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Abstract  

This paper attempts to estimate Value At Risk (VaR) for a multi asset Norwegian 

portfolio, using some of the most popular estimation methods, Variance Covariance Method, 

Historical Simulation and Monte Carlo Simulation. The Variance Covariance Method is 

applied with both time varying and constant volatility.  

Each VaR estimation method’s accuracy is tested, using Kupiec’s univariate testing 

framework, for multiple single points in the left tail of the portfolio’s return distribution, and 

Pérignon and Smith’s multivariate framework for a larger subset of the left tail. 

It compares each method’s overall results for the Norwegian portfolio with those found 

by Wu et al. (2012) on a similar Taiwanese portfolio. 

And finally, based on the empirical testing, it attempts to draw a conclusion on which 

method is best suited for Norwegian data.  
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1. Objective 

The objective of this paper is to examine by way of unconditional coverage tests, 

which of the three popular Value At Risk (VaR) estimation methods – Variance Covariance 

Method, Historical Simulation and Monte Carlo Simulation, give the best results for a multi 

asset Norwegian portfolio. 

And further to compare the overall performance of each model on the Norwegian 

portfolio with that found by Wu et al. (2012) on a similar Taiwanese portfolio. 
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2. Theory 

2.1 Continuously Compounded Returns 

1

ln t

t

S
r

S 

 
  

 
 

r denotes the continuously compounded return of the asset S between the time t-1 and 

t (McDonald, 2006).  

 

2.2 Value At Risk (VaR) 

Value at Risk (VaR) is the maximum loss that can be expected with a given 

confidence level over a given time period (Hull, 2012). For a portfolio this means the 

difference between its current value and the value of the hypothetical portfolio generated by 

the negative return (loss) in the left tail of its return distribution, at the desired confidence 

level. 

   

2.3 Variance Covariance Method 

Assuming asset returns are normally distributed, the Value at Risk (VaR) can be found 

as the product of the assets current value, a set number of standard deviations depending on 

the desired confidence level and the square root of the desired time horizon (Wu et al., 2012) 

VaR Z V t      

Where Z is the number of standard deviations dependent on the desired VaR confidence 

level. 
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2.3.1 Historical Variance 

   
2

,

1

1

1

M

i i t i

t

Var r r E r
M 

   
  

 iVar r  is an expression of the sample variance of the return series 
ir , M denotes the 

sample period and  iE r is the mean return over the sample period (Benninga, 2008)  

     , ,

1

1
,

1

M

i j i t i j t j

t

Cov r r r E r r E r
M 

        
  

 ,i jCov r r  is an expression of the sample covariance between the return series ir  and 

jr ,  iE r and  jE r  is the respective mean return over the sample period and M denotes the 

sample period (Benninga, 2008) 

 

2.3.2 Portfolio Variance 

The variance of a return series is relatively easy to find as shown above, however 

estimating the variance of a portfolio containing two or more assets requires weighting each 

assets variance and their covariance, with their respective weights.  

       
22

1 1 1

2 ,
N N N

p p i i i j i j

i i j i

Var r x Var r x x Cov r r
   

       

Where x denotes the respective asset’s current weight in the portfolio. 

 

2.3.3 Co-Movement of Asset Returns (Covariance) 

Estimation of the covariance elements in the portfolio variance becomes difficult with 

multivariate models. Even just a three asset model would require the estimation of 78 

elements for the variance covariance matrix (Jorion, 2007). Harris et al. (2007) develop a 

simplified approach to calculating the covariance between return series, by combining each 
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return series 
1,tr and 

2,tr  into two new series 
, 1, 2,t t tr r r    and 

, 1, 2,t t tr r r   , the volatility of 

these new series can then be estimated by normal methods, for example GARCH(1,1), which 

will give the following variance   

2 2 2

, 1, 2, 12,2t t t t        

2 2 2

, 1, 2, 12,2t t t t        

These can then be combined into an estimate for the covariance of the original series 

  2 2

12, , ,
1

4t t t      

  

2.3.4 GARCH 

The historical variance approach assumes volatility is homoscedastic, which means 

it’s constant over time, for many return series this assumption will be incorrect. Because of 

this several models for calculating time varying volatility have been conceived, one of these 

is GARCH or the generalized autoregressive conditional hetroskedastic model.  

