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Abstract 

We formulate the maintenance scheduling decision as a dynamic optimization problem, subject to an 

accelerating decay. This approach offers a formal, yet intuitive, weighting of the trade-offs involved 

when deciding a maintenance schedule. The optimal maintenance schedule reflects the trade-off 

between the interest rate and the rate at which the decay accelerates. The prior reflects the alternative 

cost, since the money spent on maintenance could be saved and earn interests, while the latter reflects 

the cost of postponing maintenance. Importantly, it turns out that it is sub-optimal to have a cyclical 

maintenance schedule where the building is allowed to decay and then be intensively maintained before 

decaying again. Rather, local governments should focus the maintenance either early in the building’s 

life span and eventually let it decay towards replacement/abandonment or first let it decay to a target 

level and then keep it there until replacement/abandonment. Which of the two is optimal depends on the 

trade-off between the alternative cost and the cost of postponing maintenance. 
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1 Introduction 

Local government purpose buildings play a vital role in the production of welfare services, and 

vast resource is required to build and maintain them. Maintenance is in many cases not 

sufficient to maintain a high technical level, even in affluent countries. This has, for example, 

been thoroughly discussed in several public investigations in Norway (NOU, 2004; 

Riksrevisjonen,1 2004-2005; Arbeidstilsynet,2 2013). Despite the importance of purpose 

buildings and the widespread debate on how they are maintained, an analytical framework for 

optimal maintenance of public purpose buildings has not yet been well established. The 

contribution of this paper is to formulate the maintenance scheduling decision in a dynamic 

optimization framework. The conceptual framework we propose is widely used in studies of 

maintenance scheduling for machines (see e.g., Rapp, 1974; Pierskalla and Volker, 1976; Sethi 

and Thompson, 2000; Dogramaci and Freiman, 2004), but we are not aware of any studies that 

have used it for studying public purpose buildings.  

 

Two mechanisms drawing in opposite directions are likely to be important for the maintenance 

decision. Discounting suggests that expenditures should be postponed as long as possible, 

because money that are saved will yield interests. However, the technical decay tends to 

accelerate, which may more than offset the interest benefits from postponing the expenditures. 

The intuition is straightforward. If a wall is not painted on a regular basis (relatively cheap), 

one may have to replace it much earlier (rather expensive) owing to rapid decay.  

 

A complicating factor is that it at some point in time will be reasonable to reduce the 

maintenance activity for a building. There are at least two good reasons for this. First, demands 

for usability change over time; an old building can be perceived as out-dated and inadequate 

even though it is in excellent technical condition. Second, the need for purpose buildings 

changes over time. Consider, for example, a local government that owns and operates a school 

in a small village. Owing to an ageing population, the local government knows that there will 

be too few children left to keep the school running in ten years. The fact that purpose buildings 

at some point in time most likely will be replaced or abandoned regardless of their technical 

condition illustrates that identifying an optimal maintenance and replacement strategy is far 

from trivial.  

 

We consider a local government that is to produce a welfare service in a purpose building (e.g., 

schooling or care for the elderly) as cost efficiently as possible. For simplicity, we assume the 
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amount and quality of the service to be governed by central standards and thus to be exogenous 

to the model. We also assume other costs to be fixed, so that maintenance is the only decision 

variable. Importantly, public buildings must be above a threshold that defines an “acceptable 

condition” throughout the period it is used. The threshold can be thought of as the lowest 

condition where the service production remains unaffected by the building condition (since the 

production is assumed exogenous).  

 

A model for optimal maintenance scheduling tries to answer how much maintenance effort to 

apply at different stages of a building’s life cycle. Should the local governments keep the 

standards high initially, and then allow it to decay towards the end, or allow it to decay towards 

the threshold condition before maintaining it at that level throughout the remaining life-span? 

The solution of the mathematical model gives an optimal maintenance schedule that reflects the 

trade-off between the interest rate and how fast the decay accelerates.  This result fits well with 

the intuitive reasoning above, since the interest rate makes spending in the future less costly 

than spending today, while the accelerating decay introduces a cost of postponing maintenance. 

Hence, the model weighs these arguments and shows how the optimal strategy varies with their 

relative importance. 

 

The maintenance cost function plays a vital role in the model, and this can take various forms, 

depending on building type and cost structure in the local government. We will thus study two 

formulations that are widely used in economics; a linear and a quadratic cost function. A linear 

cost function gives a bang-bang solution, where the maintenance effort is either “on” or “off” 

and this formulation of the cost function thus describes the choice of timing in a clear-cut 

manner. It should be noted, though, that when maintenance is said to be “off”, this must be 

interpreted on an aggregate level. Everyday actions in order to keep operations running (e.g., 

changing lightbulbs or repairing broken windows)  will, of course, still take place. If we employ 

a quadratic cost function, the trade-off is also apparent, albeit less clear-cut. In this case the 

optimal maintenance effort either increases or decreases throughout the life-span of the 

building, depending on which of the factors in the trade-off that dominates. 

 

Our findings are of importance for policy makers and facility managers, since they provide 

guidance for how maintenance should be planned. Efficient maintenance scheduling is 

important, since local governments have limited funds and need to “make every dime count” in 

order to provide good services to the public. If money is “wasted” on a sub-optimal maintenance 
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strategy, there are fewer resources left to employ teachers or nurses and for purchase of 

necessary equipment.  

