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Abstract 

Collaboration among different agents is an effective way to improve logistic operations. 

When companies transport items of similar assortments within the same regions, there are 

high potential of efficiency improvements. Large volumes and long distances, in 

combination with increasing fuel prices and environmental concern, enhance the importance 

of exploiting synergies between companies. In the context of collaboration, two essential 

questions arise: (1) Which coalitions can be expected to form? (2) How should the 

companies allocate the achieved benefits?  

We aim to find optimal solutions for both questions by formulating linear programming 

models using Operations Research. We address the first question by finding how the 

companies should group in order to achieve the highest savings, both from a social planner 

point of view and from the individual company’s point of view. Assuming that optimal 

coalition structures are identified, the next question concerns how the members in a coalition 

should distribute the cost savings. There are numerous of acknowledged allocation methods 

aiming to find a fair solution to this question. We investigate five different methods, and find 

striking results in terms of disparities between the allocations. For one company, the relative 

saving achieved ranges from 2.96 % to 18.75 % depending on which method we implement. 

We also discuss fundamental questions considering the aspect of fairness in the different 

allocation methods.   

When approaching the question from the perspective of each company, we combine 

concepts of the different allocation methods and construct a new model to find optimal 

coalition structures. Based on different assumptions regarding the behavior of companies, 

the model provides two sets of coalition structures.  
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1. Introduction 

Evidence shows that collaboration among different agents in logistics may lead to significant 

cost savings. Several industries identify substantial benefits and improved efficiency through 

collaboration. Lynch (2001, p.2) refers to instances where shippers and carriers estimate 

10 % to 12.3 % cost reduction by collaborating with another community member. Also in 

industries concerning inventory management (Guajardo et al., 2013), transportation (Frisk et 

al., 2010; Lozano et al., 2013), vehicle manufacturing and retail distribution (Akintoye, 

McIntosh, & Fitzgerald, 2000), supply chain collaboration has beneficially been applied. By 

opening up for possibilities of collaboration, two essential questions arise; which companies 

should optimally collaborate and how should the joint benefits be divided among the 

participants (Frisk et al, 2010). Several studies combining cooperative game theory and 

Operations Research models investigate how the cost should be allocated among companies 

within a coalition. Previous literature within this field often assume that the grand coalition 

will form, arguing that the grand coalition is the most efficient coalition. However, for 

various reasons, such as political issues or difficulties coordinating large coalitions, the 

grand coalition might be impossible or non-optimal to attain. These potential issues motivate 

a new perspective of collaborative logistics; the study of optimal coalition structures. In 

game theory, coalition structure refers to formed coalitions that define a partition of the set 

of players (Aumann & Dreze, 1974). Even though the subject of coalition structure has 

received significant attention in game theory, the topic is far less investigated in literature 

using Operations Research models. Some relevant studies concerning coalition structures in 

Operations Research are Axelrod, Mitchell, Thomas, Bennett and Bruderert (1995), Leng 

and Parlar (2009) and Nagarajan and Sošić (2009).  

We use cooperative game theory with transferable utility to investigate how the overall cost 

should be distributed among participants within a coalition. To deal with the complications 

that may block the grand coalition from forming, we incorporate a condition on the 

maximum number of participants within a coalition. In the following analysis, we investigate 

optimal coalition structures considering two different perspectives. In the first approach we 

aim to find the social welfare maximizing coalition structure, i.e. we minimize the total cost 

of the formed coalitions. In this section we construct five different models for allocating cost 

within the optimal coalition structures; equal profit method, the nucleolus, the modiclus, the 

simplified modiclus and the proportional nucleolus. In the second approach we minimize the 
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cost from each company’s perspective, i.e. we minimize individual costs. In this case, the 

optimal coalition structure will depend upon for which player we minimize the cost. In order 

to determine a valid coalition structure for each cardinality m, we introduce different 

concepts for finding the priority of companies.  

The models are implemented in two different applications. The main emphasis throughout 

the paper concerns a case study of collaborative forest transportation presented by Frisk et al. 

(2010). This case includes eight transportation companies operating in southern Sweden. We 

find that collaboration among different companies results in total cost savings up to 8.64 %. 

To demonstrate that the constructed models are applicable in other collaborative settings, we 

implement the models in a case study of collaboration through an inventory pool of spare 

parts for oil and gas operations.  

We approach our research question from both a theoretical and practical point of view. To 

our knowledge, previous literature is mainly focused on the mathematical background of the 

relevant theories. We aim to provide a deeper understanding of the intuition behind the 

models. In the practical aspect, we formulate general models to make the methods applicable 

to other situations concerning collaborative logistics. As our research questions address 

coalition structures and cost allocation methods by utilizing cooperative game theory and 

Operations Research models, we believe our work contribute with insights in a relatively 

sparse research field. All models we formulate are implemented in AMPL and solved by 

using software CPLEX 10.0. 

The remainder of this paper is organized as follows. Chapter 2 summarizes the relevant 

concepts in game theory including definitions and properties. In chapter 3, we introduce the 

cost allocation methods we implement in our two case studies. The case study in forest 

transportation and concepts relevant for the further analysis are presented in chapter 4. In 

chapter 5, we formulate and implement models to find the optimal coalition structures and 

cost allocations in the total cost minimizing problem. In chapter 6, we address the individual 

cost minimizing problem. In chapter 7, we discuss the results and compare the two 

approaches. In chapter 8, we implement the models in a case concerning inventory pooling 

of spare parts. Finally we present our conclusions and discuss questions for further research.  
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2. Game Theory 

Game theory concerns the study of strategic decision making when several parties are 

involved. More formally game theory is defined as “the study of mathematical models of 

conflict and cooperation between intelligent rational decision-makers” (Myerson, 1997, p.1). 

Game theory provides general mathematical techniques for analyzing situations where two 

or more individuals make decisions that will affect the other party’s welfare. Such problems 

arise in a wide range of areas within for example economics, political science and 

psychology. The fundamental issue in all applications considers situations of zero-sum 

games.  One person’s gain offsets the net losses to the other parties (Myerson, 1997).   

The game refers to any social situation that includes one or more individuals - commonly 

labeled as players. There are two basic assumptions about the players; they are rational and 

intelligent. The rationality condition states that each player chooses the alternative that 

maximizes his or her expected utility. By declaring that the players are intelligent, we 

assume that the players have excess to all relevant information and can make decisions 

concerning the whole game (Myerson, 1997). 

Cooperative games consist of two ingredients; players and payoffs. In contrast to non-

cooperative games, cooperative game theory considers the set of joint actions that any group 

of players can take. The theory addresses the potential benefits of collaboration, which 

coalitions will form and how to divide the outcome in order to achieve a stable solution. 

Cooperative game theory distinguishes games with transferable payoff from those with 

nontransferable payoff. A game with transferable utility considers the total payoff achievable 

by the joint action of a given coalition. The coalition is then free to transfer payoff between 

its participants (Myerson, 1997).  

Cooperative game theory will be illustrated with the following three-player shoes game 

(Hendrikse, 2003). Suppose player 1 has a left shoe, and player 2 and 3 both have a right 

shoe. The set of players is N = 1, 2, 3, which give the following eight subsets: 

v() = 0 

v(1) = 0 

v(2) = 0 
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v(3) = 0 

v(12) = 1 

v(13) = 1 

v(23) = 0 

v(123) = 1 

The empty set  gives no value, as it does not have any shoes. Having just one shoe, in cases 

where the players operate alone, is also associated with no value. Finally, in subsets where 

players possess a complete pair of shoes, value one is achieved. There are different methods 

for distributing the value obtained by the subsets. All methods aim to find a fair allocation 

that ensures that players have incentives to collaborate. However, the methods we utilize in 

this paper all incorporate different aspects for allocating the value in a coalition. Whereas 

some methods distribute the value equally among the players, other methods base the 

allocation on the associated power within the game. In the three-player shoe illustration, 

player 1 is a veto player possessing all power in the valuable coalition. An allocation method 

solely based on power would assign all value to player 1, and no value to the other players. 

On the other hand, both player 2 and 3 can prevent player 1 from getting any value by 

forming subset 2,3. Some allocation methods therefore argue that blocking power also has 

to be considered. Such methods would assign ½ of the value generated to player 1 and ¼ to 

each player 2 and 3 (Sudhölter, 1997).  

Whereas game theory focuses on the mathematical theory of interactive decisions, 

Operations Research models provide analytical instruments to formulate and solve decision 

models. In real world problems, many decisions are interactive, i.e. the result of one player’s 

decision also depends on other players’ choices. Cooperative game theory is therefore well 

suited to deal with these interactions (Fiestras-Janeiro, García-Jurado, Meca & Mosquera, 

2011). In logistics there are high potentials for cost savings if players cooperate. In such 

cases, the common cost has to be distributed among the participants within the coalition such 

that all the players are willing to cooperate. In this paper we apply the concept of cooperative 

game theory within Operations Research models to investigate how the cost achieved in 

coalitions should be allocated between the players.  
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2.1 Definitions and Properties 

An n-persons game is defined by a pair (N,c), where N is the set of players and c is the cost 

function obtained by every set of players. Players can form coalitions to take advantage of 

benefits from collaboration. The set N is the grand coalition and occurs if all players act 

together. We refer to m = N as the cardinality of N, which states the maximum number of 

players participating in a coalition (Guajardo & Rönnqvist, 2014).   

The cost function,      , is referred to as the characteristic function of the game, and 

represents the optimal cost of each coalition k. The cost function associates a real 

number,      ,with every possible subset of N; we assume       , 0 for all k. In an empty 

set,       is zero and for any other k  N,       is the cost incurred by coalition k (Aumann 

& Dreze, 1974). We define a sub-coalition k as a group of players initially from the same 

coalition forming a smaller coalition. The cost of sub-coalitions containing only one player is 

referred to as the player’s stand-alone cost, i.e. the cost the player is faced when operating 

alone. 

Each solution concept that provides a cost allocation is said to satisfy some properties, i.e. 

criteria of fairness. The cost allocated to player j is defined by uj, for each player j  N. We 

assume uj  0 for all j. A cost allocation vector u = (u1, u2,…, un) is in the core of the game 

(Gillies, 1959) if it satisfies the following constraints: 

                                            ∑                                                                                               

                                                         ∑        
   

                                                                                    

Constraints (2.1) state the rationality condition, which assures that the cost allocated from 

the grand coalition is less than, or equal to, the participants’ obtainable cost in other subsets 

k. This condition is referred to as weak stability. Constraint (2.2) corresponds to the 

efficiency condition, which implies that the costs allocated to all players add up to the 

expected cost obtained in the grand coalition. All vectors u that satisfy constraints (2.1) and 

(2.2) are defined as the core of the game. An allocation that belongs to the core is said to be 

stable, which means that no players or subsets have incentives to deviate from the coalition.  

A coalition structure is defined as the formed coalitions within each boundary m (Aumann 

& Dreze, 1974). In contrast to simply assuming that the grand coalition will form, we 
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consider different groups of players that may form different coalitions. Under this 

assumption it is relevant to study the stability in the whole structure, not only the stability 

within each of the formed coalitions. This is referred to as strong stability. The condition 

states that no group of players, whether from the same coalition or from different ones, can 

deviate and form new coalition(s) such that all participants will be better off (Aumann, 1959; 

Hart & Kurz., 1983).  

The cost function is said to be monotone, which implies that if one additional company gets 

included in the coalition, the total cost will never decrease. This principle implies that if 

some players’ contribution to an allocation increases, than the player’s allocation should not 

decrease. Monotonicity thus provides a simple characterization of a fair division in cost 

allocation problems (Young, 1985).  

Another common assumption made in cooperative game theory, defines the cost function to 

be superadditive. The condition states that the value of a union of disjoint coalitions is at 

least as good as the sum of the coalitions’ separate values, i.e.      ⋃              , 

for all disjoint coalitions k, b  N. According to this principle, the outcome is better (or at 

least not worse) the more players that collaborate; hence it will always be profitable to form 

larger coalitions (Young, 1985). 
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3. Cost Allocation Methods 

Allocating cost is not a simple task and sometimes providing a fair distribution requires use 

of advanced methods. Consider the simple case of three players; A, B and C. When 

operating alone they are faced with costs of 10, 40 and 80, while in collaboration they 

achieve a total cost of 105. Assuming that the three players are identical in terms of 

efficiency, a fair allocation should treat the players equally. But what does it mean to “treat 

the players equally”? The most straightforward allocation is to simply divide the obtained 

cost equally among the participants. This results in equal costs of 35 to each player. Due to 

the differences in stand-alone cost this is obviously not a fair solution, and player A will 

object. Another solution is to divide the achieved cost savings equally, which gives each 

player an equal absolute saving of 8. This method provides a better allocation, as none of the 

players are allocated a higher cost than they obtain by operating alone. However, the benefit 

of the collaboration is of greater magnitude for player A than for player C, as he attains 

much higher relative saving. A third alternative is to divide the cost proportionally to the 

player’s stand-alone costs. This results in equal relative savings of 19 % to all players.  

 

Table 3.0.1. Basic allocation methods 

 

Method 1 

 

Method 2 

 

Method 3 

 

Cost  Saving Saving, % 

 

Cost  Saving Saving, % 

 

Cost  Saving Saving, % 

A 35 -25 -250 % 

 

2 8 83 % 

 

8 2 19 % 

B 35 5 13 % 

 

32 8 21 % 

 

32 8 19 % 

C 35 45 56 % 

 

72 8 10 % 

 

65 15 19 % 

 

All three methods are simplistic and none of them are able to account for the possibility of 

two players collaborating. Situations where we have to consider sub-coalitions and 

differences in efficiency require more complex methods in order to find a fair allocation. In 

the following we will further explain method 3, which is known as the proportional cost 

allocation method. Furthermore we will introduce five more complex allocation methods.  

EPM and the proportional nucleolus are based on the same principle as method 3, while the 

nucleolus, the modiclus and the simplified modiclus follow the same principle as method 2.  
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3.1 The Proportional Cost Allocation Method  

The proportional cost allocation method assigns the cost obtained in the coalition,      , 

such that all participants achieve equal savings relative to their stand-alone cost,       . 

Each player pays a share of the total cost weighted by their stand-alone cost relative to the 

sum of stand-alone costs of all players:  

      
      

∑       
 
   

                            

Companies often prefer this model, as it is easy to understand, easy to show and easy to 

compute. However, the proportional cost allocation method does not assure stable 

allocations, i.e. the cost allocated might be greater than the cost obtained in sub-coalitions 

(Frisk et al., 2010). 

 

3.2 Equal Profit Method 

Equal profit method (EPM) is a cost allocation principle proposed by Frisk et al. (2010). The 

method minimizes the maximum difference in pairwise relative savings among the 

participants within a coalition. The relative savings of player j is defined as: 

 

         

      
   

  

      
                     

EPM minimizes the pairwise difference in relative savings f. 

