
This article was downloaded by: [Norges Handelshoyskole]
On: 31 January 2014, At: 01:25
Publisher: Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer
House, 37-41 Mortimer Street, London W1T 3JH, UK

Quantitative Finance Letters
Publication details, including instructions for authors and subscription information:
http://www.tandfonline.com/loi/rqfl20

Hedging without sweat: a genetic programming
approach
Terje Lensberga & Klaus Reiner Schenk-Hoppéab

a NHH—Norwegian School of Economics, Norway
b University of Leeds, UK
Published online: 13 Dec 2013.

To cite this article: Terje Lensberg & Klaus Reiner Schenk-Hoppé (2013) Hedging without sweat: a genetic programming
approach, Quantitative Finance Letters, 1:1, 41-46, DOI: 10.1080/21649502.2013.813166

To link to this article:  http://dx.doi.org/10.1080/21649502.2013.813166

PLEASE SCROLL DOWN FOR ARTICLE

Taylor & Francis makes every effort to ensure the accuracy of all the information (the “Content”) contained
in the publications on our platform. Taylor & Francis, our agents, and our licensors make no representations
or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content.
Versions of published Taylor & Francis and Routledge Open articles and Taylor & Francis and Routledge
Open Select articles posted to institutional or subject repositories or any other third-party website are
without warranty from Taylor & Francis of any kind, either expressed or implied, including, but not limited to,
warranties of merchantability, fitness for a particular purpose, or non-infringement. Any opinions and views
expressed in this article are the opinions and views of the authors, and are not the views of or endorsed by
Taylor & Francis. The accuracy of the Content should not be relied upon and should be independently verified
with primary sources of information. Taylor & Francis shall not be liable for any losses, actions, claims,
proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused
arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.

This article may be used for research, teaching, and private study purposes. Any substantial or systematic
reproduction, redistribution, reselling, loan, sub-licensing, systematic supply, or distribution in any
form to anyone is expressly forbidden. Terms & Conditions of access and use can be found at http://
www.tandfonline.com/page/terms-and-conditions

Taylor & Francis and Routledge Open articles are normally published under a Creative Commons Attribution
License http://creativecommons.org/licenses/by/3.0/. However, authors may opt to publish under a Creative
Commons Attribution-Non-Commercial License http://creativecommons.org/licenses/by-nc/3.0/ Taylor &
Francis and Routledge Open Select articles are currently published under a license to publish, which is based
upon the Creative Commons Attribution-Non-Commercial No-Derivatives License, but allows for text and
data mining of work. Authors also have the option of publishing an Open Select article under the Creative
Commons Attribution License http://creativecommons.org/licenses/by/3.0/.
 
It is essential that you check the license status of any given Open and Open Select article to
confirm conditions of access and use.

http://www.tandfonline.com/loi/rqfl20
http://www.tandfonline.com/action/showCitFormats?doi=10.1080/21649502.2013.813166
http://dx.doi.org/10.1080/21649502.2013.813166
http://www.tandfonline.com/page/terms-and-conditions
http://www.tandfonline.com/page/terms-and-conditions
http://creativecommons.org/licenses/by/3.0/.
http://creativecommons.org/licenses/by-nc/3.0/
http://creativecommons.org/licenses/by/3.0/.


Quantitative Finance Letters, 2013
Vol. 1, 41–46, http://dx.doi.org/10.1080/21649502.2013.813166

Hedging without sweat: a genetic programming approach
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Hedging in the presence of transaction costs leads to complex optimization problems. These problems typically lack closed-
form solutions, and their implementation relies on numerical methods that provide hedging strategies for specific parameter
values. In this paper, we use a genetic programming algorithm to derive explicit formulas for near-optimal hedging strategies
under nonlinear transaction costs. The strategies are valid over a large range of parameter values and require no information
about the structure of the optimal hedging strategy.

