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Abstract 

Norwegian distribution companies have been subjected to an incentive regulation 

scheme from 1997, and the efficiency incentives were further strengthened with the 

introduction of yardstick regulation in 2007. We examine the productivity development 

for these companies in the period from 2004 to 2013. Using three benchmarking 

methods, DEA, SFA, and StoNED, we examine productivity change, with the usual 

decompositions into efficiency change, technical change, and scale efficiency change. 

Increasing investments and use of accounting-based capital costs in our analysis may 

lead to a negative bias in the productivity change estimates, and we therefore perform 

our analysis with and without capital costs. Our results indicate a negative productivity 

development for the whole period from 2004 to 2013, and we do not observe a positive 

effect of the change in regulation regime from 2007. 

  



 
 

1 Introduction 

With electricity sector reforms in the 1990s, the structure, organization, and 

operating environment for the electricity sector in many countries experienced great 

change. The central objectives of the reforms were to implement market 

competition in electricity generation and supply sectors, and to improve the 

efficiency or productivity of the natural monopoly activities of distribution and 

transmission through suitable regulatory schemes. In this paper we focus on the 

electricity distribution companies. 

The aim of the regulatory reforms is to provide the distribution companies with 

incentives to improve their investment and operating efficiency and to ensure that 

consumers benefit from the efficiency gains. Regulators have therefore adopted a 

variety of approaches to incentive regulation, including rate-of-return (ROR), cost-of-

service (COS) regulation, and so on. The most widely used incentive schemes are 

based on price cap, revenue cap, and yardstick regulation. In practice, many regulators 

implement these incentive regimes with different benchmarking methods. Within this 

context, the standard definition of benchmarking is a comparison of some measure of 

actual performance against a reference performance. The common way of obtaining a 

comprehensive benchmarking is to establish production or cost frontiers for the 

companies, and then to estimate the performance of individual companies based on the 

corresponding frontier. 

In Norway, the Energy Act of 1990, in force from 1991, introduced a regulatory reform 

of the Norwegian electricity market. The reform laid the ground rules for competition 

in the supply sector and regulation in transmission and distribution sectors. In 1997, the 

Norwegian Water Resources and Energy Directorate (NVE) implemented an incentive 

regulation scheme with revenue caps that were updated every 5 years based on Data 

Envelopment Analysis (DEA). From 2007, the incentives were strengthened in a 

yardstick regulation scheme with annual updates of the revenue caps. See Bjørndal et 

al. (2010) for a more detailed discussion of the various regulation schemes that have 

been used. Amundsveen and Kvile (2014) discusses the present yardstick regulation. 

There are several different approaches to measure the relative efficiency and 

productivity of companies in relation to a sample’s efficient frontier (Jamasb and Pollit, 

2001). These approaches are generally placed into two broad categories: non-



 
 

parametric and parametric techniques. DEA (Charnes et al., 1978; Farrell, 1957) is a 

non-parametric method that is capable of handling multiple inputs and multiple outputs, 

while stochastic frontier analysis (SFA) (Aigner et al., 1977) and corrected ordinary 

least squares (COLS) (Richmond, 1974) are parametric methods. Lately, a semi-

nonparametric approach has been proposed, i.e. stochastic semi-parametric 

envelopment of data, or StoNED (Kuosmanen and Kortelainen, 2012), and this method 

has been used for regulation of Finnish distribution companies (Kuosmanen, 2012). 

We use the StoNED method to examine the productivity performance for Norwegian 

electricity distribution companies, and we compare the StoNED results to estimates 

based on DEA and SFA. Our analysis is based on a sample of 123 distribution 

companies for the period 2004-2013. We also decompose the respective productivity 

indices, and we discuss efficiency change, technical change and scale efficiency 

change for the companies. 

The rest of the paper is organized as follows: First we review previous productivity 

studies of electricity distribution in Norway and other countries in Section 2. The 

necessary methodology, i.e. Malmquist, DEA, SFA, and StoNED, is introduced in 

Section 3. The data and the empirical results are described in Sections 4 and 5, 

respectively, and we conclude in Section 6. 

2 Previous studies 

Hjalmarsson and Veiderplass (1992) applied DEA to investigate productivity 

development of electricity distribution in Sweden between 1970 and 1986. They found 

a high rate (5%) of productivity growth, due to economies of density, over a period 17 

years. Giannakis et al. (2003) studied technical efficiency and productivity change for 

electricity distribution companies in the United Kingdom for the period 1991/92 to 

1998/99 using the DEA approach. Their analysis indicated significant productivity 

growth, and the gains could be attributed to reduced efficiency gap among the 

companies, frontier shift, and improved quality of service. Pombo and Taborda (2006) 

did a DEA-based Malmquist productivity study of Colombia’s electricity distribution 

companies for the period 1985 to 2001, and they found that the largest companies 

experienced increasing productivity, due to frontier shift after the reform in 1994. 

Nakano and Managi (2008) estimated the Luenberger productivity indicator using 

DEA and dynamic generalized method of moments (GMM) for Japanese electricity 



 
 

distribution companies over the period 1978–2003. They found a positive productivity 

effect of the regulatory reforms, mainly due to technological change. Pérez-Reyes and 

Tovar (2009) applied DEA to study productivity development of electricity distribution 

companies in Peru over the period 1996-2006. They found an annual average 

productivity growth of 4.3%, and most of this growth was due to technological change. 

