
Discussion paper

INSTITUTT FOR FORETAKSØKONOMI

DEPARTMENT OF BUSINESS AND MANAGEMENT SCIENCE

Norges
Handelshøyskole

Norwegian School of Economics 

NHH
Helleveien 30
NO-5045 Bergen
Norway

Tlf/Tel: +47 55 95 90 00
Faks/Fax: +47 55 95 91 00
nhh.postmottak@nhh.no
www.nhh.no

Discussion paper

INSTITUTT FOR FORETAKSØKONOMI

DEPARTMENT OF BUSINESS AND MANAGEMENT SCIENCE

 

The Method of Leader’s Overthrow  
in Networks

BY
Ivan Belik  AND Kurt Jörnsten

FOR 01 2016
ISSN: 1500-4066
January 2016



THE METHOD OF LEADER’S OVERTHROW IN NETWORKS  

 

Ivan Belik*, Kurt Jörnsten** 

 

Norwegian School of Economics, Helleveien 30, 5045 Bergen, Norway 

 

Emails: *ivan.belik@nhh.no, **kurt.jornsten@nhh.no 

 

 

ABSTRACT 

 

Methods for leader’s detection and overthrow in networks are useful tools for decision-

making in many real-life cases, such as criminal networks with hidden patterns or money 

laundering networks. In the given research, we represent the algorithms that detect and 

overthrow the most influential node to the weaker positions following the greedy method in 

terms of structural modifications. We employed the concept of Shapley value from the area of 

cooperative games to measure a node’s leadership and used it as the core of the developed 

leader’s overthrow algorithms. The approaches are illustrated based on the trivial network 

structures and tested on real-life networks. The results are represented in tabular and 

graphical formats.     

 

Keywords: leadership, networks analysis, Shapley value, game theory 

 

1. INTRODUCTION 

 

The variety of game and graph theoretical approaches has paramount purpose in formalizing 

the relative importance of nodes in networks. Specifically, the analysis of centralities has a 

high-level significance for many real-world applications.  In terms of practical use, one of the 

first research applications of centrality was introduced in the 1940s at the Group Networks 

Laboratory, M.I.T. Later, Cohn & Marriott (1958) applied the concept of network centrality to 

analyze the diversity of Indian social life. Pitts (1965) used the concept for examination of 

communication paths in the context of urban development while Czepiel (1974), applied 

centrality computation in the analysis of a technological innovation in the steel industry. The 

practical application of centrality measures has grown fast in the last fifty years. For example, 

Moore, Eng & Daniel (2003) used centrality scores for the estimation of aid coordination 

between the non-governmental organizations (NGOs) in Mozambique (i.e., NGOs involved in 

the flood operations). Estrada & Bodin (2008) used network centralities to manage landscape 

connectivity.  Faris & Felmlee (2011) explored gender segregation and cross-gender 

aggression based on centrality measures. The diversity of centrality applications is huge and 

many other examples can be found in the literature. 

 

The analysis of an agent’s importance in the domain of networks is one of the core ideas in 

socio-economic network analysis. Different evaluation methods exist. Degree (Freeman, 

1979), betweenness (Anthonisse, 1971; Freeman, 1977), and closeness (Beauchamp, 1965; 



Sabidussi, 1966) are the most widely known metrics that assess the structural centralities of 

nodes. The algorithmic measures of nodes’ authority are well represented in Kleinberg (1999) 

and Page, Brin, Motwani, & Winograd (1999), where the notion of authority is given based on 

the analysis of link structures.  An interesting approach to characterize the role of nodes 

within networks is given by Scripps & Esfahanian (2007), where the community-based metric 

in the symbiosis with the degree-based measure is introduced in the context of nodes’ roles 

classification. The analysis of the leadership position in a network is an important problem. 

Corresponding approaches have been presented in Balkundi & Kilduff (2006), Hoppe & 

Reinelt (2010), Belik & Jornsten (January, 2015) and in Belik & Jornsten (April, 2015).  