 

Since different buildings will have different rates of accelerating decay, careful considerations 

must be made for each building as to whether it makes sense to schedule most of the 

maintenance effort towards the start or end of the period the building is in use. Importantly, the 

model clearly shows that maintenance effort should be focused either at the start or towards the 

end of the building’s serving, rather than e.g., first letting it decay, then putting in an all-out-

effort to improve it and allowing it to decay again. This result is interesting, since the findings 

in public investigations such as NOU (2004), Riksrevisjonen (2004-2005), and Arbeidstilsynet 

(2013) suggests that this cyclical strategy seem to be widely used. Our results thus suggest that 

local governments can benefit greatly from planning maintenance activity over the full life-

span of facilities rather than planning maintenance activities over shorter time horizons. 

 

We keep the model simple and highly stylized on purpose. In particular, we do not go into 

details about how maintenance should be implemented and how different types of maintenance 

may affect the decay in various ways, but restrain ourselves to discussing maintenance 

scheduling on a strategic and aggregated level. Our intention with this paper is thus not to 

answer all questions regarding the optimal maintenance strategy, but to provide a formal, yet 

intuitive, framework for further analysis of maintenance scheduling. The model can be extended 

and generalized in several interesting directions, and thus has the potential to paint a more 

realistic picture of the optimal maintenance strategy. In addition to deriving the base model, we 

will present several suggestions for further research. 

 

2 Background  

 

The public reports mentioned in the introduction have also sparked an academic debate. A 

central point is that carrying a maintenance backlog is essentially the same as running a deficit, 

in the sense that expenditures are postponed. Borge and Hopland (2012) argue that this is owing 

to myopic politicians who are unable to make long-run prioritizations, and thus favor other 

expenditures that are more visible to voters in the short-run. This argument implies that the 

maintenance backlog at least to some extent is owing to irrational behavior from the policy 

makers. Their theoretical predictions are also backed up by results from an empirical 

investigation. Hopland (2015) argues, however, that Goodspeed’s (2002) model where local 
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governments use deficits strategically to extract additional funds (bailouts) from the central 

government can also explain maintenance backlogs. He thus argues that decay of public 

buildings is not necessarily a consequence of myopia or irrationality, but can be owing to 

rational (and rather cynical) behavior. Importantly, Borge and Hopland (2012) and Hopland 

(2015) only attempt to explain why one might see deviations from some optimal level of 

maintenance, without attempting to define what is optimal. The present paper’s discussion of 

an optimal maintenance strategy thus complements both of these studies.  

 

Other studies look into the organizational framework, and suggest that differences in 

organizational structure and competence are vital factors for the successfulness of local 

government facility management. Haugen (2003) reviews the historical development of local 

government facility management and conclude that an increasing share of the  local 

governments centralizes the facility management, and more services are contracted out to 

external companies. The driving force behind this development is a wish for a more professional 

and competent facility management. Hopland (2014b) looks more closely into the local 

governments’ choice of structure for the facility management, i.e., centralized or decentralized. 

He argues that even though most local governments have chosen to centralize the facility 

management it is not given that “one size fits all”, but that characteristics of the local 

government will decide which is best. Moreover, his empirical analysis shows that local 

governments actually seem to choose the structure of their facility management at least partly 

based on such characteristics. The focus in these studies are on describing institutional settings 

that might stimulate good maintenance, while the optimal strategy is left undecided. Hence, the 

present paper also complements this literature. 

 

A concern is that poor buildings may affect service production. In particular, education has 

received much attention, and some suggest that improving environmental conditions may bring 

gains (Earthman, 2002, Buckley et al., 2005; Mendell and Heath, 2005). However, recent 

empirical studies in affluent countries find very little effect from building conditions and 

investment in school facilities on student achievement (Hopland 2012; 2013; Cellini et al., 

2010). Hopland (2012) suggests that school buildings in affluent countries are “too good to 

matter”, i.e., that the difference between “poor” and “good” buildings is not big enough to affect 

achievement.3  This implies that the production of services is not affected by the technical 

condition of purpose buildings as long as the condition is above a threshold.   
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Another strand of the literature studies how the design of school buildings relates to changes in 

pedagogical practices (see, e.g., Bjurström 2004; Dudek, 2000; OECD, 2001). Importantly, 

users may perceive schools in excellent technical condition as poor if the design is not adapted 

to the pedagogic ideas of the time. Thus, one must also take the usability of facilities into 

account (see, e.g., Hansen et al., 2012; Lindahl et al., 2012). Health care facilities have also 

received quite some attention. An important emphasis in this literature is that it is important to 

take an integrated approach to facility management, and see maintenance activity in relation to 

the core activities that take place in the facilities. Recent contributions include a series of papers 

by Lavy and Shohet (2007; 2009; 2010). 

 

3 A dynamic model for optimal maintenance scheduling 

 

Central assumptions 

Before deriving the model, we clarify our central assumptions, all based on lessons from the 

literature discussed above. A common denominator for many of the assumptions is that the 

model describes a deterministic situation where all relevant information is available to the 

decision makers. It is possible to extend the model by loosening these assumptions, but this is 

beyond the scope of the present paper and left for future research. 

 

Since the problem at hand is fundamentally similar regardless of which type of public purpose 

building we study, we stick to a general and simple formulation where the local government is 

responsible for the production of a welfare service, produced within a single purpose building. 

The demanded amount and quality of the service production is exogenous to the model, and 

can be thought of as decided by the central government. This is a reasonable assumption in 

many countries, such as Norway. As discussed in the literature review, purpose buildings seem 

to serve their purpose well, as long as the building condition is above a lower limit for 

acceptable conditions (Hopland, 2012). We thus require that the building condition stays above 

a threshold that secures the exogenous demands for the public service. In order to keep things 

simple, we assume that the threshold is known and constant. 

