chain Monte Carlo method (meaning that the model can 

be formulated as a Markov Chain and that a large number of simulated solutions are 

considered, see Evensen 2009), each ensemble member is integrated forward in time 

according to (1).  Errors are simulated. The integrated ensemble represents a forecast 

of the probability density and the only approximation is the limited number of 

ensemble members (Evensen 2009, p. 47). The Markov Chain Monte Carlo method is the 
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backbone of the ensemble Kalman filter and is equivalent to solving the Fokker-Planck 

equation for the time evolution of the probability density; see Evensen (2003, p. 348) for 

further details. 

When measurements are available, each ensemble member is updated as a linear 

weighting between the forecast and the measurements: 

            (      ) (3) 

The weight   is called the Kalman gain. Assuming   is the identity operator, we see that 

with    , no weight is put on the observation  ; with     (the identity operator), 

no weight is put on the forecast    . The Kalman gain is given by: 

          (        )   (4) 

where we assume that   is a linear operator (a matrix);    denotes its transpose. It is 

crucial that observations are treated as uncertain (   ), and in the ensemble Kalman 

filter, the observation probability density is represented by an ensemble; observations are 

perturbed (Burgers et al. 1998, pp. 1720-1721). It is convenient to let the number of 

ensemble members in the state-space ensemble, denoted  , and in the observation 

ensemble, denoted  , be equal. 

In the standard Kalman filter, both the forecast and analysis covariance (   and   ) 

are in principle unknown; they are defined in terms of the unknown true state (see Evensen 

2003, p. 347). In the ensemble Kalman filter, they are defined in terms of the ensemble 

means (  denotes the mean or expected value): 

   
 
  [(     [  ])(     [  ]) ] 

  
   [(     [  ])(     [  ]) ] 

(5) 

(6) 

That is, covariances are represented by the ensemble moments that carry the subscript  .  

The observation covariance is also represented by the ensemble moment: 
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     [(   )(   )
 ] (7) 

The observation ensemble is defined such that it has the true (given) observation as its 

mean:  [ ]   . The ensemble Kalman gain is defined as 

       
 
    (   

 
      )

   (8) 

We assume that the ensemble is of sufficient size, such that    
 
    and    are 

nonsingular; see Evensen (2003, p. 349). The analysis step (3) for ensemble member   is 

given by: 

   ( )      ( )      ( ( )     
 ( )) (9) 

It can be shown that by updating the ensemble with the perturbed observations  , the 

updated ensemble    has the correct error statistics (Evensen 2003, p. 349). The analysis 

covariance can be written as 

   
    (      )  

 
 (10) 

which is equivalent to the standard Kalman filter expression for the covariance matrix. 

Please see Evensen (2003) for derivations and further discussion. 

The filter can estimate parameters by adding the parameters to the state vector; in 

essence by adding dimensions to the state-space. Parameters are treated as 

unobserved, constant model states, which implies they are assumed to have zero drift 

and diffusion terms (Hansen and Penland 2007, Kivman 2003). With parameters in 

the state space, involved operators must adapt to make them compatible with the 

extended state vector. The distribution of the ensemble members in the relevant 

dimension of the state-space represents the conditional probability density function of 

the parameter. We interpret the mean of the ensemble as the estimate and the spreading 

of the ensemble as a measure of the estimate uncertainty. 

The ensemble Kalman filter estimates state variables and parameters simultaneously.  

As Evensen (2009, pp. 95-97) points out, the approach represents an improvement to 
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more traditional approaches which ignore model error. The sequential nature of the 

approach yields, for each observation time  , parameter estimates conditional upon 

observations up until  ; estimates for the last observation are conditional upon all 

observations and are usually the estimates of interest. In situations where regime shifts or 

similar situations occur, one should inspect the behavior of the sequential parameter 

estimates. 

While the filter does not directly estimate the scaling of the diffusion term in (1), 

the estimated   
  can be used to infer the appropriate noise scaling.   

  estimates the 

second moment of the density of the state vector at a given moment in time (at, say,  ).   
  

will vary with time (it is dynamic or flow- dependent; dynamic covariance is an advantage 

with the ensemble Kalman filter over variational methods).  The second moment of the 

state vector density can be interpreted as the uncertainty in the estimated state 

conditional upon the state at     and the uncertain observation at  . The uncertainty in 

the state estimate accounts for parameter uncertainty, observational uncertainty, and 

model inadequacy, the latter is what the diffusion term in (1) represents. Thus, if the 

covariance is stable over time, or if it is stable after controlling for some assumed functional 

form of the scaling term, like  ( )       ,   
  can be interpreted as an estimate of   

(or    ). How   
  varies over time maps out the distribution of  , that is, we essentially 

follow Hansen and Penland (2007).  

The initial ensemble should reflect belief about the initial state of the system (Evensen 

2003, p. 350). The filter can be initialized by specifying means and standard deviations 

that characterize the initial ensemble.  In the case of unknown parameters, initialization is 

not necessarily straightforward. Our experience is that with large enough standard 

deviations, such that the initial ensemble cover all eventualities, and enough ensemble 
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members, it is possible to find reasonable traits of the initial ensemble. Often, there is 

theory and earlier results to rely on. 

For a given time  , the ensemble Kalman filter provides an estimate of the state of the 

system and its parameters conditional upon observations up until  .  By smoothing the 

filter estimates, we obtain estimates conditional upon all observations (Evensen and van 

Leeuwen 2000). The filter and smoother estimates for the final observation are identical, 

and the smoothed parameter estimates are constant through time. The ensemble Kalman 

smoother can be formulated as a sequential method and in terms of the filter analysis; 

see Evensen (2003, p.360) for details. That smoother parameter estimates are constant 

identical to the final filter estimate follows from the explicit modeling of parameters as 

deterministic but unknown constants (see Hansen and Penland 2007 and Kivman 

2003) and is straightforward from the formulation in terms of the filter estimates; see 

Evensen (2009) for details. The ensemble Kalman smoother is particularly useful in 

problems involving unknown parameters, as it provides estimates of the state variables 

conditional upon observations and upon parameter estimates conditional upon all 

observations. In contrast, the filter provides, for a given  , state estimates conditional 

upon observations up until   and upon parameter estimates conditional upon 

observations up until  , which clearly are poor before the parameter estimate 

converges. 