 

In contrast, there exists yet another problem of understanding how the network’s structure 

should be efficiently modified in order to overthrow the current network leader to the weakest 

position. In networks, such as criminal networks with hidden patterns, or money laundering 

networks, the overthrow of the detected leader may seriously damage the network or even 

bring about irreversible destruction. Interesting approaches and discussions regarding this 

topic have been presented by Bryson & Kelley (1978), Sageman (2004), and Hung, Kolitz, & 

Ozdaglar (2011). 

 

In this paper, we consider the case when all nodes in the network participate in the process of 

the leader’s overthrow. Their main goal is to create the sufficient set of links (based on greedy 

approach) in order to make the current leader the least powerful. To measure the level of a 

node’s influential power we employ the concept of Shapley value (Shapley, 1952) from the 

area of cooperative games. Specifically, we use the Shapley value (SV) concept developed by 

Aadithya, Ravindran, Michalak & Jennings (2010) in order to measure the nodes’ leadership 

positions in networks. We show the advantages of the SV-based concept compared to the 

traditional centralities. Based on the given game theoretic approach we developed two 

overthrow algorithms that establish the sets of links to overthrow the initial leader with the 

highest SV to the weaker positions in terms of SVs In real-life networks, the represented 

algorithms are not unique solutions, but they are useful methods to detect and to plan the 

prospective network’s modifications.  

 

Next, we test the SV-based algorithms based on the trivial network topologies and on the real-

world structures retrieved from the NHH and BI co-authorship networks (Belik & Jornsten, 

October, 2014). 

 

2. SHAPLEY VALUE AS THE NETWORK’S CENTRALITY 

 

Shapley value is one of the fundamental concepts of game theory (Roth, 1988). The core idea 

of SV is the payoffs’ distribution among players according to their personal contributions to 

the overall gain in a cooperative game. Since SV reflects the influential power of players 

based on their mutual cooperation, it is applicable in the domain of networks analysis. 

Specifically, SV-based centrality measures the importance of nodes within a graph (Gomez, 

González-Arangüena, Manuel, Owen, del Pozo & Tejada, 2003). In terms of quantitative 

leadership analysis, SV is an effective measure due to its well-formalized mathematical 



apparatus. Furthermore, its game theoretic nature helps to reflect the real-world players’ 

interrelations because it counts mutual influence of players and their all-possible coalitions 

(i.e., combinations of players). For large-scale networks with high level of information lack 

regarding the network’s nature, the network’s structure becomes a very important factor in 

terms of quantitative leadership analysis of nodes. In many cases, structure might even be the 

only well-known factor. Therefore, it is important to have an efficient measure that computes 

the importance of nodes based on the retrieved structural details.  Obviously, SV-based 

centrality is not the unique or only solution to estimate leadership, but it makes a high-level 

contribution to the multi-factor analysis of leadership formation in networks. Its game 

theoretic nature makes it a preferable analytical tool compared to the conventional measures. 

 

To understand why the SV-concept is employed to estimate node’s influential power, it is 

important to understand its advantages over the conventional centralities, such as degree, 

closeness, betweenness, etc. The core drawback of the conventional centralities lies in their 

“individualistic” nature.  This means that they “fail to recognize that in many network 

applications, it is not sufficient to merely understand the relative importance of nodes as 

stand-alone entities. Rather, the key requirement is to understand the importance of each 

node in terms of its utility when combined with other nodes” (Aadithya et al., 2010). This 

means that conventional centralities do not consider the mutual effect of nodes’ failures. They 

only reflect the resulting effect (i.e., after-effect) of multi-node failures in terms of a 

network’s structure. In contrast, SV-based centrality counts the mutual effect of all nodes’ 

combinations and the corresponding contributions to the overall network’s gain. It reflects the 

game theoretic nature of the classical interpretation of Shapley value.  

