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Abstract

We address a problem of inventory management of spare parts in the context
of a large energy company, producer of oil and gas. Spare parts are criti-
cal for assuring operational conditions in offshore platforms. About 200,000
different items are held in several inventory plants. The inventory system
implemented at the company corresponds to a min-max system. The control
parameters are decided based mainly on the expert judgment of the plan-
ners. Also, though the inventory plants can in practice be supplied from each
other, the inventory planning is performed separately by the plant planners.
This is because of different ownership structures where the studied company
has the operative responsibility. The company is pursuing a system in which
all planners conform to the same inventory management approach and eval-
uation, as well as being more cost efficient. Our work focuses on supporting
this goal. We apply methods to decide the inventory control parameters for
this system under a service level constraint. The methodology we use dis-
tinguishes unit-size and lot-size demand cases. We perform computational
experiments to find control parameters for a sample of items. After the con-
trol parameters are found, we use them to explore the impact of risk pooling
among the plants and inaccuracy arising from duplicate item codes.
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1. Introduction

This research has been motivated in the context of Statoil ASA, a large
international energy company. Headquartered in Norway, this company is
one of the world’s largest net sellers of crude oil and the second largest
exporter of gas to Europe. It acts as operator of several offshore platforms
with different ownership structures and it holds inventory of about 200,000
spare part items in a number of locations spread in the Scandinavian region.
Some of these parts are highly critical to assure safety and production. At
the same time, the store of spare parts entails an important binding cost for
the company.

Currently, the prevailing inventory control policy is based on the min-max
or (s, S) system, whose control parameters are set at each inventory location
per separate. Although the (s, S) systems are frequently encountered in
practice, the values of the control parameters are usually set in a rather
arbitrary fashion (Silver et al. [1], pp. 239). The company in our case does
not differ much from this, but it is in process of automating this task, in
order to be more uniform across the locations, to speed up the evaluations
and to become more efficient.

This article describes the inventory management of spare parts at the
company and focuses on two problems. The first is to develop a quantitative
evaluation methodology which suggests inventory control parameters for an
(s, S) system subject to a service level constraint. The second is to use such
methodology in order to analyze the potential impact of two main sources of
savings: risk pooling among the inventory locations and correcting inventory
inaccuracy arising from duplicate item codes.

A number of articles have focused on spare parts inventories. An overview
of related literature on spare parts inventories can be found in Kennedy et al.
[2]. Most of the work in spare parts has been motivated by air force organi-
zations and commercial airlines (e.g., [3], [4], [5], [6]). Applications in other
contexts include the service support of IBM in the US (Cohen et al. [7]),
a chemical plant in Belgium (Vereecke and Verstraeten [8]), a white goods
manufacturer in Italy (Kalchschmidt et al. [9]) and a distributor of castors
and wheels in Greece (Nenes et al. [10]). In the oil industry, we have found
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only one recent article, published by Porras and Dekker [11]. Characterized
by high service levels (because of safety and production factors), customized
equipment specifications with long lead times, and facility networks spread
onshore and offshore, we believe the problem of inventory management of
spare parts in this industry deserves attention from the research community
and our article contributes by addressing a practical problem in this indus-
try. Also, note that despite several decades of inventory research on (s, S)
systems, finding optimal control parameters s and S subject to the fill rate
service level constraint remains an open problem in the general case; most of
the applications utilize approximation techniques. Our article provides in-
sights of how methods from the literature behave under a real-world data set
and we use them to analyze the impact of risk pooling and duplicates. While
risk pooling is a traditional source of savings on inventory management, the
duplicates issue has not been addressed in previous literature.

In Section 2 we provide background on the company under study and
its current practice on inventory of spare parts. In Section 3 we outline our
problem settings. In Section 4 we describe the solving methodology, consid-
ering different demand models. We solve numerical examples and present an
analysis in Section 5. Our concluding remarks are presented in Section 6.

2. Background

Statoil ASA is an international energy company headquartered in Norway,
with presence in 42 countries. Its activities include extraction of petroleum,
refinement, and production of gas and methanol. Several types of equip-
ment are used in these activities. Inventory of spare parts is held to replace
equipment, in order to assure operating conditions.

The company has operational responsibility for seven warehouses located
along the Norwegian coast, which serve offshore installations. Within this
structure of warehouses, there are 24 inventory plants (or license inventories).
Statoil ASA is the majority owner of these, but there is also a set of other
companies owning a share of them. Each of the 24 plants holds its own
inventory of spare parts and they are managed per separate. Note that
although the same warehouse is responsible for several platforms it keeps
separate physical inventories (shelves) for each platform. In the inventory
system of the company, there are also other warehouses involved, serving
on-shore installations.
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The acquisition of spare parts is driven by consumption requirements
triggered at the installations. The frequency of the requirement for a given
spare part and the number needed are, in general, uncertain. For example,
a spare part may not be required in 5 years but it may sometimes be needed
a couple of times in few days.

The type of items can be anything from high value items required for
production (for example, valves and compressors) to consumable products
(smaller tools, such as gaskets, bolts and nuts). Some of these items are
highly critical to assure safety and production. Depending on its role, the
same part can be highly critical in one context and less or not critical in
another context.

The age of the different equipment ranges from the 70s until now, which
means that many different materials with different technological characteris-
tics are stored. Also, the company is a result of the merger of three companies
(Statoil, Norsk Hydro and Saga Petroleum), whose inventory practices dif-
fered and the goal is to now uniform them.

All information of the spare parts is managed by the enterprise resource
planning system SAP. In total, there are about 950,000 codes of items in
the system, including warehouses serving onshore and offshore operations.
Currently, the items in stock correspond to about 245,000 of those codes.
The same type of item can actually appear in the database with more than
one code. This may be, for example, because they were obtained from dif-
ferent suppliers. A rough estimation indicates that between 10% and 30% of
the item codes correspond to duplicates, and the number of different items
actually in stock is around 200,000.