2

0 1 1 1t t th r h       

th  expresses the conditional variance of a return series, where 1tr   and 1th   is return 

and conditional variance of the previous period respectively and 0  is a constant (Jorion, 

2007). If the scaled residuals t t tr h  , are assumed to be normally distributed and 

independent, the 0 , 1  and   parameters can be estimated by maximizing the logarithm of 

the likelihood function (  0 1max , , |F r   ) (Jorion, 2007). 

   
2

0 1

1 1

1
max , , | ln | ln

22

T T
t

t t

t t tt

r
F r f r h

hh
  

 

 
   

  
   

Where f  denotes the normal density function, tr  and th  denote the return and conditional 

variance at time t. 
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2.3.5 The RiskMetrics Approach (EWMA) 

This is a special case of the GARCH(1,1) model, where 0  equals zero and 
1 and   

sum to unity, the conditional variance is still given by th , but the model is expressed as 

follows (Jorion, 2007) 

  2

1 11t t th h r      

JP Morgan through their development and testing of this approach found that the best values 

for lambda is 0.94 for daily return data and 0.97 for monthly return data (Jorion, 2007). 

 One of the main benefits of the approach is that the covariance between return series 

can be easily estimated   

 12, 12, 1 1, 1 2, 11t t t th h r r        

Where 12,th  is the conditional covariance between return series 1r  and 2r  (Jorion, 2007). 

 

2.4 Historical Simulation 

Historical simulation only relies on the previous price movements of the assets in a 

portfolio, it is in other words non-parametric and requires no assumptions about market 

variables or the portfolio’s true return distribution (Jorion, 2007). 

It is implemented by using the historical returns of the assets over the sample period 

and weighting them with their current weights, to construct a hypothetical historical return 

distribution for the current portfolio. Value at risk is then found as the difference between the 

current value and the value generated at the desired confidence level in the hypothetical 

return distribution (Jorion, 2007).  

 
1, 1 1,

1

, 1 ,

t t k

t n

n t n t k

r r

HS a a

r r

 

 

 
 

  
 
 
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tHS denotes the set of “historical” portfolio value scenarios generated for time t, based 

on historical price movements, ia is the current value of asset i and ,i t jr   is the return of asset 

i at time t j , n is the number of assets in the portfolio and k is the length of the sample 

window.  

 

2.5 Monte Carlo Simulation 

 Using Monte Carlo simulation to estimate the value at risk (VaR) for a portfolio 

consists of generating hypothetical future price paths for each asset, or generating the 

hypothetical future movements for the market variables that the portfolio is dependent on. 

These hypothetical values are then combined into possible future portfolios, the difference 

between today’s portfolio value and that of each hypothetical value will generate the 

portfolio’s return distribution. VaR can then calculated using the price movement in the left 

tail of the distribution that corresponds to the desired VaR confidence level, this is 

equivalent to the difference between today’s portfolio value and the appropriate p percentile 

worst hypothetical portfolio (Hull, 2012). For example calculating VaR(5%) with 1000 

hypothetical portfolio values, would mean finding the difference between todays portfolio 

and the 50
th

 lowest hypothetical portfolio.  

This method requires pricing models for all the market variables relevant to the 

portfolio’s assets; or, alternatively each asset requires its own pricing model. 

 

2.5.1 Lognormal Asset Price Model 

If an asset has a lognormal price distribution, its continuously compounded returns 

will be normally distributed, with a mean of  20.5 t     and a variance of 2t , where 

  is the assets average yearly return,  its yearly dividend rate and 2  its yearly return 

variance (McDonald, 2006). 

   2 2

0ln ~ 0.5 ,tS S t t      
 
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The asset price at time t, can then be expressed as a function of the current asset value. 

 20.5

0

t t z

tS S e
      

  

Where z is a normally distributed random variable, with a mean of zero and a variance of 

one (  ~ 0,1z N ) (McDonald, 2006) 

2.6 Back Testing 

Back testing of VaR models consist of procedures that check if the empirically 

observed violation rates, which means the number of times where the actual loss is higher 

than the VaR estimate, is not statistically different from the desired VaR confidence level 

For example with a VaR confidence level of 95% and a time horizon of one day, the 

actually loss should exceed the estimated VaR 5% of the time, when the sample size is 

sufficiently large. (Jorion, 2007) 

 

2.6.1 Univariate Unconditional Coverage Test 

 The unconditional coverage test developed by Kupiec (1995) uses a log-likelihood 

ratio to test whether the empirical violation rate is statistically different with a 95% 

confidence level, from the expected violation rate at the given VaR confidence level. This 

test has a chi-square distribution when T is large, with one degree of freedom (Jorion, 2007). 

