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Abstract

We determine the optimal timing for replacement of an emerging technology facing uncertainty

in both the output price and the arrival of new versions. Via a sequential investment framework,

we determine the value of the investment opportunity, the value of the project, and the optimal

investment rule under three different strategies: compulsive, laggard, and leapfrog. In the first

one, we assume that a firm invests sequentially in every version that becomes available, whereas

in the second and third ones, it can choose an older or a newer version, respectively. We show

that, under a compulsive strategy, technological uncertainty has a non–monotonic impact on the

optimal investment decision. In fact, uncertainty regarding the availability of future versions may

actually hasten investment in the current one. Next, by comparing the relative values of the three

strategies under different rates of technological innovation, we find that, under a low output price,

the compulsive strategy always dominates, whereas, at a high output price, the incentive to wait for

a new version and adopt either a leapfrog or a laggard strategy increases as the rate of innovation

increases, while high price uncertainty mitigates this effect.
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1. Introduction

The implications of output price and technological uncertainty for investment and operational de-

cisions are crucial as they are not only pertinent to various industries, e.g., renewable energy (RE),

information technologies, and telecommunications, but also influence many of their participants,

e.g., private investors, research and development (R&D) units, etc. For example, given a specific

rate of innovation, a firm’s optimal strategy for upgrading equipment may influence a manufac-

turer’s R&D strategy and vice versa. Indeed, in the RE sector, Vestas faced unfavourable market

conditions when it failed to foresee that the demand for new turbines would weaken after 2008 and

continued to invest in manufacturing capacity and R&D (Financial Times, 2012). Similarly, taking

into account that RE projects are capital intensive, investors in wind turbines may have foregone

revenues by adopting an old technology without anticipating the likely arrival of more efficient

ones. Here, we take the perspective of a firm that invests and operates a project under price and

technological uncertainty in order to provide insights on how to develop an optimal strategy for

technology adoption.

Although both technological decay and the random arrival of innovations reflect technological

uncertainty, empirical evidence has shown that the latter presents a greater incentive for replacing

a technology. For example, in the computer industry, hardware and software companies often

design a new version so that the value of an earlier one is reduced. As a result, private investors

replace equipment typically due to planned obsolescence and not because their lifetime has expired

(The Economist, 2009). This has far–reaching consequences considering that many industries, e.g.

smart phones, rely gradually more on computer technologies, and, thus, private investors are faced

with the task of making timely investment and operational decisions under increasing technological

uncertainty. Similarly, in the area of wind turbines, empirical research has indicated that innovation,

rather than technological decay, is the primary cause of turbine replacement (Jensen et al., 2002).

Of course, the replacement of a RE technology may be also influenced by other factors that are

beyond the scope of this paper, e.g., the limited availability of resource–rich locations. For example,

the opportunity cost from delaying the replacement of wind turbines in wind–rich locations is

endogenously related to the availability of land. Consequently, empirical analysis has indicated

that policies that are implemented in order to encourage the scrapping of older, poorly placed

turbines are inefficient as they have a larger effect on turbines that are located in areas with better

wind resources (Mauritzen, 2014).

Furthermore, estimating the profit of projects based on emerging technologies is a complicated

process as it typically depends on several factors. For example, in the case of a wind farm, the

annual revenue may depend on electricity prices, wind speeds, and feed–in tariffs, as well as other

random variables. Thus, compared to commodity–based facilities that rely on more mature tech-
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nologies, RE projects are more exposed to output price and technological uncertainty as well as

their endogenous relationship. Nevertheless, in order to enable mathematical tractability, invest-

ment models usually address such features separately, and, as a result, questions regarding their

combined impact on investment and operational decisions remain open. In this paper, we address

this disconnect by developing a real options framework in order to address the problem of optimal

replacement of a technology under market and technological uncertainty. As a result, the contribu-

tion of this paper is threefold. First, we develop an analytical framework for sequential investment

under price and technological uncertainty. Second, we derive analytical and numerical results on

the effect of price and technological uncertainty as well as their interaction on the decisions to

upgrade a technology by replacing old equipment with more efficient ones. Third, we provide

managerial insights for investment and operational decisions based on analytical and numerical

results. Specifically, we show that price and technological uncertainty interact to affect the optimal

strategy adoption decision when the output price is high and that this decision is independent of

technological uncertainty when the output price is low.

We proceed by discussing some related work in Section 2 and introduce assumptions and nota-

tion in Section 3. We address the problem of exercising a single replacement option in Section 4.1

and analyse a compulsive strategy, where a firm adopts two subsequent technologies, in Section 4.2.

In Section 5, we analyse the case where a firm can adopt either a leapfrog or a laggard strategy, and

in Section 6, we compare these two strategies with the compulsive one and show how the optimal

strategy can be determined endogenously. Section 7 provides numerical examples for each case

and illustrates the interaction between price and technological uncertainty in order to enable more

informed investment and operational decisions. Section 8 concludes and offers directions for future

research.

2. Related Work

Although there is significant literature in the area of sequential investment, analytical formu-

lations of problems that combine price and technological uncertainty are limited. Early examples

in the area of sequential investment include Majd and Pindyck (1987), who value a sequential in-

vestment under uncertainty and analyse the flexibility that lies within the time it takes to build an

investment project, thereby showing how traditional valuation methods understate the value of a

project by ignoring this flexibility. Dixit and Pindyck (1994) develop an analytical framework for

sequential investment assuming that the output price follows a geometric Brownian motion (GBM),

the project value depreciates exponentially, and the investor has an infinite set of options.

More recent examples include Gollier et al. (2005), who allow for a construction lag between

subsequent stages and compare a flexible sequence of small nuclear power plants with a nuclear
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power plant of large capacity. By measuring the option value generated by the modularity of

the first project under electricity price uncertainty, they show that modularity may even trigger

investment in the initial module at a level below the now–or–never NPV threshold. Malchow–Møller

and Thorsen (2005) illustrate that, due to the possibility of updating equipment when investing in

an alternative energy technology, the required investment threshold is less sensitive to changes in

uncertainty and resembles the investment behaviour under the simple NPV rule. By contrast, the

value of waiting is reduced significantly compared to the single–option case. Heydari (2010) presents

a methodology for solving a sequential decision–making problem with lags under electricity price

uncertainty taking the perspective of a load–serving entity that has its representative consumer on

an interruptible load contract with multiple exercise opportunities. Kort et al. (2010) show that,

contrary to the conventional real options intuition, higher price uncertainty makes a single–stage

investment more attractive relative to a more flexible stepwise investment strategy.

In the area of investment under technological uncertainty, Balcer and Lippman (1984) analyse

the optimal timing of technology adoption under infinite switching options by assuming that inno-

vations follow a discrete semi–Markov process. They find that the timing of technology adoption

is influenced by expectations about future technological changes and that increasing technological

uncertainty tends to delay adoption. Grenadier and Weiss (1997) develop a model for the optimal

investment strategy of a firm that is confronted with a sequence of technological innovations as-

suming that technological progress follows a continuous–time stochastic process and that the price

is normally distributed. They consider four strategies; compulsive, leapfrog, buy and hold, and lag-

gard. In the first, a firm adopts every technology that becomes available, whereas in the second it

skips an old technology in order to adopt the next one. In the third strategy, a firm purchases only

an early innovation, and in the final strategy, it waits until a more efficient one becomes available

before adopting the previous technology. Their results indicate that, depending on technological

uncertainty, a firm may adopt an available technology even though more valuable innovations may

occur in the future, while future decisions on technology adoption are path dependent.

Farzin et al. (1998) investigate the optimal timing of technology adoption assuming ongoing

technological progress and irreversibility. Although they account for technological uncertainty by

assuming that new technologies arrive according to a Poisson process, they consider a deterministic

production function, thereby assuming no output price uncertainty. Doraszelski (2001) identifies

an error in Farzin et al. (1998) and shows that, compared to the NPV approach, a firm will defer

the adoption of a new technology when it takes the option value of waiting into account. Huisman

and Kort (2004) analyse a duopolistic competition in which firms face price and technological

uncertainty and show that a high arrival probability can turn a pre–emption game into a war

of attrition and that price uncertainty induces the adoption of a new technology. Miltersen and
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Schwartz (2007) develop a new real options approach for valuing R&D projects under uncertain

time to completion, operational flexibility, and competition.

An implication of technological uncertainty is that a firm may have to choose between alternative

projects. Dixit (1993) analyses an irreversible choice among mutually exclusive projects under out-

put price uncertainty and finds that increasing returns and uncertainty make it optimal to wait for

the largest project. Décamps et al. (2006) extend Dixit (1993) by providing parameter restrictions

under which the optimal investment strategy is not a trigger strategy and the optimal investment

region is dichotomous. Siddiqui and Fleten (2010) analyse how a firm may proceed with staged

commercialisation and deployment of competing alternative energy technologies. They consider a

setting where a firm can choose between a new alternative technology, which requires cost–reducing

enhancement measures prior to deployment, and an existing RE technology. Although these are

examples of analytical frameworks for investment in alternative projects, the availability of these

projects is taken for granted as it is not subject to a probability distribution.

In this paper, we develop a framework for sequential investment in which we analyse the trade–

off between continuing to run an old technology and replacing it with successively improved versions

under price and technological uncertainty. The arrival of innovations is modelled via a Poisson

process as it enables the analysis when firms have no information about the decisions made by

R&D companies. We analyse three strategies, i.e., compulsive, leapfrog, and laggard; however,

unlike Grenadier and Weiss (1997), we analyse their endogenous relation assuming a stochastic

price process that facilitates the analysis of the impact of price and technological uncertainty

on the optimal investment rule under each strategy. We show that, under a compulsive strategy,

technological uncertainty has a non–monotonic impact on the optimal investment decision and may

actually accelerate investment. Additionally, we determine the range of prices where the optimal

strategy depends on technological uncertainty and find that the required rate of innovation for

which a firm may consider waiting for the next technology decreases as the output price increases.

