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1 Abstract

In this thesis, I investigate the properties of fractional Brownian motion for

use in the stock market, and I also look at what types of calculus that should

be used when one works with it. I then use the calculus to see what would

happen to the market if stock returns followed fractional Brownian motion.

The second part of the thesis consists of finding a method to estimate

discretized fractional Brownian motion by using ARFIMA models. I apply

this theory to stocks in the Oslo Stock Exchange to look for long memory in

the returns and volatility by estimating the Hurst coefficient. Would it be

easy to make money by using this model?

I find that the fractional Brownian motion has several traits we appre-

ciate when analysing stocks. However, the market would not be efficient if

stock returns could be modelled by fractional Brownian motion, as it allows

for arbitrage.

In the Norwegian stock market, I find that the main index shows some ev-

idence of long memory in the returns. However, this is not much, as the Hurst

coefficients estimated are quite close to 1
2
. This means that it is unlikely that

one could make much money from trying to find arbitrage opportunities like

this. The same is true for the analysed stocks, and the ARFIMA model is

not a perfect fit for any of them.

I do find evidence of long memory in the volatility of the stock returns,

and this may be used to help understand and predict the risk of the stocks

better.
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2 Preface

This is a master thesis written as a part of a Master of Science in Economics

and Business Administration at the Norwegian School of Economics (NHH).

The election of fractional Brownian motion as a topic, reflects that my major

is in Economic Analysis and my minor is Financial Economics.

I have chosen to write about something that lets me use a combination of

mathematics and statistics as well as using this knowledge on the Norwegian

stock market. Fractional Brownian motion is a topic that is not a part of

the curriculum in any of the subjects at NHH, which makes it especially de-

manding to investigate. To work with a topic that is this advanced and rare,

has probably been both the most challenging and the most exciting part of

writing this thesis.

I would like to thank my supervisor, Jan Ubøe, for advice, feedback and

motivation during the writing process. But also for getting me interested in

regular Brownian motion from courses in statistics and mathematical statis-

tics in the first place. I would also like to thank Jonas Andersson for great

discussions about ARFIMA models.
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3 Introduction

”It is possible to beat the market” , writes investor and editor Trygve Hegnar

[21]. He is referring to an article about Warren Buffet’s investment techniques

[33]. The techniques are fairly simple and based on the relationships between

easily accessible key numbers from companies, like the P/E ratio. Are there

really such easy ways to make money in a market with almost an unliminted

number of creative competitors?

While some today believe that one could beat the market by finding stocks

with a favorable P/E ratio or a streak of high returns, it is not accepted in

the scientific community that it is actually possible to do. The short ex-

planation is that everyone would do it if it worked, and then the arbitrage

opportunities would disappear. The same is the case with other so-called

sure ways of beating the market.

Fractional Brownian motion has by some been thougth of as a revoluti-

nary way of modelling stock returns, and hence finding that the returns have

long memory. If this was the case with stock returns, one could use this to

implement arbitrage strategies and beat the market. The technique would be

different from the ones mentioned above, but the result would be the same

if the strategies worked - someone would beat the market. It is however not

commonly believed that there exists such ways of prediciting stock returns,

and fractional Brownian motion is rarely discussed as a model for stock re-

turns anymore.

I want to find an overview of the fractional Brownian motion, see if it has

properties we find attractive for financial time series in the stock market, and

try to apply the theory to stocks at the Oslo Stock Exchange. Is it possible

to find stocks in the exchange with long memory, which could lead us to

finding arbitrage opportunities?

I will start by introducing the history of fractional Brownian motion and
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look at its mathematical properties to understand the basic theory behind it.

From this, I will explain why it is not possible to apply normal culculus to the

fractional Brownian motion. Then I will investigate alternatives to regular

calculus. I will also discuss which types of calculus that can be especially

suited for finance.

The alternative calculus is needed when I discuss the reason why frac-

tional Brownian motion is not used to analyse stock returns today, namely

that the model implies that there exist arbitrage opportunities in the market.

After this I will shortly mention different ways fractional Brownian mo-

tion has been simulated and estimated traditionally to better understand

how it is not an easy task to choose which methods to use.

In the last part of the paper, I will discuss the long memory model

ARFIMA and how it can be used to model fractional Brownian motion

and the properties introduced in the first part of the thesis. The ARFIMA

model will be used in the application of the fractional Brownian motion in

the Oslo Stock Exchange, where I will look for long memory in return and

volatility for different stocks. I also shortly mention what implications the

results could have for investors.

4 Fractional Brownian motion

4.1 History

The fractional Brownian motion, later also called fBm, has several fathers.

One of them is Benôıt Mandelbrot. He started asking questions about the

basic theories of finance and how the market worked, as he could not see how

the most commonly used financial theories could fit with the reality.

One of the characterisitcs of the market he questioned, was the large day

to day changes. He mentioned as an example the summer of 1998 on Wall
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Street. On august 4. the Dow Jones dropped by 3.5%. Three weeks later, it

was down another 4.4%, and on august 31. the index dropped by 6.8% dur-

ing the day. According to market theories which state that the daily changes

are Gaussian, the chance of a drop that big is 1 to 20,000,000 [27]. Even if

the markets traded daily for 100,000 years, a drop that big should not have

happened [27]. Accordingly, the chance of having three big drops in august,

was close to 1 in 500,000,000 [27]. Mandelbrot wished to find a model that

could accomodate these big jumps.

There are several newer examples of this from the same market place as

well. For example from the much known financial crisis during 2008. 29th

of september started with a drop of 7.0% [36]. In addition to several smaller

drops, there was one of 7.3% on 9.th of october, and one of 7.9% the 15th

of october [36]. Then there also was a drop of 7.7% the 1st of december the

same year [36]. There has been similar periods with jumps as well, but it only

adds to the fact that these outcomes are extremely unlikely to happen under

the Gaussian regime. So unlikely that the Gaussian assumptions should be

wrong, and one needs to find another model that would allow these jumps

to happen.

These jumps might have been caught by Lévy processes. An example

of a well known Lévy process is regular Brownian motion combined with a

Poisson process to account for the sudden jumps. However, another aspect

that concerned Mandlebrot, was that the stock returns seemed to have pat-

terns that repeated themselves in different scales, and that today’s return

could depend on returns from very long time ago [27]. There is no way to

explain this sort of ”memory” by using a Lévy process, as all the increments

are independent.

But how did we end up with the Gaussian financial system in the first

place? In the 1900, a french matematician called Louis Bachelier meant that

price changes should be modelled as a random walk. He said that the prices

had independent changes, and that these changes formed a bell shaped curve
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[27]. This is some of the basic assumptions modern finance was built on.

Later, we have the Efficient Market Hypothesis by Fama, the modern portfo-

lio theory by Markovitz, the relationship between risk and reward by Sharpe

and a formula for options pricing by Black, Scholes and Merton [27].

The point of finding a statistical model to describe the price changes in

the financial market, is not to prove that the returns actually move randomly,

but that they can be described as if they do, which means that such a model

helps us [27]. Mandelbrot [27] meant that this way of looking at prices could

give better ways of modelling them than we can get from both fundamental

and technical analysis.

The fBm model was not originally devoted to finance when the first parts

of the model took form. Harold Edwin Hurst tried to model the floods of

the Nile when he discovered that the water movements did not seem to be

independent. The sizes of the floods did not follow the Gaussian curve. Not

only were the sizes of the individual floods different from the bell shapes

curve, but the sequence they appeared in did not seem random [27].

There are two effects that are commonly mentioned in connection with

the fBm. The first one is called the Noah effect. When Noah built the arc,

it was because of the extreme amount of water that would fall down. This

refers to the sizes of the jumps [27]. The other effect is called the Joseph

effect. Joseph predicted that Egypt would have 7 fat years and 7 lean years

[27]. This also had an extreme effect, but here it was the sequence of the

lean and the fat years that made the outcome extreme. These two effects

mix, and they can both have great impact on whatever phenomenon they

are found in when they occur [27].

In today’s fBm the Hurst coefficient is what tells us if the changes are pos-

itively or negatively correlated, and there has been made several attempts

to estimate the Hurst coefficient for different stocks. Mandelbrot [27] was

hoping that the coefficient would become a new yardstick in finance as much
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as the α or the β used in the CAPM. However, this has not been the case.

The patterns of fBm has been found several places in nature, art and

types of science. Examples are the Sierpinski gasket, the Cantor dust, the

Koch curve, clouds, branching of bronchia in human lungs, queing theory

and so on [27]. But the model has not been the miracle Mandelbrot hoped

it would become in finance. Is it at all possible to use the model in finance,

or should we look for something different?

4.2 Properties of fractional Brownian motion

Definition 1 H is called the Hurst constant and it belongs to the interval (0,

1). A fractional Brownian motion, which we denote by BH
t , is a continuous

and centered Gaussian process with covariance function

E[BH
t B

H
s ] = 1

2
(t2H + s2H − |t− s|2H).

And the increments BH
t+h − BH

t and BH
s+h − BH

s with s + h ≤ t and

t− s = nh have the covariance function

ρH(n) = 1
2
h2H [(n+ 1)2H + (n− 1)2H − 2n2H ].

When H = 1
2
, we see from the definition that the covariance becomes 0

in both cases. When that happens, the fractional Brownian motion behaves

just like a standard Brownian motion with independent increments. Even

when the increments are not independent, the fractional Brownian motion

has some properties that are somewhat similiar to the properties of regular

Brownian motion. Some of them are:

1. BH
0 = 0

2. E[BH
t ] = 0 for all t ≥ 0.

3. BH has homogeneous increments, which means that BH
(t+s) − BH

s has

the same law of BH
t for s, t ≥ 0.
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4. BH is a Gaussian process and E[B2H
t ] = t2H , t ≥ 0, ∀H ∈ (0, 1).

5. BH has continuous trajectories.

From the first two bullets, we see that the fBm always starts at 0, and

0 is also our best prediction of where it will go, as the chance of it moving

upwards is the same as the chance of it moving downwards. We have no

information about the expected movement.

The information we have tells us something about the increments and

their relative sizes. Two increments that have time intervals at the same

length, are expected to be of the same size.