  
  

      
 

  

      
                 

                        

To ensure that the participants are better off collaborating in the grand coalition rather than 

forming sub-coalitions, rationality constraints are incorporated. The rationality condition 

limits the sum of the costs allocated to the players in the grand coalition to be less than, or 

equal to, the participant’s opportunity cost in other sub-coalitions. All participants are 

therefore willing to cooperate in the optimal coalition. If at least one possible solution exists, 

thus if the core is not empty, the solution found is proven to be stable (Frisk et al., 2010).  
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3.3 The Nucleolus  

The nucleolus is another method for allocating costs, and was introduced by Schmeidler in 

1969 (Solymosi & Raghavan, 1994). The method aims to maximize the worst ”satisfaction” 

among all coalitions and allocates the cost according to the constructive power of each 

coalition. The satisfaction of a coalition is expressed as the excess between the cost obtained 

by the coalition and the sum of allocated costs to the participants in the coalition 

(Schmeidler, 1969). 

               ∑  

   

                

The first term on the right hand side is the total cost of coalition k if they act unilaterally. The 

second term is the sum of costs allocated to the players participating in coalition k if they 

join the grand coalition. The bigger the excess,         the more satisfied is the coalition 

with the allocation u. As an attempt to treat all coalitions as equal as possible, the nucleolus 

lexicographically maximizes the minimum excess of all coalitions. This provides a cost 

allocation,   , which has the lexicographically greatest associated excess vector. An 

allocation belongs to the core if and only if          for all coalitions k. That is, in the 

core, joint action is better than unilateral action for all coalitions (Schmeidler, 1969).   

 

3.4 The Modiclus 

While the nucleolus maximizes the lowest excesses, the modiclus aims to minimize the 

largest difference in excesses within pairs of coalitions. The excess of a coalition is defined 

in the same way, i.e. the difference between the cost obtained by a coalition and the sum of 

allocated cost to the participants containing the coalition. The difference of excesses between 

two coalitions, k and b, may be regarded as the mutual envy between coalition k and b. By 

pairs of coalitions we mean all possible combinations of coalition k and b, i.e. we 

consider                     pairs. This results in high computational complexity. 

The modiclus is constructed to lexicographically minimize the maximum envy,          

(Sudhölter, 1997): 



 10 

          (      ∑  

   

)  (      ∑  

   

)                 

In order to minimize Envy, the modiclus allocates relatively lower cost to efficient coalitions 

and relatively higher cost to inefficient coalitions, i.e. the model considers both constructive 

power and blocking power. 

 

3.5 The Simplified Modiclus 

The simplified modiclus is a method introduced by Tarashnina (2010), and was constructed 

to avoid the high computational complexity of the modiclus. The constructive power and 

blocking power of each coalition is now calculated between pairs of a coalition and its 

complementary. By the complementary coalition we mean the coalition b containing all 

players not participating in coalition k, i.e. we have              pairs. The excess of 

coalition k is defined as follows;  

          
 

 
      

 

 
(             )   ∑                  

   

    

The first term on the right hand side is the cost of coalition k, which measures its 

constructive power. The second term is the difference between the cost of the grand coalition 

and the cost of the complementary coalition of k. This term takes into account the blocking 

power of coalition k. The lowest excess          is lexicographically maximized following 

the same logic as in the nucleolus (Tarashnina, 2010).   

 

3.6 The Proportional Nucleolus 

The proportional nucleolus is a solution concept introduced by Young et al. (1980). The 

method is similar to the nucleolus as it lexicographically maximizes the satisfaction of the 

least satisfied coalition. The excess in the proportional nucleolus is defined as the difference 

between the cost of coalition k and the sum of the allocated costs to the participants of k, 

divided by the cost of coalition k (Lemaire, 1984).  
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        ∑            

     
                 

The proportional nucleolus allocates the costs according to the constructive power of each 

player. While the nucleolus measures the excess in absolute value, the proportional nucleolus 

measures the excess relative to the cost of each coalition. It has been proven by Megiddo 

(1974) that the nucleolus does not satisfy the desirable property of monotonicity, cf. chapter 

2.1. However, it has been showed that the proportional nucleolus satisfies monotonicity, 

which is viewed as a major advantage of this method compared to the nucleolus (Zhou, 

1991).  
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4. A Case Study in Forest Transportation 

The models we formulate are applicable for all cases where we have a set N of players and 

information on costs for all coalitions k. We focus mainly on a case in forest transportation 

introduced by Frisk et al. (2010), concerning eight companies with operations in southern 

Sweden. Transportation costs account for a large proportion of the total costs in the forest 

industry. Many companies operate in the same region and volumes of the same assortment 

are often transported in opposite directions; hence there is high potential of improving 

transportation efficiency. Companies that collaborate can better utilize transport capacity by 

bartering and/or backhauling. Wood bartering implies that destinations between supply and 

demand nodes are changed, such that a company closer to the location of the demand nodes 

supplies the goods on the authority of another company. Backhauling refers to when a truck 

that has carried one load between two points carries another load on its return, such that  

unloaded distance is decreased. Both bartering and backhauling improve transportation 

efficiency and lead to decreased total costs. 

The forestry case consists of information on costs for eight players and 255 possible 

coalitions. The stand-alone costs of the players vary to a great extent, from 330 to 14860. 

Figure 3.6.1. Maps describing the eight companies  
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Figure 3.6.1 describes each of the eight forest transportation companies operating in southern 

Sweden (D’Amours & Rönnqvist, 2011). The green areas display supply areas and the red 

circles describe industries with demand. The companies operate with different volumes 

which is reflected in their stand-alone costs (Frisk et al., 2010). Based on the substantial 

differences in volume of each company, equal amounts of cost savings will be of greater 

significance for smaller players. When analyzing the outcome of the different allocation 

methods, we therefore find it reasonable to focus on the cost savings attained by each player 

relative to its stand-alone cost.   

We assume that the players are equally efficient when they operate alone, hence differences 

in efficiency is only apparent when comparing coalitions. This assumption is essential to the 

discussion of fairness in following sections. In the following we discuss some concepts of 

great relevance for the cost allocation methods we investigate.  

 

4.1 Additivity  

Additivity implies that the cost obtained in collaboration will be less than the sum of the cost 

of players acting separately, cf. chapter 2.1. In the main, the property of additivity is satisfied 

in the forestry case. For instance, the cost achieved in coalition C1, C2, C3 is less than the 

sum of the cost obtained by coalition C1, C2 and C3, i.e. 22080 < 18300 + 4740. The 

same reasoning applies to all coalitions.  One exception occurs for coalition C7, C8 where 

the cost obtained by collaboration is greater than the sum of the stand-alone costs, i.e. 

2220 > 1880 + 330.  

 

4.2 Constructive Power 

We define the constructive power of a coalition as the relative saving the coalition obtains. 

       
     

∑          
               

In order to analyze the results of the allocation models presented in chapter 3, we wish to 

find a measure of each player’s constructive power. The constructive power of each player is 

calculated by taking the average of the relative savings of all coalitions the player 
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participates in. The higher relative savings obtained by the coalitions where player j 

participates, the higher is the constructive power of player j.  

 

Figure 4.2.1. Average constructive power within the grand coalition 

 

Figure 4.2.1 illustrates the average constructive power of all sub-coalitions each player 

participates in. Since all possible cub-coalitions are taken into account, the measures of 

constructive power apply for the grand coalition. Player C2 and C3 are the strongest players 

in terms of constructive power, with averages of 6.05 % and 5.44 %, respectively. Player C1, 

C4 and C8 have the lowest constructive powers, with averages of 4.48 %, 4.60 % and 

4.31 %, respectively.  

 

4.3 Blocking Power 

The blocking power of coalition k is measured by the cost of the grand coalition minus the 

cost of k’s complementary coalition, relative to the cost of coalition k. Blocking power can 

therefore be interpreted as the contribution of the coalition k to the grand coalition; 

       
              

     
               

As for constructive power, we wish to find the blocking power belonging to each player. The 

blocking power of each player is measured by calculating the average of blocking power of 

all coalitions the player participates in. The higher blocking power in the coalitions where 
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player j participates, the higher is the blocking power of player j. The blocking power can be 

considered as an indication of each player’s contribution to the grand coalition, i.e. how 

important each player is within its coalition. The averages of blocking power for each player 

in the grand coalition are illustrated in figure 4.3.1.  

 

Figure 4.3.1. Average blocking power within the grand coalition  

 

Figure 4.3.1 illustrates the differences in blocking power among the players. Contrary to the 

measures of constructive power, player C8 has the highest blocking power with an average 

of 8.71 %, while player C2 is measured with the lowest average blocking power of 6.11 %.  
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5. Total Cost Minimization  

 

Superadditivity is a widely used assumption in cost allocation methods. In games where 

superadditivity is satisfied, the grand coalition will always be the social welfare maximizing 

coalition. In these instances, coalition structure generation is in principle trivial (Sandholm, 

Larson, Andersson, Shehory, & Tohmé, 1999). 

However, even in cases where superadditivity is satisfied, there might be difficulties of 

managing large coalitions in practice. We consider the case where non-included managerial 

costs of conforming large coalitions, laws or political issues make it impossible or non-

optimal to form the grand coalition. A relevant subject in such cases concerns which 

coalitions that optimally should form. 

  

5.1 Coalition Structure 

In order to address the question of optimal coalition structures, we introduce the upper 

bound, m, of maximum participants in a coalition. To find the coalition structure that 

maximizes social welfare, we replicate the mixed programming model from Guajardo and 

Rönnqvist (2014). In the following, this model will be referred to as Model 1. We start by 

introducing the notation on sets, parameters and decision variables.  

 

Sets 

                  

                     

 

Parameters 

                                 

      
                                       
                                                                

 

                                            

 

Variables 
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The following model aims to find a coalition structure that minimizes total cost, such that all 

coalitions are stable.  

 

Objective function 

 

                                                                  ∑  

   

∑     

   

                                                                              

         

Constraints 

 
 

∑                                                                                                                           

   

 

 

∑                                                                                                                             

   

 

 

∑                                                                                                                                         

   

 

  

∑                                                                                                                                       

   

 

 

    {   }                                                                                                                                 

  

The objective function (5.1) minimizes the total cost allocated among the players. 

Constraints (5.2) are rationality conditions assuring weak stability for all formed coalitions. 

These conditions assure that players in the formed coalition have no incentives to deviate 

and create their own coalition. Constraints (5.3) correspond to the efficiency condition, 

stating that the sum of costs allocated to all players in the formed coalition k equals the total 

cost of coalition k. Constraints (5.4) state that each player is assigned to one and only one 

coalition. Constraints (5.5) set an upper bound on the maximum cardinality of participants 

allowed in each coalition and constraints (5.6) express the nature of the variables.   

The grand coalition includes all players and its subsets will therefore involve all possible 

coalitions. In this case the weak rationality conditions (5.2) are sufficient to assure a stable 

allocation. However, in order to assure stability in smaller coalitions, the model must also 
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concern potential collaborations with players outside the formed coalition. This is 

incorporated by the strong stability condition (5.7).  

                                             ∑(      ∑     

   

)                                                                  

   

 

Constraints (5.7) assure that no players, either from the same or from different coalitions, 

have incentives to form their own coalition. This is a more restrictive condition than the 

weak stability conditions, thus constraints (5.2) become superfluous. For illustrative 

purposes, we choose to include them in the model. It is proven that if the model is feasible 

when including the strong stability conditions (5.7), the optimal objective value is equal to 

the optimal objective value of the model when only using the weak stability conditions (5.2) 

(Guajardo & Rönnqvist, 2014). As long as there are feasible solutions, the model provides 

the same total cost and coalition structure when including or excluding the strong stability 

conditions. For further explanation of the relationship between the two conditions, see 

Guajardo and Rönnqvist (2014). 

The boundary m of the maximum participations within a coalition, limits the possibilities of 

formed coalitions. We implement the model in AMPL and solve for m ranging from 1 to 8.  

The optimal coalition structures are shown in figure 5.1.1. 

 

Figure 5.1.1. Coalition structures when minimizing total cost 
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For m=1 no collaborations are allowed, thus all players operate alone. By allowing all 

players to collaborate, i.e. m=8, the grand coalition is formed. For m=6, the model is 
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infeasible when including the strong stability condition. When allowing for maximum six 

players to collaborate, there will always be incentives for some of the players to deviate from 

their coalition to create coalitions with other players. Without the strong stability condition, 

the coalition structure {C1, C2, C3, C5, C6, C7} {C4, C8} minimizes the total cost and 

satisfies the weak stability conditions.  

The calculated constructive and blocking power in chapter 4.2 and 4.3 are based on the 

grand coalition and will therefore not apply for the coalition structures found in Model 1. In 

order to find indications of power that correspond with the allocations in the following 

chapters, we measure the constructive power and blocking power of each player within each 

of the formed coalitions. This way we are able to compare the power of each player with the 

power of the player(s) it collaborates with.  

 

Figure 5.1.2. Average constructive power within formed coalitions 

 

Figure 5.1.2 gives an indication of the constructive power each player possesses within the 

formed coalitions. For m=2 there is no constructive power to consider since there is no 

savings when the players operate alone. In the main, player C2 and C3 possess the highest 

constructive power. This means that player C2 and C3 are involved in coalitions that obtain 

high relative savings and further implies that these players are efficient in collaborations. 

The largest variation in constructive power occurs between the different coalitions, where 
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bigger coalitions in general obtain higher relative savings. Consequently, comparisons of 

constructive power across different coalitions may give wrong conclusions. The measures do 

however give a good indication of the balance of power within the formed coalitions. The 

measures of constructive power for m=8 are the same as in chapter 4.2.  

Figure 5.1.3 gives an indication of the blocking power each player possesses in the formed 

coalitions. The blocking power is calculated as explained in chapter 4.3, only in this case we 

consider each formed coalition as the grand coalition.   

Figure 5.1.3. Average blocking power within formed coalitions 

 

Player C7 stands out for m=2 by having extremely high blocking power. This is a result of 

coalition {C3, C7} achieving high cost savings in addition to player C7 having low stand-

alone cost. Player C2 has the lowest blocking power in all the coalitions he participates in. 

Player C4 has in general low blocking power, but he also collaborates with other players 

possessing low blocking power. The measures of blocking power for m=8 are the same as in 

chapter 4.3. 

Both constructive power and blocking power of each player are averages over all coalitions 

the player participates in. This calculation method gives imprecise measures, but still an 

adequate indication of the power possessed by each player. Constructive power and blocking 

power are more accurately taken into account in the allocation methods we utilize in the 
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following chapters. Our purpose with calculating measures of power is not to introduce a 

new solution concept for allocating costs, but to be able to analyze the results of the 

allocation methods and understand the intuition behind the models. For this purpose, figure 

5.1.2 and 5.1.3 give sufficiently precise measures of constructive power and blocking power 

possessed by each player.  