To summarize, the ensemble Kalman filter can be interpreted as a statistical Monte 

Carlo method where the ensemble evolves in state-space with the mean as the best 

estimate and the spreading of the ensemble as the error variance (Burgers et al. 1998, p. 

1720). For many problems, the sequential processing of observations proves to be a 

better approach than the simultaneous processing which is typical in variational 

methods (Evensen 2009, p. 101). 
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2.1  A Numerical Experiment 

The Kalman filter has seen little use in fisheries economics and, to our knowledge, the 

ensemble Kalman filter in particular has not been applied to bioeconomic models earlier. We 

thus find it instructive to study a numerical experiment with known data generating process. 

We use processes similar to models relevant in this work. In the interest of space, we limit 

ourselves to look at parameter estimates. 

The simplest examples are already thoroughly documented elsewhere. For example, 

Evensen (2003) present a simple example with one state variable and one unknown 

parameter, while Hansen and Penland (2007) present a three-dimensional system with 

deterministic chaos and one unknown parameter. In our example, we have two state variables 

and three unknown parameters, that is, the full state space is five-dimensional. We generate 

observations from the two-dimensional system: 

 
[
   
   

]   [
   (        )          
   (        )          

]      [
   
   

] (11) 

where the Brownian increments     are i.i.d. and represented by random errors with mean 

zero and variance   .   is a two-by-two diagonal matrix with diagonal elements equal to 0.2. 

Observations are generated with time discretization step        , and we sample every tenth 

state such that we have observations at times           and so on. To simplify a little bit, 

observations are made without error, but observations are still treated as uncertain in the 

filtering to retain the correct covariance structure in the ensemble (Burgers et al. 1998). We 

assume an observation error of 0.2 and use 500 ensemble members. 

 In the example, we treat   ,   , and    as unknown, with 0.5, 1.5, and 0.5 as true values. 

For given parameters, we have       , and       . After assimilating 50 observations, 

parameter estimates are, for   , 0.5345 (0.0866), for   , 1.5644 (0.2341), and for   , 0.5187 

(0.1292). That is, all estimates are close to the true levels in the sense that the estimates are 

within a standard error from the true levels. To demonstrate how the filter estimates 
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parameters in a sequential fashion, figure 1 displays the parameter estimates (white curve), the 

distributions of the parameter ensembles (shaded areas; darker shade means higher density of 

ensemble particles), and for comparison, the true parameter levels (dashed line). The top 

panel shows   ; the middle panel shows   ; and the bottom panel shows   . From the figure, 

we see that while the ensemble contracts considerably with the first few observations, it takes 

many more observations for the estimates to converge on the true levels. 

 

3  The Barents Sea Model 

The Barents Sea is one of the most productive ocean areas in the world, and is subject to 

extensive research (Gjøsæter et al. 2009, Huse et al. 2004, Durant et al. 2008, see also 

further references therein). The commercially most important stocks are cod (Gadus 

morhua) and capelin (Maooltus villosus); cod is highly valued as human food and capelin is 

an important part of the cod diet. Capelin is also caught for fishmeal and oil production. 

Juvenile herring (Clupea harengus L.) enters the Barents Sea when large year-classes arise 

in the Norwegian Sea. Herring has an important influence on the ecosystem; it is preyed 

on by cod while it preys on capelin larvae. We limit our model to these three fish stocks 

for two main reasons.  First, our model captures the dynamics of the cod stock to a high 

degree, and the cod fishery is the most important fishery in the region and of our main 

interest. Second, if the model is to be relevant for bioeconomic analysis, we have to limit 

the complexity and dimensionality of the model. We have in mind the type of analysis 

carried out in Sandal and Steinshamn (2010) and Poudel et al. (2012); see also Kugarajh 

et al. (2006). 

To limit complexity, we use simple growth functions and interaction terms common 

in traditional bioeconomic analysis.  While dimensionality is based upon technical 

limitations, we find comfort in the view promoted by Holling and Meffe (1996, p. 
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333), that the driving forces of an ecosystem are confined to a relatively small subset of 

variables and relationships. While our choice of variables and relationships does not 

contain all driving forces of the Barents Sea ecosystem, we observe that our model 

captures much of the variation detected in stock assessments. 

 

3.1  The Main Model 

The biomass of the three stocks are the state variables; cod is denoted    , capelin is 

denoted    , and herring is denoted   . Both cod and capelin are harvested in the Barents 

Sea;    and    denote harvest rates of cod and capelin. Herring is not harvested in the 

Barents Sea, but eggs and larvae flow in from the Norwegian Sea. We denote the inflow by 

   . Finally, we denote parameters    and vectors in boldface. The dynamic model for the 

system is written, on differential form: 

      (  (        )      (        )      (     )    )      ( )    

     (  (        )    (        )    (        )    )      ( )    

     (  (         )       (        )    (     )       )      ( )    

(12) 

(13) 

(14) 

where growth functions are denoted    ; interaction terms are denoted    . Table 1 report 

functional forms that we discuss further below. The stochastic increments     are 

independent, with mean zero and variance   . The scaling term   ( ) reflect correlations 

in the noise processes. Two principal models of the scaling term were tried; white noise 

(  ( )      ) and, inspired by the stochastic term in the geometric Brownian motion, 

state-dependent white noise (  ( )                             ) .  

The first terms in each model equation are the growth functions. The growth functions 

model the growth that does not happen through the modelled interactions. For cod 

(equation 12), we use the logistic growth function; for the pelagic stocks capelin (equation 

13) and herring (equation 14), we use the modified logistic growth function (see Table 1 
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for specifications). The related parameters (  ,   ,   ,   ,   , and    ) are interpreted 

accordingly.  (The idea of carrying capacity; the standard interpretation of the second 

parameter in the logistic and modified logistic, becomes unclear in an ecosystem 

setting.  The capacity of the ecosystem to harbor any one specie depends on the state of 

the entire system. Hence, intrinsic, single species notions such as carrying capacity must 

be treated with caution in our multispecies approach.) 