3. Assumptions and Notation

Taking the perspective of a price–taking firm, we assume that it has n = 1, 2, 3, ..., N investment

options available with N < ∞. Given a probability space (Ω,F ,P), we assume that technological

innovations follow a Poisson process {Mt, t ≥ 0}, where t is continuous and denotes time. The

process Mt is defined in (1):

Mt =
∑
k≥1

1{t≥Tk} (1)

where T
k
=
∑k

n=1 yn and {yn , n ≥ 1} is a sequence of independent and identically distributed

random variables, such that yn ∼ exp(λ),∀n ≥ 1, i.e., fY (y) = λe−λy
�{y≥0}. Parameter λ ∈ R

+
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denotes the intensity of the Poisson process and is independent of t. Intuitively, Mt counts the

number of random times T
k
that occur between 0 and t, and yn = Tn − Tn−1 is the time interval

between subsequent innovations. Hence, if no innovation has occurred for t years, then, with

probability λdt, an innovation will occur within the next short interval of time dt, i.e.,

dMt =

⎧⎪⎨
⎪⎩
1 ,with probability λdt

0 ,with probability 1− λdt

We assume that there is no operating cost associated with the technology, and that the revenue at

time t, Et, is independent of the Poisson process and follows a GBM that is described in (2), where

μ is the annual growth rate, σ the annual volatility, dZt the increment of the standard Brownian

motion, and ρ the subjective discount rate.

dEt = μEtdt+ σEtdZt, E0 ≡ E > 0 (2)

The output of technology version n is Dn (Dn+1 ≥ Dn , ∀n), and the corresponding investment cost

is In (In+1 ≥ In , ∀n). Additionally, τ
(N)

�,m,n
, where �,m, n ∈ N, is the time at which technology m

is adopted given that technology � < m is installed while replacement n, n ≥ m > �, is available,

and ε
(N)

�,m,n
denotes the corresponding optimal adoption threshold with N total versions available.

For example, τ
(N)

0,1,2
is the optimal time to invest in technology 1 when technology 2 is the latest

one available and no technology is currently in operation, while ε
(N)

0,1,2
is the corresponding optimal

investment threshold. All options are perpetual and installed technologies last forever. Finally,

F
(N)

�,m,n
(·) is the maximised expected NPV from investment in technology m given that technology �

is in operation and technology n is the latest one available for adoption, while Φ
(N)

n,n
(·) is the expected

value of an active project inclusive of embedded options when technology n is installed and is also the

latest one available. Notice that, in order to have a trade off between an old and a more efficient

technology, we assume that at the point of indifference, ε, where ε is such that Φ
(n)

n−1,n−1
(ε) =

Φ
(n)

n,n
(ε), we have Φ

(n)

n,n
(ε) > 0, which, in turn implies, Dn∑n

i=1 Ii
<

Dn−1∑n−1
i=1 Ii

, ∀n

4. Compulsive Strategy

4.1. N = 1

We assume that a firm holds a single option to invest in a technology that will become available

at a random time T1 (Figure 1). Figure 2 indicates the different states of operation and the value

function in each state. Notice that a transition due to a Poisson event is indicated by a broken

arrow whereas a transition due to investment by a solid arrow. In state (0, 0), the firm holds an

option to invest in a technology that is not available but may arrive according to a Poisson process.

When that happens, the firm moves into state (0, 1, 1) where it can exercise the option by incurring

a fixed cost, thus moving to state (1, 1) where it continues to operate technology 1 forever.

6



Investment in
technology 1

�

Arrival of
technology 1

� Φ
(1)

1,1
(E) · · ·� F

(1)

0,1,1
(E) �� Φ

(1)

0,0
(E) �

�

T10
•

τ
(1)

0,1,1

•�

t

Figure 1: Single investment option
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Figure 2: State transition diagram for N = 1

In order to determine the value function in each state, we work backwards and first consider

state (1,1). When the first technology becomes available, the firm has the option to incur a fixed

cost, I1 , in order to adopt it and the expected NPV from immediate investment is described in (3).

Φ
(1)

1,1
(E) =

D1E

ρ− μ
− I1 (3)

Notice that at T1 , we can have either E < ε
(1)

0,1,1
or E ≥ ε

(1)

0,1,1
. Thus, the value of the investment

opportunity in state (0, 1, 1) is described in (4)

F
(1)

0,1,1
(E) =

⎧⎪⎨
⎪⎩
A

(1)

0,1,1
Eβ1 , E < ε

(1)

0,1,1

Φ
(1)

1,1
(E) , ε

(1)

0,1,1
≤ E

(4)

where β1 > 1 and β2 < 0 are the roots of 1
2σ

2β(β − 1) + μβ − ρ = 0 (all proofs can be found in the

appendix). The endogenous constant, A
(1)

0,1,1
, and the investment threshold, ε

(1)

0,1,1
, are determined

via the value–matching and smooth–pasting conditions between the two branches of (4) and are

indicated in (5).

A
(1)

0,1,1
=

ε
(1)1−β1

0,1,1

β1

D1

ρ− μ
and ε

(1)

0,1,1
=

β1

β1 − 1

I1(ρ− μ)

D1

(5)

Notice that, since there are no embedded investment options to impact the initial investment

decision, ε
(1)

0,1,1
is independent of the rate of innovation, λ. Hence, a higher λ increases the likelihood

of an innovation but has no effect on the optimal investment rule, which is subject to the GBM.

In state (0, 0), an innovation has not occurred yet but is likely to occur at some random time,

T1 , in the future. Thus, the value function in (0, 0) is described in (6).

Φ
(1)

0,0
(E) = (1− ρdt)λdtEE

[
F

(1)

0,1,1
(E + dE)

]
+ (1− ρdt)(1− λdt)EE

[
Φ

(1)

0,0
(E + dE)

]
(6)

The first term on the right–hand side of (6) reflects the value of the option to adopt a technology

if it becomes available over the time interval dt, while the second term is the value of continuing to
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wait if an innovation does not take place over the time interval dt. By expanding the right–hand

side of (6) using Itô’s lemma, we can re–write (6) as follows:

1

2
σ

2
E

2
Φ

(1)′′

0,0
(E) + μEΦ

(1)′

0,0
(E)− (ρ+ λ)Φ

(1)

0,0
(E) + λF

(1)

0,1,1
(E) = 0 (7)

Notice that if E < ε
(1)

0,1,1
, then, even if an innovation takes place, it cannot be adopted immediately,

and F
(1)

0,1,1
(E) is expressed via the top part of (4). Otherwise, the expression for F

(1)

0,1,1
(E) is indicated

in the bottom part of (4). Hence, the differential equations for Φ
(1)

0,0
(E) are indicated in (8).⎧⎪⎨

⎪⎩
1
2σ

2
E

2
Φ

(1)′′

0,0
(E) + μEΦ

(1)′

0,0
(E) − (ρ+ λ)Φ

(1)

0,0
(E) + λA

(1)

0,1,1
Eβ1 = 0 , E < ε

(1)

0,1,1

1
2σ

2
E

2
Φ

(1)′′

0,0
(E) + μEΦ

(1)′

0,0
(E) − (ρ+ λ)Φ

(1)

0,0
(E) + λΦ

(1)

1,1
(E) = 0 , ε

(1)

0,1,1
≤ E

(8)

The expression for Φ
(1)

0,0
(E) is indicated in (9), where A

(1)

0,1,1
is described in (5), while A

(1)

0,0
< 0 and

B
(1)

0,0
> 0 are determined via the value–matching and smooth–pasting conditions and are indicated

in (A–11) and (A–12) respectively.

Φ
(1)

0,0
(E) =

⎧⎪⎨
⎪⎩
A

(1)

0,1,1
Eβ1 +A

(1)

0,0
Eδ1 , E < ε

(1)

0,1,1

λD1E

(ρ+λ−μ)(ρ−μ) −
λI1
ρ+λ +B

(1)

0,0
Eδ2 , ε

(1)

0,1,1
≤ E

(9)

Notice that δ1 > β2 > 1 and δ2 < β2 < 0 are the roots of the quadratic 1
2σ

2δ(δ−1)+μδ−(ρ+λ) = 0,

i.e., that λ = 0 ⇒ δ1 = β1 and δ2 = β2 . The first term in the top part of (9) is the option to

invest should an innovation arrive; however, since this option is not available yet, we need to

adjust the option value via the second term. The first term in the bottom part of (9) reflects

the expected present value of the revenues from the new technology, and the second term is the

expected investment cost. Finally, the third term reflects the probability that the price will drop

into the waiting region before the occurrence of the innovation. Notice that the relative loss in the

value function Φ
(1)

0,0
(E) due to technological uncertainty is described in (10).

F
(1)

0,1,1
(E)− Φ

(1)

0,0
(E)

F (1)

0,1,1
(E)

= − A
(1)

0,0
Eδ1

A(1)

0,1,1
Eβ1

, E < ε
(1)

0,1,1
(10)

Hence, if λ = 0, then no innovation will occur and Φ
(1)

0,0
(E) = 0. By contrast, when λ → ∞, the

loss in value due to the likelihood of an innovation converges to zero, and, thus, Φ
(1)

0,0
→ F

(1)

0,1,1
.

Consequently, Φ
(1)

0,0
∈
[
0, F

(1)

0,1,1

)
∀λ ∈ R

+ (see Propositions 4.1 and 4.2).

4.2. N = 2

We extend the previous framework by assuming that a firm holds two investment options and

that it invests in each technology that becomes available ignoring the option to wait to choose

between the two. Hence, the transition diagram of Figure 2 is extended by adding states (1, 2, 2)

and (2, 2).
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Figure 3: State transition diagram for N = 2

The expected NPV from immediate investment in the second technology is described in (11).

Φ
(2)

2,2
(E) =

D2E

ρ− μ
− (I2 + I1) (11)

Next, the value function in state (1, 2, 2) is indicated in (12)

F
(2)

1,2,2
(E) =

⎧⎪⎨
⎪⎩
Φ

(1)

1,1
(E) +A

(2)

1,2,2
Eβ1 , E < ε

(2)

1,2,2

Φ
(2)

2,2
(E) , ε

(2)

1,2,2
≤ E

(12)

where the endogenous constant A
(2)

1,2,2
and investment threshold ε

(2)

1,2,2
are indicated in (13).