 

As mentioned in the introduction, one of the major problems with low maintenance is that it 

creates a maintenance backlog and that accelerating decay gives that this is expensive to cover 

(see e.g., Hopland, 2015). For simplicity, we assume that the local government knows how the 

building will decay over time, under different maintenance schedules. This is a rather mild 
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assumption, given that local governments have access to engineers who can give good advice 

on these issues. 

 

Owing to changing needs and different demands for usability (see Hansen et al., 2012; Lindahl 

et al., 2012 for discussions of usability), buildings are eventually taken out of service or replaced 

regardless of the technical condition. We assume that the date of abandonment or replacement 

is determined by the local government (i.e., the horizon is known and fixed), such that the 

horizon can be taken into account when scheduling the maintenance.  

   

As a further simplification, we do not consider a resale option in this model. This is admittedly 

a strong assumption, but it is not entirely without justification. First, the resale market for such 

buildings is quite limited. Second, since maintenance of purpose buildings should be related to 

the service production (Lavy and Shohet, 2007; 2009; 2010), it is not obvious that all 

maintenance activity will increase the resale value. The reason is that the new owners are not 

likely to use the building for the same purposes, but rather re-build it, e.g., as apartments. Since 

a change of purpose will require substantial rebuilds of the interior, such investors are probably 

only concerned with the technical condition of fundamentals such as the roof and outer walls. 

Hence, we choose to omit the real estate market from our simple base model. 

 

Model and analysis 

In this section, we formalize the intuition presented above and formulate it as a dynamic 

optimization problem where a local government decides the maintenance strategy for a new 

purpose building. Maintenance and decay takes place in continuous time, similar to studies of 

optimal maintenance and replacement of machines (see e.g., Rapp, 1974; Pierskalla and Volker, 

1976; Sethi and Thompson, 2000; Dogramaci and Freiman, 2004). 

 

The local government’s objective is to maximize production q less the maintenance cost ܿሺݑሻ 

and other production costs  ܿ̅ (e.g., wages) 

න݁ି௥௧ሺݔܽ݉

்

଴

ݍ െ ܿሺݑሻ െ ܿ̅ሻ݀(1) ݐ

As discussed above, q is constant, and we also assume this to be the case for ܿ̅. This reduces 

the complexity of the analysis substantially, since constants have no effect on the maximization 

problem. We maximize the objective function with respect to the maintenance ݑ. ܿሺݑሻ is the 
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cost function for maintenance, and we will explore both a linear and quadratic specification. r 

is the real interest rate and t is time (T denotes the horizon). The solution must obey 

ሺ݅ሻ	ݔሶ ൌ ݂ሺݔ, ,ሻݑ ሺ݅݅ሻ ሺ0ሻݔ ൌ ,଴ݔ ሺ݅݅݅ሻ ଴ݔ ൒ ݔ ൒ (2) ݔ̅

where x is the condition of the building and (i) is a differential equation that describes how the 

building condition develops over time. (ii) defines the initial condition of the building condition, 

and (iii) tells that the building condition at any time must be better than the lower threshold 

required to secure the exogenously given service production, while it cannot be better than the 

new condition.   Maintenance cannot be negative and also has an upper limit, owing to budget 

and technical constraints as well as political priorities 

௠௔௫ݑ ൒ ݑ ൒ 0 (3)

The evolution of the building condition is fully described as 

݂ሺݔ, ሻݑ ൌ ݑ െ ݉ଵ െ ݉ଶሺݔ଴ െ ሻ (4)ݔ

There is an ever-present downward drift at rate ݉ଵ, i.e., standard wear and tear as the building 

is used and gets older. In addition, there is an accelerating drift that is scaled by ݉ଶ and 

proportional to the distance to the initial condition ݔ଴.  In other words; the further the condition 

is from the initial condition, the more rapidly the building decays. Maintenance activity (i.e., 

ݑ ൐ 0) has a positive impact on the building condition.  

 

In order for our study to be of  any empirical interest, we must assume that the life-cycle of the 

building is of such length that maintenance is required, i.e., that T is larger than the time it takes 

the condition to decay to ̅ݔ  under no maintenance. Otherwise, we would reach the trivial and 

empirically irrelevant solution that ݑ ൌ 0 for all t is the only solution of the optimization 

problem. Mathematically, the assumption is 

ܶ ൐
1
݉ଶ

ln ቆ
1
݉ଵ

ሺ݉ଵ ൅ ݉ଶሺݔ଴ െ ሻሻቇ (5)ݔ̅

In other words, with ݑ ൌ 0 over the entire period, the condition ݔ ൒  is not satisfied when (5) ݔ̅

holds and thus all feasible solutions demand maintenance at some point.  

 

An important point is that since the building is to be replaced or abandoned at time T, it will in 

a cost minimizing setting be a pure waste to maintain the building to such extent that the 

condition is above the lower threshold at the end of the life-cycle. Hence, we assume the state 

variable to be at its lower limit at ܶ, ݔሺܶሻ ൌ 	   .ݔ̅
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In order to secure a flexible model formulation, we allow the local government not only to 

perform preventive maintenance, but also to improve the condition of the building, i.e.,  

௠௔௫ݑ ൐ ݉ଵ ൅ ݉ଶݔ଴ (6)

This means that the local government can in principle restore the building back to “good as 

new” condition (keeping in mind that the condition cannot be better than ݔ଴).   

 

While the structure of the problem in (1)-(4) is relatively simple, the constraints on the state 

(here: building conditions) and control (here: maintenance) variables in (2) and (3) add 

substantial complexity to the problem. While constraints on the control is not problematic in 

optimization problems like this, constraints on the state  require careful treatment. To deal with 

the state constraints in (2) we thus use the indirect adjoining method (see, e.g., Sethi and 

Thompson, 2000).  

