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Abstract 

In general, the daily logarithmic returns of individual stocks are not normally 

distributed. This poses a challenge when trying to compute the most accurate 

option prices. This thesis investigates three different models for option pricing, 

The Black Scholes Model (1973), the Merton Jump-Diffusion Model (1975) and 

the Kou Double-Exponential Jump-Diffusion Model (2002).  

The jump-diffusion models do not make the same assumption as the Black 

Scholes model regarding the behavior of the underlying assets’ returns; the 

assumption of normally distributed logarithmic returns. This could make the 

models more able to produce accurate results.  

Both the Merton Jump-Diffusion Model and the Kou Double-Exponential Jump-

Diffusion Model shows promising results, especially when looking at how they 

are able to reproduce the leptokurtic feature and to some extent the “volatility 

smile”. However, because the observed implied volatility surface is skewed and 

tends to flatten out for longer maturities, the two models abilities to produce 

accurate results are reduced.  

And while visual study reveals some difference between the models, the results 

are not significant. 
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1. Introduction 

Since the introduction of the Black Scholes model in 1973, the model has been 

widely used by both academics and traders and taught in numerous finance 

courses at universities worldwide. As with many economic models, assumptions 

are made to the Black Scholes model in order to make it tractable. One of these 

assumptions is that the asset’s price follows a geometric Brownian motion, and 

as a consequence, its return is normally distributed.   

 

1.2 Motivation 

Much research has been conducted to modify the Black Scholes model based on 

Brownian motion in order to incorporate two empirical features of financial 

markets:  

1) The leptokurtic features. In other words, the return distribution has a 

higher peak and two heavier tails than those of the normal distribution. 

2) The volatility smile. More precisely, if the Black-Scholes model is correct, 

then the implied volatility should be constant. However, it is widely 

recognized that the implied volatility curve resembles a “smile”, meaning 

that it is a convex curve of the strike price. 

In order to incorporate these two features, several models have been developed 

in the wake of the Black Scholes model. Among these is the Merton Jump-

Diffusion Model (1975), denoted Merton from now on, which can be seen as a 

foundation for the jump-diffusion models, and the Kou Double-Exponential 

Jump-Diffusion Model (2002), denoted Kou, as a new creation. 

The goal of this thesis is to give an in-depth study on how these models perform 

when multiple strike prices and maturities are considered. This will be done by 

looking at the degree of mispricing across the entire strike range and for 

different maturities.  
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1.3 Thesis structure 

The models will be described and tested against the most traded call option as of 

May the 5th, 2014. This is the call option on the Bank of America Corporation 

stock. A comparison of the accuracy between the Black Scholes-model and the 

jump-diffusion models will be carried out as a measure of which model produces 

the most accurate results. Visual study as well as hypothesis testing for 

differences in pricing errors will be conducted in order to answer this question.  
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2. What is an option? 

This chapter is from Hull (2008) 

Options are traded both on exchanges and in the over-the-counter market1. 

There are two types of options: 

- Call options. A call option gives the holder the right, but not the 

obligation, to buy the underlying asset at a certain date at a certain price. 

- Put options. A put option gives the holder the right, but not the 

obligation, to sell the underlying asset at a certain date at a certain price.  

The price in the contract is known as the exercise price or strike price; the date in 

the contract is known as the expiration date or maturity. 

American options can be exercised at any time up to the expiration date. 

European options can be exercised only on the expiration date itself. Most of the 

options traded on exchanges are American. In the exchange-traded equity option 

market, one contract is usually an agreement to buy or sell 100 shares.  

The underlying asset can be basically anything of financial value. It could be a 

stock, gold, crude oil or even an option to buy an option. 

 

2.1 Factors affecting option prices 

There are six factors affecting the price of a stock option: 

1. The current stock price, S0. 

2. The strike price, K. 

3. The time to expiration, T. 

4. The volatility of the stock price, σ. 

                                                           
1 A decentralized market, without a central physical location, where market participants 
trade with one another through various communication modes such as the telephone, 
email and proprietary electronic trading systems.  
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5. The risk-free interest rate, r. 

6. The dividends expected during the life of the option.  

In this section I will consider what happens to option prices when one of these 

factors change, holding the other factors constant. 

For the rest of the thesis, I will only consider call options.  

 

2.1.1 Stock price and Strike price 

If a call option is exercised at some future time, the payoff will be the amount by 

which the stock price exceeds the strike price. Call options therefore become 

more valuable as the stock price increases and less valuable as the strike price 

increases.  

 

2.1.2 Time to expiration 

American call options become more valuable (or at least do not decrease in 

value) as the time to expiration increases. Consider two American options that 

differ only as far as the expiration date is concerned. The owner of the long-life 

option has all the exercise opportunities open to the owner of the short-life 

option – and more. The long-life option must therefore always be worth as least 

as much as the short life option.  

 

2.1.3 Volatility 

The volatility of a stock is a measure of our uncertainty about the returns 

provided by the stock. Stocks typically have volatility between 15% and 60%. As 

volatility increases, the chance that the stock performs very well or very badly, 

increases. For the owner of a stock, these two outcomes tend to offset each other. 

However, this is not so for the owner of a call. The owner of a call benefits from 
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price increases but has limited downside risk in the event of price decreases 

because the most the owner can lose is the price of the option.  

 

2.1.4 Risk-free Interest Rate  

The risk-free interest rate affects the price of an option in a less clear-cut way. 

As interest rates in the economy increase, the expected return required by 

investors from the stock tends to increase. In addition, the present value of any 

future cash flow received by the holder of the option decreases. The combined 

impact of these two effects is to increase the value of call options. 

 

2.1.5 Amount of future dividends 

Because the options considered in this thesis are on stocks that do not pay 

dividends during the life of the option, I will not describe how it affects the value 

of the call option. For interested readers I refer to Hull (2008) 
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3. Deriving the price of an option 

The price of an option is partly derived from supply and demand and partly from 

theoretical models. As mentioned in the introduction, this thesis will look at 

three different models for option pricing, with the Black Scholes model being the 

most commonly used and easiest to implement. The models will be described in 

more detail, starting with the Black Scholes model. 

 

3.1 The Black Scholes option pricing model 

As a starting point, the assumptions of the model will be presented. Section (3.3) 

will describe the model in more detail. 

 

3.2 Assumptions 

Assumptions of the model: 

1. The stock price follows a geometric Brownian motion. 

2. The short selling of securities with full use of proceeds is permitted.  

3. There are no transaction costs or taxes. All securities are perfectly 

divisible.  

4. There are no dividends during the life of the derivative. 

5. There are no riskless arbitrage opportunities. 

6. Security trading is continuous. 

7. The risk-free rate of interest, r, is constant and the same for all securities.  

Assumption 1) is described more in detail below. 
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3.2.1 The Stock Price following a geometric Brownian motion 

This section is from Osseiran (2010) 

In the Black Scholes model, the price of the underlying asset is modeled as a 

lognormal random variable. The stochastic differential equation (SDE) 

governing the dynamics of the price under the risk-neutral probability 

measure2, is given by  

                                            ( )    ( )     ( )  ( )                                       (1) 

where   is the risk-free rate, and   the volatility of the underlying asset. Like a 

typical SDE, this equation consists of a deterministic part and a random part. 

The part   ( )    ( )   is a deterministic, ordinary differential equation, which 

can be written as 
  ( )

  
   ( ). The addition of the term   ( )  ( ) introduces 

randomness into the equation, making it stochastic3. The random part contains 

the term  ( ), which is Brownian motion; it is a random process that is 

normally distributed with mean zero and variance t. The assumption of a log-

normal price implies that the log prices are normally distributed. The log is 

another way of expressing returns, so in a different way this is saying that if the 

price is log-normally distributed, the returns of the underlying asset are 

normally distributed.  

 

3.3 The formula for option pricing 

The Black Scholes formula for the price of a European call option on a non-

dividend-paying stock at time 0, is:       

                                                    (  )        (  )                                        (2)    

                                                           
2 The risk-neutral probability measure is important in finance. Most commonly, it is used in 
the valuation of financial derivatives. Under the risk-neutral measure, the future expected 
value of the financial derivatives is discounted at the risk-free rate. 
3 Any variable whose value changes over time in an uncertain way is said to follow a 
stochastic process. 
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 where  

   
  (

  

 )  (  
  

 ) 

 √ 
 

                        
  (

  

 )  (  
  

 ) 

 √ 
     √  

The function N(x) is the cumulative probability distribution function for a 

standardized normal distribution. In other words, it is the probability that a 

variable with a standard normal distribution, denoted as  (   ), will be less 

than x. It is illustrated in the figure below 

 

Figure 3.1. The figure illustrates   (   ).    (   ) 

 

Where the shaded area represents the probability of    .  

The remaining variables are given in section (2). The variable c is the European 

call option price.  

The expression  (  ) is the probability that the option will be exercised in a 

risk-neutral world, so that   (  ) is the strike price times the probability that 

the strike price will be paid.  

The expression    (  ) 
   is the expected value in a risk-neutral world of a 

variable that is equal to    if      and zero otherwise.  
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When the Black Scholes model is used in practice the interest rate r is set equal 

to the zero-coupon risk-free interest rate at maturity T.  

Since it is never optimal to exercise an American call option on a non-dividend-

paying stock early, expression (2) is the value of an American call option on a 

non-dividend-paying stock.  

The only problem in implementing expression (2) is the calculation of  (  ) and 

 (  ). However, this is hardly a challenge, as the only thing one needs is a table 

for the probabilities of the normal distribution.  

As this section shows, the Black Scholes model is a very simple model to 

implement. However, the assumptions made to the model, especially assumption 

1 should make it less likely to produce the observed prices in the market. 