A
(2)

1,2,2
=

ε
(2)1−β1

1,2,2

β1

(D2 −D1)

ρ− μ
and ε

(2)

1,2,2
=

β1

β1 − 1

I2(ρ− μ)

D2 −D1

(13)

Thus, the value of a project with an installed first technology and a single remaining embedded

investment option, given that the new technology is not available yet, is

Φ
(2)

1,1
(E) =

⎧⎪⎨
⎪⎩
Φ

(1)

1,1
(E) +A

(2)

1,2,2
Eβ1 +A

(2)

1,1
Eδ1 , E < ε

(2)

1,2,2

E[λD2+(ρ−μ)D1 ]
(ρ+λ−μ)(ρ−μ) − λI2

ρ+λ +B
(2)

1,1
Eδ2 − I1 , ε

(2)

1,2,2
≤ E

(14)

where A
(2)

1,1
< 0 and B

(2)

1,1
> 0 are determined via the value–matching and smooth–pasting conditions

between the two branches of (14) and are indicated in (B–6) and (B–7) respectively. The first term

in the top part of (14) is the expected value from operating the first technology, while the second

term reflects the option to invest in the second technology, which is not available yet, and, therefore,

must be adjust via the third term. The first term in the bottom part of (14) reflects the expected

present value of the revenues from the second technology and the second term is the expected

investment cost. Finally, the third term is the probability that the price will drop into the waiting

region before the occurrence of the innovation. As in (10), a higher λ increases the likelihood

of the second innovation and reduces the relative loss in Φ
(2)

1,1
(E), which, in turn, implies that

Φ
(2)

1,1
(E) ∈

[
Φ

(1)

1,1
(E), F

(2)

1,2,2
(E)
)

∀λ ∈ R
+. These results are shown more generally in Propositions

4.1 and 4.2. Notice that, under a compulsive strategy, m = �+ 1 and n = m+ 1 ∀�,m, n ∈ N.

Proposition 4.1. ∀�,m, n ∈ N the relative loss in Φ
(n)

m,m
(E) converges to zero as λ → ∞, i.e.,

λ → ∞ ⇒ F
(n)

m,n,n
(E)− Φ

(n)

m,m
(E)

F
(n)

m,n,n
(E)

→ 0, ∀E < ε
(n)

m,n,n

Proposition 4.2. ∀�,m, n ∈ N and ∀λ ∈ R
+, Φ

(m)

�,�
(E) ∈

[
Φ

(�)

�,�
(E), F

(m)

�,m,m
(E)
)
, E ≤ ε

(m)

�,m,m
.
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Next, we step back and consider the option to invest in the first technology that includes an

embedded option to perform a single replacement. Notice that the value of an active project with

a single embedded replacement option is described in (14) for E < ε
(2)

1,2,2
. Consequently, F

(2)

0,1,1
(E) is

described in (15), where the top part reflects the value of the option to invest and the bottom part

is the expected NPV at investment. Notice that the latter consists of the value from investment in

the first technology and a single embedded option to upgrade it when an innovation occurs.

F
(2)

0,1,1
(E) =

⎧⎪⎨
⎪⎩
A

(2)

0,1,1
Eβ1 , E < ε

(2)

0,1,1

Φ
(2)

1,1
(E) , ε

(2)

0,1,1
≤ E

(15)

Although the optimal investment threshold ε
(2)

0,1,1
and the endogenous constant A

(2)

0,1,1
are now

obtained numerically via the value–matching and smooth–pasting conditions (B–9) and (B–10), it

is possible to investigate the impact of λ on ε
(2)

0,1,1
by expressing F

(2)

0,1,1
(E) as in (16).

F
(2)

0,1,1
(E) =

(
E

ε
(2)

0,1,1

)β1
[
D1ε

(2)

0,1,1

ρ− μ
− I1 +A

(2)

1,2,2
ε
(2)β1

0,1,1
+A

(2)

1,1
ε
(2)δ1

0,1,1

]
,∀E < ε

(2)

0,1,1
(16)

Then, the optimal investment rule is indicated in (17) where we equate the marginal benefit (MB)

of delaying investment to the marginal cost (MC).(
E

ε(2)
0,1,1

)β1
[

D1

ρ− μ
+

β1

ε(2)
0,1,1

I1 − β1A
(2)

1,1
ε
(2)δ1−1

0,1,1

]
=

(
E

ε(2)
0,1,1

)β1 [
β1D1

ρ− μ
− δ1A

(2)

1,1
ε
(2)δ1−1

0,1,1

]
(17)

The first term on the left–hand side of (17) is the incremental project value created by waiting

until the price is higher, while the second term represents the reduction in the MC of waiting due

to saved investment cost. Similarly, the first term on the right–hand side reflects the opportunity

cost of forgone cash flows discounted appropriately. Since A
(2)

1,1
< 0, the third and second term

on the left– and right–hand side, respectively, reflect the loss in option value from not having the

second technology yet. Specifically, the third term on the left–hand side is the MB from postponing

the loss in value, whereas the second term on the right–hand side is the MC from a potentially

greater impact of the loss from waiting for a higher threshold price. Notice that it is the impact of

λ on these two terms that determines the overall behaviour of the ε
(2)

0,1,1
with respect to λ, and, as

Proposition 4.3 indicates more generally, the impact of λ on ε
(m)

�,m,m
is non–monotonic.

Proposition 4.3. ∀�,m, n ∈ N the impact of λ on ε
(n)

�,m,m
is non–monotonic.

Finally, we step back to state (0,0) in order to determine the value of a project with two embedded

replacement options that are subject to the arrival of the corresponding technologies. Notice that,

unlike (7), now the value of the first investment option, F
(2)

0,1,1
(E), includes a single embedded

option to perform one upgrade and that, as long as ε
(2)

0,1,1
< ε

(2)

1,2,2
, the solution depends on whether

10



E < ε
(2)

0,1,1
or E ≥ ε

(2)

0,1,1
. If E < ε

(2)

0,1,1
, then, even if the first technology became available, it would

still be optimal to delay investment, whereas if E ≥ ε
(2)

0,1,1
, then investment should be exercised

immediately. The expression of Φ
(2)

0,0
(E) is indicated in (18), where A

(2)

0,0
< 0 and B

(2)

0,0
> 0 are

obtained via the value–matching and smooth–pasting conditions between the two branches and are

indicated in (B–14) and (B–15) respectively.

Φ
(2)

0,0
(E) =

⎧⎪⎨
⎪⎩
A

(2)

0,1,1
Eβ1 +A

(2)

0,0
Eδ1 , E < ε

(2)

0,1,1

λD1E

(ρ+λ−μ)(ρ−μ) −
λI1
ρ+λ + A

(2)

1,2,2
Eβ1 +A

(2)

1,1
Eδ1 +B

(2)

0,0
Eδ2 , ε

(2)

0,1,1
≤ E

(18)

Similarly, we can determine the required investment threshold and the value of the option to invest

for a project with any number of replacement options under a compulsive strategy.

5. Leapfrog versus Laggard Strategy

It is possible that a better technology becomes available while a firm waits in order to invest

in an existing one, thus replacing the initial investment option with the option to choose between

two alternative technologies. Here, we assume that a firm would not want to adopt an existing

technology before comparing it to the next one. Consequently, the transition from (0,1,1) to (1,1)

is not possible, and the only state prior to (1,2,2) is (0,1∨2), from which the firm may either adopt

a laggard strategy and invest in the first technology with the embedded option to upgrade to the

second or adopt a leapfrog strategy and invest directly in the second technology (Figure 4). Since

the analysis related to states (2,2) and (1,2,2) is the same as in Section 4.2, we proceed directly

to state (2, 2). Notice that if the firm adopts the second technology directly from (0,1∨2), then it

does not incur the cost I1 , and the expected NPV from immediate investment is indicated in (19).

Φ
(2)

2,2
(E) =

D2E

ρ− μ
− I2 (19)

Next, we consider state (0,1∨2) where the firm has the option to choose either the first technology

with the option to switch to the second or the second technology directly. Due to the presence of

the second technology, there exist two waiting regions, i.e.,
(
0, ε

(2)

0,1,2

]
and

[
ε
(2)

0,1,2
, ε

(2)

0,2,2

]
. If E < ε

(2)

0,1,2
,

then the firm will adopt a laggard strategy, i.e., wait until E = ε
(2)

0,1,2
and then invest in the first

technology. If E ∈
[
ε
(2)

0,1,2
, ε

(2)

0,2,2

]
, then the firm can either adopt a laggard or a leapfrog strategy.

Specifically, if the output price increases to ε
(2)

0,2,2
, then the firm will invest in the second technology,

but if it drops to ε
(2)

0,1,2
, then it will invest in the first one. Consequently, the laggard strategy is

adopted either when the output price is low, i.e., E < ε
(2)

0,1,2
, and increases to ε

(2)

0,1,2
or when the

output price is high, i.e., E ∈
[
ε
(2)

0,1,2
, ε

(2)

0,2,2

]
, and decreases to ε

(2)

0,1,2
.
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Figure 4: State transition diagram for N = 2 under leapfrog and laggard strategy

Hence, assuming that ε
(2)

0,1,2
< ε

(2)

1,2,2
, then according to Décamps et al. (2006), the value function

in state (0,1∨2) is indicated in (20), where A
(2)

0,1∨2
and ε

(2)

0,1,2
are determined via the value–matching

and smooth–pasting conditions between the first two branches, while ε
(2)

0,1,2
, ε

(2)

0,2,2
, G

(2)

0,1∨2
, and H

(2)

0,1∨2

via the second, third, and fourth branch.

F
(2)

0,1∨2
(E) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
(2)

0,1∨2
Eβ1 , E < ε

(2)

0,1,2

F
(2)

1,2,2
(E) , ε

(2)

0,1,2
≤ E ≤ ε

(2)

0,1,2

G
(2)

0,1∨2
Eβ2 +H

(2)

0,1∨2
Eβ1 , ε

(2)

0,1,2
< E < ε

(2)

0,2,2

Φ
(2)

2,2
(E) , ε

(2)

0,2,2
≤ E

(20)

Interestingly, although now both technologies are available, and, as a result, there is no loss in

the value of the option to invest in the first one, the corresponding investment threshold under a

laggard strategy when E < ε
(2)

0,1,2
is greater than that under a compulsive strategy when the arrival

of the second innovation is uncertain, i.e., ε
(2)

0,1,2
> ε

(2)

0,1,1
, whereas ε

(2)

0,1,2
= ε

(2)

0,1,1
when λ = 0 or λ → ∞.

More generally, Proposition 5.1 shows that the absence (λ = 0) or presence (λ → ∞) of the second

technology does not affect the decision to invest in the first one and indicates that a firm is more

willing to adopt the current technology when the arrival of a subsequent one is uncertain.

Proposition 5.1. ∀�,m, n ∈ N we have ε
(n)

�,m,m
< ε

(n)

�,m,n
∀λ ∈ (0,+∞), whereas λ = 0 ⇒ ε

(n)

�,m,m
=

ε
(n)

�,m,n
and λ → ∞ ⇒ ε

(n)

�,m,m
→ ε

(n)

�,m,n
.

The value function in state (0,1,1) is described in (21). The first term on the right–hand side is the

option to invest in the first technology with an embedded option to upgrade to the second one if no

innovation takes place within the time interval dt. However, as the second term indicates, if during

dt an innovation occurs, then the firm obtains the option to choose between two technologies.