By implementing Model 1,the coalition structures that minimize total costs are determined. 

The next question to address is how the costs should be allocated between the participants. 

When allocating the costs among the players, the coalition structures are considered as 

settled, i.e. there is no possibility for players in one coalition to collaborate with players in 

other coalitions. This implies that the formed coalitions can be regarded as grand coalitions, 

hence the weak rationality condition is sufficient to provide a stable allocation. This 

assumption is based on the idea that players do have the possibility to refuse to collaborate, 

but not the possibility to initiate collaboration with players outside the formed coalition. In 

the following sections we investigate five different cost allocation methods to find the 

allocated cost to the players. The models are formulated to allocate the cost of the grand 

coalition. We create new datasets for the coalitions determined by Model 1, where the set of 

players, N, includes only the participants of the formed coalition. We denote the new sets of 

players as M. This enables us to generalize the model formulations, and implement the same 

model for all formed coalitions. 

 

5.2  Equal Profit Method 

Equal profit method aims to find a stable allocation that minimizes the largest pairwise 

difference in relative savings among the participants in a coalition, cf. chapter 3.2. To 

determine the EPM cost allocation in the coalition structures found in Model 1, we 

implement the following model in AMPL: 

 

Sets 
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Parameters 

     
                                       

                                                                          
  

                                  

                                        

 

Variables 

                               

                                   

 

Objective function 

         minimize f                                                        (5.8)   

 

Constraints 

 

   
  

      
 

  

      
                                                                                                                                 

       

                              

∑   

   

                                                                                                                                             

  

∑   

   

                                                                                                                                            

 

                                                                                                                                                                 

 
       

  

The objective function (5.8) minimizes the difference in relative savings f. Constraints (5.9) 

state that f is greater than, or equal to, the difference between the cost allocated to player i 

divided by his stand-alone cost and the cost allocated to player j divided by j’s stand-alone 

cost. Constraints (5.10) are weak rationality conditions, assuring a stable allocation. 

Constraints (5.11) correspond to the efficiency condition, stating that the total cost allocated 

to the players participating in the formed coalition is equal to the total cost of that coalition. 

Constraints (5.12) express the nature of the variables. 



 23 

By running EPM for each coalition found by Model 1, we obtain the cost allocation shown in 

table 5.2.1. 

 

Table 5.2.1. Cost allocations using EPM 

m C1 C2 C3 C4 C5 C6 C7 C8 TOTAL 

1 3780 14860 4740 2070 10340 4960 1880 330 42960 

2 3681 14276 4396 2053 9934 4829 1744 327 41240 

3 3658 13852 4419 2003 9639 4799 1880 330 40580 

4 3719 13697 4369 2037 9531 4572 1870 325 40120 

5 3719 13583 4333 2037 9452 4534 1718 325 39700 

6 3520 13583 4333 2053 9452 4534 1718 327 39520 

7 3520 13551 4323 1888 9430 4523 1715 330 39280 

8 3520 13551 4323 1888 9430 4523 1714 301 39250 

 

The costs for m=1 are the stand-alone cost of each player. The column to the right shows the 

total cost for each cardinality m, which are the costs we minimize in Model 1. Since the 

stand-alone costs of the players differ to a great extent, we find it more informative to 

compare the cost savings relative to each player’s stand-alone cost.  

 

Table 5.2.2. Relative savings using EPM 

m C1 C2 C3 C4 C5 C6 C7 C8 

2   2.63 % 3.93 % 7.25 % 0.83 % 3.93 % 2.63 % 7.25 % 0.83 % 

3 3.24 % 6.78 % 6.78 % 3.24 % 6.78 % 3.24 % 0.00 % 0.00 % 

4 1.62 % 7.82 % 7.82 % 1.62 % 7.82 % 7.82 % 0.53 % 1.62 % 

5 1.62 % 8.59 % 8.59 % 1.62 % 8.59 % 8.59 % 8.59 % 1.62 % 

6 6.88 % 8.59 % 8.59 % 0.83 % 8.59 % 8.59 % 8.59 % 0.83 % 

7 6.88 % 8.80 % 8.80 % 8.80 % 8.80 % 8.80 % 8.80 % 0.00 % 

8 6.88 % 8.81 % 8.81 % 8.81 % 8.81 % 8.81 % 8.81 % 8.81 % 

 

EPM minimizes the difference in relative savings between the players within each coalition. 

This is evident when studying the relative savings presented in table 5.2.2. For m=2, m=3 

and m=5, the method gives equal relative savings to all players within each coalition. For the 

remaining cardinalities the method assigns unequal relative savings within coalitions in order 

to satisfy rationality constraints. For m=4, player C7 attains 0.53 % relative savings in 
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contrast to the other participants saving 1.62 %. Player C1, C4 and C8 can achieve relative 

savings of 1.62 % by excluding player C7 from the coalition; hence in order to provide a 

stable coalition they must attain at least 1.62 % when collaborating with C7. The same 

reasoning applies for m ≥ 6, where player C1 attains lower relative savings than his 

collaborators. The largest difference of relative savings within a coalition occurs in the grand 

coalition, where player C1 attains relative saving of 6.88 % and the other players save 

8.81 %. 

 

5.3 The Nucleolus 

The nucleolus aims to find a fair cost allocation by maximizing the satisfaction of the least 

satisfied coalition, cf. chapter 3.3. Strictly speaking, the formulated model is the pre-

nucleolus as it does not incorporate individual rationality conditions. However, as we operate 

with games with non-empty cores, the pre-nucleolus and nucleolus coincide. We therefore 

refer to the model as the nucleolus. We implement the nucleolus in AMPL to allocate the 

cost between the players within the coalition structures found in Model 1. 
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Parameters 
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Objective function 

 

                                                                                                                      

Constraints 

         ∑                                                                                                                                

   

 

∑                                                                                                                                             

   

 

 

                                                                                                                                                                

 

The objective function (5.13) maximizes the minimum excess, r. Constraints (5.14) state that 

r is less than, or equal to, the cost saving of the least satisfied coalition. Constraints (5.15) 

correspond to the efficiency condition and constraints (5.16) express the nature of the 

variables.  

In the following, we explain the process to find a unique cost allocation for the grand 

coalition. In the first run coalition 8 and 247 have the lowest excess, with an excess of 15. 

The coalitions with lowest excess in each run have positive dual values. When the optimal 

value of a dual variable is positive, the inequality constraint to this variable must hold with 

equality at any optimal solution, i.e. the associated constraints are binding (Guajardo & 

Jörnsten, 2014). We fix the excess for these coalitions by including the following 

constraints: 

             

                                       

 

The equations above state that the cost allocated to player C8 is bound at 330-15=315. The 

sum of costs allocated to the other players must be equal to 38950-15=38935. This gives an 

infinite number of possible allocations, hence we run the model again to further restrict the 

problem. By fixing the excess of coalitions with positive dual values and removing these 

coalitions from the problem, the model continues to maximize the second lowest excess and 

thus improve the cost allocation.  
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With coalition 8 and 247 removed from the problem, the second run finds that coalition 1 

and 254 have positive dual values, and an excess of 130. We include the following 

constraints: 

              

                                        

 

The cost allocated to player C1 is fixed at 3780-130=3650. We extract coalition 1 and 254 

from the problem and run the model for the third time. Coalition 30 and 251 have the lowest 

satisfaction of the remaining coalitions, with an excess of 132.5. Coalition 30 contains player 

C4 and C8, and since the cost allocated to player C8 is already set at 315, the cost allocated 

to player C4 is fixed at 2380-315-132.5= 1932.5. After the fourth run the final cost allocated 

to player C1, C4 and C8 is determined.  

As more and more excesses get fixed, the feasible set reduces and the allocated cost to the 

players gets determined. In the forestry case this requires 48 rounds for the grand coalition. 

The process of computing the nucleolus is summarized in table 5.3.1.  

 

Table 5.3.1. Computing the nucleolus manually for the grand coalition 

Round  Fixed k Excess, r      Cost,    

2 8 15 {C8}     = 315 

3 1 130 {C1}      = 3650 

4 30 132.5 {C4, C8}      = 1932.5 

11 7 215 {C7}      = 1665 

16 13 315 {C1, C6}      = 4545 

31 25 397.5 {C3, C7}      = 4077.5 

48 5 495 {C5}      = 9845 

 

The column to the left in table 5.3.1 shows the number of runs required to find the cost 

allocated to each player. After round 31 the costs are fixed to all players except C2 and C5. 

The following 16 rounds do not restrict the problem sufficiently to fix the cost of these 

players. For instance, round 35 where the lowest excess occurs for coalition 6 does not 

provide any new information since the cost of player C6 was indirectly fixed through 

coalition 13 in round 16. Other examples occur when we fix the excess of larger coalitions 
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containing more than one player for which the cost allocated is unknown. As long as the 

coalition with the lowest excess contains both player C2 and C5, the constraint does not 

restrict the problem sufficiently. In round 48, coalition 5 has the lowest excess and the cost 

allocated to player C5 equals 10340-495=9845. The final costs are determined for all players 

except player C2. Hence, the cost allocated to player C2 is easily found by calculating the 

difference between the total cost of the grand coalition and the sum of costs allocated to the 

other players, which is 13220.  

As seen from the explanation above, finding the nucleolus manually is a time-consuming 

process. In order to run the necessary rounds of the model automatically, we incorporate 

some modifications to the model. We add the following sets and parameters:  

 

Sets 

                                                                         

                                                                    

 

Parameters  

                         

                                                                                     

 

                                   ∑                                                                    

   

 

 

By stating                 in constraints (5.14), all coalitions with fixed excess get 

automatically removed from the problem. We also add constraints (5.17), which fix the 

excess of the coalition(s) with lowest satisfaction in each round.  

Table 5.3.2 shows the cost allocated to each player within the coalition structures found in 

Model 1.  
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Table 5.3.2. Cost allocations using the nucleolus 

m C1 C2 C3 C4 C5 C6 C7 C8 TOTAL 

1 3780 14860 4740 2070 10340 4960 1880 330 42960 

2 3665 14365 4500 2060 9845 4845 1640 320 41240 

3 3655 13870 4220 2010 9820 4795 1880 330 40580 

4 3740 13475 4240 2015 9845 4610 1875 320 40120 

5 3740 13452 4073 2020 9830 4600 1665 320 39700 

6 3650 13357 4083 2060 9845 4540 1665 320 39520 

7 3650 13222 4083 1940 9850 4540 1665 330 39280 

8 3650 13219 4078 1933 9845 4545 1665 315 39250 

 

The nucleolus cost allocation keeps the satisfaction of each coalition as high as possible, and 

reflects the constructive power of each coalition. For m=2, the nucleolus allocates costs such 

that each player within the same coalition obtains equal cost savings in absolute value. This 

corresponds to the assumption that all players are equally efficient when they operate alone. 

For m ≥ 3, differences in constructive power affect the allocation such that players with 

efficient sub-coalitions attain higher relative savings than players with less efficient sub-

coalitions. 

 

Table 5.3.3. Relative savings using the nucleolus  

m C1 C2 C3 C4 C5 C6 C7 C8 

2 3.04 % 3.33 % 5.06 % 0.48 % 4.79 % 2.32 % 12.77 % 3.03 % 

3 3.31 % 6.66 % 10.97 % 2.90 % 5.03 % 3.33 % 0.00 % 0.00 % 

4 1.06 % 9.32 % 10.55 % 2.66 % 4.79 % 7.06 % 0.27 % 3.03 % 

5 1.06 % 9.47 % 14.08 % 2.42 % 4.93 % 7.26 % 11.44 % 3.03 % 

6 3.44 % 10.11 % 13.87 % 0.48 % 4.79 % 8.47 % 11.44 % 3.03 % 

7 3.44 % 11.02 % 13.87 % 6.28 % 4.74 % 8.47 % 11.44 % 0.00 % 

8 3.44 % 11.04 % 13.98 % 6.64 % 4.79 % 8.37 % 11.44 % 4.55 % 

 

Table 5.3.3 shows the relative savings for each player when m ranges from 2 to 8. In general, 

player C2, C3 and C7 attain high relative savings for all m. For m=2, the difference in 

relative savings within the formed coalitions is solely based on different stand-alone costs 

among the players. For m=3, player C7 and C8 are not included in any collaboration, hence 

their relative savings equal zero. Normally players benefit from collaborating, yet player C7 
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and C8 are better off operating alone, cf. chapter 4.1. For m=4, the main differences in 

relative savings occur between the two coalitions formed; the players in coalition {C1, C4, 

C7, C8} obtain low relative saving, whereas the more efficient coalition, {C2, C3, C5, C6}, 

provides higher relative savings to its participants. This trend applies to all coalition 

structures, and correspond with the pattern observed in average constructive power, cf. 

figure 5.1.2. However, by studying the results in greater detail, the relative savings obtained 

within coalitions do not entirely reflect the measure of constructive power among the 

players. For instance, player C3 obtains the highest relative savings in all coalitions for m ≥ 

3, in which player C2 is measured to have the highest constructive power. This inconsistency 

will be further elaborated in chapter 5.6. 

 

5.4 The Modiclus 

The modiclus minimizes the difference in excesses within all pairs of coalitions, the so-

called Envy, cf. chapter 3.4. The method considers both constructive power and blocking 

power, even though the excess of each coalition is calculated the same way as in the 

nucleolus. We modify the run-codes used in the nucleolus, and implement the following 

linear programming model in AMPL for lexicographically minimizing the largest envy:  
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The objective function (5.18) minimizes Envy. Constraints (5.19) state that Envy is greater 

than, or equal to, the difference in excess within all pairs of coalitions (k, b). Stating 

             , ensures that the condition do not account for the pairs with fixed Envy. 

Constraints (5.20) correspond to the efficiency condition and constraints (5.21) fix Envy of 

the pairs of coalitions with highest envy each round. Constraints (5.22) express the nature of 

the variables.  

 

The process to minimize the Envy between the pairs in the grand coalition is explained in the 

following. For m=8 there are 254 * 254 = 64.516 different pairs of coalitions, which results 

in high computational complexity. The first run gives positive dual values for the pairs 

{20, 247}, {20, 8}, {183, 247} and {183, 8}. Coalition 247 and 8 envy coalition 20 and 183 

by 1247.5, which is the highest Envy among the pairs. By running the model a second time, 

excluding the pairs with fixed Envy, the highest Envy equals 1242.5.  

