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Abstract

We analyze optimal consumption, including pensions, during the
life time of a consumer using the life cycle model, when the consumer
has recursive utility. The model framework is that of continuous-time
with diffusion driven uncertainty. The relationship between substitu-
tion of consumption and risk aversion is highlighted, and clarified in
the context of the life cycle model. We find the optimal consump-
tion in closed form, and illustrate that the recursive utility consumer
may prefer to smooth consumption shocks across time and states of
the world. This agent consumes and invests to mitigate shocks to
the economy, in situations where the conventional consumer is just
myopic. This has consequences for what products the financial indus-
try may choose to offer. The resulting model can be used to explain
empirical puzzles for aggregates, indicating a plausible choice for the
parameters of the utility function, for for the ’average’ consumer in
the context of life cycle model.

KEYWORDS: The life cycle model, recursive utility, consumption smooth-
ing, consumption puzzles, the stochastic maximum principle, the equity pre-
mium puzzle, pension and life insurance
JEL: D 91

1 Introduction

In the the standard life cycle model with additive and separable utility one
can not separate risk aversion from the intertemporal elasticity of substi-
tution in consumption. Since these are different aspects of an individual’s
preferences this is clearly a weakness with this model.

∗The Norwegian School of Economics, 5045 Bergen.
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We consider the consumer in the life cycle model having recursive util-
ity, in a continuous-time setting. Our analysis takes as a starting point the
version of recursive utility which gives the most unambiguous separation be-
tween risk preference and time preference. Originally this version was defined,
but not analyzed, in the seminal papers by Duffie and Epstein (1992a,b) on
this subject. They did not consider the life cycle model, but rather a rational
expectations equilibrium model.

Schroder and Skiadas (1999) analyze optimal portfolio selection and con-
sumption, in which they discuss a variety of specifications, while we focus
on the Kreps-Porteus specification only. Their focus is an ordinally equiv-
alent version of the kind treated in Duffie and Epstein (1992a,b). We add
to the theory in various ways: First, we demonstrate how recursive utility
can alternatively be analyzed by employing the stochastic maximum princi-
ple directly on the defining version. This is important, not the least from
a pedagogical point of view, since this version of recursive utility is readily
seen to give the required disentangling of risk aversion from consumption
substitution. Second, we focus on the smoothing property of the resulting
optimal consumption, and pension, and the implications for the insurance
industry. Third, we illustrate numerically by calibrating to market data.

The version of recursive utility we consider is, from a formal point of
view, the most one demanding to work with. We employ a robust method, the
stochastic maximum principle, together with the theory of forward/backward
stochastic differential equations (FBSDE) to find the optimal consumption.

Our analysis leads to several new insights of relevance for optimal con-
sumption and pensions, thereby extending the early works of Yaari (1965),
Hakansson (1969), Samuelson (1969), Merton (1969-71), Fisher (1973), Cox
and Huang (1989), and Aase (2015a). Newer works include Gomes and
Michaelis (2008) and Guvenen (2009) among others, who both treat lim-
ited market participation, the latter using recursive utility in a discrete time
model. Aase (2015b) analyzes the ordinally equivalent version, which natu-
rally enough leads to the same asset pricing implications, as well as the same
optimal consumption.

As is well known (see e.g., Epstein and Zin (1989), Duffie and Epstein
(1992a,b), Duffie and Skiadas (1994), Kreps and Porteus (1978)), a major
advantage with recursive utility is that it disentangles intertemporal substi-
tution from risk aversion. In the context of the life cycle model this allows
us to learn how and where these different properties of an individual influ-
ence the optimal contracts. Also, by turning the life cycle model around, the
ordinary rational expectations equilibrium model results, which allows us to
calibrate to market data. The result of this is that the recursive model is
seen to fit market data rather convincingly.
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In particular, it follows from our model how aggregate consumption in so-
ciety can be as smooth as implied by data, and at the same time be consistent
with the relatively large, observed growth rate.

We show when the recursive utility customer finds it optimal to smooth
market shocks to a larger extent than the conventional model predicts. One
question is then how this can be accomplished in the real world. This is
of great importance when analyzing pensions and life insurance contracts,
where insuring consumers against adverse shocks in the market ought to
be a main issue. After the financial crisis in 2008, insurers are inclined
to pass all or most of the financial risk to its customers, presenting them
with mainly defined contribution, or unit linked pension plans. The lessons
from the present paper for the insurance industry is clear: To provide the
kind of consumption smoothing that consumers of the last century seem to
prefer, which points in the direction of defined benefit rather than defined
contribution pension plans.

The paper is organized as follows. In Section 2 we present the model of
the financial market, recursive utility is introduced in Section 3, in Section 4
we discuss optimal consumption, in Section 5 a detour is made to equilibrium
and calibrations. In Section 6 we include pensions, in Section 7 life insurance
is briefly analyzed, Section 8 treats optimal portfolio choice, and Section 9
concludes.

2 The Financial Market

We consider a consumer/insurance customer who has access to a securities
market, as well as a credit market and pension and life insurance contracts.
The securities market can be described by the vector νt of expected returns
of N given risky securities in excess of the risk-less instantaneous return rt,
and σt is an N ×N matrix of diffusion coefficients of the risky asset prices,
normalized by the asset process, so that σtσ

′
t is the instantaneous covariance

matrix for asset returns. Both νt and σt are assumed to be progressively mea-
surable stochastic processes. Here N is also the dimension of the Brownian
motion B.

We assume that the cumulative return process Rn
t is an an ergodic,

stochastic process for each n, where dXn
t = Xn

t dR
n
t for n = 1, 2, . . . , N ,

and Xn
t is the cum dividend price process of the nth risky asset.

Underlying is a probability space (Ω,F , P ) and an increasing information
filtration Ft generated by the N -dimensional Brownian motion, and satisfy-
ing the usual conditions. Each price process X

(n)
t is a continuous stochastic

process, and we suppose that σ(0) = 0, so that rt = µ0(t) is the risk-free in-
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terest rate, also a stochastic process. T is the finite horizon of the economy.
The state price deflator π(t) is given by

πt = ξte
−

∫ t
0 rs ds, (1)

where the ’density’ process ξ has the representation

ξt = exp
(
−
∫ t

0

η′s · dBs −
t

2

∫ t

0

η′s · ηsds
)
. (2)

Here η(t) is the market-price-of-risk for the discounted price processXte
−

∫ t
0 rsds,

defined by
σ(ω, t)η(ω, t) = ν(ω, t), (ω, t) ∈ Ω× [0, T ], (3)

where the nth component of νt equals (µn(t)− rt), the excess rate of return
on security n, n = 1, 2, · · · , N . From Ito’s lemma it follows from (2) that

dξt = −ξt η′t · dBt, (4)

and, from (1) it follows that

dπt = −rtπtdt− πtη′tdBt. (5)

The density ξt is assumed to be a martingale (Novikov’s condition suffices).
The agent is represented by an endowment process e (income) and a utility
function U : L+ → R, where

L = {c : ct is progressively measurable, Ft-adapted andE(

∫ T

0

c2
t dt) <∞}.