Ramos-Real et al. (2009), using DEA, found an annual productivity growth of 1.3% for 

Brazilian electricity distribution companies from 1998 to 2005, and they concluded 

that technological change was the main cause of growth. 

Førsund and Kittelsen (1998) used DEA to study productivity development of 

Norwegian distribution companies between the two years 1983 and 1989. They found 

positive growth of almost 2% per year on average, and the growth was mostly due to 

technological change. Edvardsen et al. (2006) used DEA to study productivity change 

of Norwegian electricity distribution companies over the period 1996-2003. They 

found an annual productivity increase of 1.1%, which was driven by both efficiency 

change and technological change. Migueís et al. (2011) used DEA to examine 

productivity change for Norwegian electricity distribution companies between 2004 

and 2007, and they included environmental factors as output variables with restricted 

virtual weights. Their study found almost 0.3% annual productivity growth, mostly due 

to technological change. They also identified innovator firms, i.e., firms that 

contributed to positive frontier shifts. 

3 Methodology 
 

3.1 The Malmquist productivity index and its decompositions 

The concept of the Malmquist productivity index originated from Caves et al. (1982a). 

In order to define it we need to specify the production technology as 

ܲ௧ሺ࢟௧ሻ ൌ ሼ࢞௧:	࢞௧	can	produce	࢟௧ሽ,                                          (1) 

where ࢞௧ and ࢟௧ represent the input vector and output vector at each time period ݐ, ݐ ൌ

1,⋯ , ܶ, respectively. The set ܲ௧ሺ࢟௧ሻ is assumed to be non-empty, closed, convex and 

bounded. It satisfies strong disposability of inputs and outputs, and also contains all 

input vectors that can produce output ࢟௧. A functional representation of the technology 

is constructed by Shephard's (1970) input distance function 

,௧ሺ࢟௧ܦ ࢞௧ሻ ൌ supሼ߮: ሺ࢞௧/߮ሻ ∈ ܲ௧ሺ࢟௧ሻ, ߮ ൐ 0ሽ.                             (2) 



 
 

The function ܦ௧ሺ࢟௧, ࢞௧ሻ represents the maximum proportional contraction of inputs 

given outputs at each period	ܦ .ݐ௧ሺ࢟௧, ࢞௧ሻ is defined in terms of period ݐ dataset and 

technology, and adjacent-period input distances using period ݐ or ݐ ൅ 1 data and period 

ݐ ൅ 1 or ݐ technology are defined as 

,௧ାଵሺ࢟௧ܦ ࢞௧ሻ ൌ supሼ߮: ሺ࢞௧/߮ሻ ∈ ܲ௧ାଵሺ࢟௧ሻ, ߮ ൐ 0ሽ                           (3) 
and 

,௧ሺ࢟௧ାଵܦ ࢞௧ାଵሻ ൌ supሼ߮: ሺ࢞௧ାଵ/߮ሻ ∈ ܲ௧ሺ࢟௧ାଵሻ, ߮ ൐ 0ሽ,                       (4) 

respectively (Grifell-Tatje and Lovell, 1995). 

Following Färe and Primont (1995), the input distance function ܦ௧ሺ࢟௧, ࢞௧ሻ is reciprocal 

to Farrell’s input oriented measure of efficiency, which is 

,௧ሺ࢟௧ܧ ࢞௧ሻ ൌ minሼߠ: ሺ࢞ߠ௧ሻ ∈ ܲ௧ሺ࢟௧ሻ, ߠ ൐ 0ሽ.                                  (5) 

The efficiencies for the adjacent-period input distance functions can be obtained as  

,௧ାଵሺ࢟௧ܧ ࢞௧ሻ ൌ minሼߠ: ሺ࢞ߠ௧ሻ ∈ ܲ௧ାଵሺ࢟௧ሻ, ߠ ൐ 0ሽ                                (6) 

and 

,௧ሺ࢟௧ାଵܧ ࢞௧ାଵሻ ൌ minሼߠ: ሺ࢞ߠ௧ାଵሻ ∈ ܲ௧ሺ࢟௧ାଵሻ, ߠ ൐ 0ሽ.                           (7) 

The Malmquist productivity index between period ݐ and ݐ ൅ 1 can be expressed as 

,ሺ࢟௧ܫܲܯ ࢞௧, ࢟௧ାଵ, ࢞௧ାଵሻ ൌ ቂ
ா೎ೝೞ
೟ ൫࢟೟శభ,࢞೟శభ൯

ா೎ೝೞ
೟ ሺ࢟೟,࢞೟ሻ

ா೎ೝೞ
೟శభ൫࢟೟శభ,࢞೟శభ൯

ா೎ೝೞ
೟శభሺ࢟೟,࢞೟ሻ

ቃ
భ
మ
ൌ ܥܧ ⋅ ܥܶ ⋅  (8)          ,ܥܧܵ

where ܧ௖௥௦௧   is the efficiency under constant returns to scale (CRS). Equation (8) also 

shows that the productivity index can be decomposed into efficiency change (EC), 

technical change (TC) and scale efficiency change (SEC) (Ray and Desli, 1997). We 

define ܧ௩௥௦௧  as efficiency under variable returns to scale (VRS), as well as 

ܥܧ ൌ
ாೡೝೞ
೟శభ൫࢟೟శభ,࢞೟శభ൯

ாೡೝೞ
೟ ሺ࢟೟,࢞೟ሻ

,                                                                 (9) 

