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Abstract—This paper investigates a pricing model for an 
electricity market with a hybrid congestion management method, 
i.e. part of the system applies a nodal pricing scheme and the rest 
applies a zonal pricing scheme. The model clears the zonal and 
nodal pricing areas simultaneously. The nodal pricing area is 
affected by the changes in the zonal pricing area since it is 
directly connected to the zonal pricing area by commercial 
trading. The model is tested on a 13-node power system. Within 
the area that is applying nodal pricing, prices and surpluses given 
by the hybrid pricing model match well with those given by the 
full nodal pricing model. Part of the network is better utilized 
compared to the solutions given by the full zonal pricing model. 
However, the prices given by the hybrid system may send wrong 
economic signals which triggers unnecessary generation from 
existing capacities, exacerbates grid congestion, and induces 
higher re-dispatching costs.  

Index Terms—Congestion Management; Nodal Pricing; Zonal 
Pricing; Electricity Market. 

NOMENCLATURE 

A. Sets and Indices 

N  Set of nodes 
NodalN  Set of nodes in the nodal pricing area 

L  Set of lines 
DCL  Set of DC lines 

Z  Set of independent price areas 
ZN  Subset of nodes included in the price area z ZÎ  

B. Parameters Set and Indices 

ijH   Admittance of the line between the nodes i and j  

ijCA P  Thermal capacity limit of the line from i to j 

xzCA P  Upper limit on the flows from zone x  to zone z  

(q)s

i
p  Supply bid curve at node i 

(q)d

i
p  Demand bid curve at node i 

C. Variables 
s
iq   Generation quantity (MWh/h) at node i 
d
iq  Load quantity (MWh/h) at node i 

ijf  Load flow from node i to node j 

iq  Phase angle at node i 

I. INTRODUCTION 

In the European spot markets, zonal pricing is the most 
commonly used method to relieve grid congestion. Zonal 
pricing applies merit order to dispatch power from one 
location to another. It is a commercial pricing scheme which 
only to a limited extent takes physical laws and technical facts 
into account. A possible consequence of this is that there could 
be insufficient capacities in the network to transmit the 
contracted power, which requires the system operator to adjust 
the generation and consumption in order to change the 
physical flows in the network and to mitigate congestion [3]. 
Furthermore, zonal pricing gives a uniform price within each 
pricing area and thus does not provide sufficient price signals 
to market participants regarding scarce transmission capacity. 
In contrast, nodal pricing, which is first discussed by [5], gives 
the optimal value for each location and produces feasible 
flows within the network, and is considered to give clearer 
market signals [2].  

Some European countries are considering adopting nodal 
pricing systems. For instance, Poland has prepared to 
implement nodal pricing since 2010 and the whole 
implementation is expected to be finished in 2015 [6]. 
However, as the Polish power grid is connected to other 
continental countries, it is inevitable to be affected by (and 
affect) flows from other areas. It is thus a research question 
whether nodal pricing in such a case can still work as 
efficiently as it is supposed to do. 

In this paper, we first propose a hybrid pricing model, 
which could be applied to a joint power market, in which the 
market is divided into different sub-systems, where some 
apply nodal pricing and others apply zonal pricing. It is 
important to note that a nodal pricing sub-system is not 
isolated from the other parts of the system and still has 
commercial trading with the connected zonal pricing sub-
systems. In such a case, generation or consumption changes in 
the zonal pricing areas could still have an effect on the nodal 
pricing area because of the impact of loop flows. A 13-node 
power system serves to illustrate the hybrid pricing model. We 
compare the hybrid pricing scheme to the zonal and nodal 
pricing schemes to investigate how much a single pricing area 
can gain by applying nodal pricing in the context where its 
neighborhood areas apply zonal pricing.  
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and that the rest use area prices. 

B. Aggregate capacity limits 

Aggregate capacity limits are used to restrict commercial 
trading between different pricing areas. In practice, setting 
adequate aggregate capacity limits is a challenging task 
because low limits would fail to fully use the network capacity 
while high ones could cause lots of congestion within a 
pricing area. In our analysis, we use the flows given by the full 
nodal pricing solution, i.e., where the whole network applies 
nodal pricing, as a basis to set the aggregate capacity limits. 
The limits are equal to the absolute value of accumulated 
flows between two pricing areas given by the nodal pricing 
solution. 1  The main reason for setting aggregate capacity 
limits in such a way is that the nodal pricing solution could be 
regarded as the optimal benchmark as it takes both the 
physical and economic constraints into account. These limits 
could be considered to optimize the utilization of the network 
given perfect information. Furthermore, this setting makes all 
the three pricing mechanisms (i.e., nodal pricing, zonal 
pricing, and hybrid pricing) comparable, because the traded 
volumes between two pricing areas are the same. When there 
is a price difference between two nodes connecting two 
different pricing areas, trading will continue until the price 
difference is eliminated or the aggregate capacity limit is 
reached. Note however that the actual flows resulting from the 
zonal and hybrid market clearings may still be infeasible.    