L+, the positive cone of L, is the set of consumption rate processes. The
specific form of the function U is specified in the next section.

For a price πt of the consumption good, the problem is to solve

sup
c∈L

U(c), (6)

subject to the budget constraint

E
{∫ τ

0

πtct dt

}
≤ E

{∫ τ

0

πtet dt
}

:= w. (7)

The quantity πt is also known as the ”state price deflator”, or the Arrow-
Debreu prices in units of probability. State prices reflect what the repre-
sentative consumer is willing to pay for an extra unit of consumption; in
particular is πt high in ”times of crises” and low in ”good times”.
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The present situation is known as a temporal problem of choice. In such a
setting it is far from clear that the time additive and separable form expected
utility is the natural representation of preferences. For example, derived
preferences do not satisfy the substitution axiom (see e.g., Mossin (1969),
Kreps (1988)). This is the axiom that gives additivity in probability of the
utility function. If this property does not hold for any time t, it certainly
does not help to add the representation across time. Also, the resulting model
does not explain aggregate market data (e.g., the equity premium puzzle).

When there is no market uncertainty, i.e., ξt = 1 for all t ∈ [0, T ], the
Ramsey (1928) model applies. This model does not encounter this problem
with the axioms, but has of course problems with realism 1.

The consumer’s problem is, for each initial wealth level w, to solve

sup
(c,ϕ)

U(c) (8)

subject to an intertemporal budget constraint

dWt =
(
Wt(ϕ

′
t · νt + rt)− ct

)
dt+Wtϕ

′
t · σtdBt, W0 = w. (9)

Here ϕ′t = (ϕ
(1)
t , ϕ

(2)
t , · · · , ϕ(N)

t ) are the fractions of total wealth held in the
risky securities.

A more detailed description of the steps leading to the problem (8) with
the dynamic constraint (9) can be found in Duffie (2001), Ch 9, p 206. See
also Aase (2015b), Section 2. That this problem is equivalent to problem
(6)-(7) when markets are complete, is shown in Pliska (1986) and Cox and
Huang (1989), among others.

3 Recursive utility

3.1 Introduction

We now introduce recursive utility. Here we use the framework established by
Duffie and Epstein (1992a-b) and Duffie and Skiadas (1994) which elaborate
the foundational work by Kreps and Porteus (1978) of recursive utility in
dynamic models. Recursive utility leads to the separation of risk aversion
from the elasticity of intertemporal substitution in consumption, within a
time-consistent model framework.

The recursive utility U : L → R is defined by two primitive functions:
f : R × R → R and A : R → R. The function f(ct, Vt) corresponds to a

1Also, the timeless problem with two time points only, uncertainty only on the last
time and no consumption choice at the first, does not have this problem with the axioms.

5



felicity index, and A corresponds to a measure of absolute risk aversion of
the Arrow-Pratt type for the agent. In addition to current consumption ct,
the function f also depends on utility Vt at time t, a stochastic process with
volatility σ̃V (t) := Zt at each time t.

The utility process V for a given consumption process c, satisfying VT = 0,
is given by the representation

Vt = Et

{∫ T

t

(
f(cs, Vs)−

1

2
A(Vs) σ̃V (s)′σ̃V (s)

)
ds
}
, t ∈ [0, T ] (10)

If, for each consumption process ct, there is a well-defined utility process V ,
the stochastic differential utility U is defined by U(c) = V0, the initial utility.
The pair (f, A) generating V is called an aggregator.

The utility function U is monotonic and risk averse if A(·) ≥ 0 and f is
jointly concave and increasing in consumption.

As for the last term in (10), recall the Arrow-Prat approximation to the
certainty equivalent of a mean zero risk X. It is 1

2
A(·)σ2, where σ2 is the

variance of X, and A(·) is the absolute risk aversion function.
In the discrete time world the starting point for recursive utility is that

future utility at time t is given by Vt = g(ct,m(Vt+1)) for some function
g : R × R → R, where m is a certainty equivalent at time t (see e.g,
Epstein and Zin (1989)). If h is a von Neumann-Morgenstern index, then
m(V ) = h−1(E[h(V )]). The passage to the continuous-time version in (10)
is explained in Duffie and Epstein (1992b).

The preference ordering represented by recursive utility is assumed to
satisfy: Dynamic consistency, in the sense of Johnsen and Donaldson (1985);
Independence of past consumption; and State independence of time prefer-
ence (see Skiadas (2009a)).

Unlike expected utility theory in a timeless situation, i.e., when con-
sumption only takes place at the end, in a temporal setting where the agent
consumes in every period, derived preferences do not satisfy the substitution
axiom (e.g., Mossin (1969), Kreps (1988)). Thus additive Eu-theory in a dy-
namic context has no axiomatic underpinning, unlike recursive utility (Kreps
and Porteus (1978), Chew and Epstein (1991)). It is notable that one of the
four central axioms in the latter theory, recursivity, is essentially identical to
the notion of consistency the sense of Johnsen and Donaldson (1985).

3.2 The specification we work with

Stochastic differential utility disentangles intertemporal substitution from
risk aversion: In the case of deterministic consumption, σ̃V (t) = 0 for all t.
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Hence risk aversion A is then irrelevant, since it multiplies a zero variance.
Thus certainty preferences, including the willingness to substitute consump-
tion across time, are determined by f alone. Only risk attitudes are affected
by changes in A for f fixed. In particular, if

Ã(·) ≥ A(·)

where U and Ũ are utility functions corresponding to (f, A) and (f, Ã) respec-
tively, then Ũ is more risk averse than U in the sense that any consumption
process c rejected by U in favor of some deterministic process c̄ would also
be rejected by Ũ .

We work with the Kreps-Porteus utility, which corresponds to the aggre-
gator with the CES specification

f(c, v) =
δ

1− ρ
c(1−ρ) − v(1−ρ)

v−ρ
and A(v) =

γ

v
. (11)

The parameter δ ≥ 0 is the agent’s impatience rate, ρ ≥ 0, ρ 6= 1 is the time
preference and γ ≥ 0, γ 6= 1, is the relative risk aversion. The parameter ψ =
1/ρ is the elasticity of intertemporal substitution in consumption, referred
to as the EIS-parameter. The higher value of the parameter ρ is, the more
aversion the agent has towards consumption fluctuations across time in a
deterministic world. The higher the value of γ, the more aversion the agent
has to consumption fluctuations, due to the different states of the world that
can occur. Clearly these two properties of an individual’s preferences are
different. In the conventional model γ = ρ.