 

We find it instructive to introduce the optimization problem step-wise. Hence, we start out by 

solving the problem as if there are no constraints on the building condition and rather introduce 

the constraints below. In particular, the constraint-free solution is often relevant on intervals 

where no constraints are binding (free intervals). The Hamiltonian is given by 

,ݔሺܪ ,ݑ ሻߣ ൌ 	െ݁ି௥௧ܿሺݑሻ ൅ ߣ ൫ݑ െ ݉ଵ െ ݉ଶሺݔ଴ െ ሻ൯ (7)ݔ

 is the costate variable. We have ߣ

௨ܪ ൌ െ݁ି௥௧ܿ௨ ൅ (8) ߣ

where the subscript denotes the partial derivative. The costate along the optimal path is 

governed by 

ሶߣ ൌ െܪ௫ ൌ െ݉ଶ(9) ߣ

which has the solution 

ሻݐሺߣ ൌ ଴݁ି௠మ௧ (10)ߣ

The costate is in economics commonly referred to as the shadow price, and in our case it 

illustrates the cost (benefit), in terms of increased (reduced) decay, from reduced (increased) 

maintenance. Interpreted in terms of capital theory, the building condition ݔ is a form of capital, 

and maintenance adds value to the capital stock. The shadow price is interpreted as the return 

on investment in ݔ, and from (10) we see that the return decay with rate ݉ ଶ. Before proceeding, 

it is useful to assume a specific function for the maintenance cost function. In the remainder of 

the paper, we will discuss two cases, a linear and a quadratic functional form.  
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Linear cost function  

We start out by a simple linear specification of the maintenance cost function  

ܿሺݑሻ ൌ (11) ݑ݌

where p is the real unit price of maintenance at any point in time. In the case with linear cost 

function, the optimal control is of bang-bang type. This means that, with no state constraints, 

we will have ݑ ൌ ݑ ௠௔௫ if (8) is positive andݑ ൌ 0 if (8) is negative. (8) can only be zero over 

an interval of time in the special case where the interest rate is equal to the parameter for decay 

acceleration, i.e., 

଴݁ି௠మ௧ߣ ൌ ݁ି௥௧݌ ⇒ ݎ ൌ ݉ଶ 

In this special case, (1) is invariant to any feasible maintenance schedule because the return on 

maintenance exactly offsets alternative costs. Nevertheless, ݎ ൌ ݉ଶ is unlikely to hold exactly.  

 

Importantly, with ݎ ് ݉ଶ, (8) switches sign only once because when we insert from (10) and 

(11) it is monotonic in ݐ. and the optimal control has at most one shift from its minimum to its 

maximum value or vice versa. It can be shown that if ݎ ൐ ݉ଶ, we have ݑ ൌ 0 initially and until 

the switch time; if ݎ ൏ ݉ଶ, we have ݑ ൌ  ,௠௔௫ initially and until the switch time. In both casesݑ

the maintenance level is at the same level ሺݑ௠௔௫ሻ, but in the first case, all maintenance effort is 

carried out at the beginning of the building’s life time, while in the latter case, all effort is 

carried out at the end of the building’s life time. That the optimal solution hinges on the relative 

strength between r and ݉ଶ has some intuition to it. Whereas r measures how fast future 

maintenance costs wear down,  ݉ଶ measures how fast the decay-process accelerates, and thus 

how fast future maintenance needs increases. If future maintenance costs wears down faster 

than the maintenance needs increase ሺݎ ൐ ݉ଶ), the maintenance effort will be postponed for as 

long as possible; in the opposite case ሺݎ ൏ ݉ଶሻ, the maintenance will be carried out as soon as 

possible.  

 

The solution above presents important intuition, but does not fulfill the requirements from (2). 

In order to pursue the linear model with state constraints properly, we need to introduce the 

Lagrangian given by  

,ݔሺܮ ,ݑ ,ߣ ,ଵߟ ଶሻߟ ൌ ,ݔሺܪ ,ݑ ሻߣ ൅ ,ݔଵ݂ሺߟ ሻݑ െ ,ݔଶ݂ሺߟ ሻ (12)ݑ

where ߟଵ and ߟଶ are multipliers for the constraints  ݄ଵ ൌ ݔ െ ݔ̅ ൒ 0 and ݄ଶ ൌ ଴ݔ െ ݔ ൒ 0. In 

	 ଶ are multiplied withߟ ଵ andߟ  ,(12) ሶ݄ ଵ ൌ ݂ሺݔ, 	 ሻ andݑ ሶ݄ ଶ ൌ െ݂ሺݔ, ,ݔሺܪ  ., respectively	ሻݑ ,ݑ  ሻߣ
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is the Hamiltonian as presented in (7). In (12), we have omitted the constraints on the control 

variable to avoid excessive notation; the control constraints (3) are readily imposed directly.  