From the fourth point we see that the fBm is Gaussian, and that the

expected value of the squared, i.e. the second moment, is not 0. This is an

important point in both regular and fractional Brownian motion.

The last points tells us that the trajectories are continuous, but the fBm

is nowhere differentiable [6].

When examining the fractional Brownian motion further, it is often both

useful and necessary to distinguish between the cases where H ∈ (0, 1
2
) and

H ∈ (1
2
, 1).

As shown earlier, the increments of the fBm are not independent when

H 6= 1
2
. From definition 1 we see that the correlation is negative when

H ≤ 1
2
, and that it is positive when H ≥ 1

2
. When it is positively correlated,

a positive change is more likely to be followed by another positive change

and vice versa. This makes the fBm with H ≥ 1
2

good at modelling series

with memory and high persistence [6]. When a positive increment is more

likely to be followed by a negative increment, the fBm can be used to model

systems with antipersistence and intermittence [6].
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4.3 Long-range dependence

Definition 2 A stationary sequence (Xn)n∈N exhibits long-range dependence

if the autocovariance functions ρ(n) := cov(Xk, Xk+n) satisfy

limn→∞
ρ(n)
cn−α = 1 for some constant c and α ∈ (0, 1). In this case, the

dependence between Xk and Xk+n decays slowly as n tends to infinity and∑∞
n=1 ρ(n) =∞

There also exist several other definitions of long-range dependence which

are used in different fields [6]. In short, the long-range dependence means

that a series has a long term memory. The autocovariance function decays

slowly because values far apart in the time series are highly correlated. For

the fBm spesific we can show that for H ≥ 1
2
. The covariance between the

increments

ρH(n) = 1
2
h2H [(n+ 1)2H + (n− 1)2H − 2n2H ]

converges to H(2H − 1)n2H−2 as n approaches ∞ [6]. This could be used to

our advantage, and if we use H(2H− 1) as the constant c, and similiarly use

2− 2H as the constant α, we can see easily that

limn→∞
ρH(n)

H(2H−1)n2H−2 = 1.

Which means that for H ≥ 1
2

the fBm meets the definition of long-range

dependency.

Long-range dependence is often found in internet traffic modelling, lin-

guistics, hydrology, and as we will be discussing, may also be found in finan-

cial markets [38]. A trait that is often found in series that have long range

dependence is called self-similarity [38].

4.4 Self-similarity

Self-similarity is a property that is found in both man-made and natural

phenomena. Known for this are for example snowflakes, coastlines, traffic
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processes and trees [38][27]. A self-similar process is visually seen as the

same pattern repeating both seen up close and seen from afar. In other

words, there are small versions of the larger pattern repeated inside larger

patterns.

Definition 3 We say that an Rd-valued random process X = (Xt)t≥0 is

self-similar or satisfies the property of self-similarity if for every a > 0 there

exists b > 0 such that

Law(Xat, t ≥ 0) = Law(bXt, t ≥ 0).

Definition 4 If b = a−H in the definition above, then we say that X =

(Xt)t≥0 is a self-similar process with Hurst index H or that it satifies the

property of (statistical) self similarity with Hurst index H. The quantity

D = 1
H

is called the statistical fractal dimension of X.

From the covariance function, we see that it is homogeneous of order 2H

[6]. This is because when the argument n is multiplied by a factor, then the

result is multiplied by 1
2
h in the power 2H.

The fBm is actually the only Gaussian process that is self-similar [37].

Is it reasonable that stock returns could be self-similar? One way of

intuitively explain that they could behave that way is to look at how investors

react to different kinds of news. It is not unreasonable to believe that they

could react the same way each time they recieve news of the same type.

When this happens, it is possible that the return would repeat the same

kind of pattern.

4.5 Continuity and path differentiability

Theorem 1 Let H ∈ (0, 1). The fBm BH admits a version whose sample

paths are almost surely Hölder continuous of order strictly less than H.

Theorem 2 A function f : R→ R is Hölder continuous of order α, 0 < α ≤
1, and we write f ∈ Cα(R), if there exists M > 0 such that
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|f(t)− f(s)| ≤M |t− s|α,

for every s, t ∈ R.

By using the Kolmogorov criterion, Biagini, Hu, Øksendal and Zhang [6]

shows that the sample paths of BH are almost everywhere Hölder continuous

of order strictly less than H, and for no order greater than H.

The Hölder continuity is setting a limit for how big a change can be dur-

ing the specific parts of the process. A Hölder condition can be used to show

existence and uniqueness of solutions to stochastic differential equations [14].

That the fBm is Hölder continuous does not need to mean that we are

able to differentiate the paths it creates. In fact the sample paths of BH are

not differentiable [6]. This is also found with the regular Brownian motion.

Proposition 1 Let H ∈ (0, 1). The fBm sample path BH
. is not differen-

tiable. In fact, for every t0 ∈ [0,∞)

limt→∞ sup|
BHt −Bt0
t−t0 | =∞ with propability 1.

This is proved by [6] by utilizing the fact that the fBm is self-similar, as

we have shown earlier.

Processes that are not differentiable are of course harder to work with,

but it is a property we appreciate. Later, we will see how the fBm could be

used to analyze price processes in financial markets, and if we were able to

differentiate it, we would see what the price would become next, which is not

realistic.

One of the difficulties we get from not being able to differentiate the

fBm, is that we need to use something other than the regular calculus used

to integrate and differentiate the fBm. For regular Brownian motion, this is

done by using Itô calculus, but as we shall see later, this is not possible for

fBm.
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4.6 Semimartingale

A regular Brownian motion is known for being a martingale.

Definition 5 A process Mt, t ≥ 0 is a martingale if it has the properties

• E[|Mt|] <∞

• Mt is Ft-measurable

• E[Mt −Ms|Fs] = 0, s < t

A martingale could be explained as being a fair game. When one consid-

ers all the past information about the process, the best predicition for the

next value, will be today’s value. The martingale property of the Brownian

motion, is especially put to good use when one needs to price derivatives.

The technique where one use different equivalent martingale measures is for

example what makes us able to find the Black-Scholes-Merton formula with-

out having to deal with the added difficulty of covariance.

Definition 6 A semimartingale is a process Zt = Mt+At where Mt is a local

martingale and At is an adapted càdlàg process with a bounded variation.

Definition 7 A càdlàg is a function that is right continuous and has limits

on the left side.

We have already shown that the sample path of fBm is not differentiable.

Since this is the case, we would like to be able to use the Itô calculus to find

the derivatives, which we need when we wish to price a claim in a market

that includes fBm. However, to be able to do this, the fBm would have to

be a semimartingale [6].

This proof is valid for H 6= 1
2

Yn,p = npH−1
∑n

j=1 |Bj/n −B(j−1)/n|p

From the self-similar property of fBm, we have that the sequence {Yn,p, n ≥
1} has the same distribution as {Ỹn,p, n ≥ 1} [30] where
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Ỹn,p = n−1
∑n

j=1 |Bj −Bj−1|p

Because the stationary sequence {Bj − Bj−1, j ≥ 1} is mixing, we can

use a version of the Ergodic Theorem [30]. This tells us that Ỹn,p converges

almost surely and in L1 to E(|Bp
1 |) as n tends to infinity [30]. And because

of this, Yn,p converges in probability as n approaches infinity to E(|Bp
1 |).

Because of this

Vn,p = n−1
∑n

j=1 |Bj −Bj−1|p

converges in probability [30], i.e. other outcomes become less and less

likely, to 0 as n approaches infinity if pH > 1, and to infinity if pH < 1.

Therefore, the fBm is not a semimartingale as long as H 6= 1
2
, and we can

not use the regular Itô-calculus. This means that we do not have a way to

differentiate or integrate expressions containing fBm, and we need to look at

different methods that can be used to do this.

5 Calculus

5.1 Wick Itô Skorohod

Wick Itô Skorohod integration (WIS integral) is a technique used to han-

dle integration of fBm, and it is often used in mathematical finance. The

stochastic integral can be defined for all H ∈ (0, 1). It is built by using white

noise theory and Mallavian calculus [6]. The first is theory about how to

utilize the fact that some movements or signals are just random disturbance

or noise. The second is calculus used on the regular Brownian motion. The

parts of the integral are known as the Wick product and the Skorohod inte-

gral.

The integration technique uses something called the M operator to relate

the fBm to the regular Brownian motion [6].
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Definition 8 Let 0 < H < 1. The operator M = MH is defined on functions

f ∈ S(R) by

M̂f(y) = |y]
1
2
−H f̂(y), y ∈ R

where

ĝ(y) :=
∫
R e−ixyg(x)dx

denotes the Fourier transform.

We then end up finding the relationship∫
R
f(t)dBH(t) =

∫
R
Mf(t)dB(t), f ∈ L2

HR. (1)

[6]. Now we see that the M operator works as some sort of bridge to translate

the regular Brownian motion to fBm.

Definition 9 Let Y : R → (S)∗ be such that Y (t) �WH
t is dt integrable in

(S)∗ Then we say that Y is WIS integrable and we define the WIS integral

of Y (t) = Yt(ω) with respect to BH
t by∫

R Yt(ω)dBH
t :=

∫
R Yt �W

H
t dt,

where � is the Wick product and WH
t is the fractional white noise.

This definition can be used to find a fractional alternative to the classical

Itô formula.

Theorem 3 Let H ∈ (0, 1). Assume that f(s, x) : R × R → R belongs to

C1,2(R× R), and assume that the random variables

f(t, BH
t ),
∫ t

0
∂f
∂s

(s, BH
s )ds and

∫ t
0
∂2f
∂x2

(s, BH
s )s2H−1ds

all belong to L2(P). Then

f(t, BH
t ) = f(0, 0)+

∫ t

0

∂f

∂s
(s, BH

s )ds+

∫ t

0

∂f

∂x
(s, BH

s )dBH
s +H

∫ t

0

∂2f

∂x2
(s, BH

s )s2H−1ds

(2)

This gives us an alternative that could be used insted of the Itô calculus.

There is also found a fractional version of the classical Girsanov theorem,

which gives us a way to change the measure, but we will not show this here.
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5.2 Pathwise forward integration

There are not just one way to find integration techniques for fBm, and Path-

wise forward integration is another. Pathwise integration builds on Riemann

sums [6], which are the integrals most people know. The method divides

the area under the function into squares. There are several ways to do this.