 

 

 

 



 31 

Table 5.4.1. First and second run of the modiclus 

k      Excess b      Excess Envy 

20 {C1, C7} 1262.5 247 {C1, C2, C3, C4, C5, C6, C7} 15 1247.5 

20 {C1, C7} 1262.5 8 {C8} 15 1247.5 

183 {C1, C3, C4, C5, C6} 1262.5 247 {C1, C2, C3, C4, C5, C6, C7} 15 1247.5 

183 {C1, C3, C4, C5, C6} 1262.5 8 {C8} 15 1247.5 

214 {C3, C4, C5, C6, C8} 1257.5 8 {C8} 15 1242.5 

20 {C1, C7} 1262.5 254 {C2, C3, C4, C5, C6, C7, C8} 20 1242.5 

 

The procedure of fixing the highest Envy and removing the associated pairs continues until 

the final cost allocation is determined. The Envy in modiclus is symmetric within all pairs, 

i.e. the best solution the model can achieve is Envy equal to zero. Table 5.4.2 shows the final 

cost allocation within the coalition structures found in Model 1. 

 

Table 5.4.2. Cost allocations using the modiclus  

m C1 C2 C3 C4 C5 C6 C7 C8 TOTAL 

1 3780 14860 4740 2070 10340 4960 1880 330 42960 

2 3665 14365 4500 2060 9845 4845 1640 320 41240 

3 3635 13930 4190 2010 9790 4815 1880 330 40580 

4 3740 13714 4118 2015 9728 4610 1875 320 40120 

5 3735 13606 4063 2025 9713 4573 1665 320 39700 

6 3650 13585 4090 2060 9715 4515 1585 320 39520 

7 3600 13596 4134 1890 9715 4455 1560 330 39280 

8 3540 13660 4193 1838 9775 4401 1528 315 39250 

 

As presented in table 5.4.2, the cost allocated to each player is of various sizes. For m=2 

there are no constructive or blocking power to consider, and the cost savings are divided 

equally within the coalitions. For m ≥ 3, the allocated costs depend on the constructive and 

blocking power of each player. In order to compare the results between the players, the 

different outcomes are discussed in terms of relative savings.  
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Table 5.4.3. Relative savings using the modiclus  

m C1 C2 C3 C4 C5 C6 C7 C8 

2 3.04 % 3.33 % 5.06 % 0.48 % 4.79 % 2.32 % 12.77 % 3.03 % 

3 3.84 % 6.26 % 11.60 % 2.90 % 5.32 % 2.92 % 0.00 % 0.00 % 

4 1.06 % 7.71 % 13.13 % 2.66 % 5.92 % 7.06 % 0.27 % 3.03 % 

5 1.19 % 8.43 % 14.29 % 2.17 % 6.07 % 7.81 % 11.44 % 3.03 % 

6 3.44 % 8.58 % 13.71 % 0.48 % 6.04 % 8.97 % 15.69 % 3.03 % 

7 4.76 % 8.51 % 12.78 % 8.70 % 6.04 % 10.18 % 17.02 % 0.00 % 

8 6.35 % 8.08 % 11.53 % 11.23 % 5.46 % 11.27 % 18.75 % 4.55 % 

 

Table 5.4.3 shows the relative savings of each player using the modiclus. Compared to the 

results by using the nucleolus, cf. table 5.3.3, player C2 attains significantly less savings 

when blocking power is taken into account. Player C3 attains the highest relative savings 

when m=3, m=4 and m=5 whereas player C7 achieves the highest relative savings for m ≥ 6. 

All these observations are compatible with the measures of blocking power for each player, 

cf. figure 5.1.3. The largest disparity between the results of the nucleolus and the modiclus 

occurs for the allocations in the grand coalition. Player C1, C4, C6 and C7 get significantly 

higher savings in the grand coalition by using the modiclus while player C2, C3 and C5 

obtain lower cost savings.  

 

5.5  The Simplified Modiclus 

Similar to the nucleolus, the simplified modiclus lexicographically maximizes the excess of 

the least satisfied coalition, cf. chapter 3.5. However, the simplified modiclus base the excess 

on the average of constructive power and blocking power of each coalition. 

We incorporate some minor modifications to the automatic run-codes used in previous 

models and implement the following linear programming model in AMPL:  

Sets 
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The objective function (5.23) maximizes the excess r. Constraints (5.24) define the excess r 

as the average of the cost of coalition k and the difference between the cost of the formed 

coalition and the cost of coalition b, minus the sum of the allocated costs. Stating that 
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    [   ]    ensures that the condition only accounts for pairs of complementary 

coalitions. Constraints (5.25) correspond to the efficiency condition.  Constraints (5.26) fix 

the excess of the coalitions with lowest excess in each round and constraints (5.27) express 

the nature of the variables. 

The difference between the cost of the formed coalition and the complementary coalition can 

be interpreted as k’s contribution to the formed coalition, i.e. the blocking power of coalition 

k. If k leaves the formed coalition, the complementary coalition gets        , while they can 

achieve       if they all act together. Hence, for any coalition k it is beneficial to have a 

small difference between       and        , which means that k has high blocking power. 

The property of additivity implies that k’s share of the cost in the formed coalition will be 

lower than k’s cost by operating alone, i.e. ∑                     The same logic applies 

for the complementary coalition, meaning that         will be greater than the allocated 

cost to the players in the complementary coalition. These two effects lead to a smaller 

measure of contribution to formed coalition than the cost for each coalition. This implies that 

the average used in the simplified modiclus will be smaller than the actual cost used in the 

nucleolus.  

 

 
      

 

 
(             )        

This means that condition (5.24) is stricter than condition (5.14), which further implies that 

the excess r is smaller in the simplified modiclus than in the nucleolus.  

The process of finding a unique cost allocation for the grand coalition is explained in the 

following. We run the model for m=8, and find the maximum satisfaction of the least 

satisfied coalitions.  
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Table 5.5.1. First and second run of the simplified modiclus 

k      r b      r 

129 {C2, C3, C4, C6} -158 126 {C1, C5, C7, C8} 158 

144 {C2, C5, C6, C7} -158 111 {C1, C3, C4, C8} 158 

169 {C1, C2, C3, C5, C8} -158 86 {C4, C6, C7} 158 

228 {C1, C2, C3, C6, C7, C8} -158 27 {C4, C5} 158 

231 {C1, C2, C4, C5, C7, C8} -158 24 {C3, C6} 158 

253 {C1, C3, C4, C5, C6, C7,C8} -158 2 {C2} 158 

132 {C2, C3, C5, C6} -157 123 {C1, C4, C7, C8} 157 

205 {C2, C3, C5, C6, C8} -157 50 {C1, C4, C7} 157 

 

Table 5.5.1 shows the coalitions for whom we fix the excess in the second and the third 

round, i.e. the coalitions with positive dual values. The coalitions k to the left in the table are 

the six coalitions that are least satisfied with the cost allocation, while their complementary 

coalitions b have most satisfaction. Since the constructive power and the blocking power are 

weighted equally, the total excess within each pair of a coalition and its complement will 

always add up to zero. The positive excess in one coalition is offset by the same amount of 

negative excess in the complementary coalition. As the objective is to maximize the 

minimum excess, the best possible solution the model can achieve is an excess equal to zero.  

The following procedure is similar to the nucleolus. As more and more excesses get fixed, 

the model provides an improved solution until the final cost allocation is determined. Table 

5.5.2 shows the cost allocated to each player in the coalition structures found in Model 1. 

 

Table 5.5.2. Cost allocations using the simplified modiclus 

m C1 C2 C3 C4 C5 C6 C7 C8 TOTAL 

1 3780 14860 4740 2070 10340 4960 1880 330 42960 

2 3665 14365 4500 2060 9845 4845 1640 320 41240 

3 3652 13909 4200 1997 9800 4812 1880 330 40580 

4 3738 13650 4185 2013 9780 4555 1877 322 40120 

5 3738 13650 4100 2023 9726 4540 1605 318 39700 

6 3566 13616 4131 2060 9711 4496 1620 320 39520 

7 3561 13581 4124 1874 9709 4483 1618 330 39280 

8 3562 13570 4122 1869 9708 4491 1618 310 39250 
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For m=2, there are no constructive or blocking power to consider and the costs allocated to 

the players equal the cost in the nucleolus and the modiclus. For m ≥ 3 the cost allocations  

reflect the performance of each player. In order to compare the outcome for each player, we 

express the cost savings relative to stand-alone costs.  

 

Table 5.5.3. Relative savings using the simplified modiclus 

m C1 C2 C3 C4 C5 C6 C7 C8 

2 3.04 % 3.33 % 5.06 % 0.48 % 4.79 % 2.32 % 12.77 % 3.03 % 

3 3.39 % 6.39 % 11.39 % 3.54 % 5.22 % 2.99 % 0.00 % 0.00 % 

4 1.10 % 8.14 % 11.71 % 2.74 % 5.42 % 8.17 % 0.18 % 2.52 % 

5 1.10 % 8.14 % 13.50 % 2.25 % 5.95 % 8.47 % 14.63 % 3.54 % 

6 5.67 % 8.37 % 12.85 % 0.48 % 6.09 % 9.35 % 13.81 % 3.03 % 

7 5.79 % 8.60 % 12.99 % 9.49 % 6.11 % 9.62 % 13.96 % 0.00 % 

8 5.78 % 8.67 % 13.05 % 9.71 % 6.11 % 9.47 % 13.96 % 6.06 % 

 

Table 5.5.3 shows the relative savings of each player using the simplified modiclus 

allocation method. As the simplified modiclus base the cost allocation on the constructive 

and blocking power of each player, the relative savings are similar to the results by using 

modiclus, cf. table 5.4.3. The modiclus emphasizes blocking power to a further extent than 

the simplified modiclus; hence the relative savings shown in table 5.5.3 tend to lie between 

the allocations provided by the nucleolus and the modiclus. Player C3 and C7 still attain 

high relative savings in most of the formed coalitions due to their high measure of 

constructive and blocking power. However, for m=4, player C7 participates in the least 

efficient coalition, with player C1, C4 and C8. In this coalition, player C7 has the lowest 

constructive and blocking power, which explains his correspondingly low relative saving. 

Player C1 and C8 generally attain low relative savings due to their participation in the least 

efficient coalitions. 

 

5.6 Discussion of the Nucleolus  

The nucleolus allocates the costs such that the minimum excess is lexicographically 

maximized. The model operates with excess in absolute values, and does not adjust for the 

differences in volumes among the players. Consequently, this gives higher relative savings to 

players with low stand-alone costs. As mentioned in chapter 4, the differences in stand-alone 
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cost between the players in the forestry case are due to different volumes, and not differences 

in efficiency. In order to provide cost savings of equal significance to all players, we 

therefore find it crucial to consider the relative savings the players achieve, and not the 

absolute savings.  

In previous literature (Frisk et al., 2010) the nucleolus has been computed in the forestry 

case for m=8, with the same results as we present in table 5.3.2. By studying the data, we 

find that this method benefits the smaller players, especially player C7 and C8. To give a 

comprehensive illustration of the relevance of adjusting for different volumes, we use the 

dataset from the coalition containing player C2, C3 and C5. This coalition is formed when 

minimizing total cost for m=3. By using a smaller dataset we can easier see the basis of the 

allocations.  

 

Table 5.6.1. Data for coalition 59 

k      ∑                  Saving Constructive Power 

2 {C2} 14860 14860 0 0.00 % 

3 {C3} 4740 4740 0 0.00 % 

5 {C5} 10340 10340 0 0.00 % 

16 {C2, C3} 19600 18610 990 5.05 % 

18 {C2, C5} 25200 24210 990 3.93 % 

23 {C3, C5} 15080 14910 170 1.13 % 

59 {C2, C3, C5} 29940 27910 2030 6.78 % 

 

Table 5.6.1 compares the cost of the sub-coalitions of coalition 59 against the sum of the 

stand-alone costs of the participating players. The sub-coalitions where player C2 participate 

have an average relative saving of 4.49 %, while the coalitions where player C3 and C5 

participate have an average relative saving of 3.09 % and 2.53 %, respectively. We interpret 

this as player C2 having high constructive power, and would therefore expect C2 to be 

allocated a low cost relative to his stand-alone cost.  

The nucleolus aims to keep all coalitions as equally satisfied as possible, by 

lexicographically maximizing the minimum excess: 

               ∑  
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In the first run coalition 3 and 18 have the lowest excess, with an excess of 520. When fixing 

these excesses, player C3 is allocated a cost of 4220 and player C2 and C5 are in total 

allocated 23690. 

              

                   

 

The coalitions have the same excess in absolute value and according to the nucleolus these 

coalitions are equally satisfied. However,  the excess of coalition 3 gives a relative saving of 

   

    
          while coalition 18 attains a relative saving of 

   

     
       ; hence it is 

difficult to argue that they have equal satisfaction. The results from running the nucleolus on 

coalition 59 are presented in table 5.6.2. 

 

Table 5.6.2. Cost allocation and savings using the nucleolus for k=59 

  C2 C3 C5 TOTAL  

Cost,    13870 4220 9820 27910 

Excess, r 990 520 520 2030 

Relative Saving 6.66 % 10.97 % 5.03 % 6.78 % 

 

The excesses in absolute measures correspond with the absolute savings each coalition 

achieves. Player C3 attains a relative saving of almost 11 %, while C2 has a relative saving 

of less than 7 %. These results are not compatible with our definition of constructive power 

and the allocation seems to be unfair. As we focus on the relative savings, maximizing the 

excess in absolute value gives an imbalanced cost allocation, which benefits players with 

low volume. This explains the inconsistency between constructive power and the nucleolus 

allocations seen in table 5.3.3. In order to adjust for different volumes, the excess of each 

coalition is divided by the corresponding cost:  

 

       
       ∑      

     
                

    

When lexicographically maximizing the relative excess of each coalition, we get the 

following results:  
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Table 5.6.3. Cost allocation and savings based on relative excess for k=59 

 

C2 C3 C5 TOTAL 

Cost,    13493 4501 9916 27910 

Excess, r 1367 239 424 2030 

Relative Saving 9,20 % 5,04 % 4,10 % 6,78 % 

 

The relative savings shown in table 5.6.3 correspond better to the constructive power of each 

coalition. The coalitions where player C2 participates have high constructive power, and 

player C2 therefore attains high relative saving.   

In our interpretation, this approach provides a fairer cost allocation than the nucleolus when 

the players differ in volume. The nucleolus based on excess in relative measures is a cost 

allocation method known as the proportional nucleolus. Despite its desirable properties 

when players differ in volume, the method seems to be less known and less used than the 

nucleolus.  

 

5.7  The Proportional Nucleolus 

The proportional nucleolus lexicographically maximizes the satisfaction of the least satisfied 

coalition based on relative excess, cf. chapter 3.6. To find the proportional nucleolus cost 

allocation in the coalition structures found in Model 1, we implement the following linear 

programming model in AMPL: 

 

Sets 

                  

                      

                                                                         

                                                                    

 

Parameters 
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Variables 

                                

                                         

 

Objective function 
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The objective function (5.28) maximizes the excess, r. Constraints (5.29) state that r is less 

than, or equal to, the relative cost saving of all coalitions. Constraints (5.30) correspond to 

the efficiency condition and constraints (5.31) fix the excess of the coalitions with the lowest 

excess. Constraints (5.32) express the nature of the variable. 