All species interactions in the system are predator-prey relationships. Cod preys 

upon both herring and capelin, while herring preys upon the capelin stock. (A 

competitive, mutually destructive interaction between the pelagic species is an 

alternative that we discuss briefly below.) The interaction terms are per definition 

positive, and the mirror terms (cod-capelin mirrors capelin-cod, for example) have 

opposite signs. The capelin-cod and capelin-herring interaction terms (  ( )) are 

inspired by the crude form of predator-prey interaction (May et al. 1979, p. 268), 

where the product of the stock levels are adjusted by an intensity parameter. The 

functional form of, for example, the capelin-cod interaction is   (        )         , 

where    is the intensity parameter. We will discuss the interpretation of the 

interaction intensity parameter further below. 

The cod-herring interaction model is based on the Lotka-Volterra model, but 

modified to allow cod to prefer capelin (Durant et al. 2008, Gjøsæter et al. 2009). We 

have the interaction term   (     )         
  

     
.     is the interaction intensity 

parameter. The fraction term yields a model of preference. Without capelin present 

(    ), the Lotka-Volterra term remains undisturbed (the fraction equals one).  

When capelin is present, the fraction takes a value between zero and one and weakens 

the interaction. 
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As is evident from the model equations (12 - 14), the interaction terms    and    

represent a biomass loss for the prey species and a biomass gain for the predator 

species.  The intensity parameters scale the product of biomasses in the terms to 

account for the rate of biomass loss in the prey species. Biomass is not conserved in the 

interactions, and the additional interaction parameters (  ,   , and    ) account for the 

loss of biomass in the interactions. The additional interaction parameters take values 

between zero and one, and since most of the biomass is lost, they are expected to lie 

closer to zero than one. We think of the additional interaction parameters as biomass 

conversion rates between species. Presumably, regularities exist for biomass conversion 

rates. While known or assumed interaction relationships would be helpful in reducing the 

number of parameters in the model, biologists are skeptical when it comes to the 

stability of the relationships (S. Tjelmeland, personal communication). Thus, we refrain 

from prescribing fixed relationships. 

The final parameter     measures the influence of the inflow of herring on the herring 

stock growth.  Most of the time, the amount of herring biomass which enters the Barents 

Sea is relatively small. After a few years, however, the herring has grown substantially. 

Thus, we lag the inflow variable two years and multiply it with the scaling parameter    . 

The idea is that three year old (and older) herring makes out most of the herring biomass 

in the Barents Sea, and the biomass influx two years earlier better explains the change in 

the herring stock. (After three or four years in the Barents Sea, the juvenile herring 

returns to its main habitat in the Norwegian Sea to mature and eventually spawn; the 

herring growth rate in our model reflect the migration behavior.) 

To avoid negative parameters, parameters are all assumed to be log-normal distributed. 

(Theoretically, they are treated as       (  ), where each    is a stochastic constant 

which is normal distributed.) 
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We treat estimates from stock assessments as measurements of the state variables, 

and the measurement operator is thus the identity operator. Note that parameters are 

added to the state vector as described above. We denote the extended state vector  . 

The measurement operator must thus be adjusted to be compatible with the state 

vector by adding zeros. Parameters are treated as unobserved states. The observation 

equation becomes 

        (15) 

where 

 
   [

  
  
],      [   ],      [    ],  and    [   ] 

(16) 

  is a three by three identity matrix and   is a three by thirteen zero matrix.   is a 

three-element vector of observations, and   is the error term vector which is normal,  

independent, and identically  distributed with mean zero and variance  . 

 

3.2  The Alternative Model 

While we keep our main focus on the model above, we also study an alternative model 

with fewer parameters.  In the alternative model, the pelagic species capelin and herring 

have a common carrying capacity.  A common carrying capacity is equivalent to a 

competitive, mutually destructive interaction, but has fewer parameters.  Ekerhovd and 

Kvamsdal (2013) successfully pursue the common carrying capacity idea in a model of the 

pelagic species in the Norwegian Sea. We write the model as follows 

      (  (        )      (        )      (     )    )      ( )    

     (  (            )    (        )    )      ( )    

     (  (            )    (     )       )      ( )    

(17) 

(18) 

(19) 

The new parameter     is the common carrying capacity in the growth function 

  (           ) (see table 1).      replaces    and     in the main model.  As the capelin-
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herring interaction is incorporated into the growth function, the interaction term 

  (        ) (and the related    ) has become superfluous. The system is otherwise 

identical to the main model above. In an attempt to avoid confusion, parameter numbers 

are kept from the main model when parameters have the same role and interpretation in 

the model. Thus, the parameter vector in the alternative model is 

   [                                ]
 .  The observation equation (15) is the same as 

before, but in    [   ],   is a three by ten zero matrix to conform to the dimensionality 

of the extended state vector, which is 

 
   [

  
  
],      [   ],      [                ] 

(20) 

 

3.3  Data 

The fish stocks in the Barents Sea cannot be observed directly. However, the Institute of 

Marine Research in Bergen and the Knipovich Polar Research Institute of Marine 

Fisheries and Oceanography in Murmansk carry out extensive, yearly ecosystem surveys.  

Based upon these surveys, they provide yearly estimates of the stock levels of all the 

important species in the Barents Sea. The stock estimates are published by the 

International Council for the Exploration of the Sea (ICES), and most of our data are 

collected from the ICES online database. We treat the stock estimates as observations. 

Notably, Ekerhovd and Gordon (2013) raises issues with stock estimates from virtual 

population models.  We share their concern about the consistency in the stock estimates, 

but find it beyond our scope to apply the (Ekerhovd and Gordon 2013) adjustment here. 

Uncertainty in stock assessments are unfortunately not reported, and we are left to 

speculate. The herring inflow data was provided by S. Tjelmeland (personal 

communication). 
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We have stock estimates, catch data and herring inflow estimates from 1950 to 

2007. However, the ICES database does not contain data on capelin prior to 1972. For 

the period prior to 1972, we collected catch data from Røttingen and Tjelmeland (2008, 

see Figure 2).  Capelin stock estimates were collected from Marshall et al. (2000, see 

Figure 1, p. 2435). The early capelin stock estimates are more uncertain than later 

estimates, and we assume a 50% increased observation uncertainty on the capelin 

stock data prior to 1972. 

All data are visually presented in Figure 2, with error bars showing assumed 

observation uncertainty. All numbers are measured in tonnes. 