For example, the squares can be under the line, over, or both. This will

never give the true value of the integral, but as the squares are divided into

smaller and smaller parts, the sum of the areas approaches the real value of

the integral.

Definition 10 Let H ∈ (0, 1). Let (ut)t∈(0,1) be a process with integrable

trajectories. The symmetric integral of u with respect to BH is defined as

limε→0
1
2ε

∫ T
0
u(s)[BH

(s+ε) −BH
(s−ε)]ds,

provided that the limit exists in probability, and is denoted by
∫ T

0
u(s)d ◦BH

s .

Definition 11 Let H ∈ (0, 1). Let (ut)t∈(0,1) be a process with integrable

trajectories. The forward integral of u with respect to BH is defined as

limε→0
1
ε

∫ T
0
u(s)

BH
(s+ε)

−BHs
ε

ds,

provided that the limit exists in probability, and is denoted by
∫ T

0
u(s)d−BH

s .

The backward integral is defined as

limε→0
1
ε

∫ T
0
u(s)

BH
(s−ε)−B

H
s

ε
ds,

provided that the limit exists in probability, and is denoted by
∫ T

0
u(s)d+BH

s .

In these definitions, we see that our regular integration approach with the

Riemann sums is extended to the case with fBm. The alternative ways are

easy to explain from their definitions. The last one integrates from where

you are standing and back, while the middle one integrates by moving one

step forward. The first integral goes equally long in both directions, and is

thus called symmetric.
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As with the other ways of integrating over fBm, we get an alternative

version of the Itô formula. It is extended from the Itô formula for forward

integrals used on regular Brownian motion [6].

Lemma 1 Let G ∈ (S)∗ and suppose that ψ is forward integrable. Then

G(ω)
∫ T

0
ψtd

−BH
t =

∫ T
0
G(ω)ψtd

−BH
t .

Together with

Definition 12 Let ψ be a forward integrable process an let α(s) be a mea-

surable process such that
∫ t

0
|α(s)|ds < ∞ almost surely for all t ≥ 0. Then

the process

X(t) := x+
∫ t

0
α(s)ds+

∫ t
0
ψ(s)d−BH

s , t ≥ 0

is called a fractional forward process.

Theorem 4 Let

d−Xt = αtdt+ ψtdB
H
t , X(0) = x

be a fractional forward process. Suppose f ∈ C2(R) and put Yt = ft(Xt).

Then if 1
2
< H < 1, we have

d−Yt = ∂ft
∂t

(Xt)dt+ ∂ft
∂x

(Xt)d
−Xt.

When we have the lemma above, the proof is fairly simple. We apply

the lemma along with Taylor expansion to dYt [6]. dYt is of course just

another way of saying Yt − Y0, and this can be expressed by the sum of all

the increments. At least, we take into account that the quadratic variation

of the fBm is zero when 1
2
< H < 1 and end up with the expression from the

theorem above [6].
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5.3 Wiener and divergence-type integrals

Wiener integrals are integrals of deterministic functions with respect to a

Gaussian process. When H = 1
2
, the integral is the same as the Itô formula.

Definition 13 For any H ∈ (0, 1), the (abstract) Wiener integral with re-

sepct to the fBm is defined as the linear extension from H in L2(PH) of the

isometric map IH :

IH : H → L2(PH)

RH
(t,·) → BH

t

This is as it sounds like, a kind of map that tells us how to go from the

integral definition to the actual fBm.

The divergence type integral for fBm is stochastic and uses something

called the derivative operator [6].

5.3.1 Wiener integrals for H > 1
2

There are two different ways of defining the Wiener integrals which are based

on two different isometries, but here we use the second type from [6] and we

obtain:

Theorem 5 Let πn be an increasing sequence of partitions of [0, T ] such

that the mesh size |πn| of πn tends to 0 as n goes to infinity. The sequence

of processes (W n)n∈N defined by

W n
t =

∑
t
(n)
i ∈πn

1

t
(n)
i+1−t

(n)
i

∫ t(n)i+1

t
(n)
i

KH
t (s)ds[B

t
(n)
i+1
−B

t
(n)
i

]

converges to BH in L2(P⊗ds), where here P denotes the probability measure

induced by the standard Brownian motion.

And we have

Definition 14 Consider H > 1
2

Let u be a stochastic process u.(ω) : [0, T ]→
H such that K∗Hu is Skorohod integrable with respect to the standard Brownian

motion Bt. Then we define the extended Wiener integral of u with respect to

the fBm BH as:
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BH
u :=

∫ T
o

(K∗Hu)sδBs

5.3.2 Wiener integrals for H < 1
2

Proposition 2 For H < 1
2

the Wiener type integral BH
φ with respect to fBm

can be defined for φ ∈ H = I
1
2
−H

T (L2([0, T ])) and the following holds:

BH
φ =

∫ T
0

(K∗Hφ)(t)dBt.

5.3.3 Divergence type integral for H > 1
2

Here, the divergence operator coincides with the generalized Wiener integral

[6].

Proposition 3 Let u ∈ domδH . Then δH(u) coincides with the extended

Wiener integral of u

δH(u) = BH
u .

5.3.4 Divergence type integral for H < 1
2

One problem here is that the paths of the fBm becomes too irregular (which

is a trait of the fBm when H is low) when H < 1
4
, so that the standard

divergence integral ceases to exist [6].

An extended divergence operator is then defined and we get:

Definition 15 Let ut, t ∈ [0, T ] be a measurable process such that E[
∫ T

0
u2
tdt] <

∞. We say that u ∈ dom∗δH if there exists a random variable δH(u) ∈
L2(PH) such that for all F ∈ SK we have

E[utK
∗,a
H K∗HD

H
t F ]dt = E[δH(u)F ].

5.4 Fractional Wick Itô Skorohod for H > 1
2

For this type of stochastic integral, fractional white noise is used along with

the φ derivative [6].
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Definition 16 Suppose Y : R→ (S)∗H is a given function such that Yt �WH
t

is dt integrable in (SH). Then we define its fWIS integral,
∫
R YtdB

H
t , by∫

R YtdB
H
t :=

∫
R Yt �W

H
t dt

Where � is the Wick product and WH
t is fractional white noise.

6 Integration methods suited for finance

We need to chose an integration method that is suited for the financial mar-

ket. Since we assume that stocks have H > 1
2
, we can for example use

pathwise forward integration or WIS integration. However, both methods

are problematic [6].

6.1 Pathwise forward integrals

Pathwise forward integrals are natural to use in finance because H > 1
2

[6].

If we choose this form of integration, this gives us the Itô formula shown

earlier. When we replace the classical Brownian motion with fBm in the

Black Scholes market, we can apply this to get an expression for St. We can

prove that this makes it possible to find strong arbitrage opportunities in

the market [6]. However, this disappears when one accounts for transaction

costs in the market [6].

6.2 WIS integrals

The WIS integration technique could also be used in finance. Here, we get

an alternative Itô formula for the integration as well, but the expression it

gives for St is not the actual value of the firm, but rather a value that we are

forced to use if we need one [6]. There is no strong arbitrage opportunities

in this case, but we can prove that there is weak [6].

It is much more difficult to show that there exists weak arbitrage in the

Black Scholes market with WIS integrals than there is to prove the existence

of arbitrage with Pathwise forward integrals. We need to apply theory from
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quantum mechanics and then show that we have a portfolio that fits the

critera of weak arbitrage [6].

But we cannot justify to use this model. This is shown by Björk and Hult

[10]. They explain that both the definition of a self-financing strategy and

the definition of the value of the claim are problematic. They do not have

an economical interpretation in the real world when this form of integration

is used [10]. An example of this is taken from a portfolio used of Øksendal

and Hu in 2003. It is shown that when the portfolio holds a positive number

of shares with positive prices, there is a positive probability that the value

of the portfolio is negative [10].

7 Arbitrage with fBm

7.1 What is arbitrage?

Arbitrage is often called a free lunch. This is because we are essentially mak-

ing money without investing or taking any risks. It is done by exploiting the

fact that some assets are mispriced by making a portfolio that take a short

position in the overpriced assets and a long position in the underpriced ones.

Definition 17 A self-financing portfolio is one that has

Xπ
t = Xπ

0 +
∫ t

0
γudSu(µ)

This means that the value of the portfolio always consists of the starting

value in addition to any losses or gains one may have during the investment

period. There are no additional in- or outflows of cash during this time. This

property is important to us because it makes pricing easier when we use a

portfolio to replicate a claim.

Definition 18 Let π be a self-financing strategy and V be wealth. π is called

an arbitrage strategy if P (Vπ(0) = 0) = 1 and the terminal wealth satisfies

the conditions [7]:
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P (Vπ(T ) ≥ 0) = 1 a.s. and P (Vπ(T ) > 0) > 0

This means that we would start off without any cashflow at the begin-

ning of the investment period, but in the end of the period, we will have a

positive cashflow. If we were able to to this, we would have a money machine.

Most financial theories are built on the basis of an arbitrage-free market.

This is a market where there does not exist any arbitrage strategies.

Theorem 6 A market is arbitrage-free if there exists at least one equiva-

lent martingale measure.This is known as the fundamental theorem of asset

pricing.

Definition 19 If there exists one and only one equivalent martingale mea-

sure, the market is said to be complete

A complete market is one where we are able to replicate all the different

claims, and hence price them [7].

7.2 Why is arbitrage a problem?

If there exists arbitrage in a market, the market is not in equlibrium. One

claim could have several different prices. One theory about complete markets

says that an arbitrage opportunity will disappear because investors would

buy the relatively underpriced claims until their prices had risen, and sell

the overpriced ones until the prices had sunk. This would happen until the

market ended up in equlibrium and all the claims had only one correct price.

Definition 20 A price is CT is rational if

CT = inf{x ≥ 0 : ∃π with Xπ
0 = x,Xπ

T ≥ fT}

Here π = (β, γ) is a portfolio, and the corresponding capital is

Xπ
t = βtBt(r) + γtSt(µ), t ≤ T .
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In short, this definition means that there exists a portfolio we can use to

replicate the claim. We also assume that π is self-financing.