 

Aadithya’s (2010) study found the following: 

The SV of each agent (node) in the game is interpreted as a centrality 

measure because it represents the average marginal contribution made by 

each node to every possible combination of the other nodes. This paradigm of 

SV-based network centrality thus confers a high degree of flexibility (which 

was completely lacking in traditional centrality metrics) to model real-world 

network phenomena. (p. 2) 

 

Conventional centralities have some drawbacks based on the structural factors. For example, 

degree centrality does not count the global networks structure, because it takes into 

consideration only the neighboring nodes approachable in one hop (i.e., within one-link 

distance). Closeness centrality is based on the calculation of the inverse sum of node’s 

shortest distances to all other nodes, but due to its nature, it cannot be applied to the analysis 

of disconnected graphs. Betweenness centrality counts the frequency of a node to appear 

along the shortest paths between any other two nodes. It overcomes the limitations of degree 

and closeness centralities. However, in many real-life networks there is a great proportion of 

nodes that do not appear on the shortest paths between any other two nodes (Opsahl, 

Agneessens, & Skvoretz, 2010). This means that many nodes can get the betweenness value 

equal or close to zero. In contrast, SV-based centrality overcomes the structural limitations, 



because it counts the mutual effect of all possible nodes’ combinations hesitating the game 

theoretic features of the classical SV concept. 

 

It is important to note that our goal is not to discredit the applicability of conventional 

centralities. Their sufficiency depends on the areas of application. In many real-world cases 

these measures have proved their efficiency. For example, they were applied in different 

combinations by Cohn & Marriott (1958), Pitts (1965), Czepiel (1974), Moore, Eng & Daniel 

(2003), etc. The details regarding these approaches were given in the previous section. 

However, there are many applications, such as social networks, power transmission or 

communication networks, where the limitations of conventional centralities are critical.  

 

3. LEADER’S OVERTHROW ALGORITHM 

 

Consider graph G(V,E) and vi ∈ V. All nodes (i.e., neighbors), which are reachable from vi in 

at most one hop within G(V,E) are denoted by NG(vi). The degree of node vi is defined by 

degG(vi). According to Aadithya et al. (2010), the SV interpretation for node vi in G(V,E) is 

the following: 

SV(vi) = ∑
1

1+degG(vj)
,vj∈{vi}∪NG(vi)                                                  (1)                                                 

 

Based on equation (1) Aadithya et al. (2010) introduced the algorithm to compute nodes’ 

leadership in a network:  

 

SV-COMPUTING (G): 

for each  v ∈ V(G) do 

 ShapleyValue [v]= 
1

1+degG(v)
; 

 For each u ∈ NG(v) do 

  ShapleyValue [v] += 
1

1+degG(u)
; 

  

end 

 

end 

return L=List of SV-s for all nodes;    

 

SV-COMPUTING returns the SVs for all nodes and reflects their leadership positions within 

the analyzed network. The advantage of the procedure is its polynomial running time.  

We represent the algorithms that calculate the sets of links to be established in order to 

overthrow the strongest node (i.e., leader): 

 

I. K-OVERTHROW-COMPUTING (G, k) 

The algorithm iteratively detects links to be established in order to overthrow the initial leader 

in terms of SV allocation within a network. Following the greedy approach, algorithm 

establishes k links allowed to build by the decision-maker. The practical importance of using 

k-parameter is a flexibility to manipulate by the SV-based leadership via adding the number 

of links allowed by the decision-maker. 



II. MAX-OVERTHROW-COMPUTING (G) 

The algorithm iteratively detects links to be established in order to overthrow the initial leader 

to the weakest position in terms of SV allocation within a network. The number of edges that 

needs to be created can be much bigger than the existing number of edges in the network. 

Creating that many links is not always feasible in the real-life scenarios, but the purpose of the 

algorithm is to show the ultimate set of links required to overthrow the node to its lowest 

leadership position. For the analytical purposes, it might be important to see the number of 

links that is required to be created for the ultimate overthrow of the node. For example, it is 

applicable in the analysis of node’s resistance power. Obviously, the node with the stronger 

leadership position requires a bigger effort to be overthrown compared to the node with the 

weaker position.  

