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Abstract

The economics of crime and punishment postulates that higher

punishment leads to lower crime levels, or less severe crime. It is how-

ever hard to get empirical support for this rather intuitive relationship.

This paper o¤ers a model that can contribute to explain why this is

the case. We show that if criminals can spend resources to reduce the

probability of being detected, then a higher general punishment level

can increase the crime level. In the context of antitrust enforcement,

the model shows that competition authorities who attempt to �ght

cartels by means of tougher sanctions for all o¤enders may actually

lead cartels to increase their overcharge when leniency programs are

in place.
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1 Introduction

Apparently, the prospects for punishment can deter crime. One particular

kind of punishment is a �ne. Since this is a costless transfer, it has been

argued that the optimal �ne is the maximal one (equal to the individual�s

wealth). This is simply because it will lead to the highest possible deterrence

without causing any costs. This intuitive and straight forward argument was

�rst introduced in Becker (1968). In this article we contribute to the debate

concerning optimal punishment by elaborating on a particular mechanism

that can explain why a tougher punishment may lead to a more severe crime.

When the punishment becomes tougher, criminals are encouraged to use

more resources to avoid being detected. This will reduce the probability of

detection which will, in turn, a¤ect the severeness of the crime that might be

committed. We apply our model to antitrust enforcement, where penalties

for cartel infringements have increased signi�cantly during the last decade.

For this particular o¤ence, it is shown that a higher �ne for price �xing can

lead to a higher overcharge instead of a higher deterrence rate. Our model

predicts that this unintended e¤ect of higher �nes is present only when a

leniency program is in force.

Avoidance activities are common for many agents involved in criminal activ-

ities. For example, many persons install radar detectors to avoid speeding

tickets. Firms involved in antitrust violations may also spend resources to

avoid being detected. It is claimed that e¤orts to conceal illegal cartels, in

particular to hide information about meetings where they �x prices, have

become even more sophisticated and elaborate with the escalation of com-

petition law enforcement in Europe and the US.1 This suggests that the

toughness of the punishment, for example the level of the �ne, will in�uence

agents�e¤orts to hide criminal activities. This mechanism is at the heart of

1See Stephan (2009), where several examples of avoidance activities for cartel members
are listed. For example, they communicate through private email accounts and unregis-
tered mobile phones using encrypted messages; they avoid any contact through secretaries
or administrative sta¤; they hold meetings in foreign countries. Concerning cartels in EU,
it is found that the �rms often have illegal meetings in Switzerland.
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our analysis.

Our starting point is a standard modeling approach where crime is pro�table

as such and there is a probability of detection followed by a punishment,

typically a �ne. We model this as a repeated game, where each agent in

a group must decide whether or not to take part in committing a crime in

each period. In addition, if a crime is committed the agent has the option to

apply for leniency, i.e., informing the police and pay a lower �ne. We assume

that the agents make two simultaneous decisions. Besides deciding on how

severe crime to commit, they can also decide to invest in costly avoidance

activity that leads to a lower probability of crime detection. In principle

then, for any given �ne there exists an optimal mix of the crime level and

the avoidance activity. Given the endogenous avoidance activity, we consider

how an increased �ne will a¤ect the crime level. An increased �ne will lead

to a higher avoidance activity and thereby a lower probability of detection.

This may, in turn, make it pro�table to commit a more severe crime.

We show that whether an increased �ne leads to a more severe crime de-

pends on whether the marginal �ne or the �ne level in general is increased.

Not surprisingly, if the marginal punishment is increased, so that the �ne

increases more rapidly with the severeness of the crime, then the increased

�ne has the intended e¤ect on the criminal activity. The agents avoid pay-

ing the higher �ne by reducing the severeness of the crime. However, if the

�ne is increased uniformly for any given crime level, so that the marginal

punishment is not a¤ected, the agents may react di¤erently. The higher �ne

will certainly reduce the expected gain from committing the crime, and to

sustain a collusive equilibrium where no one informs the police, the agents

will have to invest to reduce the detection probability. The crime level is then

no longer at the optimal level, and will thus be adjusted to take into account

the now lower probability of detection. In a setting where the criminals have

to give up all the criminal surplus if detected, the optimal response to the

lower detection probability is clearly to increase the crime level. This is so

because the deviation pro�ts, and hence the temptation to deviate, are then

not a¤ected by the criminal surplus.
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However, if the criminals can retain the illegal surplus even if the crime is

detected, they also have to take into account that a higher crime level will

make it more tempting to inform the police. The latter e¤ect makes it less

pro�table to increase the crime level, and thus indicates that the criminals�

response to a higher �ne will depend on whether or not they can retain the

illegal surplus after detection. The analysis con�rms this intuition.

We apply our model to antitrust enforcement. It is a violation of competition

law if competing �rms �x prices, and the �rms will typically be given �nes

if they are detected and convicted. The crime is the overcharge (price above

the competitive price level), and we interpret a higher overcharge as a more

severe crime. The main di¤erence between the basic crime model and the

cartel model, is that there are now two ways in which an agent (or �rm) can

deviate from a collusive equilibrium: either report to the antitrust authorities

and thereby apply for leniency, or deviate by setting a lower price and thus

appropriate the cartel pro�t. If the option to apply for leniency is the binding

constraint for the cartel�s choice of overcharge and avoidance activity, there

is no di¤erence between this antitrust model and the general setting outlined

above. Higher �ne levels for detected cartels can in such a case lead to more

avoidance activity which, in turn, leads to a larger cartel overcharge. In

particular, a general increase in the �ne level (rather than an increase in the

marginal �ne) may lead to more avoidance activity and a higher overcharge.

Without a leniency program in place, however, a higher overcharge will al-

ways increase the temptation to appropriate the cartel pro�t by slashing

the price. An increase in the �ne will in this case always lead to a lower

overcharge in order to discipline the incentive to deviate.