ܥܶ ൌ ቂ
ாೡೝೞ
೟ ൫࢟೟శభ,࢞೟శభ൯

ாೡೝೞ
೟శభሺ࢟೟శభ,࢞೟శభሻ

ாೡೝೞ
೟ ൫࢟೟,࢞೟൯

ாೡೝೞ
೟శభሺ࢟೟,࢞೟ሻ

ቃ
భ
మ
, and                                    (10) 

ܥܧܵ ൌ ቎

ಶ೎ೝೞ
೟ ൫࢟೟శభ,࢞೟శభ൯

ಶೡೝೞ
೟ ൫࢟೟శభ,࢞೟శభ൯

ಶ೎ೝೞ
೟ ൫࢟೟,࢞೟൯

ಶೡೝೞ
೟ ൫࢟೟,࢞೟൯

ಶ೎ೝೞ
೟శభ൫࢟೟శభ,࢞೟శభ൯

ಶೡೝೞ
೟శభ൫࢟೟శభ,࢞೟శభ൯

ಶ೎ೝೞ
೟శభ൫࢟೟,࢞೟൯

ಶೡೝೞ
೟శభ൫࢟೟,࢞೟൯

቏

భ
మ

.                                      (11) 

3.2 Impact of environmental factors 

The performance of electricity distribution companies are typically affected by 

environmental factors that are beyond the companies’ control, such as differences in 

weather conditions or topology. In order to account for the environmental impact in a 



 
 

comparable manner under our three methodological approaches, as described in 

Sections 3.3-3.5 below, we follow the procedure suggested by Barnum and Gleason 

(2008). In an output-oriented benchmarking model, they suggest accounting for the 

effect of the environment on output via a regression where output is regressed on both 

inputs and environmental variables. Then the effect of environmental variables is 

removed from the observed output and the new adjusted value of output is obtained, 

and the benchmarking exercise can be done with the new adjusted data. In our input-

oriented application we use the following model to regress the endogenous input (total 

cost) on the outputs and the environmental variables: 

log	ሺ࢞௜ሻ ൌ ߱௜ ൅ ࣋௜log	ሺ࢟௜ሻ ൅ ௜ࢠ࢏ࢾ ൅ ߳௜,						݅ ൌ 1,⋯ , ݊                    (12) 

In this equation, ݔ௜ is the single input, ࢟࢏ is the output vector, and ࢠ௜ is the vector of 

environmental factors, of company ݅ . The vector ࢏ࢾ  contains the coefficients 

representing the environmental impact on the total cost of company ݅. Also, ࣋௜ is the 

vector of output coefficients, ߱௜ is the intercept, and ߳௜ is the statistical error term, for 

company ݅. We then adjust the total cost by removing the estimated environmental 

impact as follows 

௜ݔ
௔ௗ௝௨௦௧ ൌ ௜ݔ ⋅ exp	ሺെࢠ࢏ࢾ௜ሻ,                                                              (13) 

and the adjusted cost ݔ௜
௔ௗ௝௨௦௧  is used as input variable in the benchmarking models 

described in the next three subsections.  

3.3 DEA frontier 

DEA is an axiomatic, non-parametric approach to calculate the efficient or best-

practice frontier of a sample (Farrell, 1957; Charnes et al., 1978). It employs a 

piecewise linear frontier production (cost) function to estimate performance of the 

sample companies. The frontier envelops the data as tightly as possible, and observed 

companies, termed best practice, will form the benchmarking technology. DEA models 

can be input-oriented or output-oriented, and they can be specified with constant 

returns to scale (CRS) or variable returns to scale (VRS). We use the input-oriented 

model to examine the performance of electricity distribution companies, since the 

objective of a distribution company is, typically, to produce exogenously given output 

quantities at minimum cost. 



 
 

Under the CRS assumption, the efficiency score ܧ௜
௧	ሺ࢞௜

௧ାଵ, ࢟௜
௧ାଵሻ  for company ݅  in 

period ݐ ൅ 1 relative to the technology in period ݐ is the optimal value of  

min
ఏ,ࣅ

 ߠ

 s.t. 