An estimate of the value of the current spare part inventory is in the order
of half billion euros. There is the belief that this sum is too high, meaning
a significant binding cost for the company. On the other hand, because of
the important figures present in the oil and gas business, the shortage of
highly critical items could imply severe costs if production breaks down, for
example, when a platform must close operations. Some of these spare parts
are also highly customized, with requirements specified on frame agreements
with suppliers, thus their construction could take relatively long lead times
(several months or even more than a year). In consequence, an important
trade-off materializes between service level and inventory cost, two measures
associated with the objectives of different units within the company.

As a spare part is required and the corresponding inventory plant provides
it, replenishment occurs based on a heuristic type managed inventory system
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with either min or min and max allowable levels. Setting s equal to the min
level minus 1 and S to the max level, this system can be described by a
continuous review (s, S) policy, i.e., every time the inventory drops to the
reorder point s or lower, a new order is placed so as to reach the order-up-
to level S. When only the min level is used, an order is placed every time
there is a demand event in order to achieve a base-stock level, which is a
particular case of the (s, S) known as (S − 1, S) policy. For some items, the
company sets a min level equal to zero, which means that no inventory of
them is stocked and they are rather ordered on the spot when required for
consumption.

Each of the plants determines its own inventory control parameters s
and S separately, and is linked to one productive location (and vice-versa).
When a spare part is required, it is provided from the corresponding plant.
However, when a productive location requires a certain spare part in such
number that it is not available at the corresponding plant, the requirement
can be fulfilled (if agreed) from another plant that has availability in stock.
This is especially realized when the required part is highly critical. This
type of fulfilment occurs based on an informal agreement between license
inventories, but this is not considered when deciding the control parameters
s and S. If no plant has stock, the number of the spare part needed is ordered
directly from the supplier (even when the parts are taken from another plant,
an order is placed with the supplier so as to raise the inventory position to
the order-up-to level). For a given item in a given plant, these parameters are
determined in a two-stage process. In the first stage, the supplier proposes
the number of spare parts for a particular piece of equipment during the
operation phase. The supplier proposes the number only as a function of
the procured item (without necessarily knowing the exact context in which
it will be used, and without knowing the current number of spare parts in
stock). In the second stage, the inventory planner at the plant evaluates and
decides the actual s and S values. The evaluation before decision intends to
consider, beyond the supplier’s recommendation, the current stock of items
in inventory, its use, price and specific role.

In practice, it is the expert judgment of the inventory planners at the
plants who currently play a key role in the decision making rather than that
of structured quantitative methodology. While the experience is essential,
two members of the staff may provide different inventory control parameters
for the same item (since they may have different bases for their evaluations).
Furthermore, each inventory planner decides the control parameters by only
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taking into account the inventory at her plant, thus the company lacks a more
integrated approach that considers the multi-location network of inventory
plants.

Our research focuses on two problems. The first is to develop a quanti-
tative evaluation methodology which suggests inventory control parameters
for the (s, S) system in the case under study. Finding correct levels can
contribute not only to the cost savings, but also to establish a better rela-
tion between risk and criticality levels. Secondly, we use the methodology to
analyze how risk pooling and the correction of duplicates would impact the
inventory costs.

As we mentioned in the introduction, the only previous contribution to
recent literature of spare parts in the oil industry is given by Porras and
Dekker [11]. Motivated by a case study at a refinery in the Netherlands, they
compare different reorder point methods for spare parts inventory control and
show that total savings of up to 6.4% in holding costs can be achieved by
a better inventory control. Our work differs in several aspects. First, while
their problem takes place in a single refinery, ours accounts for multiple
locations. Second, we include items with both unit-size and lot-size demand
behaviours, thus considering the undershoot that they neglect. Third, while
they explore different inventory policies, we focus on the (s, S) policy. We
also explore the problem of duplicates, which has not been faced in their case
or in any of the other articles on spare parts that we have reviewed.

3. Problem settings

Our first problem is to carry out a test of methods for inventory con-
trol parameters of a continuous review (s, S) system, considering different
demand models. We first focus on a single-location problem and we then
incorporate other locations into the risk pooling analysis.

The problem setting is characterized as follows:

∙ The goal is minimizing expected carrying cost plus ordering cost, sub-
ject to a service level constraint.

∙ The service level constraint we utilize is a lower bound � such that

1−
average shortage per replenishment cycle

average demand per replenishment cycle
≥ �. (1)
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The left-hand side above is the expression traditionally utilized to com-
pute the fill rate, a performance measure defined as the fraction of
demand that is fulfilled directly from the stock on hand. As pointed
out by Guijarro et al. [12], while this expression is an approximation
to the fill rate, it is the most common method to compute it. Based
on simulation, their numerical experiments reveal that this traditional
approximation underestimates the simulated fill rate and, therefore, in
our purpose to set inventory control parameters it would lead to a more
conservative approach. It has been agreed in our project that this con-
servative approach is acceptable. The lower bound � represents the
target fill rate, which depends on the item and the context in which
it is used. The target values have been predefined by the company,
based on the criticality of the items. Each criticality index is associ-
ated with a target value. For items appearing with different criticality
indexes (because of the different contexts in which they can be used),
the company prefers to consider the highest of the associated service
levels.

∙ The future demand for spare parts is stochastic. We use probability
distributions to model demand and estimate their parameters by using
historical data from the company.

∙ The demands for different spare parts are independent at item and
plant levels.

∙ The lead time is fixed. The procurement of spare parts is obtained from
external suppliers, with whom the conditions of the procurement are
fixed beforehand by frame agreements. The frame agreements include
the delivery time, together with the price of the items. The company
also has knowledge on the setup time of the equipment. These times are
reasonably fulfilled, thus supporting the fixed lead time assumption.

∙ Replenishment is carried out only with new parts acquired from the
supplier, thus, in this paper we do not study the possibility of repairing.
Alternatively, our approach could cope with that possibility if we were
to consider that the parts are sent for repair every time the reorder
point is hit and the lead time value is the time that it takes since then
until they are back in stock.
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Note that the motivation to use the service level constraint instead of a
penalization cost on backorders comes from our discussion with managers
and planners of Statoil ASA. Minimizing the average carrying and ordering
costs, subject to such service level constraint is a popular strategy in prac-
tice, since the shortage costs are usually difficult to assign. On the other
hand, the service level criterion is generally easier to state and interpret by
practitioners. A number of references point out this fact, such as Chen and
Krass [13], Bashyam and Fu [14], and Cohen et al. [15] and [16].