F
(2)

0,1,1
(E) = (1− ρdt)(1 − λdt)EE

[
F

(2)

0,1,1
(E + dE)

]
+ (1− ρdt)λdtEE

[
F

(2)

0,1∨2
(E + dE)

]
(21)

Notice that (21) has to be solved separately for each of the four regions of E that are indicated in
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(20). By substituting for F
(2)

0,1∨2
(E) in (21), we obtain the four differential equations for F

(2)

0,1,1
(E).

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1
2σ

2
E

2
F

(2)′′

0,1,1
(E) + μEF

(2)′

0,1,1
(E)− (ρ+ λ)F

(2)

0,1,1
(E) + λA

(2)

0,1∨2,2
Eβ1 = 0 , E < ε

(2)

0,1,2

1
2σ

2
E

2
F

(2)′′

0,1,1
(E) + μEF

(2)′

0,1,1
(E)− (ρ+ λ)F

(2)

0,1,1
(E) + λF

(2)

0,2,2
(E) = 0 , ε

(2)

0,1,2
≤ E ≤ ε

(2)

0,1,2

1
2σ

2
E

2
F

(2)′′

0,1,1
(E) + μEF

(2)′

0,1,1
(E)− (ρ+ λ)F

(2)

0,1,1
(E)

+ λ
[
G

(2)

0,1∨2
Eβ2 +H

(2)

0,1∨2
Eβ1

]
= 0 , ε

(2)

0,1,2
< E < ε

(2)

0,2,2

1
2σ

2
E

2
F

(2)′′

0,1,1
(E) + μEF

(2)′

0,1,1
(E)− (ρ+ λ)F

(2)

0,1,1
(E) + λF

(2)

2,2
(E) = 0 , ε

(2)

0,2,2
≤ E

(22)

By solving for F
(2)

0,1,1
(E), we obtain the solution indicated in (23), where A

(2)

1,2,2
is described in (13)

and the endogenous constants A
(2)

0,1,1
, L

(2)

0,1,1
, P

(2)

0,1,1
, Q

(2)

0,1,1
, R

(2)

0,1,1
, and J

(2)

0,1,1
are determined numerically

via the value–matching and smooth–pasting conditions between the branches of (23).

F
(2)

0,1,1
(E) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
(2)

0,1∨2
Eβ1 + P

(2)

0,1,1
Eδ1 , E < ε

(2)

0,1,2

λD1E
(ρ+λ−μ)(ρ−μ) − λI1

ρ+λ +A
(2)

1,2,2
Eβ1 + L

(2)

0,1,1
Eδ1 +B

(2)

0,1,1
Eδ2 , ε

(2)

0,1,2
≤ E ≤ ε

(2)

0,1,2

G
(2)

0,1∨2
Eβ2 +H

(2)

0,1∨2
Eβ1 +Q

(2)

0,1,1
Eδ1 +R

(2)

0,1,1
Eδ2 , ε

(2)

0,1,2
< E < ε

(2)

0,2,2

λD2E

(ρ+λ−μ)(ρ−μ) −
λI2
ρ+λ + J

(2)

0,1,1
Eδ2 , ε

(2)

0,2,2
≤ E

(23)

Finally, following the same steps as in the case of F
(2)

0,1,1
(E), we can determine the value function

in state (0, 0). Notice that, without loss of generality, the comparison of F
(2)

0,1,1
(E) under the two

strategies can be done in state (0, 1, 1), and, therefore, the analysis of state (0, 0) is omitted. In

fact, since we know from Proposition 5.1 that ε
(2)

0,1,1
≤ ε

(2)

0,1,2
, the comparison of the strategies at

(0, 1, 1) can be made separately for each of the regions of E that are indicated in (15) and (23).

6. Comparison of the Strategies

Despite the incentive to delay investment in an old technology in order to compare it with a

newer one, it is possible that by the time that the latter becomes available it is already optimal to

invest in the former. Here, we extend Section 5 by assuming that the choice of strategy depends on

E and λ, and, thus, it is not determined exogenously. Hence, both (0, 1, 1) → (1, 1) and (0,1,1)→
(0,1∨2) are possible transitions (Figure 5), and the final choice of strategy is endogenous.
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Figure 5: State transition diagram for N = 2 under leapfrog and laggard strategy
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Figure 6 summarises the possible strategies for different values of E and λ. As shown in Proposition

6.1, the compulsive strategy is optimal ∀λ ∈ R
+ within the first two price regions, i.e., E ≤ ε

(2)

0,1,2
.

Intuitively, even if a second technology were available, then a firm would have to wait long before

the output price reaches the corresponding investment threshold and the expected payoff from

investment in the second technology does not offset the forgone revenues from skipping the first

one. By contrast, in the third and fourth region, i.e., E > ε
(2)

0,1,2
, the optimal strategy depends on λ.

Indeed, the required λ for which a firm may consider waiting for the next technology decreases as

the output price increases, and, as shown in Proposition 6.2, it is possible to determine the required

value of λ ∀E > ε
(2)

0,1,2
. Additionally, high price uncertainty delays investment in both the first and

the second technology and facilitates a laggard strategy in state (0,1∨2), thereby increasing the

range of prices where a leapfrog or a laggard strategy may be considered.

E

σ σ σ

•
ε
(2)

0,1,2

•
ε
(2)

0,1,2

•
ε
(2)

0,2,2

•λ1

λ2

λ

•

Compulsive

Compulsive

Compulsive

Compulsive

Compulsive Compulsive

LeapfrogLeapfrog/

Laggard

Figure 6: Comparison of the strategies

More specifically, notice that in the first two regions, i.e., E ∈
(
0, ε

(2)

0,1,2

]
, the compulsive strategy

always dominates the leapfrog/laggard strategy (Proposition 6.1). Indeed, under a leapfrog/laggard

strategy, F
(2)

0,1,1
(E) consists of the expected payoff from investment in the first technology with a

single embedded option to replace it conditional on the arrival of the second innovation. Hence,

F
(2)

0,1,1
(E) is greater under a compulsive strategy ∀λ ∈ R

+, since the firm receives the same payoff

without having to wait for the second innovation. Consequently, if E ∈
(
0, ε

(2)

0,1,2

]
the firm does

not need to wait until ε
(2)

0,1,2
in order to invest in the first technology (Décamps et al., 2006), since,

under a compulsive strategy, the investment option should be exercised at ε
(2)

0,1,1
≤ ε

(2)

0,1,2
.

Proposition 6.1. ∀E ∈
(
0, ε

(2)

0,1,2

]
, if the investment region in state (0, 1 ∨ 2) is dichotomous, then

the compulsive strategy dominates the leapfrog/laggard strategy ∀λ ∈ R
+.

By contrast, when the output price is high, i.e., E > ε
(2)

0,1,2
, it is possible that a laggard or a leapfrog

strategy dominates. Intuitively, a high output price compensates for a low λ and increases the

14



incentive to wait for the second technology, while a low output price increases the rate λ for which

a firm may consider waiting for the second technology. More specifically, if E ∈
(
ε
(2)

0,1,2
, ε

(2)

0,2,2

]
, then

the payoff from a compulsive strategy must be compared to the value of the option to choose either

one of the two technologies. In effect, the value of the option to choose between two technologies

may be higher than the expected NPV from adopting the older one if the rate of innovation in high.

Similarly, if E ∈
(
ε
(2)

0,2,2
,∞
)
, then the value from immediate investment in the second technology,

which, under a leapfrog strategy, is contingent upon its arrival, must be compared to the value

from immediate investment in the first technology with an embedded option to upgrade it. If λ is

high, then it may be preferable to wait for the second innovation rather than invest in the first one.

As Proposition 6.2 indicates, ∀E ∈
(
ε
(2)

0,1,2
,∞
]
it is possible to determine the optimal strategy for

each pair (E,λ) as well as the minimum rates λ1 and λ2 for which a firm would adopt a leapfrog

or a leapfrog/laggard strategy respectively.

Proposition 6.2. ∃ λ1 , λ2 ∈ R
+ with λ1 ≤ λ2 :

i : ∀λ > λ1 , ∃B ⊆
(
ε
(2)

0,2,2
,∞
)
: ∀E ∈ B, the leapfrog strategy dominates

ii : ∀λ > λ2 , ∃A ⊂
(
ε
(2)

0,1,2
, ε

(2)

0,2,2

]
: ∀E ∈ A, the leapfrog/laggard strategy dominates

Hence, by taking into account the arrival of innovations, we obtain the maximised value in state

(0, 1, 1), which is described in (24). The first two branches of (24) indicate that the compulsive

strategy is always better for E < ε
(2)

0,1,2
regardless of λ. However, as the bottom two branches

indicate, for E > ε
(2)

0,1,2
the optimal strategy depends on E and λ.

F
(2)

0,1,1
(E) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

A
(2)

0,1,1
Eβ1 , E < ε

(2)

0,1,2

Φ
(2)

1,1
(E) +A

(2)

1,2,2
Eβ1 +A

(2)

1,1
Eδ1 , ε

(2)

0,1,2
< E < ε

(2)

0,1,2

maxE,λ

{
Φ

(2)

1,1
(E) +A

(2)

1,2,2
Eβ1 +A

(2)

1,1
Eδ1 ,

G
(2)

0,2
Eβ2 +H

(2)

0,2
Eβ1 +Q

(2)

0,1,1
Eδ1 +R

(2)

0,1,1
Eδ2
}

, ε
(2)

0,1,2
< E < ε

(2)

0,2,2

maxE,λ

{
Φ

(2)

1,1
(E) +A

(2)

1,2,2
Eβ1 +A

(2)

1,1
Eδ1 ,

λD2E

(ρ+λ−μ)(ρ−μ) −
λI2
ρ+λ + J

(2)

0,1,1
Eδ2
}

, ε
(2)

0,2,2
≤ E

(24)

7. Numerical Results

7.1. Compulsive Strategy with N = 1

For the numerical results, the values of the different parameters are ρ = 0.1, μ = 0.01, and

σ ∈ [0, 0.3]. Also, for the purposes of the analysis we assume that λ ∈ [0, 1]. We begin with the

case of N = 1 and set I1 = 1500 and D1 = 16. Figure 7 illustrates the value of a single investment

option, F
(1)

0,1,1
(·), the expected NPV from exercising it, Φ

(1)

1,1
(·), and the value of an option to perform

a single upgrade which is not available yet, Φ
(1)

0,0
(·). Notice that the value function in state (0, 0)
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increases with higher λ. Indeed, for λ = 0, no innovation will take place, and, as a result, the

firm will continue to wait forever. By allowing for λ > 0, the likelihood of an innovation increases,

thereby raising the value function Φ
(1)

0,0
(·). Once a new technology arrives, the firm has the option to

adopt it, and the required investment threshold is ε
(1)

0,1,1
= 14.06. Notice that there are no additional

investment options available to influence the value of the initial investment decision. As a result,

conditional on the arrival of an innovation, the likelihood of exercising the investment option in

state (0,1,1) is subject only to the underlying stochastic process. Consequently, as indicated in (5),

λ impacts the likelihood of an innovation but not the required investment threshold.
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Figure 7: Option and project value under a compulsive strategy with N = 1, σ = 0.2, and λ = 0, 0.01, 0.1

7.2. Compulsive Strategy with N = 2

Next, we extend the case of compulsive strategy by assuming that a firm holds two investment

options. Figure 8 illustrates the value functions in states (2, 2), (1, 2, 2), (1, 1), (0, 1, 1), and (0, 0).