0
ˆ:

ˆ:A

H p p

H p p




 

0H  denotes the null hypotheses to be tested, where p̂ is the empirically found violation rate 

and p is the desired VaR confidence level. 

 2 ln 1 2 ln 1

T N N
T N N

UC

N N
LR p p

T T




                            
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UCLR  is the formal expression of the test, where N is the number of violations, T is the 

number of observations in the estimation period and p is the desired VaR confidence level 

(Jorion, 2007). 

 

2.6.2 Multivariate Unconditional Coverage Test 

Pérignon and Smith (2008) expand Kupiec’s univariate test to a multivariate 

framework, where multiple empirical violation rates are tested against their expected 

counterparts. This test also has a chi-square distribution when T is large, but the degrees of 

freedom depend on the number of tested violation rates. 

       * *

0 0

1 1

2 ln 1 1 ln ln 1 1 ln
K K

MUC i i i i

i i

LR n n n n   
 

    
          

    
   

0

1

ˆˆ1 1
ln ln

1 1

inn
K

i
MUC

i i

LR


 

    
            

  

0

1

K

i

i

n T n


   

Where T is the total number of observations in the estimation period, 0n  is the number of 

observations where none of the VaR estimates are violated. 

   1
1,

0,

i t i

it

if VaR p R VaR p
J

otherwise

    
 


 

 1iVaR p  denotes a more extreme VaR estimate than  iVaR p  and tR  is the actual loss at 

time t. 

1

T

i it

t

n J


  

ˆ i
i

n

T
   
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1i i ip p    

i  denotes a segment of the left tail in the distribution, in  denotes the number of violations 

in this segment and ˆ
i is the empirical found size of the segment. 

 1

1
ˆ ˆ ˆ

K

K

  

  



 
 

 

  and ̂  are the 1 by K matrix composed by the desired segments of the left tail and 

their empirical counterpart, respectively. The formal null and alternate hypotheses are then 

given as 

0
ˆ:

ˆ:A

H

H

 

 




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3. Data 

The portfolio is based on the Norwegian OBX index, 5 years Norwegian government 

bonds (ST5X) and a non interest bearing foreign exchange element, with a placement in US 

dollars. 2251 daily closing price observations, from January 3
rd

 2001 to December 18
th

 2009, 

were gathered from NHH’s “Børsprosjektet” for the OBX index and the ST5X bonds. To 

stay consistent the same dates were used for the Norwegian NOK to US Dollars exchange 

rate, these were gathered from “forex-history.net” (http://forex-history.net/main/). The data 

used was updated last on the 25
th

 of May 2014.  

The 2251 price observations were turned into 2250 daily continuously compounded 

return observations, where the initial 250 were used as start-up values for the various 

simulations and estimations. The remaining 2000 observations, from January 7
th

 2002 to 

December 18
th

 2009, were used in the analysis. 

The initial portfolio consisted of equal placement in each asset of 10 million NOK, the 

portfolio was not balanced in any way during the estimation period, so its weights changed 

only according to the market price fluctuations of the assets. 

http://forex-history.net/main/
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4. Applied Methodology 

4.1 Variance Covariance Method 

4.1.1 Historical Variance 

A sample size of 250 previous return observations was used to calculate each asset’s 

variance and their covariance at time t.  

 

4.1.2 GARCH(1,1) 

The covariance between the return series was estimated using the method developed 

by Harris et al. (2007). The initial variance for each return series and the initial values for the 

series constructed based on the Harris et al. (2007) method, was set to zero, then 0 , 1 ,  

was estimated by maximizing the sum of the log likelihood functions  0 1, , |F r   , based 

on the last 2000 variance and corresponding return values. See appendix 9.1 for the 

estimated GARCH(1,1) models.  

 

4.1.3 EWMA (RiskMetrics) 

The initial variance for each return series was set to zero, the variance and covariance 

for the return series was calculated based on JP Morgans recommended lambda for daily 

data of 0.94 (Jorion, 2007). The first 250 variance and covariance estimates (including the 

initial values) were discarded and the remaining 2000 were used to calculate the portfolio 

VaRs. 
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4.2 Historical Simulation 

A sample size of 250 daily return observations was used, meaning 250 scenarios were 

generated for the portfolio, on each day in the estimation period. 