Because of this, two alternative models, which do not make the same 

assumptions of the stock price behavior, will be introduced. 
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4. Expanding the Black Scholes Model 

This chapter is based Burger and Kliaras (2013), Kou (2002) and Matsuda 

(2004) 

One of the first approaches of expanding the Black Scholes model was the 

Merton Jump Diffusion model (Merton) by Robert C. Merton in 1976, which was 

also involved in the process of developing the Black-Scholes model.  

The reason for this new approach was to make the model more realistic by 

allowing the underlying asset’s price to “jump”. 

Over the years, several kinds of jump diffusion models have been developed 

based on this model. 

 

4.1 Jump-diffusion models 

Jump diffusion models always contain two parts, a jump part and a diffusion 

part. A common Brownian motion determines the diffusion part and a Poisson 

process4 determines the jump part.  

 

4.1.2 SDE under the Physical and Risk-Neutral Probability Measure 

In jump-diffusion models, a general expression for the asset price,  ( ), under 

the physical probability measure P5, is given by the following stochastic 

differential equation  

                                 
  ( )

 (  )
        ( )   (∑ (    )

 ( )
   )                                  (3) 

                                                           
4  In probability theory, a Poisson process is a stochastic process that counts the number of 
events and the time that these events occur in a given time interval. The time between 
each pair of consecutive events has an expoential distribution with parameter   and each 
of these inter-arrival times are assumed to be independent of other inter-arrival times.  
5 Also called actual measure. The physical probability measure is used in computations in 
the actual world. The most common applications are seen in statistical estimations from 
historical data and the hedging of portfolios.  
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Solving the SDE gives the dynamics of the asset price under the physical 

probability measure  

                               ( )   ( )   {(  
 

 
  )     ( )}∏   

 ( )
                              (4) 

Here  ( ) is a Poisson process with rate  ,  ( ) is a standard Brownian motion 

and   is the drift rate. {  } is a sequence of independent identically distributed 

(i.i.d) nonnegative random variables.  

In the Merton model,     (  )     is the absolute asset price jump size and is 

normally distributed. 

In the Kou mode,    (  )     is the absolute asset price jump size and is double-

exponentially distributed.  

In the models, all sources of randomness,  ( ),  ( ) and    are assumed 

independent. 

Compared to equation (1), which is under the risk-neutral measure,   has taken 

the place of  , and a Poisson process is added. The drift rate is the expected 

return on the stock per year. In contrast to the SDE under the risk-neutral 

measure, the drift component has not been adjusted for the market price of risk.  

An arbitrage6 free option-pricing model is specified under a risk-neutral 

probability measure. In asset pricing, the condition of no arbitrage is equivalent 

to the existence of a risk-neutral measure. It arises from a key property of the 

Black Scholes SDE. This property is that the equation does not involve any 

variables that are affected by the risk preferences of investors. The SDE would 

not be independent of risk preferences if it involved the expected return,  , of 

the stock. This is because the value of   depends on risk preferences, Hull 

(2008). 

The corresponding SDE under the risk-neutral probability measure is  

                                                           
6 A trading strategy that takes advantage of two or more securities being misprices relative 
to each other.  
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 (  )
 (      )      ( )    (∑ (  

   )
  ( )
   )                  (5) 

Here   ( ) is a standard Brownian motion under a risk-neutral probability 

measure.   ( ) is a Poisson process under a risk-neutral probability measure.  

Where        is the expected relative price change  [      ] from the jump part 

   ( ) in the time interval   . This is the expected part of the jump. This is why 

the instantaneous expected return under the risk-neutral probability measure, 

   , is adjusted by –        in the drift term of the jump-diffusion process to 

make the jump part an unpredictable innovation. 

Solving the SDE gives the dynamics of the asset price under a risk-neutral 

probability measure 

                            ( )   ( )   {(       
 

 
  )      ( )}∏   

   ( )
                   (6) 

Further explanation on how the Merton model and the Kou model, model the 

asset price will be given in their corresponding chapters.  
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5. The Merton Jump-Diffusion Model 

I will first present the difference in the assumptions of the model compared to 

the Black Scholes model and then present the expression for the valuation of the 

options. 

 

5.1 Assumptions 

The model shares all the assumptions of the Black Scholes model, except for how 

the asset price is modeled (see Merton 1975, pp.1-5). 

 

5.1.2 Modeling the asset price 

This section is based on Matsuda (2004) and Merton (1975) 

 

As with any jump-diffusion model, changes in the asset’s price in the Merton 

model consists of a diffusion component modeled by a Brownian motion and a 

jump component modeled by a Poisson process. The asset price jumps are 

assumed to be independently and identically distributed.  

The probability of a jump occurring during a time interval of length   , can be 

expressed as 

 Pr {                                                }         

 Pr {                                              )}        

 Pr {                                                       }    

The relative price jump size, or in other words the percentage change in the 

asset price caused by jumps, is  

                                             
   

 (  )
   

  
      

  
     

                                                 (7) 

   (   
 )    (  

   ), which is consistent with equation (5). 
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The absolute price jump size    
  is a nonnegative random variable drawn from a 

lognormal distribution, i.e.    (  )          (    ). The density of the 

distribution is given by    (  )   
 

 √  
   { 

(    ) 

  
}, where   and   are the mean 

and standard deviation of   . 

This in turn implies that  [  
 ]      

 

 
  

.  

The relative price jump size (  
   ) is log normally distributed with the mean 

 [  
   ]      

 

 
  

     . 

The dynamics of the asset price, which incorporates the above properties, is 

given by equation (6).           

 

5.2 The formula for option pricing 

There are no closed form solutions for the option price in the Merton model. 

However, Merton developed a solution where he specified the distribution of    

as above, and with this, derived a solution for the price of the option.  

Assuming that the jumps are log-normally distributed as above, the following 

expression for the price of a European call option is given in Merton (1975). For 

simplicity, the superscript * is dropped.  

  (   ) = ∑ [
     (   ) 

  
]    (            

     )
 
                                                   (8)             

The     term corresponds to the scenario where n jumps occur during the life of 

the option. 

    (   )  

  
     

 

 
                   

         
   (   )
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   is the variance of the jump diffusion and   is the mean of the relative asset 

price jump size. 

     (   ) 

  
  is the Poisson probability that the asset price jumps n times during 

the interval of length  . 

Thus, the option price can be interpreted as the weighted average of the Black-

Scholes price on the condition that underlying assets’ price jumps n times 

during the life of the option, with the weights being the probability that the 

assets’ price jumps n times during the life of the option.  

While the MJD model is fairly straightforward and easy to implement, even in 

Excel, the Kou double-exponential model is more complex and will be described 

more in detail in the next chapter. 
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6. The Kou double-exponential Jump-Diffusion 

Model 

This chapter is from Kou (2002) and Kou and Wang (2003) 

 

6.1 Assumptions 

As in the case of the Merton Jump-Diffusion Model, the only difference in the 

assumptions of the model compared to the Black Scholes model is the stochastic 

differential equation for the movement of the underlying asset’s returns. 

 

6.1.2 Modeling the asset price 

As with the previous model, the stock price consists of two parts. The first part 

is a continuous part driven by a normal geometric Brownian motion and the 

second part is the jump part with a logarithm of jump size, which is double 

exponentially distributed. The number of jumps is determined by the event 

times of a Poisson process.  

The expression for the stock price is given by equation (3), which is under the 

physical probability measure.  

Given that    (  )     is double-exponentially distributed with the probability 

density function 

                           ( )       
    {   }      

    {   }, where           

 

Where              are constants and represent the physical probabilities 

of upwards and downward jumps. In other words, 

   (  )     {
                      
                       

                                                                    (9) 
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   and    are exponential random variables which are equal in distribution with 

means 1/   and 1/  . The means 1/   and 1/   are also constant in the model. 

Further, the Brownian motion and the jump process are assumed to be one-

dimensional. 

Note that, 

 (  )  
 

   
 

 

  
  

   (  )    (
 

  
 

 

  
)  (

 

   
  

 

  
 )  

 (  )   (   )   
  

    
  

  

    
                                                                      

The requirement      is needed to ensure that  ( )    and  ( ( ))   . This 

essentially means that the average upward jump cannot exceed 100%, which is 

quite reasonable, because this is not observed in the stock marked.  

In the next section, the leptokurtic feature of the jump size distribution, which 

is inherited by the return distribution, will be illustrated.  
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6.2 The Leptokurtic Feature 

Using equation (4), the return over a time interval    is given by 

  ( )

 (  )
 

 (    )

 (  )
   

    {(  
 

 
  )     ( (    )   ( ))  ∑   

 (    )

   ( )  

}    

where the summation over an empty set is taken to be zero. If the time interval 

   is small, as in the case of daily observations, the return can be approximated 

in distribution, ignoring the terms with orders higher than    and using the 

expansion        
  

 
, by 

                                                   
  ( )

 (  )
       √                                        (10) 

where Z and B are standard normal and Bernoulli7 random variables, 

respectively, with  (   )      and  (   )       , and    is given by 

equation (9).  

The density 8 g of the right-hand side of (10), being an approximation for the 

return   ( )  (  ), is plotted in figure (6.1) along with the normal density with 

the same mean and variance.  

                                                           
7 A Bernoulli variable is a variable that takes the value of 1 in case of success and 0 in case 
of failure. 
8      ( )     

     

 √  
 (

     

 √  
)     {    

(    
   )    (     )   (

            

 √  
)  

    
(    

   )   (     )    ( 
             

 √  
)} 
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Figure (6.1). The first panel compares the overall shapes of the density g and the normal density 

with the same mean and variance, the second one details the shapes around the peak area, and 

the last two show the left and right tails. The dotted line is used for the normal density, and the 

solid line is used for the model. 