 

3.4  Estimation Strategy and the Initial Ensemble 

While the success of our approach hinges to some degree on reasonable characteristics of 

the initial ensemble, what constitute reasonable characteristics is not immediately clear.  

While for a few of the parameters in the interaction terms, we can rely on external, 

empirical evidence, we must produce reasonable initial ensemble characteristics for most 

parameters in a heuristic fashion. The parameter subspace has thirteen dimensions in the 

main model (one for each parameter), and while it is not impossible to search, via trial 

and error, the parameter subspace for an appropriate, initial ensemble, the high 

dimensionality makes the approach unlikely to succeed. (Our main metrics of 

appropriateness are whether the state estimates resemble the stock assessment data and to 

what degree the spread of the ensemble in the parameter dimensions contracts over time. 

In addition, we have used the Bayesian Information Criterion (BIC), but carefully, since 

the criterion is not unique because of the Monte Carlo element of the filter (see Ekerhovd 

and Kvamsdal 2013, pp. 8-9). Finally, we have also considered the distribution of the 

Kalman gain over time; gain terms close to one suggest a poor initial ensemble.) 
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By first assimilating each equation individually, we reduce the dimensionality of the 

relevant parameter subspace substantially. When we assimilate the cod equation (12), for 

example, the state space consist of the cod stock level as the only state variable and the four 

parameters in the equation (   -   ) as parameter variables. The variables    and    are 

treated as control variables. 

We have good ideas about reasonable ensemble initializations of the biomass 

conversion rates (limited support) and the interaction intensity parameters for the cod-

capelin and cod-herring interaction terms (empirical evidence).  The capelin-herring 

interaction intensity is assumed to be an order smaller than the cod-capelin interaction 

intensity. Thus, when searching for reasonable initial ensemble characteristics in the 

single equation assimilations, we need mostly to be concerned with the parameters of the 

growth functions. What we have called the capacity parameters are characterized by an 

ensemble mean higher than observed historic levels (exploited fisheries usually have stock 

levels below their full capacity). To find reasonable characteristics for the ensembles 

along the growth rate dimensions, we consider a range of levels and compare, as 

mentioned above, model fit, ensemble contraction, the Bayesian Information Criterion, 

and the distribution of the Kalman gain. To demonstrate, we briefly discuss an example 

of the procedure in appendix A.2. Means and spreads of the initial ensemble for the 

parameter dimensions in the single equation assimilations are listed in Table A2 in the 

appendix. 

The estimates from the single equation assimilations are used to characterize the mean 

of the normal distributions from which we draw the initial ensemble for assimilation of the 

full model.  Exceptions are those parameters for which we have empirical support for the 

initial ensemble characteristics. Ensemble spreads (standard deviations of distributions 
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from which initial ensembles are drawn) are also inherited from the single equation 

assimilations, with the same exceptions. 

The initial ensemble is drawn randomly from a multivariate normal distribution. For 

the three state variables, we use the first observations as the mean of the initial 

ensemble and 30% of the first observation as standard deviation. 

The initial ensemble for the interaction intensity parameters   ,    , and      were 

characterized based upon empirical evidence.  The term   (   )          in (13) 

reflects the loss of capelin biomass from the interaction with cod. Gjøsæter et al. 

(2009, see Figure 5, p. 45) estimated, from stomach content data, the amount of 

capelin consumed by the Barents Sea cod for the years 1984-2006. The consumption 

varies over time, as does the cod and capelin stock levels. To get a reasonable initial 

measure of   , we regressed the total consumption of capelin on the product      

(without intercept). Notably, Gjøsæter et al. (2009) provided us with data for 1984-

2007 (that is, one more year of data than what they based their original analysis upon). 

The estimated coefficient was            (standard error          ,     
      ). 

Similar data for the capelin-herring interaction are not available.  Herring is however 

thought to have a smaller predation rate on capelin than cod; we set the implied mean 

for    at 10% of the implied mean of    . For the herring-cod interaction intensity 

parameter     , data are available.  As for capelin, Gjøsæter et al. (2009) estimated the 

amount of herring consumed by the Barents Sea cod. Regressing the consumed 

amount of herring on the term     
  

     
 yielded a coefficient of            

(standard error           ,     
      ). As with   , we set the mean of the initial 

shadow parameter (   ) ensemble to correspond to the estimated coefficient. In 

comparison, regressing on the term      produces the coefficient            

(standard error           ,     
      ). 
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The additional interaction parameters    ,    , and      (biomass conversion rates) 

cannot be larger than one as it is assumed that some biomass is lost in the interactions. 

The biomass loss assumption is not explicitly enforced, but initial implied ensemble means 

for the three additional interaction parameters were set to 0.25 for    and 0.1 for    and 

    . Typically, one assumes that 90% of the biomass is lost between trophic levels, but cod 

spends less energy catching capelin and thus we specified a higher additional interaction 

parameter for the cod-capelin interaction. 

We discuss further implementation details in appendix A.1. 

 

4  Results 

Table 2 reports parameter estimates, with standard errors in parenthesis, for the single 

equation assimilations.  Table A2 in the appendix reports the prior characterizations for 

comparison.  The third column (‘Contraction’) in table 2 reports the standard error of the 

estimates as a fraction of the standard deviation of the prior distribution. The ensemble 

Kalman filter will mechanically contract parameter ensembles, but the amount of 

contraction depends on the amount of information the filter retains. Assessing the 

contraction is equivalent to compare the width of the parameter confidence intervals at 

the beginning and end of the assimilation. Both tables and also subsequent tables report 

estimates of the shadow parameters   . But our interest lies with the parameters 

      (  ), and table 2 report what we call the  -interval, which is the two standard 

error interval around the mean estimate of the underlying parameter   . 