The results obtained from implementing the model in AMPL are shown in table 5.7.1. 
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Table 5.7.1. Cost allocations using the proportional nucleolus 

m C1 C2 C3 C4 C5 C6 C7 C8 TOTAL 

1 3780 14860 4740 2070 10340 4960 1880 330 42960 

2 3681 14276 4396 2053 9934 4829 1744 327 41240 

3 3645 13492 4501 2047 9916 4769 1880 330 40580 

4 3735 13035 4415 2009 9865 4854 1878 329 40120 

5 3726 13065 4179 2025 9755 4765 1856 329 39700 

6 3754 13016 4126 2053 9754 4646 1844 327 39520 

7 3719 12952 4093 2019 9735 4606 1826 330 39280 

8 3714 12940 4091 2003 9733 4615 1824 330 39250 

 

For m=2, the cost allocation equals the allocation using EPM, and the players within each 

coalition are allocated costs proportionally to their stand-alone costs. For m ≥ 3, the costs 

obtained using the proportional nucleolus reflect the constructive power of each player and 

no longer equal the EPM allocation. Players with efficient sub-coalitions have a better 

strategic position than players with less efficient alternatives, and are therefore allocated a 

smaller cost using the proportional nucleolus.  

 

Table 5.7.2. Relative savings using the proportional nucleolus 

m C1 C2 C3 C4 C5 C6 C7 C8 

2 2.63 % 3.93 % 7.25 % 0.83 % 3.93 % 2.63 % 7.25 % 0.83 % 

3 3.58 % 9.20 % 5.04 % 1.13 % 4.10 % 3.85 % 0.00 % 0.00 % 

4 1.20 % 12.28 % 6.86 % 2.96 % 4.59 % 2.13 % 0.13 % 0.25 % 

5 1.43 % 12.08 % 11.83 % 2.18 % 5.66 % 3.92 % 0.78 % 0.33 % 

6 0.70 % 12.41 % 12.95 % 0.83 % 5.67 % 6.33 % 1.92 % 0.83 % 

7 1.61 % 12.83 % 13.66 % 2.48 % 5.86 % 7.13 % 2.88 % 0.00 % 

8 1.75 % 15.94 % 13.70 % 3.22 % 5.87 % 6.96 % 2.96 % 0.08 % 

 

Table 5.7.2 shows the relative savings for all players when allocating costs by using the 

proportional nucleolus. Compared to the nucleolus, the results by using proportional 

nucleolus are more compatible with the measures of constructive power of each player, cf. 

figure 5.1.2. By adjusting for volume, player C2 is rewarded for his high constructive power 

by attaining higher relative savings. Player C3 still achieves high relative savings, even 

though the results are slightly reduced compared to the nucleolus. Player C1, C4 and C8 
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attain less savings by using the proportional nucleolus, which correspond to their low 

constructive power. However, the biggest gap between the nucleolus and the proportional 

nucleolus appear for player C7. By using the nucleolus, player C7 attains relative savings as 

high as 11.44 % for m ≥ 6, while the cost allocated in the proportional nucleolus only 

generates relative savings from 1.92 % to 2.96 % for the same cardinalities. The results 

demonstrate that smaller players are worse off by adjusting for volume.  

 

5.8 Discussion of Fairness 

In previous sections we have derived cost allocations within the different coalition structures 

using EPM, the nucleolus, the modiclus, the simplified modiclus and the proportional 

nucleolus. To give a more comprehensive comparison of the different methods we focus on 

the cost allocated in the grand coalition.               

                                                                                                                                                           

Figure 5.8.1. Relative savings using different allocation methods for m=8 

 

Figure 5.8.1 compares the relative savings obtained by the different allocation methods when 

m=8, i.e. the grand coalition is formed. The nucleolus and the modiclus agree on the cost 

allocated to player C8, but the rest of the costs differ significantly. EPM gives equal relative 

saving to all players, except for C1. Player C1, C5 and C8 attain the highest cost savings by 
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using EPM. This implies that they have low contribution in the coalitions they participate in, 

and are therefore better off with an equal allocation. Compared to EPM, the nucleolus gives 

higher relative savings to player C2, C3 and C7, due to their high constructive power. The 

modiclus favors player C3, C4, C6 and C7 which implies that these players obtain relative 

high blocking power. 

Player C1, C4, C6, C7 and C8, who operate with low volumes, are clearly worst off by using 

the proportional nucleolus. As the method adjusts for volume when the cost savings are 

allocated, the small players will no longer benefit by having low stand-alone costs. 

Compared to using the nucleolus, player C2 and C5 are the only players that will benefit by 

using the proportional nucleolus method in grand coalition. These players operate with 

largest volumes. The nucleolus, the simplified modiclus and the modiclus roughly follow the 

same pattern when distributing the cost savings among the players. This may indicate that 

also the simplified modiclus and the modiclus provide imbalanced results for players with 

different volumes. The relative savings obtained for player C7 ranges from 2.96 % to 

18.75 % depending on which allocation method is chosen. These extremes appear by using 

the proportional nucleolus and the modiclus. We interpret this as a consequence of player C7 

having low constructive power, high blocking power and a very low volume.  

By comparing the results between EPM and the proportional nucleolus, we can directly 

observe how differences in constructive power among the players affect their obtained 

savings. The disparities between the two allocations are completely due the constructive 

power of each player. Player C2 and C3 are the only players who attain higher relative 

savings by using the proportional nucleolus, which is explained by their high constructive 

power.  

As seen in the results above, the different allocation methods provide very different cost 

allocation among the players. It is a difficult, if not impossible, task to determine which 

allocation method provides the fairest solution. For m=2 the stand-alone costs are the only 

available information about the players; hence it is impossible to say which player is more 

efficient or has the most power. As the players have equal contribution to the coalition, it 

seems reasonable to divide the achieved cost savings equally within each coalition. The 

nucleolus, the modiclus and the simplified modiclus follow this approach, and both players 

within each coalition attain the same saving in absolute value. It can, however, be argued 

that a fair allocation should benefit the players equally. Dividing the absolute cost savings 
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equally results in a much greater benefit for players with low stand-alone cost than for 

players with high stand-alone cost. EPM and the proportional nucleolus avoid this issue by 

allocating the costs proportional to stand-alone costs, such that both players within each 

coalition attain the same relative saving. There is, however, no definite answer to which 

method provides the fairest solution, i.e. whether the savings should be considered in 

absolute terms or relative terms.  

The concept of fair allocation is even more complex for m ≥ 3. In addition to decide whether 

to consider savings in absolute terms or relative terms, we now have to take into account 

potential differences in efficiency among the players. When some players contribute to the 

coalition more than others, it is plausible to assume that a fair allocation should allocate less 

cost to these players. The nucleolus, the proportional nucleolus and, to some degree, EPM 

base the allocations on constructive power. This implies that only the most efficient 

coalitions are associated with binding constraints, thus affect the cost allocation. In this way 

players with high contribution are rewarded by attaining a relatively low cost.  

It can be argued that a fair allocation method should consider not only the cost savings a 

coalition k can achieve, but also the loss in cost saving other players experience if k deviates 

from the formed coalition. The modiclus and the simplified modiclus follow this reasoning 

by allocating the costs according to both constructive power and blocking power. When we 

consider blocking power, the least efficient coalitions will give binding constraints. In the 

modiclus, inefficient coalitions affect the allocation through the minimization of the 

difference in excess within all pairs of coalitions. In an equal allocation, the excess of 

inefficient coalitions is higher than the excess of efficient coalitions. In order to level the 

excesses, the model both allocates less cost to players in efficient coalitions and more costs 

to players in inefficient coalitions. In the simplified modiclus, inefficient coalitions affect the 

solution through the second term of the excess-formula;  
 

 
(             ). This term is 

low when the coalition     is inefficient; hence the constraint is likely to be binding. In 

this way considering blocking power leads to higher allocated cost to players with inefficient 

sub-coalitions.  

The modiclus and the simplified modiclus both reward efficient coalitions and punish 

inefficient coalitions, while the nucleolus and the proportional nucleolus only reward the 

efficient coalitions. The main features of the allocation methods we have discussed are 

summarized in table 5.8.1. 
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Table 5.8.1. Properties of the allocation methods 

Method Adjusting for Volume  Constructive Power Blocking Power 

EPM YES (YES) NO 

Nucleolus NO YES NO 

Modiclus NO YES YES 

Simplified Modiclus NO YES YES 

Proportional Nucleolus YES YES NO 

 

There are positive and negative attributes concerning all methods. It can be argued that EPM 

considers constructive power, as the method satisfies rationality constraints. However, the 

surplus of cost savings after the rationality constraints are satisfied is divided equally among 

the players, proportional to their stand-alone costs. In situations where the cost savings in the 

formed coalition are sufficiently high, the rationality constraints will not be binding. This 

results in equal relative savings to all players – regardless of their constructive power. 

Consequently, whether EPM considers constructive power or not, depends on the magnitude 

of the benefits from collaboration in the formed coalition. In most of the formed coalitions in 

the forestry case, the rationality constraints are not binding, hence the EPM allocation does 

not reflect the player’s constructive power. In one way, it can be argued that EPM provides a 

fair allocation since the players achieve relative savings as similar as possible. However, as 

we have seen the players differ in terms of efficiency and contribution to coalitions. Treating 

all players equally, without considering constructive power and blocking power, might 

therefore not be the fairest solution.  

 

EPM and the proportional nucleolus are the only methods that operate with cost savings in 

relative terms when allocating costs. In our opinion, adjusting for volume is crucial when the 

volumes differ significantly among the players. We therefore suspect the nucleolus, the 

modiclus and the simplified modiclus to give imbalanced results.  

Although most important, fairness is not the only aspect that should be considered when 

choosing an allocation method. When it comes to the acceptance of cost allocation among 

companies, EPM has some desirable properties. The method is easier to understand and is 

therefore more acceptable for the planners. EPM is the only method that directly assures a 

stable solution, since it incorporates rationality constraints. However, stability is likely to 

follow in the other allocation methods as well, since they allocate the costs according to 
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constructive and/or blocking power. Another aspect worth considering is the computational 

complexity of the models. The modiclus measures the difference in excess between all 

possible pairs of coalitions, and therefore involves high computational complexity. By 

considering the difference in excess only between pairs of complementary coalitions, the 

simplified modiclus inherits convenient properties from the modiclus, but avoids its high 

computational complexity.  
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6. Individual Cost Minimization 

In the previous analysis we have found the coalition structure for each upper bound m 

by minimizing the total cost of all coalitions. These coalition structures are optimal 

from a social planner point of view, where the aim is to maximize social welfare. It can 

be argued that the goal of any individual player is to minimize its own cost, without 

considering the potential cost-increase this may lead to for other players. In the 

following chapter we focus on the company’s perspective, where the aim is to minimize 

each individual cost while keeping stability for the players conformed in the coalition.  

 

6.1 Model 2 

In order to find optimal coalition structures in the individual cost minimizing problem we 

construct the following model in AMPL, referred to as Model 2. We start by introducing 

the notation on sets, parameters and decision variables.  

 

Sets 
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The objective function (6.1) minimizes the cost of player  ,̅ where   ̅represents each of the 

eight players in turn. Constraints (6.2) allocate the total cost of coalition k between the 

players participating in k, using the proportional cost allocation method, cf. chapter 3.1. 

These constraints allocate the costs of all possible coalitions, not only the coalition 

actually formed. The idea behind this operation is to get a base-allocation,  ̂   , where all 

players have equal relative savings.  

 

Constraints (6.3) correspond to the efficiency condition for the alternative cost,  ̂   , 

which assures that the sum of the costs allocated to the players in each coalition k equals 

the total cost of coalition k. Constraints (6.4) are rationality conditions and provide strong 

stability for the players who join the coalition player   ̅ initiates. These constraints assure 

that the players in the formed coalition are allocated cost,      , less than, or equal to, their 

lowest alternative cost,  ̂   . The binary decision variable,     takes value one if player j 

joins the formed coalition, and zero otherwise. T is a large number (in this case 50000) 

which ensures that the cost allocated,        is less than the alternative cost only for the 

players who joins the coalition. The parameter    ̅  is one for all coalitions b where the 

initiating player participates. By including the term    ̅   , the rationality conditions 

account only for the alternative coalitions that do not include the initiating player. This 

method opens up for a non-proportional cost allocation in the formed coalition, where the 

most efficient players get rewarded by attaining a relatively lower cost.  

 

Constraints (6.5) and (6.6) are logical relationships that define    to be one if and only if 

player j joins the coalition initiated by player  .̅ Constraints (6.7) are rationality conditions 

assuring weak stability for the formed coalition. These constraints state that the 

participants in the formed coalition cannot attain a lower cost by forming a smaller 

coalition. Constraints (6.8) correspond to the efficiency condition for the variable      

which assures that the sum of the cost allocated between the players in the formed 

coalition equals the total cost of that coalition . Constraints (6.9) are logical constraints 

making sure that each player is assigned to one and only one coalition. Constraint (6.10) 

states the maximum number, m, of participants allowed in each coalition. 
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The total cost minimization-problem in the previous chapter provides one unique solution 

for each cardinality m. It is more problematic to find optimal coalition structures when the 

objective is to minimize individual costs. In a game where a single player motivates the 

formation of a coalition, the final structure will depend on who this player is. In other 

words, the coalition structures will change according to the cost-minimizing player. This 

is evident when the maximum cardinality of participants in a coalition is small. For 

instance, when m=2 player C1 prefers to collaborate with player C4, while C4 prefers to 

collaborate with C8 and so on. Different preferences make it challenging to determine a 

final coalition structure when minimizing the individual costs. The questions of which 

coalitions are likely to form and which player’s preferences should be prioritized need to 

be addressed.  

We investigate two different approaches in order to derive final coalition structures. The first 

approach is based on the assumption that when all players in a potential coalition have this 

particular coalition as their cost-minimizing alternative, the coalition will form. We refer to 

this occurrence as the players having mutual preferences. The second approach is based on 

the assumption that some players will possess more power than others, thus will be in a 

position to compel their own preferences. In both approaches we utilize Model 2 to find 

optimal coalition structures and allocate the costs among the players.  