Keywords: Hedging; Transaction costs; Closed-form approximations; Genetic programming

1. Introduction
Transaction costs preclude perfect replication of contingent
claims and introduce a tradeoff between the risk and return
to hedging. A standard approach to dealing with this trade-
off is to use utility functions for evaluating hedging errors
(Hodges and Neuberger 1989) and the utility indifference
principle for pricing options (Davis et al. 1993). In contrast
to the elegance of Black–Scholes delta hedging, these mod-
els typically lack explicit solutions and require powerful
numerical methods to obtain case-by-case approximations
of optimal hedges.

In some situations the particular structure of the opti-
mal hedging strategy is known, which facilitates numerical
analysis. One example is the Black–Scholes model with
proportional transaction costs, where the hedging strategy
of a trader with constant absolute risk aversion (CARA)
utility function is defined by a no-trade region (Davis
et al. 1993). When the hedger’s stock holdings are out-
side this region, she carries out a trade that brings the
stock position onto the nearest boundary point. Numeri-
cal methods that approximate value functions have proved
successful in this model (Monoyios 2004). A different
approach is presented in Zakamouline (2006) who derives
analytic approximations of the two boundaries of the no-
trade region. Motivated by asymptotic results in Whalley
and Wilmott (1997), his approach combines a clever guess
of a parametric functional form with the estimation of coeffi-
cients as functions of model parameters. These estimations,
however, require a numerical approximation of the optimal
hedging strategy.

In this paper, we propose an alternative approach
to derive explicit hedging strategies for general nonlin-
ear transaction costs. The approach is based on genetic
programming (GP) which offers several advantages over
classical numerical approaches. First, by construction it is
constrained to output closed-form expressions that are func-
tions of the model parameters. Second, it delivers efficient
results at low cost by solving the two tasks of finding an

optimal hedging strategy and a closed-form representation
for it in one integrated process. Third, no assumption is
made on the functional form of the approximation. GP there-
fore avoids the disadvantage of ex post calibration methods
and, at the same time, offers a technique that deals with cases
in which there is no a priori information on the structure of
the optimal solution. The closed-form approximations of
hedging strategies derived with this heuristic method can
be directly tested in different market situations to verify
their efficiency before their integration into an automated
trading system. The hard work of obtaining these hedging
strategies is left to the computer. Once this is done, hedging
is without sweat.

In the example considered in this paper, we determine
closed-form expressions for the hedging strategy of an
option writer with CARA utility function under propor-
tional and quadratic transaction costs. The price of the
underlying follows a geometric Brownian motion. Solu-
tions to this problem with a large range of parameter
values are derived at various requirements on the sim-
plicity of hedging strategies, ranging from full-fledged
computer programs to short analytic functions. Param-
eters include volatility, interest rate, strike price of the
European call, and transaction cost parameters. Infor-
mation available to the hedger consists of stock price,
Black–Scholes delta and gamma, time to maturity, and
current portfolio holdings, in addition to the parameter val-
ues which are random but constant until maturity of an
option.

Our method produces better results than Zakamouline
(2006) when transaction costs are proportional. Under
quadratic transaction costs we find simple near-optimal
linear trading strategies that consist of a trade intensity
and a no-trade reference solution. The no-trade path can
be interpreted as a modified Black–Scholes delta and the
trade intensity as a modified gamma. In summary, the paper
demonstrates the practical use of GP in deriving hedges
under nonlinear transaction costs.
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42 T. Lensberg and K. R. Schenk-Hoppé

2. Model
We consider the hedging problem faced by a risk-averse
writer of a European call option. The option writer can trade
in the underlying whose price follows a geometric Brownian
motion

dS(t) = μS(t) dt + σS(t) dW (t), (1)

with constant drift μ and volatility σ . She also has access
to a money account that pays interest at constant rate r. We
set μ = r to obtain the risk-neutral measure. The option
writer can trade only at dates tn = nδt with n = 0, . . . , N ,
and T = tN the expiry date of the option.

Trading incurs transaction costs. We assume that the
total transaction cost of buying or selling x shares at the
current price S is given by

(λ + βS|x|)S|x|, (2)

with λ ≥ 0 and β ≥ 0. It is deducted from the trader’s
money account at the time a transaction takes place. The
transaction cost has two components: (a) a proportional cost
λ which arises in markets with a bid–ask spread of size 2λS
and mid-point given by the stock price S; and (b) a nonlin-
ear cost which arises in markets when a trade can ‘walk up’
an order book, that is, obtains worse prices the larger the
trade.