We also �nd that even though there is a leniency program in place, the

binding constraint for the cartel can be that �rms are tempted to slash prices.

However, the existence of a leniency program broadens the range of collusive

strategies. This occurs when the option to apply for leniency is used as

a credible threat to punish a �rm who deviates from the cartel agreement

regarding pricing (and hence makes the agreement more sustainable). The
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deviating �rm will then be �ned and may also have to give up the illegal

gains. Hence, the presence of a leniency program may allow the cartel to

sustain higher overcharges, and an increase in the �ne may lead to even

higher overcharges by the cartel. Thus, our model shows that introducing a

leniency program may (a) help to sustain the cartel and (b) also a¤ect �in

some cases negatively �the way the cartel reacts to higher �nes.

The main mechanism behind these negative e¤ects is that leniency programs

enable �rms to coordinate on equilibria in which all apply for leniency once

someone deviates. As a result, the overcharge level may not a¤ect the tempta-

tion to deviate from the cartel. One way to mitigate the negative e¤ects is to

let the �rms retain cartel surplus after detection, so that a higher overcharge

also increases the temptation to deviate. We show that if the cartel surplus

is retained, the leniency program can be designed such that higher �nes re-

duce the overcharge. This requires a su¢ ciently small di¤erence between the

leniency granted when a single �rm applies and the leniency granted when

all �rms apply.

The article is organized as follows. In the next section we relate our approach

and results to the existing literature. In Section 3 we present our model and

the main result concerning the relationship between punishment and crime.

In Section 4 we apply our model to antitrust violations, focusing on how

higher �nes can a¤ect the overcharge. Some concluding remarks are o¤ered

in Section 5, where we also contrast our results with the tougher �ne policy

in many jurisdictions during the last decade.

2 Relation to the literature

The idea that �nes should be set at a maximum, i.e., setting �nes equal to

an individual�s wealth, has been criticized by many.2 Malik (1990) was the

2For example, Stigler (1970) argued that it ignores the need to maintain marginal
deterrence since the �ne for an o¤ense does not increase with its seriousness. Polinsky and
Shavell (1979) show that when persons are risk averse, the optimal �ne is lower than the
o¤ender�s wealth.
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�rst to model an o¤ender�s avoidance activity, and he found that if such an

activity is costly for society, it is an argument for setting �nes lower than at

an individual�s wealth.3 The reason is that a �ne is no longer a costless trans-

fer. More recently, it has been shown that with the presence of avoidance

activities an increase in the punishment may have counterintuitive results.

In particular, both Langlais (2008) and Nussim and Tabbach (2009) have

shown that a tougher punishment may lead to more crime being committed.

Although the direct e¤ects of a tougher punishment is less crime and more

avoidance activity, they show that the interplay between crime and avoidance

may lead to such a counterintuitive result. Our modeling is in the same spirit

as theirs, with some important distinctions. First, in contrast to them we

endogenize the severeness of the crime, and show that more punishment can

lead to a more severe crime being committed. Second, we study a repeated

game model of organized crime, and tailor-make our model to antitrust vi-

olations, showing that higher �nes for price �xing can lead to even higher

overcharges.

There are studies that endogenize �rms�avoidance activity concerning an-

titrust violations. For example, Aubert, Rey and Kovacic (2006) investigate

the incentive to destroy hard evidence of price �xing. Their main issue,

though, is how whistleblowing programs may a¤ect the incentives to keep

hard evidence, and they do not discuss the relationship between the �ne size

and the overcharge. Avramovich (2010) takes into account that avoidance

activities are costly.4 Her main concern is how each �rm allocates resources

between avoidance activities and traditional cost reducing activities. In con-

trast, our main focus is on how a tougher punishment (which in this case

3Although not modelled, Friedman (1981) did argue that avoidance activities might be
relevant for the question of optimum enforcement. See also Skogh (1973), who discussed
how the costs of planning and carrying out o¤ences should a¤ect the optimal punish-
ment. It has also been argued that victim precaution, e¤ort by the victim that lowers the
probability of being injured by an o¤ender, will also lead to a �ne that is lower then the
maximum one (see Hylton, 1996).

4See also Jellal and Souam (2004), who also consider a setting with an endogenous
detection probability. Both �rms and inspectors make costly e¤ort to hide and discover
collusion, respectively. Their main issue is the design of the payment schemes for inspec-
tors.
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means a higher �ne) will a¤ect the severeness of the crime (in this case the

overcharge).

The ambiguous e¤ects of the introduction of leniency programs on cartel

stability are also studied elsewhere in the literature.5 On one hand, leniency

programs can undermine the collusive outcome since a �rm has the option to

report and thereby reduce, or even eliminate, any �ne that it might otherwise

have to pay if the cartel is detected. On the other hand, the prospects for

a less severe punishment can make it more pro�table to form a cartel. Yet

another mechanism for how leniency programs a¤ect cartel stability is that

applying for leniency can be used as a threat against defecting �rms and

thus also help to sustain the cartel. The latter approach is more in line with

our model.6 In contrast to the existing literature on leniency programs, we

investigate in detail how the presence of a leniency program will in�uence

the e¤ect of higher �nes on cartels�avoidance activities and, in turn, on the

overcharge.

In the existing literature it is seemingly a widely recognized result that le-

niency should be restricted to the �rst informant only, as implemented in the

US leniency program. This is for instance found in the works of Harrington

(2008), Spagnolo (2008) as well as in Chen and Rey (2012). They all show

that letting leniency be limited to the �rst informant maximizes the pro-

gram�s impact when it comes to destabilizing the cartel. Our results suggest

that it might be desirable to modify the design of the leniency program to

take into account the possible countervailing e¤ect of the �rst-informant rule

on cartel stability. This suggests that the type of leniency program adopted

by EU might be more e¢ cient in this respect.