The numerical assumptions I1 = 500,D1 = 8, I2 = 1500, and D2 = 16, imply that the second

technology is three times as expensive as the first one and twice as efficient, i.e., they satisfy the

assumption
D2

I1+I2
<

D1
I1

. For λ = 0.01, Figure 8 illustrates the value of the investment options

F
(2)

0,1,1
(·) and F

(2)

1,2,2
(·), the corresponding expected NPVs from exercising them, i.e., Φ

(2)

1,1
(·) and

Φ
(2)

2,2
(·) respectively, and, finally, the value of a project with two embedded investment options,

Φ
(2)

0,0
(·), that are subject to the arrival of the corresponding technologies. Like in the case N = 1,

the value function F
(2)

1,2,2
(·) and the investment threshold ε

(2)

1,2,2
are independent of λ. For λ = 0.01,
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the value function in state (0,0) increases with E since now both of the embedded investment

options have a positive value. Additionally, in state (0, 1, 1) the value of the embedded investment

option is positive but, since the arrival of the second technology remains uncertain, F
(2)

0,1,1
(·) lies

between Φ
(2)

0,0
(·) and F

(2)

1,2,2
(·), as shown in Proposition 4.2. In fact, F

(2)

0,1,1
(·) is greater than Φ

(2)

0,0
(·)

since in state (0, 0) the availability of the two technologies is uncertain, while, at the same time, it

is lower than F
(2)

1,2,2
(·) where both technologies are available.
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Figure 8: Option and project value under a compulsive strategy with N = 2, σ = 0.2, and λ = 0.01

The left panel in Figure 9 illustrates the relative loss in the value function, Φ
(2)

1,1
(·), due to the

likelihood associated with the arrival of the second innovation. This is expressed in (25), where

F
(2)

1,2,2
(E) is the value of the option to invest when the first technology is in operation and the second

technology is available for adoption.

F
(2)

1,2,2
(E)− Φ

(2)

1,1
(E)

F (2)

1,2,2
(E)

, E ≤ ε
(2)

1,2,2
(25)

Notice that for λ = 0, we have A
(2)

1,1
= −A

(2)

1,2,2
, and, thus, the relative loss in Φ

(2)

1,1
(·) is maximised

since the value of the embedded option to invest in the second technology is zero. Then, for

low values of λ, the relative loss in Φ
(2)

1,1
(·) decreases quickly because a higher λ increases the

likelihood of the arrival of the second technology. Above a certain value of λ, the decrease is less

pronounced since the likelihood of at least one innovation occurring converges to one, and, as a

result, the relative loss in option value converges to zero, as shown in Proposition 4.1. As the
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right panel illustrates, for low values of λ the rapid decrease in the relative loss in Φ
(2)

1,1
(·) increases

the incentive to invest and lowers the required investment threshold, ε
(2)

0,1,1
. Surprisingly, however,

ε
(2)

0,1,1
does not always decrease with higher λ. Indeed, when λ is low, ε

(2)

0,1,1
decreases as the rate of

innovation increases; however, as λ increases further, ε
(2)

0,1,1
increases and converges to its value for

λ = 0, as shown in Proposition 5.1. Intuitively, when the rate of innovation is low, the extra benefit

due to the decrease in the relative loss in Φ
(2)

1,1
(·) is more pronounced than the incentive to delay

investment. By contrast, when innovations arrive more frequently, the decrease in the relative loss

in Φ
(2)

1,1
(·) is less pronounced than the value of waiting, which increases with higher uncertainty.

Finally, uncertainty raises the value of the investment opportunity, thereby increasing the incentive

to delay investment, and, in turn, the required investment threshold, while, at the same time, it

makes the non–monotonic impact of λ on ε
(2)

0,1,1
more pronounced.
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Figure 9: Relative loss in option value (left) and optimal investment threshold (right) versus σ, λ

In order to obtain additional insights on the impact of λ on ε
(2)

0,1,1
, Figure 10 illustrates the MB

and MC of delaying investment for σ = 0.2 and λ = 0, 0.1, 0.3. Notice that, as λ increases, both the

MB and the MC of delaying investment decrease because the frequent arrival of new technologies

erodes the value of waiting to invest in the currently available technology and lowers the forgone

revenues from waiting. Intuitively, for low λ, technologies are not arriving frequently, and, as a

result, a firm would be more willing to adopt the current technology sooner in order to have a shot

at the yet unreleased version. By contrast, as λ increases, innovations take place more frequently,

thereby increasing the incentive to delay investment in order to avoid making a mistake.
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7.3. Leapfrog versus Laggard Strategy

Figure 11 illustrates the value functions in the states (0, 1∨ 2) and (0, 1, 1), when the transition

from (0,1,1) to (1,1) is not considered. If E < 9.37, then the firm must wait until E = 9.37 and

adopt the first technology. Also, if E ∈ [10.96, 14.51], then, due to the presence of the second

technology, the firm has to wait again, i.e., refrain from adopting any technology. Specifically, if

E increases to 14.51, then the firm will invest directly in the second technology, but if E drops to

10.96, then it will invest in the first technology while holding the option to switch to the second.

Notice that the value function F
(2)

0,1,1
(·) is lower than F

(2)

0,1∨2
(·) because F

(2)

0,1∨2
(·) reflects the value of

the option to choose between two technologies that are available, whereas F
(2)

0,1,1
(·) reflects the same

value function in the absence of the second technology. However, as λ increases, the loss in value

due to the likelihood associated with the arrival of the second technology decreases and F
(2)

0,1,1
(·)

converges to F
(2)

0,1∨2
(·).
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Figure 11: Option and project value for N = 2, σ = 0.2 under leapfrog and laggard strategy

The impact of volatility on the optimal investment thresholds ε
(2)

0,1,2
, ε

(2)

0,1,2
, ε

(2)

1,2,2
, and ε

(2)

0,2,2
is

illustrated in Figure 12. Notice that, since the investment thresholds ε
(2)

0,1,2
and ε

(2)

0,1,2
move in

opposite directions with higher volatility, it is possible that ε
(2)

0,1,2
> ε

(2)

0,1,2
. In that case, the region of

direct investment in the first technology disappears, and, therefore, it is optimal to adopt a leapfrog

strategy, i.e., wait until E = ε
(2)

0,2,2
and then invest in the second technology.
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7.4. Comparison of the Strategies

Figure 13 illustrates the value function F
(2)

0,1,1
(·) under a compulsive and a leapfrog/laggard

strategy for λ = 0.1 and 0.6. Notice that an increase in λ, which is indicated by the direction of

the arrows, increases the value of the embedded options and causes both value functions to shift

upward, yet the value function under a compulsive strategy is less responsive. Interestingly, when

λ = 0.1, the value function in state (0,1,1) is always greater under a compulsive strategy than under

a leapfrog/laggard strategy, while, for λ = 0.6, the leapfrog/laggard strategy dominates when the

output prices is high. Notice that, as shown in Proposition 6.2, the leapfrog/laggard strategy can

dominate only for E > ε
(2)

0,1,2
, whereas the compulsive strategy dominates always when E < ε

(2)

0,1,2
as

shown in Proposition 6.1.
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Figure 13: Comparison of the value function F
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0,1,1(E) under the two strategies for σ = 0.2 and λ = 0.1, 0.6

The left panel in Figure 14 illustrates the relative value of the two strategies for E < ε
(2)

0,1,2
.

More specifically, (26) compares the first branch of (15) with the first branch of (23).

A
(2)

0,1,1
Eβ1

A
(2)

0,1∨2
Eβ1 + P

(2)

0,1,1
Eδ1

(26)

Similarly, the right panel compares the two strategies for E > ε
(2)

0,2,2
> ε

(2)

0,1,1
, i.e., the second branch

of (15) with the fourth branch of (23).

Φ
(1)

1,1
(E) +A

(2)

1,2,2
Eβ1 +A

(2)

1,1
Eδ1

λD2E
(ρ+λ−μ)(ρ−μ) − λI2

ρ+λ + J
(2)

0,1,1
Eδ2

(27)

According to the left panel, it is always better to adopt a compulsive strategy when the output

price is low because, even if a second technology were available, it would still be optimal to delay

21



investment until E = ε
(2)

0,1,2
and then invest in the first technology. Intuitively, the firm would have

to wait too long before adopting the second technology and the corresponding revenues do not

offset the foregone cash flows from ignoring the first one. Notice also that the relative value of

the compulsive strategy increases as output price uncertainty decreases. This happens because a

more stable economic environment reduces the likelihood of an unexpected increase in the output

price, and, in turn, the opportunity cost from adopting the strategy. By contrast, as the right

panel illustrates, if the output price is high, then the relative value of the two strategies can drop

below one when λ is high, thereby indicating that the expected value from adopting a leapfrog or

a laggard strategy exceeds that of the compulsive strategy. This happens because a higher output

price reduces the expected time until investment in the second technology is justified, while, at the

same time, a high λ decreases the feasibility of the compulsive strategy by reducing the expected

time between subsequent innovations. Again, this result is more pronounced under lower price

uncertainty since this decreases the likelihood of an unexpected downturn.