 

 The pseudocodes of the given approaches are the following:  

 
I. K-OVERTHROW-COMPUTING (G, k): 

1 L=SV-COMPUTING (G) 

2 Target=node with MAX(L) 

3 SV_intermediate=SV(Target) 

4 Approved_link = no link 

5 n=0 

6 WHILE n < k: 

7  FOR each v ∈ V(G): 

8   FOR each u ∉ NG(v): 

9    Create trial link (v,u) 

10    L=SV-COMPUTING (G) 

11    IF SV_intermediate > SV(Target): 

12    THEN:   Approved_link = (v,u) 

13     SV_intermediate = SV(Target) 

14    ELSE: Delete trial link (v,u) from G(V,E) 

15  Include Approved_link to G(V,E) 

16  Update G(V,E) 

17  Approved_link = no link 

18  n=n+1 

19 return:  Approved_link-s and the corresponding SVs of the Target-node 

NOTATION: 

Line 2: 

MAX(L) detects the maximal Shapley Value (SV) in the list L. Target is the initially detected node (leader) that 

has to be overthrown. Its value is constant in the algorithm. 

Lines 5-6: 

Counter n is initially equal to zero. It is used to control the number of established links. 

The loop continues while the number of established links (i.e., n) is not equal to the allowed number of links 

(i.e., k). In each iteration of the WHILE loop, algorithm approves the link that gives the maximal decrease of 

SV(Target)-value. We consider k as a constraint for the number of links to be established. To reflect the real-life 

cases, the value of k cannot be greater than the existing number of edges in the initial network G:   1 ≤ k ≤ |G.E| 

 

 

 

 

 



II. MAX-OVERTHROW-COMPUTING (G): 

1 L=SV-COMPUTING (G) 

2 Target=node with MAX(L) 

3 SV_intermediate=SV(Target) 

4 Approved_link = no link 

5 WHILE   SV(Target) ≠ MIN(L) OR  

6  [SV(Target)= MIN(L) AND [SV(Target)=SV(j) AND j ≠ Target] 

7  AND G is NOT complete]: 

8  FOR each v ∈ V(G): 

9   FOR each u ∉ NG(v): 

10    Create trial link (v,u) 

11    L=SV-COMPUTING (G) 

12    IF SV_intermediate > SV(Target): 

13    THEN:   Approved_link = (v,u) 

14     SV_intermediate = SV(Target) 

15    ELSE: Delete trial link (v,u) from G(V,E) 

16  Include Approved_link to G(V,E) 

17  Update G(V,E) 

18  Approved_link = no link 

19 return:  Approved_link-s and the corresponding SVs of the Target-node 

NOTATION: 

Line 2: 

MAX(L) detects the maximal Shapley Value (SV) in the list L. Target is the initially detected node (leader) that 

has to be overthrown. Its value is constant in the algorithm. 

Line 5-7: 

WHILE   SV(Target) ≠ MIN(L) OR  

[SV(Target)= MIN(L) AND [SV(Target)=SV(j) AND j ≠ Target] AND G is NOT complete] 

In each iteration of the WHILE loop, algorithm approves the link that gives the maximal decrease of 

SV(Target)-value. The compound WHILE loop checks two main conditions: 

1. SV(Target) ≠ MIN(L):  

MIN(L) detects the minimal Shapley Value (SV) in the list L. 

The loop continues while the Shapley value of the initially detected leader is not the minimum Shapley value. 

2. [SV(Target)= MIN(L) AND [SV(Target)=SV(j) AND j ≠ Target] AND G is NOT complete]:  

This condition is required to control cases, when the Target-node approached the lowest SV, but there exist 

other node(s) with the same SV: SV(Target)=SV(j) AND j ≠ Target. In other words, it is required to check if 

Target has a potential to get a lower Shapley Value. It is possible only if the updated G-graph is not complete (G 

is NOT complete). 

 

The computational mechanism of the leadership measurement in K-OVERTHROW-

COMPUTING (G,k) and MAX-OVERTHROW-COMPUTING (G) are based on the SV-

COMPUTING procedure. SV-COMPUTING (G) procedure allows computing the exact SVs for 

the nodes in the large-scale networks in the polynomial running time (Aadithya et al., 2010).  