 As in the numerical examples, we also calculate an estimate and standard error of 

the parameters in the diffusion terms.  We denote the parameters     , where the subscript 

denote the relevant state  variable.  Table 2 reports the results. 
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Further, table 2 reports the BIC-scores and the average root mean squared 

innovations for each equation.  The BIC-scores, both here and later, are evaluated with a 

data neighborhood radius of 200.000 (tonnes); see Ekerhovd and Kvamsdal (2013) for 

details.  The neighborhood radius is comparable to the bandwidth concept in kernel-type 

approaches. The innovation is the distance between the observations and the 

estimated state variables. In our model, with the state-dependent noise scaling    , it 

is useful to normalize the root mean squared innovations with the estimated state. So, 

what we report as the average root mean squared innovation is the time-average of the 

following expression 

 
      

√ [(     
 ) ]

 [   
 ]

 (21) 

The subscript   is just a reminder that it is the smoothed estimate that goes into the 

expression. The lower the average root mean squared innovation, the better is the model 

fit. Note that in absence of the normalization issue, the average root mean squared 

innovation is the average distance between the ensemble members and the observation; if 

the observation and the ensemble mean are close, the average root mean squared 

innovation will be close to the estimate of the noise scaling term, which is derived from the 

second moment of the ensemble. 

To discuss the actual estimates in table 2 is of limited interest; their main function is 

to serve as priors for the full model. We do note, however, that while the contraction 

rate is significant for most other parameters, the interaction parameters (parameters 

3,4,7,8,11, and 12) have not contracted much. As the full model results will show, 

contraction is somewhat better when we assimilate all equations simultaneously. The 

small contraction rates for the interaction parameters underlines the need for 

informative priors. 
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The cod equation has both the smallest BIC-score and average root mean squared 

innovation. Also, the noise scaling parameter is clearly statistical significant for the cod 

cod equation, while less clearly so for the other equations.  We conclude that of the three 

equations, the cod equation serves its purpose best. 

Table 3 reports results for the full model assimilation. The BIC-score for the entire 

model is 265.94. Notably, the prior for the full model assimilation is based upon the results 

reported in table 2 for all parameters apart from the two parameters for which we have 

empirical evidence (    and     ).  For those parameters, we kept the original prior 

information as given in table A2. 

If we compare the contraction rates reported in tables 2 and 3, we observe that overall, 

contraction is better in the full model assimilation for the capelin and herring equation. In 

the cod equation, the interaction parameters have better contraction rates in the full 

model assimilation, while the growth parameters contracts better in the single equation 

assimilation. That the growth parameters does not contract as much in the full model 

assimilation is likely because most of the signal in the data about these parameters is 

picked up in the single equation assimilation that was run prior to the full model 

assimilation. 

Upon further comparison of the results in tables 2 and 3, we note that many 

parameters are significantly improved in the full model assimilation (in the latter table, 

estimates are several standard errors away from their prior in the former table).  We also 

note that the average root mean squared innovations have improved considerably for all 

state variables.  As discussed above, the average root mean squared innovations can be 

close to the   estimate if the ensemble mean is close to the observations. Further, 

significant cross-correlations in   (the off-diagonal terms) may be challenging in model 

applications; as we report below, estimated cross-correlations are close to zero. 
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(22) reports estimates and standard errors of the noise scaling term.  All off-diagonal 

elements are statistically indifferent from zero, which suggest that there is little 

correlation in the different stochastic processes of the system. The diagonal elements 

are also relatively small, at least when compared to hypothetical scenarios studied in 

theoretical work (Poudel et al. 2012).  The standard errors give the wrong impression of 

the significance of the diagonal elements, as the elements are positive by definition.  The 

standard errors do, however, demonstrate that there is significant variation in the 

noise term over time.  If one wish to carry out studies of worst case scenarios, it could 

be of interest to investigate whether high or low levels are correlated in time across 

equations. 
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Figure 2 shows the smoothed stock level estimates (solid curves) with two standard 

errors to each side (shaded areas) for all three state variables (top panel:  cod, middle 

panel:  capelin, bottom panel:  herring).  The figure also shows the observed stock levels 

(circles) with assumed observation uncertainty (the error bars show two standard 

deviations around the observations). Most observations lie within the four standard 

error band and the model captures most of the system dynamics. The smoothed 

parameter estimates are constant over time, and we interpret the smoothed estimates 

as model fit with noisy but stable parameters (that is, as reported in table 3). 

Capelin stock data is more uncertain prior to 1972. As expected, the stock estimates 

have larger standard errors prior to 1972. Compare, for example, the width of the 

standard error band in figure 2 (middle panel) in the years before and after 1972, or at 

the peaks around 1960 and 1990, which are at roughly the same level.  After 1972, the 
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capelin stock estimates, in addition to being more precise, lie closer to the measurements. 

 

4.1  Alternative Model Results 

In the alternative model, the initial ensemble for    to    is characterized by the prior 

estimates in table 2. If we assimilated equations (18) and (19) individually, we would get 

two different prior estimates for     . Using some kind of average of the two priors could 

work in practice, but theoretically the initial ensemble would be suboptimal for both the 

capelin and herring equation. Agreeing priors would bode well for the approach, and 

could be taken as a sign of a well-posed model. In our alternative model, priors from 

assimilating the capelin and herring equations individually did not agree to a satisfying 

degree, and the resulting initial ensemble for the full model was not ideal. 

Rather than assimilate equations (18) and (19) individually, we assimilated them 

together as a system with two state variables and six parameters.    was treated as a 

control variable as in the single equation assimilations in the main model. Table 4 reports 

results from assimilating the capelin-herring system. As prior for the new parameter    , 

we used the higher of the two parameters     replaced (it replaced    and      in the main 

model). 

Contraction of the parameter ensemble is significant in the capelin-herring assimi-

lation, and, for most parameters, better than corresponding contraction rates in the single 

equation assimilation of the main model. In fact, the contraction in the     ensemble was 

so strong that the full model suffered from divergence with the narrow ensemble.  To avoid 

introducing ad-hoc measures such as inflation (Anderson and Anderson 1999), we increased 

the standard deviation of the     prior to 1 in the full model.  As in the main model, the 

interaction parameters (   and    ) did not contract much and there is a clear need for 

informative priors. 
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(23) reports estimates and standard errors of the noise-scaling term in the capelin-

herring system.  The estimates are higher than the corresponding estimates in (22), but 

smaller than the estimates in the single equation assimilations of the main model (table 

2). As in (22), the off-diagonal term is statistically indifferent from zero. 

 

   [

      
(      )

      
(      )

 
      
(      )

] (23) 

Table 5 reports results from assimilating the full, alternative model. Contraction 

rates are better than in the prior assimilation (table 4) for most parameters and follows 

essentially the same pattern as in the main model. The BIC-score for the full, 

alternative model is 465.23; significantly higher than the BIC-score of the main model 

despite the preference of the BIC-statistic for models with fewer parameters. 