5This is shown in Motta and Polo (2003), and further analyzed in, among others,
Aubert et al. (2006) and Harrington (2008). For a survey of the literature, see Spagnolo
(2008).

6This e¤ect was �rst discussed in Spagnolo (2000) and Ellis and Wilson (2001), and is
further elaborated in Chen and Harrington (2007).
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3 The model

We consider �rst a basic model of crime and punishment, and then extend

and apply this model to antitrust enforcement in the next section of the

paper.

Consider a group of n agents who each period can cooperate on committing

a crime of seriousness �, where � is determined by the group. The net

payo¤ from committing the crime equals �� for each agent, where � > 1. If

one agent chooses not to cooperate, all agents earn � each. Let p denote the

probability that the crime is detected a given period. Assume that the agents

can reduce p, but that this is costly: Each agent has avoidance costs c(p)

where cp < 0. If the crime is detected, then each agent gets a punishment

F (�), where F� > 0; earning � � F (�).7 We also assume that detection

prevents the agents from cooperating in the future. After the crime has been

committed, but before it is potentially detected, agents can inform the police

and attain leniency, giving a utility u = � � L + �, where L < F is the

(reduced) punishment and � is a non-pecuniary utility from informing the

police.

We analyze a repeated relationship where the following stage game is played

each period:

1. The agents (simultaneously) choose whether or not to cooperate on a

crime � with avoidance costs c(p): If they cooperate the game proceeds

to stage 2. If they do not cooperate, the game ends.

2. The agents simultaneously choose whether or not to inform the police

and apply for leniency.

3. If no-one informs the police, the crime is detected with probability p.

We consider trigger strategies where the agents cooperate if all agents have

7For simplicity we assume that F (�) captures any kind of punishment, including im-
prisonment.
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cooperated in the past, while they choose not to cooperate forever after if at

least one agent have defected in the past.8

The present value of committing the crime each period is then, for each agent:

V (�; p) = (1� p) [�� + �V (�; p)] + p
�
�

1� � � F (�)
�
� c(p) (1)

Solving for V yields

V (�; p) =
(1� p)�� � c(p) + p( �

1�� � F (�))
1� �(1� p)

The present value of informing the authorities is u � c(p) + ��
1�� . An agent

will thus not inform the police if9

V (�; p) � u� c(p) + ��

1� �

Our main question is now as follows: Will the agents commit a less severe

crime (here a lower �) if the punishment becomes stronger? To analyze this,

let � be a shift parameter with F� > 0. The constraint to sustain cooperation

is now

V (�; p;�; �) =
(1� p)�� � c(p) + p( �

1�� � F (�; �))
1� �(1� p) � u+ �

1� ���c(p) (L)

Examining how the crime level (�) reacts to variations in the �ne, we �nd

the following:

Proposition 1 The relationship between crime � and punishment F is am-
8Not cooperating is the optimal punishment.
9Note that a general attribute with all leniency programs is that for the leniency con-

straint to be binding (and not the participation constraint), agents must earn more from
committing a crime and then report, than from not committing a crime at all. Since
V (�; p) � �

1�� , we must have u � c(p) > � for the constraint to be binding. Hence, the
constraint binds if ��L�c(p) > 0 , implying either a high � or a su¢ ciently low L (where
L < 0 is also possible).
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biguous. In particular, a tougher punishment leads to a more severe crime

(�0(�) > 0) if and only if:

� + F�
1� �(1� p)F� + F��

cp
1 + �

> 0;

where � > 0 is the shadow cost associated with the constraint (L). Thus, the

crime becomes more severe (�0(�) > 0) if the level of the �ne increases (F� >

0) while the marginal �ne remains constant (F�� = 0). And conversely, the

crime becomes less severe if the marginal �ne increases (F�� > 0) while the

level of the �ne stays constant (F� = 0).

We see from this that a shift which increases the level of the �ne without

a¤ecting its slope (F�� = 0 and F� > 0) will lead to a more severe crime.

The reason why this type of tougher punishment leads to a more severe crime

can be seen more directly as follows. Note that the RHS of the constraint

(L) is independent of � and F . It is thus not directly a¤ected by changes in

the �ne. De�ne

~V (p;�; �) = max
�

(1� p)�� � c(p) + p( �
1�� � F (�; �))

1� �(1� p)

i.e. the optimal value (wrt to crime level �) for given p.

The problem of maximizing V subject to the constraint is then equivalent

to maximizing ~V (p) subject to the constraint (i.e. subject to ~V (p) � u +
�
1��� � c(p)).

Consider now a shift that increases the level of the �ne without a¤ecting its

slope (F�� = 0 and F� > 0). This will shift down the value; we have

~V� = V� =
�pF�

1� �(1� p)

This downward shift will reduce p; the higher F is accommodated with in-

creased investments so as to reduce the detection probability. Note that the
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marginal value of � is

V� =
(1� p)� � pF�
1� �(1� p)

When F� is una¤ected, the lower p will increase this marginal value and

hence make a heavier crime pro�table. The result is thus that � increases

and p is reduced. The higher �ne/penalty level leads to a lower detection

probability and, in turn, to a more severe crime.

This illustrates that the �ne policy as such, and in particular whether the

marginal punishment changes or not, is crucial for whether tougher punish-

ment has an unintended a¤ect shown in Proposition 1.