, 1 , 250

5 _ 5 , 1 5 , 250

_ , 1 _ , 250

OBX t OBX t

t OBX ST X NOK USD ST X t ST X t

NOK USD t NOK USD t

r r

HS a a a r r

r r

 

 

 

 
 

    
 
 

 

tHS generates the 250 hypothetical portfolio values at time t. 

 

4.3 Monte Carlo Simulation 

All three assets were assumed to have log normal price distributions, and the log 

normal pricing model was used to estimate hypothetical one period (here one day) ahead 

price paths. The pricing model was implemented using the historical daily variance, based on 

the previous 250 trading days and the mean return over the same sample period. 

5000 hypothetical portfolio values were generated for each day in the estimation 

period, consisting of 2000 days, meaning a total of 2 million hypothetical portfolio values 

were generated. Each hypothetical portfolio was based on a single normally distributed 

random draw. 



 17 

4.4 Back Testing 

Both tests are evaluated on a 95% confidence level for the log likelihood ratio. For the 

univariate test this means the null hypothesis is rejected if the statistic (LR) is higher than 

3.84. The multivariate test is applied with the 1%, 2.5% and 5% VaR significance levels; this 

gives three degrees of freedom and a rejection value of approximately 7.81. These rejection 

values are found using Excel’s CHISQ.INV function, with the 95% confidence level and the 

respective degrees of freedom. The p-values listed in the results were calculated using 

Excel’s CHISQ.DIST for the respective LR statistic and degrees of freedom. 

Both tests are applied on different sample sizes from 250 VaR estimates, increasing 

with 250 up to and including the full set of 2000 estimates. 
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5. Results 

5.1 Portfolio Return Data 

 
This figure show the daily returns for the Norwegian portfolio from the 7th of January 2002 to the 18th of December 2009. 

The returns look fairly stable for the first half of the sample; however they become much more unstable during the second 

half.  

 

 

 
This figure shows the distribution of the portfolio returns, the distribution looks fairly symmetrical. 
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5.2 Variance Covariance Method 

5.2.1 Historical Variance 

 
This figure shows the Historical Variance VaRs of the portfolio for 2000 days and 1%, 2.5% and 5% confidence levels.   

 

250 500 750 1000 1250 1500 1750 2000

7,60 % 4,60 % 5,07 % 5,00 % 5,28 % 7,80 % 6,69 % 5,95 %

3,09 0,17 0,01 0,00 0,20 21,31 9,51 3,59

(0,079) (0,678) (0,933) (1) (0,652) (0)* (0,002)* (0,058)

5,20 % 3,20 % 3,07 % 3,20 % 3,60 % 5,53 % 4,74 % 4,20 %

5,73 0,92 0,92 1,85 5,47 42,32 28,71 19,75

(0,017)* (0,336) (0,337) (0,174) (0,019)* (0)* (0)* (0)*

2,40 % 1,60 % 1,87 % 2,30 % 2,24 % 3,67 % 3,14 % 2,75 %

3,56 1,54 4,53 12,49 14,36 64,01 51,78 41,90

(0,059) (0,215) (0,033)* (0)* (0)* (0)* (0)* (0)*

5,93 4,44 5,77 17,29 18,15 65,76 53,96 46,53

(0,115) (0,217) (0,124) (0,001)* (0)* (0)* (0)* (0)*

Unconditional Coverage Tests (Hist. Variance)

Sample size (T)

Univariate

p
=

5
%

p
=

2
,5

%
p

=
1

%

Multivariate

 
This table shows the results of univariate and multivariate convergence tests for the Historical Variance VaR method. The 

sample periods are from 250 to 2000 days. Violation rate is defined as the ratio of violations to observed samples and is 

displayed as a percentage figure. The LR statistics with their corresponding p-values in parentheses are displayed for each 

violation rate. * indicates p-values that allow rejection of the null hypotheses at the 5% confidence level.     
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5.2.2 GARCH(1,1) 

 

This figure shows the GARCH(1,1) VaRs of the portfolio for 2000 days and 1%, 2.5% and 5% confidence levels.   