              െ࢟௜
௧ାଵ +	ࢅ௧ࣅ	 ൒ 0                                  i ൌ 1,⋯ , ݊; ݐ ൌ 1,⋯ , ܶ            

௜࢞ߠ 
௧ାଵ െ 	ࣅ௧ࢄ ൒ 0                                  i ൌ 1,⋯ , ݊; ݐ ൌ 1,⋯,                (14)                

	ࣅ                    ൒ 0.                                                          

Here, ߠ represents the efficiency score,  ࣅ is a non-negative ݊ ൈ 1 vector of reference 

weights, and ࢞௜
௧ and ࢟௜

௧ represent the input and output column vectors, respectively, of 

company ݅  in period ݐ . The ݉ ൈ ݊  matrix ࢄ௧  and the ݎ ൈ ݊		matrix ࢅ௧ represent ݉ 

inputs and ݎ outputs, respectively, for ݊ companies in period ݐ. Similarly, we obtain 

௜ܧ
௧ାଵሺ࢞௜

௧, ࢟௜
௧ሻ as the optimal value of (14), when  ࢄ௧  and ࢅ௧  is replaced by ࢄ௧ାଵ and 

௧ାଵ, respectively, and ࢞௜ࢅ
௧ାଵ and ࢟௜

௧ାଵ is replaced by ࢞௜
௧ and ࢟௜

௧, respectively. To obtain 

efficiency scores under the VRS assumption, the convexity constraint ∑ࣅ ൌ 1 has to 

be added.  Combining variations of Model (14) with Equations (8)-(11), we obtain the 

productivity index and its decompositions, i.e., ܫܲܯ௜
ௗ௘௔, ௜ܥܧ

ௗ௘௔, ௜ܥܶ
ௗ௘௔, ௜ܥܧܵ

ௗ௘௔. 

3.4 SFA frontier 

In this study, the SFA approach by Pantzios et al. (2011) is used to implement the 

input-oriented Malmquist productivity index. Based on Section 3.1, the input-oriented 

Malmquist productivity index based on the SFA approach is defined as1	 

௜ܫܲܯ
௦௙௔ሺ࢟௜

௧, ࢟௜
௧ାଵ, ௜ݔ

௧, ௜ݔ
௧ାଵሻ ൌ ௜ܥܧ

௦௙௔ ⋅ ௜ܥܶ
௦௙௔ ⋅ ௜ܥܧܵ

௦௙௔.                       (15)  

The estimation of this parametric Malmquist productivity index requires specification 

and estimation of the input distance function (IDF), D. This IDF can be specified and 

estimated in several ways (see, e.g., Kumbhakar et al., 2015). Since we use panel data, 

a panel data estimator is a natural choice. Here we use the state-of-the art stochastic 

frontier panel data model by Colombi et al. (2014) and Kumbhakar et al. (2014). In this 

model the error term (of the regression equation) is split into four components. The 

first component captures firms’ latent heterogeneity, which is disentangled from long-

                                                 
1 The decomposition of Pantzios et al. (2011) included also an additional component, the input-mix 
effect. That component dropped out in this study, since the data set only includes one input. 



 
 

run (persistent) inefficiency, and the second component captures short-run (time-

varying) inefficiency. The third component captures long-run (persistent) inefficiency, 

while the last component captures random shocks. With panel data and a translog 

function within an input distance function framework the estimation equation looks 

like2 

              െlnݔ௜
௧ ൌ lnܦሺ࢟௜

௧ሻ ൅ ௜ߤ െ ௜ݑ ൅ ௜ݒ
௧ െ ߬௜

௧ 

                        	ൌ ଴ߙ ൅ ∑ ௟௜ݕ௟lnߚ
௧௥

௟ୀଵ ൅ ଵ

ଶ
∑ ∑ ௟௜ݕ௟௤lnߚ

௧ lnݕ௤௜
௧௥

௤ୀଵ
௥
௟ୀଵ ൅ ݐ௧ߙ ൅

ଵ

ଶ
ଶݐ௧௧ߙ ൅	 

	                            ∑ ௟௧ߚ
௥
௟ୀଵ lnݕ௟௜

௧ ݐ ൅ ௜ߤ െ ௜ݑ ൅ ௜ݒ
௧ െ ߬௜

௧,	  

                ݅ ൌ 1,⋯⋯ , ݊; ݈ ൌ 1,⋯⋯ , ;ݎ ݍ ൌ 1,⋯⋯ ,  (16)                                            ,ݎ

where lnݔ௜
௧ ൌ lnሺTotal	costሻ	(see the data section below) for company ݅ in period ݕ ,ݐ௟௜

௧  

is output ݈  for company ݅  in period ݐ  and ߙ  and ߚ  are unknown parameters to be 

estimated. The symmetry restrictions imply that ߚ௟௤ ൌ ௤௟ߚ . In this model, ݒ௜
௧  is the 

idiosyncratic noise component capturing random shocks, ߬௜
௧  is the time-varying 

stochastic inefficiency capturing short-run inefficiency effects, ݑ௜ is the time-invariant 

(long-run) inefficiency and ߤ௜ is unconstrained and treated as firm effects. 

We compute the first component in Equation (15), efficiency change, using 

௜ܥܧ
௦௙௔ ൌ ௜ܧ

௧ାଵ െ ௜ܧ
௧,                                                   (17) 

where E ቂexpቀെ߬௜
௧|ሺݒ௜

௧ െ ߬௜
௧ሻቁቃ  is used to estimate (technical) efficiency, ܧ௜

௧ 

(Kumbhakar et al., 2015). Note that with the estimation approach in equation (15), 

short-run and long-run efficiency is disentangled, and it is only the short-run efficiency 

measure that influences the efficiency change measure.	 