The parameters are          
 

   
 year,       per year,       per year,      per year, 

      , 
 

  
   , 

 

  
   .  

The leptokurtic feature is quite evident. The peak of the density g is about 31, 

whereas that of the normal density is about 25. The density g has heavier tails 

than the normal density, especially for the left tail, which could reach well below 

-10%, while the normal density is basically confined with -6%. An increase in 

either 1/   or   would make the higher peaks and heavier tails even more 

pronounced.  
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6.3 SDE under risk-neutral probability 

Kou and Wang (2003) describe how making use of the rational expectations 

argument with a HARA9 type utility function for the representative agent, 

enables them to state the SDE under a risk-neutral probability measure. They 

follow the arguments of Lucas (1978) and N&L (1990). 

The argument is that one can choose a particular risk-neutral measure, so that 

the equilibrium price of an option is given by the expectation under this risk-

neutral measure of the discounted payoff. Under this risk neutral probability 

measure, the asset price,  ( ), still follows a double exponential jump-diffusion 

process. Here the SDE under the risk-neutral probability measure is given by 

equation (5), with    taking the place of   .  

      [  
 ]    

    
 

  
   

 
    

 

  
   

  , 

which is the expected relative jump size in the Kou model under a risk-neutral 

probability measure.  

Because the focus is on option pricing, to simplify the notation, the superscript * 

is dropped when showing the expression for the European call price under a 

risk-neutral probability measure in the next section. 

 

 

 

 

                                                           
9 In finance, economics and decision theory, hyperbolic absolute risk aversion (HARA) refers 
to a type of risk aversion that is particularly convenient to model mathematically and to 
obtailn empirical predictions from.  
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6.4 The formula for option pricing  

Kou (2002) gives the expression for the price of a European call option under a 

risk-neutral probability as  

  ( )   ( ) (  
 

 
          ̃    ̃   ̃     (

 

 ( )
)     )        (  

 

 
   

                  (
 

 ( )
)   )                                                                                  (11) 

Where: 

 ̃  
 

   
 

  

    
   ̃          

  ̃        ̃   (   )        

As (11) shows, it resembles the Black-Scholes formula for a call option, with   

taking the place of  . In this thesis expression (11) will be evaluated with an 

online calculator that makes use of the fast Fourier transform10. Tested against 

the results from Kou (2002), the calculator gave identical values.  

Having described the models of interest, it is now time to look at the data set 

and check whether a normal distribution fits the returns of the stocks. 

 

 

 

 

 

 

 

 

 

                                                           
10 Fast Fourier transforms are widely used for many applications in engineering, science and 
mathematics. A fast Fourier transform (FFT) is an algorithm to compute the discrete Fourier 
transform (DFT) and its inverse.  
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7. Description of the data set  

The option with the highest open interest11 as of May the 5th, 2014 is the call 

option on the Bank of America Corporation stock. As it is highly liquid, this is 

the reason behind looking at this option.  

The data was downloaded from Bloomberg and ranges from 07/28/1980-

04/30/2014.  

 

Figure 7.1. Historical stock price of the BAC stock along with the total volume of options on the 

stock. Time period 07/28/1980 – 04/30/2014. The graph was downloaded from the Bloomberg 

database. 

Figure (7.1) shows that during the time period 1980-2014 there has been both 

steep increases and decreases in the stock price. This is a key contributor to the 

fat tails observed in the histogram below. The aim is to incorporate these fat 

tails in the pricing of the options in order to produce more accurate results.  

                                                           
11 The total number of options that are not closed or delivered on a particular day. 
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Moreover, the volume of options on the stock has greatly increased since 2007. 

This might be due to the recent financial crisis, as options can be used to 

manage risk associated with stocks. 

The option prices used for comparisons were downloaded at the Bloomberg-

database at Norges Handelshøyskole May 5, 2014. 
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8. Checking for normality in the daily log-returns 

There are several ways to check for normality in stock returns.  

Ghasemi and Zahediasl (2011) suggest both visual inspections and numerical 

tests when checking for normality in a data set.  

For visual inspections, a histogram of the daily log-returns along with a 

superimposed normal distribution, as well as a probability plot of the daily log-

returns, provide a visual study and can serve as a starting point for the 

analysis.  

For numerical tests, the authors argue that the Shapiro-Wilk test should be the 

numerical test of choice. However, ties12 in the data set can affect the test. For 

this reason, the Skewness/Kurtosis test, which is not affected by ties, will be 

used.  

 

8.1 Visual inspection 

In this section the histogram and the probability plot of the daily log-returns 

from 07/28/1980 - 04/30/2014 will be presented. 

                                                           
12 If there are identical values in the data, these are called ties.  
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8.1.1 Histogram of the daily log-returns 

 

Figure 8.1. Histogram of the daily log returns for the BAC stock along with a superimposed 

normal distribution. Time period 07/28/1980 – 04/30/2014. 

 

Looking at the figure, it is quite evident that a normal distribution does not fit 

the data very well. If the returns follow a geometric Brownian motion, the 

histogram should fit the blue line pretty well. As the figure shows, this is not the 

case and the assumption of geometric Brownian motion does not seem to hold. 

The figure points to the existence of a significant number of large changes, 

especially apparent by the two tails. The perceived leptokurtosis is evident in 

the high peaks, reaffirming the remarks made about non-normally distributed 

data.   

The high peaks indicate that there is a higher frequency of values near the 

mean than that of the normal distribution.  

It is hard to see from the histogram, but as the summary statistics of the data in 

a later paragraph shows, the smallest return was -30%, while the highest was 

34%. This is well outside of the range of the superimposed normal distribution.  
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8.1.2 Probability plot of the daily log-returns 

The normal probability plot (Chamber 1983) is a graphical technique for 

assessing whether or not a data set is approximately normally distributed.  

Data is plotted against a theoretical normal distribution in such a way that the 

data points should form an approximately straight line. Departures from this 

straight line indicate departure from normality.  

 

Figure 8.2. Probability plot of the daily log-returns. Time period 07/28/1980 – 04/30/2014. 

 

If the data is normally distributed, the thick line should follow the normal 

distribution more closely. The “S-shape” indicates leptokurtosis in the data set.  

 

8.2 The Skewness/Kurtosis test for normality 

The Skewness/Kurtosis test is one of three general normality tests designed to 

detect all departures from normality. The normal distribution has a skewness of 

zero and a kurtosis of three. The test is based on the difference between the 

data`s skewness and zero and the data`s kurtosis and three. The test rejects the 

hypothesis of normality when the p-value is less than or equal to 0,05. Failing 
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the normality test allows a statement with 95% confidence that the data does 

not fit the normal distribution.  

Passing the normality test only allows a statement of the absence of departure 

from normality. 

Below is the output from the Skewness/Kurtosis test run in Stata13 

 

Table 8.1. Stata output form the Skewness/kurtosis test. 

 

The test rejects the hypothesis of normality, reaffirming the remarks made from 

the histogram. 

Thus, so far it seems that there is little evidence of normally distributed returns 

in the BAC stock. 

 

 

 

 

 

 
 

 

 

         BAC     8.5e+03   0.0000         0.0000            .              .

                                                                             

    Variable      Obs   Pr(Skewness)   Pr(Kurtosis)  adj chi2(2)    Prob>chi2

                                                                 joint       

                    Skewness/Kurtosis tests for Normality
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8.4 Summary statistics 

 

 

Table 8.2. Summary statistics for the BAC stock for the entire data set. Output from Stata13 

 

As the table shows, the returns show a fairly high standard deviation, but not 

more than is expected from a stock. The daily volatility corresponds to a yearly 

volatility of 39,95%13. 

It also shows some evidence of asymmetry by the presence of positive skewness.  

The large value of kurtosis shows that the series displays evidence of fat tails 

and acute peaks.  

 

                                                           
13                √    

99%     .0648486       .3420588       Kurtosis       31.36884

95%     .0323478       .3041631       Skewness        .347219

90%      .021819       .2977577       Variance       .0006409

75%     .0096619       .2789156

                        Largest       Std. Dev.      .0253163

50%            0                      Mean          -.0002423

25%    -.0101101      -.2406014       Sum of Wgt.        8512

10%    -.0224066      -.2447746       Obs                8512

 5%    -.0334833      -.2698774

 1%    -.0666914      -.3020961

      Percentiles      Smallest

                                                             

                             BAC
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8.5 Implied volatility smile from the observed option 

As mentioned in the introduction, the observed volatility in the option market is 

not constant; the observed volatility plotted against the strike price looks rather 

more like a smile.  

 

Figure 8.3. Implied volatility for the BAC call option, with strikes ranging from $11-$19, with 

                                           . The figure was made in Stata13 by 

plotting the implied volatilities of the option against their corresponding strike prices. All scatter- 

and line plots were made in Stata13 

 

As the figure shows, the scatter plot of the implied volatility for different strike 

prices resembles a smile.  

The smile indicates that deep out-of-the-money-options14 and deep-in-the-

money-options15 are more volatile than at-the-money-options16. 

This is a key feature of option prices and should be taken into account when 

trying to compute the most accurate option prices. It should be noted that the 

smile is skewed. In-the-money-options have higher implied volatilities than out-

of-the-money-options. 

                                                           
14 For a long call this indicates K > St 
15 For a long call this indicates K < St 
16 For a long call this indicates K = St 
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8.6 Volatility surface of the observed implied volatilities 
 

 

Figure 8.4. Volatility surface of the BAC call option. The figure was made in Excel 2010 with the 

3D-surface graph function. 

 

The figure shows that the observed volatility surface flattens out as time to 

maturity increases. This corresponds to the findings of Tehranchi (2010). The 

author found that for longer maturities the surface tends to flatten in a rather 

precise manner.  