Trading strategies are real-valued functions of the form

φ(tn) = φθ(tn, S(tn), �(tn), 	(tn), x(tn−1)), (3)

where φ(tn) is the number of shares bought or sold at time
tn, and θ = (σ , r, K , λ, β) is a parameter vector which is
constant over the lifetime of the option (cf. table 1). The
function φ can depend on θ , as well as time tn, stock price
S(tn), the Black–Scholes Greeks �(tn) and 	(tn), and the
number of shares x(tn−1) held after trading in period tn−1.
In our application, this function will be represented by a
computer program.

Share and money market accounts evolve as

xφ(tn) = xφ(tn−1) + φ(tn)

yφ(tn) = exp(rδt)yφ(tn−1) − S(tn)φ(tn)

− (λ + βS(tn)|φ(tn)|) S(tn)|φ(tn)|,
with initial portfolio (xφ(t−1), yφ(t−1)). We make the usual
assumption that there are no transaction costs at matu-
rity. The terminal wealth of an option writer who sold one

Table 1. Parameter values.

Risk aversion γ 0.5
Proportional cost λ 10–200bp
Quadratic cost β 5–100bp
Volatility σ uniformly drawn from [10%, 40%]
Interest rate r uniformly drawn from [1%, 10%]
Strike price K uniformly drawn from

[(1 − σ)100, (1 + σ)100] where the
spot price S(t0) = 100

Maturity T three months

Hedge frequency δt
1

264
years (one day)

European call option with strike price K at time t0 = 0 is
therefore given by

wφ(T ) = S(T )xφ(T ) + yφ(T ) − [S(T ) − K]+. (4)

The option writer’s objective is to maximize expected
utility E[u(wφ(T ))] from terminal wealth, where the expec-
tation is taken over the probability measure defined by
equation (1) on the space of sample paths. Given two
hedging strategies φ′ and φ′′, we measure their relative per-
formance for an option θ = (σ , r, K , λ, β) by the difference
in certainty equivalents

�(φ′
θ , φ′′

θ ) := u−1(E[u(wφ′
θ
(T ))]) − u−1(E[u(wφ′′

θ
(T ))]),

(5)
where E[u(wφθ

(T ))] is the expected utility of terminal
wealth when hedging strategy φ is applied to option θ .
�(φ′

θ , φ′′
θ ) is the monetary gain from using strategy φ′

instead of φ′′ to hedge option θ , and φ′ performs better
than φ′′, the more so the larger �(φ′

θ , φ′′
θ ) is.

We will assume that the option writer has CARA utility

u(w) = − exp(−γ w), γ > 0.

For this class of utility functions, � is independent of initial
money holdings which therefore can be set to zero for con-
venience. It also allows to determine option prices through
the indifference principle: the option premium is determined
by the amount of money that when paid to the option writer
gives the same utility as not writing the option and forgoing
the premium. If the initial endowment is (0, 0) (which gives
utility −1 if no option is written), then the price is

pθ = − exp(−rT )u−1(E[u(wφθ
(T ))])

=
(

1
γ

)
exp(−rT ) ln(E exp(−γ wφθ

(T ))),

for a hedger with strategy φθ . This indifference price will
typically depend on the initial share endowment through its
impact on (a) the trading strategy of the option writer and
(b) the opportunity cost which is the utility of an investor
with no position in the option.

3. Genetic programming
Solving the hedging problem described in Section 2 is a
straightforward application of GP (Koza 1992). We use a
parallel steady-state algorithm with tournament selection,
as illustrated in table 2.