Technical change is a product of the technical change magnitude index and the output 

bias index:	 

௜ܥܶ               
௦௙௔ ൌ

஽೟శభ൫࢟೔
೟శభ,௫೔

೟శభ൯

஽೟൫࢟೔
೟శభ,௫೔

೟శభ൯
ൌ ൤

஽೟శభ൫࢟೔
೟,௫೔

೟൯

஽೟൫࢟೔
೟,௫೔

೟൯
൨ ൈ ൤

஽೟శభ൫࢟೔
೟శభ,௫೔

೟శభ൯

஽೟൫࢟೔
೟శభ,௫೔

೟శభ൯
ൈ

஽೟൫࢟೔
೟,௫೔

೟൯

஽೟శభ൫࢟೔
೟,௫೔

೟൯
൨       

       ൌ ሾߙ௧ ൅ ݐ௧௧ߙ ൅ ∑ ௟௧ߚ
௥
௟ୀଵ lnݕ௟௜

௧ ሿ ൈ ሾ∑ ௟௧ߚ
௥
௟ୀଵ ሺlnݕ௟௜

௧ାଵ െ lnݕ௟௜
௧ ሻሿ.       (18) 

                                                 
2 The estimator in this study is implemented using the maximum simulated likelihood estimator 
approach by Filippini and Greene (2015), as it is included in the statistical software Limdep 
(http://www.limdep.com/). 



 
 

The scale efficiency measure in Equation (15) is calculated as 

௜ܥܧܵ
௦௙௔ ൌ	

exp

ە
ۖ
۔

ۖ
ۓ

ଵ

ଶൈ∑ ∑ ఉ೗೜
ೝ
೜సభ

ೝ
೗సభ

ۏ
ێ
ێ
ێ
ۍ

ۉ

ۈ
ۇ

ۉ

ۇ ଵ

ି൭∑
ങౢ౤ݐܦቀ࢟݅

݅ݔ,൅1ݐ
ቁݐ

ങౢ౤೤೗೔
೟శభ

ೝ
೗సభ ൱

షభ െ 1

ی

ۊ

ی

ۋ
ۊ

ଶ

െ

ۉ

ۈ
ۇ

ۉ

ۇ ଵ

ି൭∑
ങౢ౤ݐܦቀ࢟݅

݅ݔ,ݐ
ቁݐ

ങౢ౤೤೗೔
೟

ೝ
೗సభ ൱

షభ െ 1

ی

ۊ

ی

ۋ
ۊ

ଶ

ے
ۑ
ۑ
ۑ
ې

ۙ
ۖ
ۘ

ۖ
ۗ

.         (19) 

In Equation (19) the 
డ୪୬஽೟൫࢟೔

೟శభ,௫೔
೟൯

డ୪୬௬೗೔
೟శభ  function is ∑ ௤௜ݕ௟௤lnߚ

௧ାଵ௥
௟ୀଵ ൅ ݐ௟௧ሺߚ ൅ 1ሻ , and the 

డ୪୬஽೟൫࢟೔
೟,௫೔

೟൯

డ୪୬௬೗೔
೟  function is ߚ௟ ൅ ∑ ௤௜ݕ௟௤lnߚ

௧௥
௟ୀଵ ൅  .ሻݐ௟௧ሺߚ

Note that with this SFA frontier approach we separate both firm heterogeneity and 

noise while estimating inefficiency. Furthermore, this approach separates persistent 

and transient inefficiency. It is expected that these aspects also influence the empirical 

results. 

3.5 StoNED frontier 

The StoNED combines non-parametric, piece-wise linear DEA-style frontiers with the 

stochastic SFA-style treatment of inefficiency and noise. Kuosmanen and Kortelainen 

(2012) found that both the DEA and SFA models can be obtained as constrained 

special cases of the more general StoNED model.  

A two-step strategy is used for the StoNED model: 

Step 1: Estimate the shape of the total cost function using the convex nonparametric 

least squares (CNLS) approach. 

Step 2: Impose additional distributional assumptions on inefficiency and noise, and 

estimate the parameters of the assumed distributions based on the residuals obtained 

from Step 1. 

For Step 1, as for the DEA, a cost frontier is used, and the CNLS optimization problem 

for period ݐ can be presented as 
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௜ࢼ                
௧ ൒ 0                                                               	݅ ൌ 1,⋯ , ݊ 

In Model (20), ߛ௜
௧ is the CNLS estimator of the total cost of producing	࢟௜

௧ in period ݐ, 

the intercept	ߙ௜
௧ of firm ݅ in period ݐ indicates its local returns to scale status (ߙ௜

௧ ൐ 0 

and ߙ௜
௧ ൏ 0  represent DRS and IRS, respectively), and  ࢼ௜

௧  is the marginal cost of 

outputs. The first constraint in (20) is the regression equation, and the second and third 

constraint ensures convexity and monotonicity, respectively. Model (20) has no sign 

restrictions on the intercept term ߙ௜
௧, which implies that we allow variable returns to 

scale (VRS). By imposing the constraint ߙ௜
௧ ൌ 0 for all ݅ ൌ 1,⋯ , ݊, we can implement 

the assumption of constant returns to scale (CRS). 