We also assume that the aggregate capacity limits between 
two price areas are the same in both directions. For instance, 
the aggregate capacity limits from Norway to Sweden are 
equal to those from Sweden to Norway. 

C. Some results from a high load scenario 

Since congestion is likely to happen when demand is high, 
we choose a high demand hour for the following analyses. The 
total consumption volume given by the full nodal pricing 
solution is approximately 86% of the consumption prognosis 
at “10 years” winter temperature [1]. Data on the model and 
supply and demand information 2  are presented in the 
appendix. 

1) Prices 

Fig. 2 gives the prices at each node in different congestion 
management schemes. Prices within the zonal pricing market 
(Nodes 6 to 13) given by the hybrid pricing solution are 
identical to those given by the zonal pricing solution. This 
shows that if the aggregate capacity limits remain the same 
and the same proportion of the aggregate capacity limits is 
used, the prices within the zonal pricing market will not be 
affected by the congestion management scheme in the nodal 
pricing market.  

                                                           
1 For instance, the transfer capacity from Norway to Sweden is calculated as

   

* *
,

, ,
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 

 

 

   , where *
ijf  and *

jif are solutions given by nodal 

pricing model. 
2 Formats of Supply and demand curves are displayed in Fig. A1. The 
corresponding data for parameters can be founded in Table AI and Table AII.  

The comparison between the prices in the nodal part of the 
hybrid system (i.e., Nodes 1 to 5) and the nodal prices for the 
whole system generates some interesting observations. In 
general, the two series of prices, presented in Fig. 2, match 
fairly well, with a notable exception for Node 5. At Node 5 the 
price given by the hybrid system is 132.5 NOK, while the full 
nodal price is only 91.6 NOK. 

 
Fig. 2: Prices in different congestion management schemes 

The reason for the high price at Node 5 in the hybrid 
system is that the three nodes that are directly connected with 
Sweden (i.e., Nodes 2, 4 and 5) face high demands from 
Sweden. In the hybrid system, the prices at these three points 
are set to be identical because flows going from these nodes to 
Sweden are modeled as direct flows without considering 
physical restrictions (i.e., the loop flow law). 

As long as the thermal capacity of the lines connecting 
these three nodes to the zonal pricing area has not been fully 
used, i.e., there is no congestion in these lines, the prices at the 
three nodes should be equal. Otherwise, Sweden could always 
choose to buy power from the node with the lowest price, 
since the zonal pricing model does not take the laws of 
physics entirely into account. Therefore, Node 5 in the hybrid 
system gets a price as high as those at Nodes 2 and 4.   

2) Fully loaded and overloaded lines 

Physical flows3 given by the zonal pricing scheme might 
not be feasible because it does not take scarce transmission 
capacity and the laws of physics into account. In the hybrid 
pricing model, the physical constraints are modeled for only 
parts of the system, so that there can still be infeasible flows in 
the zonal pricing area. Furthermore, areas applying nodal 
pricing are connected to other AC network areas applying 
zonal pricing, and could be affected by the loop flows in such 
areas. Investigating the capacity utilization of a transmission 
line, which is defined as the ratio of the physical flow to 
thermal capacity, helps to explain the reason why the price at 
Node 5 in the hybrid system is higher than the one in the nodal 
pricing system.  

                                                           
3  To calculate the physical power flows of the zonal and hybrid pricing 
solution, we fix the values of nodal load d

iq , generation s
iq  and flows over the 

DC lines (w here (i, j) L )C
ij

Df  using the solutions given by the models.  We 

use these values as inputs for a detailed network model to re-compute the final 
line flows. This network model takes loop flow into consideration ((2) to (3)), 
minimizes the losses caused by dispatching, but does not consider thermal 
capacity constraints (4). Thus we obtain the power flows that will result from 
injections and withdrawals in the nodes given by the zonal and hybrid pricing 
solutions. 
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