3.1 Retaining surplus after detection

In the basic model, we have made the assumption that the agents cannot

retain any surplus from the criminal activity if they are being detected. Let

us now assume that they can �consume� the criminal surplus before they

are detected so that the �rst period payo¤ after detection is �� � F (�) ,
which also implies that the �rst period payo¤ after being granted leniency is

u = �� � L + �. As we shall see, this implies a less ambiguous relationship
between crime and punishment, since it turns out that �0(�) < 0 is possible

also for F�� = 0.10

The present value of committing the crime is now, for each agent:

V (�; p) = (1� p) [�� + �V (�; p)] + p
�
�� +

��

1� � � F (�)
�
� c(p)

= �� + (1� p)�V (�; p) + p
�
��

1� � � F (�)
�
� c(p)

10It is true for this case as well that �0(�) < 0 if F�� > 0 and F� = 0, i.e. that a higher
marginal �ne yields a reduced crime level. Formally this can be seen from the formulas
(7) and (8) in the proof of Proposition 2 below.
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Solving for V yields

V (�; p) =
�� � c(p) + p( ��

1�� � F (�))
1� �(1� p)

An agent will not inform the police if V (�; p) � ���L� c(p) + ��
1�� . So the

problem here is to maximize V (�; p) subject to

V (�; p) =
�� � c(p) + p( ��

1�� � F (�))
1� �(1� p) � �� � L� c(p) + ��

1� � (M)

Let now � = �
�+1

2 [0; 1) be a transformation of the Lagrange multiplier �
for the constraint (M), and let "(p) = � cpp

cp
(1 � p) > 0 denote the elasticity

of the marginal cost function. Here we get the following.

Proposition 2 Given that F�� = 0 (the marginal punishment remains con-
stant), for the model with constraint (M) we have that a higher punishment

(F� > 0) leads to a a more severe crime (�0(�) > 0) if:

"(p)

�
�� 1
1� p � ��

�
p+ [(1� �)(2� �) + ��(1� 2p)] > 0 (2)

A tougher punishment thus leads to a more severe crime (�0(�) > 0) if:

1� ("(p) + 2)p > 0 for �! 1 (3)

1� � + 1� ("(p) + 1)p
1� p > 0 for �! 0 (4)

The elasticity of the marginal cost function a¤ects the agents�responsiveness

regarding p, and this in turn a¤ects their response regarding �. Given that

the elasticity is bounded, we see that for the limiting cases (� ! 1, � ! 0)
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the sign of �0(�) is positive only if the (equilibrium) probability of detection

(p) is �small�. Hence, higher punishment will more often lead to less severe

crime in this case where the agents can consume the criminal value before

they are detected. The reason is that it is tempting to deviate to reap the

bene�t from the crime, and the severeness of the crime must be reduced to

avoid such a deviation.

This does not mean that �0(�) > 0 is not possible. For quadratic costs

c(p) = k(1� p)2 the elasticity is "(p) = � cpp
cp
(1� p) = 1, so the expression in

(3) is positive for p < 1
3
, while the expression in (4) is (for �! 0) certainly

positive for p � 1
2
.

We see that the scope for an unintended e¤ect of a higher punishment is

more limited when the agents can retain the surplus after detection. The

reason is that in such a case the agents can �nd it tempting to inform the

police, since they even then can retain the criminal surplus. To avoid such

an outcome, it is less likely that the agents set a higher crime level when the

probability of detection is reduced.

Formally this is captured by constraint (M) being more di¢ cult to satisfy

for higher � than constraint (L). First, the deviation pro�t is larger; there

is an additional term (�� 1)� on the RHS of (M) compared to (L). Second,
although the collusive pro�t value is also larger � the di¤erence in values

amounts to p(��1)�
1��(1�p) �this higher value does not make up for the higher devi-

ation pro�t. (The net di¤erence is ( p
1��(1�p) �1)(��1)�, which is decreasing

in �.) Hence the retained surplus makes constraint (M) more di¢ cult to sat-

isfy for higher � than constraint (L), and the cartel therefore more reluctant

to increase � in this case.

4 Antitrust enforcement

We now extend and apply the basic model in Section 3 to study antitrust

enforcement. Forming a cartel is then the criminal activity, and the pro�t

14



from overcharge is the crime level. Let k = (pC � pN)=pN denote cartel

overcharge where pC is cartel price and pN is the non-collusive price. Each

�rm�s (per period) pro�t from collusion is �(k)�, � > 1. If the �rms do not

collude, they earn � each. If all other �rms are colluding, a �rm�s pro�t from

deviation is ���, where � > 1. As before, p denotes the probability that the

cartel is detected within a given period. If a �rm is detected, it gets a �ne

F (�) in addition to a restitution �ne that permits to seize back the illegal

pro�ts realized by the cartel (in the given period). The payo¤ after detection

is then � � F (�):

The cartel faces avoidance costs c(p) per �rm per period. Since the overcharge

k only works via �, we will (mostly) omit the variable k in what follows. The

present value of repeated cartel activity is then given by

V (�; p) = (1� p) [�� + �V (�; p)] + p
�
�

1� � � F (�)
�
� c(p) (5)

which is exactly the same as in the basic model in the previous section.

Consider now the following stage game:

1. The cartel agrees on overcharge k (and thus �) and hiding costs c(p):

2. Firms set prices. They can honor the cartel agreement or deviate by

lowering the price.

3. Firms can report to the competition authority (CA) about the cartel

and apply for leniency. If leniency is admitted, the expected �ne is

L(m) < F , where m � 1 is the number of �rms applying for leniency.
Any non-applicant is then �ned F .

4. If no-one applies for leniency, CA detects the cartel with probability p.

When the stage game is played repeatedly, �rms play trigger strategies: If

at least one �rm deviates by lowering the price or applies for leniency, the

game reverts to non-cooperative Nash strategy forever after, earning � each.
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Now, the major di¤erence between the basic crime model, and the cartel

model, is that the agents (labeled �rms in this section) can deviate by charg-

ing a lower price and thus appropriate the cartel pro�t. Hence there are two

ways in which a �rm can in principle deviate: Report to CA or just deviate

from the cartel agreement without reporting.