Recursive utility has an ordinally equivalent specification. When the ag-
gregator (f, A) is given corresponding to the utility function U , there exists
a strictly increasing and smooth function ϕ(·) such that the ordinally equiv-
alent U1 = ϕ ◦ U has the aggregator (f1, A1) where

f1(c, v) = ((1− γ)v)−
γ

1−γ f(c, ((1− γ)v)
1

1−γ ), A1 = 0.

The connection is

U1 =
1

1− γ
U1−γ.

This is the specification Duffie and Epstein (1991) work with, where f1 has
the CES-form

f1(c, v) =
δ

1− ρ
c(1−ρ) − ((1− γ)v)

1−ρ
1−γ

((1− γ)v)
γ−ρ
1−γ

, A1(v) = 0. (12)

Is is emphasized in the above reference that the reduction to a normalized
aggregator (f1, 0) does not mean that intertemporal utility is risk neutral, or
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that this representation has lost the ability to separate risk aversion from sub-
stitution. The corresponding utility U1 retains the essential features, namely
that of partly disentangling intertemporal elasticity of substitution from risk
aversion. However, we can not claim any more that f1 alone determines the
willingness to substitute consumption across time.

Technically it is the ordinally equivalent version of utility that is used to
prove existence and uniqueness of recursive utility in Theorem 1 of Duffie and
Epstein (1992b). For the particular Kreps-Porteus version that we consider
the Lipschitz condition of this theorem is not satisfied, but existence and
uniqueness is shown for this version in Duffie and Lions (1990), under certain
conditions.

The standard additive and separable utility has aggregator

f1(c, v) = u(c)− δv, A1 = 0 (13)

in this framework (an ordinally equivalent representation). Clearly the agent
with the conventional utility is not risk neutral even if A1 = 0.

The version (12) was analyzed in Aase (2015b) in the life cycle model,
and by Duffie and Epstein (1992a,b) in the rational expectations equilibrium
model. Similarly Schroder and Skiadas (1999) analyzed various versions of
recursive utility with A1 = 0 related to the life cycle model. In the present
paper we analyze the version (11) directly, using the stochastic maximum
principle.

As can be seen, this version explains the separation of risk aversion from
time substitution, but is also the version which is the most demanding to
work with. The method we use, the stochastic maximum principle, allows
for state dependence and a non-Markovian structure of the economy. This is
more difficult to handle using dynamic programming.

Although we primarily discuss the life cycle model, where the agent takes
the market as given, in Section 5 we also make a detour to equilibrium,
allowing us to look at some calibrations. The ”representative agent” in the
context of equilibrium is of course not our ”average” consumer in the life cycle
model. However, it is reasonable that they have the same basic preferences.

3.3 The first order conditions

In the following we find the solution of the consumer’s problem. For any of
the versions i = 1, 2 formulated in the previous section, the problem is to
solve

supc∈LU(c)
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subject to the budget constraint

E
{∫ T

0

ctπtdt
}
≤ E

{∫ T

0

etπtdt
}
.

Here Vt = V c̃
t and Z(t) := σ̃V (t) is the solution of the backward stochastic

differential equation (BSDE){
dVt = −f̃(t, ct, Vt, σ̃V (t)) dt+ Z(t) dBt

VT = 0,
(14)

where

f̃(t, ct, Vt, Z(t)) = f(ct, Vt)−
1

2
A(Vt)Z(t)′Z(t).

Notice that (14) covers both the versions (11) and (12).
Existence and uniqueness of solutions of the BSDE (14) is proven in Duffie

and Lions (1992) for the Kreps-Porteus specification.
For α > 0 define the Lagrangian

L(c;α) = U(c)− αE
(∫ T

0

πt(ct − et)dt
)
.

Important is that the volatility Z(t) := σ̃V (t) is exogenously given as part
of the preferences2.

Because of the generality of the problem, we utilize the stochastic maxi-
mum principle (see Pontryagin (1972), Bismut (1978), Kushner (1972), Ben-
soussan (1983), Peng (1990), and Øksendal and Sulem (2013)) : We are then
given a system of forward backward stochastic differential equations (FB-
SDE) consisting of the simple FSDE dX(t) = 0;X(0) = 0 and the BSDE
(14)3. The objective function is

L(c;α) = V c
0 − αE

(∫ T

0

πt(ct − et)dt
)

(15)

where α is the Lagrange multiplier. The Hamiltonian for this problem is

H(t, c, v, z, y) = yt f̃(t, ct, vt, zt)− απt(ct − et) (16)

2Market clearing can, for example, be used to actually determine the process Z from
observable quantities and preference parameters.

3Here the process X is used in the general formulation, and must be set equal to zero
in the application at hand; it is not the return on a risky asset.
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where yt is the adjoint variable. It is given by{
dYt = Y (t)

(
∂f̃
∂v

(t, ct, Vt, Z(t)) dt+ ∂f̃
∂z

(t, ct, Vt, Z(t)) dBt

)
Y0 = 1.

(17)

where we use the notation Z(t) = σ̃V (t), and z as the generic variable. If c∗

is optimal we therefore have

Yt = exp
(∫ t

0

{∂f̃
∂v

(s, c∗s, Vs, Z(s))− 1

2

(∂f̃
∂z

(s, c∗s, Vs, Z(s))
)2}

ds

+

∫ t

0

∂f̃

∂z
(s, c∗s, Vs, Z(s)) dB(s)

)
a.s. (18)

Maximizing the Hamiltonian with respect to c gives the first order equation

y
∂f̃

∂c̃
(t, c∗, v, z)− απ = 0

or

απt = Y (t)
∂f̃

∂c̃
(t, c∗t , V (t), Z(t)) a.s. for all t ∈ [0, T ]. (19)

Notice that the state price deflator πt at time t depends, through the adjoint
variable Yt, an unbounded variation process, on the entire, optimal paths
(cs, Vs, Zs)) for 0 ≤ s ≤ t. One of the the strengths of the stochastic maxi-
mum principle is that the Hamiltonian is allowed to depend on the state.

Sufficient conditions for the existence of a unique solution to the stochastic
maximum principle are the same as those giving existence and uniqueness of
a solution to the BSDE (14)

When γ = ρ then Yt = e−δt for the aggregator (13) of the conventional
model, so the state price deflator is a Markov process, and dynamic pro-
gramming is appropriate. If γ 6= ρ on the other hand, we use the stochastic
maximum principle in the continuous time model of this paper.