Both the Merton jump-diffusion model and the Kou double-exponential jump-

diffusion model are able to capture the leptokurtic feature and the volatility 

smile, while the Black Scholes model is not able to capture any of the two. This 

should make the jump-diffusion models more able to compute accurate option 

prices compared to the Black and Scholes-model. 
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9. Comparing Black and Scholes values with market 

values 

For different strike prices and maturities, the market values of the BAC call 

option and the values from the Black Scholes model will be presented in this 

chapter. A mean squared error17 will be computed to measure the accuracy of 

the model compared to the observed prices. For better visual comparisons, ratios 

of the model price divided by the market price will be presented.  

The volatility used in the model is the 1 year historical volatility18, assumed 

constant at 22,025%, which is the same volatility used in the Bloomberg 

database. The risk-free rate is stated in Bloomberg along with the option prices, 

and varies with the different maturities, so this rate will be used for the 

calculations. The spot price of the stock is the stock price as of May the 5th, 2014, 

10:33, quoted at $15,25. The time measure is calendar days, as this corresponds 

to the input parameters of the option calculator for theoretical prices in the 

Bloomberg database. This time measure will be used for all the models. 

The prices are for options of the American type; however there were no implied 

cumulative dividends for any of the maturities, so the American and European 

call option prices should be the same, as stated in section (3.3). This means that 

even though the models in this thesis are for European options, they should give 

correct prices for the American options under investigation. 

 

 

                                                           
17 In statistics, the mean squared error (MSE) of an estimator measures the average of the 
squares of the ”errors”, that is, the difference between the estimator and what is 
estimated.  
18 Calculated as the standard deviation of the daily log returns from 04/29/13-04/29/14 

times √    
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9.1 Graphical comparison of prices, ratios and MSE 

In this section a graphical comparison of the prices as well as a visual study of 

the ratios and MSE will be presented. 

 

9.1.1 Comparison of prices 
 

 

Figure 9.1. Comparison between the market prices and the prices from the Black Scholes model. 

Time to maturity= 12 and 201 days 

As the figure shows, and as expected from the empirical evidence of the 

volatility smile, the model performs well for near at-the-money-options, but 

moving away-from-the-money, the Black Scholes model undervalues the options. 

The model fails to capture the increased volatility as the exercise price moves 

away from the spot price of the stock. 
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9.1.2 Comparison of ratios 

For a better visual comparison between the models, a ratio where the model 

price is divided by the corresponding market price is presented in the figure 

below. If the ratio = 1, the prices are identical, a ratio > 1 indicates 

overestimation while a ratio < 1 indicates underestimation compared to market 

prices.  

 

Figure 9.2. The figure shows the ratios calculated as 
           

            
. The ratios are for a maturity of 

12 days. 

The strike range 17-19 was held outside of the graph because of extreme values.  

Instead the ratios are shown in table (9.1) 

Strike Ratio 

17 0,06852940000 

18 0,00027545600 

19 0,00000027087 

Table 9.1. Ratios, strike range 17-19. 
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Figure 9.3. Ratios for a maturity of 201 days. 

 

The ratios show that the Black Scholes model consistently underestimates the 

value of the option for maturities of 12 and 201 days, the exception being for a 

strike price of 17 and a maturity of 201 days.  

 

9.1.3 Visual study of the MSE 
 

Strike Market prices B&S squared errors 

11 4,300000191 4,250476656     0,00245258 

12 3,299999952 3,250519989 0,002448267 

13   2,25999999 2,250567924     8,89639E-05 

14   1,25999999 1,25412416     3,45254E-05 

15 0,389999986 0,388259114     3,03063E-06 

16 0,039999999 0,035756852     1,80043E-05 

17 0,01 0,000685294     8,67638E-05 

18 0,01 2,75456E-06      9,99449E-05 

19 0,01 2,70873E-09      9,99999E-05 

MSE     0,000592453 

Table 9.2. MSE of the Black Scholes model for the entire strike range for a maturity of 12 days. 

 

For exercise prices of 13, 14 and $15 the observed prices and the theoretical 

prices are nearly identical. Moving out-of-the-money, the model fails to 

reproduce the market prices because of the increased implied volatility. 
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Just looking at the squared errors, it is tempting to say that the model performs 

well for out-of-the-money-options. However, the reason for the small squared 

errors is that the prices are very low, making the values of the differences 

between the observed prices and the theoretical prices smaller than with higher 

prices. Figure (9.2), (9.3) and table (9.1) helps remedy this problem.  

 

 

Figure 9.4. Mean squared error for the different maturities.  

 

An increase in time to expiration seems to give a higher estimate of the MSE, 

indicating that as the time to expiration increases, the accuracy of the model 

decreases. 

To give a better view of how the model performs under different strike prices, I 

will split the MSE into MSE for options in-the-money, out-of-the-money and at-

the-money.  
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Figure 9.5. MSE split into in-the-money, at-the-money and out-of-the-money. It should be noted 

that at-the-money-options are not strictly at-the-money, but close. The spot price is $15,25 while 

the strike price is $15. 

 

Figure (9.5) confirms the notion about bias in the MSE. The MSE for out-of-the-

money-options is lower for shorter times to expirations than for longer 

expirations, even though the model actually performs better for out-of-the-

money options for longer expirations. This can be confirmed by looking at the 

ratios presented in figures (9.2) and (9.3).  

Because of the fact that the surface of the observed implied volatilities is skewed 

and flattens out as time to expiration, the model is more able to produce 

accurate results for out-of-the-money-options as time to expiration increases, 

whereas for in-the-money-options the model struggles for the entire maturity 

range.  

A table of the squared errors for different strike prices and maturities is shown 

in the appendix.  
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9.2 Volatility surface from the implied volatilities from 

the theoretical prices 

 

 

Figure 9.6. Volatility surface of the implied volatilities from the Black Scholes model. 

 

Comparing figure (9.6) to figure (8.4), visual inspection reveals a big difference 

in the surfaces. While figure (8.4) clearly shows that for different strike prices 

and maturities, the volatility changes, the surface of the implied volatilities of 

the Black Scholes prices is flat. Keeping in mind that the model assumes 

constant volatility, this is no surprise.  
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9.3 Density of the stock returns used in the model 

 

Figure 9.7. Implied density plot used in the Black Scholes model. The plot is calculated with the 

same mean and standard deviation as the 1-year historical daily log-returns. 

The plot indicates that the returns are lognormal and follows equation (3), given 

  ( )    

As illustrated, the real log-returns have higher peaks and longer tails than the 

implied density used in the model. This could also be a factor in reducing the 

accuracy of the model. 

9.4 Summary  

To summarize, the Black and Scholes model is accurate for at-the-money-options 

with short time to maturity, and fairly accurate for out-of-the-money options 

with longer time to expiration. Despite it not being able to capture the implied 

volatility smile or the leptokurtic feature apparent in the historical returns of 

the BAC stock, the model performs well. 
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10. Market prices versus option prices via the 

Merton Jump-diffusion model 

After showing that the Black Scholes model can produce accurate results, 

despite the mentioned shortcomings, the simple Jump-diffusion model should be 

able to produce more accurate values. 

As in the case of the Black Scholes model, the volatility used is the historical 

volatility. The risk-free rate is the same as before. However, within the Merton 

model, the volatility and the risk-free rate will vary with the number of jumps 

and their magnitudes.  

Matlab 2009 was used for the calculations of the option prices. The code can be 

found in the appendix.  

 

10.1 Calibrating the model 

There are more ways than one to calibrate the model. Ramezani and Zeng (2006) 

use maximum likelihood estimation to obtain parameter estimates for both the 

Merton Jump-Diffusion model and the Kou double-exponential Jump-Diffusion 

model. The details on maximum likelihood estimation for jump-diffusion 

processes can be found in Sorensen (1988). 

Other methods for the estimation of jump-diffusion processes, including the 

generalized method of moments, the simulated moment estimation, and MCMC 

methods, among others can be found in Aït-Sahalia and Hansen (2004). 

The above methods are computationally extensive and will not be utilized in this 

thesis. Instead, I will suggest a method where jumps are defined as a percentage 

increase or decrease in the daily log-returns. The method is described in the 

next section.  
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10.2 Determining the number of jumps and their 

magnitudes 

To calculate the number of jumps, different limits of the returns compared to the 

average return will be set. If the average return of the period is 0,01%, the limit 

could be set at plus, minus 7% daily logarithmic return.  

After determining the limits, the mean size of the jumps and the standard 

deviation of the jumps can be calculated.  

Because there is some degree of freedom in choosing the number of jumps and 

their means, the number of jumps, their means and standard deviations will be 

calibrated with the aim of minimizing the mean squared error for the entire 

range of strike prices and maturities.  

Two different time periods will be used in the calculation. A 1-year period, 

ranging from 04/29/13-04/29/14 and the entire data set, ranging from 

07/28/1980-04/30/2014. 

 

 

10.2.1 Different limits and time periods for calculation of the jumps 
 

Limit                         λ                                    δ^2                  δ 

+/- 4% 2 0,013781 0,003347 0,057857 

+/- 3,5% 3         -0,00774 0,002659          0,05157 

+/- 3% 9         -0,00995 0,001476 0,038417 

+/- 2,5% 20         -0,01418 0,000912 0,030203 

+/- 2% 39         -0,00346 0,000796           0,02822 

Table 10. The table shows how the number of jumps, the mean of the jumps and the volatility of 

the jumps vary with different limits of the returns. Time period 04/29/13 – 04/29/14. 
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Limit                        λ                                      δ^2                 δ 

+/- 10% 1,98          0,007005 0,030911 0,175815 

+/- 8% 3,26 0,00358087 0,021816689 0,147704734 

+/- 6%                   6,33 -0,001779052 0,013507971 0,116223797 

+/- 4% 16,67 -0,000926954 0,006578313 0,0811068 

+/- 2% 59,1 -0,000775789 0,002423898 0,049233099 

Table 10.2. The table shows how the values change when expanding the time period to include 

the whole data set. 