 

6.2  Coalition Structures based on Mutual Preferences 

As mentioned above, it is difficult to predict the coalition structures when the players have 

different preferences in which coalitions they want to realize. However, there are some cases 

where all participants have the same coalition as their best option, i.e. the players have 

mutual preferences. In this chapter we assume that a coalition will form if and only if all 

participants have mutual preferences. This approach is referred to as Method 2.1. We 

implement Model 2 in AMPL, and minimize the cost for each player in turn to find their 

cost-minimizing alternative under each upper bound m. 
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C3      

C7                     

Table 6.2.1. Coalitions preferred in each player’s minimization problem 

m                                                                 

2 11 16 25 30 18 13 25 8 

3 46 60 25 75 59 60 25 82 

4 95 135 135 75 132 135 135 8 

5 170 204 204 201 204 204 204 8 

6 222 240 240 240 240 240 240 8 

7 247 254 254 254 254 254 254 254 

8 255 254 254 254 254 254 254 254 

 

Table 6.2.1 shows each player’s preferred coalition when minimizing its own costs. In 

coalition 25, 135, 204, 240 and 254, all participants have mutual preferences; hence these 

coalitions are formed. In further analysis, we assume that the collaborative game appears 

sequentially. Players with mutual preferences form coalitions and thus get removed from the 

continuing game. As more players are removed, fewer alternatives remain for the players 

still available. Consequently, the preferences of the remaining players change and new 

coalitions form. This procedure continues until the final coalition structure is settled. Figure 

6.2.1 illustrates the coalition structures based on mutual preferences.  

 

Figure 6.2.1. Coalition structures based on mutual preferences 
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individual cost, each player will prefer coalitions that are optimal for them, not necessarily 

beneficial to the whole game. However, there are three coalitions that form in both 

approaches; coalition {C3, C7} for m=2 and coalition {C2, C3, C5, C6, C7} and {C1, C4, 

C8} for m=5.  

The preferences of each player are based on the individual cost minimizing problem, i.e. 

each player requires the whole gain after satisfying rationality constraints. Naturally, all 

players cannot attain the whole surplus at the same time, thus we must find a method for 

allocating the benefit of collaborations. In this chapter we distribute the cost savings attained 

from collaboration as equal as possible within the coalitions. In order to find a stable 

solution where the differences in relative savings are minimized, we implement the EPM 

model formulated in chapter 5.2. Table 6.2.2 shows the allocated costs to each player within 

each coalition found by considering mutual preferences.  

 

Table 6.2.2. Cost allocation in coalitions based on mutual preferences 

m C1 C2 C3 C4 C5 C6 C7 C8 TOTAL 

1 3780 14860 4740 2070 10340 4960 1880 330 42960 

2 3728 14275 4396 2042 10330 4765 1744 330 41610 

3 3719 14007 4396 2037 9747 4675 1744 325 40650 

4 3718 13657 4356 2036 10171 4559 1728 325 40550 

5 3719 13582 4333 2037 9452 4534 1718 325 39700 

6 3771 13551 4323 1888 9430 4523 1715 329 39530 

7 3780 13551 4323 1888 9430 4523 1714 301 39510 

8 3780 13551 4323 1888 9430 4523 1714 301 39510 

 

The costs for m=1 represent the stand-alone cost of each player. For m ≥ 2 the allocated cost 

to each player is a result of which coalition the player participates in. EPM aims to allocate 

the costs such that all participants within a coalition attain equal relative saving, which is 

evident by studying table 6.2.3. 
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Table 6.2.3. Relative savings in coalitions based on mutual preferences 

m C1 C2 C3 C4 C5 C6 C7 C8 

2 1.37 % 3.94 % 7.25 % 1.37 % 0.09 % 3.94 % 7.25 % 0.09 % 

3 1.62 % 5.74 % 7.25 % 1.62 % 5.74 % 5.74 % 7.25 % 1.62 % 

4 1.63 % 8.09 % 8.09 % 1.63 % 1.63 % 8.09 % 8.09 % 1.63 % 

5 1.62 % 8.59 % 8.59 % 1.62 % 8.59 % 8.59 % 8.59 % 1.62 % 

6 0.24 % 8.80 % 8.80 % 8.80 % 8.80 % 8.80 % 8.80 % 0.24 % 

7 0.00 % 8.81 % 8.81 % 8.81 % 8.81 % 8.81 % 8.81 % 8.81 % 

8 0.00 % 8.81 % 8.81 % 8.81 % 8.81 % 8.81 % 8.81 % 8.81 % 

 

Table 6.2.3 shows the relative savings obtained by each player using EPM. The cost saving 

in each coalition is sufficiently large to satisfy all rationality constraints with additional 

surplus, i.e. none of the rationality constraints are binding. All players within each coalition 

therefore attain equal relative savings.  

 

6.3 Coalition Structures based on Power Delegation 

As previously stated, some players are more crucial than others in terms of contribution to 

the coalition. Thus, it is likely to assume that some players will possess more power than 

others. In this section we assume that the most powerful player will be in the position to 

minimize cost, and thereby initiate coalitions based on own preferences. This approach is 

referred to as Method 2.2. We define power as a weighted average of constructive and 

blocking power under each upper bound, m. Table 6.3.1 shows the priority of cost-

minimizing players for each m.   

 

Table 6.3.1. The priority of cost-minimizing players for each m 

m First Second Third Forth Fifth Sixth Seventh Eight 

2 C2 C3 C7 C6 C4 C5 C1 C8 

3 C2 C3 C7 C6 C4 C5 C1 C8 

4 C2 C3 C7 C6 C4 C8 C1 C5 

5 C2 C3 C7 C6 C4 C8 C1 C5 

6 C3 C2 C7 C6 C4 C8 C1 C5 

7 C3 C7 C8 C2 C6 C4 C1 C5 

8 C3 C2 C7 C6 C4 C8 C1 C5 
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We implement Model 2 in AMPL in order to find a unique coalition structure under each 

upper bound m. The process of minimizing costs of the most powerful players is explained 

in the following. 

According to the priority derived in table 6.3.1, player C2 is the first player to minimize 

costs for all m ≤ 5. After satisfying the rationality constraints to the players conformed in the 

coalition, the cost-minimizing player attains the remaining surplus from the collaboration. 

For m=2, player C2 minimizes cost by collaborating with player C3. Assuming that coalition 

{C2, C3} is stable; the two players are removed from the game. Following a sequential 

approach, player C7 has the highest measure of power among the remaining players, and is 

therefore the next player to minimize cost. However, due to the requirement of satisfying 

rationality constraints, player C7 does not benefit from initiating a coalition in this stage of 

the game. Consequently, player C6 gets in the position to minimize cost, and initiates a 

coalition with player C1. With coalition {C1, C6} removed from the game, player C7 affords 

to satisfy the rationality constraints of player C5. This procedure continues until all players 

are settled in coalitions. This method of determining the final coalition structure applies for 

all upper bounds, m. For m ≥ 6, player C3 possesses most power, and is therefore the first 

cost-minimizing player. The final coalition structure for each upper bound m is illustrated in 

figure 6.3.1. 

 

Figure 6.3.1. Coalition structures based on power delegation  
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The player written in bold is the cost-minimizing player in each coalition, i.e. the player that 

possesses the most power in each step. The coalition structures found in this approach are 

based on the preferences of the most powerful players, which neither considers the total 

game nor conform coalitions based on mutual preferences. However, the coalition structures 

derived by delegating power match the solutions found in the two other approaches 

remarkably well. For m=2, coalition {C1, C6} and {C4, C8} coincide with the optimal 

coalitions found by minimizing total cost. For m=3 and m=4, the whole coalition structures 

found by delegating power coincide with the total cost minimizing problem. For m=5, all 

three approaches provide the same coalition structure. For m ≥ 6, the coalition structures 

based on power delegation differ from the total cost minimizing structure, but coincide with 

the coalition structure based on mutual preferences.  

The individual cost-minimizing problem does not emphasize the aspect of fairness and all 

players are assumed to act in their own self-interest. We do not use any particular method to 

allocate the cost attained in the coalitions found by delegating power. As the most powerful 

player initiates the coalitions, this player is assumed to receive the whole surplus after 

satisfying the rationality constraints to the conformed players. Table 6.3.1 shows the cost 

assigned to each player within the coalition structures found by delegating power.  

 

Table 6.3.1. Cost allocation in coalitions based on power delegation 

m C1 C2 C3 C4 C5 C6 C7 C8 TOTAL 

1 3780 14860 4740 2070 10340 4960 1880 330 42960 

2 3728 14214 4396 2050 10265 4782 1825 330 41590 

3 3719 13600 4396 2037 9913 4705 1880 330 40580 

4 3719 13216 4396 2037 9873 4684 1870 325 40120 

5 3771 12980 4396 1980 9819 4681 1744 329 39700 

6 3771 13828 3688 1926 9622 4616 1750 329 39530 

7 3780 13828 3681 1926 9622 4616 1750 307 39510 

8 3780 13828 3681 1926 9622 4616 1750 307 39510 

 

The costs assigned to each player depend on the rationality constraints as well as the 

distribution of power among the participants. Table 6.3.2 shows the relative saving each 

player obtains in the different coalitions.        
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Table 6.3.2. Relative savings in coalitions based on power delegation 

m C1 C2 C3 C4 C5 C6 C7 C8 

2 1.38 % 4.35 % 7.26 % 0.97 % 0.73 % 3.59 % 2.93 % 0.00 % 

3 1.61 % 8.47 % 7.26 % 1.59 % 4.13 % 5.14 % 0.00 % 0.00 % 

4 1.61 % 11.06 % 7.26 % 1.59 % 4.52 % 5.56 % 0.53 % 1.52 % 

5 0.24 % 12.65 % 7.26 % 4.35 % 5.04 % 5.63 % 7.23 % 0.30 % 

6 0.24 % 6.94 % 22.19 % 6.96 % 6.94 % 6.94 % 6.91 % 0.30 % 

7 0.00 % 6.94 % 22.34 % 6.96 % 6.94 % 6.94 % 6.91 % 6.97 % 

8 0.00 % 6.94 % 22.34 % 6.96 % 6.94 % 6.94 % 6.91 % 6.97 % 

 

For m ≥ 4, we clearly see the advantage of being the cost-minimizing player. The achieved 

cost savings are in general higher for larger coalitions, but this also involves that the 

rationality constraints are more costly to satisfy. In the forestry case, the first effect 

outweighs the second, and the cost-minimizing player obtains high relative savings. 

However, the exceptionally high relative savings of player C3 when he minimizes own cost 

for m ≥ 6 is explained by his relatively low stand-alone cost. The similarity in relative 

savings obtained by the included participants is a consequence of the rationality constraints 

being based on proportionally allocated costs.   

 

6.4  Discussion of Model 2 

In order to provide stable allocations, Model 2 satisfies strong rationality constraints based 

on  each player’s alternative cost. As stated, the model allocates costs in alternative 

coalitions by using the proportional cost allocation method. Nevertheless, allocating the 

alternative cost equally between the players carries a potential weakness of the model. The 

method does not provide a stable solution, and it can be discussed whether these costs reflect 

the actual alternatives a player has or not.  

 

One way to avoid this problem is to formulate strong stability condition based on the total 

cost of the alternative coalitions instead of the allocated cost to each player.  

∑ 

   

(    ∑     

   

)             (    )                                              
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By replacing the strong rationality constraints (6.4) by constraints (6.12), in addition to some 

other minor modifications, we can circumvent to allocate the cost in alternative coalitions. 

Constraints (6.12) provide strong stability for the players who join the coalition of player  ,̅ 

by stating that the sum of allocated costs to all participants of coalition b is less than, or 

equal to, the total cost of coalition b. This method is referred to as M2 and is proposed by 

Guajardo and Rönnqvist (2013).  

The strong stability constraints based on the total cost of each coalition are stricter than the 

strong stability constraints based on the allocated alternative cost to each player. In Model 2 

the total cost of each coalition is allocated by using the proportional cost allocation method, 

and the model satisfies rationality constraints based on equal relative savings among the 

participants in all alternative coalitions. In M2 the cost of the alternative coalitions are not 

allocated beforehand. In order to ensure stability, the initiating player must satisfy the 

strictest possible rationality constraints for the players included in his coalition. This means 

that he must satisfy the rationality constraints assuming that these players will attain the 

whole excess of achieved cost savings in the alternative coalitions. As an example we 

consider the case where m=6 and player C1 minimizes his cost. M2 finds it optimal for C1 to 

collaborate with player C2, C3, C5, C6 and C7, while player C4 and C8 form their own 

coalition. Coalition {C4, C8} achieves a total cost of 2380.  In M2, player C1 must ensure 

that his collaborators are allocated less than they attain by collaborating with C4 and/or C8 

instead, assuming that C4 and C8 attain the same costs as before. For instance, C2 must be 

allocated less than the total cost of coalition {C2, C4, C8} minus the cost of {C4, C8}. This 

gives the equation:                        which gives                 

       The same logic applies for all coalitions and all players. By using the dual function 

in AMPL, coalition k=240 where all players but C1 and C8 collaborate, is the only coalition 

with positive dual value. This gives the equation                              

   , which gives                                       Consequently, 

the total cost allocated to player C2, C3, C5, C6 and C7 must be less than, or equal to, 

33380. The total cost of the coalition {C1, C2, C3, C5, C6, C7} is 37140, hence player C1 is 

left with a cost of 3760. In all alternative coalitions player C4 and C8 attain total cost of 

2380. This means that the collaborators of C1 retain the whole gain in alternative coalitions. 

Additivity implies that any coalition containing six players will be more efficient than any 

coalition containing only two players. It can therefore be argued as an unrealistic assumption 
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that C4 is allocated the same cost as before. This method gives strict conditions for the 

player who is minimizing its cost, in this case player C1.  

As seen from the example, the strict rationality conditions in M2 may gain the included 

players in a coalition, but is a disadvantage for the cost-minimizing player. The price of 

assuring stability may give incentives for players to speculate and wait for another player to 

make the first move. However, there is no guarantee that the first mover will act in their 

favor and they might not get included in the formed coalition. In some cases it is too 

expensive for the cost-minimizing player to satisfy the rationality conditions of the other 

players; hence no coalitions are formed. This results in less collaboration and loss of cost 

savings – which is negative for all parties.  

We avoid this issue in Model 2 by ensuring equal relative savings in all alternative 

coalitions. The cost-minimizing player must satisfy rationality conditions, assuming that the 

cost in other coalitions is divided among the players proportionally to their stand-alone costs. 

In Model 2, player C4 would attain a lower cost than 2050 in coalition k=240, which in turn 

gives player C1 the possibility to allocate a higher cost than 33380 to the other players. 

Hence, the rationality conditions are easier to satisfy for the cost-minimizing player. This is 

apparent when we compare the results of Model 2 and M2. For m=6, Model 2 gives 

coalitions containing six players when player C1, C2, C3, C4, C5, C6 and C7 minimize their 

cost. Only player C8 cannot afford to initiate collaboration. In M2, player C1 is the only 

player who can afford to initiate a coalition containing six players. Player C4 affords to 

initiate collaboration with player C8, i.e. a coalition containing two players.  The other 

players cannot afford to initiate coalitions when they minimize their cost, thus they are 

allocated their stand-alone cost. This is obviously not an optimal coalition structure, and all 

players would benefit if the rationality conditions were less strict and collaborations would 

form.  