First note that a strategy pro�le where all �rms apply for leniency in Stage

3 (and then revert to Nash play) is a continuation equilibrium in that stage,

irrespective of the outcome in stage 2. As long as at least one �rm applies, it

is a best response for another �rm to also apply, because of the milder pun-

ishment under leniency. This is in particular an equilibrium after a deviation

in Stage 2, and we will assume that the �rms play this strategy pro�le after

such a deviation.11 A �rm will then not deviate from the collusive agreement

in Stage 2 if

V (�; p) � � � L+ � + �

1� �� � c(p) (L)

where now L = L(n).

Given no deviation in Stage 2, it is a continuation equilibrium that no �rm

applies for leniency in Stage 3 if condition (L) holds for L = L(1). Since it

is reasonable to assume �L(1) � �L(n), the requirement in condition (L)
is stronger for L = L(1) than for L = L(n). Hence, if the requirement to

deter a �rst deviation in Stage 3 (after no previous deviations) is full�lled,

then the requirement to deter a �rst deviation in Stage 2 is also full�lled.

This equilibrium will thus be sustained if condition (L) holds for L = L(1),

and in equilibrium no-one will then deviate from the collusive agreement. To

simplify notation, we will in the following take L to mean L(1).

There are of course other equilibria. In particular, a strategy pro�le where no

�rm applies for leniency in stage 3 after a deviation in stage 2 is a continuation

equilibrium if pF � L. If �rms play according to this strategy, then a

unilateral deviation in stage 2 is not pro�table (for pF � L) if
11If pF � L, it is also a continuation equilibrium that no �rm applies for leniency. This

is discussed below in the text.
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V (�; p) � (1� p)��� + p(� � F ) + �

1� �� � c(p) (D)

Given this continuation equilibrium, it is an overall equilibrium that no-one

ever deviates if condition (L) holds (to deter a �rst deviation in stage 3)

and in addition that condition (D) holds if pF � L. The requirement that
both these conditions hold is of course a (weakly) stronger requirement than

requiring only condition (L) to be ful�lled. The attainable value V in this

equilibrium must therefore be (weakly) lower than the attainable value in

the equilibrium considered above (where only condition (L) is required). We

therefore assume that the cartel coordinates on the former equilibrium.

To attain a maximal value, the cartel thus maximizes V (�; p) subject to

(L) which is the same as the problem in the previous section.12 The cartel

chooses the crime level � by choosing the cartel price pC and thus overcharge

k = (pC � pN)=pN , where �0(k) > 0 as long as pC does not exceed the

monopoly price pM . Then the condition in Proposition 1 applies, and we

have the following result:

Proposition 3 When the leniency program binds, a higher �ne leads to a

higher overcharge (�0(�) > 0) if the condition in Proposition 1 is met. In

particular, the overcharge increases if the level of the �ne increases (F� > 0)

while the marginal �ne remains constant (F�� = 0).

The results shown earlier thus carry over to the case of antitrust enforcement

with a binding leniency program. As shown above, higher �nes may well lead

to higher overcharges.

If there were no leniency program present, i.e. if it was not possible to apply

for leniency in Stage 3 of the game above, condition (D) would be the (single)

relevant condition for sustaining the cartel.13 It is convenient to rewrite this
12Similarly to the previous section, for the leniency constraint to be binding (and not the

participation constraint V (�; p) � �
1�� ), we must here have �L + v � c(p) > 0, implying

either a high v or a su¢ ciently low L (where L < 0 is also possible).
13The participation constraint is not relevant in this case, since as we show below, (D)

is equivalent to condition (DV), and is hence a stricter condition.
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condition somewhat. Using the expression for V (�; p) given in (5) above, we

see that (D) can be written as

(1� p) [�� + �V (�; p)] + p
�
�

1� � � �
�
� (1� p)��� + �

1� ��

By collecting terms and dividing by (1 � p)�, we see that this condition is
equivalent to

V (�; p) � 1

�
(� � 1)�� + 1

1� �� (DV)

We now obtain the following comparative statics result:

Proposition 4 When there is no leniency program, and the relevant con-
straint (D) to sustain the cartel binds, a higher �ne F will always lead to

lower cartel overcharge (�0(F ) < 0).

When the constraint (D) �or equivalently (DV) �binds, the elasticity of cp
does not matter because an increase in � would also increase the temptation

to deviate. An increase in the �ne will in this case always lead to a lower

overcharge in order to discipline the incentive to deviate. The higher �ne

will lead to larger investment in avoidance activity and to a reduction in the

detection probability. In isolation, this would make it tempting to commit

a more severe crime. This is not optimal in this case since it would increase

the incentive to deviate.

The results in the last two propositions show that the cartel may react quite

di¤erently to a higher �ne, depending on whether a leniency program is in

place or not. When such a program is present, higher �nes may well lead to

higher overcharges by the cartel, while if it is not in place, a higher �ne will

always result in a lower overcharge.14

As the analysis here also has pointed out, the mere sustainability of the

cartel may depend on whether a leniency program is in place or not. In

particular, the relevant constraint (D) �or equivalently (DV) �to sustain

14It is straightforward to show that a lower overcharge will result also if the constraint
(D) is not binding, which will be the case if, say, � is high.
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the cartel in the absence of a leniency program, may be stricter than the

relevant constraint (L) when a program is present. Comparing constraints

(L) and (DV), we see that this is the case when

1

�
(� � 1)�� > �L+ � � c(p) (6)

In such cases constraint (L) may hold, but not constraint (D). This will

imply that, whenever the cartel is viable with no leniency program in place,

it will also be viable when such a program is present, but not the other way

around.15 The intuition for this is that applying for leniency can be used as

a credible threat to punish a �rm who deviates from the cartel agreement

regarding pricing, and hence make this agreement more sustainable.

Summing up, we have seen that introducing a leniency program may (a) help

to sustain the cartel, but (b) also a¤ect �and in some cases negatively �the

way the cartel reacts to higher �nes.