 

Including the whole data set means including some big historical events in the 

stock market. Two events that should be mentioned includes the stock market 

crash in 1987, also known as Black Monday, and the recent financial crisis. 

Including these time periods means including more negative returns to the 

calculations of the jumps and their magnitudes.  

In order to get the same number of jumps as in the time period 04/29/13 – 

04/29/14, the limit has to be increased. A limit of 10% gives the same number of 

jumps as the 4% limit for the 1-year period. However, the mean of the jumps is 

noticeably smaller, while the standard deviation has increased.  

When calibrating the model, the jumps calculated with the whole data set 

consistently yielded higher MSE than the jumps from the 1-year period. The 

number of jumps that gave the least mean squared errors was 2, with mean 

0,013781 and a standard deviation of 0,057857. 

The jump intensity and their corresponding means and standard deviations 

were based on the above results. Further calibration, with the aim of reducing 

the MSE, gave a final jump intensity of 2 jumps per year, with a standard 

deviation of 3% and a mean of 0,1%.  

The mean of the jumps might look low, but as it is an average of both positive 

and negative jumps, and the number of positive and negative jumps is close, 

they almost cancel each other out. 
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10.2 Graphical comparison of prices, ratios and MSE  

In this section a graphical comparison of the prices, ratios and MSE will be 

presented. 

 

10.2.1 Comparison of prices 
 

 

Figure 10.1. Prices form the Merton-model compared to the observed market prices and the 

Black-Scholes prices. Time to maturity = 12 and 201 days. 

 

The differences between the market prices and the Merton prices are very 

similar to the results from chapter 9. 

In order to keep the Merton model from overpricing the options by too high a 

degree, the jump intensity was set at 2 jumps per year. Because of the low 

intensity and the low mean and standard deviation of the jumps, the prices of 

the Black Scholes model and the Merton model are very similar.  
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10.2.2 Comparison of ratios 
 

 

Figure 10.2. Ratios for the B&S model and the Merton model. Time to maturity = 12 days. 

 

 Ratio 

Strike B&S Merton 

17 0,068529400 0,09583082 

18 0,000275456 0,00114749 

19 0,000000271 0,00001356 

Table 10.1. Ratios for strike range 17-19. 

 

 

Figure 10.3. Ratios for time to maturity = 201 days. 
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Compared to the Black Scholes model, the Merton Jump-Diffusion model 

overestimates at-the-money, while underestimating both in- and out-of-the-

money for a maturity of 12 days. When increasing the time to maturity the 

model still underestimates while in-the-money, but now also at-the-money. 

Moving out-of-the-money, the model overestimates the options value. 

 

 

10.2.3 Comparison of MSE 
 

 

Figure 10.4. MSE for the entire strike range for different maturities for the MJD model, 

compared with the MSE from the Black and Scholes model. 

 

 

Figure 10.5. MSE for in-the-money-options. 

 

0

0,001

0,002

0,003

0,004

0,005

0,006

0,007

0,008

12 days 47 days 75 days 103
days

201
days

257
days

M
SE

 

B&S

Merton

0

0,002

0,004

0,006

0,008

0,01

0,012

0,014

0,016

12 days 47 days 75 days 103
days

201
days

257
days

M
SE

 

B&S

Merton



 

 

49 

 

Figure 10.6. MSE for at-the-money-options. 

 

 

Figure 10.7. MSE for out-of-the-money-options. 

 

Figure (10.4) shows that the Merton model performs the best overall when 

looking at the MSE for the entire range of maturities and strike prices, except 

for a maturity of 47 days. 

However, when the MSE is split into in-the-money-, at-the-money- and out-of-

the-money-options, the results differ. 

For in-the-money-options, the Merton model has the lowest MSE for all the 

different maturities. The Merton model is more able to capture the increase in 

the implied volatility as the strike price decreases.  

For at-the-money-options, the Black Scholes model performs the best for the 

shorter maturities, 12 and 47 days. When the maturities increase, the Merton 
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model again gives the most accuracy. This is because as the time to expiration 

increases, so does the implied volatility of the at-the-money-options, as shown by 

table (A2.1 and A2.2) in the appendix.  

For out-of-the-money-options, the implied volatility is fairly flat for the different 

maturities. This makes the Black Scholes model the most accurate when 

comparing its corresponding MSE and ratios with the Merton model. Because of 

the limited increase in implied volatility as the option moves out-of-the-money, 

the Merton model overestimates the values.  

 
 

10.3 Volatility surface of the implied volatilities from 

the theoretical prices 
 

 

Figure 10.8. Volatility surface of the implied volatilities of the prices from the Merton model. 

 

Comparing figure (10.8) to figure (9.6) there is a clear difference. While the 

volatility surface of the Black Scholes model is flat, the surface from the Merton 

model is somewhat familiar to the surface from the observed implied volatilities. 
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The peak of the implied volatility of the model is 45,1%, whereas the real 

implied volatilities peak at 80,17% for a maturity of 12 days. The low peak is 

due to the low impact of the jumps. 

Comparing figure (10.8) with figure (8.4), the surface from the Merton model 

flattens out much quicker than the observed surface. Because the jump intensity 

and impact is set at low levels, the models ability to incorporate more risk in the 

valuation is reduced.  

Still, the model shows that it is able to incorporate the volatility smile compared 

to the Black Scholes model, where the surface is flat. 

To show that the model is able to capture the leptokurtic feature apparent in the 

daily log-returns, the stock price will be simulated using a downloaded Excel 

spreadsheet that is based on hull (2000). 

The stochastic differential equation used to model the stock price is the same as 

equation (3), given     (  )     and    is normally distributed.  

Input parameters: 

       ,          ,    ,          ,     ,      , 

                                                  .  

The simulated returns are compared with the observed historical daily log-

returns via histograms of their corresponding densities.  
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10.3 Density of the asset returns simulated with jump-

diffusion compared to the density of the observed 

returns 

 

 

Figure 10.8. Density of the simulated log-returns used in the Merton model. 

 

 

 

Figure 10.9. Density of the observed 1-year historical daily log-returns. 
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As the two figures show, the density from the simulated log-returns from the 

Merton model is similar to the density of the real returns. Both histograms peak 

at a density of 45-50 and contain “extreme” negative and positive returns.  

10.4 Summary 

To summarize, visual study reveals that the model does not perform as well as 

one might have thought. While the Merton model consistently performs the best 

when looking at the MSE for the entire strike range, the results are not so 

convincing when dividing the MSE into different groups of moneyness.  

Even though the model is able to reproduce the volatility smile of the observed 

market prices to some extent and the leptokurtic feature in the stock’s log-

returns, the results from the implementation of the model are not very different 

from the Black Scholes model. The fact that the jumps are assumed log-normal 

might be reducing the accuracy of the model. There is no distinction between 

negative and positive jumps in the Merton model; only a mean of the jumps is 

made use of.  

The next step is to investigate whether the Kou-model, with double exponential 

distributed jumps, where the jump component is split into positive and negative 

jumps, performs better than the previous two models. 
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11. Market prices versus option prices via the Kou-

model 

To incorporate the Kou-model, additional parameters have to be determined.  

These parameters include the mean of the positive jump size, the mean of the 

negative jump size and the probability of a positive jump.  

The advantage of the Kou-model is that it allows you to divide the jump 

component into positive and negative jumps. This gives you more freedom when 

calibrating the model to fit the observed market prices.  

 

11.1 Calibrating the model 

When calibrating the Kou model the problem was making sure the model did 

not overprice the options too much when moving out of the money. Because the 

implied volatility of the out-of-the-money options shows no significant increase, 

the jump-diffusion models tend to overestimate the values.  

The choice of parameters was a case of trial and error. The goal was to 

determine the jumps and their magnitudes in such a way that they consistently 

performed better than the previous models for the entire strike range and 

maturities.  

Increasing the average negative jump size, while keeping the positive jump size 

constant, gave better results when moving out-of-the-money, but still not as 

good as the Black Scholes model. 

The probability of an upward jump was set at 40%, as this gave the most 

accurate results and the jump intensity was set at 1 jump per year for the same 

reason. The average positive jump size was set at 2%, while the average 

negative jump size was set at 3,33%.  

The additional parameters of the model are as follows: 
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According to the online calculator 

Ita_1 corresponds to   , which is 1/0,02 = 50 

Ita_2 corresponds to   , which is 1/0,0333 = 30,03003 

 

11.2 Graphical comparison of prices, ratios and MSE 
 

11.2.1 Comparison of prices 
 

 

Figure 11.1. Observed market prices, prices from the B&S model, prices from the Merton model 

and prices from the Kou model. Time to maturity = 12 and 201 days. 

As with the previous model, the results are fairly similar. The difference in the 

prices is not large. However, the Kou-model is slightly more accurate than the 

Merton model when looking at the entire strike range, which is slightly more 

accurate than the Black Scholes model 
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11.2.2 Graphical comparison of ratios 
 

 

Figure 11.2. Ratios for the different models. Time to maturity = 12 days. 

 

 Ratio 

Strike B&S Merton Kou 

17 0,0685294000 0,095830820 0,083430635 

18 0,0002754560 0,001147490 0,001414448 

19 0,0000002709 0,000013564 0,000067165 

Table 11.1. Ratios for strike range 17-19 

 

 

Figure 11.3. Ratios for time to maturity = 201 days. 

Looking at figures (11.2) and (11.3) there is a difference in how the models 

perform when considering different maturities.  