The algorithm uses some 100–500 autonomous sub-
populations of hedging strategies deployed on separate
worker processors arranged in a circle topology. From time
to time, the worker processes send their best program to
a master process; exchange good candidate solutions with
their neighbours; and generate a new set of test options.
The master process uses a separate large fixed set of options
to identify the current globally best strategy. A byte code
program representation is used for genetic recombination
(crossover and mutation), and a machine code representa-
tion (Nordin 1997) is used for fast computation of hedging
decisions. A simple built-in compiler translates byte code

D
ow

nl
oa

de
d 

by
 [

N
or

ge
s 

H
an

de
ls

ho
ys

ko
le

] 
at

 0
1:

25
 3

1 
Ja

nu
ar

y 
20

14
 



Hedging without sweat 43

Table 2. Parallel GP algorithm with many worker processes and a master process.

Worker processes Master process

Randomly generate 250 programs Randomly generate 100 000 options
For iteration 1, . . . , 250: For iteration 1,…,250:

Randomly generate 20 000 options Wait for all workers to do at least 125 tournaments
Do at least 125 tournaments: Tell workers to send programs and start the next iteration

Select and evaluate 4 random programs Receive programs from workers
Rank them by performance Evaluate programs
Replace worst 2 by copies of best 2 Save best program and report results
Cross and mutate the copies End For

End Do
Send best program to master
Exchange good programs with neighbours

End For

The workers search for increasingly better hedging strategies. The master coordinates and collects results.
Performance is measured as average realized utility across random sets of options.

Figure 1. Proportional costs. Left panel: Trade volume by day and stock position. Right panel: Time series of hedging strategies’ stock
position. GP hedge (bold black line), no-trade region of the GP hedge (shaded area), and Black–Scholes delta (dotted line). Parameter

values are θ = (σ , r, K , λ, β) = (17.38%, 3.17%, 99.6, 20bp, 0) and the initial endowment is (0, 0).

to machine code. Our software also contains a byte code
disassembler whose output can be processed by a C com-
piler, or analysed with Maxima or similar tools for symbolic
math manipulation.

4. Proportional transaction costs
We first apply the GP method to the model with propor-
tional transaction costs (equation (2) withλ > 0 andβ = 0).
Two different treatments will be applied. Trading strategies
are first evolved using the GP approach without any infor-
mation about the structure of the optimal hedge strategies.
We choose to ignore the knowledge that under proportional
transaction costs the optimal strategy is defined by a no-
trade region because under other cost structures such a priori
information is typically not available. In a second treat-
ment, we derive a simple analytic closed-form expression
to approximate the no-trade region.

4.1. GP model without structural information
The structure of the hedging strategies is given by equation
(3). Strategies are represented as computer programs whose
operators include arithmetic expressions as well as min,
max, conditional assignments, and forward jumps (condi-
tional and unconditional). The output from a program is
interpreted as a decision of how much stock to buy or

sell given the current combination of option parameters
and variables. The programs can be used as is in an auto-
mated trading application, although they may be difficult
to analyse due to the occurrence of conditional jumps and
assignments.

Our approximation of the optimal hedging strategy is
illustrated in figure 1 for an example option and stock price
path. The left panel depicts trade volumes for each day and
each stock position in [0, 1]. It reveals the existence of a
no-trade region such that the trade volume for stock posi-
tions outside this region brings the hedger’s position onto
its closest boundary. We conclude that the GP algorithm
is able to identify the structure of the optimal hedging
strategy.

The right panel depicts a time series of the GP hedger’s
stock position, the corresponding no-trade region, and as
reference, the Black–Scholes delta hedge. The no-trade
region is extracted from the GP hedging strategy by deter-
mining, at each point in time, all stock positions at which
the trade volume is zero. The figure shows that the GP
hedge position does indeed move as if constrained by the
boundaries of the no-trade region.

We now turn to the issue of whether the approxi-
mation produced with the GP approach is a good one.
As a benchmark, we use the trading strategy derived
from Zakamouline’s (2006) approximation of the no-trade
region. The Zakamouline hedge is also a closed-form
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44 T. Lensberg and K. R. Schenk-Hoppé

Table 3. Comparison of the GP and Zakamouline hedging strategies for proportional transaction costs and a CARA utility function with
risk aversion γ = 0.5.