In addition, it is important to notice that the given “overthrow” algorithms are applicable to 

connected graphs.  We show how the given algorithms work on the trivial networks. Next, we 

test them on the real-life networks. 

  

 

 

 



4. LEADER’S OVERTHROW IN DIFFERENT NETWORK TOPOLOGIES 

 

Any large-scale network consists of the trivial topologies with different characteristics 

(Haddadi, Rio, Iannaccone, Moore, & Mortier, 2008): 

 

- “point-to-point”, or “line”; 

- “star”; 

- “ring”; 

- mesh, i.e., topologies that are based on the previous three types.  

 

Since the number of links in the tested trivial topologies is small (i.e., in the range between 

two and eight), we show how the SV-based leader’s overthrow procedure works running 

MAX-OVERTHROW-COMPUTING (G) algorithm. Our main goal in this section is to explain 

the computational SV-based mechanism step-by-step.  

In section 5 we give the detailed results running both algorithms (i.e., K-OVERTHROW-

COMPUTING (G,k) and MAX-OVERTHROW-COMPUTING (G)) on the real-life networks.  

 

4.1 “Point-to-point” topology 

 

The “Point-to-point” topology is represented in Figure 1.  

 
Figure 1. “Point-to-point” network topology in the initial state 

 

Initially, the MAX-OVERTHROW-COMPUTING (G) algorithm calculates the SVs for the 

given topology. 

It is detected that node 2 is the most powerful (i.e., it has the highest SV). Next, the link (1,3) 

is established in order to decrease the power of node 3. Since we get the complete graph, the 

algorithm stops, and we get SV(1)=SV(2)=SV(3)=1. The results for all algorithm’s steps are 

represented in Table 1 and in Figure 2.  

 

Table 1. Results for the “point-to-point” topology 

 

INITIAL 
 

OVERTHROW 
 

FINAL 

Node Shapley Value 
 

Link SV(Target) Decrease 
 

Node Shapley Value 

1 0.83 
 

(1,3) 1.00 0.33 
 

1 1.00 

2 1.33 
     

2 1.00 

3 0.83 
     

3 1.00 

 



 
Figure 2. Modified “Point-to-point” network topology 

 

4.2 “Star” topology 

 

The “Star” topology is characterized by the existence of central hub that is represented by 

node 1 in Figure 3.  

 

 
Figure 3. “Star” network topology in the initial state 

 

Following the MAX-OVERTHROW-COMPUTING (G) algorithm, we get the results 

represented in Table 2.  

Table 2. Results for the “Star” topology 

 

INITIAL 
 

OVERTHROW 
 

FINAL 

Node Shapley Value 
 

Link SV(Target) Decrease 
 

Node Shapley Value 

1 1.75 
 

(2,3) 1.42 0.33 
 

1 1.00 

2 0.75 
 

(2,4) 1.17 0.25 
 

2 1.00 

3 0.75 
 

(3,4) 1.00 0.17 
 

3 1.00 

 

Node 1 was detected by the algorithm as the most powerful one. The algorithm created three 

links in order to overthrow node 1 to the weakest position (i.e., SV(1)=1). It stopped on the 

iteration when the graph became complete and no more links could be established. The 

resulting modified “Star” topology is represented in Figure 4.  

 
  Figure 4. Modified “Star” network topology 

 



4.3 “Ring” topology 

 

The “Ring” topology is characterized by sequential connections of odd or even numbers of 

nodes forming the cycle. First, we consider the structure with an even number of nodes that is 

represented in Figure 5. 

 

 
Figure 5. The initial state of the “Ring” network topology with even number of nodes 

 

Running the MAX-OVERTHROW-COMPUTING (G) algorithm, we get the following results 

(see Table 3).  