4. Demand modelling and solving methodology

Let A be the fixed cost per order, � the average demand per unit of time,
v the unit cost, r the carrying charge and � the target fill rate.

For a given item at a given plant, the methodology to determine s and
S levels that we use consists of two main steps. First, we set the difference

S − s as the economic order quantity Q =
√

2A�
vr

, rounded to the closest

positive integer.
Second, given that value of S − s, we try to obtain the minimum reorder

point s such that the fill rate � is satisfied. Then, we get S = s+Q.
At the second step we evaluate the fill rate consecutively, starting from

s = 0. Let us call �̃s the approximated fill rate achieved for a given reorder
point s, namely the left-hand side in constraint (1). If the service level � is
not satisfied, i.e., if �̃s < �, we try s = s + 1 and so on, until we find the
lowest value of s such that �̃s ≥ �.

For purposes of implementation, an upper bound on s could be set as
the maximum allowable reorder point. In our experience with spare parts,
this iterative evaluation procedure finishes quickly, especially for slow-moving
items for which the reorder points are relatively low.

Choosing s and S through this sequence of two steps does not necessarily
drive to optimal values (in terms of expected costs). For achieving opti-
mality, the problem should run in both variables simultaneously, but such an
exact approach would highly complicate the problem. In fact, despite several
decades of inventory research on (s, S) systems, finding optimal control pa-
rameters s and S subject to the fill rate service level constraint remains as an
open problem in the general case; most of the applications utilize approxima-
tion techniques specialized in particular settings. For example, Cohen et al.
[16] approach an (s, S) inventory system problem with fixed lead times, two
priority demand classes and lost sales of excess demand. They use a renewal
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approach to arrive at an approximate formulation and then a greedy heuristic
to solve the approximated problem. Bashyam and Fu [14] consider a peri-
odic review version of the (s, S) system, with general random lead times that
allows for order crossings. Due to analytic intractability, they propose a fea-
sible directions procedure that is simulation based. Schneider and Ringuest
[17] propose an analytic approximation for the (s, S) system under periodic
review, considering a service level measure defined as the average backlog
(demand on backorder) relative to average demand. The replenishment lead
time is assumed to be fixed and their solution approach is based on a power
approximation method.

The sequential computation of s and Q = S − s as we use and other
variations is a common approach in the literature of inventory control (see
for example, several decision rules in [1] that work sequentially, [8] and [11]).
An important distinction is how to consider the demand behaviour, which
affects the tractability of the fill rate. In the literature, there has been large
interest on demand modelling and forecasting motivated for the intermittent
and slow-moving consumption patterns observed in spare parts inventory
(see, for example, [18], [19] and [20]).

In order to calculate the fill rate, we distinguish between unit-size demand
items (only demand events for one unit of the same item at a time can occur)
and lot-size demand (events for either one or more units of the same item
can occur).

For unit-size demand, we test three distributions: Poisson, gamma and
gamma with probability mass at zero.

For lot-size demand, we test two distributions: normal and gamma.
We choose these traditional distributions which have proved to be effective

in case studies ([9], [10], [11], [21]). They are also easy to communicate to
practitioners and to implement in software packages of common use. In order
to check how our data fit the distributions, we perform a statistical test. This
in practice leads us to rule out the normal distribution for all the items in
our database.

4.1. Unit-size demand

In the unit-size demand case it is relatively easy to compute �̃s. Note
that the denominator equals the order quantity Q = S − s and the numer-
ator depends on the lead time demand distribution. Next, we outline the
computations for three distributions.
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4.1.1. Poisson distribution

Let us call X the demand per unit of time and assume it follows a Poisson
distribution of parameter � > 0. Then P (X = k) = �ke−�

k!
, for all non-

negative integer values of k.
The approximated fill rate in this case can be easily calculated as

�̃s = 1−

∞
∑

k=s+1

(k − s)P (XL = k)

Q
(2)

= 1−

�L − s[1− P (XL ≤ s)]−

s
∑

k=0

kP (XL = k)

Q
,

where L is the lead time, and XL and �L = �L are the demand during the
lead time and its mean, respectively.

We estimate the parameter � as the mean computed from the data, i.e.,
the total demand for the item divided for the total number of periods con-
sidered.

4.1.2. Gamma distribution

The density function of a gamma random variable with scale parameter
� > 0 and shape parameter k > 0 is defined as g(x) = �kxk−1e−�x

Γ(k)
, 0 ≤ x < ∞,

where Γ(k) =
∫∞

0
vk−1e−vdv. Its use on inventory control dates from early

times (see, e.g., [22] and [23]).
If the lead time demand follows the gamma distribution, the approxi-

mated fill rate can be expressed as

�̃s = 1−

∫∞

s
(x− s)g(x)dx

Q
(3)

= 1−
k
�
[1−G1,k+1(�s)]− s[1−G�,k(s)]

Q
,

where G�,k(x) is the cumulative distribution function of a gamma with scale
parameter � and shape parameter k, i.e., G�,k(x) =

∫ x

0
g(u)du, x > 0.

We use the mean � and the variance �2 from the data for estimating the
parameters of the gamma distribution in the lead time as � = �/�2 and
k = L�2/�2.
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4.1.3. Gamma distribution with mass probability at zero

For intermittent demand, it might be convenient to use a distribution
with a mass at zero, as suggested by Nenes et al. [10] and Dunsmuir and
Snyder [21]. We also test this distribution to model the lead time demand.
In this case, the approximated fill rate can be expressed as

�̃s = 1−
[
∫∞

s
(x− s)g+(x)dx]p

Q
, (4)

where: p is a weight representing the probability of having positive demand in
a unit of time, estimated from the data as the quotient between the number
of months where demand was positive and the total number of months; and
g+ is the density function of a gamma random variable, for which we estimate
scale parameter �+ = �+/�

2
+ and shape parameter k = L�2

+/�
2
+, considering

only the data for months with positive demand to calculate the mean �+ and
the variance �2

+. Then, the term in brackets at the numerator of equation
(4) can be computed in the same way as we did in equation (3).