0.1 0.2 0.3 0.4 0.5 0.6
1

1.02

1.04

1.06

1.08

1.1

1.12

1.14

1.16

1.18

Poisson Intensity, λ

R
el

at
iv

e
V

al
ue

of
,F

(2
)

0
,1

,1
(·)

 

 

σ = 0.3
σ = 0.2

0.1 0.2 0.3 0.4 0.5 0.6
0.9

1

1.1

1.2

1.3

1.4

1.5

Poisson Intensity, λ

R
el

at
iv

e
V

al
ue

of
,F

(2
)

0
,1

,1
(·)

 

 

σ = 0.3
σ = 0.2

Figure 14: Relative value of F
(2)
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Notice that these results are in line with Grenadier and Weiss (1997) who find that, as the expected

time of arrival of an innovation increases, the probability of adopting a leapfrog or a laggard strategy

drops to zero while the probability of adopting a compulsive strategy increases. Here, we extend

Grenadier and Weiss (1997) by allowing for price uncertainty via a continuous time stochastic

process, thereby relaxing the assumption of the static representation of price uncertainty. This not

only enables the derivation of price thresholds corresponding to each strategy but also facilitates

the analysis of the endogenous relation between price and technological uncertainty and its impact

on the optimal strategy selection decision.
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8. Conclusions

We develop a real options framework for sequential investment in order to address the prob-

lem of optimal replacement of an emerging technology under price and technological uncertainty.

Although such features are crucial for investment in many industries, analytical formulations of

sequential investment that include both of them are limited. Consequently, we extend the real

options approach by incorporating these features into an analytical framework for sequential in-

vestment, in order to obtain insights on their combined impact on the investors’ propensity to

upgrade equipment. We analyse three investment strategies; compulsive, laggard, and leapfrog. In

the first one, a firm invests in every technology that becomes available, whereas in the second and

third ones it can choose between an older and a newer technology respectively.

We find that, under a compulsive strategy, an increase in the rate of innovation does not affect

the optimal investment threshold when a firm holds a single investment option, even though it

increases the likelihood of an innovation. Interestingly, under multiple investment opportunities, the

impact of the rate of innovation on the initial investment decision is ambiguous. Indeed, although

a higher rate increases the likelihood of an innovation, and, in turn, the value of an investment

opportunity, the corresponding investment threshold may either increase or decrease. In fact,

uncertainty regarding the arrival of innovations may actually accelerate investment in a technology.

Moreover, a comparison of the strategies indicates that, when the output price is low, the compulsive

strategy is always better as long as, under a leapfrog/laggard strategy, the investment region is

dichotomous. However, when the rate of innovation is high, it is possible that the option to choose

between two technologies is more valuable than the immediate payoff from investment in the first

technology with an embedded option to switch to the second. The implications of the results are

crucial for the participants of many industries. For example, manufacturers of RE equipment can

develop more informed R&D strategies by anticipating the investors’ response to changes in the rate

that technologies become available, while policy measures for supporting RE via R&D funding can

become more efficient by taking into account the investors’ propensity to adopt new technologies.

Apart from market and technological uncertainty, several other uncertainties related to RE

projects are amenable to real options, which, in turn, offers directions for further research. For

example, it is possible to analyse policy uncertainty with respect to any change of a support scheme

via a regime–switching model based on a Markov–modulated Brownian motion. Hence, the current

framework can be extended to analyse not only the impact of policy uncertainty on investment and

operational decisions but also the endogenous relation between technological and policy uncertainty

as well as strategic interactions between competing investors and developers. Finally, it would be

interesting to allow for a different stochastic process, e.g., mean reverting process, in order to relax

the limitations inherent in the geometric Brownian motion.
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APPENDIX

Compulsive Strategy with N = 1

The value of the investment option in state (0, 1, 1) is indicated in (A–1).

F
(1)

0,1,1
(E) =

⎧⎪⎨
⎪⎩
(1− ρdt)EE

[
F

(1)

0,1,1
(E + dE)

]
, E < ε

(1)

0,1,1

Φ
(1)

1,1
(E) , E ≥ ε

(1)

0,1,1

(A–1)

By expanding the first branch on the right–hand side of (A–1) using Itô’s lemma, we obtain the

differential equation (A–2)

1

2
σ

2
E

2
F

(1)′′

0,1,1
(E) + μEF

(1)′

0,1,1
(E)− ρF

(1)

0,1,1
(E) = 0 (A–2)

which, for E < ε
(1)

0,1,1
, has the general solution that is indicated in (A–3).

F
(1)

0,1,1
(E) = A

(1)

0,1,1
Eβ1 + C

(1)

0,1,1
Eβ2 (A–3)

The second term on the right–hand side of (A–3) can be ruled out by noticing that as E → 0 the

value of the project becomes very small. However, since β2 < 0, we have C
(1)

0,1,1
Eβ2 → ∞ as E → 0.

Consequently, we must have C
(1)

0,1,1
= 0, and, thus,

F
(1)

0,1,1
(E) =

⎧⎪⎨
⎪⎩
A

(1)

0,1,1
Eβ1 , E < ε

(1)

0,1,1

Φ
(1)

1,1
(E) , E ≥ ε

(1)

0,1,1

(A–4)

where A
(1)

0,1
and ε

(1)

0,1,1
are determined via the value–matching and smooth–pasting conditions between

the two branches of (A–1) and are indicated in (A–5).

A
(1)

0,1,1
ε
(1)β1

0,1,1
= Φ

(1)

1

(
ε
(1)

0,1,1

)
β1A

(1)

0,1,1
ε
(1)β1−1

0,1,1
= Φ

(1)′

1

(
ε
(1)

0,1,1

)
⎫⎪⎬
⎪⎭⇒

ε
(1)

0,1,1
=

β1

β1 − 1

I1(ρ− μ)

D1

A
(1)

0,1,1
=

ε
(1)1−β1

0,1,1

β1

D1

ρ− μ

(A–5)

Next, we consider the value function in state (0, 0) where the first technology has yet to become

available. The value function in state (0, 0) is described in (A–6)

Φ
(1)

0,0
(E) = (1− ρdt) (1− λdt)EE

[
Φ

(1)

0,0
(E + dE)

]
+ (1− ρdt)λdtEE

[
F

(1)

0,1,1
(E + dE)

]
(A–6)

and by expanding the right–hand side using Itô’s lemma we obtain (A–7).

Φ
(1)

0,0
(E) = (1− (ρ+ λ)dt)

[
Φ

(1)

0,0
(E) +

1

2
σ

2
E

2
Φ

(1)′′

0,0
(E) dt+ μEΦ

(1)′

0,0
(E) dt

]

+ (1− ρdt)λdt

[
F

(1)

0,1,1
(E) +

1

2
σ

2
E

2
F

(1)′′

0,1,1
(E) dt+ μEF

(1)′

0,1,1
(E) dt

]
(A–7)
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After simplifying (A–7), we obtain the differential equation that describes Φ
(1)

0,0
(E).

1

2
σ

2
E

2
Φ

(1)′′

0,0
(E) + μEΦ

(1)′

0,0
(E)− (ρ+ λ)Φ

(1)

0,0
(E) + λF

(1)

0,1,1
(E) = 0 (A–8)

Notice that the solution depends on whether E < ε
(1)

0,1,1
or E ≥ ε

(1)

0,1,1
, i.e.,⎧⎪⎨

⎪⎩
1
2σ

2
E

2
Φ

(1)′′

0,0
(E) + μEΦ

(1)′

0,0
(E)− (ρ+ λ)Φ

(1)

0,0
(E) + λA

(1)

0,1,1
Eβ1 = 0 , E < ε

(1)

0,1,1

1
2σ

2
E

2
Φ

(1)′′

0,0
(E) + μEΦ

(1)′

0,0
(E)− (ρ+ λ)Φ

(1)

0,0
(E) + λD1E

ρ−μ − λI1 = 0 , ε
(1)

0,1,1
≤ E

(A–9)

The solution for Φ
(1)

0,0
(E) is indicated in (A–10), where, following the same reasoning as in (A–3),

we can rule out the terms containing the negative exponents, β2 and δ2 , in the top part of (A–10)

and the term containing the positive exponent δ1 in the bottom part of (A–10).

Φ
(1)

0,0
(E) =

⎧⎪⎨
⎪⎩
A

(1)

0,1,1
Eβ1 +A

(1)

0,0
Eδ1 , E < ε

(1)

0,1,1

λD1E

(ρ+λ−μ)(ρ−μ) −
λI1
ρ+λ +B

(1)

0,0
Eδ2 , ε

(1)

0,1,1
≤ E

(A–10)

The endogenous constants A
(1)

0,0
< 0 and B

(1)

0,0
> 0 are determined via the value–matching and

smooth–pasting conditions between the two branches of (A–10) at ε
(1)

0,1,1
and are indicated in (A–

11) and (A–12) respectively.

A
(1)

0,0
=

ε
(1)−δ1

0,1,1

δ2 − δ1

[
λ(δ2 − 1)D1ε

(1)

0,1,1

(ρ+ λ− μ)(ρ− μ)
+ (β1 − δ2)A

(1)

0,1,1
ε
(1)β1

0,1,1
− δ2λI1

ρ+ λ

]
(A–11)

B
(1)

0,0
=

ε
(1)−δ2

0,1,1

δ1 − δ2

[
λ(1− δ1)D1ε

(1)

0,1,1

(ρ+ λ− μ)(ρ− μ)
+ (δ1 − β1)A

(1)

0,1,1
ε
(1)β1

0,1,1
+

δ1λI1
ρ+ λ

]
(A–12)

�

Compulsive Strategy with N = 2

The value function in state (1, 2, 2) is indicated in (B–1)

F
(2)

1,2,2
(E) =

⎧⎪⎨
⎪⎩
Φ

(1)

1,1
(E) + (1− ρdt)EE

[
F

(2)

1,2,2
(E + dE)

]
Φ

(2)

2,2
(E)

=

⎧⎪⎨
⎪⎩
Φ

(1)

1,1
(E) +A

(2)

1,2,2
Eβ1 , E < ε

(2)

1,2,2

Φ
(2)

2,2
(E) , E ≥ ε

(2)

1,2,2

(B–1)

where the endogenous constant A
(2)

1,2,2
and investment threshold ε

(2)

1,2,2
are determined via value–

matching and smooth–pasting conditions between the two branches of (B–1) and are indicated in

(B–2).

A
(2)

1,2,2
=

ε
(2)1−β1

1,2,2

β1

D2 −D1

ρ− μ
and ε

(2)

1,2,2
=

β1

β1 − 1

I2(ρ− μ)

D2 −D1

(B–2)
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Next, we step back and consider the value function in state (1, 1), where the first technology

has already been adopted but the second one is not available yet.