 

Necessary conditions for an optimal solution include maximization of the Hamiltonian and the 

Lagrangian. Thus, on any free interval where the state constraints do not bind, the optimal 

control is the bang-bang solution, as discussed above, i.e., ݑ ൌ 0 or ݑ ൌ  ௠௔௫. The Hamiltonianݑ

should be continuous along the optimal path. The equation governing the costate along the 

optimal path is 

ሶߣ ൌ 	െܮ௫ ൌ െܪ௫ ൅ ݉ଶߟଵ െ ݉ଶߟଶ (13)

There are complementary slackness conditions on the state constraint multipliers: 

ଵߟ ൒ 0, ݔଵሺߟ െ ሻݔ̅ ൌ 0, ଵሶߟ ൑ 0

ଶߟ ൒ 0, ଴ݔଶሺߟ െ ሻݔ ൌ 0, ଶሶߟ ൑ 0 
(14)

Finally, we have jump conditions on the costate variable at times ߬௕௢௨௡ௗ when a state constraint 

becomes binding 

lim
ఢ→଴

ሺ߬௕௢௨௡ௗߣ െ ߳ሻ ൌ 	 lim
ఢ→଴

ሺ߬௕௢௨௡ௗߣ ൅ ߳ሻ ൅ ௜ሺ߬௕௢௨௡ௗሻߞ
߲݄௜ሺ߬௕௢௨௡ௗሻ

ݔ߲
 

(15)

where ݄௜ denotes constraint ݅, and ߞ௜ is a jump parameter with complementary slackness at 

times ߬௕௢௨௡ௗ. Sethi and Thompson (2000) provide a more comprehensive treatment.  

 

The derivative of ݄ଵ in (15) is 1, and of ݄ଶ is െ1. Hence, when constraint ݅ becomes binding, 

(15) simplifies to 

lim
ఢ→଴

ሺ߬௕௢௨௡ௗߣ െ 	߳ሻ ൌ 	 lim
ఢ→଴

ሺ߬௕௢௨௡ௗߣ ൅ ߳ሻ േ ௜ሺ߬௕௢௨௡ௗሻ (16)ߞ

(16) imply that the costate is discontinuous at times ߬௕௢௨௡ௗ. However, the jump parameters 

ensure that the Hamiltonian remain continuous if the optimal control shifts discontinuously 

when constraints become binding (at ߬௕௢௨௡ௗ). In problems without state constraints (and thus, 

without jump parameters), the optimal control can only shift in a discontinuous fashion if ܪ௨ ൌ

0. 

 

The building condition can at a given time be either in the interior where no constraints are 

binding and the optimal maintenance level is either ݑ ൌ 0 or ݑ ൌ  ௠௔௫, or at a boundary whereݑ

one of the constraints binds. However, the maximization problem along the constraints is also 

linear in maintenance, and optimal maintenance is still of bang-bang type. If the upper 

constraint is binding, we have ݂ሺݔ଴, ሻݑ ൑ 0 which implies ݑ ൑ ݉ଵ ൏  ௠௔௫, i.e., the localݑ
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government can either hold the condition constant at “good as new level” or let it start to decay. 

Alternatives for the bang-bang maintenance are then ݑ ൌ 0 or ݑ ൌ ݉ଵ. If the lower constraint 

is binding, we have ݂ሺ̅ݔ, ሻݑ ൒ 0 which implies ݑ ൒ ݉ଵ ൅݉ଶሺݔ଴ െ ሻݔ̅ ൐ 0, i.e., the local 

government at least has to maintain the building to such extent that the condition is constant at 

the lower bound. Alternatives for the bang-bang maintenance are then ݑ ൌ ݉ଵ ൅݉ଶሺݔ଴ െ  ሻݔ̅

or ݑ ൌ   .௠௔௫ݑ

 

We proceed as follows. First, we assume that there is exactly one control shift (like in the 

constraint free solution) and characterize this solution. Next, we show that additional shifts are 

sub-optimal. At ݐ ൌ 0, the upper constraint (ݔ ൌ  ଴) is active. The initial maintenance level isݔ

thus either ݑ ൌ ݉ଵ (we call it alternative ܽ) or ݑ ൌ 0 (alternative ܾ). In alternative ܽ, assuming 

there is exactly one maintenance shift, we will have ݑ ൌ ݉ଵ until the switch time ݐ௔, when the 

maintenance shifts to ݑ ൌ 0. After the shift, the building condition descends to the given 

terminal state ݔሺܶሻ ൌ 	 ݑ In alternative ܾ, we will have .ݔ̅ ൌ 0 until ݔሺݐሻ ൌ  which ,ݔ̅

characterizes the switch time ݐ௕ when the maintenance shifts to ݑ ൌ ݉ଵ ൅݉ଶሺݔ଴ െ  ሻ. Noteݔ̅

that in both alternatives, we have ݑ ൌ 0 for equally long periods (the time it takes the state to 

descend from the upper to the lower constraint under ݑ ൌ 0). We denote the length of this time 

interval ߬ 

߬ ൌ
1
݉ଶ

ln ቆ
1
݉ଵ

൫݉ଵ ൅ ݉ଶሺݔ଴ െ ሻ൯ቇ (17)ݔ̅

In order to simplify notation in the remaining discussion, we define 

௔ݑ ൌ ݉ଵ 

௕ݑ ൌ 	݉ଵ ൅ ݉ଶሺݔ଴ െ  ሻݔ̅
(18)

Note that (18) states unambiguously that the required maintenance activity is lower if 

maintenance takes place early in a building’s life span than late (i.e., ݑ௔ ൏  ௕), which is aݑ

consequence of the accelerating decay. If we insert from (18) in (17), we arrive at the useful 

expression 

߬ ൌ
1
݉ଶ

ln
௕ݑ
௔ݑ

 (19)
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Figure 1: The figure illustrates alternative paths a and b in state-time space. 