4.2. Lot-size demand

As far as we know, in the general case of lot-size demand there are no
exact methods to compute the left-hand side of constraint (1). In contrast
to the unit-size case, the undershoot distribution makes the lot-size case
more complex. This is not a crucial limitation, however, because usually the
data on inventory problems is not accurate either, but based on estimations;
quoting Silver et al. ([1], pp.239), mathematical optimality does not make

sense when deciding inventory control parameters for most items.
Next, we apply the approximated fill rate expression in Tijms and Groen-

evelt [24] for two demand distribution cases: normal and gamma. In that
article, the difference S − s is assumed to be predetermined (e.g., by the
EOQ) and that it is sufficiently large compared with the average demand
per unit of time (say, S − s ≥ 1.5�). Stochastic lead times of replenish-
ment orders are considered, provided that the probability of orders crossing
in time is negligible. The reorder point s as to satisfy the fill rate service
level constraint is approximately determined by solving the equation
∫ ∞

s

(x−s)2�(x)dx−

∫ ∞

s

(x−s)2�(x)dx = 2�(1−�)

(

S − s+
�2 + �2

2�

)

, (5)

where �(x) is the probability density of the total demand in the lead time plus
one unit of time, �(x) is the probability density of the total demand in the
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lead time, and � and � are the mean and standard deviation of the demand
per unit of time, respectively. Experiments by Moors and Strijbosch [25], who
propose an exact approach to compute the fill rate when demand behaves as
a gamma distribution with integer-valued shape parameter, confirm that the
approximation based on equation (5) behaves satisfactorily if the condition
S − s ≥ 1.5� holds.

4.2.1. Normal distribution

We use the mean � and the variance �2 computed from the data as
parameters of the normal density function f(x) = 1

�
√
2�
e−(x−�)2/2�2

,−∞ <
x < ∞. In the case of demand normally distributed, the left-hand side of
equation (5) corresponds to

M(s) = �2
�J

(

s− ��

��

)

− ��
2J

(

s− ��

��

)

, (6)

where: �� and �� are the mean and standard deviation of demand in the lead
time plus a unit of time; �� and �� are the mean and standard deviation of
demand in the lead time; and J(x) =

∫∞

x
(u−x)2�(u)du = (1+x2)[1−Φ(x)]−

x�(x) is an expression in terms of the standard normal density �(x) = e−x2/2
√
2�

and its cumulative function Φ(x) =
∫ x

−∞
�(u)du.

Then, the approximation of the fill rate that we utilize in the methodology
for the normal lot-size demand case is

�̃s ≈ 1−
M(s)

2�
(

S − s+ �2+�2

2�

) . (7)

Alternatively, note that when S− s is assumed predetermined, the right-

hand side of equation (5) is the constant value y0 = 2�(1−�)
(

S − s+ �2+�2

2�

)

.

Then, the problem of calculating the reorder point s reduces to find a solution
to the equation M(s) − y0 = 0. Tijms and Groenevelt [24] discuss approxi-
mation methods to find the value of s that solves this equation. Nowadays,
it can be quickly solved by using, for example, the method fzero in Matlab,
which is based on a successive linear interpolation method by Dekker [26].
We rather compute the approximated fill rate �̃s for each discrete value of s
instead of solving the equation, whose solution can be fractional. Under a
truncation procedure, however, both alternatives would conduce to the same
solution. In fact, we tried both in our first experiments and checked the
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solutions obtained were in accordance (note that fzero needs a parameter as
starting point, for which we used 0.9).

4.2.2. Gamma distribution

We now model the demand per unit of time by a gamma distribution.
We use the data to estimate its parameters as � = �/�2 and k = �2/�2.

The left-hand side of equation (5), for s > 0, is now given by

M(s) = �2
�(a� + 1)[1− Fa�+2(b�s)] (8)

−2su�[1− Fa�+1(b�s)] + s2[1− Fa�(b�s)]

−�2
� (a� + 1)[1− Fa�+2(b�s)]

+2s��[1− Fa�+1(b�s)]− s2[1− Fa�(b�s)],

where a� = �2
�/�

2
� and b� = ��/�

2
� (analogously for a� and b�) and Fk(x)

is the distribution function of a gamma with scale parameter 1 and shape
parameter k, i.e., Fk(x) =

1
Γ(k)

∫ x

0
e−uuk−1du, x > 0.

As in the normal distribution case, we use this expression of M(s) in the
approximation (7) and evaluate it for consecutive reorder point s, starting
from s = 0 to up, until the target � is fulfilled.

4.3. Selecting a demand model

Five alternatives to model demand can provide five different outcomes.
We illustrate this by an example.

Table 1 presents data on 9 items over a period of 67 months, where: � and
� are the mean and standard deviation of the demand per month, calculated
from the historical data accounting all months in the sample; �+ and �+ are
the mean and standard deviation of the demand per month, calculated from
the historical data accounting only the months with positive demand; ND>0

is the number of months with demand greater than zero; ND>1 is the number
of months with demand greater than one; L is the lead time (in months);
and � is the target fill rate.

We apply the solving methodology for the five alternatives of demand
models. In all cases the results are obtained very quickly, in a matter of a
second. The resulting values of s and S in each case are reported in Table 2.
For those items whose standard deviation for months with positive demand
�+ is zero (i.e., items M2, M4 and M7), we do not compute results for the
gamma with mass probability at zero, because it requires positive parameters.
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Table 1: Illustrative data.
Item � � �+ �+ ND>0 ND>1 L �
M1 0.16 0.48 1.22 0.63 9 1 0.33 0.95
M2 0.03 0.17 1.00 0.00 2 0 0.50 0.95
M3 0.04 0.27 1.50 0.50 2 1 0.33 0.95
M4 0.03 0.17 1.00 0.00 2 0 10.20 0.97
M5 0.15 0.55 1.43 1.05 7 1 0.17 0.95
M6 0.28 0.73 1.73 0.86 11 6 6.47 0.97
M7 0.04 0.21 1.00 0.00 3 0 6.67 0.97
M8 0.04 0.27 1.50 0.50 2 1 1.17 0.95
M9 1.73 7.57 29.00 13.00 4 4 0.47 0.95

Table 2: Results of the illustrative data example.