Dependent variable: 100 × �(GP, Z)

(1) (2) (3) (4)

Constant 4.601 (0.034) 4.601 (0.030) 4.601 (0.029) 4.601 (0.029)
Transaction cost 4.478 (0.034) 9.033 (0.091) 9.033 (0.090) 9.033 (0.090)
Volatility −1.968 (0.034) 0.901 (0.062) 0.901 (0.061) 0.901 (0.061)
Transaction cost × Volatility −5.607 (0.106) −5.607 (0.105) −5.607 (0.105)
abs(Moneyness) −0.403 (0.029) −0.403 (0.029)
Interest rate −0.080 (0.029)
Observations 10 000
Adjusted R2 0.680 0.750 0.755 0.755

Note: The statistical analysis is carried out on a data set which is generated as follows. We create an orthogonal and equidistant grid of 104

points on the set of option parameters: Strike K ∈ [91, 109], volatility σ ∈ [11.5%, 38.5%], interest rate r ∈ [1.5%, 9.5%], and transaction
costs λ ∈ [0.15%, 1.95%]. Moneyness is defined as ln(S(t0)/K). Its absolute value is used as a measure of the distance between the initial
stock price and the strike. For each point θ = (σ , r, K , λ, 0) in the grid, we simulate 100 000 random price paths and compute the relative
performance measure �(GPθ , Zθ ) defined in equation (5) for the GP and Zakamouline hedging strategies. Using these 10 000 observations,
we then regress the performance measure on standardized option parameters. Differences in performance are measured in cents per option.
Standard errors are given in parentheses. All coefficients are significantly different from zero at the 1% level.

approximation, which provides a level playing field, and,
according to the tests in that paper, the best available.

Table 3 provides a detailed comparison of the perfor-
mance of the GP and the Zakamouline hedging strategies.
The statistical analysis is carried out by applying the per-
formance measure � defined in equation (5) to the GP and
Zakamouline hedges on 10 000 parameter vectors θ . These
values are contained in the sets on which both hedging
strategies are defined to ensure a fair comparison.

On average, the GP hedge outperforms the Zakamouline
hedge by 4.6 cents per option. This amounts to approxi-
mately 0.5% of the mean Black–Scholes option price, which
is 850 cents. (All explanatory variables are standardized, so
the constant term in the regression is the unconditional mean
of the dependent variable.) The best performance of GP over
the Zakamouline hedge is 45.9 cents, while the worst perfor-
mance is −3.3 cents. The GP hedge performs better in 79%
of the 10 000 cases. The difference in performance varies
across cases in a systematic way. Model (1) shows that the
GP hedging strategy is the better, the higher the transac-
tion cost λ and the lower the volatility σ . In model (2), we
add the cross-term of transaction costs and volatility. The
table shows that the relative performance of the GP hedge is
best for high transaction costs and low volatility, and worst
for the opposite parameter configuration. When transaction
costs are low and volatility high, the Zakamouline and the
optimal hedges are both quite close to the Black–Scholes
delta, which leaves little scope for improvement.

The effect of option moneyness on the difference in
performance is tested in model (3). Moneyness adds very
little in terms of explanatory power, but the GP hedge is
slightly better for options at the money, and slightly worse
for options far into or far out of the money. This is as
one might expect since the latter cases are associated with
low trade volumes which reduces the potential for improv-
ing performance. Finally, the interest rate has a significant
(but economically negligible) effect on the difference in
performance as documented in model (4).

In most cases our hedging strategy outperforms
Zakamouline (2006) which, by itself, is better than other
closed-form approximations. Reasons for this result are that
(i) Zakamouline’s model produces more tail risk because it
is calibrated on data generated by hedges that are derived
using a quadratic approximation of the negative exponen-
tial utility function; (ii) there are better functional forms
for analytic approximations than log-linear (demonstrated
in the next section); and (iii) there seems to be a benefit in
not including risk aversion as a parameter. Observation (iii)
seems to contradict Zakamouline’s (2006, p. 441) argument
but is correct in light of (ii).