Under assumptions of half-normal inefficiency and normal noise we can obtain, in Step 

2, the inefficiency and noise parameters using the method of moments (Aigner et al., 

1997). The estimates of the standard deviation for inefficiency and noise, respectively, 

are 
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where ܯ෡ଶ
௧  and ܯ෡ଷ

௧  are the second and third central moments of the composite errors 

from the solution of (20). They are  
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Hence, the estimator of the best practice cost frontier for a given company ݅ for period 

 is given by ݐ
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where ߛ௜
௧ሺ࢟௜

௧ሻ is the average-practice cost frontier (Kuosmanen and Kortelainen, 2012). 

I.e., the best practice cost frontier is given by the average practice cost frontier and the 

standard deviation of the inefficiency term.  

According to Kuosmanen et al. (2013), the estimated cost norm can also be calculated 

as 
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Adjacent-period estimated cost norms using period ݐ or ݐ ൅ 1 data and period ݐ ൅ 1 or 

 technology are ݐ
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The efficiency score is defined as the ratio of the minimum cost to the observed cost, 

i.e.  
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for company ݅  in period ݐ , and ܧ௜
௧ାଵሺ࢟௜

௧ାଵ, ௜ݔ
௧ାଵሻ  can be obtained in an analogous 

manner. Based on Equations (25) and (29), we have 
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In line with Section 3.1, the Malmquist productivity index based on the StoNED 

approach is defined as 
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4 Data 

The data for the Malmquist analyses is collected by the Norwegian Water 

Resources and Energy Directorate (NVE). It covers 121 Norwegian distribution 

companies for the period 2004-2013. The variables in our data correspond to the 

variables used by the regulator in the benchmarking model that was implemented 

from 2007, i.e., it has a single input, five outputs and three environmental factors, 

as described in Table 1 and Table 2. 

Table 1 Inputs, outputs, and environmental variables. 

Variable Type Sub-variable Unit 

Total cost ݔ 

Operations and maintenance cost 
(Opex) 

1000 Norwegian kroner (NOK) 

Value of lost load (quality cost) 
(Voll) 

1000 NOK 

Thermal power losses (Losses) 1000 NOK 

Capital depreciation (Capex) 1000 NOK 

Return on capital (Capex) 1000 NOK 

High voltage lines ݕ    Kilometers 

Network stations (transformers) ݕ    No. of stations 

Customers ݕ    No. of customers 

Distance to road ݖ    Kilometers 

HV underground ݖ   Share of HV network (0-1) 

Forest ݖ   Share of HV lines affected (0-1) 

Geol ݖ 

Small scale hydro 
Installed capacity (MW)/cost 
norm3 

Average slope Degrees (0-90) 

Deciduous forest Share of HV lines affected (0-1) 

Geo2 ݖ 

Wind/dist.to coast ሺ݉/ݏሻଶ/݉ 
Islands No. of islands /cost norm 

HV sea cables Share of HV network (0-1) 

 

                                                 
3 This variable is divided by the company’s cost norm in order to ensure that the resulting variable 
is size independent. The cost norm is based on five-year average of inputs and outputs. 
 
 



 
 

Total cost is the single input, and it contains the five cost elements that are listed in 

Table 1. Most of the companies also own and operate part of the regional distribution 

network, and NVE reallocates part of this cost to the local distribution activity. This 

reallocation of cost is not included in our study, and our results may therefore differ 

slightly from the efficiency measurements published by NVE. The data for all years 

have been adjusted to the price level of a base year (2013). We use an industry-specific 

price index for adjusting operations and maintenance costs and the consumer price 

index for the VOLL costs. Thermal losses are valued at the average system price at 

Nord Pool for the base year (300 NOK/MWh). Capital depreciation is based on 

reported (nominal) book values, and the return on capital is calculated using the 

nominal rate of return set by the regulator for the base year (7.12 %). Book values and 

depreciation have also been adjusted for inflation. The growth in capital and 

depreciation values over time depends on historical inflation as well as past 

development in investments. Since we do not have detailed data about historical 

investment on company level, we have chosen to adjust capital values and depreciation 

by 2 % per year. This corresponds, approximately, to the average inflation since the 

book values was established in the beginning of the 1990s, following the deregulation 

of the Norwegian power market. We have made analyses to verify that our results are 

not very sensitive to this choice. 

Table 2 Descriptive statistics of variables. 

Variables Mean Min. Median Max. Sd.dev 

Total cost  108000.00 8884.00 39220.00 1771000.00 215719.80 

High voltage lines 803.10 50.00 321.50 8744.00 1329.81 

Network stations(transformers) 1012.00 52.00 367.00 13530.00 1888.21 

Customers   22670.00 947.00 6428.00 570200.00 58710.64 

Distance to road   226.00 70.37 142.90 1056.00 207.34 

HV underground 0.34 0.06 0.31 0.86 0.18 

Forest  0.12 0.00 0.12 0.39 0.10 

Geol  0.02 -2.06 -0.43 4.72 1.49 

Geo2 0.01 -0.64 -0.45 11.86 1.52 

The outputs are shown in the second part of Table 1 and include high voltage lines, 

network stations and customers. High voltage lines and network stations represent 

structural and environmental conditions which may affect required network size 

and thereby the cost level of the companies. The last part of Table 1 shows 



 
 

environmental variables. The environmental variables affect the performance of 

the companies, but they are out of the companies’ control (Coelli et al., 2005). 