Φ
(2)

1,1
(E) = D1Edt− ρI1dt + (1− ρdt)λdtEE

[
F

(2)

1,2,2
(E + dE)

]
+ (1− ρdt)(1− λdt)EE

[
Φ

(2)

1,1
(E + dE)

]
(B–3)

Expanding the right–hand side of (B–3) using Itô’s lemma we obtain (B–4)

1

2
σ

2
E

2
Φ

(2)′′

1,1
(E) + μEΦ

(2)′

1,1
(E)− (ρ+ λ)Φ

(2)

1,1
(E) +D1E − ρI1 + λF

(2)

1,2,2
(E) = 0 (B–4)

and by solving (B–4) separately for the two regions of E that are indicated in (B–1) we have

Φ
(2)

1,1
(E) =

⎧⎪⎨
⎪⎩
Φ

(1)

1,1
(E) +A

(2)

1,2,2
Eβ1 +A

(2)

1,1
Eδ1 , E < ε

(2)

1,2,2

E[λD2+(ρ−μ)D1]
(ρ+λ−μ)(ρ−μ) − λI2

ρ+λ +B
(2)

1,1
Eδ2 − I1 , ε

(2)

1,2,2
≤ E

(B–5)

where the endogenous constants A
(2)

1,1
< 0 and B

(2)

1,1
> 0 are obtain via the value–matching and

smooth–pasting conditions between the two branched of (B–5) and are indicated in (B–6) and

(B–7).

A
(2)

1,1
=

ε
(2)−δ1

1,2,2

δ2 − δ1

[
λ(δ2 − 1)(D2 −D1)ε

(2)

1,2,2

(ρ+ λ− μ)(ρ− μ)
− δ2λI2

ρ+ λ
− (δ2 − β1)A

(2)

1,2,2
ε
(2)β1

1,2,2

]
(B–6)

B
(2)

1,1
=

ε
(2)−δ2

1,2,2

δ1 − δ2

[
λ(1− δ1)(D2 −D1)ε

(2)

1,2,2

(ρ+ λ− μ)(ρ− μ)
+

δ1λI2
ρ+ λ

+ (δ1 − β1)A
(2)

1,2,2
ε
(2)β1

1,2,2

]
(B–7)

Next, the value of the option to invest in the first technology with an embedded option to invest

in the second, F
(2)

0,1,1
(E), is indicated in (B–8)

F
(2)

0,1,1
(E) =

⎧⎪⎨
⎪⎩
A

(2)

0,1,1
Eβ1 , E < ε

(2)

0,1,1

Φ
(2)

1,1
(E) , ε

(2)

0,1,1
≤ E

(B–8)

where Φ
(2)

1,1
(E) is described in (B–5), while A

(2)

0,1,1
and ε

(2)

0,1,1
are determined numerically via the

value–matching and smooth–pasting conditions (B–9) and (B–10) respectively.

A
(2)

0,1,1
ε
(2)β1

0,1,1
= Φ

(2)

1,1

(
ε
(2)

0,1,1

)
+A

(2)

1,2,2
ε
(2)β1

0,1,1
+A

(2)

1,1
ε
(2)δ1

0,1,1
(B–9)

β1A
(2)

0,1,1
ε
(2)β1

0,1,1
=

D1ε
(2)

0,1,1

ρ− μ
+ β1A

(2)

1,2,2
ε
(2)β1

0,1,1
+ δ1A1,1ε

(2)δ1

0,1,1
(B–10)

Finally, the value function in state (0, 0) is described in (B–11)

Φ
(2)

0,0
(E) = (1− ρdt)λdtEE

[
F

(2)

0,1,1
(E + dE)

]
+ (1− ρdt)(1 − λdt)EE

[
Φ

(2)

0,0
(E + dE)

]
(B–11)

and the differential equation for Φ
(2)

0,0
(E) is indicated in (B–12).

1

2
σ

2
E

2
Φ

(2)′′

0,0
(E) + μEΦ

(2)′

0,0
(E)− (ρ+ λ)Φ

(2)

0,0
(E) + λF

(2)

0,1,1
(E) = 0 (B–12)
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The expression of Φ
(2)

0,0
(E) is indicated in (B–13)

Φ
(2)

0,0
(E) =

⎧⎪⎨
⎪⎩
A

(2)

0,1,1
Eβ1 +A

(2)

0,0
Eδ1 , E < ε

(2)

0,1,1

λD1E
(ρ+λ−μ)(ρ−μ) − λI1

ρ+λ +A
(2)

1,2,2
Eβ1 +A

(2)

1,1
Eδ1 +B

(2)

0,0
Eδ2 , ε

(2)

0,1,1
≤ E

(B–13)

where the endogenous constants A
(2)

0,0
< 0 and B

(2)

0,0
> 0 are determined via the value–matching and

smooth–pasting conditions between the two branches of (B–13) and are indicated in (B–14) and

(B–15) respectively.

A
(2)

0,0
=

ε
(2)−δ1

0,1,1

δ2 − δ1

[
λ(δ2 − 1)D1ε

(2)

0,1,1

(ρ+ λ− μ)(ρ− μ)
+ (β1 − δ2)A

(2)

0,1,1
ε
(2)β1

0,1,1
− δ2λI1

ρ+ λ
+ (δ2 − β1)A

(2)

1,2,2
ε
(2)β1

0,1,2

+ (δ2 − δ1)A
(2)

1,1
εδ1
0,1,1

]
(B–14)

B
(2)

0,0
=

ε
(2)−δ2

0,1,2

δ1 − δ2

[
λ(1− δ1)D1ε

(2)

0,1,1

(ρ+ λ− μ)(ρ− μ)
+ (δ1 − β1)A

(2)

0,1,1
ε
(2)β1

0,1,1
+

δ1λI1
ρ+ λ

− (δ1 − β1)A
(2)

1,2,2
ε
(2)β1

0,1,1

]
(B–15)

�
Proposition 4.1 ∀�,m, n ∈ N the relative loss in Φ

(n)

m,m
(E) converges to zero as λ → ∞, i.e.,

λ → ∞ ⇒ F
(n)

m,n,n
(E)− Φ

(n)

m,m
(E)

F
(n)

m,n,n
(E)

→ 0, ∀E < ε
(n)

m,n,n

Proof: The value of the option to invest in state (m,n, n) is described in (B–16).

F
(n)

m,n,n
(E) = Φm(E)�m>0 +Am,nE

β1 , ∀E < ε
(n)

m,n,n (B–16)

Following from (9), (14), and (18), the value function in state (m,m) under a compulsive strategy

is described in (B–17)

Φ
(n)

m,m
(E) = Φ

(m)

m,m
(E)�m>0 +A

(n)

m,n,n
Eβ1 +A

(n)

m,m
Eδ1 , ∀E < ε

(n)

m,n,n
(B–17)

where the first term on the right–hand side is the expected value of technology m and the second

term is the value of the option to invest in technology n, which is not available yet and thus the

option must be adjusted via the third term. Consequently, the relative loss in the value function

Φ
(n)

m,m
(E) due to technological uncertainty is indicated in (B–18).

F
(n)

m,n,n
− Φ

(n)

m,m

F
(n)

m,n,n

=
−A

(n)

m,m
Eδ1

Φ
(m)

m,m
(E)��>0 +A

(n)

m,n,n
Eβ1

(B–18)

Notice that λ → ∞ ⇒ A
(n)

m,m
→ 0. This happens because λ → ∞ ⇒ Eδ1 → ∞. Hence, if λ → ∞

and A
(n)

m,m
< 0, then A

(n)

m,m
Eδ1 → −∞. Hence, we conclude that λ → ∞ ⇒ A

(n)

m,m
→ 0. Conse-

quently, λ → ∞ ⇒ F
(n)

m,n,n
−Φ

(n)

m,m

F
(n)
m,n,n

→ 0. �
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Proposition 4.2: ∀�,m, n ∈ N and ∀λ ∈ R
+, Φ

(m)

�,�
(E) ∈

[
Φ

(�)

�,�
(E), F

(m)

�,m,m
(E)
)
, E ≤ ε

(m)

�,m,m
.

Proof: From (12) and (14) we have that the general expression for F
(m)

�,m,m
(E) and Φ

(m)

�,�
(E) are:

F
(m)

�,m,m
(E) = Φ

(�)

�,�
(E) +A

(m)

�,m,m
Eβ1 (B–19)

Φ
(m)

�,�
(E) = Φ

(�)

�,�
(E) +A

(m)

�,m,m
Eβ1 +A

(m)

�,�
Eδ1 (B–20)

(i) Notice that λ = 0 ⇒ δ1 = β1 , δ2 = β2 , A
(m)

�,�
= −A

(m)

�,m,m
and B

(n)

m,m
= 0. Thus, Φ

(m)

�,�
(E) =

Φ
(�)

�,�
(E), ∀E ≤ ε

(m)

�,m,m
, i.e., the value function at each state consists only of the value of the active

project since no embedded options are available.

(ii) Next, we consider the case λ → ∞. If λ > 0, then A
(m)

�,�
< 0 and, since A

(m)

�,m,m
> 0, we have

Φ
(m)

�,�
(E) = Φ

(�)

�,�
(E) + A

(m)

�,m,m
Eβ1 + A

(m)

�,�
Eδ1 < Φ

(m)

�,�
(E) + A

(m)

�,m,m
Eβ1 = F

(m)

�,m,m
(E),∀E < ε

(n)

�,m,m
. Ac-

cording to the probability of no event occurring in the unit of time, we have λ → ∞ ⇒ P [N = 0] =

e−λ → 0. Hence, λ → ∞ ⇒ A
(m)

�,�
Eδ1 → 0 and, thus, limλ→∞Φ

(m)

�,�
(E) = F

(m)

�,m,m
(E), ∀E < ε

(m)

�,m,m
. �

Proposition 4.3 ∀�,m, n ∈ N the impact of λ on ε
(n)

�,m,m
is non–monotonic.

Proof: From (B–17), the value of the option to invest in state (�,m,m) can be written as in (B–21).

F
(n)

�,m,m
(E) = Φ

(�)

�,�
(E)��>0 +A

(n)

�,m,m
Eβ1

= Φ
(�)

�,�
(E)��>0 +

(
E

ε
(n)

�,m,m

)β1 [
Φ

(m)

m,m

(
ε
(n)

�,m,m

)
+A

(n)

m,n,n
εβ1

�,m,m
+A

(n)

m,m
ε
(n)δ1

�,m,m

]
(B–21)

In order to investigate the impact of λ on the optimal investment threshold, we rewrite the MB and

MC of delaying investment. Notice that λ impacts only the last term of the left– and right–hand

side of (B–22).(
E

ε
(n)

�,m,m

)β1
[

Dm

ρ− μ
+

β1

ε
(n)

�,m,m

Im − β1A
(n)

m,m
ε
(n)δ1−1

�,m,m

]
=

(
E

ε
(n)

�,m,m

)β1 [
β1Dm

ρ− μ
− δ1A

(n)

m,m
ε
(n)δ1−1

�,m,m

]
(B–22)

Consequently, the overall impact of λ on ε
(n)

�,m,m
can be determined by its impact on these two terms.