If we compare the results in table 5 to the results for the main model in table 

3, it is first of all clear that parameters of the cod equation are not statistically different.  

The interaction parameters (   and    ) are also not statistical different in the two 

models. The inflow scaling parameter is more different in the two models, but the 

estimates are still only slightly more than a standard error away from each other, and 

statistical tests cannot distinguish between them. 

The remaining parameters in table 5, growth rates    ,    and the common carrying 

capacity     are, however, quite different than the comparable parameters in the main 

model. While the capelin growth rate is much lower, the herring growth rate is higher.  

The common carrying capacity is much lower than the capelin capacity parameter in the 

main model (  ), but within the range of the herring capacity (   ). While the expected 

change in the herring growth rate is unclear when the common capacity is within the 

range of the capacity in the main model, the expected change in the capelin growth rate 

would be a higher rate when the common capacity in the alternative model is lower 



SNF Working Paper No. 04/14 

25 
 

than in the main model. We are puzzled about this behavior of the alternative model, not 

the least because from a phenomenological perspective, the estimated alternative model is 

unacceptable with the carrying capacity well below observed historical levels of the 

exploited fishery. But, the higher average root mean squared innovations in the alternative 

model than in the main model suggest the general model fit is better in the main model, 

and with the better BIC-score of the main model we conclude that the main model is the 

most appropriate model. 

(24) gives the estimate of the noise scaling term for the alternative model. The 

estimates  are generally higher than the noise scaling terms of the main model and, as in the 

main model, the off-diagonal elements are statistically indifferent from zero. 
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Finally, figure 3 reports smoothed estimates (solid curves) of the state variables in the 

alternative model, together with the four standard error band (shaded area). Observations, 

observation uncertainty, and catch and inflow data are also plotted (as in figure 2).  Top 

panel shows cod, middle shows capelin and bottom shows herring. Estimates are clearly 

less precise than those of the main model (error bands are wider), and in places there are 

larger discrepancies between estimates and the observations. Still, most observations lie 

within the error bands, and the behavior of the estimates are generally similar to that in the 

main model. 

 

5  Conclusions 

The ensemble Kalman filter relates structurally to the standard Kalman filter and the 

extended Kalman filter in the sense that they minimize the variance of the state estimates. 
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However, the ensemble Kalman filter has some advantages. Unlike the extended Kalman 

filter, it requires no linearization. It solves rank problems that may occur with large 

numbers of observed variables. Unlike variational adjoint methods, it requires no adjoint 

operator and is thereby simpler to implement, and it has flow-dependent (non-constant) 

covariance. Further, the ensemble Kalman filter is well suited to large-scale problems and it 

extends to asynchronous observations. On the other hand, the ensemble integration (in the 

forecast step) can be computationally costly and, with strongly nonlinear systems, 

iterative procedures called multiple data assimilations holds better promise (Emerick and 

Reynolds 2012). As such, the ensemble Kalman filter is just the tip of the iceberg that 

consist of a range of related methods that apply to a range of different problems (Evensen 

2003). 

In applying the ensemble Kalman filter, we have shown how relatively simple 

aggregated biomass models, typical in bioeconomic analysis, can capture much of the 

dynamics of ecosystems.  When compared to earlier efforts of applying data assimilation 

methods to bioeconomic models (Ussif et al. 2003), our results are superior. Our main 

model shows the most promise; as discussed above, the alternative model has a number 

of undesirable properties that, when added together, wipe out the advantage of fewer 

parameters. Also other variations of the main model was assimilated; pure, white (not 

level dependent) noise in the error term, assumed perfect observations of the control 

variables (catch and inflow), model herring inflow as a state variable, and model herring 

inflow as white noise around a non-zero mean. None of the variations lead to 

significant improvements, if any, in model fit or parameter estimates. 

 A prominent modeling possibility that could be explored is data timing. In our current 

approach, we assume a constant harvest rate through each year. The harvesting occurs 

more concentrated in winter and spring, however.  Further, the stock assessments are 
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usually carried out in the fall. These nuances of timing could influence the dynamics of 

the system were they taken into account.  We have chosen not to go into this in our 

current approach for two reasons. One is a need to limit the scope of our work. A second 

and more important is that our current approach better serves the model needs in a 

bioeconomic framework for decision and management analysis. 

The main model does of course have room for other improvements. The  -interval for 

several of the parameters are not particularly tight, for example, and the estimates of 

elements in the   matrix are not very precise. Based upon our experience, we conclude 

that the best source of improvements would be more data.  While some of the series we 

use here extend further than what we utilize, herring inflow estimates are not further 

available. Notwithstanding, estimates of parameters in chaotic systems are not likely to 

be very precise, and management models should be flexible and adaptive (Holling and 

Meffe 1996, p. 332). It is important that management models take the uncertainty of the 

dynamics into account (Hill et al. 2007). Adaptive management models such as feedback 

models are already well understood in the bioeconomic literature (Sandal and Steinshamn 

1997).  The challenge is to solve models of higher dimensionality that must underlie 

ecosystem-based management (Fulton et al. 2011).  We believe the ensemble Kalman 

filter has an important role to play in both theoretical and operational management 

research, particularly in light of the recent calls for ecosystem-based management (Pew 

Oceans Commission 2003). 

In the broader scope of things, we aim to answer calls for ‘flexible, adaptive, and 

experimental’ management models (Holling and Meffe 1996, p. 332), who further write 

that ‘effective natural resource management that promotes long- term system viability 

must be based on an understanding of the key processes that structure and drive 

ecosystems, and on acceptance of both the natural ranges of ecosystems variation and the 
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constrains of that variation for long-term success and sustainability’ (p. 335). We 

think that, when models are simplified and reduced down to the key driving 

phenomena, the ensemble Kalman filter can capture variabilities and stabilities of 

ecosystems and serve tractable management models. 
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Table 1: Functional forms used in the model equations. 