Figure 1 shows the development of the different cost elements over time. Total cost 

decreased in the period from 2004 to 2007, and thereafter it increased, except for the 

years 2010 and 2012. We see that the decrease from 2004 to 2007, as well as the 

decreases in 2010 and 2012, are due variation in the OPEX level, while the CAPEX 

level has increased steadily over the entire period.   

 

Figure 1 Development of cost elements over time (1000 000 NOK). 

5 Results 

5.1 Productivity change and its causes 

The results of our analyses are summarized in Table 3. The table shows estimated 

productivity indices (MPI), efficiency change (EC), technical change (TC), and scale 

efficiency change (SEC) for the periods 2004/07, 2007/10, and 2010/13, as well as for 

2004/13. The estimates for multi-year periods are obtained by taking geometric 

averages of the annual estimates. Index values greater (less) than unity indicates 

improvement (regress).  
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Table 3 Average productivity indices and their decompositions. 

Periods 
DEA SFA StoNED 

MPI EC TC SEC MPI EC TC SEC MPI EC TC SEC 

2004/07 1.0146 0.9917 1.0230 1.0011 1.0034 1.0122 0.9940 0.9973 1.0147 1.0063 1.0077 1.0007

2007/10 0.9944 1.0057 0.9905 1.0003 0.9899 0.9998 0.9926 0.9974 0.9948 0.9984 0.9961 1.0002

2010/13 0.9773 1.0120 0.9665 1.0006 0.9830 0.9948 0.9910 0.9970 0.9777 1.0071 0.9700 1.0006

2004/13 0.9954 1.0031 0.9931 1.0007 0.9832 0.9971 0.9892 0.9968 0.9956 1.0039 0.9911 1.0005

Table 3 shows that the overall productivity change for the industry between 2004 and 

2013 has been negative, with estimates of the decline from 0.44% to 1.68%. All three 

methods indicate productivity improvement for 2004/07, i.e., consistent with Migueís 

et al. (2010), while productivity is decreasing in the later periods. We also observe that 

the magnitudes of the productivity changes for the sub-periods are very similar for 

DEA and StoNED. The decrease in productivity in the later periods is somewhat 

surprising, since the efficiency incentives in the regulatory scheme should be 

strengthened with the introduction of yardstick regulation, with annual benchmarking 

to update cost norms, from 2007. We discuss this further in Section 5.2. The top part of 

Figure 2 shows the distribution of productivity change among the companies in the 

industry. We see again that the two non-parametric methods yield very similar 

distributions, while the distributions for SFA are narrower. 

We see from Table 3 that all three methods agree that technological change for the 

industry has been negative between 2004 and 2013, with estimates of the average 

annual decline ranging from 0.69% to 1.08%. Table 3 and Figure 2 show that DEA and 

StoNED agree on the direction of technological change for the sub-periods, but that 

these methods differ somewhat with respect to the magnitude of their estimates. Both 

methods agree that the average technological change is positive for 2004/07, and 

thereafter becomes negative. Note that the TC estimates in StoNED depend on the 

distributional assumptions made, as shown in Cheng et al. (2015). When the observed 

skewness in StoNED under the VRS assumption for a given year is negative, the 

technical change estimates will, somewhat arbitrarily, be based on the average-practice 

frontier for the year in question. We see from Table 4 that this occurred for 4 of the 10 

years. The SFA results indicate, on average, negative technological change for all three 

periods. Also, as for overall productivity change, the distributions of technological 

changes are narrower in the case of SFA than for the other two methods.  



 
 

Table 4 Estimated skewness in StoNED under the VRS assumption. 

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

0.0002 0.0003 0.0006 0.0001 -0.0005 -0.0003 0.0002 -0.0005 -0.0006 0.0001 

Figure 2 shows that the shapes of the efficiency change distributions are quite similar 

under DEA and StoNED, although their levels differ in some cases. We note again that 

some of the StoNED frontier estimates are based on the average-practice frontier, as 

implied by the negative skewness estimates in Table 4. As discussed in Cheng et al. 

(2015), using the average-practice frontier for doing efficiency change estimates will 

result in values close to unity. Table 3 shows, indeed, that the StoNED efficiency 

change estimates deviates less from unity than the corresponding DEA estimates. The 

efficiency change distributions for SFA in Figure 2 are, as for productivity change and 

technological change, narrower than the corresponding distributions for DEA and 

StoNED, and the levels of the industry estimates in Table 3 do not agree with those for 

the non-parametric methods.  

As both Table 3 and Figure 2 show, the estimates of scale efficiency indices are very 

close to unity for all methods and sub-periods. This is not surprising, since the industry 

structure is constant in our data set, which consists of a balanced sample of 121 

companies.  

 

 

 

 

 

 

 



 
 

 
Figure 2 Distributions of MPI, EC, TC, and SEC
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5.2 Effect of capital costs 

In the previous section, we observed that the estimated productivity change was negative 

for the entire period between 2004 and 2013. A more detailed analysis showed productivity 

growth for 2004/07, and decline thereafter. This is surprising, since the efficiency 

incentives in the regulation scheme were strengthened from 2007, as mentioned above. 