4.2. GP model with no-trade region
This section applies the GP methodology to develop a sim-
ple analytic approximation to the no-trade region under
proportional costs. To this end, we evolve computer pro-
grams with two outputs: the lower and the upper bound
of the no-trade region. Jumps and conditional assignments
are excluded from the list of feasible instructions, thereby
forcing the computer programs to represent ‘simple’ ana-
lytic functions. As these functions can consist of up to
256 operations, they can nevertheless be quite complex.
To favour simplicity over complexity, one can modify the
fitness criterion used by the GP algorithm by introducing a
small penalty for program length. Although the outcome of
this method is not unique, one consistently obtains hedg-
ing strategies that perform only slightly worse than the best
attainable.

We find that the best strategy in this class outperforms
the best unconstrained strategy of Section 4.1 by 0.6 cents on
average. Its best improvement over the Zakamouline hedge
is 46.2 cents; the worst is −0.9 cents, and it performs better
in 90% of the 10 000 cases. We also find that more com-
plexity adds surprisingly little to the average performance of
hedges. Consider, for instance, the analytic approximation
of the no-trade region [�t − Lt , �t + Ut] given by (pulling
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Hedging without sweat 45

Figure 2. Quadratic costs. Left panel: Trade volume by day and stock position. Right panel: Time series of GP hedge’s stock position
(bold black line), no-trade region of the GP hedge (grey line), trading intensity (black line), and for reference, Black–Scholes delta (dotted

line). Parameter values are θ = (σ , r, K , λ, β) = (17.38%, 3.17%, 99.6, 0, 10bp) and the initial endowment is (�0, 0).

out a common term for better readability of the equations)

Lt = 	t + �t
2(	t + At),

Ut = 	t + (1 − �t)At ,

with

At = 6
λτ(K + 1.117573/στ) + σ 2

(2τ + λ)σSt + 1.117573/στSt	t

+ λ(1 − 4τ)(K + 1.117573/στ)

σSt

and τ = T − t. This strategy produces hedges that, on aver-
age, perform as well as the best unconstrained strategy of
Section 4.1, and only 0.5 cents worse than the best strategy
in its class.

This analytic approximation of the no-trade region is
obtained by (a) evolving 250 hedging strategies without
imposing a penalty and (b) restarting the GP algorithm with
these ‘candidate strategies’ and adding a small penalty pro-
portional to the combined length of the analytic expressions
for the upper and lower bounds. The approximation is quite
robust in the sense that its structure barely changes over
more than 100 of the 250 iterations with the GP algorithm,
although the constants vary a little.

It might seem surprising that the interest rate r does not
enter the expressions for the no-trade bounds other than via
the option Greeks. However, as also found in Zakamouline
(2006, tables 2 and 3), the direct effect of the interest rate
on the no-trade bounds is very weak. Our result shows that
interest rates in the range considered here are negligible for
practical purposes.

5. Quadratic transaction costs
We next consider hedging under quadratic transaction costs
where the cost per dollar of trade increases with the total
value of a trade. The choice of quadratic over other nonlin-
ear cost structures is for simplicity of presentation but also
leads to some interesting insights.

The specification can be justified as an approximation to
the liquidity cost function used in Çetin and Rogers (2007)
as well as the short-term trade impact in limit order markets
specified in Malo and Pennanen (2012). Using a second-
order Taylor approximation of the exponential function,
the total amount deducted from the money account when

trading x shares at market price S (negative amounts are
receipts from selling x shares) is given by

exp(αSx) − 1
α

≈ 1 + αSx + (α2/2)S2x2 − 1
α

= Sx +
(α

2

)
(Sx)2.

The total transaction cost incurred is therefore (α/2)(Sx)2

which, after replacing α by 2β, corresponds to Equation (2)
with λ = 0. The same result is obtained for the cost func-
tion S[exp(αx) − 1]/α used in (Çetin and Rogers 2007,
Section 6).

5.1. General GP model
We apply the GP method in its general form, allowing for
jumps and conditional assignments, because there is no
information on the structure of the optimal hedging strat-
egy. The trading strategy will be of the form (3). Buying
or selling x shares at market price S costs β(Sx)2 which is
deducted from the money account at the time of trade.