 

 

250 500 750 1000 1250 1500 1750 2000

6,80 % 4,60 % 5,20 % 4,70 % 4,80 % 6,60 % 5,66 % 5,55 %

1,54 0,17 0,06 0,19 0,11 7,38 1,53 1,23

(0,215) (0,678) (0,803) (0,66) (0,744) (0,007)* (0,216) (0,267)

4,80 % 3,20 % 3,33 % 3,10 % 3,28 % 4,00 % 3,43 % 3,30 %

4,29 0,92 1,94 1,37 2,85 11,75 5,56 4,78

(0,038)* (0,336) (0,164) (0,241) (0,092) (0,001)* (0,018)* (0,029)*

3,20 % 2,20 % 1,73 % 1,80 % 2,00 % 2,20 % 1,89 % 1,85 %

7,73 5,42 3,34 5,23 9,78 16,26 11,00 11,67

(0,005)* (0,02)* (0,068) (0,022)* (0,002)* (0)* (0,001)* (0,001)*

7,98 9,18 4,67 9,17 15,68 17,35 11,50 12,14

(0,046)* (0,027)* (0,197) (0,027)* (0,001)* (0,001)* (0,009)* (0,007)*

Unconditional Coverage Tests (GARCH)

Sample size (T)

Univariate

p
=

5
%

p
=

2
,5

%
p

=
1

%

Multivariate

 
This table shows the results of univariate and multivariate convergence tests for the GARCH(1,1) VaR method. The sample 

periods are from 250 to 2000 days. Violation rate is defined as the ratio of violations to observed samples and is displayed 

as a percentage figure. The LR statistics with their corresponding p-values in parentheses are displayed for each violation 

rate. * indicates p-values that allow rejection of the null hypotheses at the 5% confidence level. 
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5.2.3 Risk Metrics (EWMA) 

 
This figure shows the RiskMetrics VaRs of the portfolio for 2000 days and 1%, 2.5% and 5% confidence levels   

 

 

250 500 750 1000 1250 1500 1750 2000

7,20 % 5,00 % 5,60 % 5,30 % 5,28 % 7,07 % 6,06 % 5,75 %

2,26 0,00 0,55 0,19 0,20 12,02 3,87 2,26

(0,133) (1) (0,459) (0,666) (0,652) (0,001)* (0,049)* (0,132)

5,60 % 3,60 % 4,00 % 3,80 % 4,00 % 4,80 % 4,11 % 3,75 %

7,33 2,19 5,87 6,00 9,79 25,76 15,71 11,14

(0,007)* (0,139) (0,015)* (0,014)* (0,002)* (0)* (0)* (0,001)*

3,60 % 2,40 % 2,00 % 2,00 % 2,24 % 2,67 % 2,29 % 2,15 %

10,23 7,11 5,87 7,83 14,36 28,89 21,43 20,10

(0,001)* (0,008)* (0,015)* (0,005)* (0)* (0)* (0)* (0)*

11,49 10,22 9,74 12,97 23,78 33,03 24,87 22,23

(0,009)* (0,017)* (0,021)* (0,005)* (0)* (0)* (0)* (0)*

Unconditional Coverage Tests (RiskMetrics)

Sample size (T)

Univariate

p
=

5
%

p
=

2
,5

%
p

=
1

%

Multivariate

 
This table shows the results of univariate and multivariate convergence tests for the RiskMetrics VaR method. The sample 

periods are from 250 to 2000 days. Violation rate is defined as the ratio of violations to observed samples and is displayed 

as a percentage figure. The LR statistics with their corresponding p-values in parentheses are displayed for each violation 

rate. * indicates p-values that allow rejection of the null hypotheses at the 5% confidence level.     
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5.3 Historical Simulation 

 
This figure shows the Historical Simulation VaRs of the portfolio for 2000 days and 1%, 2.5% and 5% confidence levels   

 

 

250 500 750 1000 1250 1500 1750 2000

7,20 % 4,80 % 5,33 % 5,20 % 5,60 % 7,93 % 6,80 % 6,00 %

2,26 0,04 0,17 0,08 0,91 23,24 10,78 3,97

(0,133) (0,836) (0,678) (0,773) (0,339) (0)* (0,001)* (0,046)*

3,60 % 2,20 % 2,80 % 3,00 % 3,04 % 4,87 % 4,17 % 3,65 %

1,09 0,19 0,27 0,96 1,40 27,12 16,75 9,52

(0,295) (0,661) (0,606) (0,326) (0,237) (0)* (0)* (0,002)*

0,80 % 0,80 % 0,80 % 1,40 % 1,52 % 2,53 % 2,17 % 1,90 %

0,11 0,22 0,33 1,44 2,95 25,00 18,17 12,95

(0,742) (0,641) (0,568) (0,231) (0,086) (0)* (0)* (0)*

3,54 0,27 1,46 1,87 2,98 33,74 21,28 13,97

(0,316) (0,965) (0,69) (0,601) (0,395) (0)* (0)* (0,003)*

Unconditional Coverage Tests (Historical Simulation)

