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Abstract  

 

The analysis of network’s centralities has a high-level significance for many real-world 

applications. The variety of game and graph theoretical approaches has a paramount purpose to 

formalize a relative importance of nodes in networks.  In this paper we represent an algorithm 

for the centrality calculation in the domain of weighted networks.  The given algorithm calculates 

network centralities for weighted graphs based on the proposed procedure of edges’ splitting. 

The approach is tested and illustrated based on different types of network topologies.   
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1. INTRODUCTION  

The variety of approaches for the analysis of network centralities has a purpose to understand and 

formalize a relative importance of nodes on graphs (i.e., networks). The classical approaches are 

based on the structural measurements that come from graph theory.  Centralities based on degree 

(Freeman, 1979), closeness (Beauchamp, 1965; Sabidussi, 1966), betweenness (Anthonisse, 

1971; Freeman, 1977), and information (Wasserman, 1994) are the most common measures. Also 

there exist centrality measures for the analysis of node’s importance in complex networks: 

percolation centrality (Piraveenan, Prokopenko, & Hossain, 2013), cross-clique centrality 

(Faghani & Nguyen, 2013), etc. Details about each of these network centralities can be found in 

the corresponding literature. However, it is important to notice that the majority of the mentioned 

topological measures are based on two main concepts: (a) the analysis of different types of flows 

transferred across a network (Borgatti, 2005), and (b) the analysis of cohesiveness of a network 

(Borgatti & Everett, 2006).  

There is a family of measures that are constructed based on the combination of graph and game 

theoretic concepts (Gómez, González-Arangüena, Manuel, Owen, del Pozo, & Tejada, 2003; Suri 

& Narahari, 2008).  Specifically, Shapley Value (Shapley, 1952; Littlechild & Owen, 1973; Gul, 

1989), which is considered as one of the most important concepts in coalition games, was 

employed by Aadithya, Ravindran, Michalak, & Jennings (2010) to measure an importance (i.e., 

centrality) of nodes in networks. According to Aadithya et al. (2010) the equation of Shapley 

value (SV) for player i in the coalition game with n players is the following: 

SVi(v) = ∑
|S|!(n−|S|−1)!

n!S⊆N\{i} (v(S ∪ {i}) − v(S)),                                    (1) 

where: 

N is the set of n players; 

 𝑣 is the characteristic function: 2𝑁 → ℝ; 𝑣(Ø ) = 0. 
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Aadithya et al., 2010 introduced the idea of SV application “in the domain of networks, where it 

is used to measure the importance of individual nodes, which is known as game theoretic network 

centrality”.    

Consider graph G(V,E) and 𝑣𝑖 ∈ V. Then 𝑁𝐺(𝑣𝑖) denotes the set of all neighboring nodes that are 

reachable from 𝑣𝑖 in at most one hop within G(V,E).  

The degree of node 𝑣𝑖  is defined by 𝑑𝑒𝑔𝐺(𝑣𝑖). According to Aadithya et al. (2010) The SV 

interpretation for node 𝑣𝑖 in G(V,E) is the following: 

 

SV(vi) = ∑
1

1+degG(vj)
,vj∈{vi}∪NG(vi)                                                         (2) 

The formulation represented in equation (2) “is an exact closed-form expression for computing 

the SV of each node on the network” (Aadithya et al., 2010).  

2. CENTRALITY MEASURE IN WEIGHTED NETWORKS 

Since weights play an important role in networks it is necessary to consider them as one of the 

key factors when measuring centralities. We assume that nodes in graphs with the same structure, 

but with different weights should have different centralities depending on the given weights. 

Inspired by ideas represented in Aadithya et al. (2010) we developed the algorithm to measure 

the importance of nodes in weighted graphs. 

 

The core idea of the algorithm is to split edges into sub-edges based on their weights.  

Specifically, we split an edge with weight w into w-number sub-edges, where the weight of each 

sub-edge is equal to “1”.  