As explained above it may be beneficial to allocate the costs of alternative collaborations 

before satisfying rationality conditions. Finding realistic base-allocations is however 

challenging and the issue could be further explored. Using the proportional cost allocation 

method may result in unfair allocations as the costs are divided without considering the 

player’s contribution. However, the proportional cost allocation is often preferred by 

decision-makers because of its easiness to understand and compute (Frisk et al., 2010).  
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Method 2.1 assumes that in situations where all players have mutual preferences in forming a 

coalition – the coalition is formed. This is a reasonable assumption, as the players act 

according to their own self-interest. However, the method of determining the preferences of 

each player carries a potential weakness. The optimal collaboration for a player is found by 

minimizing the player’s cost. This involves that after the rationality constraints of the 

collaborators are satisfied, the cost-minimizing player retains the excess of achieved cost 

savings. This accounts for all players in the formed coalition; hence all participants expect to 

retain the excess of the achieved cost savings. Naturally, the same amount of excess cannot 

be distributed more than once and the players must find a way to allocate the costs. It is, 

however, no guarantee that the preferences of the players remain the same when the 

achieved cost savings are distributed among all participants. The problem of finding each 

player’s preferences based on the final cost allocation remains open for further research.  

Method 2.2 assumes that a single player is in the position to compel his own preferences and 

thereby initiate his cost-minimizing coalition. As the potential benefits of being the cost-

minimizing player are substantial, the method requires an accurate measure for determining 

which player should be prioritized. In some instances it is expected that the biggest player 

initiate collaborations. Other relevant aspects may be strategic positions in the market, 

collaborative alliances in the history and financial strengths. We assume that the most 

powerful player is prioritized, and base our calculations on the measure of constructive and 

blocking power. These measures are averages of all coalitions each player participates in, 

and may therefore give imprecise results. Pushed to extremes, this may result in incorrect 

ranking of players.   

Even if the ranking of players is reasonable, the concept of delegating all power to a single 

player in turn carries another potential weakness. As the most powerful player initiates the 

coalition providing highest cost savings, the coalition formed will likely include other 

efficient players, i.e. players with relatively high power. The conformed players accept to 

collaborate as long as their rationality constraints are satisfied. However, these players will 

not get in the position to initiate their best alternative, even though they might be the second 

or third most powerful player. Consequently, less powerful players will have the advantage 

of being the next player to minimize cost. 
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7.  Total cost minimization vs. individual cost 

minimization 

In this paper we have studied the potential for collaboration among companies. In chapter 5 

we approach the subject by minimizing total cost. Here we find a coalition structure for each 

cardinality m that generates lowest obtainable cost within the total game. This solution is 

derived from a social planner point of view and we find the social welfare maximizing 

solution. However, as the players are competitors, it is expected that each company will be 

concerned about minimizing its own cost, rather than the total cost of the game. Choosing 

the cost minimizing coalition from an egocentric perspective, not considering the 

inconvenience this may lead to for other players, could result in both a lower individual cost 

and a competitive advantage. However, there are issues concerning the availability of the 

information needed in order to initiate individual cost minimizing coalitions (Guajardo & 

Rönnqvist, 2014). Unwillingness to share sensitive information that other players might 

exploit, can complicate the forming of coalitions. One possible solution is to engage an 

impartial third party to gather the necessary information and come up with suggestions on 

how to implement the collaborations among the players. An impartial third party implies 

that the objective will be to minimizing the total costs, as we did in chapter 5. 

Model 1, Method 2.1 and Method 2.2 represent three different approaches for finding optimal 

coalition structures. The total costs depend solely on the coalition structures, and will not be 

influenced by the cost allocations. The total costs for each cardinality m, obtained by the 

different approaches, are shown in figure 6.5.1.  
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Figure 6.4.1. Comparing total cost for each cardinality m 

 

Deviation from the total cost-minimizing solution may be interpreted as the social welfare 
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C7} is optimal both from the social planner point of view and from the individual player’s 
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Roughly speaking, the three approaches provide nearly the same total costs. The highest 

welfare loss, occurred when considering mutual preferences for m=4, represents an increase 

in total cost of 1.07 % compared to the optimal solution. This may be regarded as a trivial 

welfare loss and may further imply that the solution obtained when each player acts 

egocentric is constructive to the society as a whole. On average considering mutual 

preferences gives an increase in total cost of 0.49 %, while the approach of delegating power 

gives an increase in total cost of 0.30 %.  
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8. Other Applications 

Cost allocation problems arise in many real life situations where benefits are achieved from 

collaboration. Examples include group purchasing, capacity and inventory information 

sharing and resource pooling. Specific industries that emphasize the benefits of collaboration 

are grocery distribution, shipping companies concerned with effective route scheduling, and 

railway transportation (Lozano et al, 2013). Besides the broad use in collaborative logistics 

and supply chain management, there are high potential for collaborative activities within the 

health care industry as well as in various service sectors. Health-care institutions identify not 

only financial benefits through collaboration, but argue for better educational systems, 

synergy effects through joint research activities and enhanced quality and performance 

(Lasker, 1997). Within the service sector, pooling of employers and resource networks might 

lead to higher productivity and cost-effectiveness. As an example of cases where the cost 

allocation methods are applicable, we implement the models in a case concerning inventory 

pool of spare parts introduced by Guajardo and Rönnqvist (2014). 

 

8.1 Inventory Pool of Spare Parts 

Holding inventory of spare parts is essential to cope with failures in production as well as 

managing demand fluctuations. When different inventory plants use the same equipment, 

collaboration through pooling of spare parts may lead to significant cost savings. We 

consider an inventory pool of spare parts where the members require different target service 

levels. The members will in this case represent different demand classes, which complicate 

the cost allocation between the members.  

We consider a case containing four players; A, B, C and D. The average demand, target 

service level and stand-alone cost of each player are displayed in the table below.  

Table 8.1.1. Data for the inventory case 

N Average Demand Service Level Cost 

A 0.10 99 % 2020 

B 0.20 95 % 2041 

C 0.30 90 % 2064 

D 0.40 85 % 2089 
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Dependent on each member’s target service level, optimal base-stock levels S are computed, 

cf. appendix B. If a player acts independently, it will set its base stock level S and run its 

inventory separately from the other players. By alternatively collaborating, one single 

inventory will serve their total demand. In the context of collaboration it is beneficial for the 

players to have as similar target service levels as possible. The inventory carrying cost 

increases in base-stock level; hence it is favorable for the coalitions to have low base stock 

levels. However, the base stock level must be sufficiently high to satisfy each player’s target 

service level. The target service level of player A is 99 %, which means that in all coalitions 

containing player A, the optimal service level must be at least 99 %. Player D has a target 

service level of 85 %, hence he will have excessive service level in collaborations with 

player A, carrying an unnecessary high cost. For more background on inventory cost and 

service level we refer to Guajardo and Rönnqvist (2014).  

 

8.2 Cost Allocation in the Grand Coalition 

We assume the grand coalition {A, B, C, D} is formed, and address the question of how the 

expected inventory cost of the pooling system should be allocated among the players. By 

constructing a dataset containing the expected cost of all possible coalitions, the cost 

allocation models formulated in chapter 5 are directly applicable.  

We implement EPM, the nucleolus, the modiclus, the simplified modiclus and the 

proportional nucleolus to allocate the expected cost of the grand coalition, and obtain the 

following results:  

 

Table 8.2.1. Cost allocation grand coalition 

Method A B C D TOTAL 

Stand-alone cost 2020 2041 2064 2089 8214 

EPM 1279 1292 1307 1323 5201 

Nucleolus 1269 1290 1311 1332 5201 

Modiclus 1516 1041 1062 1583 5201 

Simplified Modiclus 1350 1207 1229 1416 5201 

Proportional Nucleolus 1271 1290 1310 1330 5201 
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Table 8.2.1 shows the stand-alone costs and the cost obtained by each player using five 

different allocation methods. The total cost allocated to the players is reduced from 8214 to 

5201 when they collaborate. This gives a total cost saving of 36.7 % and demonstrates high 

efficiency improvements from collaboration. There are minor differences between the 

allocated costs using EPM and the nucleolus. This implies that the constructive powers of 

the coalitions are fairly similar. The stand-alone costs of the players are approximately the 

same; hence the obtained results using the nucleolus roughly coincide with the obtained 

results using the proportional nucleolus. The question of whether we should consider savings 

in absolute terms or relative terms is therefore not an issue in this case. We observe bigger 

variation in costs allocated when using the modiclus and the simplified modiclus, and we 

analyze the results in terms of the relative savings obtained.  

 

Table 8.2.2. Relative savings grand coalition 

Method A B C D 

EPM 36.7 % 36.7 % 36.7 % 36.7 % 

The Nucleolus 37.2 % 36.8 % 36.5 % 36.2 % 

The Modiclus 25.0 % 49.0 % 48.5 % 24.2 % 

The Simplified Modiclus 33.2 % 40.9 % 40.5 % 32.2 % 

The Proportional Nucleolus 37.1 % 36.8 % 36.5 % 36.3 % 

 

Table 8.2.2 shows the relative savings each player obtains by using the different allocation 

methods. EPM provides equal relative saving to all players. When considering the player’s 

constructive power player A obtains a slightly higher relative saving, which implies that A 

has relatively more efficient sub coalitions. Modiclus allocates higher savings to player B 

and C and lower savings to A and D. This is due to the higher blocking power of player B 

and C, cf. table 8.2.3. The allocation using the simplified modiclus appears as a weighted 

average of the nucleolus and the modiclus, weighted by approximately 0.67 and 0.33 

respectively.  

 

Table 8.2.3. Average constructive and blocking power of each player 

 

 

  A B C D 

Average CP 26.30 % 29.70 % 29.67 % 26.17 % 

Average BP 33.81 % 35.90 % 35.74 % 33.35 % 
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Table 8.2.3 shows the average constructive power and the average blocking power of each 

player. Player B and C have on average higher constructive power than player A and D. This 

is not compatible with the results obtained by the nucleolus. This is due to the earlier 

mentioned weakness of using average measures. Most of the coalitions have constructive 

power ranging from 24 % to 33 %, cf. appendix B. Due to the large differences in average 

demand and target service level of player A and D, coalition {A, D} only achieve a saving of 

0.22 %. This inefficient collaboration lowers the average constructive power of player A and 

D significantly. However, the constraints associated with low outliers will not be binding in 

the nucleolus model; hence they will not affect the cost allocation. When calculating the 

constructive power without coalition {A, D}, we find that A has an average of 30.64 %, 

which is more compatible with the results provided by nucleolus.  

The low saving of coalition {A, D} results in extremely high blocking power for coalition 

{B, C}. This is reflected in the average blocking power, and is even more evident when 

comparing the cost allocation using nucleolus, modiclus and simplified modiclus. As with 

constructive power, only the coalitions with the highest blocking power will be associated 

with binding constraints. The effect of the particularly high blocking power of coalition 

{B, C} is therefore more evident in the cost allocation, than in the averages of blocking 

power.   

Measuring the constructive and blocking power for each player as the average of 

constructive and blocking power of all coalitions they participate in, results in an 

underestimation of high outliers and overestimation of low outliers.  

 

8.3 Coalition Structures  

To address the question of different coalition structures we include the upper bound, m, of 

the number of players in each coalition. We run the three models for predicting coalition 

structure for m=2 and m=3. Model 1 finds the optimal coalition structure from a social 

planner point of view, i.e. the total cost minimizing solution, cf. chapter 5.1. Method 2.1 

predicts the coalition structures based on mutual preferences when each player minimizes his 

cost, cf. chapter 6.2. Method 2.2 provide the optimal solution when the most powerful player 

minimizes his cost, cf. chapter 6.3. 
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Figure 8.3.1. Coalition structures in the  inventory case 

   Model 1.  Method 2.1.  Method 2.2.  

 

m=2       

 

m=3  

 

Figure 8.3.1 shows the optimal coalition structures obtained from the models presented in 

chapter 5 and 6. The total cost obtained from Model 1 is 6205 for m=2 and 6203 for m=3. 

The additional saving of increasing m from 2 to 3 is in other words marginal. The two 

methods in the individual cost minimizing problem both provide the same coalition 

structure. Surprisingly, in this case the total cost increase from 6207 to 6209 when m 

increases from 2 to 3. In the inventory case the significant cost savings occur when m goes 

from 1 to 2 and from 3 to 4. This is due to generally high savings by collaboration and when 

m=3 one player is forced to operate alone.  

Allocating the costs in the coalitions provided by Model 1 gives the same pattern as the 

grand coalition allocation. EPM, the nucleolus and the proportional nucleolus will give 

similar relative savings to all players, while the modiclus and the simplified modiclus 

allocate less cost to player B and C. In the coalitions based on mutual preferences the 

obtained relative savings using EPM will be fairly equal for all players within each coalition.  

In the coalitions based on power, player B has an advantage from being the cost minimizing 

player. However, all coalitions are nearly equally efficient and after satisfying the rationality 

constraints of the included players, there is not much additional surplus for player B to 

obtain. Hence, the relative saving of each player will be similar within each coalition in this 

case as well. For m=3 player A and D are the losing parties as they are forced to operate 

alone.  
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Conclusion 

By using principles in cooperative game theory, we have addressed some essential questions 

relevant for collaborative logistics. We have investigated how companies should group in 

order to achieve the highest benefits of collaboration, and how the joint costs should be 

allocated among the collaborators. We aimed to find optimal coalition structures by 

minimizing total cost in part one and minimizing the cost of individual companies in part 

two. Assuming that optimal coalition structures are identified, the next question concerned 

how the companies in a coalition should allocate the cost savings. With the intent of finding 

a fair cost allocation to the total cost minimizing problem, we compared the results of five 

well-known models for allocating the joint cost of a coalition. Interestingly, we found 

significant disparities between the allocations provided by each model.  

Comparing the results obtained from the different allocation methods raised a fundamental 

question regarding fairness. Should a fair allocation be based on savings in absolute terms or 

savings in relative terms? The relevance of adjusting for volume is directly reflected in the 

differences between the results when using the nucleolus and the proportional nucleolus. 

Larger companies benefit from considering savings in relative terms, while smaller 

companies are better off when considering savings in absolute terms.  

In order to investigate and analyze the intuition behind the models, we constructed measures 

of each company’s constructive and blocking power in the formed coalitions. When some 

companies contribute with more cost savings than others, it can be argued that a fair 

allocation should allocate less cost to these companies. The nucleolus, the proportional 

nucleolus and, to some degree, EPM base the allocation on constructive power, while the 

modiclus and the simplified modiclus consider both constructive power and blocking power 

for allocating the joint costs. Companies with particularly efficient sub-coalitions benefit the 

most by using the nucleolus and the proportional nucleolus. Considering blocking power 

punishes companies with particularly inefficient sub-coalitions, hence the modiclus and the 

simplified modiclus work in the disfavor of these companies.  