Term Functional Form 

Logistic Growth   (        )        (   
  
  ⁄ ) 

Modified Logistic Growth   (        )       
  (   

  
  ⁄ ) 

Modified Logistic Growth with Common Capacity   (           )       
  (   

      
  ⁄ ) 

Lotka-Volterra Interaction   (        )          

Modified Lotka-Volterra Interaction   (           )         
  
     ⁄  
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Table 2: Parameter estimates with standard errors in parenthesis for the singe equation 

assimilations (the horizontal lines separate the different assimilations). The table also reports 

contraction rates and the  -interval for each parameter, noise-scale estimates (    ), and BIC-

scores and the average root mean squared innovation for each equation. 

 Estimate Contraction  -interval 

Cod, equation (12), BIC: 81.605, Avg. RMSI: 0.1422 

   -0.5461 

(0.1328) 

0.131 (0.5071, 0.6614) 

   15.63 

(0.2027) 

0.412 (5.055 e6, 7.583 e6) 

   -1.442 

(0.4891) 

0.987 (0.1448, 0.3853) 

   -2.386 

(0.4942) 

0.987 (0.05608, 0.1507) 

     0.1246 

(0.02117) 

  

Capelin, equation (13), BIC: 183.25, Avg. RMSI: 0.2873 

   -11.91 

(0.6430) 

0.634 (3.531 e-6, 12.7 e-6) 

   16.43 

(0.2675) 

0.908 (10.44 e6, 17.84 e6) 

   -21.73 

(0.4807) 

0.970 (0.2242 e-9, 0.5865 e-9) 

   -24.05 

(0.4874) 

0.973 (22.00 e-12, 58.34 e-12) 

     0.2866 

(0.1922) 

  

Herring, equation (14), BIC: 89.328, Avg. RMSI 0.2458 

   -11.42 

(0.7418) 

0.740 (5.209 e-6, 22.97 e-6) 

    15.61 

(0.3503) 

0.693 (4.240 e6, 8.545 e6) 

    -2.318 

(0.4754) 

0.975 (0.06115, 0.1582) 

    -24.27 

(0.9543) 

0.979 (11.03 e-12, 74.39 e-12) 

    2.189 

(0.4746) 

0.487 (5.555, 14.35) 

     0.2458 

(0.1838) 
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Table 3: Parameter estimates with standard errors in parenthesis for the full model 

assimilation. The table also reports contraction rates and the  -interval for each parameter, 

and the average root mean squared innovation for each state variable. 

 Estimate Contraction  -interval 

Cod, equation (12), Avg. RMSI: 0.09224 

   -0.4919 

(0.07566) 

0.559 (0.5668, 0.6595) 

   15.69 

(0.1565) 

0.755 (5.607 e6, 7.669 e6) 

   -1.361 

(0.4432) 

0.932 (0.1644, 0.3990) 

   -2.250 

(0.4425) 

0.907 (0.067689, 0.16402) 

Capelin, equation (13), Avg. RMSI: 0.1553 

   -12.39 

(0.1674) 

0.262 (3.506 e-6, 4.901 e-6) 

   16.19 

(0.1640) 

0.606 (9.166 e6, 12.72 e6) 

   -21.85 

(0.4470) 

0.927 (2.072 e-10, 5.067 e-10) 

   -24.03 

(0.4432) 

0.922 (2.350 e-11, 5.703 e-11) 

Herring, equation (14), Avg. RMSI 0.1287 

   -11.73 

(0.2068) 

0.284 (6.512 e-6, 9.849 e-6) 

    15.28 

(0.1621) 

0.484 (3.688 e6, 5.101 e6) 

    -2.4076 

(0.4465) 

0.938 (0.057602, 0.14071) 

    -24.26 

(0.9063) 

0.938 (1.173 e-11, 7.190 e-11) 

    1.731 

(0.3643) 

0.811 (3.9247, 8.1326) 
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Table 4: Parameter estimates with standard errors in parenthesis for assimilation fo the 

capelin-herring system. The table also reports contraction rates and the  -interval for each 

parameter, the BIC-score, and the average root mean squared innovation for each state 

variable. 

 Estimate Contraction  -interval 

Capelin, equation (18), Avg. RMSI: 0.2329 

   -13.26 

(0.5439) 

0.531 (1.006 e-6, 2.986 e-6) 

   -21.85 

(0.4840) 

0.957 (1.993 e-10, 5.249 e-10) 

Herring, equation (19), Avg. RMSI 0.1985 

   -11.46 

(0.6817) 

0.679 (5.321 e-6, 2.080 e-5) 

    -24.29 

(0.4683) 

0.955 (1.760 e-11, 4.491 e-

11) 

    1.268 

(0.6608) 

0.718 (1.836, 6.887) 

Common parameter, BIC: 266.123 

    15.72 

(0.2082) 

0.209 (5.478 e6, 8.309 e6) 
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Table 5: Parameter estimates with standard errors in parenthesis for assimilation of the full, 

alternative model. The table also reports contraction rates and the  -interval for each 

parameter, and the average root mean squared innovation for each state variable. 

 Estimate Contraction  -interval 

Cod, equation (18), Avg. RMSI: 0.1797 

   -0.5396 

(0.07393) 

0.570 (0.5414, 0.6276) 

   15.66 

(0.1711) 

0.698 (5.331 e6, 7.508 e6) 

   -1.280 

(0.4607) 

0.951 (0.1752, 0.4404) 

   -2.217 

(0.461) 

0.946 (0.06862, 0.1727) 

Capelin, equation (19), Avg. RMSI: 0.2850 

   -13.30 

(0.2436) 

0.456 (1.302 e-6, 2.120 e-6) 

   -21.83 

(0.4748) 

0.950 (2.043 e-10, 5.281 e-10) 

Herring, equation (20), Avg. RMSI 0.2505 

   -11.39 

(0.1211) 

0.182 (9.958 e-6, 1.268 e-5) 

    -24.00 

(0.4730) 

0.943 (2.332 e-11, 6.008 e-11) 

    2.134 

(0.3153) 

0.488 (6.168, 11.59) 

Common parameter 

    15.32 

(0.06903) 

0.0687 (4.218 e6, 4.842 e6) 
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Figure 1: Sequential parameter estimate for    for observations       . Plot shows 

estimate (white curve), distribution of parameter ensemble (shaded area), and true level 

(dashed line).  
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Figure 2: Smoothed stock level estimates (solid curves) with two standard errors to each side 

(shaded areas). Stock level observations with observation uncertainty (circles and error bars) 

and harvest (squares) and inflow (triangles) levels. Top panel: Cod. Middle panel: Capelin. 