However, there are indications that the introduction of the new regulation mechanism 

coincided with the start of a new investment cycle, as witnessed by the increase in capital 

costs shown in Figure 1. Eurelectric (2014) states that the investments in Norwegian 

distribution networks were quite low from about 1988 until 2006, and that the investments 

thereafter started to grow. The projected level of investments in 2017 is two times the level 

in 2010. The increase is, according to Eurelectric (2014), due to rapid growth of distributed 

generation, the overall network condition, increasing consumption and the roll-out of smart 

meters planned until 2019. Since we use accounting values based on linear depreciation, to 

represent capital costs in our analysis, increased investments will automatically lead to 

higher capital costs and lower productivity, although this may not reflect a real productivity 

decline. 

Table 5 Average productivity indices and their decompositions when CAPEX is left out. 

Periods 
DEA SFA StoNED 

MPI EC TC SEC MPI EC TC SEC MPI EC TC SEC 

2004/07 1.0256 1.0046 1.0217 1.0013 1.0023 1.0000 1.0057 0.9966 1.0253 1.0053 1.0188 1.0008

2007/10 1.0038 1.0147 1.0033 1.0008 0.9871 1.0000 0.9906 0.9965 1.0039 1.0059 0.9972 1.0005

2010/13 0.9671 1.0119 0.9577 1.0007 0.9726 1.0000 0.9760 0.9965 0.9675 1.0071 0.9592 1.0010

2004/13 0.9986 1.0104 0.9939 1.0009 0.9873 1.0000 0.9907 0.9969 0.9986 1.0061 0.9914 1.0008
 

Table 6 The effect of leaving out CAPEX. 

Periods 
DEA SFA StoNED 

MPI EC TC SEC MPI EC TC SEC MPI EC TC SEC 

2004/07 0.0110 0.0130 -0.0013 0.0002 -0.0011 -0.0122 0.0117 -0.0006 0.0106 -0.0009 0.0111 0.0001

2007/10 0.0094 0.0090 0.0127 0.0005 0.0039 0.0002 -0.0020 -0.0009 0.0090 0.0075 0.0011 0.0003

2010/13 -0.0102 -0.0001 -0.0088 0.0001 -0.0087 0.0052 -0.0151 -0.0005 -0.0102 0.0000 -0.0108 0.0004

2004/13 0.0032 0.0073 0.0008 0.0002 0.0040 0.0029 0.0014 0.0001 0.0030 0.0022 0.0003 0.0002
 

 



 
 

Table 7 Estimated skewness in StoNED/VRS when CAPEX is left out. 

2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 
-0.0007 0.0008 0.0009 -0.0005 -0.0047 -0.0021 -0.0001 -0.0005 -0.0015 0.0004 

Given the combination of investment cycles and the use of accounting-based capital values 

in our analysis, we find it natural to repeat our analysis with cost estimates that do not 

include capital costs, and the results are presented in Tables 5 and 6. Table 5 shows average 

estimates, as in Table 3, and Table 6 shows the effect of leaving out CAPEX, i.e., the 

difference between the values in Tables 5 and 3. For the entire period from 2004 to 2013, 

we observe a positive effect on overall productivity growth between 0.3 % and 0.4 % for all 

methods. Also, the average estimates of all the sub-indices increase when capital is 

excluded from the analysis. However, overall productivity change remains negative also 

when we exclude capital costs. After this change, DEA and StoNED agree on an average 

productivity decline of 0.14 % per year from 2004 to 2013, while the average productivity 

decline for SFA is estimated to 1.27 % per year.  

As shown in Section 3.4, the efficiency change estimates under SFA are based on changes 

in short-run inefficiency. If the estimated short-run inefficiency scores are zero, as in our 

case, then the EC estimates will be equal to one. The estimated company efficiency scores 

will be constant over time. Interestingly, Table 7 shows that the estimated skewness values 

in StoNED are negative for 8 of 10 years. For pair of consecutive years where estimated 

skewness is negative, the StoNED estimate of efficiency change will be based on the 

average-practice frontier, as discussed in Section 5.1, and this also tends to give EC 

estimates close to unity. 

 

 

 



 
 

6 Conclusion 

We have investigated the productivity development for Norwegian electricity 

distribution companies for 2004-2013. Using three benchmarking methods, DEA, 

SFA, and StoNED, on a Malmquist productivity index framework, we examine 

productivity change, with the usual decompositions into efficiency change, technical 

change, and scale efficiency change. For the period as a whole, all three approaches 

agree that productivity has declined, and that there has been technological regress. 

However, the methods do not fully agree on the direction of efficiency change. Scale 

efficiency changes are very small. A priori, we would expect to see improvement in 

productivity following the new regulation regime from 2007, but our analysis do not 

support this. We have repeated the analysis with cost values excluding capital costs, 

to control for a suspected bias due to increasing investments/capital values. This has a 

positive effect on productivity change and its decompositions, but the overall 

impression of negative productivity change and technological regress is not altered. 
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