3.4 The derivation of the optimal consumption

Here we present the analysis for the basic version of recursive utility (11).
From the above we have the following first order conditions for this version

απt = Yt fc(c
∗
t , Vt), (20)

since f̃c = fc for the version (11). Since fc(c, v) = δc−ρvρ, it follows that the
optimal consumption can be written

c∗t =
(απt
δ Yt

)− 1
ρ
Vt. (21)
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Using the notation Z(t) = VtσV (t), the dynamics of the stochastic processes
involved are as follows.

dVt =
(
− δ

1− ρ
(c∗t )

1−ρ − V 1−ρ
t

V −ρt

+
1

2
γVtσ

′
V (t)σV (t)

)
dt+ VtσV (t) dBt, (22)

for 0 ≤ t ≤ T , where VT = 0. This is the backward stochastic differential
equation. The dynamics of the adjoint variable is

dYt = Yt

({
− δ

1− ρ
(1− ρ(c∗t )

1−ρV ρ−1
t ) +

1

2
γσ′V (t)σV (t)

}
dt

− γσV (t) dBt

)
, (23)

for 0 ≤ t ≤ T , where Y0 = 1. Here we have used

fv(c, v) :=
∂f(c, v)

∂v
= − δ

1− ρ
(1− ρc1−ρvρ−1).

Equation (23) is the adjoint equation. Finally the dynamics of the state price
deflator is

dπt = −rtπt dt− πtηt dBt, (24)

where ηt is the market-price-of-risk.
Based on this we can derive the dynamics of the optimal consumption.

For this we need the following partial derivatives:

∂c(απt, Vt, Yt)

∂π
= −1

ρ

(c∗t
πt

)
,

∂c(απt, Vt, Yt)

∂v
=
c∗t
Vt
,

∂c(απt, Vt, Yt)

∂y
=

1

ρ

(c∗t
Yt

)
,

∂2c(απt, Vt, Yt)

∂π2
=

1

ρ

(1

ρ
+ 1
)( c∗t

π2
t

)
,

∂2c(απt, Vt, Yt)

∂y2
=

1

ρ

(1

ρ
− 1
)( c∗t

Y 2
t

)
,

∂2c(απt, Vt, Yt)

∂v2
= 0,

∂2c(απt, Vt, Yt)

∂π∂v
= −1

ρ

( c∗t
πtVt

)
,

∂2c(απt, Vt, Yt)

∂π∂y
= − 1

ρ2

( c∗t
πtYt

)
,

and
∂2c(απt, Vt, Yt)

∂v∂y
=

1

ρ

c∗t
YtVt

.
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By the multidimensional version of Ito’s lemma we can now calculate the
dynamics of the optimal consumption as follows:

dc∗t =
∂c

∂π
dπt +

∂c

∂v
dVt +

∂c

∂y
dYt +

1

2

∂2c

∂π2
dπ2

t +
1

2

∂2c

∂v2
dV 2

t +
1

2

∂2c

∂y2
dY 2

t

+
∂2c

∂π∂v
dπtdVt +

∂2c

∂π∂y
dπtdYt +

∂2c

∂v∂y
dVtdYt. (25)

The stochastic representation for the consumption growth rate is given by

dc∗t
c∗t

= µc(t) dt+ σc(t) dBt. (26)

We now use the representations for the processes πt, Vt and Yt given above.
After a fair amount of routine calculations, the result is

µc(t) =
1

ρ
(rt − δ) +

1

2

1

ρ
(1 +

1

ρ
) η′tηt −

(γ − ρ)

ρ2
η′t σV (t)

+
1

2

(γ − ρ)γ(1− ρ)

ρ2
σ′V (t)σV (t) (27)

and

σc(t) =
1

ρ

(
ηt + (ρ− γ)σV (t)

)
. (28)

Here σV (t) and Vt exist as a solution to the system of the backward stochastic
differential equation for V .

When ρ = γ (or γ = 1/ψ), the optimal consumption dynamics for the
conventional model results.

By the Doleans-Dade formula it follows that

c∗t = c0 e
∫ t
0 (µc(s)− 1

2
σc(s)′σc(s))ds+

∫ t
0 σc(s)dBs (29)

where µc(t) and σc(t) are as determined above. This gives a characterization
of the optimal consumption in terms of the primitives of the model.

From (21) and the fact that the recursive utility function we work with
is homogeneous of degree one, there is a one-to-one correspondence between
c0 and α. Given a suitable integrability condition, for each c0 > 0 there
corresponds a unique α0 that satisfies the budget constraint with equality.
Under these assumptions we have, by The Saddle Point Theorem, a complete
characterization of the optimal consumption in terms of the primitives of the
model.
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4 Some properties of the optimal consump-

tion

Since the agent takes the market as given, it is of interest to study how shocks
to the state price π affect the optimal consumption. Towards this end it is
convenient to rewrite the expression for the optimal consumption in terms of
the state price. Using the dynamics of π in (5) we can write (29) as follows

c∗t = c0π
− 1
ρ

t e
∫ t
0 (− δ

ρ
+ 1

2ρ
(γ−ρ)(1−γ)σ′V (s)σV (s))ds+ 1

ρ
(ρ−γ)

∫ t
0 σV (s) dBs . (30)

In terms of the density process ξ the expression is

c∗t = c0ξ
− 1
ρ

t e
∫ t
0 ( 1
ρ

(rs−δ)+ 1
2ρ

(γ−ρ)(1−γ)σ′V (s)σV (s))ds+ 1
ρ

(ρ−γ)
∫ t
0 σV (s) dBs , (31)

where
πt = e−

∫ t
0 rsdsξt = e−

∫ t
0 rsdse−

∫ t
0 ηsdBs−

1
2

∫ t
0 η
′
sηsds.

It is shown in Aase (2015b) that the same consumption dynamics as
given in (26)-(31) result for the ordinally equivalent specification (12). Thus
both asset pricing implications and optimal consumption are unaffected by
a monotone transformation of recursive utility, satisfying some regularity
conditions. For example is the expected optimal consumption at time t as of
time zero given by

E(c∗t ) = c0E
{
e
∫ t
0 (µc(s)ds

}
. (32)

When ρ = γ, or γ = 1/ψ, the optimal consumption dynamics for the
conventional model results. As a direct comparison with (30) and (31) the
conventional model gives

c∗t = c0π
− 1
ρ

t e−
δ
ρ
t = c0ξ

− 1
ρ

t e
∫ t
0

1
ρ

(rs−δ)ds (when ρ = γ) (33)

Comparing to the corresponding expressions for the conventional model
(ρ = γ) we notice several important differences. Recall that the state price
reflects what the consumer is willing to pay for an extra unit of consumption.
In particular, with the conventional model in mind, it has been convenient
to think of πt as high in ”times of crises” and low in ”good times”. Consider
for example a ”shock” to the economy via the state price πt. It is natural
to think of this as stemming from a shock to the term

∫ t
0
ηsdBs via the

process B. Assuming η positive, this lowers the state price, and seen in
isolation, increases optimal consumption. This is as for the conventional
model. However, a shock from B has also an effect on the last factor in (30).
Assuming σV positive, the direction of this shock depends on the sign of (ρ−

13



γ). When the individual prefers early resolution of uncertainty to late (γ >
ρ), this shock has the opposite effect on c∗t . As a consequence the individual
wants to smooth shocks to the economy. More precisely, it is optimal for
the consumer to smooth consumption this way provided he/she prefers early
resolution of uncertainty to late. This is obviously important when discussing
consumption smoothing. It seems like some of the conventional wisdom has
to be rewritten in the presence of recursive utility.