4.1 Retaining surplus after detection

Assume, as in Section 3.1 that the agents (now �rms in the cartel) can

retain the surplus after detection. This means that we no longer impose a

restitution �ne, as we allowed for in the previous discussion in this Section.

If no-one deviates, the cartel value is then, as in Section 3.1, given by

V (�; p) = (1� p) [�� + �V (�; p)] + p
�
�� +

��

1� � � F (�)
�
� c(p)

= �� + (1� p)�V (�; p) + p
�
��

1� � � F (�)
�
� c(p)

15Condition (6) wil de�nitely hold if �L+v� c(p) � 0, but then the relevant constraint
under leniency is the participation constraint; see fn. 11 above. The leniency program
will then still ease cartel viability, since the participation constraint is always weaker than
(DV).
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Absent a leniency program, the condition to sustain the cartel is then

V (�; p) � ��� � pF + ��

1� � � c(p) (E)

When a leniency program is present, the condition to deter a �rst deviation

in stage 3 (given no previous deviations) is

V (�; p) � �� � L+ v + ��

1� � � c(p) (M)

where L = L(1). This is just as in Section 3.1.

As before, it is an equilibrium that all �rms apply for leniency in Stage 3.

Assuming this equilibrium is played after a deviation in Stage 2, the condition

to deter such a deviation in Stage 2 is then

V (�; p) � ��� � L(n) + v + ��

1� � � c(p) (N)

It is not obvious whether this condition is stronger or weaker than (M). It

is stronger if (� � 1)�� > L(n) � L, i.e. if the pro�ts gain from the price

deviation exceeds the loss from a less favorable leniency treatment. Denoting

the latter by �L, we can write the conditions combined as

V (�; p) � �� � L+ v +maxf(� � 1)�� ��L; 0g+ ��

1� � � c(p) (MN)

where �L = L(n)� L.

Comparing leniency and no leniency, ie comparing constraints (MN) and (E),

wee see that leniency entails a stricter constraint if

pF � L+ v +maxf(� � 1)�� ��L; 0g > (� � 1)��

If (��1)�� � �L, then the inequality above holds if pF�L+v > (��1)��,
i.e if the leniency program is su¢ ciently favorable (for a single applicant)
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and/or the �ne is su¢ ciently large.

If (��1)�� > �L, then the inequality holds if pF �L(n)+v > 0. Thus, if a
price deviation is very pro�table ((� � 1)�� > �L), the leniency constraint
will entail a stricter constraint for the cartel merely if pF �L(n) + v > 0. In
this case the (credible) threat to punish a price deviation by all applying for

leniency is not at all e¤ective in sustaining the cartel. On the contrary, the

leniency program (at least in this equilibrium) will make it more di¢ cult to

sustain the cartel.

The last considerations above have some implications for the design of a

leniency program. For given deviation pro�tability (��1)��, one may design
the system with�L � (��1)��, or with�L < (��1)��. In the former case
(a �big�di¤erence between the leniency treatments when all report and when

only a single �rm reports), the leniency treatment of the single �rm must be

very favorable in order for the program to negatively a¤ect the viability of

the cartel (L < pF + v � (� � 1)��) This may not even be feasible, e.g. if
it requires L < 0.

An alternative is to design a program with a smaller di¤erence in the leniency

treatments between a single �rm and all �rms reporting (�L < (� � 1)��).
In this case the viability of the cartel is negatively a¤ected if just L(n) <

pF + v, which may well be feasible. This indicates that a program with

small di¤erences in leniency treatments may be more e¤ective in deterring

the cartel.

Regarding the way the cartel reacts to a higher �ne, we obtain here the

following result:

Proposition 5 Assume the surplus is retained after detection.
(i) If �L > (�� 1)�� (so that (M) is binding), the e¤ect of a higher �ne on
the cartel�s overcharge is given as in Proposition 2.

(ii) If �L < (� � 1)�� (so that (N) is binding), the e¤ect of a higher �ne
tends to be smaller than in case (i): the marginal e¤ects in the two cases
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(�0M(�) and �
0
N(�), respectively); satisfy, all else equal; �

0
N(�) < �0M(�)

when F�� = 0 and F� > 0

As we can see, this result shares some similarities with the results shown in

Proposition 2 for the general case of crime activity. When the agents can

retain surplus when deviating, there is less scope for an unintended e¤ect

of a higher �ne on the overcharge. Again, the reason is that it becomes

more tempting to deviate since the agent can capture the short term gain. A

higher overcharge would make it even more pro�table to deviate, and there

is therefore less scope for the cartel members to respond by setting a higher

overcharge when the detection probability is reduced.

5 Concluding remarks

In this paper we have analyzed a repeated game model of organized crime in

which criminals i) can spend resources in order to reduce the probability of

being detected and ii) are admitted reduced punishment if they inform the

police about a committed crime. Our analysis shows that a higher general

punishment level can increase the crime level. The reason is that higher

punishment-levels lead criminals to spend much more resources on hiding

their criminal activity, which in turn leads to lower probability of detection,

and thus weaker law enforcement, in equilibrium.

We then apply the model to antitrust enforcement. The main di¤erence

between the basic crime model, and the cartel model, is that the agents (or

�rms) now can deviate by charging a lower price and thus appropriate the

cartel pro�t. Hence there are in principle two ways in which a �rm can

deviate: report to the competition authority or just deviate from the cartel

agreement regarding pricing without reporting. As we have seen, the latter

behavior can be credibly deterred by the other �rms when there is a leniency

program in place, and thus ease the sustainability of the cartel. And as

we also have shown, with a generous (binding) leniency program in place, a
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higher general �ne level may lead to higher cartel overcharges. As this will

not occur in the absence of a leniency option, the analysis has pointed out

that introducing a leniency program may, under some conditions (notably

when surplus cannot be retained by the �rms after detection) both help to

sustain the cartel, and also a¤ect the way the cartel reacts to higher �nes.