For the short maturity of 12 days, all of the models underestimate the value of 

the option both in- and out-of-the-money, while the jump-diffusion models 
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overestimate the value at-the-money. The Black Scholes model consistently 

underestimates.  

For longer maturities (201 days), the models underestimate the value of the 

option when in-the-money and at-the-money. When moving out-of-the-money, 

the jump-diffusion models start to overestimate the value, while the Black 

Scholes model underestimates except for the exercise price of 17 where it is very 

close to the market value. At-the-money the jump-diffusion models perform very 

similarly and are more accurate than the Black Scholes model.  

 

11.2.3 Graphical comparison of MSE 

 

 

Figure 11.4. Overall MSE for the entire strike range for the three different models. A table of the 

MSE is shown in the appendix. 

 

For all maturities, except 47 days, the Kou-model performs the best when the 

entire strike range is considered. It should still be noted that the differences are 

not large. 
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Figure 11.5. MSE for in-the-money-options. 

 

 

Figure 11.6. MSE for at-the-money-options. 

 

 

Figure 11.7. MSE for out-of-the-money-options. 
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Looking at the MSE for the different types of moneyness gives conflicting 

results. 

The Kou model performs the best out of the three when in-the-money. At-the-

money, the Merton model performs the best for longer maturities. When out-of-

the-money, the Black Scholes model is the most accurate overall, while the Kou-

model beats the Merton model. 

Even though the Kou model produces less accurate results than the Black 

Scholes model when out-of-the-money, the results show that the Kou-model is 

more able to produce accurate results when in- and out-of-the-money than the 

MJD model 

 

11.3 Volatility surface of the theoretical prices. 
 

 

Figure 11.8. Volatility surface of the implied volatilities from the Kou model. 

 

Comparing figure (11.8) with figure (10.9), the peak of the implied volatility of 

the Kou-model is very similar to the peak of the Merton model. While the peak 

is very similar, the implied volatility of the out-of-the-money-options is 

marginally lower for the Kou model. 
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The fact that the model lets you distinguish between positive and negative 

jumps enables the user to calibrate the model to better fit the implied volatilities 

in the market.  

 

11.4 Summary 

To summarize, by visual inspection the Kou model performs the best overall 

among the three models considered. Even though the differences between the 

models are not large, when the entire strike range is considered, the Kou model 

shows the most accuracy. This is as expected, as the Kou model has additional 

parameters to help fit the model to the observed market prices.  

Because of the additional parameters that have to be determined, the Kou model 

is more complex to incorporate compared to the very easy and non-complex 

Black Scholes model and the fairly straightforward Merton model. 

Doing the same thorough analysis, as done with the call option on the BAC 

stock, for several call options is beyond the scope of this thesis. Instead, the 

volatility surfaces of the observed implied volatilities for four other call options 

are displayed below. Because the main factor in reducing the accuracy of the 

models for several strike prices and maturities is the skew in the observed 

implied volatility and the tendency of the implied volatility to flatten out as time 

to expiration increases, this problem will apply to options sharing the same 

implied volatility pattern.  
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11.4.1 Volatility surface of four additional stocks 

The surfaces were downloaded from the Bloomberg database. 

 
Figure 11.9. Volatility surface of the implied volatilities for the call option on the Apple Inc. 

stock. 

 

 

Figure 11.10. Volatility surface of the implied volatilities for the call option in the Intel Corp. 

stock. 
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Figure 11.11. Volatility surface of the implied volatilities for the call option on the CBS Corp. 

stock. 

 

 

Figure 11.12. Volatility surface of the implied volatility of the Weyerhaeuser Co. stock. 

 

Looking at the surfaces, the same tendency observed in the volatility surface of 

the call option on the BAC stock, holds for the four additional options 

considered. This means that the same problem regarding accuracy for several 

strike prices and maturities will occur when computing values for the options in 

question.  
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12. Concluding remarks 
 

12.1 Two-sample mean-comparison tests 

Visual inspection reveals some difference between the models; however, the 

differences in values are very small. To help with the conclusion, two-sample 

mean-comparison tests are carried out to investigate if there is a significant 

difference between the MSE of the models. The hypothesises were computed 

with Stata13 

The test is a two-sided t-test for independent, unequal, unpaired samples with 

different variances.  

The null hypothesis states that there is no difference between the means of the 

samples, while the alternative hypothesis states that there is a difference 

between the means. 

Difference in means for MSE for out-of-the-money-options, in-the-money-options 

and the full strike range for all the maturities were tested at a significance level 

of 0,01. At-the-money-options were not tested, as a visual inspection is 

sufficient.  

The results are presented on the next pages. 
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12.2.1 Differences in MSE, entire strike range 

 

Entire strike range   P-value 

MSE Compared  Ha: diff !=0 
   
B&S-Merton, 12d  0.9954 
B&S-Kou, 12d  0.9945 
Merton-Kou, 12d  0.9991 
   
B&S-Merton, 47d  0.9044 
B&S-Kou, 47d  0.9592 
Merton-Kou, 47d  0.9438 
   
B&S-Merton, 75d  0.8043 
B&S-Kou, 75d  0.7673 
Merton-Kou, 75d  0.9614 
   
B&S-Merton, 103d  0.8582 
B&S-Kou, 103d  0.8249 
Merton-Kou, 103d  0.9651 
   
B&S-Merton, 201d  0.8329 
B&S-Kou, 201d  0.8195 
Merton-Kou, 201d  0.9864 
   
B&S-Merton, 257d  0.1326 
B&S-Kou, 257d  0.6772 
Merton-Kou, 257d  0.1316 

Table 12.1. P-values from the two-sided two-sample t-test for differences in means for the entire 

strike range. Hypothesis is rejected for p-values < 0,01 

 

For all maturities, when considering the entire strike range, the t-test cannot 

reject the null hypothesis of no differences in the MSE for the different models.  

 

 

 

 

 

 

 



 

 

65 

12.2.2 Differences in MSE, in-the-money 

 

In-the-money   P-value 

MSE Compared  Ha: diff !=0 
   
B&S-Merton, 12d  0.9986 
B&S-Kou, 12d  0.9965 
Merton-Kou, 12d  0.9979 
   
B&S-Merton, 47d  0.8302 
B&S-Kou, 47d  0.7836 
Merton-Kou, 47d  0.9531 
   
B&S-Merton, 75d  0.4278 
B&S-Kou, 75d  0.3473 
Merton-Kou, 75d  0.8884 
   
B&S-Merton, 103d  0.7402 
B&S-Kou, 103d  0.7032 
Merton-Kou, 103d  0.9628 
   
B&S-Merton, 201d  0.7527 
B&S-Kou, 201d  0.7338 
Merton-Kou, 201d  0.9817 
   
B&S-Merton, 257d  0.2021 
B&S-Kou, 257d  0.6154 
Merton-Kou, 257d  0.2014 

Table 12.2. P-values for in-the-money-options. 

 

As with the entire strike range, the null cannot be rejected. 
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12.2.3 Differences in MSE, out-of-the-money 

 

Out-of-the-money   P-value 

MSE Compared  Ha: diff !=0 
   
B&S-Merton, 12d  0.8736 
B&S-Kou, 12d  0.9127 
Merton-Kou, 12d  0.9605 
   
B&S-Merton, 47d  0.7581 
B&S-Kou, 47d  0.7988 
Merton-Kou, 47d  0.9513 
   
B&S-Merton, 75d  0.5810 
B&S-Kou, 75d  0.6581 
Merton-Kou, 75d  0.8764 
   
B&S-Merton, 103d  0.3361 
B&S-Kou, 103d  0.3931 
Merton-Kou, 103d  0.8403 
   
B&S-Merton, 201d  0.1717 
B&S-Kou, 201d  0.2201 
Merton-Kou, 201d  0.6685 
   
B&S-Merton, 257d  0.1379 
B&S-Kou, 257d  0.1173 
Merton-Kou, 257d  0.1349 

Table 12.3. P-values for out-of-the-money-options. 

 

 

12.2 Which model is the most accurate? 

When considering the entire strike as whole as well as different maturities, the 

Kou model performs the best. However, as the strike range is split up into 

different types of moneyness, the results are not as clear. Because of the skew in 

the observed implied volatilities and the tendency of the observed implied 

volatility smile to flatten out as time to maturity is increased, the models 

struggle to produce accurate results for the entire strike range and maturities.  
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Even though visual study reveals some differences between the models, the two-

sided t-test cannot reject the null hypothesis of no difference in MSE across the 

models.  

Because the differences are small, and test statistics shows no significant 

difference between the models, there is no model that stands out as the most 

accurate.  

It should be noted that the models have only been computed on one option, the 

call option on the BAC stock. Concluding that one model is better than the other 

based on one option would not be a very robust result. Even though the implied 

volatility surfaces of four additional options showed the same pattern as the 

BAC stock, there could be other options where the differences in the models 

accuracy are more pronounced.  

The fact that the Black Scholes model has been around for more than 40 years, 

and is still going strong, is no surprise after looking at degree of accuracy. 

Despite the mentioned advantages of the jump-diffusion models compared to the 

Black Scholes model, the values from the models do not differ greatly.  

 

 

12.2 Shortcoming of Jump-Diffusion Models 

The main problem with jump-diffusion models is that they cannot capture the 

volatility clustering effects, which can by captured by other models such as 

stochastic volatility models. Kou (2002) 

Because the implied volatility tends to flatten out as time to maturity increases, 

the models struggle to produce accurate results for the entire maturity range. In 

this thesis the jump intensity and magnitude had to be set at low levels to 

enable the models to perform well for the entire strike and maturity range. 
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If only short maturities and specific types of moneyness were considered, the 

jump intensity and magnitude could be set at higher levels, making the models 

more able to reproduce the observed implied volatilities.  