Consider the weighted graph G(V,E) where for each node (u, v)  the specific weight w is 

assigned. The algorithm of edges’ split into single-weighted (i.e., w=1) sub-edges is the 

following: 

 
WEIGHT-SPLIT G(V,E) 
1 FOR each edge (u, v) ∊  G. E  do: 
2  Split edge (u, v) into 𝑤-number of sub-edges {(u, v)′

1
, … , (u, v)′

𝑤
}; 

3  FOR i=1 to 𝑤 do: 
4   𝑤′(u, v)′

i
=1; 

5  end 
6 end 
7 return WEIGHT-SPLITTED-GRAPH G′(V′, E′) 

 
Note: ∀(u, v) ∊  G. E:  ∑ 𝑤𝑤

i=1 ′(u, v)′
i

= 𝑤(u, v); i={1,…, 𝑤 }; 

 
According to lines 2-4 of WEIGHT-SPLIT G(V,E) each edge of graph G(V,E) has to be split into 

w sub-edges, where each sub-edge has a weight of “1”.  

The trivial example of how WEIGHT-SPLIT G(V,E) works is represented in Figure 1. 
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Figure 1. Edge-splitting procedure 

 

According to Figure 1 there is a graph G(V,E) that consists of two nodes and the edge between 

them with the weight of “3”. Applying WEIGHT-SPLIT G(V,E) we get a new graph G′(V′, E′) 
with three sub-edges, where each sub-edge has a weight equal to 1. 

 

The WEIGHT-SPLIT G(V,E) procedure is the initial stage of the algorithm that calculates 

centrality measures for each node of a graph.  

We consider the centrality measure of a node as its individual level of importance on the network. 

Specifically, we introduce the algorithm for the centrality measurement in weighted networks. 

Since the given algorithm is based on the idea of splitting weighted edges into sub-edges, we call 

the proposed centrality measure as Split-based Centrality (SC).  The algorithm for SC-calculation 

is the following: 

 

CENTRALITY-COMPUTING G(V,E) 
1  WEIGHT-SPLIT G(V,E) 
2 Total=0; 
3 FOR each vertex u ∊ G.V do: 
4  V[u]=0; 
5  FOR each edge (u, v) ∊  G. E do: 
6   FOR each sub-edge (u, v)′ ∊  G′. E′ do: 

7    V[u]+=
1

1+Neig(u)
+

1

1+Neig(v)
; 

8   end 
9  end 
10  Total=Total + V[u]; 
11 end 
12 FOR each vertex u ∊ G.V do: 

13  SC[u]= 
V[u]∗|G.V|

Total
 ; 

14 end 
15 return all SCs 
 
Notation: 

V(node) is an intermediate non-normalized value  for Split-based Centrality calculation; 
Neig(node) is the number of neighboring vertices directly connected to the current node; 
SC(node) is the Split-based Centrality measure; 
|G.V| is the cardinality of the set of vertices G.V 
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To show how the algorithm works we consider a trivial example represented in Figure 2. 

 
Figure 2. Illustrative example  

 

We apply CENTRALITY-COMPUTING G(V,E) to calculate SCs in the graph represented in Figure 

2.  According to line 1 of the algorithm, we split the only edge (1,2) with w= 4 into four sub-

edges.  The weight of “1” is assigned to each sub-edge based on the WEIGHT-SPLIT algorithm 

(see Figure 3). 

 
Figure 3. Illustrative example with split weight 

 

Next, following lines 2-15 we calculate SCs for all vertices in the graph.  Line 3 initiates the 

cycle to go through the list of all nodes in G(V,E). In line 4 we assign zero-value to V of the 

current vertex. Every time, when the algorithm starts to calculate V for the next vertex of the 

graph, line 4 resets V to zero-value. Line 5 initiates the process of going through the list of all 

edges of the current vertex. Line 6 extracts all sub-edges (u, v)′ ∊  G′. E′ that are encapsulated in 

the currently processed edge (u, v) ∊  G. E. Line 7 accumulates all V sub-values going through all 

edges and sub-edges of the currently analysed vertex u ∊ G.V.  It is important to notice that the 

idea of V-calculation (as the main component of SC) is interrelated with the formalization of SV 

represented in equations (1)-(2). Next, we tot up Vs of all vertices u ∊ G.V getting Total-value in 

line 10. In lines 12-14 we normalize the results calculating SCs for each vertex u ∊ G.V. Finally, 

in line 15 we get SCs of all vertices in G(V,E). 