Plant Unit-size method Lot-size method
P1 Poisson Gamma Gamma0 Normal Gamma
Item s S s S s S s S s S
M1 0 4 0 4 0 4 1 5 2 6
M2 0 1 0 1 - - 1 2 2 3
M3 0 1 0 1 0 1 1 2 3 4
M4 2 3 2 3 - - 2 3 3 4
M5 0 1 0 1 0 1 1 2 4 5
M6 5 6 8 9 14 15 6 7 9 10
M7 2 3 2 3 - - 2 3 3 4
M8 1 2 1 2 1 2 1 2 3 4
M9 1 9 10 18 8 16 14 22 65 73

From this example, we emphasize that important differences can arise for
some items depending on the demand model used. For instance, the Poisson
model conduces to a reorder point s = 1 for item M9, which is the one with
highest volatility, while the other models conduce to much higher reorder
points, in a range from 8 to 65. Note that, by its definition, the Poisson
distribution can-not incorporate information on an empirical variance much
higher than the empirical mean, which can explain its outcome in comparison
to the other distributions in this example.

Likewise, among the two lot-size demand models, the normal distribution
conduces to lower reorder points than the gamma distributions for all items,
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which is expectable since the normal allows negative values.
In other cases, different demand models conduce to equal or similar re-

sults. For instance, the three unit-size models produce the same result for
items M1, M3 and M5.

In general, the fill rate expressions are not so tractable as to get structural
properties relating the outcomes of different distributions. In the particular
case when s∗ = 0, it is easy to check that the service level constraint (1)
reduces to �L/Q ≤ 1−� for each of the three unit-size demand distributions
(which explains the result obtained for materials M1, M3 and M5). In the
general case, this kind of outcomes is hard to identify without explicitly
computing the fill rates for each demand model.

Beyond the particular outcomes of these examples, they point out that
the demand model and the data input can significantly affect the results. A
natural question is then how to select only one demand model from the five
we have proposed to study. The suggestions in the literature are rather fuzzy.
Silver et al. [1] refer to a number of distributions and as a rule of thumb
they recommend: the normal distribution for items such that the coefficient
of variation �/� is less than 0.5; if this coefficient is greater than 0.5 it might
be desirable to use another distribution such as the gamma; for slow-moving
items, the Poisson distribution is a good candidate. Nenes et al. [10] suggest
the use of the chi-square goodness-of-fit test to ensure that the Poisson or
gamma distribution give acceptable representations of the demand behaviour
for some items.

In our case, we first check whether the demand has historically behaved as
unit-size or lot-size. If there was at most one period with demand greater than
one (i.e., if ND>1 ≤ 1), then we classify the demand as unit-size behaviour;
if there were two or more periods with demand greater than one (i.e., if
ND>1 ≥ 2), then we classify the demand as lot-size behaviour.

We then perform a chi-square goodness-of-fit test and see if the hypothesis
that the data follows a given distribution is rejected or not. Then, we propose
a simple decision rule which goes as follows:

1. If the demand has historically behaved as unit-size, then choose one of
the three unit-size demand models such that it was non-rejected in the
test and it obtained the highest p-value among them.

2. If the demand has historically behaved as lot-size and S − s ≥ 1.5�,
then choose one of the two lot-size demand models such that it was
non-rejected in the test and it obtained the highest p-value among
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them.

3. If neither conditions 1 nor 2 conduced to select a demand model, then
leave the item for further (managerial) revision.

In our implementation, we run the five methods for computing s and S
values for all items, independent of which of the five demand models is finally
recommended. This has been useful for benchmark purposes, as we showed
in Table 2.

We have presented the methodology as one for all the items. Note, how-
ever, that by discerning between unit-size demand and lot-size demand items
and setting S − s by the EOQ formula, we tend to distinguish the most im-
portant items and treat them with more accurate calculation than the least
important ones. In fact, most of the important items tend to present a unit-
size demand behaviour in the historical data base, so our recommendation
will be based on the fill rate’s traditional approximation (1) rather than the
lot-size approximation (7). Including the lot-size demand method is still use-
ful, however, for the rest of the items. Despite them perhaps representing
lower carrying cost, its computation still requires time resources and effort
from the staff; then, a recommendation under a quantitative methodology
provides valuable support.

5. Numerical results and analysis

We present numerical computations, using a database with historical con-
sumption over a period of 67 months. We firstly focus on a single plant prob-
lem, involving a sample of 992 items that presented consumption over this
period at the main plant (henceforth, plant P1). Afterwards, we incorporate
another 19 plants into the analysis. Then, we perform additional runs for
the single plant problem in order to discuss how results change with different
criticality settings and what is the impact of duplicates.

5.1. Single plant planning

We use the historical demand from the main plant for the data set of
992 items. Our computational implementation is coded in Matlab R2011a
on an Intel Core2 Duo 2.27GHz processor with 2GB of RAM, supported by
a spreadsheet in Excel. The methodology runs reasonably fast, providing
results in about one minute for the whole set of 992 items including the five
demand models.
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The results of applying the chi-square goodness-of-fit test are summarized
in Table 3. A first observation is that the normal distribution is rejected for
all the items. There is previous literature pointing out the limitations of the
normal distribution to model demand of spare parts (see, e.g., [8], [21], [27]
and [28]) and our work with real-world data provides additional evidence of
that.

In contrast to the normal, the Poisson distribution and the gamma dis-
tribution are not rejected in approximately 90% or more items. The gamma
distribution with spike at zero is not rejected for 11.1%. We note this figure
is relatively low, because for several items the standard deviation for positive
demand registers was zero so we could not use this distribution for them. For
only 0.7% of the items all the distributions were rejected.

Table 3: Outcome of the chi-square goodness-of-fit test over a set of 992 items.