Well known pricing formulas such as the Black-Scholes-Merton model are

based on the possibility to replicate claims using the prices of others with

something called the martingale approach.

7.3 Arbitrage for fBm when 1
2 < H < 1

We want to show that there exists arbitrage opportunities in the fractal ver-

sion of the Black-Scholes-Merton market model. The BSM-market model is

commonly used because it does not allow the prices to become negative [32].

This is a trait we appreciate, as it makes our market model more realistic.

The following proof is made by Shiryaev [32].

The model consists of a risk-free asset Bt(r) and the risky asset St(r)

Bt(r) = ert,

St(r) = ert+B
H
t .

We start by differentiating the two assets. This is later used as input

when using the Itô-formula for fBm on the chosen portfolio.

dBt(r) = rBt(r)dt

dSt(r) = St(r)(rdt+ dBH
t ).

We would now like to show that there exists a portfolio π = (β, γ) that

gives us arbitrage in this market model.

βt = 1− e2BHt ,

γt = 2(eB
H
t − 1).

By applying this portfolio to our market model, we obtain

Xπ
t = βtBt(r) + γtSt(r) = ert(eB

H
t − 1)2.
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Then we need to prove that this stragey is a self-financing arbitrage strat-

egy. Now we use an alternative Itô formula to differentiate Xπ
t to see that

the only change in value in the portfolio comes from the summarized changes

in St and Bt. Remember how alternatives to the Itô formula was found by

using integration techniques for fBm.

The Itô formula used is

F (BH
t )− F (BH

0 ) =
∫ t

0
f(BH

u )dBH
u .

We apply this and use the derivatives of the risky and the risk-free asset.

Then we get

dXπ
t = rert(eB

H
t − 1)2dt+ 2ert+B

H
t (eB

H
t − 1)dBH

t .

When rearranging the items and remembering the derivatives of the risky

and risk-free asset along with the portfolio, one can see that the expression

becomes

dXπ
t = βtdBt(r) + γtdSt(r)

When we integrate over the time period 0 to T , we find that

Xπ
T = β0B0 + γ0S0 +

∫ T
0
βuBu(r)dBu +

∫ T
0
γuSu(r)dSu

If we remember the definition of a self-financing model, we see that the

last equation fits the criteria. Also, we need to prove that the portfolio meets

the additional requirements for arbitrage. When using the fact that BH
0 =0,

we can easily see that the first two terms of the expression, namely Sπ0 , is 0.

We can also see that for t > 0, the rest of the terms, which are Xπ
t , will be

greater than 0 since our model does not allow for negative values. This is

enough to prove that this market model admits arbitrage.

Similiar proofs can also be shown for other market models including frac-

tional Brownian motion. For example the Bachelier model [32]. But a some-

what interesting fact is discussed by among others Bender, Sottinen and
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Valkeila [4]. They show that one can restrict the available trading strategies

in a way that does not admit arbitrage in the market. There are also ex-

amples when fBm is used together with classic Brownian motion to create a

market without arbitrage.

8 Simulation and estimation

There are several methods used to simulate fBm. Some of them are exact,

while others are approximations. They use different properties of the fBm,

and they have their own advantages and disadvantages. The simulation is

done in discrete time.

I do not use simulation futher in this thesis, but when I refer to other

papers, simulation is often used to evaluate different methods used in esti-

mation of fBm. This is why I find it relevant to mention here.

8.1 The Hoskin method

This algorithm generates Xn+1 given Xn, ..., X0 recursively [15]. The sample

is obtained by taking cumulative sums of fractional Gaussian noise [15]. It

can be used on all stationary Gaussian processes, and the simulation is exact

[15].

The complexity of the algorithm is of order N2 when one need N obser-

vations [15]. The advantages of this method is that it is easy, and that one

does not need to know the size of the sample one creates in advance [15].

8.2 The Cholesky method

This method uses something called the Cholesky decomposistion on the co-

variance matrix to simulate Xn+1 given Xn, ..., X0 recursively [15]. It can

be used on both stationary and non-stationary Gaussian processes, and the

method produces exact values of the fBm [15].
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As with the Hoskin method, one does not need to know the number

of observations one needs in advance of the simulation [15]. The Cholesky

method is however slower, and uses a lot of storage space when used [15].

When the number of observations needed are N , the complexity is of order

N3 [15].

8.3 The Davies and Harte method

This algorithm uses somewhat of the same tehcnique as the Cholesky method

by trying to find a square root of the covariance matrix [15]. The method

produces exact values of the fBm [15].

From one simulation, we get two samples of size N , but these can not be

combined to create a larger sample since the covariances between them are

not correct [15]. The other sample of N observations can not be used alone

either, as it is not independent from the first sample [15]. To use this would

give skewed results.

The main advantage with the Davies and Harte method is the speed.

When one need N observations, the complexity is only N log (N) [15].

8.4 Approximated methods

There are some approximated methods that are not used anymore, but are

still interesting because of their historical place in fBm science [15]. This

is for example the stochastic representation method defined by Mandelbrot

and van Ness [15].

The advantages of using approximated methods instead of exact, are that

they are faster and easier to compute [15]. Some of the methods are modi-

fied and easier versions of the exact methods, such as the Random Midpoint

Displacement and spectral simulation. Some of the modifications are made

to have easier and fewer calculations by changing formulas, while other ways

of simplifying is to not use all the past simulated values when finding new
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ones.

When one need large sample sizes, the speed and memory usage of the

methods are often important, and the while the fastest exact method had

a complexity of N log (N), approximated methods such as the random mid-

point displacement have a complexity of order N [15].

8.5 Estimation of the Hurst coefficient

8.5.1 R/S analysis

The most popular method used to estimate H has traditionally been the

method developed by Mandelbrot and is called R/S analysis. Mandlebrot

explained it as a way to distinguish the Noah effect from the Joseph effect

[27]. The method is used to find evidence of long memory in different time

series.

• Divide the time series into n subseries Zi,m of length n.

• Find the mean Ei,m and the standard deviation Si,m of each of the

subseries.

• Normalize the subseries by subtracting the mean Xi,m = Zi,m − Em.

• Create the cumulative series Yi,m =
∑i

j=1Xj,m for i = 1, ..., n.

• Find the range Rm = max{Y1,m, ..., Yn,m} −min{Y1,m, ...mYn,m}.

• Rescale the range (Rm/Sm).

• Find the mean value (R/S)n of the rescaled range for all the subseries

with length n.

• The R/S statistics asymptotically follows (R/S)ncn
H . Find H by run-

ning a linear regression over log(R/S)n = log c+H log n.

This method has been tested empirically by running Monte Carlo simu-

lation to create simulations of random walks. When the series are not large
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enough, there has been found evidence of long memory in more of the se-

ries than what should be acceptable [18]. This could be a problem, as this

method has often been used by researchers who have found evidence of long

memory in stock markets.

8.5.2 Other methods

Because of the problems one finds when testing the R/S method empirically,

one should also consider other methods. Granero, Segovia and Perez has

suggested several improvements in the R/S analysis that did not have the

same problems [18].

Other methods are detrended fluctuation analysis and periodogram re-

gression. The first tries to distinguish trends from long range fluctuations by

eliminate trends of different orders [24]. The second method tries to estimate

spectral density of signals [35]. We will come back to other methods later.

9 ARFIMA models

9.1 Discretizing the fBm

When we try to estimate a fractional Brownian motion model for stock price

returns, our observations are discrete, as all real life observations are. The

discrete version of the regular Brownian motion is known as the random

walk, and it can be modelled by ARIMA(0, 1, 0) [23], which stands for Au-

toregressive, Integrated, Moving-Average model.

Definition 21 The derivative of a regular Brownian motion is defined as

δxt = (1− L)xt = at

and is called a random walk. The first difference of the random walk is the

discrete white-noise process {at}

We need to find a similar way to discretize the fractional Brownian motion

in a way that captures the properties of the continouos, fractional Brownian

motion.
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9.2 Fractional ARIMA models

From definition 2 of long-range dependence in fBm, we remember that
∑∞

n=1 ρ(n) =

∞. This tells us something about the properties we are looking for in a long

memory process. When the memory is long, the summation of the autocor-

relations will go to infinity, as the memory does not disappear. The AR and

MA terms from the regular ARIMA model decay geometrically, while those

of the d in a fractional ARIMA model decay hyperbolically. This makes the

combination of the two ideal to model both long and short memory. The

correlations should decay slowly, or more spesifically it should be hyperbolic

if it has long memory [5].

Definition 22 Let Xt be a stationary process for which the following holds:

There exists a real number α ∈ (0, 1) and a constant cρ > 0 such that

limk→∞
ρ(k)
cρk−α

= 1

Then Xt is called a stationary process with long memory or long-range de-

pendence or strong dependence, or a stationary process with slowly decaying

or long-range correlations.

It does however exist several different definitions of what a time series with

long term memory is.

There is a direct relationship between the parameter α and our H from

earlier

H = 1− 1
α

.

The definition only tells us something about the correlations as k goes to

infinity [5]. It does not tell us anything about the absolute sizes of the lags,

so a time series could be slowly decaying even though they are initially small.

This means we still need a method to find the sizes for specific lags.

As shortly mentioned above, the Autoregressive moving-average model

(ARMA) finds by itself only the short-term memory. An AR(p) model ac-

tually has infinite memory, but the effect of earlier observations follows a

34



geometric decay, and the effect on today’s observation is therefore quickly

diminishing [2]. It is easier to see that a pure MA(q) model only has a short

memory, as the effect on today’s value disappears after q lags [2].

We start by looking at a regular ARMA(p, q) model.

• µ = E[Xt] = 0, or else we need to remove µ from Xt.

• φ(x) = 1−
∑p

j=1 φjx
j.

• ψ(x) = 1 +
∑q

j=1 ψjx
j.

• We use the backshift operator L to express the differences i.e. Xt +

Xt−1 = (1 + L)Xt.

• P and q are integers.

• The error terms εt(t = 1, 2, 3, ...) are independent and identically dis-

tributed (iid) with expectd value 0 and variance σ2
ε .

• All solutions of φ(x0) = 0 and ψ(x0) = 0 lies outside the unit circle.