 

In order to determine which of the alternatives a and b that is optimal, we compare the value of 

(1) along the alternative paths. Note that the constants are omitted from the discussion as these 

do not affect the solution. Alternative paths a and b are illustrated in figure 1, with ݔ along the 

vertical axis and ݐ along the horizontal axis. The values along the path of the alternatives are 

given by 

௔ܸ ൌ 	න െ݁ି௥௧ݑ݌௔
்ିఛ

଴
ݐ݀ ൅	න െ݁ି௥௧ݑ݌଴ ݐ݀

்

்ିఛ
ൌ
݌
ݎ
௔൫݁ି௥ݑ

ሺ்ିఛሻ െ 1൯	

௕ܸ ൌ 	න െ݁ି௥௧ݑ݌଴	݀ݐ
ఛ

଴
൅	න െ݁ି௥௧ݑ݌௕݀ݐ

்

ఛ
ൌ
݌
ݎ
௕ሺ݁ି௥்ݑ െ ݁ି௥ఛሻ 

(20)

where ݑ଴ ൌ 0. Alternative ܽ is optimal if the following difference is positive: 

௔ܸ െ 	 ௕ܸ ൌ 	
݌
ݎ
൫݁ି௥ሺ்ିఛሻ െ 1൯ሺݑ௔ െ  ௕݁ି௥ఛሻݑ

(21)

The first term is negative; the sign thus depends on ݑ௔ െ	ݑ௕݁ି௥ఛ.  We know that ݑ௔ ൏  ௕, butݑ

also have to take into account the discount factor ݁ି௥ఛ, since postponing expenditures offer the 

possibility to earn interest on the money. We use (19) and have 

݁ି௥ఛ ൌ ൬
௔ݑ
௕ݑ
൰
௥ ௠మൗ

 
(22)

that yields  
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௔ݑ െ	ݑ௕݁ି௥ఛ ൌ ௔ݑ െ	ݑ௕ ൬
௔ݑ
௕ݑ
൰
௥ ௠మൗ

ൌ ௔ݑ ቆ1 െ ൬
௔ݑ
௕ݑ
൰
௥ ௠మൗ ିଵ

ቇ (23)

From (23), it is clear that the difference ௔ܸ െ 	 ௕ܸ is zero if ݎ ൌ ݉ଶ. If ݎ ൐ ݉ଶ, the last exponent 

ݎ) ݉ଶൗ െ 1ሻ is positive, and with ݑ௕ ൐ ௔ݑ ൐ 0, (23) is positive and (21) is negative. Hence, ݎ ൐

݉ଶ yields ௔ܸ ൏ ௕ܸ.  In a similar fashion, if ݎ ൏ ݉ଶ, ௔ܸ ൐ 	 ௕ܸ. If the interest rate wears down 

future maintenance costs faster than the accelerating decay increases maintenance needs (i.e., 

ݎ ൐ ݉ଶ), maintaining now is more costly than to postpone maintenance, and we have ݑ ൌ 0 

initially and until the switch time (path b). In the opposite case (ݎ ൏ ݉ଶ), maintaining now is 

less costly than to postpone maintenance, and we have ݑ ൌ  ௔ initially and until the switchݑ

time. The intuition is the same as when no constraints were imposed. 

 

Until now, we have considered a single-shift policy, and described the solution under this 

restriction. Importantly, the model allows the local government to shift the maintenance level 

as many times as it desires. However, we will now show that the single-shift policy is in fact 

the optimal strategy.  

 

 

Figure 2: Illustration of alternative paths c (left panel) and d and e (right panel) in time-state 

space. 
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We start out by considering the case with two switches, with ݑ ൌ ݑ ,∗ݐ ௔ up to some timeݑ ൌ 0 

from ݐ∗ to ݐ∗ ൅ 	߬, and ݑ ൌ ∗ݐ ௕ fromݑ ൅ 	߬ to. The case is presented in Figure 2 (left panel). 

The value along the path (which we label alternative ܿ) is given by 

௖ܸ ൌ 	න െ݁ି௥௧ݑ݌௔݀ݐ
௧∗

଴
൅	න െ݁ି௥௧ݑ݌଴ ݐ݀

௧∗ାఛ

௧∗
൅ න െ݁ି௥௧ݑ݌௕݀ݐ

்

௧∗ାఛ
 (24)

The derivate of (24) with respect to ݐ∗ is zero if ݎ ൌ ݉ଶ  can otherwise have either sign 

depending on the parametrization. That is, the value along path ܿ either increases or decreases 

with ݐ∗ throughout, and the optimal ݐ∗ is thus either ݐ∗ ൌ 0 (alternative ܽ ) or ݐ∗ ൌ ܶ (alternative 

ܾ). 

 

Next, we look at the case with multiple shifts. In alternative ܽ, the building condition follow 

the upper boundary with ݔሶ ൌ 0 from ݐ ൌ 0 to ݐ ൌ ܶ െ ߬. Consider an alternative path 

(alternative ݀) where the policy at a given time (ݐௗ) shifts to ݑ ൌ 0, whence the condition 

decays to ݔ ൌ ݑ ௗ. The policy shifts again, toݔ ൌ  and the ,(ௗ is inner4ݔ the only option if) ௠௔௫ݑ

condition improves to ݔ ൌ ௗݔ ଴. In what follows, we assumeݔ ൌ 	  to avoid unnecessary ݔ̅

complications, but the argument holds for any ݔௗ. We further assume ݐௗ ൌ 0 without loss of 

generality. The path of alternative ݀ is illustrated in Figure 2, which  also shows the part of the 

alternative ܽ path that we will compare alternative ݀ to.  The relevant part of the alternative ܽ 

path is for the occasion labeled alternative ݁. 