A shock to the interest rate has (in isolation) the same effect on the
recursive consumer as predicted by the conventional model.

4.1 The consumption puzzle

Recursive utility separates time preference from risk preference, and permits
the individual to care about the time when uncertainty is resolved, unlike
the conventional, additive and separable expected utility representation. At
each time t this agent cares about future utility in addition to current con-
sumption.

Part of the asset pricing and consumption puzzles is related to the fol-
lowing question: How can the aggregate consumption be so smooth at such
a relatively large growth rate as indicated by market data?

The first major problem with the conventional life cycle model is to ex-
plain the smooth path estimate of aggregate consumption in society. The
volatility of consumption in (28) can be made arbitrarily small when ηt ≈
(γ − ρ)σV (t). In contrast, for the conventional model only the first term on
the right-hand side is present. For the estimated value of ηt, this requires a
very large value of γ to match the low estimate for the consumption volatility.
In the recursive model this can be readily explained.

The second major problem with the conventional model is to explain
the relatively large estimate of the growth rate of aggregate consumption in
society for plausible values of the parameters. For the estimated value of
ηt, and the large value of γ required to match the low estimated volatility,
this requires a very low, even negative, value of the impatience rate δ in the
conventional model to match the estimate of the consumption growth rate.

With the growth rate given by (27) instead, this is different. Here ρ
takes the place of γ in the two first terms, which are present also in the
conventional model. Thus it is consumption substitution, not risk aversion
that is the correct interpretation here. Furthermore, by inspection of the the
forth term on the right-hand side in (27), it is clear that a large consumption
growth rate is possible. Two obvious cases are when γ > ρ and ρ < 1, and
γ < ρ and ρ > 1, depending of course on the term σV (t). In the latter case
also the third term on the right-hand side of (27) can be sufficiently large. In
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the former this term puts a limit on how much larger than ρ the risk aversion
γ can be in order to match the estimated value of the growth rate.

Recall that the market-price-of-risk parameter η > 0. If γ > ρ, the
recursive utility agent has preference for early resolution of uncertainty, see
Figure 1. We summarize as follows:

Proposition 1 Assume the preferences are such that σV is positive, and
the market price of risk η is positive. The individual with recursive utility
will then prefer to smooth market shocks provided the consumer prefers early
resolution of uncertainty to late (γ > ρ).

When the expected utility consumer just follows is the wake of others, the
contents of the mutuality principle in the present situation, the recursive
individual displays a more sophisticated behavior under market uncertainty.
It may depend on whether the individual has preference for early, or late
resolution of uncertainty. With these two possibilities the mutuality principle
does not hold for recursive utility. This is of importance, e.g., for pension
insurance. Some of the conventional wisdom has to be rewritten in presence
of recursive utility.

The investment strategy that attains the optimal consumption of the
agent is presented in Section 9. The recursive agent does not behave myopi-
cally, in contrast looks at several periods at the time. When times are good
he consumes less than the myopic agent, invests more for the future, and can
hence enjoy higher consumption than the expected utility maximizer when
times are bad.

5 Equilibrium

In this paper the agent takes the market as given, and the consumer in the
life cycle model is not a ”representative agent” in the context of equilibrium.
Nevertheless, in this section we take a short detour and consider the latter,
where the agent takes the aggregate consumption as given. Here the mar-
ket clearing condition allows us to determine both risk premiums and the
short term interest rate, when the agent optimally consumes the endowment
process e, interpreted as the aggregate consumption (in the ’fruit’ economy).
When calibrated to data, this will give us an idea about the preference pa-
rameters of the representative agent, which also has consequences for an
’average’ consumer in the life cycle model.
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5.1 The equilibrium interest rate and the risk pre-
mium on the wealth portfolio

As a direct consequence of the above expressions for the growth rate and
the volatility of consumption growth, when consumption is considered as
aggregate consumption in society and the consumer is the representative
agent, from (3) we obtain the following

ϕ′tσtηt = µW (t)− rt.

when ϕ′tσt = σ′W (t) is the volatility of the wealth portfolio, by market clear-
ing. Using (28), this gives the following expression for the risk premium of
the wealth portfolio

µW (t)− rt = ρσ′W (t)σc(t) + (γ − ρ)σ′W (t)σV (t). (34)

Suppose a representative agent equilibrium exists, and that our consumer
is interpreted as this representative agent. Using that the utility function V is
homogeneous of degree one in consumption, we can determine the volatility
σW (t) of the wealth portfolio in terms of the utility volatility σV (t), the
parameter ρ and the volatility of the aggregate consumption process. Turning
this relationship around, we have at the same time the volatility of utility
in terms of the volatility of the wealth portfolio and the volatility of the
aggregate consumption process. Thus σV (t) is connected to quantities that
may be estimated from market and consumption data.

By market clearing again, the property that recursive utility is homoge-
neous of degree 1, and by diffusion invariance we can show that

σW (t) = (1− ρ)σV (t) + ρσc(t)

where σW (t) is the volatility of the return of the wealth portfolio ( Aase
(2014)). From this relationship we get σV (t) = (σW (t) − ρσc(t))/(1 − ρ),
connecting σV (t) to ’observables’ and the given preference parameter ρ.

By this representation and the relation (34), we now obtain the equilib-
rium risk premium premium of the wealth portfolio as

µW (t)− rt =
ρ(1− γ)

1− ρ
σ′c(t)σW (t) +

γ − ρ
1− ρ

σ′W (t)σW (t). (35)

This formula can be extended to yield the equilibrium risk premium of any
risky asset having volatility σR(t). The result is

µR(t)− rt =
ρ(1− γ)

1− ρ
σ′c(t)σR(t) +

γ − ρ
1− ρ

σ′W (t)σR(t). (36)
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The first term on the right hand side corresponds to the consumption based
CAPM of Breeden (1979), while the second term corresponds to the market
based CAPM of Mossin (1966), the latter valid only in a timeless setting in
its original derivation.

A formula for the equilibrium risk-free interest rate we now obtain as
follows: We insert the market-price-of-risk ηt obtained from (28) in the ex-
pression for µc(t) in (27). This gives

ρµc(t) = r − δ +
1

2
(1 +

1

ρ
)(ρσ′c(t) + (γ − ρ)σ′V (t))(ρσc(t) + (γ − ρ)σV (t))

+
1

ρ
(ρ− γ)(ρσ′c(t) + (γ − ρ)σ′V (t))σV (t) +

1

2

γ

ρ
(1− ρ)(γ − ρ)σ′V (t)σV (t).