The ARMA(p, q) model is the stationary solution of φ(L)Xt = ψ(L)εt

[17]. The model is then extended to an ARIMA(p, d, q). This model is an

ARMA(p, q) model which is integrated by order d if the solution holds for

the dth difference of the orginal time series.

φ(L)(1− L)dXt = ψ(L)ε

We can use an extension from the regular ARIMA model to make it fit

our needs [5]. Where the d = 0 in a usual ARMA process. When we go from

an ARMA process to an ARIMA process, we violate the last of the bullet

points. Now the solutions to the equations can lie inside the unit circle [17].

In a regular ARIMA model, the d is only allowed to be an integer, but

the expression is also defined when d takes on any real number. This is when

an ARIMA model becomes fractional, and this is often called an ARFIMA

model. This can be defined as
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(1− L)d =
∑∞

k=0

(
d
k

)
(−1)kLk

Where (
d
k

)
= d!

k!(d−k)!
= Γ(d+1)

Γ(k+1)Γ(d−k+1)
.

Here Γ is the gamma function. It is defined for all real numbers, and this is

why we can extend the model to accommodate d other than integers [5]. This

is an infinite series. When this is estimated in practice, we have to choose

how many terms we wish to include.

For our solution to be stationary and invertible [23], −1
2
< d < 1

2
. If d

lies outside this interval, our function would be nonintegrable, and will not

fit with our earlier theory with 0 < H < 1 [5]. This is because H = 1
2

+ d.

Definition 23 Let Xt be a stationary process such that

φ(L)(1− L)dXt = ψ(L)εt

This is the same expression as when we used a regular ARIMA model.

Note that the possible values of d are the only thing that is changed.

Definition 24 The covariance function between Xt and Xt−k is

cov(Xt, Xt−k) = γk = (−1)kΓ(1−2d)
Γ(1−k−d)Γ(1+k−d)

Definition 25 The correlation function is

ρk = γk
γ0

= (−1)kΓ(1−d)2

Γ(1−k−d)Γ(1+k−d)

It is this function that will show hyperbolic decay when 0 < d < 1
2

and

the time series have long-term memory. Observations that are far apart will

have highly correlated if d is high. Hosking [23] defines the correlation for as

ARFIMA(0, d, 0) as

ρk = (−d)!(k+d−1)!
(d−1)!(k−d)!

and show that as k →∞
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ρk ∼ (−d)!
(d−1)!

k2d−1.

This implies that {xt} is asymptotically self-similar [23]. Our way of

modelling a discrete form of the fBm has then been shown to have several

of the properties we went through in first part of the paper. The ARFIMA

model seems to be a good choice as it will try to separate the long and the

short memory.

9.3 Different estimators

There are mainly two different ways of estimating an ARFIMA model,

namely parametric and semi-parametric methods [1].

In the semi-parametric methods, the short memory components are not

important, and one can estimate the long-term behavior without knowledge

of the short-term behavior. These approaches can be enough if one wants to

show that there is long memory in the data, but if one needs more informa-

tion, like values of the parameters or the short-term behavior, more refined

methods should be used [5].

The parametric methods can model the short-term behavior as well, but

we do need to specify the ARMA components [2]. To find the correct compo-

nents migth be difficult, but this is not our only problem. The model needs

to separate the short memory from the long, and where does the asymptotic

behavior actually start? [5]. But this is also the main reason to use these

kind of methods, as we do not want to mistakenly find that a time series has

long-term memory when what we are actually seeing is short-term behavior

from a regular ARMA model.

In an earlier section, we went through some of the methods that tradi-

tionally has been used to estimate the Hurst coefficient, but we will not use

any of those here. According to Beran [5], maximum likelihood estimators

(MLE) are the most efficient one. There are several methods within this
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group. Some of them are exact Gaussian MLE, Whittle’s approximate MLE

and the approximated method of Haslett and Raftery. As the names indi-

cate, only the first one is exact, but the downside is that it demands extreme

computational time if one has a large data set [5].

Later, we are using the package fracdiff in R, and this package uses the

approximated method of Haslett and Raftery.

9.3.1 The Haslett and Raftery method

Let Xt = (X1, ..., Xt) andX t
i = .(Xi1, ..., Xit). We then know that the ex-

pectation of one observation conditional on all the earlier ones has a mul-

tivariate normal distribution [20]. We have that E[Xit|X t1] = E[Xit|X t−1
i ],

var[Xit|X t−1] = var[Xit|X t1
i ] and corr[Xit, Xjt|X t−1] = αe(−βdij) [20].

The method also assumes that 0 < d < 1
2

[20], which is what we are

looking for in the stock returns

Then we would like to maximize the likelihood, and this is possible to do

exactly, while using a numerical approach [20]. However, it would take a lot

of time and computer capacity [20].

Haslett and Raftery [20] uses several approximations in their estima-

tions. Conditional mean and variance are found using the partial autocor-

relation function (PACF) of the series ARFIMA(0, d, 0) instead of the full

ARFIMA(p, d, q) [20]. Then they analitically find approximations for µ and

σ2. The final approximation is of the partial linear regression coefficients of

the ARFIMA(0, d, 0) process [20]. The likelihood function is then depen-

dent on α, β, d, φ(L), θ(L) [20]. As with all similar approaches, the point of

the method is to estimate the differetn parameters by maximizing the like-

lihood of them being correct, given what observations our time series give us.

I do not go any further into the detailed calculations of the approximations
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here, but this is an easy way of explaining how the package I am applying

to R works. While this method was originally used by Haslett and Raftery

to estimate a fractional ARIMA model for Ireland’s wind power resources,

it could still be used in other areas, as the method itself is not dependent on

this.

9.4 Long-term versus short-term dependence

Could we only have used a model consisting of µ, σ and H, which would

be equivalent to a ARFIMA(0, d, 0) model? According to Hosking [23] it

has been claimed that such a model would lack flexibility as it would not

be able to give accurate short-term predictions, and that it performs poorly

when compared with other models by using the Akaike information criterion.

The best reason why the ARFIMA model is such a good chioce for sep-

arating the long-term and the short-term behavior is that the effect of the

parameter d decays hyperbolically, while the effect from the AR and MA

terms diminish exponentially [23]. This means that the effect of the last two

will die out faster, and eventually just leave the effect of the d parameter.

Other problems could be that we find long term dependence where no

such thing actually exists because we model short term behavior as long

term. To adequatly separate these two behaviors is not easy when we use

the ARFIMA model, but it gives us a chance to try. The main problem is

to decide where the asymptotic behavior start. In other words, what consti-

tutes long memory, and what is just short?

How does one separate the two different dynamics in practice? One have

to try to determine if the correlation follow a Hyperbolic curve k2H−2 or an

exponential curve ck. It is not enough to determine if the correlation function

has large or small values, as the absolute values of the lags can be small, but

still diminish slowly. There is no exact way of doing this, and two different

scientists could estimate two different models by using the same data set.
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There does not appear to yet exist an easy solution to this problem of

determining what kind of an ARFRIMA model to use. And as we will

show later, different choices of lags to use in the AR and MA part will give

sligthly different estimates of d. According to Hosking [23] the behavior of an

ARFIMA(0, d, 0) will be almost the same as that of an ARFIMA(p, d, q)

model on very distant observations.

The AR or MA part of a solution will as we have explained account for

the dynamics seen in the first PACFs and ACFs, but it will not have much

to say for the long term dynamics. But could it be different if we just chosse

to use enough lags in our model? To some extent, yes, but after the chosen

number of lags, the effect from the MA and AR terms still will diminish

much faster than that of the fractional differenced part, so it would not do a

good job for very distant observations. This would also affect the parsimony

of the model. A trait we appreciate and strive to fulfill when we fit a model

to time series data.

9.5 Arbitrage in the ARFIMA model

Both properties of the long- and short-term modelling could give us arbitrage

opportunities. Let us first look at the alternative values of d and how these

determine the behavior of the model.

When d=0 in the discrete model, this is the same as H = 1
2

in the contin-

uous fBm. The long term dynamics of the time series will not be the source

of any arbitrage opportunities, as we in part 7 showed that arbitrage will not

occur when H = 1
2
. We also note that the correlation is 0 in this case, as it

is supposed to be since this actually models a regular Brownian motion.

When 0 < d < 1
2
, the times series show long term persistence, and it is

also stationary as we showed earlier. It is analogue to 1
2
< H < 1 in the
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continuous case, and we showed in part 7 that this will give us arbitrage

opportunities if a stock price has these dynamics. This is what we will be

looking for in financial time series later.

When −1
2
< d < 0, the time series shows antipersistent, and has a short

memory [23]. This is not behavior we expect to find in financial time series,

and in part 7 of the paper, we did not show any proof of how this could lead

to arbitrage, but it has been shown by for example Cheridito [12].

When we estimate a fractional ARFIMA model for the changes in stock

prices minus µ, we would expect to find a model consisting of only white

noise if economic theory is correct. If we find any form of either long or short

memory, the changes depend on each other. This means that d should be

0, as this means H = 1
2
, and there should not be any MA or AR lags.This

is because we do not want it to be possible to predict future returns from

neither short- or long-term dynamics.

However, I will not spend much time analysing the consequences of short

memory in the data, as this is not the objective of this thesis. The short

memory is mainly included here so the model will not estimate wrong values

of d because it confuses short memory with long.

The higher estimates we find of d, the more long memory will be present

in the model, and there is a greater chance of finding arbitrage opportunities

that pays off when they are implemented in the real world with transaction

costs and limits to how often we can trade.

Such findings would have great implications for economic theory. The

most prominent are that there will no longer be market efficiency and that

martingale models for stocks are no longer possible to use. This means that

our known approaches for pricing for example derivatives will not work, as

the martingale approach is used today.
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The main problem that concerns us are long memory in stock returns,

this is also what I spend most time on here. However, long memory in the

squared returns will also have consequences. From intuition, we know that

there could exist arbitrage opportunities in some cases if we were able to

predict the volatility of a stock. For example, if we knew for sure that the

predicted volatility was not large enough for the stock return to be negative

in the next period, the price should already have risen.