 

Table 3. Results for the “Ring” topology with even number of nodes 

 

INITIAL 
 

OVERTHROW 
 

FINAL 

Node Shapley Value 
 

Link SV(Target) Decrease 
 

Node Shapley Value 

1 1.00 
 

(2,4) 0.83 0.17 
 

1 0.83 

2 1.00 
     

2 1.17 

3 1.00 
     

3 0.83 

4 1.00      4 1.17 

 

According to Table 3, initially all nodes have equal SVs. The algorithm chooses node 1 as the 

Target from the list. By establishing link (2,4) SV(1) decreased by 0.17, and the resulting 

SV(1) became equal to 0.83. Link (1,3) is not created by the MAX-OVERTHROW-

COMPUTING (G) algorithm, because it increases SV(1) back to the initial value that is equal 

to 1.00. For the given “Ring” network topology with an even number of nodes the SV(Target) 

is decreased to its minimum value of 0.83. The resulting network is represented in Figure 6. 

 

 
Figure 6. Modified “Ring” network topology with even number of nodes 

 

Next, we test the “Ring” structure with an odd number of nodes (see Figure 7). 



 
Figure 7. The initial state of the “Ring” network topology with odd number of nodes 

 

Applying the MAX-OVERTHROW-COMPUTING (G) algorithm to the graph represented in 

Figure 7, we get the following results (see Table 4). 

 

Table 4. Results for the “Ring” topology with odd number of nodes 

 

INITIAL 
 

OVERTHROW 
 

FINAL 

Node Shapley Value 
 

Link SV(Target) Decrease 
 

Node Shapley Value 

1 1.00 

 

(2,5) 0.83 0.17 

 

1 0.83 

2 1.00 

     

2 1.17 

3 1.00 

     

3 0.92 

4 1.00      4 0.92 

5 1.00      5 1.17 

 

According to Table 4, link (2,5) was sufficient to overthrow node 1 to the weakest position in 

the network. Specifically, ∆SV(1) = -0,17. The resulting graph is represented in Figure 8. 

 
Figure 8. Modified “Ring” network topology with odd number of nodes 

 

4.4 Mixed topology 

 

We analyze the symmetric mixed topology that includes “Point-to-point”, “Star” and “Ring” 

based sub-graphs. The given network is represented in Figure 9. 

 
Figure 9. Mixed network topology in the initial state 



The results of the algorithm’s application are represented in Table 5.  

 

Table 5. Results for the mixed topology 

 

INITIAL 
 

OVERTHROW 
 

FINAL 

Node Shapley Value 
 

Link SV(Target) Decrease 
 

Node Shapley Value 

1 0.92 

 

 (1,4)  1.08 0.17 

 

1 1.24 

2 0.92 

 

 (2,4)  0.95 0.13 

 

2 1.04 

3 1.25 

 

 (1,5)  0.90 0.05 

 

3 0.7 

4 0.83   (2,5)  0.85 0.05  4 1.24 

5 1.25   (1,6)  0.82 0.03  5 0.99 

6 0.92   (2,6)  0.78 0.03  6 0.99 

7 0.92   (4,6)  0.75 0.03  7 0.82 

    (4,7)  0.73 0.02    

    (1,7)  0.70 0.02    

 

According to Table 5, node 3 was detected as the most influential (the initial SV(3) = 1.25). 

Following the algorithm, nine links were created to overthrow node 3 to the weakest position 

with SV=0.7. The resulting network is represented in Figure 10.  

 
Figure 10. Modified mixed topology 

 

5. TESTING ON THE REAL-LIFE NETWORKS 

 

We illustrate K-OVERTHROW-COMPUTING (G, k) and MAX-OVERTHROW-COMPUTING 

(G) algorithms based on two real-life networks. The first network is the largest connected 

component of the NHH interdepartmental co-authorship network and the second one is the 

largest component of the BI interdepartmental co-authorship network. The detailed analysis of 

the NHH and BI networks is represented in Belik & Jornsten (October, 2014).  

 

 

 

 

 

 

 

 



5.1 NHH network 

 

The network structure of the NHH largest component is represented in Figure 11.  

 

 
Figure 11. The NHH largest component 

 

First, we test K-OVERTHROW-COMPUTING (G, k) in order to detect and overthrow the most 

powerful node applying different k-values. Since the NHH largest component has 32 links 

connecting 21 nodes, we run the algorithm for all k-s in the range [1, 32].    

First, the algorithm calculates the initial SVs (see Table 6). 