In the total cost minimizing problem, we found a unique coalition structure for each 

cardinality m. It is, however, less straightforward to derive the final coalition structure when 

the objective is to minimize individual cost. We investigated two different approaches for 

determining the final coalition structure, for which we allocated the joint cost. The coalition 
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structures obtained by minimizing individual costs provide approximately the same total cost 

as the optimal solution in the total cost minimizing problem. Even though companies aim to 

minimize individual costs, the solutions derived are not far from optimal to the society as a 

whole.  

Although the approach by minimizing individual cost may be reasonable, the unwillingness 

to share sensitive information may hinder the parties from establishing collaborations. An 

interesting question for further research may be to investigate the incentives to reveal 

information on costs, such that optimal solutions could be derived from the perspective of 

individual companies.  
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Appendix A. Coalitions in forestry case 
k        k       k     

1 { C1 } 43 { C1 , C3 , C4 } 85 { C4 , C5 , C8 } 

2 { C2 } 44 { C1 , C3 , C5 } 86 { C4 , C6 , C7 } 

3 { C3 } 45 { C1 , C3 , C6 } 87 { C4 , C6 , C8 } 

4 { C4 } 46 { C1 , C3 , C7 } 88 { C4 , C7 , C8 } 

5 { C5 } 47 { C1 , C3 , C8 } 89 { C5 , C6 , C7 } 

6 { C6 } 48 { C1 , C4 , C5 } 90 { C5 , C6 , C8 } 

7 { C7 } 49 { C1 , C4 , C6 } 91 { C5 , C7 , C8 } 

8 { C8 } 50 { C1 , C4 , C7 } 92 { C6 , C7 , C8 } 

9 { C1 , C2 } 51 { C1 , C4 , C8 } 93 { C1 , C2 , C3 , C4 } 

10 { C1 , C3 } 52 { C1 , C5 , C6 } 94 { C1 , C2 , C3 , C5 } 

11 { C1 , C4 } 53 { C1 , C5 , C7 } 95 { C1 , C2 , C3 , C6 } 

12 { C1 , C5 } 54 { C1 , C5 , C8 } 96 { C1 , C2 , C3 , C7 } 

13 { C1 , C6 } 55 { C1 , C6 , C7 } 97 { C1 , C2 , C3 , C8 } 

14 { C1 , C7 } 56 { C1 , C6 , C8 } 98 { C1 , C2 , C4 , C5 } 

15 { C1 , C8 } 57 { C1 , C7 , C8 } 99 { C1 , C2 , C4 , C6 } 

16 { C2 , C3 } 58 { C2 , C3 , C4 } 100 { C1 , C2 , C4 , C7 } 

17 { C2 , C4 } 59 { C2 , C3 , C5 } 101 { C1 , C2 , C4 , C8 } 

18 { C2 , C5 } 60 { C2 , C3 , C6 } 102 { C1 , C2 , C5 , C6 } 

19 { C2 , C6 } 61 { C2 , C3 , C7 } 103 { C1 , C2 , C5 , C7 } 

20 { C2 , C7 } 62 { C2 , C3 , C8 } 104 { C1 , C2 , C5 , C8 } 

21 { C2 , C8 } 63 { C2 , C4 , C5 } 105 { C1 , C2 , C6 , C7 } 

22 { C3 , C4 } 64 { C2 , C4 , C6 } 106 { C1 , C2 , C6 , C8 } 

23 { C3 , C5 } 65 { C2 , C4 , C7 } 107 { C1 , C2 , C7 , C8 } 

24 { C3 , C6 } 66 { C2 , C4 , C8 } 108 { C1 , C3 , C4 , C5 } 

25 { C3 , C7 } 67 { C2 , C5 , C6 } 109 { C1 , C3 , C4 , C6 } 

26 { C3 , C8 } 68 { C2 , C5 , C7 } 110 { C1 , C3 , C4 , C7 } 

27 { C4 , C5 } 69 { C2 , C5 , C8 } 111 { C1 , C3 , C4 , C8 } 

28 { C4 , C6 } 70 { C2 , C6 , C7 } 112 { C1 , C3 , C5 , C6 } 

29 { C4 , C7 } 71 { C2 , C6 , C8 } 113 { C1 , C3 , C5 , C7 } 

30 { C4 , C8 } 72 { C2 , C7 , C8 } 114 { C1 , C3 , C5 , C8 } 

31 { C5 , C6 } 73 { C3 , C4 , C5 } 115 { C1 , C3 , C6 , C7 } 

32 { C5 , C7 } 74 { C3 , C4 , C6 } 116 { C1 , C3 , C6 , C8 } 

33 { C5 , C8 } 75 { C3 , C4 , C7 } 117 { C1 , C3 , C7 , C8 } 

34 { C6 , C7 } 76 { C3 , C4 , C8 } 118 { C1 , C4 , C5 , C6 } 

35 { C6 , C8 } 77 { C3 , C5 , C6 } 119 { C1 , C4 , C5 , C7 } 

36 { C7 , C8 } 78 { C3 , C5 , C7 } 120 { C1 , C4 , C5 , C8 } 

37 { C1 , C2 , C3 } 79 { C3 , C5 , C8 } 121 { C1 , C4 , C6 , C7 } 

38 { C1 , C2 , C4 } 80 { C3 , C6 , C7 } 122 { C1 , C4 , C6 , C8 } 

39 { C1 , C2 , C5 } 81 { C3 , C6 , C8 } 123 { C1 , C4 , C7 , C8 } 

40 { C1 , C2 , C6 } 82 { C3 , C7 , C8 } 124 { C1 , C5 , C6 , C7 } 

41 { C1 , C2 , C7 } 83 { C4 , C5 , C6 } 125 { C1 , C5 , C6 , C8 } 

42 { C1 , C2 , C8 } 84 { C4 , C5 , C7 } 126 { C1 , C5 , C7 , C8 } 



 73 

k       k       k     

127 { C1 , C6 , C7 , C8 } 170 { C1 , C2 , C3 , C6 , C7 } 213 { C3 , C4 , C5 , C6 , C7 } 

128 { C2 , C3 , C4 , C5 } 171 { C1 , C2 , C3 , C6 , C8 } 214 { C3 , C4 , C5 , C6 , C8 } 

129 { C2 , C3 , C4 , C6 } 172 { C1 , C2 , C3 , C7 , C8 } 215 { C3 , C4 , C5 , C7 , C8 } 

130 { C2 , C3 , C4 , C7 } 173 { C1 , C2 , C4 , C5 , C6 } 216 { C3 , C4 , C6 , C7 , C8 } 

131 { C2 , C3 , C4 , C8 } 174 { C1 , C2 , C4 , C5 , C7 } 217 { C3 , C5 , C6 , C7 , C8 } 

132 { C2 , C3 , C5 , C6 } 175 { C1 , C2 , C4 , C5 , C8 } 218 { C4 , C5 , C6 , C7 , C8 } 

133 { C2 , C3 , C5 , C7 } 176 { C1 , C2 , C4 , C6 , C7 } 219 { C1 , C2 , C3 , C4 , C5 , C6 } 

134 { C2 , C3 , C5 , C8 } 177 { C1 , C2 , C4 , C6 , C8 } 220 { C1 , C2 , C3 , C4 , C5 , C7 } 

135 { C2 , C3 , C6 , C7 } 178 { C1 , C2 , C4 , C7 , C8 } 221 { C1 , C2 , C3 , C4 , C5 , C8 } 

136 { C2 , C3 , C6 , C8 } 179 { C1 , C2 , C5 , C6 , C7 } 222 { C1 , C2 , C3 , C4 , C6 , C7 } 

137 { C2 , C3 , C7 , C8 } 180 { C1 , C2 , C5 , C6 , C8 } 223 { C1 , C2 , C3 , C4 , C6 , C8 } 

138 { C2 , C4 , C5 , C6 } 181 { C1 , C2 , C5 , C7 , C8 } 224 { C1 , C2 , C3 , C4 , C7 , C8 } 

139 { C2 , C4 , C5 , C7 } 182 { C1 , C2 , C6 , C7 , C8 } 225 { C1 , C2 , C3 , C5 , C6 , C7 } 

140 { C2 , C4 , C5 , C8 } 183 { C1 , C3 , C4 , C5 , C6 } 226 { C1 , C2 , C3 , C5 , C6 , C8 } 

141 { C2 , C4 , C6 , C7 } 184 { C1 , C3 , C4 , C5 , C7 } 227 { C1 , C2 , C3 , C5 , C7 , C8 } 

142 { C2 , C4 , C6 , C8 } 185 { C1 , C3 , C4 , C5 , C8 } 228 { C1 , C2 , C3 , C6 , C7 , C8 } 

143 { C2 , C4 , C7 , C8 } 186 { C1 , C3 , C4 , C6 , C7 } 229 { C1 , C2 , C4 , C5 , C6 , C7 } 

144 { C2 , C5 , C6 , C7 } 187 { C1 , C3 , C4 , C6 , C8 } 230 { C1 , C2 , C4 , C5 , C6 , C8 } 

145 { C2 , C5 , C6 , C8 } 188 { C1 , C3 , C4 , C7 , C8 } 231 { C1 , C2 , C4 , C5 , C7 , C8 } 

146 { C2 , C5 , C7 , C8 } 189 { C1 , C3 , C5 , C6 , C7 } 232 { C1 , C2 , C4 , C6 , C7 , C8 } 

147 { C2 , C6 , C7 , C8 } 190 { C1 , C3 , C5 , C6 , C8 } 233 { C1 , C2 , C5 , C6 , C7 , C8 } 

148 { C3 , C4 , C5 , C6 } 191 { C1 , C3 , C5 , C7 , C8 } 234 { C1 , C3 , C4 , C5 , C6 , C7 } 

149 { C3 , C4 , C5 , C7 } 192 { C1 , C3 , C6 , C7 , C8 } 235 { C1 , C3 , C4 , C5 , C6 , C8 } 

150 { C3 , C4 , C5 , C8 } 193 { C1 , C4 , C5 , C6 , C7 } 236 { C1 , C3 , C4 , C5 , C7 , C8 } 

151 { C3 , C4 , C6 , C7 } 194 { C1 , C4 , C5 , C6 , C8 } 237 { C1 , C3 , C4 , C6 , C7 , C8 } 

152 { C3 , C4 , C6 , C8 } 195 { C1 , C4 , C5 , C7 , C8 } 238 { C1 , C3 , C5 , C6 , C7 , C8 } 

153 { C3 , C4 , C7 , C8 } 196 { C1 , C4 , C6 , C7 , C8 } 239 { C1 , C4 , C5 , C6 , C7 , C8 } 

154 { C3 , C5 , C6 , C7 } 197 { C1 , C5 , C6 , C7 , C8 } 240 { C2 , C3 , C4 , C5 , C6 , C7 } 

155 { C3 , C5 , C6 , C8 } 198 { C2 , C3 , C4 , C5 , C6 } 241 { C2 , C3 , C4 , C5 , C6 , C8 } 

156 { C3 , C5 , C7 , C8 } 199 { C2 , C3 , C4 , C5 , C7 } 242 { C2 , C3 , C4 , C5 , C7 , C8 } 

157 { C3 , C6 , C7 , C8 } 200 { C2 , C3 , C4 , C5 , C8 } 243 { C2 , C3 , C4 , C6 , C7 , C8 } 

158 { C4 , C5 , C6 , C7 } 201 { C2 , C3 , C4 , C6 , C7 } 244 { C2 , C3 , C5 , C6 , C7 , C8 } 

159 { C4 , C5 , C6 , C8 } 202 { C2 , C3 , C4 , C6 , C8 } 245 { C2 , C4 , C5 , C6 , C7 , C8 } 

160 { C4 , C5 , C7 , C8 } 203 { C2 , C3 , C4 , C7 , C8 } 246 { C3 , C4 , C5 , C6 , C7 , C8 } 

161 { C4 , C6 , C7 , C8 } 204 { C2 , C3 , C5 , C6 , C7 } 247 { C1 , C2 , C3 , C4 , C5 , C6 , C7 } 

162 { C5 , C6 , C7 , C8 } 205 { C2 , C3 , C5 , C6 , C8 } 248 { C1 , C2 , C3 , C4 , C5 , C6 , C8 } 

163 { C1 , C2 , C3 , C4 , C5 } 206 { C2 , C3 , C5 , C7 , C8 } 249 { C1 , C2 , C3 , C4 , C5 , C7 , C8 } 

164 { C1 , C2 , C3 , C4 , C6 } 207 { C2 , C3 , C6 , C7 , C8 } 250 { C1 , C2 , C3 , C4 , C6 , C7 , C8 } 

165 { C1 , C2 , C3 , C4 , C7 } 208 { C2 , C4 , C5 , C6 , C7 } 251 { C1 , C2 , C3 , C5 , C6 , C7 , C8 } 

166 { C1 , C2 , C3 , C4 , C8 } 209 { C2 , C4 , C5 , C6 , C8 } 252 { C1 , C2 , C4 , C5 , C6 , C7 , C8 } 

167 { C1 , C2 , C3 , C5 , C6 } 210 { C2 , C4 , C5 , C7 , C8 } 253 { C1 , C3 , C4 , C5 , C6 , C7 , C8 } 

168 { C1 , C2 , C3 , C5 , C7 } 211 { C2 , C4 , C6 , C7 , C8 } 254 { C2 , C3 , C4 , C5 , C6 , C7 , C8 } 

169 { C1 , C2 , C3 , C5 , C8 } 212 { C2 , C5 , C6 , C7 , C8 } 255 { C1 , C2 , C3 , C4 , C5 , C6 , C7 , C8 } 
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Appendix B. Coalitions in inventory case 

K N 

Base stock 

level 

Service level at 

the optimal Estimated Cost CP BP 

1 {A} 2 99.5 % 2020 0.00 % 49.60 % 

2 {B} 2 98.2 % 2041 0.00 % 49.09 % 

3 {C} 2 96.3 % 2064 0.00 % 48.64 % 

4 {D} 2 93.8 % 2089 0.00 % 48.25 % 

5 {A,B} 3 99.6 % 3060 24.65 % 32.88 % 

6 {A,C} 3 99.2 % 3081 24.56 % 32.59 % 

7 {A,D} 4 99.8 % 4100 0.22 % 48.80 % 

8 {B,C} 3 98.6 % 3102 24.43 % 64.51 % 

9 {B,D} 3 97.7 % 3124 24.36 % 32.14 % 

10 {C,D} 3 96.6 % 3147 24.22 % 31.97 % 

11 {A,B,C} 4 99.7 % 4120 32.73 % 24.47 % 

12 {A,B,D} 4 99.4 % 4141 32.67 % 24.25 % 

13 {A,C,D} 4 99.1 % 4162 32.58 % 24.07 % 

14 {B,C,D} 4 98.7 % 4183 32.47 % 23.95 % 

15 {A,B,C,D} 5 99.6 % 5201 36.68 % - 

 