9.6 Identifying the correct model

Now we know how the chosen method estimates the parameters of anARFIMA(p, d, q)

model, but they can only be used if we know the true model that lies behind

the data. When working with real time series, we usually do not know this

in advance. Then we have to use different techniques to identify the true

underlying model.

We are used to depend on the autocorrelations (ACF) and the partial au-

tocorrelations (PACF) from identifying regular ARIMA models, and there

is a pretty clear step by step process to do this. Even though the same data

set could be assigned different models by two different researchers. The same

will be true when estimating the ARFIMA model.

The fracdiff package in R does some of the work for us, by estimating the

value of d as well as the values of the AR or MA lags. We still need to tell

the program that the correct model to use includes a fractional d. We also

need to find the number of lags to include. This is not straigth forward.

According to Hosking [23], the PACF is complicated to read and of little

help when one tries to identify the correct model when he tried to analyse a

ARFIMA(1, d, 0) process. The ACF of this model seem to have a sharper

drop from lag 1 to lag 2 than that for the ARFIMA(0, d, 1) [23].
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Hosking [23] suggests a way of identifying the correct ARFIMA model.

First we define ut = 5dyt such that {ut} is an ARFIMA(0, d, 0) process and

xt = (θ(L))−1φ(L)yt such that {xt} is an ARFIMA(0, d, 0) process.

1. Estimate d.

2. Define ut = 5dyt.

3. Find and estimate φ and θ in the ARFIMA(p, 0, q) model.

4. Define xt = (θ(L))−1φ(L)yt

5. Estimate d in 5dxt = at.

6. If the parameters d, φ and θ are not converging, go back to step 2.

A simulation study was done by Abraham, Lopes and Reisen [1] to test

this procedure, and they found that there was usually only need for one iter-

ation to get good enough estimates, as the values for φ, θ and d from doing

the first three steps was very close to the converged values. They also found

that the estimation of the AR lags had an impact on the estimation of d.

We start by finding the ACF just to look at it. We have to determine if

the time series seems to have long memory. The decay of the ACF is telling

us if there is long memory or not. It is important to remember that the

absolute sizes of the lags do not have anything to say. Other visual tools

that could be used are varaince plots, R/S plots or variograms. But the use

visual tools is not an exact science.

If the decay of the ACF plot implies that the time series have long mem-

ory, then we estimate d using the package fracdiff. Then we would like to

look at the residuals after the ARFIMA(0, d, 0) model. This is not straight-

forward to find and there is no implemented method for this in the fracdiff

package. In short, this consits of choosing the number of lags to use from

(1− L)d =
∑∞

k=0

(
d
k

)
(−1)kLk
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and then calculate each of the residuals manually after that.

From these residuals, we try to identify the correct number of AR and

MA lags. From identification of regular ARMA(p, q) models, we know that

an ACF with geomatrically decaying pattern and a PACF that is 0 after p

lags, tells us that we should have p AR lags [9]. In the same manner, a

geometrically decaying PACF along with an ACF that is 0 after q lags, tells

us that we should have q MA lags. There is no exact pattern to look for if

the model is mixed. We would like to use as few lags as possible to keep our

model parsimonous.

After we have identified the correct number of lags, we go back and es-

timate the entire model from the start by giving the fracdiff package the

correct inputs. It will then give us estimates for θ, φ and d.

The residuals from this model should not have any pattern, in other

words, there should not be any autocorrelation left. Other thing we can

check for in the residuals are normality, homoscedasticity and autoregressice

conditional heteroscedasticity (ARCH) effects.

The autocorrelation is found by estimating ACF again. The normality

could both be tested for and be checked visually by checking that the residu-

als form a bell shaped curve. To check if the residuals are homoscedastic, we

plot the residuals against the independent variables. If they are, they should

be scattered randomly around 0. ARCH in the residuals is found if there is

autocorelation in the squared residuals.

As well as trying to find the correct model by using this method, I would

like to find the Akaike information criterion (AIC) for a set of relatively sim-

ple models and check which one give us the best fit. The AIC compares the

goodness of fit of a model with the complexity. It does not tell us if a model

is completely inapropriate or not, but it compares different models. The

model that has the lowest score from AIC has the best relationship between
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goodness of fit and complexity.

10 Estimating models for stock price returns

I want to look at the daily changes in stock prices to see if I can find any

evidence of long-term memory. I will both be looking at some single stocks

and an index. The datapoints are downloaded from Yahoo Finance to the

program R where I use the package fracdiff to work with the estimation of

the models.

The data first needs to be inverted, as they are downloaded in the oppo-

site order, then we remove the days that are weekends and holidays if those

are not already removed by Yahoo. This is done by removing the days where

no trading has occured. We want to look at the adjusted closing price for

each day so we do not catch any price jumps from dividends or splits. We

then take the difference of the logarithm of each day’s prices.

We will both be looking at the regular returns of the stock prices and the

squared absolute returns. The first is clearly to look for long memory in the

price dynamics. The second can be used as a proxy for the variance of the

prices, and long memory here will suggest that there are some predictability

in the stock’s risk.

When working with the series, we have to remember to remove the mean

so the expected returns are 0.

10.1 Data

Here is a selection of different types of stocks from the Oslo Stock Exchange.

Most of the stocks have data for about ten years, but some of them only have

for a couple of years. It will be interesting to see if we are able to estimate a
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Ticker Name From To
AUSS Austevoll)Seafood 11.10.06 13.06.14
CECON Cecon 16.08.10 13.06.14
ECHEM Eitzen)Chemicals 28.06.04 13.06.14
FOE F.)Olsen)Energy 03.01.00 13.06.14
GOGL Golden)Ocean 15.12.04 13.06.14
HAVI Havila)Shipping 24.05.05 13.06.14
NAUR Northland)Resouces 23.10.06 13.06.14
NAS Norwegian)Air)Shuttle 18.12.03 13.06.14
PLCS Polarcus 09.04.10 13.06.14
PROS Prospector)offshore)Drilling 25.05.11 13.06.14
SN:I StoltMNielsen 08.03.01 13.06.14
TIDE Tide 03.01.00 13.06.14
VIZ Vizrt 12.05.05 13.06.14

WWASA Wilh.)Wilhelmsen 24.06.10 13.06.14
OSEBX OSE)Bench)IDX 03.01.83 13.06.14

Table 1: The data used

long memory model with this amount of information. There is an overview

of all the stocks I have used in table 1.

The length of each of the time series used here differs, but all observations

are of the adjusted closing prices from each trading day. None of the data sets

are extremely long, but if they were, it would most likely have been necessary

to divide them into smaller series. This is because structural changes over the

years could have made the H coefficient change, and our analysis could suffer

if we made the assumption that it was the same over all the observed years.

This is for example done by Bayrakter, Poor and Sircar [3] when analysing

the S&P 500 Index.

10.2 Returns of the OSEBX

We start by looking at the index at the Oslo Stock Exchange, named OS-

EBX. There is no registered trading volume of the OSEBX, so it will not be
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possible to remove holidays that have not already been removed by Yahoo.

This will hopefully effect the model minimally.

As with most stocks and indexes, it has rosen sharply the last years. We

can see this in plot a in figure 1. We have data from January 1983 and until

June 2014. This means almost 8000 observations, and it could have been

possible to divide it into smaller parts.

The returns have clear tendencies to cluster, and there are three clear

points where the returns have large fluctuations, as we see from plot b. The

ACF in plot c do not have any large spikes. It is hard to determine how

slowly it decays, but there seem to be several spikes with almost the same

size as the ones in the beginning. This means there could be a reason to fit

an ARFIMA model to the data. The PACF in figure d do not tell us much.

It oscilliates with no clear decay.

We estimate d and find the residuals for the ARFIMA(0, d, 0) model.

The estimate for d is 0.0545129 which indicates some long memory. We

would like to use the ACF and PACF to find out how many lags to use for

the MA and AR part. There are however no clear pattern here from figure

2, so we try several models.

In figure 3, 4 and 5 I have estimated ARFIMA(1, d, 0), ARFIMA(0, d, 1)

and ARFIMA(1, d, 1) and plotted the ACFs and PACFs of the residu-

als. We see that the ACF and PCF plots are almost identical for the

ARFIMA(1, d, 0) in figure 3 and the ARFIMA(0, d, 1) in figure 4. None

of them seem to be making an especially good fit, and the estimates of d

are lower than for the ARFIMA(0, d, 0) model. The choice of short run

dynamics clearly effects the estimation of the long memory, in other words

the number of lags for MA or AR will change the estimate of d. It can seem

as if d in ARFIMA(0, d, 0) has tried to account for some of the short memory.

However, the opposite is true for the ARFIMA(1, d, 1) model. The esti-
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Figure 1: Overview of the OSEBX
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Figure 2: ARFIMA(0, d, 0) for OSEBX
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Figure 3: ARFIMA(1, d, 0) for OSEBX
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Figure 4: ARFIMA(0, d, 1) for OSEBX
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Figure 5: ARFIMA(1, d, 1) for OSEBX

OSEBX (0,$d,$0) (1,$d,$0) (0,$d,$1) (1,$d,$1)
AIC +45667.94 +45679.75 +45681.49 +45684.01
p 0 0.07032$ 0 $0.64621$$
d 0.0545129 0.01259$ 0.01210 0.20914
q 0 0 +0.07392$ $0.78831$$

Table 2: Estimation of ARFIMA models for OSEBX

mate of d is much higher than for the three other models. But both the ACF

and PACF plots shows that there are clearer autocorrelation in the residuals

in this model than for the others, as seen in figure 5. From table 2, we can

also see that the estimates of AR and MA lags are quite low for the first

three models, but somewhat higher in the ARFIMA(1, d, 1) model, which

indicate that we can make some predictions of the returns based on the most

recent returns.

The AIC implies that the better model is the ARFIMA(1, d, 1) since this

has the lowest value. Hovever, I would like to look at some more diagnostics

for this model.
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Figure 6: Diagnostics for OSEBX
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In figure 6, I have only plotted graphs to do visual diagnostics of the

model. One usually needs to use statistical tests to formally conclude, but

the violations here are so obvious that this will not be necessary. Let us first

look at the normal Q-Q plot and the histogram of the residuals, all from

figure 6. The first should form a straight line if the residuals were normally

distributed, and the histogram should have formed a bell like shape. The

histogram shows clearly high kurtosis, in other words are there a lot more

residuals close to 0 than what should have been the case if they were nor-

mally distributed.