Multivariate

Univariate

Sample size (T)

p
=

5
%

p
=

2
,5

%
p

=
1

%

 
This table shows the results of univariate and multivariate convergence tests for the Historical Simulation VaR method. The 

sample periods are from 250 to 2000 days. Violation rate is defined as the ratio of violations to observed samples and is 

displayed as a percentage figure. The LR statistics with their corresponding p-values in parentheses are displayed for each 

violation rate. * indicates p-values that allow rejection of the null hypotheses at the 5% confidence level. 
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5.4 Monte Carlo Simulation 

 
This figure shows the Monte Carlo Simulation VaRs of the portfolio for 2000 days and 1%, 2.5% and 5% confidence levels   

 

 

250 500 750 1000 1250 1500 1750 2000

2,00 % 1,20 % 1,33 % 1,90 % 2,56 % 4,47 % 3,83 % 3,35 %

6,07 21,62 29,61 26,23 18,93 0,93 5,48 12,91

(0,014)* (0)* (0)* (0)* (0)* (0,335) (0,019)* (0)*

1,20 % 0,80 % 0,53 % 1,10 % 1,36 % 2,40 % 2,06 % 1,80 %

2,14 8,03 17,44 10,14 7,97 0,06 1,50 4,45

(0,144) (0,005)* (0)* (0,001)* (0,005)* (0,803) (0,221) (0,035)*

0,40 % 0,20 % 0,13 % 0,40 % 0,72 % 1,40 % 1,20 % 1,05 %

1,18 4,81 9,03 4,71 1,10 2,16 0,66 0,05

(0,278) (0,028)* (0,003)* (0,03)* (0,295) (0,142) (0,415) (0,824)

6,33 22,70 30,41 26,77 20,22 6,21 10,76 18,19

(0,097) (0)* (0)* (0)* (0)* (0,102) (0,013)* (0)*

Unconditional Coverage Tests (Monte Carlo Sim.)

Sample size (T)

Univariate

p
=

5
%

p
=

2
,5

%
p

=
1

%

Multivariate

 
This table shows the results of univariate and multivariate convergence tests for the Monte Carlo Simulation VaR method. 

The sample periods are from 250 to 2000 days. Violation rate is defined as the ratio of violations to observed samples and 

is displayed as a percentage figure. The LR statistics with their corresponding p-values in parentheses are displayed for 

each violation rate. * indicates p-values that allow rejection of the null hypotheses at the 5% confidence level. 
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6. Discussion 

6.1 Portfolio returns 

The daily portfolio returns show clear signs of time varying volatility and volatility 

clustering, the clustering is especially clear between observations 1001 to 1251 and around 

observations 1501 and 1751. This roughly translates to the beginning and some of the most 

volatile points of the financial crisis. 

The histogram of the continuously compounded portfolio returns seems fairly 

symmetrical, but doesn’t really look normally distributed. 

 

6.2 Variance Covariance Methods 

Overall the VCV methods produce much better results for the Norwegian data than 

what they did for Taiwanese portfolio examined by Wu et al. (2012), the lack of none linear 

payout assets in the Norwegian data probably explains a lot of this difference.  

The methods utilizing time varying volatility (GARCH and RiskMetrics), produce 

very close VaR estimates for all three significance levels, this in addition to the methods 

being rejected for the more extreme confidence levels seem to indicate that a normal 

distribution might be a bad assumption for the portfolio’s return distribution, the portfolio’s 

histogram seems to support this, a distribution with fatter tails might be more appropriate. 

 

6.2.1 Historical Variance 

The VaR estimates are slow to respond to changes in volatility; with the VaR 

estimates reaching their peaks well after the peaks in the variance have subsided.  
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The univariate test results seem to indicate that the method performs fairly well for 

5% VaRs, with the null hypotheses only being rejected when the most volatile period is 

included in the sample. However for the 2.5% VaRs the null hypotheses is rejected for most 

sample sizes, except those containing the least volatile period. And for the most extreme 

VaR level (1%) the null hypotheses are rejected for most of the period. The decreasing 

effectiveness of the method is captured well by the multivariate test where the approach is 

rejected for most of the sample set.  