Bottom panel: Herring. 

  



SNF Working Paper No. 04/14 

40 
 

 

Figure 3: Alternative model smoothed stock level estimates (solid curves) with two standard 

errors to each side (shaded areas). Stock level observations with observation uncertainty 

(circles and error bars) and harvest (squares) and inflow (triangles) levels. Top panel: Cod. 

Middle panel: Capelin. Bottom panel: Herring. 
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A.1 Implementation Details 

Some care must be taken when working with stochastic differential equations. We have 

formulated the model in continuous time, but it is necessary to discretize the equations for 

the numerical analysis, and in particular to produce the forecast. We use the Ito formulation 

and have the following discretized forecast equation: 

            (  )    √    (  )     (A1) 

where the superscript is a time index,    is the discrete time increment, and    is a simulated, 

normal distributed error with zero mean and unit variance. √   conserves the properties of the 

stochastic process. and  (  ) scales the noise process and retains the covariance structure. In 

the white noise model,  (  ) is the unique, upper-triangular Cholesky matrix of   
 ; see 

equation (6). In the state-dependent white noise model,  (  ) is the Cholesky matrix of   
  

multiplied with     ⁄ . (Note that the Cholesky matrix of   
  can be written as   

   , where 

  
  is an upper triangular matrix of coefficients.) The time unit is one year (the same as the 

observation frequency), and        . 

We have catch or landings data entering our equations as control variables. We have 

ample reasons to believe that registered landings are not perfect observations of fishing 

mortality because of discarding at sea, illegal landings, and registration errors, among 

other things. Thus, we treat the landings data as un- certain and represent them with a 

uniformly distributed ensemble. The actual observation serves as the lower limit 

because the registered landings certainly are conservative estimates of fishing mortality, 

while the upper limit is set 20% higher.  In the herring equation (14), landings do not 

enter.  Instead, we have inflow data. The inflow data are estimates based upon virtual 

population models for the herring stock in the Norwegian Sea, which is coupled with 

an ocean circulation model. The coupled models predicts the drift of eggs and larvae 

into the Barents Sea. While the inflow estimates probably are quite uncertain, we have 
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no reason to believe they are neither upward nor downward biased. Thus, we represent 

them with an ensemble that is normal distributed, with mean at the reported inflow and a 

5% standard deviation.  (Alternatively, it is possible to not use ensembles for the control 

variables and implicitly assume that the controls are perfectly observed.) 

Stock observations are also estimates derived from virtual population models and are 

uncertain. It is crucial that observations on state variables are represented with an 

ensemble (Burgers et al. 1998). The stock observation ensemble is normal distributed, 

with the observation at the mean and a standard deviation of 30%. (Because the capelin 

stock estimates prior to 1972 are more uncertain, the standard deviation in the capelin 

observation ensemble is increased with 50%.) When stock observations served as control 

variables in the single equation assimilations, they were represented by an ensemble with 

the observed level as the ensemble mean and with a 10 percent spread. 

 Finally, we use an ensemble size of 1000. In comparison, ensemble sizes of 200, 

100, or less is not uncommon in problems of larger dimensions than ours (see Evensen 

2009). 

 

A.2 Searching Procedure in Single Equation Assimilations 

Table A1 demonstrates the working of the searching procedure in the single equations 

assimilations. The table reports parameter estimates with standard errors in parenthesis, 

BIC-scores, and the average root mean squared innovation for five different 

characterizations of the mean initial. The initial characterization is indicated in the first 

row of the table. In the demonstration, only 200 ensemble members were used, as 

opposed to the 1000 ensemble members used in the main estimations above. Because of 

the reduced ensemble size, parameter estimates deviate slightly from the estimates 

reported above.  Note that we cannot tell from the parameter estimates or the standard 
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errors which initial characterization is the most ideal, but after comparing the BIC-scores 

and the average root mean squared innovation we have little doubt the middle 

characterization is the most ideal. 

 

Table A1: Parameter estimates with standard errors in parenthesis, BIC-scores and average 

root mean squared innovations for five different initial mean ensemble characterizations. 

 .01 .1 1 2 5 

   -0.5625 

(0.1089) 

-0.5899 

(0.1111) 

-0.5464 

(0.08933) 

-0.5119 

(0.8268) 

-0.4364 

(0.07922) 

   15.68 

(0.2237) 

15.76 

(0.2816) 

15.67 

(0.1602) 

15.58 

(0.1258) 

15.41 

(0.0934) 

   -1.069 

(0.5015) 

-1.286 

(0.4946) 

-1.422 

(0.4959) 

-1.465 

(0.5000) 

-1.591 

(0.5004) 

   -2.506 

(0.4724) 

-2.475 

(0.4660) 

-2.386 

(0.4640) 

-2.396 

(0.4653) 

-2.507 

(0.4704) 

      

BIC 88.91 82.32 80.74 82.14 90.38 

Avg. RMSI 0.1432 0.1397 0.1389 0.1397 0.1481 

 

 

Table A2: Characterizations of the initial parameter ensemble for the single equation 

assimilation. The columns reports the mean and standard deviation of the distribution from 

which the initial ensembles are drawn. The implied  -intervals are also reported. 

 Mean Standard dev.  -interval 

   0.0 1.0 (0.3678, 2.718) 

   15.42 0.5 (3.032 e6, 8.243 e6) 

   -1.386 0.5 (0.1516, 0.4121) 

   -2.302 0.5 (0.06065, 0.1648) 

   -11.51 1.0 (3.678 e-6, 2.783 e-5) 

   16.52 0.3 (11.11 e6, 20.24 e6) 

   -21.78 0.5 (2.098 e-10, 5.704 e-10) 

   -24.08 0.5 (2.098 e-11, 5.704 e-11) 

   -11.51 1.0 (3.678 e-6, 2.718 e-5) 

    16.11 0.5 (6.065 e6, 16.48 e6) 

    -2.302 0.5 (0.06065, 0.1648) 

    -24.22 1.0 (1.114 e-11, 8.236 e-11) 

    2.302 0.5 (6.065, 16.48) 

    16.45 0.3 (8.492 e6, 23.08 e6) 
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