There are clearly autocorrelation in the squared residuals. This is also

known as Garch effect. This might tell us that we should try a variant of a

ARFIMA−GARCH model.

The squared residuals plotted against the independent variable do not

look as they should either, which tells us that they are heteroscedastic. The

residuals should have been scattered randomly, but there are several places

where the residuals lie far away from the x-axis in clusters. We remember

from the plot of the returns that there were several places where the volatility

seemed higher than for the returns overall. The peaks for the residuals seem

to be at the same places as these peaks in volatility for the returns. Our

model has clearly not been able to account for these movements.

There are some evidence of long memory in the different models. But the

estimates of d in the three first models are not high. In fact, forARFIMA(1, d, 0)

and ARFIMA(0, d, 1) the value of d is not even significantly larger than 0.

As the models do not give a very good fit with the data either, I would be

very careful about trying to interperet this as any kind of evidence that there

are long memory in the OSEBX without further investigations. This means

that it would be highly unlikely that we could find arbitrage opportunities

large enough for earning money in a market with transaction costs.
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Figure 7: Description of squared OSEBX

10.3 Squared returns of the OSEBX

We do the same analysis for the squared returns for the index at the Oslo

Stock Exchange. The initial squared returns plotted in figure 7 b shows the

same peaks as the regular return did. The ACF in c looks more like the plots

we have described for fractional time series than the ACF of the regular re-

turn did. The ACF plot decays very slowly over the 100 lags contained in

this figure, and they keep decaying slowly after this as well. The PACF has

a sharper drop.

By testing the same models as we did for the regular return, we find that

the ARFIMA(0, d, 0) seems to be the best fit, even though the differences

are not big. This model has the same problems as the model we chose for
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OSEBX
Model (0,)d,)0) (1,)d,)0) (0,)d,)1) (1,)d,)1) (5,)d,)5)
AIC 045667.94 045679.75 045681.49 045684.01 Unable
p 0 0.07032) 0 )0.64621))
d 0.0545129 0.01259) 0.01210 0.20914
q 0 0 00.07392) )0.78831))

OSEBX (0,)d,)0) (1,)d,)0) (0,)d,)1) (1,)d,)1)
AIC 045667.94 045679.75 045681.49 045684.01
p 0 0.07032) 0 )0.64621))
d 0.0545129 0.01259) 0.01210 0.20914
q 0 0 00.07392) )0.78831))

OSEBX^2 (0,)d,)0) (1,)d,)0) (0,)d,)1) (1,)d,)1)
AIC 097400.12 096954.7 096953.64 096952.69
p 0 00.0773365) 0 00.0798912)
d 0.2209035 0.2538745 )0.2546283) 0.2537898)
q 0 0 0.0755728) 0.0025993

Table 3: Estimation of models for squared OSEBX

the regular returns. Which means that the residuals are not normal or ho-

moscedastic, and that there are still some autocorrelation left. The residuals

also seems to have GARCH effects left, as the ACF of the squared residuals

are quite high.

One explanation for the GARCH effect in the residuals, could be that

the model does not account for the fact that investors may react different to

good and bad news. It is known that volatility seems to rise when investors

receive bad news, while it falls when they get good news which is found by

for example Ding, Granger and Engle [16].

The biggest difference between the models estimated for the squared re-

turns and the models estimated for the regular returns, is that the estimates

of d for the squared returns are higher. They are always significantly dif-

ferent from 0 on a 95% confidence level or more, while they were not for

the regular returns. This was not unexpected, and has been found by for

example Grau-Carles [19] in several of the world’s largest indexes.

Even though the ARFIMA model is no where near an exact fit, it seems

to be more long memory in the squared returns. The values estimated of d

here would give an H that was more than 0.7. This could be used to predict

future volatiltiy, but how well it could be done, can not be stated surely as

we have not done any tests of how good predicitons would have been here.

However, we see that it looks like we can be able to model and understand

some of the volatility in the index when we assume that it has long memory.

54



-4 -2 0 2 4

-0
.0
02

0.
00
4

0.
01
0

Normal Q-Q Plot

Theoretical Quantiles

S
am

pl
e 

Q
ua

nt
ile

s

Non-standardized residuals

y

Fr
eq
ue
nc
y

0.000 0.005 0.010

0
20
00

50
00

0 20 40 60 80 100

0.
0

0.
4

0.
8

Lag

A
C
F

Autocorrelation in squared residuals

0 2000 4000 6000 8000

0e
+0
0
4e
-0
5

8e
-0
5

Heteroscedasticity

Index

sq
ua
re
d

Figure 8: Diagnostics for squared OSEBX
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We also note that the estimates of the AR and MA lags are relatively

close to 0, and they are not always significant.

10.4 Returns of other stocks

I have then proceeded to look at ACF plots and tried to fit ARFIMA mod-

els to several stocks in the Oslo Stock Exchange to find good examples of

stocks both with and without long memory. Most stocks exhibit the same

behavior. The autocorrelation is generally low, but as far as I can see, it

may sometimes be described as slowly decaying. However, the estimates of

d are generally close to 0 for a lot of the models, but there are still some

variations within the same stock when different ARFIMA models are fit-

ted to the data. Most models are also clearly ill fitted, as the residuals have

both autocorrelation, heteroscedasticity, GARCH effects and are non-normal.

An example of a stock that shows signs of long memory is the Norwegian

Air Shutte (NAS).

The autocorrelation is low, as seen in figure 9, but at the same time, it

does not seem to decay quickly. After trying severalt ARFIMA models, the

ARFIMA(0, d, 1) seem to be the better fit from the ACF plots. It is however

not the model with the lowest AIC. This model gives an estimate of d that is

0.03. This is not particularly high, but it is statistically significant according

to the fracdiff package in R, which means it is not 0. This is the same as an

fBm with H = 0.53.

The diagnostics for the chosen model is slightly better than for other

stocks. There are still some autocorrelation in the squared residuals, and

there are signs of heteroscedasticity. The normal plots are not too far off,

even though they show some kurtosis. This is the case for all the stocks I

have analysed, but in this case, it is less prominent than for other stocks.
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Figure 9: Description of NAS
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Figure 10: Autocorrelation of ARFIMA(0, d, 1) for NAS
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Figure 11: Diagnostics for ARFIMA(0, d, 1) for NAS

Even though this stock seem to fit the chosen model pretty well, it could

just be a coincidence. When one tries several stocks, one is bound to find

something that fits the criteria just by pure chance. This is in no way a

good enough reason to conclude that there is long memory on the Oslo Stock

Exchange or in the stock NAS, but it could be.

From table 4, we can again see that the estimations of the AR and MA

lags are low in the first three models, but higher in ARFIMA(1, d, 1).

An example of a stock that do not fit the model well, and that do not

exhibit any long memory tendencies is Northland Resources (NAUR). On

the next few pages, we can see the plots used to determine which model to

use. The autocorrelation in figure 12c looks like it is decaying a little faster
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NAS (0,$d,$0) (1,$d,$0) (0,$d,$1) (1,$d,$1)
AIC +10545.61 +10544.85 +10545.14$[ +10548.7
p 0 0.04412$ 0 0.61842$$
d 6.254e+02 0.03707 0.03499 0.20171
q 0 0 +0.04895$ 0.75474$$

Table 4: Estimation of models for NAS

NAUR (0,$d,$0) (1,$d,$0) (0,$d,$1) (1,$d,$1)
AIC +4595.927 +4607.491 +4606.158 +4605.53
p 0 0.14690$ 0 $0.17748
d 1.201e+01 $0.02299 0.046250$ 0.01968$
q 0 0 +0.117353 0.02761

Table 5: Estimated models for NAUR

than the example with NAS. From using both the AIC and the ACFs and

PACFs of different models, I choose to use the ARFIMA(1, d, 0) model.

In the chosen model, the estimate of d is significantly different from 0 on

a 95% confidence level, but it only gives an H of 0.52, which means it does

not have much long memory. The fit of the model is not good either. The

autocorrelation of the regular residuals actually looks worse after differenc-

ing the data. The residuals are clearly not normally distributed. There are

som autocorrelation in the squared residuals, which indicate GARCH effects.

However, the heteroscedasticity plot is not the worst I have seen. But all in

all, it does not look like any of the models tried on these data are a good fit.

In table 6 there is a collection of estimates of d for different ARFIMA

models for several stocks. The stocks are all from the Oslo Stock Exchange.

For many of the stocks, d is estimated so close to 0 that I have set the value

as 0 in the table. If we compare with the data table, we see that the stocks

where we have estimated a value of d that is 0, we only have data from a cou-
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Figure 12: Description of NAUR
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Figure 13: Autocorrelation of ARFIMA(1, d, 0) for NAUR

Ticker Best*AIC (0,*d,*0) (1,*d,*0) (0,*d,*1) (1,*d,*1)
AUSS (0,*d,*0) 0.04436 0.05510 0.05429 0.11958
CECON (0,*d,*1) 0 0 0 0
ECHEM (1,*d,*1) 0 0 0 0
FOE (0,*d,*1) Unable 0.03348 0.04255 0.05158
GOGL (1,*d,*1) 0 0 0 10.22981
HAVI (0,*d,*1) 0 0 0.03956 0.04494
NAUR (0,*d,*1) 0.1201 10.02299 0.0462501 0.019681
NAS (1,*d,*0) 0.06245 0.03707 0.03499 0.20171
PLCS (0,*d,*0) 0.0217881 0 0 0.19106
PROS (0,*d,*0) 0 0 0 0
SN*I (0,*d,*0) 0.01434 0.02085 0.02117 Unable
TIDE (1,*d,*0) 0 0 0 0
VIZ (1,*d,*0) 0 0.01810 0.02034 10.014231

WWASA (0,*d,*0) 0 0 0 0

Table 6: Estimated values of d for all chosen stocks
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Figure 14: Diagnostics for ARFIMA(1, d, 0) for NAUR
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ple of years back, and this could mean that these stocks would have higher

estimates of d later when more data is provided.