The slow reaction to changes in volatility is one of the problems with historical 

variance, since each observation in the sample is given equal weight, risk will be 

underestimated when entering a period of higher volatility, and likewise risk will be 

overestimated when leaving a period of high volatility.  

 

6.2.2 GARCH(1,1) 

This method has the quickest and most extreme responses to changes in volatility, 

with sharp spikes in the VaR estimates that correspond to the large losses of the portfolio 

between 1001 to 1251 days, and around 1501 and 1751 days.  

It does very well for the 5% VaRs and is only rejected for one sample size. It also 

does well with the 2.5% VaRs, but is rejected when the more volatile periods are included in 

the sample size. However the univariate test for the 1% VaRs and the multivariate test show 

that the approach isn’t capturing the fatness of the return distribution’s left tail. 

Wu et al. (2012) had very little success with the GARCH(1,1) method, both testing 

frameworks reject the null hypotheses for all sample sizes and VaR significance levels. Their 

empirical violation rates are much higher than what should be observed, deviating with ten 

percentage points or more for many of the sample sizes. Compared to this, the method 

performs relatively well with the Norwegian data.  
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6.2.3 RiskMetrics (EWMA) 

The method responds quickly to changes in portfolio volatility, we see corresponding 

spikes in the VaR estimates to the drastically increased variance between 1001 and 1251 

days and right before and during day 1751. And generally higher VaR values during the 

financial crisis.  

The univariate test shows that the method performs well at the 5% VaR significance 

level, it only underestimates risk during the most volatile period. However the approach is 

rejected for most sample sizes, when testing the more extreme VaR levels, it seems the 

method is unable to capture the actual thickness of the left tail in the return distribution. This 

is seen clearly from the multivariate test, where the approach is rejected for all sample sizes.  

Wu et al. (2012) has more success with this approach than the GARCH(1,1), but the 

method is still rejected for most sample sizes and VaR significance levels, however the 

deviation between the expected violation rates and the observed is much smaller than for the 

GARCH(1,1) estimates. The Norwegian data show somewhat of the opposite effect, this 

approach produces slightly worse results than the GARCH(1,1) method, however the results 

are still better.  

 

6.3 Historical Simulation 

The VaR estimates seem to move similarly to those found under the Historical 

Variance, but with generally higher values especially during the periods with high return 

volatility. Further the more extreme VaR significance levels, usually result in more extreme 

VaR estimates; it would seems this model is better at capturing the true thickness of the left 

tail.  

This is the only method with consistent univariate test results; it does very well for all 

three univariate tests and the multivariate test, however, the null hypotheses is rejected when 

the most volatile periods are included in the test sample. During the most volatile periods the 

approach seems to first underestimate risk when entering the turbulent period, and then 

overestimates it when volatility returns to normal. This is one of the problems with historical 
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simulation, since it can only simulate price movements within its sample window, it will be 

slower to react than the methods based on time varying volatility (Jorion, 2007). 

Wu et al. (2012) achieved very good results with this approach, keeping the null 

hypotheses for all sample sizes and test specifications, all three sets of univariate tests and 

under the multivariate test. As such this is the only method that performs better with the 

Taiwanese data than with the Norwegian.  

6.4 Monte Carlo Simulation  

The VaR estimates move similarly to the Historical Simulation and Historical 

Variance estimates, but are generally higher; the different VaR significance levels are also 

more clustered then with Historical Simulation. 

The method has by far the worst results with both univariate and multivariate tests and 

seems to systematically overestimate risk for all the sample sizes, only when the most 

volatile period is included is it accepted by the tests. 

Several possible explanations for its bad performance, its accuracy relies heavily on 

the models used to estimate the portfolio’s risk factors. In this paper it is assumed that all 

three assets have lognormal price distributions, from the results it might seem that the 

lognormal price formula is undervaluing the next period’s asset price and thereby 

systematically generating undervalued hypothetical portfolio values. Using a more realistic 

volatility estimate than the historical variance might also improve its performance. 

Monte Carlo simulation VaR estimates for the Taiwanese data, consistently 

overestimated the portfolio risk and the empirical violation rates were all zero percentage for 

all significance levels and all sample sizes. Because of this the null hypotheses were rejected 

for all but the shortest sample size and the more extreme VaR significance levels (Wu et al., 

2012). Even though the empirical Norwegian results have a statistical significant deviation 

from the desired significance levels, the method still performs better with the Norwegian 

data set.  
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6.5 Overall 

The univariate tests give inconsistent results for all estimation methods, except 

historical simulation, this clearly indicates the problem with just using Kupiec’s test, and 

shows the value of the multivariate test. If only the 5% VaRs were tested, all the Variance 

Covariance methods would look fairly good, however including more extreme significance 

levels and using the multivariate test, shows their shortcomings for this data set.  