We have also seen that leniency may help to deter the cartel (when surplus

can be retained), and that this may also a¤ect the way the cartel reacts to

higher �nes.

We have found that it matters signi�cantly how the �ne is increased. While

an increase in the marginal �ne - the additional �ne for an additional over-

charge - will always in itself lead to a lower overcharge, we �nd that an

increase in the �ne level as such may lead to more avoidance activity and, in

turn, a higher overcharge. During the last decade we have in many jurisdic-

tions seen a substantial increase in the �nes for price �xing. Unfortunately,

it seems as if the tougher sanctions are primarily implemented as an increase

in the �ne level as such rather than higher �nes for those cartels with the

highest overcharges. For example, according to the US guidelines the base

�ne level should set at 20% of annual a¤ected commerce.16 It is argued that

�the purpose of specifying a percent of the volume of commerce is to avoid the

time and expense that would be required for the court to determine actual gain

or loss�.17 In EU, the �ne is limited to 10% of the overall annual turnover

of the company. Although there is a scope for higher �nes with more severe

o¤ences, it is not obvious that higher �nes will be set in EU when cartels have

set higher overcharges.18 These observations, coupled with the observation

16Such a �ne setting procedure may in itself produce some unintended e¤ects. As shown
in Bageri et al. (2012), a �ne that is calculated as a percentage of the a¤ected commerce
will give the cartel incentive to set a price above the monopoly price and thereby to lower
the revenues.
17See U.S. Sentencing Guidelines Manual § 2R1.1 (2005). The base �ne level should be

adjusted by a number of factors, such as adjusted upwards if bid rigging or other aggra-
vating factors are involved or downward if the �rm cooperates with antitrust authority.
However, it is hard to see that such adjustments introduce anything that would imply that
the �ne should depend on the actual damage.
18See Guidelines on the method of setting �nes imposed pursuant to Article 23(2)(a)

of Regulation No 1/2003. The �nes are increased in line with a set of �aggravating cir-
cumstances� which include recidivism, leading role, retaliatory measures against other

23



that cartels with serious harm to society are still detected, indicates that we

should be concerned that the present �ne policy can have unintended e¤ects

on cartels�overcharges.

undertakings, refusal to co-operate with or attempts to obstruct the European Commis-
sion in carrying out its investigation.
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Appendix
Proof of Propositions 1 and 2.

To accomodate both models (M) and (L), and in addition a case to be con-

sidered in a later section, introduce the index m 2 f0; 1g, the parameter
� > 1 and consider the following optimization problem

max
�;p

V (�; p;�; �;m) s.t. G(p; �; �; �;m) � 0;

where

V (�; p;�; �;m) =
�� � c(p) + p( ��

1�� � F (�; �))�mp(�� 1)�
1� �(1� p)

and

G = V �H, with H = mu+
�

1� �� � c(p) + (1�m) (��� � L)

Then model (L) is obtained for m = 1, and model (M) for m = 0; � = 1.

(The function H() equals the right hand sides of constraints (L) and (M),

respectively, for m = 1 and m = 0; � = 1.)

Forming the Lagrangian L = V + �G, we have the following standard com-

parative statics result:

�0(�) =
1

D
([LppG� � L�pGp]G� + [L��Gp � Lp�G�]Gp) ;

where D > 0 is the determinant of the bordered Hessian.

Note that from L = V +�G, G = V �H and the FOCs Vk = ��Gk, k = �; p,
we have

GkLij = GkVij +Gk�Gij = (Vk �Hk)Vij � Vk(Vij �Hij) = VkHij �HkVij
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Substituting this in the formula for �0(�) yields

�0(�)D = [(V�Hpp �H�Vpp)� (VpH�p �HpV�p)]G�
+ [(VpH�� �HpV��)� (V�Hp� �H�Vp�)]Gp

Note that H� = 0 and hence G� = V�. From FOC we have 0 = Vp + �Gp =

(1 + �)Vp � �Hp and thus Gp = Vp �Hp = �Hp=(1 + �) = cp=(1 + �) < 0.
So we have

�0(�)D = [(V�Hpp �H�Vpp)� (VpH�p �HpV�p)]V�
+ [�HpV�� +H�Vp�] (cp)=(1 + �)

We have H� = (1�m)��. We further have from FOC Vp = �
1+�
Hp = ��cp >

0, where � = �
1+�
, and V� = �

1+�
H� = �(1�m)��

So we have, since H�p = 0

�0(�)D = [(�(1�m)��Hpp � (1�m)��Vpp)� (0 + cpV�p)]V� (7)

+ [cpV�� + (1�m)��Vp�] (cp)=(1 + �)
= [(��cpp � Vpp) (1�m)�� � cpV�p]V�

+ [cpV�� + (1�m)��Vp�] (cp)=(1 + �)

Consider

V� =
�pF�

1� �(1� p) , V�� =
�pF��

1� �(1� p) , Vp� =
�(1� �)F�
(1� �(1� p))2

(8)
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V�p =
@

@p

� � pF� �mp�
1� �(1� p) (9)

=
(�m� � F�) (1� �(1� p))� [(1�mp)� � pF�] �

(1� �(1� p))2

=
(�m� � F�)
1� �(1� p) � Va

�

1� �(1� p)

=
(�m� � F�)
1� �(1� p) �

�(1�m)���
1� �(1� p) (by FOC V� = �(1�m)��)

(I) For model L, where m = 1, we thus have

�0(�)D = [�V�pV� + V��cp=(1 + �)] cp

=

�
� (�� � F�)
1� �(1� p)

�pF�
1� �(1� p) +

�pF��
1� �(1� p)

cp
1 + �

�
cp

=

�
� + F�

1� �(1� p)F� + F��
cp
1 + �

�
�pcp

1� �(1� p)

This proves the formula in Proposition 1.