The problem with hedging with the jump-diffusion models should also be noted. 

Due to the jump part, the market is incomplete, and the conventional riskless 

hedging arguments are not applicable here, in contrast to the Black Scholes 

model.  

 

12.3 Are the Jump-Diffusion models used much in 

practice? 

This section is based on Leib (2000) 

These days, at least a few option market-making practitioners value the jump-

diffusion models highly. Trent Cutler of the San Francisco-based equity options 

market-making firm Cutler Group LP, regularly goes to great lengths to train 

new employees to look at options in jump-diffusion terms. “We probably spend as 

much time on this as anybody”, “and we actually get some pretty interesting 

outcomes, perhaps even a pricing advantage, although it’s hard to quantify how 

much this has been worth to us.” 

Cutler uses his jump-diffusion models as a way to explain initially aberrant-

looking pricing. “We’ll look at something that appears out of line, put in an extra 

jump, and see how much that affects the pricing. Then we’ll look out into the real 

world and see what the market is focusing on. Often we can explain away an 

odd-looking pricing phenomenon. Other times, we spot an opportunity. We think 

the model works well in terms of non-continuous movements and systematic 

changes in volatility over time and stock prices”. 

Other practitioners are well aware of jump-diffusion modeling, but use it rarely. 

Emanuel Derman, head of risk management at Goldman Sachs, has seen the 

model used at his firm in specific merger-arbitrage situations, “for which it was 

quite useful”, he says, but seldom in other situations.  
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Mike Kelly, a quantitatively oriented trader at Onyx Capital Management LLC, 

does not use jump diffusion in his pricing and hedging decisions, but “finds it 

theoretically appealing”  

The article is from 2000, but shows how some of the practitioners in the market 

think about the jump-diffusion models.  

 

12.3 Suggestions for further research 

Models that incorporate both jump-diffusion and stochastic volatility (for 

example the Bates model) would be an interesting study. Looking at the results 

from this thesis, models that count for volatility clustering could very well 

outperform the pure jump-diffusion models.  
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Appendix 
 

Appendix 1: Market prices, Model prices and pricing 

errors 

 

 A1.1 Market prices, Black Scholes prices and corresponding pricing errors. 

T-t = 12 days, rf=0,13% T-t = 103 days, rf=0,24% 

Strike Market prices        B&S squared errors Strike Market prices B&S squared 
errors 

11 4,300000191 4,250476656 0,00245258 11 4,300000191 4,258795337 0,00169784 

12 3,299999952 3,250519989 0,002448267 12 3,349999905 3,270358144 0,00634281 

13 2,25999999 2,250567924 8,89639E-05 13 2,390000105 2,325092062 0,004213054 

14 1,25999999 1,25412416 3,45254E-05 14 1,549999952 1,492296824 0,003329651 

15 0,389999986 0,388259114 3,03063E-06 15 0,870000005 0,847930461 0,000487065 

16 0,039999999 0,035756852 1,80043E-05 16 0,419999987 0,422508506 6,29267E-06 

17 0,01 0,000685294 8,67638E-05 17 0,170000002 0,184633206 0,000214131 

18 0,01 2,75456E-06 9,99449E-05 18 0,07 0,071233998 1,52275E-06 

19 0,01 2,70873E-09 9,99999E-05 19 0,029999999 0,024515223 3,00828E-05 

  MSE     0,000592453    MSE     0,001813605 

T-t = 47 days, rf=0,17% T-t = 201 days, rf=0,35% 

11 4,300000191 4,252445658 0,002261434 11 4,400000095 4,289658979 0,012175162 

12 3,299999952 3,253053681 0,002203952 12 3,5 3,343316823 0,024549618 

13 2,299999952 2,262174393 0,001430773 13 2,599999905 2,474597693 0,015725715 

14 1,370000005 1,336474145 0,001123983 14 1,809999943 1,728770444 0,006598232 

15 0,600000024 0,617274736 0,000298416 15 1,179999948 1,136843453 0,001862483 

16 0,180000007 0,209405878 0,000864705 16 0,709999979 0,704043011 3,54855E-05 

17 0,050000001 0,050996343 9,92697E-07 17 0,409999996 0,411770455 3,13452E-06 

18 0,02 0,008992818 0,000121158 18 0,230000004 0,228408756 2,53207E-06 

19 0,01 0,001177948 7,78286E-05 19 0,129999995 0,12075822 8,54104E-05 

  MSE     0,000931471    MSE     0,006781975 

T-t = 75 days, rf=0,21% T-t = 257 days, rf=0,42% 

11 4,300000191 4,25500839 0,002024262 10 5,400000095 5,288718429 0,012383609 

12 3,299999952 3,25907482 0,001674866 11 4,449999809 4,319703251 0,016977193 

13 2,339999914 2,2891544 0,002585266 12 3,5 3,399055648 0,010189762 

14 1,460000038 1,41604322 0,001932202 14 1,940000057 1,848398575 0,008390831 

15 0,75999999 0,74310278 0,000285516 15 1,340000033 1,273210467 0,004460846 

16 0,319999993 0,32351388 1,23E-05 16 0,879999995 0,839085449 0,001674 

17 0,119999997 0,11626718 1,39E-05 17 0,560000002 0,530506657 0,000869857 

18 0,039999999 0,03476213 2,74E-05 19 0,209999993 0,189896765 0,00040414 

19 0,02 0,00877446 0,000126013 20 0,129999995 0,108325409 0,000469788 

  MSE     0,000964649    MSE     0,006202225 
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T-t = 12 days, rf=0,13% T-t = 103 days, rf=0,24% 

Strike Market prices Merton squared 
errors 

Strike Market prices Merton squared    
errors 

11 4,300000191 4,250476656 0,00245258 11 4,300000191 4,259066577 0,001675561 

12 3,299999952 3,250520002 0,002448265 12 3,349999905 3,271908362 0,006098289 

13 2,25999999 2,250577037 8,8792E-05 13 2,390000105 2,329977103 0,003602761 

14 1,25999999 1,254744234 2,7623E-05 14 1,549999952 1,501857765 0,00231767 

15 0,389999986 0,391948852 3,79808E-06 15 0,870000005 0,860660684 8,72229E-05 

16 0,039999999 0,038186452 3,28895E-06 16 0,419999987 0,434884684 0,000221554 

17 0,01 0,000958308 8,17522E-05 17 0,170000002 0,193921663 0,000572246 

18 0,01 0,000011475 9,97706E-05 18 0,07 0,076860077 4,70607E-05 

19 0,01 0,000000136 9,99973E-05 19 0,029999999 0,027365896 6,9385E-06 

MSE     0,000589541     MSE     0,001625478 

T-t = 47 days, rf=0,17% T-t = 201 days, rf=0,35% 

11 4,300000191 4,252448821 0,002261133 11 4,400000095 4,291876022 0,011690815 

12 3,299999952 3,253166951 0,00219333 12 3,5 3,348953366 0,022815086 

13 2,299999952 2,263379682 0,001341044 13 2,599999905 2,485076308 0,013207433 

14 1,370000005 1,341233482 0,000827513 14 1,809999943 1,743944952 0,004363262 

15 0,600000024 0,625635369 0,000657171 15 1,179999948 1,154802652 0,000634904 

16 0,180000007 0,216968972 0,001366704 16 0,709999979 0,722069757 0,00014568 

17 0,050000001 0,054962025 2,46217E-05 17 0,409999996 0,427569443 0,000308685 

18 0,02 0,01032032 9,36962E-05 18 0,230000004 0,240781212 0,000116234 

19 0,01 0,001485209 7,25017E-05 19 0,129999995 0,129578168 1,77938E-07 

MSE     0,000981968     MSE     0,005920253 

T-t = 75 days, rf=0,21% T-t = 257 days, rf=0,42% 

11 4,300000191 4,255070481 0,002018679 10 5,400000095 5,290027971 0,012093868 

12 3,299999952 3,259721207 0,001622377 11 4,449999809 4,323476321 0,016008193 

13 2,339999914 2,29217249 0,002287463 12 3,5 3,406997883 0,008649394 

14 1,460000038 1,423444099 0,001336337 14 1,940000057 1,866043888 0,005469515 

15 0,75999999 0,753871284 3,7561E-05 15 1,340000033 1,293540954 0,002158446 

16 0,319999993 0,333742886 0,000188867 16 0,879999995 0,859656869 0,000413843 

17 0,119999997 0,123109194 9,66711E-06 17 0,560000002 0,549209762 0,000116429 

18 0,039999999 0,038186309 3,28947E-06 19 0,209999993 0,201914902 6,53687E-05 

19 0,02 0,010121308 9,75886E-05 20 0,129999995 0,117047339 0,000167771 

MSE     0,000844648     MSE     0,00501587 

A1.2. Market prices, Merton prices and corresponding pricing errors. 
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T-t = 12 days, rf=0,13% T-t = 103 days, rf=0,24% 