Figure 2 provides an illustration of our results for an
example option and stock price path. As in figure 1, the left
panel depicts trade volumes for each day and each stock
position in [0, 1] for a typical trading strategy evolved with
the GP algorithm, but in this case with quadratic transac-
tion costs. The left panel shows that the trade volume is
approximately a linear function of the stock position for
most stock positions and most periods in time. Intersecting
the graph with the horizontal plane at zero on the verti-
cal axis, one obtains a curve through combinations of time
and stock positions where there is no trade, and such that
for other nearby points on the graph, the trade volume on
the corresponding day is a constant fraction of the differ-
ence between the corresponding no-trade position and stock
position. These observations suggest that linear trading
strategies will provide good performance under quadratic
transaction costs.

The right-hand panel of figure 2 shows the projection
of the no-trade curve (grey) along with the GP hedge (bold
black) and the delta hedge (dotted). Also shown is the trade
intensity (black), defined as trade volume divided by the
absolute difference between the current stock position and
the no-trade stock position. The latter closely tracks the
Black–Scholes delta. The hedging strategy adjusts the stock
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46 T. Lensberg and K. R. Schenk-Hoppé

position towards the no-trade stock position, but this adjust-
ment is quite slow, as the trade intensity is typically less than
20%. We therefore observe large deviations between actual
stock holdings and the no-trade curve. Closer to maturity
the trade intensity is more volatile but then declines quickly
(resembling the widening of the no-trade region under pro-
portional costs). This general pattern of sluggish adjustment
leads to substantial savings in transaction costs compared
with the Black–Scholes delta.

5.2. Linear GP model
To explore the performance of linear hedging strategies
under quadratic costs, we apply the GP algorithm to trading
strategies of the form

φ(tn) = ε(tn) · [x̄(tn) − x(tn−1)], (6)

where x̄(tn) is the no-trade stock position and ε(tn) is the
trading intensity, and both are analytic expressions. The
functions are constrained to be independent of stock hold-
ings but are allowed to depend on time, Greeks, and the
parameter vector θ which are suppressed in equation (6).

As in the proportional cost case, making use of infor-
mation about the (approximate) structure of the optimal
hedge leads to strategies that are slightly better than those
obtained without such information. In the current case, the
mean improvement in performance amounts to 0.3 cents per
option. This improvement is of the same order of magnitude
as in the proportional cost case, where the a priori informa-
tion was known to be correct. We therefore conjecture that
linear strategies of the form (6) are near-optimal for hedgers
with CARA utility functions and quadratic transaction costs
when the initial stock position is not too far from its desired
level.

The following approximation was obtained by means
of the same simplification approach as in Section 4.2. It
produces hedging decisions that perform as well as the best
strategy in its class. For a given date t, the no-trade stock
position x̄(t) and the trading intensity ε(t) are given by

x̄(t) = �t − 0.6(1 − τ)	t(σ + 25.19β)

× (�t + St − K − 2σ − 0.8885) + 0.0034,

ε(t) = 2.237σ

(
2.894	t + σ − τ

− 2β(3	t + σ + τ − β)

τ + 2β − 0.003275

)
+ 0.45τ − 2β + 0.026,

respectively, where τ = T − t, as before.

6. Conclusion
The paper demonstrates the merits of a GP approach to solv-
ing optimal hedging problems under transaction costs. This
heuristic method delivers approximations that are analytic
functions of various parameters describing the option con-
tract, the dynamic of the underlying, and transaction costs.
These explicit approximations to optimal hedging strate-
gies can easily be tested and integrated into an automated
trading system.

Other estimation methods, such as Zakamouline’s
(2006), derive closed-form approximations using ad hoc
specifications of the functional form and an exact (numer-
ical) solution for their calibration. In contrast to such
approaches, ours is both simpler and more general, as it
requires neither explicit solutions nor assumptions about
functional forms. Preliminary results indicate that our GP
method also works well for exotic options, other nonlinear
transaction costs, and stochastic volatility models but that
is beyond the scope of this short note.
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