Therefore, we define the function h(·) as in (B–23).

h(λ) = δ1A
(n)

m,m
− β1A

(n)

m,m
⇒ ∂h(λ)

∂λ
=

∂δ1
∂λ

A
(n)

m,m
+ δ1

∂A
(n)

m,m

∂λ
− β1

∂A
(n)

m,m

∂λ
(B–23)

As (B–24) indicates, when λ is small, β1A
(n)

m,m
decreases by more than δ1A

(n)

m,m
, which implies that

the MB decreases by more than the MC, and, as a result, the marginal value of delaying investment

decreases, thereby lowering the required investment threshold.

lim
λ→0

∂h(λ)

∂λ
= lim

λ→0

{
∂δ1
∂λ

A
(n)

m,m
+ δ1

∂A
(n)

m,m

∂λ
− β1

∂A
(n)

m,m

∂λ

}

= lim
λ→0

∂δ1
∂λ

A
(n)

m,m
+ β1 lim

λ→0

∂A
(n)

m,m

∂λ
− β1 lim

λ→0

∂A
(n)

m,m

∂λ

= β1 ×
(
−A

(n)

m,n,n

)
< 0 (B–24)

28



Similarly, at high values of λ, (B–25) indicates that the MC decreases by more than the MB and,

thus, the marginal value of delaying investment decreases.

lim
λ→∞

∂h(λ)

∂λ
= lim

λ→∞

{
∂δ1
∂λ

A
(n)

m,m
+ δ1

∂A
(n)

m,m

∂λ
− β1

∂A
(n)

m,m

∂λ

}

= lim
λ→∞

∂δ1
∂λ

A
(n)

m,m
+ lim

λ→∞
δ1 × lim

λ→∞
∂A

(n)

m,m

∂λ
− β1 lim

λ→∞
∂A

(n)

m,m

∂λ

= lim
λ→∞

(
∂δ1
∂λ

+ δ1 − β1

)
︸ ︷︷ ︸

>0

× lim
λ→∞

∂A
(n)

m,m

∂λ︸ ︷︷ ︸
>0

> 0 (B–25)

�
Proposition 5.1: ∀�,m, n ∈ N we have ε

(n)

�,m,m
< ε

(n)

�,m,n
∀λ ∈ (0,+∞), whereas λ = 0 ⇒ ε

(n)

�,m,m
=

ε
(n)

�,m,n
and λ → ∞ ⇒ ε

(n)

�,m,m
→ ε

(n)

�,m,n
.

Proof: First, ε
(n)

�,m,m
< ε

(n)

�,m,n
follows from Proposition 4.3. In order to determine ε

(n)

�,m,n
, we rewrite

the value of the option to invest in state (�,m, n) as in (B–26).

F
(n)

�,m,n
(E) = max

ε
(n)

�,m,n>E

(
E

ε
(n)

�,m,n

)β1
[
ε
(n)

�,m,n
Dm

ρ− μ
− Im +A

(n)

m,n,n
ε
(n)β1

�,m,n

]
(B–26)

We can express the FONC by equating the MB of delaying investment to the MC as in (B–27).

Notice that the extra benefit from the embedded option to invest in the second technology gets

cancelled with the extra cost, which implies that when the second technology is available it does

not affect the decision to invest in the first one.(
E

ε
(n)

�,m,n

)β1
[
β1Im
ε
(n)

�,m,n

+
Dm

ρ− μ
+ β1A

(n)

m,n,n
ε
(n)β1−1

�,m,n

]
=

⎛
⎝ E

ε
(n)β1

�,m,n

⎞
⎠[β1Dm

ρ− μ
+ β1A

(n)

m,n,n
ε
(n)β1−1

�,m,n

]
(B–27)

Consequently, solving with respect to ε
(n)

�,m,n
we have:

ε
(n)

�,m,n
=

β1

β1 − 1

Im(ρ− μ)

Dm

(B–28)

Notice that ε
(n)

�,m,m
= ε

(n)

�,m,n
for λ = 0. Similarly, as λ → ∞ the likelihood of at least one innovation

occurring converges to one, and, therefore, we have ε
(n)

�,m,m
→ ε

(n)

�,m,n
. �

Proposition 6.1: ∀E ∈
(
0, ε

(2)

0,1,2

]
, if the investment region in state (0, 1 ∨ 2) is dichotomous, then

the compulsive strategy dominates the leapfrog/laggard strategy ∀λ ∈ R
+.

Proof: Notice that for the compulsive strategy to dominate the leapfrog/laggard strategy, the

investment region in state (0,1∨2) must be dichotomous (Décamps et al., 2006). Otherwise, the

second waiting region does not exist, and, then, it is optimal to wait until E = ε
(2)

0,2,2
and then invest

in the second technology (Dixit, 1993). Provided that this condition is satisfied, we have:
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(i) E ∈
(
ε
(2)

0,1,2
, ε

(2)

0,1,2

]
: Notice that in state (0,1,1) the expected NPV from investment in the first

technology under a compulsive strategy is F
(2)

0,1,1
(E) = Φ

(2)

1,1
(E), where Φ

(2)

1,1
(E) indicated in (B–29).

Φ
(2)

1,1
(E) = D1Edt− ρI1dt+ (1− ρdt)λdtEE

[
F

(2)

1,2,2
(E + dE)

]
+ (1− ρdt)(1 − λdt)EE

[
Φ

(2)

1,1
(E + dE)

]
, E > ε

(2)

0,1,2
≥ ε

(2)

0,1,1
(B–29)

By contrast, under a laggard strategy, the expected value function in state (0,1,1) is the same as

(B–29) but is conditional on the arrival of the second technology, as indicated in (B–30).

F
(2)

0,1,1
(E) = (1− ρdt)λdtEE

[
F

(2)

1,2,2
(E + dE)

]
+ (1− ρdt)(1− λdt)EE

[
F

(2)

0,1,1
(E + dE)

]
, ε

(2)

0,1,2
≤ E ≤ ε

(2)

0,1,2
(B–30)

From (B–29) and (B–30) it follows that Φ
(2)

1,1
(E) ≥ F

(2)

0,1,1
(E),∀E > ε

(2)

0,1,2
.

(ii) E ∈
(
0, ε

(2)

0,1,2

]
: The derivation is similar to (i). Intuitively, the compulsive strategy dominates

∀E < ε
(2)

0,1,1
, since, unlike in the leapfrog/laggard strategy, the option to invest in the first technology

is not contingent upon the arrival of the second one. �

Proposition 6.2: ∃ λ1 , λ2 ∈ R
+ with λ1 ≤ λ2 :

i : ∀λ > λ1 , ∃B ⊆
(
ε
(2)

0,2,2
,∞
)
: ∀E ∈ B, the leapfrog strategy dominates

ii : ∀λ > λ2 , ∃A ⊂
[
ε
(2)

0,1,2
, ε

(2)

0,2,2

)
: ∀E ∈ A, the leapfrog/laggard strategy dominates

Proof: (i) Notice that under a compulsive strategy and E ≥ ε
(2)

0,2,2

F
(2)

0,1,1
(E) = Φ

(1)

1,1
(E) +A

(2)

1,2,2
Eβ1 +A

(2)

1,1
Eδ1 ⇒

⎧⎪⎨
⎪⎩
λ = 0 ⇒ F

(2)

0,1,1
(E) = Φ

(1)

1,1
(E)

limλ→∞ F
(2)

0,1,1
(E) = Φ

(1)

1,1
(E) +A

(2)

1,2,2
Eβ1

(B–31)

and, according to Proposition 4.3, λ ↗ ⇒
∣∣∣A(2)

1,1

∣∣∣ ↘ which implies that
∂F

(2)

0,1,1
(E)

∂λ > 0 ∀λ ∈ R
+.

Additionally, under a leapfrog strategy and E ≥ ε
(2)

0,2,2

F
(2)

0,1,1
(E) =

λD2E

(ρ+ λ− μ)(ρ− μ)
− λI2

ρ+ λ
+ J

(2)

0,1,1
Eδ2 ⇒

⎧⎪⎨
⎪⎩
λ = 0 ⇒ F

(2)

0,1,1
(E) = 0

limλ→∞ F
(2)

0,1,1
(E) =

D2E
ρ−μ − I2

(B–32)

Consequently,

1. If λ is low, e.g., λ = 0, then the compulsive strategy dominates since Φ
(2)

1,1
(E) ≥ 0, ∀E ≥ 0

2. As λ → ∞, the leapfrog strategy dominates ∀E ∈
(
ε
(2)

0,2,2
,∞
)
. Indeed, if we denote by ε the

output price that satisfies (B–33), i.e.,

D2ε

ρ− μ
− I2 =

D1ε

ρ− μ
− I1 +A

(2)

1,2,2
εβ1 ⇔ Φ

(2)

2,2
(ε) = F

(2)

1,2,2
(ε) (B–33)

then ε is the point of indifference between the NPV in state (2, 2) and (1,2,2), and, as such,

ε < ε
(2)

0,2,2
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Next, for positive and finite values of λ, we set L =
{
λ| ∃B ⊆

(
ε
(2)

0,2,2
,∞
)
: leapfrog dominates ∀E ∈ B

}
.

Then, from (1) and (2), ∃λ1 ∈ R
+ : λ1 = minλ ∈ L and

λ1D2E

(ρ+ λ1 − μ)(ρ− μ)
− λ1I2

ρ+ λ1

+ J
(2)

0,1,1
Eδ2 = Φ

(2)

1,1
(E) +A

(2)

1,2,2
Eβ1 +A

(2)

1,1
Eδ1 (B–34)

while ∀λ ∈ L > λ1 ∃B ⊆
(
ε
(2)

0,2,2
,∞
)
such that the leapfrog strategy dominates ∀E ∈ B, i.e.,

λD2E

(ρ+ λ− μ)(ρ− μ)
− λI2

ρ+ λ
+ J

(2)

0,1,1
Eδ2 ≥ Φ

(2)

1,1
(E) +A

(2)

1,2,2
Eβ1 +A

(2)

1,1
Eδ1 , ∀λ ∈ B (B–35)

(ii) The derivation is similar to (i) and follows from the convexity of F
(2)

0,1,1
and the value–matching

and smooth–pasting conditions ensure that F
(2)

0,1,1
is C1 ∀E > 0. �
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