Strike Market prices Kou squared 
errors 

Strike Market prices Kou squared 
errors 

11 4,300000191 4,250477542 0,002452493 11 4,300000191 4,259298577 0,001656621 

12 3,299999952 3,250532874 0,002446992 12 3,349999905 3,272558463 0,005997177 

13 2,25999999 2,250718223 8,61512E-05 13 2,390000105 2,330881021 0,003495066 

14 1,25999999 1,255392437 2,12295E-05 14 1,549999952 1,502232401 0,002281739 

15 0,389999986 0,391662075 2,76254E-06 15 0,870000005 0,859881276 0,000102389 

16 0,039999999 0,037239728 7,61909E-06 16 0,419999987 0,433209257 0,000174485 

17 0,01 0,000834306 8,40099E-05 17 0,170000002 0,192130041 0,000489739 

18 0,01 1,41445E-05 9,97173E-05 18 0,07 0,075515679 3,04227E-05 

19 0,01 6,7165E-07 9,99866E-05 19 0,029999999 0,026577482 1,17136E-05 

MSE     0,000588996     MSE     0,00158215 

T-t = 47 days, rf=0,17% T-t = 201 days, rf=0,35% 

11 4,300000191 4,252476706 0,002258482 11 4,400000095 4,292452181 0,011566554 

12 3,299999952 3,253392193 0,002172283 12 3,5 3,34976467 0,022570654 

13 2,299999952 2,264133844 0,001286378 13 2,599999905 2,485705596 0,013063189 

14 1,370000005 1,341977384 0,000785267 14 1,809999943 1,74388374 0,004371352 

15 0,600000024 0,625044521 0,000627227 15 1,179999948 1,153814061 0,000685701 

16 0,180000007 0,215414055 0,001254155 16 0,709999979 0,720321429 0,000106532 

17 0,050000001 0,053793255 1,43888E-05 17 0,409999996 0,425478659 0,000239589 

18 0,02 0,009850687 0,000103009 18 0,230000004 0,238767777 7,68738E-05 

19 0,01 0,001366605 7,45355E-05 19 0,129999995 0,127908592 4,37397E-06 

MSE     0,000952858     MSE     0,005853869 

T-t = 75 days, rf=0,21% T-t = 257 days, rf=0,42% 

11 4,300000191 4,255181317 0,002008731 10 5,400000095 5,290399207 0,012012355 

12 3,299999952 3,260193393 0,001584562 11 4,449999809 4,324135831 0,015841741 

13 2,339999914 2,293044535 0,002204808 12 3,5 3,407758073 0,008508573 

14 1,460000038 1,423993661 0,001296459 14 1,940000057 1,865808659 0,005504364 

15 0,75999999 0,753173126 4,66061E-05 15 1,340000033 1,292459515 0,002260101 

16 0,319999993 0,332103518 0,000146495 16 0,879999995 0,857870327 0,000489722 

17 0,119999997 0,121533427 2,35141E-06 17 0,560000002 0,547043356 0,000167875 

18 0,039999999 0,037215345 7,7543E-06 19 0,209999993 0,199947208 0,000101058 

19 0,02 0,009684637 0,000106407 20 0,129999995 0,115443074 0,000211904 

MSE     0,000822686    MSE     0,005010855 

A1.3. Market prices, Kou prices and corresponding pricing errors. 
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Appendix 2: Market prices downloaded from the 

Bloomberg database 

 

Strike Ticker           Bid               Ask Implied volatility 

17 May 14 (12d); CSize 100; R .13    

11 BAC 5/17/14 C11 4.19999980926514 4.30000019073486 80.1665725708008 

12 BAC 5/17/14 C12 3.20000004768372 3.29999995231628 61.1501159667969 

13 BAC 5/17/14 C13 2.22000002861023 2.25999999046326 35.6352767944336 

14 BAC 5/17/14 C14 1.25 1.25999999046326 25.4367771148682 

15 BAC 5/17/14 C15 0.379999995231628 0.389999985694885 20.7883567810059 

16 BAC 5/17/14 C16 0.0299999993294477 0.0399999991059303 20.6928234100342 

17 BAC 5/17/14 C17 0 0.00999999977648258 29.3124141693115 

18 BAC 5/17/14 C18 0 0.00999999977648258 41.5293655395508 

19 BAC 5/17/14 C19 0 0.00999999977648258 52.5624465942383 

21 Jun 14 (47d); CSize 100; R .17    

11 BAC 6/21/14 C11 4.19999980926514 4.30000019073486 47.4573364257813 

12 BAC 6/21/14 C12 3.20000004768372 3.29999995231628 36.4077796936035 

13 BAC 6/21/14 C13 2.27999997138977 2.29999995231628 30.3966617584229 

14 BAC 6/21/14 C14 1.35000002384186 1.37000000476837 24.3809242248535 

15 BAC 6/21/14 C15 0.589999973773956 0.600000023841858 21.2564964294434 

16 BAC 6/21/14 C16 0.170000001788139 0.180000007152557 20.3647289276123 

17 BAC 6/21/14 C17 0.0399999991059303 0.0500000007450581 21.3786182403564 

18 BAC 6/21/14 C18 0.00999999977648258 0.0199999995529652 23.7993659973145 

19 BAC 6/21/14 C19 0 0.00999999977648258 28.2082328796387 

19 Jul 14 (75d); CSize 100; R .21    

11 BAC 7/19/14 C11 4.19999980926514 4.30000019073486 38.0483665466309 

12 BAC 7/19/14 C12 3.20000004768372 3.29999995231628 29.1665782928467 

13 BAC 7/19/14 C13 2.3199999332428 2.33999991416931 27.5755920410156 

14 BAC 7/19/14 C14 1.45000004768372 1.46000003814697 24.7540264129639 

15 BAC 7/19/14 C15 0.75 0.759999990463257 22.6824684143066 

16 BAC 7/19/14 C16 0.310000002384186 0.319999992847443 21.9960918426514 

17 BAC 7/19/14 C17 0.109999999403954 0.119999997317791 22.1214752197266 

18 BAC 7/19/14 C18 0.0299999993294477 0.0399999991059303 22.1474876403809 

19 BAC 7/19/14 C19 0.00999999977648258 0.0199999995529652 23.8816699981689 

A2.1. Bid/Ask prices and implied volatility, maturity 12-75 days. 
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16 Aug 14 (103d); CSize 100; R .24    

11 BAC 8/16/14 C11 4.19999980926514 4.30000019073486 32.4560585021973 

12 BAC 8/16/14 C12 3.25 3.34999990463257 30.868537902832 

13 BAC 8/16/14 C13 2.36999988555908 2.39000010490417 27.1897773742676 

14 BAC 8/16/14 C14 1.52999997138977 1.54999995231628 24.3936500549316 

15 BAC 8/16/14 C15 0.850000023841858 0.870000004768372 22.9086570739746 

16 BAC 8/16/14 C16 0.409999996423721 0.419999986886978 21.8072986602783 

17 BAC 8/16/14 C17 0.159999996423721 0.170000001788139 21.3678321838379 

18 BAC 8/16/14 C18 0.0599999986588955 0.0700000002980232 21.7096176147461 

19 BAC 8/16/14 C19 0.0199999995529652 0.0299999993294477 22.2276477813721 

22 Nov 14 (201d); CSize 100; R .35    

11 BAC 11/22/14 C11 4.30000019073486 4.40000009536743 31.9812068939209 

12 BAC 11/22/14 C12 3.34999990463257 3.5 28.8561248779297 

13 BAC 11/22/14 C13 2.5 2.59999990463257 26.0846004486084 

14 BAC 11/22/14 C14 1.76999998092651 1.80999994277954 24.2515850067139 

15 BAC 11/22/14 C15 1.1599999666214 1.17999994754791 23.2817916870117 

16 BAC 11/22/14 C16 0.699999988079071 0.709999978542328 22.2943553924561 

17 BAC 11/22/14 C17 0.389999985694885 0.409999996423721 22.0991287231445 

18 BAC 11/22/14 C18 0.209999993443489 0.230000004172325 22.0545501708984 

19 BAC 11/22/14 C19 0.109999999403954 0.129999995231628 22.2601699829102 

17 Jan 15 (257d); CSize 100; R .42    

10 BAC 1/17/15 C10 5.30000019073486 5.40000009536743 35.0234222412109 

11 BAC 1/17/15 C11 4.34999990463257 4.44999980926514 31.1445198059082 

12 BAC 1/17/15 C12 3.45000004768372 3.5 28.5300788879395 

14 BAC 1/17/15 C14 1.91999995708466 1.94000005722046 24.7938423156738 

15 BAC 1/17/15 C15 1.33000004291534 1.3400000333786 23.8353443145752 

16 BAC 1/17/15 C16 0.870000004768372 0.879999995231628 23.3510360717773 

17 BAC 1/17/15 C17 0.550000011920929 0.560000002384186 22.8449268341064 

19 BAC 1/17/15 C19 0.200000002980232 0.209999993443489 22.9211540222168 

20 BAC 1/17/15  0.119999997317791 0.129999995231628 23.145450592041 

A2.2. Bid/Ask prices and implied volatility, maturity 103-257 days. 
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Appendix 3: Matlab code for option pricing in the 

Merton Jump-Diffusion Model 

 

function c = CPMertonJD 

% function c = CPMertonJD calculates the analytical price 

% of a European call under jump diffusion. 

  

  So = ;     % Initial Stock price 

  X =;      % Strike 

  T =;        % Time to maturity 

  delta =;  % std of lognormal jump process 

  nu =;       % mean of lognormal jump process 

  lambda =;   % intensity of jumps 

  vola =;   % vola of stock price 

  r =;     % interest rate 

  

  % The price is gven as a series of terms, 

  % compute the first N terms for the result 

  N =; 

  K = exp(nu + 0.5*delta^2) - 1; 

  c = 0; 

  for n = 0 : N 

    sigma_n = sqrt(vola^2 + n*delta^2/T); 

    r_n = r - lambda*K + n*log(1+K)/T; 

    d1 = (log(So/X) + (r_n + 

0.5*sigma_n^2)*T)/(sigma_n*sqrt(T)); 

    d2 = d1 - sigma_n*sqrt(T); 

    f_n = So * normcdf(d1,0,1) - X * exp(-r_n*T) * 

normcdf(d2,0,1); 

    c = c + exp(-lambda*(1+K)*T) * (lambda*(1+K)*T)^n * 

f_n/factorial(n); 

  end 

end 

 

 

 