 For our trivial example represented in Figures 2-3 we get SC[1]=SC[2]=1. 

In section 3 we represent SC-calculation results applying the algorithm in different network 

topologies.  
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3. APPLICATION IN DIFFERENT NETWORK TOPOLOGIES 

3.1 “Point-to-point” or “Line” topology 

The initial structure of the weighted “point-to-point” graph is represented in Figure 4. It is 

characterized by two nodes with the following weights: w(1,2)=4 and w(2,3)=5. Applying the 

CENTRALITY-COMPUTING algorithm we get the graph with split weights represented in Figure 

5. The results of SC calculations are represented in Table 1. Since node 1 has the only neighbor 

node 2 (i.e., Neig(1)=1) and w(1,2)=4 we get four sub-edges connecting node 1 and node 2. 

Similarly, node 3 has the only neighbor node 2, but w(2,3)=5. In this case we get five sub-edges 

connecting node 3 and node 2. Based on the CENTRALITY-COMPUTING algorithm we have 

SC(1)=0.667 and SC(3)=0.833. Both nodes are connected to node 2 only, but the weights of 

initial links (i.e., edges) are different. As the result SC(1)<SC(3). Node 2 connected to both 

mentioned nodes, and it has nine sub-edges in total. Playing the role of a hub it gets the highest 

SC=1.5. 
 

Table 1. SCs calculation for the “point-to- point” topology 

 

 

 

 

 

 

 

 

 

 

Figure 4. Weighted “Point-to-point” graph 

 

 

 

 

 

 

 

 

 

Figure 5. “Point-to-point” graph with split weights 

 

3.2 “Star” topology 

“Star” topology is characterized by the existence of a centric node, which is connected to all other 

nodes on the network. All nodes, excluding the centric one, form an independent set (Robson, 

1986; Boppana & Halldórsson, 1992; Merris, 2003). The “star” graph with established weights is 

represented in Figure 6. It is characterized by three links with the following weights: w(1,2)=3,  
w(1,3)=2, w(1,4)=4. Applying CENTRALITY-COMPUTING to the given graph we get the graph 

with split weights (see Figure 7) and SCs computational results (see Table 2). Based on the 

corresponding weights, edge (1,2) is split into three sub-edges, edge (1,3) – into two and edge (1-

4) – into four. Nodes 2, 3 and 4 are connected to node 1 only, but weights of their initial links are 

different. The computational results are the following: SC(2) = 0.667; SC(3)=0.444; 

SC(4)=0.889. Node 1 is connected to all others, and it is characterized by 18 sub-edges in total. 

Playing the role of a hub it gets the highest SC=2.0. 
 

# node Neig SC

1 1 1

2 1 1

3 1 1

4 1 1

5 2 2

6 2 2

7 2 2

8 2 2

9 2 2

10 2 2

11 2 2

12 2 2

13 2 2

14 3 1

15 3 1

16 3 1

17 3 1

18 3 1

0.667

1.500

0.833
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Table 2. SCs calculation for the “star” topology 

 

 

 

 

 

 

 

 

 

 

 

Figure 6. Weighted “star” graph 

 

 

 

 

 

 

 

 

Figure 7. “Star” graph with split weights 

 

3.3 “Ring” topology 

“Ring” topology is characterized by sequential connection of each node to exactly two other 

nodes forming a cycle. There is no leading node in a “ring”-based structure, and the deletion of at 

least one edge may cause the destructive effect of the overall network. We consider two types of 

“ring” topologies: (a) graph with even number of nodes (b) graph with odd number of nodes. 

3.3.1 “Ring” topology with even number of nodes 

The graph with assigned weights is represented in Figure 8. It consists of four nodes connected 

by edges with the following weights: w(1,2)=2, w(2,3)=3, w(3,4)=4, w(4,1)=5. Applying the 
CENTRALITY-COMPUTING algorithm we get a modified graph based on weights’ split (see 

Figure 9). The resulting SCs are represented in Table 3.  Node 2 gets the smallest SC=0.714 

based on five sub-edges created within two links: (1,2) and (2,3). Node 4 has the highest 

SC=1.286.  It is characterized by two “heaviest” links (i.e., w(3,4)=4 and w(4,1)=5) that split into 

nine sub-edges.   