 

In alternative ݀, the policy ݑ ൌ  ௠௔௫ will last as long as it takes the condition to improve fromݑ

 ଴. We denote the interval ߬∗ and haveݔ to ݔ̅

߬∗ ൌ
1
݉ଶ

ln ൬
௠௔௫ݑ െ ௔ݑ
௠௔௫ݑ െ ௕ݑ

൰ (25)
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Consider the difference of the values along the paths: 

ௗܸ െ 	 ௘ܸ ൌ 	න െ݁ି௥௧ݑ݌଴݀ݐ
ఛ

଴
൅	න െ݁ି௥௧ݑ݌௠௔௫ ݐ݀

ఛା ఛ∗

ఛ
െ න െ݁ି௥௧ݑ݌௔݀ݐ

ఛାఛ∗

଴
	

ൌ 	
݌
ݎ
ቀሺݑ௠௔௫ െ ௔ሻ݁ି௥ݑ

ሺఛାఛ∗ሻ െ ሺݑ௠௔௫݁ି௥ఛ െ 	௔ሻቁݑ

ൌ 	
݌
ݎ
	൭ݑ௔ ൅ ൬

௔ݑ
௕ݑ
൰
௥ ௠మൗ

൫	ሺݑ௠௔௫ െ ௔ሻݑ
ଵି௥ ௠మൗ ሺݑ௠௔௫ െ ௕ሻݑ

௥ ௠మൗ െ  ௠௔௫൯൱ݑ

(26)

In the last expression of (26), we have substituted from (22) and (25). We see that ௗܸ ൌ 	 ௘ܸ if 

ݎ ൌ ݉ଶ. Primarily, we are interested in (26) with ݎ ൏ ݉ଶ. The reason is that it is in this case 

the local government will start out with positive maintenance and move along the upper 

boundary for the condition initially. Note that (26) is zero with ݑ௔ ൌ  ௕. From (18), we haveݑ

௕ݑ ൐ ݎ ௕ is negative underݑ ௔. The derivative of (26) with respect toݑ ൏ ݉ଶ and ݑ௕ ൐ ௔ݑ ൐ 0. 

Because (26) decreases monotonically along ݑ௕ from zero at ݑ௔ ൌ ௕, we conclude that ௗܸݑ ൏

௘ܸ. Hence, in-between shifts along path ܽ is sub-optimal. 

 

In alternative ܾ, the building condition follows the lower boundary with ݔሶ ൌ 0 from ݐ ൌ ߬ to 

ݐ ൌ ܶ. Similar to the discussion of alternatives ݀  and ݁ , consider the alternative path (alternative 

݂) where the policy at a given time shifts to ݑ ൌ ݔ  until	௠௔௫ݑ  ௠௔௫ and remains atݑ ൌ  ଴. Theݔ

policy shifts again to ݑ ൌ 0 and the building condition decays back to the lower boundary (ݔ ൌ

ݎ We are primarily interested in alternative ݂ under .(ݔ̅ ൐ ݉ଶ (under which alternative ܾ is 

optimal). We compare ݂ with the relevant part of alternative ܾ, for the occasion labeled 

alternative ݃. Difference in value along the paths is given by: 

௙ܸ െ 	 ௚ܸ ൌ 	න െ݁ି௥௧ݑ݌௠௔௫݀ݐ
ఛ∗

଴
൅ න െ݁ି௥௧ݑ݌଴ ݐ݀

ఛ∗ାఛ

ఛ∗
െ න െ݁ି௥௧ݑ݌௕݀ݐ

ఛ∗ାఛ

଴
 

(27)

From an argument similar to that following (26), we can show that alternative ݃ is optimal. 

Hence, in-between shifts along is sub-optimal also in this case.5  

 

We are now ready to sum up our results for the linear model. An important finding is that 

cyclical maintenance is sub-optimal, and that maintenance effort should rather be focused either 

at the start or towards the end of the building’s serving. The solution depends on the relationship 

between the interest rate and the rate at which the state accelerates away from the initial state. 

Thus, we have two potential solutions. If ݎ ൐ ݉ଶ, we have ݑ ൌ 0 initially and until the switch 

time; if ݎ ൏ ݉ଶ, we have ݑ ൌ  ,௠௔௫ initially and until the switch time. The result is intuitiveݑ

because the interest rate r reflects the cost of spending now rather than later, while the parameter 
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for decay acceleration ݉ଶ gives the cost of postponing maintenance rather than maintaining 

now. Whereas the interest rate is easy to observe empirically, assessing the size of the parameter 

݉ଶ is more difficult, since different buildings can have varying acceleration rate. Hence, 

planners need to consider this relationship when scheduling the maintenance for each building.  

 

Quadratic cost function  

We next turn the attention to the solution of the free optimization problem with a quadratic cost 

function 

ܿሺݑሻ ൌ ଶ (28)ݑ݌

Maximization of the Hamiltonian (requires (8) to be zero) yields the optimal control on the 

form 

ሻݐሺݑ ൌ
଴ߣ
݌2

݁ሺ௥ି௠మሻ௧ 
(29)

If we insert (29) into the equation for ݔሶ  (see (2) and (4)), we obtain an expression for the optimal 

state path: 

ሻݐሺݔ ൌ ଴ݔ ൅	
݉ଵ

݉ଶ
൅	

଴ߣ
ݎሺ݌2 െ 2݉ଶሻ

݁ሺ௥ି௠మሻ௧ ൅ ݇݁௠మ௧ (30)

where ݇ is an integration constant. The two unknowns ߣ଴ and ݇ can be determined from the 

boundary conditions on ݔ. From ݔሺ0ሻ ൌ  ଴ we haveݔ	

	݇ ൌ
଴ߣ

ሺ2݉ଶ݌2 െ ሻݎ
െ
݉ଵ

݉ଶ
 (31)