Distribution Non-rejected Percentage
Poisson 899 90.6%
Gamma 975 98.3%

Gamma mass zero 110 11.1%
Normal 0 0.0%
None 7 0.7%

We then apply our selection criteria for demand models and recommend
inventory control parameters. Table 4 presents a summary of the frequency
in which each distribution is selected. The Poisson distribution is the one
selected for most of the items, with a frequency of 65%. We select the unit-
size and lot-size demand behaviour with gamma distribution for 16.7% and
16.6% of the items; and the gamma with mass at zero for unit-size demand
in only 0.2% of the items. Note that for only 1.3%, which corresponds to 14
items, our methodology does not recommend any of the above alternatives
and rather leaves the items for managerial evaluation. We point out that all
these 14 items presented a lot-size demand behaviour and both the normal
and gamma distributions were rejected by the test for 12 of them. For the
remaining two items, the gamma distribution was not rejected, but the co-
efficient (S − s)/� was less than 1.5, thus not sufficiently large to apply the
approximated fill rate of the lot-size gamma demand case.
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Table 4: Outcome of the methodology over a set of 992 items.

Distribution Recommendations Percentage
Poisson 645 65.0%
Gamma 166 16.7%

Gamma mass zero 2 0.2%
Gamma lot-size 165 16.6%

Normal 0 0.0%
None 14 1.3%
Total 992 100.0%

5.2. Multiple plants planning and risk pooling

A main usefulness of the methodology we have presented in the previous
section is that it helps us to evaluate the potential impact of some savings
sources. One of these sources is risk pooling among different inventory plants.

The importance of lateral resupply and pooling is illustrated by Muck-
stadt [3], who gives examples of systems in which pooling exists that require
roughly a third of the safety stock required when operating a completely
decentralized system. A recent application by Kranenburg and van Houtum
[29] reports that under full pooling more than 50% of the no pooling cost
can be saved in the case of ASML, a Dutch equipment manufacturer. Before
implementation, ASML did not take lateral transshipment into account in
the planning phase, i.e., the inventory in each local warehouse was planned
separately. Nevertheless, in daily practice lateral transshipment was used;
the same practice as realized at the company in our case. When comparing
their implementation to such a practice, the savings in yearly cost were about
31%. A similar situation is presented by Kukreja and Schmidt [30], who deal
with a large utility company having 29 generating plants. The plants do not
consider the effect of being supplied from each other when deciding their own
inventory control policies, but in practice they also collaborate. Experimen-
tation by the authors including from two to five plants shows that pooling
leads to savings between 31% and 58.78%. Other works in lateral transship-
ments under emergency situations are reported in Archibald [31], Wong et
al. [32] and Alfredsson and Verrijdt [33].

As in the case of Kukreja and Schmidt [30], we consider a single-echelon
situation with a multi-location, continuous-review inventory system in which
complete pooling is permitted and each location utilizes an (s, S) policy.
We carry out computations for twenty plants by aggregating their historical
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demand. We do not consider lateral transshipment costs and rather focus
on the potential of risk pooling for protection against variability. Note that
all the plants we are dealing with lie along the Norwegian coast, relatively
close to each other. Also, the most extreme emergency cases are those when a
main part on an off-shore platform needs to be replaced and its corresponding
on-shore plant does not have the part in stock. If the part is available from
other plant, the part does not need to be sent from one to another on-shore
plant before being sent off-shore, but is just sent straight from the on-shore
plant supplying it to the off-shore location.

We focus on 992 items that presented consumption in the main plant P1,
for which we also account with demand data on the consumption realizations
in the other 19 plants.

We first apply the methodology for determining inventory control param-
eters s and S in each plant separately.

In order to analyze the potential of risk pooling, we also consider a ficti-
tious integrated plant, as if instead of the 20 real plants there would be only
one central plant serving the demand from all of them. The data we use for
this integrated plant is the aggregated demand data for the 20 real plants.

From the 992 items, we consider only items for which there was at least
one realization of demand in at least one of the 19 other plants; in total,
these account for 212 items. For fair comparison purposes, from these 212
items we leave out those that in at least one plant the methodology did not
recommend inventory control parameter values; in total, we are left with a
sample of 175 items. For a given item, we use the same service level bound
in the separated planning and the integrated planning.

From the results so obtained, we summarize important measures in Ta-
ble 5. For each plant, the figures aggregate all the items. � is the safety stock,
calculated as the reorder point s minus the expected demand during the lead
time. NA is the expected number of orders per year, calculated as �/(S− s).
And Ī is the average inventory on hand, calculated as �+ (S − s)/2.

The risk pooling approach results in 1% less safety stock, 11% fewer
expected number of orders and 4% less average inventory on hand. In order
to quantify the impact on inventory costs, we have (internally) calculated the
total expected cost as CT = Cr +CA, where Cr is the expected carrying cost
and CA is the expected ordering cost (Cr = Īvr and CA = A�

S−s
). In this way,

the reduction of inventory means total annual savings in the order of 13%
when comparing the integrated case to the separated planning case. Since
we have used the same lower bound on the service level in both cases and
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Table 5: Safety stock, expected number of orders and average inventory on hand under
separated planning and integrated planning over a set of 175 items in 20 plants.

Plant ID � NA Ī
P01 1,085 78 1,570
P02 51 11 83
P03 28 5 39
P04 87 10 198
P05 3 2 7
P06 70 7 78
P07 366 19 427
P08 121 7 135
P09 135 7 143
P10 39 8 57
P11 12 5 18
P12 18 1 22
P13 18 2 23
P14 2 1 5
P15 80 10 98
P16 32 6 59
P17 1 0 1
P18 31 6 47
P19 17 5 29
P20 119 4 232

Total separated 2,313 194 3,272
Integrated 2,287 172 3,125
Difference -1% -11% -4%

have limited the analysis to a sample of only 175 items in 20 plants of the
pool, the potential savings by an integrated planning in the whole problem
appear to be promising.