In two cases, market ”unable” in the table, fracdiff could not provide an

estimate for the given model inputs. When testing models with more lags

from AR and MA this happend frequently.

There are a few cases, especially for the ARFIMA(1, d, 1) where the

estimates of d are pretty high. For example for GOGL, NAS and PLCS.

Only for GOGL had this model the lowest AIC value. As none of the esti-

mates of d in the other models for these stock come close to the value of d

in ARFIMA(1, d, 1), it might get us to believe that these estimates do not

provide a good description of the stock returns.

Most of the estimates of d are between 0 and 0.055. With such low esti-

mates of d, it is difficult to see how one could use this in a trading strategy

to make money when one accounts for the cost of buying and selling. But

how an arbitrage strategy in a market with transaction costs would be im-

plemented, is not discussed here. The estimates are close to what is found

for stocks in other exchanges [26] [19] [22].

This is what we expected to find, as there would not be market efficiency

at the exchange if there were long memory in the stock returns. With this

in mind, we should remember the article mentioned by Hegnar [21] where he

wrote that it is possible to beat the market. When we find estimates of H

that are close to 1
2
, the market behaves efficiently, and there should not exist

easy ways to beat the market without taking on extra risk.

10.5 Squared returns of the stocks

By using the same method as before. I have analysed the squared returns of

NAS and NAUR and chosen models for them. From the plotted autocorrela-
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Figure 15: Autocorrelations for returns and squared returns for NAS and
NAUR

tions in figure 15, it is fairly easy to see that the squared returns have a more

prominent form of the slowly decaying pattern described in autocorrelations

for long memory time series. As was also the case with OSEBX.

Both the squared returns of NAUR and NAS seem to fit best with the

ARFIMA(0, d, 0). This came both from looking at the autocorrelations of

the residuals and from the AIC values. The estimations of d do not vary

greatly between the different models shown here, and they are all higher

than in the models for the regular returns. Again does this point out that

there might be better chances of finding long memory in the stocks’ volatil-

lity than in the returns.
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NAUR^2 (0,$d,$0) (1,$d,$0) (0,$d,$1) (1,$d,$1)
AIC +5050.318 +5046.276 +5046.276 +5044.628
p 0 0.002313$ 0 0.70633$$
d 0.08987 0.088556 0.088636 0.05217
q 0 0 +0.002184 0.67003

Table 7: Estimated models for squared returns of NAUR

NAS^2 (0,$d,$0) (1,$d,$0) (0,$d,$1) (1,$d,$1)
AIC +24324.72 +24242.91 +24242.92 +24244.7
p 0 0.027872$ 0 +0.756092$
d 0.1183877 0.102905 0.103147 $0.106662
q 0 0 +0.027735$ +0.785776$$

Table 8: Estimated models for squared returns of NAS

11 Implications for investors

I found that it is very litte, if any, long memory in the returns in the Nor-

wegian stock market, and investors have to decide if it is enough to use in

an arbitrage strategy. They have to consider the transaction costs, limits to

which stocks they can trade and how often. They also need to consider if the

return from this is high enough to cover the implicit cost of using the time

of an analyst to find the best portfolios to use.

In chapter 7, I showed an example of a portfolio from Shiryaev [32]. This

only consisted of two assets. In a real market, there are several stocks, and

investors need to consider how to put this mini-portfolio together with their

other assets.

In the introduction, I mentioned an article by Hegnar [21]. He wrote

about investors that beat the market by using simple strategies based on

key ratios. In the last decades, several traders have started to trade more

often, and this should eliminate most of the simple strategies one could use
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to find arbitrage. I believe that it would be harder for an investor to use

trading strategies based on long memory, as the theory behind is difficult

to understand. This might mean that it could be easier for the traders who

use it to actually benefit from the little long memory that has been found in

these stocks, but it could also mean that the profit from using this is smaller

because it takes time to fully understand and implement the strategies.

Long memory in the volatility, as I have found in the Norwegian stock

market, could be particularly important to understand for investors manag-

ing large hedge funds. Hedge funds have a business model that heavily relies

on being able to predict risk correctly, in order to assemble portfolios that

yield high returns with very low portfolio risk. Long memory in the squared

returns would help an investor understand the risk associated with the stocks

he buys if the model gives good out-of-sample predictions for volatility. It

could help prevent large losses, and for a hedge fund, only a minor improve-

ment in the understanding of risk can yield large returns.

12 Limitations and future work

It is important to know which weaknesses and limitations the fBm gives us.

The first part of this paper discussed the properties of fBm, and then we

looked at how this would fit with known financial theory. Our main problem

was that there was possible to create arbitrage portfolios in different markets

based on the fBm movements. Even though it was mentioned that these op-

portunities would disappear with limitations on the frequency of trades and

by the transaction costs, this still creates a problem as it violates the basis

of today’s finacial theory.

We also need to see if we find evidence of this kind of behavior in reality.

I have tried to give some examples of its practical applications here, but the

results were in no way only in favour of the fBm.
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The stocks tested are not selected at random, and I have not tested all

the stocks in the Oslo Stock Exchange either, which means that we can not

conclude that all stocks would behave in the same way.

From the code written in the program R, there might be misspellings that

could have affected the results, even though I have done my best to assure

that this did not happen.

We need to assess possible problems with the methods used as well. It

is not a given that I have chosen the best fitting ARFIMA models for each

case, as the selection method is subjective. I have also kept the testing to

parsimonous models. Other methods used to estimate d for the ARFIMA

models could also have given slightly different results.

It is also not a given that the ARFIMA is the best model to use for

mdoelling the returns and squared returns in the stock market. Other mod-

els with varieties of the GARCH model is an example we could have tried.

This model is especially relevant because we saw tendencies of GARCH ef-

fects in the residuals.

Some of the series used seemet to be so short that we had troube finding

any signs of long memory in them at all. However, especially for the OS-

EBX, it would be possible to split the data into groups and estimate different

models for all of them separately.

For future work, I would test all of the stocks at the exchange if possible,

or choose a random set. The estimations could also be done with several

methods, but the most important change would be to explore the possibility

of using ARFIMA−GARCH models in the Oslo Stock Exchange.

Another interesting topic would be to investigate if there would be any

possibilities of making money from estimating these models and implement-

ing arbitrage strategies in a market with transaction costs even though none
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of the stocks seem to have much long memory. I would also like to see if

we could use the long memory in the squared returns as a tool in risk man-

agement. If this is the case, it could help investors reduce losses in their

portfolios.

13 Concluding remarks

From mathematical theory about fractional Brownian motion, we saw that

if stock returns behaved as if they were fBm, this would violate the efficient

market hypothesis. Or in other words, it would be possible to make money

in the market through arbitrage strategies.

I showed that an ARFIMA model could be used as a discrete way of

modelling both short and long memory in stock returns. A high estimate of

d would mean that the model had much long memory, and the more long

memory a stock return had, the greater was the possibility to earn money

from arbitrage strategies.

Then I estimated ARFIMA models for several stock returns in the Oslo

Stock Exchange. The estimated models were not a pefect fit for the stock

returns in any of the cases. Most of the estimates of d were relatively low,

and they mostly gave us an H between 0.5 and 0.55. This indicates some

long memory in the stock returns, but not much. It would probably not be

possible to beat the market by using this model to find arbitrage strategies

when accounting for costs of trading, but this is not investigated further in

this thesis.

However, we did find long memory in the volatility of the stocks, which

could help us to understand and predict risk better.
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14 Appendix

These are the main parts of code used to estimate models.

# READ DATA

yar=read . table ( ” http :// i c h a r t . yahoo . com/ t ab l e . csv ? s=ECHEM.OL” , sep=” , ” , header=T)

#Remove d a y s w i t h no t r a d i n g

yar ← yar [ yar$Volume !=0 , ]

#Use o n l y c o l umn w i t h a d j u s t e d c l o s e d a t a

p=yar [ , ”Adj . Close ” ]

#R e v e r s e o r d e r o f d a t a

p=p [ length (p ) : 1 ]

na . omit (p)

#Choo s e a l t e r n a t i v e 1 o r 2 :

#ALT 1 : Log r e t u r n s

r e t=d i f f ( log (p ) )

#ALT 2 : S q u a r e d l o g r e t u r n s

r e t =(d i f f ( log (p ) ) ˆ 2 )

#Remove mean

r e t=ret−mean( r e t )

par ( mfcol=c ( 2 , 2 ) )

#Show t im e s e r i e s p l o t

ts . plot (p , ylab=” Stock p r i c e ” , xlab=”Day” , main=”a” )

ts . plot ( ret , y lab=” Returns ” , xlab=”Day” , main=”b” )

#ACF and PACF

ac f ( ret , main=”c” , l ag .max=100)

pac f ( ret , main=”d” , l ag .max=100)

#FIT ARFIMA MODEL

a r f 1=f r a c d i f f ( ret , nar=0, nma=0)

summary( a r f 1 )

#Find r e s i d u a l s o f a r f i m a mode l

n=length ( r e t )

L=100

d=a r f 1$d
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fdc=d

fdc [1 ]= fdc

for ( k in 2 :L) fdc [ k ] = fdc [ k−1]∗ (d+1−k )/k

y= rep (0 ,L)

for ( i in (L+1):n){
csm=r e t [ i ]

for ( j in 1 :L) csm= csm + ((−1)ˆ j )∗ fdc [ j ] ∗ r e t [ i − j ]

y [ i ]= csm

}
par ( mfcol=c ( 1 , 2 ) )

a c f (y , main=”e” , l ag .max=100); pac f (y , main=” f ” , l ag .max=100)

#D i a g n o s t i c s

#N o rm a l i t y p l o t s o f r e s i d u a l s

par ( mfcol=c ( 2 , 2 ) )

qqnorm( y ) ; hist (y , main=”Non−s tandard i zed r e s i d u a l s ” )

#ACF o f s q u a r e d r e s i d u a l s

squared=yˆ2

ac f ( squared , main=” Autoco r r e l a t i on in squared r e s i d u a l s ” , l ag .max=100)

#H om o s k e d a s t i c i t y

plot ( squared , main=” H e t e r o s c e d a s t i c i t y ” )
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