 

 

 

 

 

 

 

 

# node Neig SC

1 1 3

2 1 3

3 1 3

4 1 3

5 1 3

6 1 3

7 1 3

8 1 3

9 1 3

10 2 1

11 2 1

12 2 1

13 3 1

14 3 1

15 4 1

16 4 1

17 4 1

18 4 1

0.444

0.889

2.000

0.667
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Table 3. SCs calculation for the “ring” topology 

with even number of nodes 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Weighted “ring” graph with even number of nodes 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. “Ring” graph (even number of nodes)   

                            with split weights 

 

3.3.2 “Ring” topology with odd number of nodes 

We calculate SCs for the “ring” graph with odd number of nodes. The initial graph structure is 

represented in Figure 10. It consists of five nodes connected by five edges with the following 

weights: w(1,2)=2, w(2,3)=3, w(3,4)=4, w(4,5)=5 and w(5,1)=1. Applying the 
CENTRALITY-COMPUTING algorithm we get the graph with split weights (see Figure 11) and 

the resulting SCs (see Table 4).  

 

 

 

# node Neig SC

1 1 2

2 1 2

3 1 2

4 1 2

5 1 2

6 1 2

7 1 2

8 2 2

9 2 2

10 2 2

11 2 2

12 2 2

13 3 2

14 3 2

15 3 2

16 3 2

17 3 2

18 3 2

19 3 2

20 4 2

21 4 2

22 4 2

23 4 2

24 4 2

25 4 2

26 4 2

27 4 2

28 4 2

1.000

0.714

1.000

1.286
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Table 4. SC calculations for the “ring” topology 

with odd number of nodes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10. Weighted “ring” graph with odd number of nodes 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 11. “Ring” graph (odd number of nodes) 

                            with split weights 

 

3.4 Mixed topology 

We consider a graph as a mixed structured if it is represented by different combinations of trivial 

topologies, such as “point-to-point”, “ring” and “star”.  The initial graph structure is represented 

in Figure12. It includes seven nodes connected by the following links with assigned weights: 

w(1,2)=5; 
w(1,3)=2; 
w(2,3)=3; 
w(3,4)=2; 

w(4,5)=4; 
w(5,6)=4; 
w(5,7)=2; 
w(6,7)=3.  
 

Based on the CENTRALITY-COMPUTING algorithm we get the graph with split weights (see 

Figure 13).  SC computational results are represented in Table 5. Node 5 has got the highest 

SC=1.339 based on three links split into ten sub-edges. Node 7 is the node with the minimum 

SC-value: SC(7)=0.727. It is based on the split of two links (w(5,7)=2 and w(6,7)=3) into 5 sub-

edges in total. 
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Table 5. SCs calculation for the mixed topology 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 12. Weighted mixed graph 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 13. Mixed graph with split weights 
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4. CONCLUSION 

In the given paper we represented an algorithm for centrality calculation in weighted networks. 

The algorithm consists of two sub-components. The first component (i.e., WEIGHT-SPLIT) 

processes edges’ weights. Specifically, it splits network links into sub-links (i.e., sub-edges) 

based on the corresponding weights. This procedure is polynomially executable in terms of 

running time. As the result of the first component execution, we get a modified graph to be 

processed for the Split-based Centrality calculation. The second subcomponent of the 

CENTRALITY-COMPUTING algorithm is based on the weight-splitting concept. Going through 

all edges and through the corresponding sub-edges of each node in the network, we 

accumulatively calculate SC-values. Therefore, the procedure has an iterative nature running in 

polynomial time to calculate SC-values for every node on the network.  Next, we apply the 

CENTRALITY-COMPUTING algorithm to different types of network topologies, such as “point-

to-point”, “star”, “ring”, and “mixed”. The results are represented in tabular and graphical 

formats.  

Analyzing network centralities it is necessary to consider edges’ weights as an important factor as 

well as the structural factor. In this paper we maintain a statement that two networks with 

identical structures but with different weights are expected to have different levels of importance 

depending on the corresponding weights of links. The represented algorithm is based on this 

statement.  
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