 

Table 6. Initial results for the NHH largest component 

 

Node  Shapley Value 
 

Node  Shapley Value 
 

Node  Shapley Value 
 

Node  Shapley Value 

9 1.41 
 

40 0.62 
 

58 0.71 
 

69 0.98 

21 0.67 
 

45 1.02 
 

60 0.87 
 

70 1.99 

26 1.73 
 

50 1.03 
 

61 0.83 
 

73 1.35 

34 0.82 
 

52 0.67 
 

65 1.49 
 

130 0.67 

37 0.7 
 

53 0.99 
 

67 0.71 
 

142 0.67 

39 1.07 
         

  



Node 70 is detected as the Target-node with SV=1.99. Next, the algorithm establishes k-links 

allowed to build in order to overthrow node 70. Table 7 shows the list of consequently 

established links. For each link, we provide the following details: 

 

1. Current SV of the Target-node for the latest established link; 

2. The difference between SVs of the Target-node before and after the link was established 

(i.e., “Decrease”) 

3. The current position (i.e., SV-based rank) of the Target-node within the network. For 

example, “Position=3” means that the node is the third-most influential (out of 21 nodes) in 

terms of SV-based analysis.  

 

Table 7. Established links in the NHH network following K-OVERTHROW-COMPUTING (G, k) 

 

k Link 
Target   

k Link 
Target 

SV Decrease Position 
 

SV Decrease Position 

1 (40,58)  1.742 0.248 1 
 

17 (21,67)  0.911 0.014 11 

2 (40,60)  1.608 0.133 2 
 

18 (21,40)  0.897 0.014 12 

3 (40,67)  1.508 0.1 2 
 

19 (21,58)  0.883 0.014 13 

4 (53,58)  1.425 0.083 2 
 

20 (21,60)  0.869 0.014 14 

5 (58,67)  1.358 0.067 2 
 

21 (26,58)  0.858 0.011 14 

6 (40,65)  1.301 0.057 4 
 

22 (26,40)  0.847 0.011 14 

7 (53,60)  1.244 0.057 6 
 

23 (26,60)  0.836 0.011 14 

8 (60,67)  1.196 0.048 6 
 

24 (26,67)  0.825 0.011 15 

9 (9,58)  1.149 0.048 6 
 

25 (9,21)  0.816 0.009 16 

10 (9,40)  1.107 0.042 6 
 

26 (21,53)  0.807 0.009 17 

11 (40,53)  1.071 0.036 7 
 

27 (34,40)  0.798 0.009 17 

12 (58,65)  1.036 0.036 7 
 

28 (26,65)  0.789 0.009 17 

13 (9,60)  1.004 0.032 8 
 

29 (34,58)  0.78 0.009 17 

14 (53,67)  0.972 0.032 8 
 

30 (34,60)  0.77 0.009 17 

15 (9,65)  0.947 0.025 9 
 

31 (34,67)  0.761 0.009 17 

16 (53,65)  0.925 0.022 9    32 (37,58)  0.754 0.008  17 

 

Each value in the “Link”-column shows the latest link established for the current k. For 

example, for k=3 three links were established. First two links (i.e., (40,58) and (40,60)) are 

reflected in the previous rows, and the latest link (i.e., (40,67)) is represented in the row k=3. 

 

It is important to notice that each approved link guarantees the SV-decrease of the initial 

leader (i.e., Target-node), but it is not necessary that each approved link gives a decrease in 

terms of its “Position”-value. In fact, each approved link makes the Target-node weaker, but it 

also affects the rearrangement of SVs for all other nodes in the network. Therefore, it is a very 

common situation when more than one link has to be established in order to decrease the 

“Position”-value of the Target-node.  

 

Next, we apply the MAX-OVERTHROW-COMPUTING (G) algorithm to the NHH largest 

component in order to detect and overthrow the most powerful node to its weakest position.  



First, the algorithm calculates the initial SVs. The results were represented in Table 6. 