From this expression we obtain the equilibrium risk-free interest rate in terms
of σV (t) as

rt = δ + ρ µc(t)−
1

2
ρ(1 + ρ)σ′cσc − ρ(γ − ρ)σ′c(t)σV (t)

− 1

2
(γ − ρ)(1− ρ)σ′V (t)σV (t). (37)

The final step is to use the expression for σV (t) = 1
1−ρ(σW (t)−ρσc(t)) in this

formula. The result is

rt = δ + ρµc(t)−
1

2

ρ(1− ργ)

1− ρ
σ′c(t)σc(t) +

1

2

ρ− γ
1− ρ

σ′W (t)σW (t). (38)

The present derivation is different from the ones in the literature, showing
that the results (34) and (37) are indeed robust.

Duffie and Epstein (1992a) derives the same expression (36) for the risk
premium, in their seminal paper on the subject, based on dynamic program-
ming. They have no expression for the equilibrium, real interest rate rt. In
their derivation, using the Bellman equation, the volatilities involved needed
to be constants.

We see that when time preference can be separated from risk preferences,
the former is contained in all the terms appearing in the conventional model,
since only consumption related parameters occur in that framework. When
the quantity σV (t) enters, the relative risk aversion γ also appears.

Consider for example the three first terms on the right hand side of rt in
(37). The two first terms are as in the classical Ramsey model, where there
is no risky securities. The third term corresponds to precautionary savings
in the standard model. Faced with increasing consumption uncertainty, the
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’prudent’ consumer will save and the interest rate accordingly falls in equilib-
rium. Risk aversion only appears in the last two terms, where also the wealth
portfolio of risky securities enters. For recursive utility this property is more
naturally linked to the last term in (38). When the wealth uncertainty in-
creases, the interest rate falls provided γ > ρ and ρ < 1, or γ < ρ and ρ > 1.
Furthermore, the equity premium increases in the same parameter ranges.

Also the structure of the risk premium in (34) is noteworthy. The first
term is the covariance rate between aggregate consumption and the wealth
portfolio, in which case the time preference enters. Only when γ is different
from ρ a second term appears, where the risk aversion matters as well.

5.2 Calibrating to data

The summary statistics for the US economy for the period 1889 -1978 is
presented in Table 1. This table is based on the paper by Mehra and Prescott
(1985)4. By σc,M(t) we mean the instantaneous covariance rate between the
return on the index S&P-500 and the consumption growth rate, in the model
a progressively measurable, ergodic process, where κM,c is the associated
instantaneous correlation coefficient. Similarly, σMb(t) and σcb(t) are the
corresponding covariance rates between the index M and government bills b
and between aggregate consumption c and Government bills, respectively. 5.

Expectation Standard dev. covariances

Consumption growth 1.81% 3.55% σ̂Mc = .002268
Return S&P-500 6.78% 15.84% σ̂Mb = .001477
Government bills 0.80% 5.74% σ̂cb = −.000149
Equity premium 5.98% 15.95%

Table 1: Key US-data for the time period 1889 -1978. Continuous-time
compounding. κ̂M,c = .4033.

Based on the drift and volatility terms of aggregate consumption given
in (27) and (28), we have two ’equations in three unknowns’ which can be
used to calibrate the preference parameters γ, ρ and δ to the US-data.

Making some reasonable assumption about the wealth portfolio, we can
calibrate consumption drift and volatility terms to the data summarized in

4There are of course newer data sets, and for other countries than the US, but they
all retain these basic features. The data is adjusted from discrete-time to continuous-time
compounding.

5These quantities are ”estimated” directly from the original data obtained from R.
Mehra, using the ergodic assumption, and estimates are denoted by σ̂M,c, etc.
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Table 1. Assuming the wealth portfolio has volatility σW (t) = .10 with an
instantaneous correlation coefficient κW,M(t) = .8, using (36) and (38) we
obtain, for example, δ = .02, ρ = .77 and γ = 2.0. This corresponds to
ψ = 1.3 for the EIS-parameter. These estimates seem plausible, and many
other reasonable combinations fit these equations as well.

In contrast, a similar calibration of the conventional Eu- model leads to
the (unique) values γ = 26 and δ = −.015, none of which are very plausible.
This is the equity premium puzzle; an unreasonably large risk aversion, a
negative impatience rate, and a very low value of EIS (.037).

The data used above covers a period where stock market participation
was rather low, down to around 8-10 per cent. Guevenen (2009) considers a
discrete time model with two agents.

Figure 1 illustrates the early/late resolution issue. The point ’Calibr
1’ in the figure corresponds to the typical calibration point mentioned in
the text. The point ’CAPM++’ corresponds to ρ = 0, in which case we
have a dynamic version of the CAPM, in a recursive utility setting with an
associated equilibrium short rate rt. When the market portfolio is a proxy
for the wealth portfolio, the point ρ = 0, γ = 2.38, δ = .038 results.

6 Some properties of the optimal pension

Returning to the life cycle model, let us briefly consider pensions. Towards
this end, let Tx be the remaining life time of a person who entered into a
pension contract at age x. Let [0, τ ] be the support of Tx. The single premium
of an annuity paying one unit per unit of time is given by the formula

ā(r)
x =

∫ τ

0

e−rt
lx+t

lx
dt, (39)

where r is the short term interest rate, and P (Tx > t) := lx+t
lx

in actuarial
notation, where lx os the decrement function. The single premium of a
”temporary annuity” which terminates after time n is

ā
(r)
x:n̄| =

∫ n

0

e−rt
lx+t

lx
dt. (40)

Consider the following income process et:

et =

{
y, if t ≤ n;

0, if t > n
(41)

Here y is a constant, interpreted as the consumer’s salary when working, and
n is the time of retirement for a pension insurance buyer, who initiated a
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Figure 1: Calibration points in the (γ, ρ)-space

pension insurance contract in age x. Equality in the budget constraint can
then be written

E
(∫ τ

0

(et − c∗t )πtP (Tx > t)dt
)

= 0.

which is The Principle of Equivalence.
For the standard Eu-model, the optimal life time consumption (t ∈ [0, n])

and pension (t ∈ [n, τ ]) is

c∗t = y
ā

(r)
x:n̄|

ā
(r̃)
x

exp
{

(
1

γ
(r − δ) +

1

2ρ
η2)t+

1

γ
ηBt

}
, (42)

provided the agent is alive at time t (otherwise c∗t = 0). The initial value c0

is then

c0 = y
ā

(r)
x:n̄|

ā
(r̃)
x

where

r̃ = r − 1

ρ
(r − δ) +

1

2

1

γ
(1− 1

γ
) η′η. (43)
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The premium intensity pt at time t while working is given by pt = y − c∗t ,
an Ft- adapted process. This shows that the same conclusions hold for the
optimal pension as with optimal consumption with regard to the sensitivity
of stock market uncertainty, e.g., the mutuality principle holds for pensions
with expected utility.

This model may be taken as support for unit linked pension insurance,
or, defined contribution (DC)-plans. Here all the financial risk resides with
the customers.