From ݔሺܶሻ ൌ 	  we then have ,ݔ̅

଴ߣ ൌ ሺ2݉ଶ݌2	 െ ሻݎ ൬ݔ଴ െ ݔ̅ ൅
݉ଵ

݉ଶ
ሺ1 െ ݁௠మ்ሻ൰ ൫݁ሺ௥ି௠మሻ் െ ݁௠మ்൯

ିଵ
 (32)

Note that if ݎ ൐ ݉ଶ, ݑሺݐሻ increases over time; if ݎ ൏ ݉ଶ, ݑሺݐሻ decreases over time; and if ݎ ൌ

݉ଶ, ݑሺݐሻ is constant. While the nature of the optimal maintenance schedule in (29) is 

significantly different from the optimal schedule in the linear model, they do share some 

common features. They depend critically on the relationship between ݎ and ݉ଶ, and the 

dependence is similar in that when, say, the interest rate is comparatively large, most of the 

maintenance effort occurs late. It turns out that for many reasonable parameterizations of the 

problem, the solution in (29) and (30) abides the constraints (2) on the state variable.6 We do 

not pursue a formal analysis of the quadratic problem any further because the main intuitive 

lesson from the maximization problem is embodied in the above solution. However, a numerical 

example of the solution to the quadratic problem is presented in figure 3. 
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Figure 3: Numerical example of (29) and (30). The left panel shows the path in the time-state 

space; the right panel shows the optimal maintenance schedule. Parameter values are: ݔ଴ ൌ

100, ݔ̅ ൌ 50, ݎ ൌ 0.04, ݉ଵ ൌ 0.2,݉ଶ ൌ 0.1, ܶ ൌ 40, ଴݌ ൌ 1. 

 

In the example in figure 3, ݎ ൏ ݉ଶ and ݑሺݐሻ decreases over time, see the figure notes for details. 

The right panel in the figure show ݑሺݐሻ. The left panel show the resulting path in the time-state 

space (solid curve); the panel also shows the constraints on the state variable; ݔ଴ and ̅ݔ (dashed 

curves). In this particular example, the condition stays relatively close to ݔ଴ for a long while, 

but as the amount of maintenance gets small, the accelerating decay takes hold and the condition 

falls quickly towards ̅ݔ when ܶ approaches. 

 

4 Conclusions  

 

The  deeds of maintenance seem to have hunted mankind since ancient times (Hoffer, 1969, p. 

21).  In this paper we have studied the optimal scheduling of maintenance activities for  local 

government purpose buildings, using mathematical tools for dynamic optimization. The 

conceptual framework proposed is widely used in studies of maintenance scheduling for 

machines (see e.g., Rapp, 1974; Pierskalla and Volker, 1976; Sethi and Thompson, 2000; 

Dogramaci and Freiman, 2004).  We find that the optimal strategy depends on a trade-off 

between the real interest rate, and the rate of accelerating decay. The prior makes spending in 

the future less costly than spending today, while the latter introduces a cost of postponing 

maintenance.  
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Our findings are of importance for policy makers and facility managers, because they provide 

clear guidance for how maintenance should be planned. Since different buildings will have 

different rates of accelerating decay, careful considerations must be made for each building as 

to whether it makes sense to place most of the maintenance effort towards the start or end of 

the period the building is in use. Importantly, the model shows that policies with multiple shifts 

are sub-optimal. Our results thus suggest that local governments can benefit from planning 

maintenance activity over the full life-span of facilities rather than planning maintenance 

activities over shorter time horizons. 

 

The model we use is kept simple in order to establish a basic intuition for the central 

mechanisms. Further research should expand this model in several directions in order to gain 

further insights. A first suggestion would be to introduce uncertainty about the time horizon, 

the decay rates, and the effect of maintenance activity. Even though good planning can reduce 

these uncertainties, it is obviously difficult to remove them altogether. Facilities may be kept in 

service longer than originally planned, or may become obsolete earlier than expected owing to, 

e.g., technology shocks. Further, it would be interesting to loosen the assumption about a  fixed 

lower limit for the condition. In reality, there can be different “levels of ambition” that local 

governments can choose from, making this boundary less obvious and potentially endogenous. 

This is similar to introducing an endogenous production as a function of the condition. Finally, 

one may introduce a market for used buildings, allowing the local government to sell the 

building. All of these suggestions may help to get a more realistic model and give valuable 

insights.
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1 The Office of the Auditor General of Norway. 
2 The Norwegian Labor Inspection Authority 
3 Hopland (2014a) studies the correlation between building condition and student satisfaction with the facilities. 

The two are correlated, but far from one-to-one. This can partly explain why school buildings do not seem to affect 

achievement. 

4 If ݔௗ	is not inner, but rather  ݔௗ ൌ -௕ and yield path c, previously found to be subݑ ഥ, u can alternatively shift toݔ

optimal compared to either path a or b. 

5 ௙ܸ ൏ ௚ܸ can be established from taking the derivative of the right hand side of (27) with respect to ݑ௔. 

6 If ݎ ൏ ݉ଶ and ݑሺݐሻ decreases over time, the constraints are broken if ݔሶ |௧ୀ଴ ൐ 0	 ଴ߣ	⟺ ൐  ଵ; the latter݉݌2

expression can be reduced to a condition ௟ܶ௜௠ ൐ ܶ. In the particular example presented in figure 3, we have 

௟ܶ௜௠ ൎ 42. Similar conditions for breaking the constraints can be derived in the opposite case where ݎ ൐ ݉ଶ and 

the control increases over time. 

                                                            