(II) Consider now the case m = 0. (Model M is obtained for m = 0; � = 1.)

Suppose further that F�� = 0, and hence that V�� = 0. Then we have, from

the formulas (7), (8) and (9) above:

�0(�)D = [(��cpp � Vpp) �� � cpV�p]V� + [��Vp�] (cp)=(1 + �)

=

�
(��cpp � Vpp) �� � cp

�F� � ����
1� �(1� p)

�
�pF�

1� �(1� p) +
��cp
1 + �

�(1� �)F�
(1� �(1� p))2

We show below that we have

Vpp =
�cpp + 2��cp
1� �(1� p) < 0 (10)

Hence, de�ning D1 = (1� �(1� p))2D, and noting that 1
1+�

= 1�� we then
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obtain

�0(�)D1 = [��cpp(1� �(1� p))�� � (�cpp + 2��cp) �� + cp (F� + ����)] (�pF�)
���cp(1� �)(1� �)F�

= �� fcpp [�� 1� ��(1� p)] p+ [���p+ pF�=�� + (1� �)(1� �)] (�cp)gF�

From FOC V� = �H� = ��� we get

V� =
� � pF�

1� �(1� p) = ���

and hence pF�=�� = 1
�
� �(1� �(1� p)) = 1

�
� �+ ��(1� p).

This yields

�0(�)D2 (11)

= �� fcpp [�� 1� ��(1� p)] p+ [1=� � �+ ��(1� 2p) + (1� �)(1� �)] (�cp)gF�
= �� fcpp [�� 1� ��(1� p)] p+ [(1=� � 1) + (1� �)(2� �) + ��(1� 2p)] (�cp)gF�

Setting � = 1 (as required in model M), we see that �0(�) has the same sign

as.

fcpp [�� 1� ��(1� p)] p+ [(1� �)(2� �) + ��(1� 2p)] (�cp)gF�

Taking account of "(p) = cpp
�cp (1 � p), we then obtain the formula (2) in

Proposition 2..

It remains to verify the formula (10) above. Consider, for m = 0:

Vp =

�
�cp + ( ��1�� � F )

�
(1� �(1� p))� �

�
�� � c(p) + p( ��

1�� � F )
�

(1� �(1� p))2

=
�cp + ( ��1�� � F )
1� �(1� p) � �

1� �(1� p)V
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Vpp =
�cpp (1� �(1� p))� �

�
�cp + ( ��1�� � F )

�
(1� �(1� p))2

+
�2

(1� �(1� p))2
V � �

1� �(1� p)Vp

=
�cpp

1� �(1� p) �
�

1� �(1� p)
�cp + ( ��1�� � F )
1� �(1� p) +

�2V

(1� �(1� p))2
� �Vp
1� �(1� p)

=
�cpp

1� �(1� p) �
�

1� �(1� p)

�
Vp +

�

1� �(1� p)V
�
+

�2V

(1� �(1� p))2
� �Vp
1� �(1� p)

=
�cpp

1� �(1� p) �
2�

1� �(1� p)Vp

Then (10) follows from FOC Vp = ��cp. This completes the proof.

Proof of Proposition 4

Taking the constraint (DV) into account, the optimization problem is now

of the form

max
�;p

V (�; p;F; �; �) s.t. G(p; �; F; �; �) � 0;

where V (�; p;F; �; �) =
(1�p)���c(�;p)+p( �

1���F )
1��(1�p) and

G = V �H, with H(�; �; �) =
� � 1
�
�� +

1

1� ��:

Let L = V +�G be the Lagrangian. Given su¢ cient second order conditions

(SOC), standard comparative statics yield

�0(F ) =
1

D
([LppG� � L�pGp]GF + [L�FGp � LpFG�]Gp) ;

where D > 0 is the determinant of the bordered Hessian of L.

Note that H() doesn�t depend on p, nor on F , hence GF = VF and Gp = Vp.

From L = V + �G, G = V � H and the FOCs 0 = Lk = Vk + �Gk =
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Vk(1 + �)� �Hk, k = �; p, we then have Vp = 0 = Gp, and hence

�0(F )D = [LppG� � L�p0]VF + [L�FGp � LpFG�] 0
= LppG�VF

Computing D from the bordered Hessian of L yields

D = �LppG2� + 2L�pG�Gp � L��G2p
= �LppG2�

where the last equality follows from FOC; Gp = Vp = 0. Hence we now have

�0(F ) = �G�VF
G2�

= �VF
G�

From FOC 0 = V� + �G� = V�(1 + �) � �H� we have �H� = V�(1 + �) =
��G�(1 + �). Hence

�0(F ) = �VF
G�

= � VF
�H�=(1 + �)

= (1 + �)
VF
H�

< 0

where the inequality follows from H� > 0 and VF < 0. This completes the

proof.

Proof of Proposition 5

From the formula (11) in the proof of Propositions 1-2 we obtain the deriv-

ative �0M(�) for � = 1, and �0N(�) for � > 1. Using that formula we can

write

�0N(�)D2

= �� fcpp [�� 1� ��(1� p)] p+ [(1=� � 1) + (1� �)(2� �) + ��(1� 2p)] (�cp)gF�
= �� fcpp [�� 1� ��(1� p)] p+ [(1� �)(2� �) + ��(1� 2p)] (�cp)gF�

+��(1=� � 1) (�cp)F�
= ��0M(�)D2 + �(1� �) (�cp)F�
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Hence

�0N(�) = �
0
M(�)�

�

�D2

(� � 1) (�cp)F� (CMN)

This shows that, all else equal, �0N(�) < �
0
M(�), and completes the proof.
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