Optimal pensions in the the life cycle model with recursive utility goes
as follows: The optimal life time consumption (t ∈ [0, n]) and pension (t ∈
[n, τ ]) is

c∗t = y
ā

(r)
x:n̄|

ā
(r̂)
x

exp
{

(
1

ρ
(r − δ) +

1

2ρ
η2 +

1

2ρ
(γ − ρ)(1− γ)σ2

V )t

+
1

ρ
(η + (ρ− γ)σV )Bt

}
, (44)

provided the agent is alive at time t (otherwise c∗t = 0). Here

r̂ = r − 1

ρ
(r − δ) +

1

2

1

ρ
(1− 1

ρ
) η′η +

1

ρ
(
1

ρ
− 1) (ρ− γ) ησV

− 1

ρ
(γ − ρ)

(1

ρ
(γ − ρ) +

1

2
(1− γ)

)
σ2
V . (45)

The premium intensity is given by the Ft-adapted process pt := y − c∗t . As
can be seen, the optimal pension with recursive utility is being ”smoothened”
in the same manner as the optimal consumption, summarized in Theorem 1.

A positive shock to the economy via the term Bt increases the optimal
pension benefits via the term ηBt, which may be mitigated, or strenghtend by
the term (ρ− γ)σVBt, depending on its sign. When (γ > ρ), then σV (t) > 0
and shocks to the economy are smoothened in the optimal pension with RU.
This indicates that the pensioner in this model can be considerably more
sophisticated than the one modeled in the conventional way when ρ = γ. We
summarize as follows:

Proposition 2 Under the same assumptions as in Theorem 1, the individual
with recursive utility will prefer a pension plan that smoothens market shocks
provided the consumer prefers early resolution of uncertainty to late (γ > ρ).

This result points in the direction of defined benefit pension plan rather than
a defined contribution plan, since the inequality γ > ρ is likely to hold for
most people.
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7 Life Insurance

We now turn to life insurance in the recursive model. Since life insurance
has many of the characteristics of an ordinary insurance contract, one would
conjecture that risk aversion is the more prominent property for this type of
contracts, while consumption substitution is more essential for pensions. We
now address this distinction. First notice that V (T ) = u(T ) is the terminal
condition with life insurance when T = Tx, assuming u is a bequest utility
function.

Recursive utility is now a function U : L+ × L+ → R. The problem can
be formulated as follows:

sup
z,c≥0

U(c, z) (46)

subject to

E
{
πTxW (Tx)

}
≥ E

{
πTxz

}
, (47)

where W (t) is the consumer’s net saving at time t given by

W (t) =
1

πt

∫ t

0

πs(es − cs)ds. (48)

The budget constraint (47) says that the present value of the terminal wealth
is sufficient to cover the amount of life insurance. In life and pension insur-
ance this constraint is in expectation, meaning pooling over the population.
It is this element that gives the individual the benefit of using the life and
pension insurance market to save for longevity. Without such a market, the
budget constraint would instead be an (a.s.) inequality between the corre-
sponding random variables. Clearly the above constraint is less strict, hence
gives at least as large life time consumption, including life insurance, as with-
out insurance available.

We proceed as before and assume first a fixed horizon τ in the initial
specification of recursive utility. Then future utility is given by

Vt = E
(∫ τ

t

f̃(cs, Vs, Zs)ds+ u(z)
)
,

where u is the bequest utility function, and where z is the amount of life
insurance payable. (Schroder and Skiadas (1999) treat terminal utility when
f̃ = f , i.e. for the ordinally equivalent version of utility). As for the conven-
tional model, this quantity is a random variable. Here the assumption is that
the agent is alive at time t. Recursive utility is now given by U(c, z) = V0.

22



As for pensions we use the principle of equivalence when introducing
mortality. The Lagrangian of the problem is then

L(c, z;α) = U(c, z)− αE
[
πTxz −

∫ τ

0

πt(et − ct)
lx+t

lx
dt
]
.

Using directional derivatives, the first order condition in c is:

5cL(c, z;α; c̃) = 0, ∀c̃ ∈ L+,

which, according to (20), is equivalent to

απt = Yt
∂f

∂c
(ct, Vt) a.s. for all t ∈ [0, τ ],

independent of the horizon τ , and of mortality, since the survival probability
simply cancels. This leads to the optimal consumption/pension for any α > 0

c∗t =
(απt
Ytδ

)− 1
ρ
Vt

Likewise, the first order condition in the amount of life insurance z is:

5zL(c, z;α; z̃) = 0, ∀z̃ ∈ L+,

which is equivalent to

E
{(
YTx

∂u(z)

∂z
− απTx

)
z̃
}

= 0, ∀z̃ ∈ L+. (49)

Here z and z̃ are F ∨ σ(Tx) - measurable. For (49) to hold true, it follows
that

z = u′−1
(απTx
YTx

)
, (50)

assuming the derivative of the bequest utility function u′ is invertible.
As an illustration suppose u(z) = 1

1−θz
1−θ, so that θ is the relative risk

aversion of the bequest utility function. Then the optimal amount of life
insurance is

z =
(απTx
YTx

)− 1
θ
. (51)

Comparing this with the corresponding expression zcm for the conventional
model, which is

zcm =
(απTx
YTx

)− 1
γ

(conventional model),
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where YTx = e−δTx , we notice that this is quite analogous, except for a more
complicated formula for the adjoint variable Y in the recursive model.

In both models risk aversion is seen to be the essential property for
the optimal amount of life insurance, not consumption substitution. Recall,
in the conventional model there is only one parameter (with two distinct
interpretations). This is not to say that the time preference ρ does not
matter for the recursive specification (YTx depends on both γ and ρ), but ρ
does not affect the state price deflator πt at the terminal time, which is the
important issue here.

As with pensions, the multiplier α is determined from equality in the
budget constraint. Thus we consider the equation

E
[
πTxz −

∫ τ

0

πt(et − ct)
lx+t

lx
dt
]

= 0.

With a constant income of y up to the time n of retirement, and a pension
thereafter as the basis for determining the endowment process e, we obtain
the equation

α−
1
θE
{∫ τ

0

exp
(
− (r(1− 1

θ
)t− 1

2
η′η

1

θ
(1− 1

θ
)t− η(1− 1

θ
)Bt

+

∫ t

0

( δ

(1− ρ)θ
(1− c1−ρ

u V 1−ρ
u )− 1

2θ
γ(1− γ)σ′V (u)σV (u)

)
du

+
γ

θ

∫ t

0

σV (u)dBu

)
fx(t)dt

}
+ α−

1
ρ ā(r̂)

x = yā
(r)
x:n̄|, (52)

where r̂ is as given in (45), equation (18) has been used, and fx(t) is the
probability density function of Tx. Furthermore, we have used the CRRA
bequest function u′(z) = z−θ, and made the common assumption that lx+τ =
0. This determines the multiplier α0. It is at this point that pooling takes
place in the contract. In this situation the optimal consumption (t ∈ [0, n])
and pension (t ∈ (n, τ)) is given by

c∗t = α
− 1
ρ

0 exp
{

(
1

ρ
(r − δ) +

1

2ρ
η2 +

1

2ρ
(γ − ρ)(1− γ)σ2

V )t

+
1

ρ
(η + (ρ− γ)σV )Bt

}
, (53)

provided the agent is alive at time t, and the optimal amount of life insurance
at time Tx of death of the insured is

z∗ =
(α0πTx
YTx

)− 1
θ
. (54)
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The premium intensity paid while working is pt = y−c∗t , which is naturally
larger than without life insurance included.