5.3. Analysis of criticality settings

A natural concern in our study is to compare our recommendation with
the inventory control parameters currently used at the case study company.
This is part of our internal validation process at the company. Without
getting into sensitive information details, we provide some insights in Table 6.
We use three different safety settings, depending on the fill rates bounds: high
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safe setting, with bounds ranging from 90% to 99%; medium safe setting,
with bounds ranging from 80% to 89%; low safe setting, with bounds ranging
from 70% to 79%. The values in the table indicate the number of times that
our recommendation of reorder point s∗ is greater, equal or lower than the
actual reorder point sa at plant P1. For a fair comparison, we discard 164
items for which the company has preferred to not hold inventory and thus
ordering them just when required for consumption (i.e., those where the min
level is set to zero). We also discard 14 of the remaining items for which
none of the 5 demand models was recommended. In total, we are left with
814 items for this comparison.

Table 6: Comparison of the reorder point s∗ obtained by our methodology and the actual
sa under different service level bounds, considering 814 materials of plant P1.

Service level s∗ > sa s∗ = sa s∗ < sa
High safe 373 268 173
Medium safe 157 427 230
Low safe 92 467 255

In the high safe setting, our recommendation is higher than the actual
for 46% of the items, while lower for 21% of them. In the medium safe
setting, our recommendation is equal to the actual for most of the items,
while lower for 28% and higher for 19% of them. In the low safe setting, our
recommendation is higher than the actual for only 11% of the items, while
lower for 31% of them.

Hence, for high target service levels, our recommendation tends to be
higher than the actual. If we assume the actual demand follows the distribu-
tion selected, the analysis would reveal that the current control parameters
do not meet the target fill rates for most of the items. As we decrease the
target fill rate, on the other hand, our recommendation tends to reduce the
current reorder points. Similar observations could be made comparing the
order-up-to-levels S.

The methodology can thus serve as support for the inventory planners
to carry out a quantitative evaluation of the trade-off between service levels
and inventory costs. It has, of course, some limitations. For instance, some
few items (1.3% in the case of plant P1) could not be modeled by any of
the demand distribution tested. It will always be possible to include more
probability distributions of common use in the context of spare parts, such
as the compound Poisson or negative binomial. Alternatively, a forecasting
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rather than a modelling demand approach could be considered. The tests of
methods applied in our work have proved to be useful for modelling a large
majority of the items, while at the same time keeping the computations
reasonably simple and quick.

There is also an issue with basing the analysis on historical data when it
comes to new items with either short or no historical demand behaviour to
analyze. In the other extreme, there are old items with a large amount of
historical data but whose use is starting to disappear as they are replaced
by more modern equipment. In the next section we pursue the task of over-
coming another data issue: the existence of duplicates in the system.

5.4. Duplicates

A duplicate means that the same spare part item has been registered in
the database with different codes. In the event of there being few items to
manage, it would be relatively easy to identify which items correspond to
duplicates and the inventory staff could quickly realize any discrepancies be-
tween the information on the system and the actual stock. However, when
the number of items is in the order of a hundred thousand and the inventory
network is multi-location, the duplicates create a more difficult puzzle to deal
with. Evidence from the retail sector (DeHoratius et al. [34]) has pointed out
that inventory record inaccuracy is a significant problem in practice, and the
elimination of inventory inaccuracy can reduce supply chain costs as well as
the out-of-stock level (Fleisch and Tellkamp [35]). In these references, the in-
accuracies refer to discrepancy between the recorded inventory quantity and
the actual inventory quantity physically available on the shelf. In our case,
the discrepancies arise from the duplicated codes, which have been estimated
to be roughly between 10% to 30% of the item codes in the system. This
may lead to inventory levels higher than desirable when, for example, one
item with a given code in the system reaches its reorder point, triggering a
replenishment order while the same item with different code is still available.
On the other hand, when a stockout of an item occurs, the realized service
level could have been better if the item was actually available but with a dif-
ferent code and it was not realized by the staff. Still if in practice these two
problems would not occur for all the duplicated items, the existence of du-
plicate codes in the system also affect the data quality for diverse evaluation
purposes.

We perform a simple procedure in order to estimate the impact of the
spare parts duplicated in the system. Let us assume there is a 10% of du-
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plicates. Then, our procedure is based on aggregating one out of each ten
items in the system. First, we sort the database by prices, from the most
expensive item to the cheapest one. Then, we merge the 10th item with
the 9th item, the 19th with the 20th and so on, as if they would correspond
to the same item. The merging of two items consists of aggregating their
historical demand (obtaining the resulting average, standard deviation, etc.)
and calculating for the merged item a new lead time, unit cost and order
cost as the average of the corresponding values from the two separate items.
As for the criticality index, if the two items appeared with different values,
we use the highest one. We implemented this procedure and merged 198
items of the 992 items from our database into 99 items. Then, we applied
the methodology of Section 4 to compute the inventory control parameters
and we compared the results to those obtained in the case where the 198
items were considered per separate. We found that for the aggregated items
the average inventory on hand decreased by 18%, the safety stock decreased
by 8% and the average number of orders decreased by 10%. These figures
translate into savings of 28% of the expected cost per year for those items.
We carried out the same experiment a further eight times, varying the po-
sition of the merged items. Namely, in one experiment we merged the 9th
item with the 8th item and so on, instead of the 10th item with the 9th
item; in other experiment we merged every 8th and 7th items, and in the
last experiment we merged every 2nd and 1st items. On average, the total
expected cost per year when the items were merged was 22% less than when
they were not merged.

We performed a similar analysis varying the percentage of merged items
from 0% to 30%, increasing it by 5% in each run. This analysis is motivated
by the lack of knowledge of exactly how many items are duplicated in the
system. If we assume a certain percentage of items are duplicated and that
they are corrected by merging them, we can compute the savings compared
to the total expected cost when all the original items in the database are
considered per separate. As shown in Figure 1, the merger of up to 30% of
the items led to savings of almost 12% in total expected cost.

If there are between 10% to 30% of duplicates in the system, by this
analysis our computations indicate on average there would be 8% of savings
if they would be corrected.