None of the approaches are able to properly handle the massive increase in volatility 

during the financial crisis, even the Monte Carlo Simulation with its overestimation of risk, 

incurs more violations between 1250 and 1750 days than should be expected with the given 

VaR significance level. 

 

6.6 Weaknesses And Possible Improvments 

For the Historical Simulation the sample window was only 250 daily return observations, 

this is in the lower end of what most banks use, which typically is between 250 to 750 daily 

observations (Jorion, 2007). Increasing the window would have kept more of the extreme 

peaks in the sample; this in turn would probably have decreased the violation rates in the 

interval between the last 750 estimates, and possibly improved the performance of the 

method.  

Both testing frameworks are based on unconditional testing, this means it is irrelevant for 

the test results if the violations are spread evenly over the sample period or clustered. 

However if a model shows clear signs of violation clustering it should be rejected (Jorion, 

2007), so further testing with conditional coverage models would probably be beneficial. 

The foreign exchange element is only exposed to exchange rate risk, and no interest rate 

risk, it seems unlikely that a real investor would hold a currencies position without getting 

some sort of interest on it. Including interest rate would have made the portfolio more 

realistic and made it more volatile, which in turn might have affected the results.  
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All three assets have linear payouts, a real portfolio is likely to include derivatives where 

the payouts are none linear, similar to the Taiwanese portfolio, further testing where 

Norwegian derivatives with none linear payouts were included, would help determine if the 

differences found between the papers, stem from difference between Norwegian and 

Taiwanese assets or if they come as a result of the portfolio’s composition.   

For the Variance Covariance estimates, absolute VaR was used; this means the 

expected mean return of the portfolio wasn’t factored in. Whereas with the Historical 

Simulation and Monte Carlo Simulation the expected mean return was be factored into the 

generated hypothetical portfolios and in turn included in the VaR estimates. The effect of 

this discrepancy is not likely to be significant though because of the short horizon.   

The risk factor of the bond element was based on its return series, an alternative and 

perhaps better way would be to measure the bond’s risk using its duration. This is a possible 

area of future testing. 

Basel II requires banks to keep three times the 10 day 1% VaR estimate as reserve 

capital (Jorion, 2007); it could be interesting to test if this requirement was violated during 

the estimation period.  
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7. Conclusion 

The VCV methods and especially the once based on time varying volatility performed 

much better for the Norwegian assets, than for the Taiwanese, but they were still rejected 

under the multivariate framework for most of the estimation period. And they generally 

experienced very inconsistent results for the univariate test, using a return distribution with 

fatter tails might alleviate this somewhat. 

Out of the five approaches used, the Monte Carlo Simulation was the least accurate, 

however it still performed better on the Norwegian data than on the Taiwanese, but it 

exhibited the same systematic overestimation of the portfolio’s risk. 

Overall I find that the best method is Historical Simulation, this is consistent with 

what Wu et al. (2012) found in their paper. The method is not perfect and is rejected by both 

the univariate and multivariate tests, when the estimates from the most volatile periods are 

included in the tested sample. But overall it is the model that performs best, and increasing 

the sampling window used to create the historical scenarios, might increase its accuracy. 
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9. Appendix 

9.1 Estimated GARCH(1,1) Functions 

20
1 1 1510

t t th r h


      

OBX ST5X NOK/USD

0,34 0,01 0,03

0,10 0,07 0,03

0,89 0,92 0,96

0

1


 

This table shows the estimated GARCH(1,1) values for the variance of the three return series. 

 

OBX+ST5X OBX-ST5X OBX+N/U OBX-N/U ST5X+N/U ST5X-N/U

0,35 0,36 0,68 0,36 0,04 0,03

0,10 0,10 0,09 0,07 0,04 0,03

0,89 0,89 0,88 0,92 0,96 0,96

0

1


 

This table shows the estimated GARCH(1,1) values for the return series constructed under the framework for modeling 

assets co-movement developed by Harris et al. (2007). 
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9.2 VBA Monte Carlo Estimation 

 
This is the VBA Subrotine used to calculate the hypotetical Monte Carlo Simulation portfolio values. 

  