When ρ = γ, the equation (52) for α0 simplifies to

α−
1
θ

(
1− r1ā

(r1)
x

)
+ α−

1
ρ ā(r̂)

x = yā
(r)
x:n̄|, (55)

where

r1 := r − 1

θ
(r − δ) +

1

2
η′η

1

θ
(1− 1

θ
),

which is the same result as obtained in the conventional model. Also, the
optimal amount of life insurance is determined jointly, through the constant
α0, with the optimal consumption/pension.

8 Portfolio choice with recursive utility

We now address the optimal investment strategy that the recursive utility
consumer will use in order to obtain the optimal consumption.

Consider an agent with recursive utility who takes the market introduced
in Section 2 as given. In this setting we now analyze optimal portfolio choice.
We then have the following result:

Proposition 3 The optimal portfolio fractions in the risky assets are given
by

ϕ(t) =
1− ρ
γ − ρ

(σtσ
′
t)
−1νt −

ρ(1− γ)

γ − ρ
(σtσ

′
t)
−1(σtσ

∗
c (t)),

assuming γ 6= ρ. Here σc∗(t) is the volatility of the optimal consumption
growth rate of the individual.

Proof: First we recall the dynamics of the optimal consumption for the indi-
vidual investor under consideration. The volatility σc∗(t) has been shown in
(28) of Section 3.4 to be

σc∗(t) =
1

ρ

(
ηt + (ρ− γ)σV (t)

)
,

where σtηt = νt is the market-price-of-risk given in Section 2. Also, the
volatility of utility is given by

σV (t) =
1

1− ρ
(σW (t)− ρσc∗),

as shown in Aase (2014), where σW (t) is the volatility of the agent’s wealth
portfolio. The dynamics of the wealth is given in (9) of Section 2, implying
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that σW (t) = σ′tϕt (see Section 6). This leads to a single equation for ϕt, and
the solution is given by the above formula. �

The optimal fractions with recursive utility depend on both risk aversion
and time preference as well as the volatility σc∗ of the optimal consumption
c∗t of the agent. This latter quantity is usually not directly observable for an
individual. However, for institutions this matter is different.

In each period the consumer both consumes and invests for future con-
sumption. Compared to the expected utility consumer, the recursive agent
consumes less in good times, and then invests more for future consump-
tion, and vice versa in bad times. This is how this consumer can average
consumption across time in a more efficient manner than the conventional
theory predicts. The recursive utility maximizer considers more than one
period at the time which allows for a smoother consumption path. Here the
expected utility agent is just myopic.

Based on the conventional, pure demand theory of this paper, by assum-
ing a relative risk aversion of around two, the optimal fraction in equity is
119% follows from the standard formula ϕ = 1

γ
(σtσ

′
t)
−1νt (see Mossin (1968),

Merton (1971), Samuelson (1969)), using the summary statistics of Table 1,
and assuming one single risky asset, the index itself. In contrast, depending
upon estimates, the typical household holds between 6% to 20% in equity.
Conditional on participating in the stock market, this number increases to
about 40% in financial assets. Recent estimates are close to 60%, includ-
ing indirect holdings via pension funds invested in the stock market. In the
above application this formula reduces to ϕ = 1

γ
(σRσ

′
R)−1(µR − r). Notice

that here γ = ρ.
One could object to this that the conventional model is consistent with

a value for γ around 26 only. Using this value instead, the optimal fraction
in equity is down to around 9%, which in isolation seems reasonable enough.
However, such a high value for the relative risk aversion is considered im-
plausible, as discussed before.

As an illustration of the general formula, consider the standard situation
with one risky and one risk-free asset, interpreting the S&P-500 index as the
risky security, and employ the data of Table 1. The recursive model explains
an average of 14 per cent in risky securities for the following parameter values
γ = 2.6 and ρ = .96. Given participation in the stock market, when γ = 2.5
and ρ = .74, then ϕ = .40. If ϕ = .60, this can correspond to γ = 2.0 and
ρ = .7, etc., a potential resolution of this puzzle.

In addition to the insurance industry, other interesting applications would
be to management of funds that invests public wealth to the benefits of
the citizens of a country, or the members of a society large enough for an
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estimate of the volatility of the consumption growth rate of the group to be
available. One such example is the Norwegian Government Pension Fund
Global (formerly the Norwegian Petroleum Fund).

9 Summary

For the conventional model with additive and separable utility risk aversion
and intertemporal elasticity of substitution in consumption sometimes play
conflicting roles when discussing optimal consumption. We propose to look
at a wider class of utility functions, recursive utility, to sort out some of these
problems.

Formally we used the theory of backward stochastic differential equations
and the stochastic maximum principle to find the optimal consumption path
in the life cycle model. These are robust methods that can be used to solve
rather difficult problems. For example did we analyze directly the representa-
tion of recursive utility that disentangles consumption substitution from risk
aversion in the most direct and clear manner. For this representation we may
readily change risk aversion while holding consumption substitution fixed. A
major advantage with recursive utility is that it disentangles intertemporal
substitution from risk aversion. This allows us to learn how and where these
different properties of an individual influence the optimal consumption path.

We obtained several new insights of relevance for optimal consumption/
pension, which also has consequences for what services ought to be provided
by financial institutions in society.

We show that the recursive utility customer finds it optimal to smooth
market shocks to a larger extent than the conventional model predicts. One
question is then how this can be accomplished in the real world. This is of
great importance when analyzing pensions and life insurance contracts, where
insuring consumers against adverse shocks in the market should be a main
issue. After the financial crisis in 2008, insurers seem eager to pass all or most
of the financial risk to its customers, presenting them with mainly defined
contribution pension plans, or unit linked plans. The lessons from the present
paper for the insurance industry is clear: To provide the kind of consumption
smoothing that consumers of the last century seem to prefer, which points
in the direction of defined benefit rather than defined contribution, or unit
linked pension plans.

It follows from our model how aggregate consumption in society can be
as smooth as implied by data, and at the same time be consistent with the
relatively large, observed growth rate. Since the recursive model fits market
data much more convincingly than the conventional model, this leaves more
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credibility to the former representation, and weight to our recommendation.
Finally we discussed some issues related to life insurance with recursive

utility.
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