Other than the relative order in the sorted-by-price list, one could add
more conditions when merging items, such as their similarity in other at-
tributes. We have performed additional runs, merging two consecutive items
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Figure 1: Percentage of savings in total expected cost as a function of the percentage of
duplicated items, if the duplicates are corrected.

in the sorted-by-price list only if their unit prices differ in no more than 10%
and their lead times differ in no more than 10%. Under these criteria, 238
items (equivalent to 25%) are merged into 119 items, resulting in savings
of 17% in comparison to when they are not merged. Likewise, if we would
consider the cost of the merged items as basis, the impact of duplicates in
cost corresponds to 21%.

6. Concluding remarks

We have studied a problem of spare parts inventory in Statoil ASA, a large
energy company. Our attention focused on how to set reorder and order-up-to
level parameters for the (s, S) continuous review system, in order to explore
the benefits of risk pooling and the correction of duplicates.

We considered five demand models, including unit-size and lot-size cases,
and used simple rules and a goodness-of-fit test to choose a model. We imple-
mented them in a methodology which runs quickly and suggested inventory
control parameters for a variety of items. Our results provide insights on
how these models and corresponding solving methods behave in a real-world
data set.

We applied the methodology to explore the potential benefits of risk pool-
ing in the case under study. Our results suggest the risk pooling conduces to
reduction of safety stock, expected number of orders and average inventory
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on hand, which translates into cost savings of 13% while satisfying the re-
quired service level bounds. In practice, the implementation of risk pooling is
not straight forward, however, because of political issues and the difficulties
in configuring a cost sharing structure. One of our future research direction
aims at how the different inventory license owners should share costs in the
pool if it is implemented. Different owners may have different preferences on
how to share or manage an inventory. Some of them may be less willing to
collaborate as they have larger shares in other platforms beyond those oper-
ated by the company under study. Likewise, some equipment may be more
important to one than another company, but the resources (e.g., space) they
utilize at the warehouse are the same. Recent literature has introduced the
use of game theory to address this cost sharing issue in risk pooling prob-
lems (Wong et al. [36], Karsten et al. [37]), opening a promising research
line within the literature on spare parts inventories.

Getting correct demand description usually needs historical data. In prac-
tice, this presents some difficulties, like the existence of duplicated item codes
in the system. By aggregating some of the items based on their similarity in
prices, we identified the correction of the duplicates issue as another source
of important savings (on average 8% when duplicates go from 10% to 30%
of the items). Other difficulties with respect to the data are the scarcity
of registers for new items and the lack of clarity when deciding whether a
consumption register is actual demand or an internal balance movement.
Analyzing the impact of these problems is also part of our future research
and we are working together with the information technology units of Statoil
ASA on these and other issues of the data processing, as well as on testing
the methods presented in this article on a larger set of data.

We have assumed in this article that only new items are considered when
replenishing stock. In practice, some of the items can be repaired. The
company has set different repair strategies, depending on the type of items
and the location where they should be repaired. In future research, we expect
to incorporate repairable items and use a multi-echelon modelling approach,
as is used in the literature of spare parts related to aircraft (Muckstadt [3],
Sherbrooke [4]).

Also, we have focused on the (s, S) policy, as it is the one prevailing at
the company today. Comparing the performance of this with other systems
is also a relevant question for further research. Note that most of the im-
portant items are usually expensive enough to make the EOQ equal to 1.
In consequence, the policy with these items corresponds to the well-known
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(S − 1, S), which is commonly assumed when working with critical spare
parts ([3], [4]). Although this policy is a particular case of (s, S), there are
special results for the (S − 1, S) policy that could be useful to incorporate,
such as the exact expression of the fill rate for the Poisson demand model
(see, e.g., [3], pp. 52). Also, when the same item appears with different crit-
icality indexes in different contexts, it would be interesting to measure the
benefits of a threshold rationing policy, which gives priority to the demand
in the highest criticality context (Deshpande et al. [38], Dekker et al. [39]),
over the (s, S) policy with round-up service level bounds as considered in our
case.

Another point for further work is evaluating the alternative of outsourcing
the inventory service with the supplier, which might be convenient for some
of the items with short lead times and low criticality.

Although our article has been inspired in the context of Statoil ASA,
our contribution extends to a more general context which we would like to
summarize in four main points. First, we have used five demand models and
defined simple and clear rules to select one of them for each item, rather than
setting a demand model a priori. As pointed out recently by Syntetos et al.
[40], we believe that the development of goodness-of-fit tests for application
in inventory control of intermittent demand items is an interesting future
research issue. They use the Kolmogorov-Smirnov test (Massey [41]), which
is not appropriate when the parameters are estimated from the sample (as it
is in our case) and it only applies to continuous distributions. The chi-square
goodness-of-fit test, on its hand, may fail on discerning whether a distribution
is rejectable or not when the demand values have presented small frequencies
in the history. This could be the case of binary demand or so called clumped

items. Using other distributions, such as the binomial and beta-binomial,
could be an alternative approach for these items, as tested by Dolgui and
Pashkevich [27].

Second, we have explored the benefits of risk pooling in a problem with a
single-echelon, multi-location, continuous-review inventory system in which
complete pooling is permitted and each location utilizes an (s, S) policy.
As noted by Kukreja and Schmidt [30], this problem has not received special
attention from the literature, despite its complexity and relevance in practice.

Third, in addition to the risk pooling, which is a traditional source of
savings in inventory management, we have introduced the correction of du-
plicate codes as another source which, in large inventory systems, may lead to
considerable savings as well. To our knowledge, this duplicates issue has not
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been addressed in previous literature and we believe it is worthy of in-depth
exploration in the context of spare parts, as has been done with related issues
of record inaccuracy on retail inventories (DeHoratius et al. [34], Fleisch and
Tellkamp [35]).

Fourth, our work has highlighted the importance of the inventory man-
agement of spare parts in the oil and gas industry, which so far has not
been a main protagonist in related literature. Characterized by high service
levels, geographical networks with interaction between onshore and offshore
facilities and items with customized specifications and long lead times, we
believe there are important chances of improving the inventory practices in
the industry, with opportunities for achieving great impact on savings while
at the same time maintaining or increasing service levels.
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