Node 70 is detected as the Target-node with SV=1.99. Next, the algorithm establishes the set 

of links in order to overthrow node 70 to the weakest position. The list of consequently 

established links is represented in Appendix A. For each link we provide the details about the 

current SV(Target) and the difference between SVs of the Target-node before and after the 

link was established. 

 

According to Appendix A, sixty seven links were created to overthrow node 70 from the 

position of the most powerful node to the weakest position in the network. The resulting SVs 

for all nodes in the network are represented in Table 8.  

 

Table 8. Resulting SVs for the NHH largest component based on the MAX-OVERTHROW-COMPUTING (G) 

 

Node  Shapley Value 
 

Node  Shapley Value 
 

Node  Shapley Value 
 

Node  Shapley Value 

9 1.87 
 

40 1.37 
 

58 1.37 
 

69 0.6 

21 0.56 
 

45 1.06 
 

60 1.37 
 

70 0.56 

26 1.23 
 

50 1.04 
 

61 0.61 
 

73 0.72 

34 0.97 
 

52 0.59 
 

65 1.44 
 

130 0.56 

37 0.78 
 

53 1.37 
 

67 1.37 
 

142 0.59 

39 0.96 
         

 

5.2 BI network 

 

The network structure of the BI largest component is represented in Figure 12.  

 

 
Figure 12. The BI largest component 

 

Applying the K-OVERTHROW-COMPUTING (G, k) algorithm we get the initial SVs on the 

first step (see Table 9). Since the BI largest component has 38 links connecting 28 nodes, we 

run the algorithm for all k -s in the range [1, 38].    
 



Table 9. Initial results for the BI largest component 

 

Node  Shapley Value 
 

Node  Shapley Value 
 

Node  Shapley Value 
 

Node  Shapley Value 

66 0.84  167 0.98  181 0.7  230 0.61 

138 1.17  168 0.88  182 0.83  233 0.83 

155 0.83  169 1.08  184 0.68  234 0.78 

157 0.83  171 0.89  187 1.21  235 0.83 

162 1.93  175 0.88  224 0.88  242 2.46 

163 1.08  176 0.64  227 0.75  248 0.94 

166 1.25  179 1.26  229 1.33  249 0.61 

  

According to Table 9, node 242 is detected as the most influential (SV(242) = 2.46). Next, the 

algorithm establishes k-links allowed to build in order to overthrow node 242. Table 10 shows 

the list of consequently established links. 

 

Table 10. Established links in the BI network following K-OVERTHROW-COMPUTING (G, k) 

 

k Link 
Target   

k Link 
Target 

SV Decrease Position 
 

SV Decrease Position 

1 (230,249)  2.128 0.332 1  20 (175,248)  1.003 0.025 10 

2 (230,234)  1.961 0.167 1  21 (248,249)  0.980 0.023 10 

3 (234,249)  1.828 0.133 2  22 (187,234)  0.958 0.022 11 

4 (230,248)  1.728 0.100 2  23 (66,224)  0.946 0.011 12 

5 (168,249)  1.644 0.083 2  24 (66,168)  0.935 0.011 14 

6 (224,230)  1.578 0.067 2  25 (66,175)  0.924 0.011 16 

7 (234,248)  1.511 0.067 2  26 (66,230)  0.913 0.011 17 

8 (175,249)  1.444 0.067 2  27 (66,249)  0.902 0.011 18 

9 (168,234)  1.397 0.048 2  28 (66,187)  0.893 0.009 18 

10 (175,230)  1.349 0.048 2  29 (66,234)  0.884 0.009 18 

11 (187,248)  1.302 0.048 2  30 (138,224)  0.875 0.009 18 

12 (224,249)  1.254 0.048 4  31 (138,168)  0.866 0.009 18 

13 (168,230)  1.218 0.036 6  32 (138,175)  0.857 0.009 18 

14 (175,234)  1.183 0.036 7  33 (138,230)  0.847 0.009 18 

15 (187,249)  1.147 0.036 8  34 (138,249)  0.838 0.009 18 

16 (224,248)  1.111 0.036 8  35 (155,234)  0.831 0.008 21 

17 (187,230)  1.083 0.028 8  36 (66,248)  0.823 0.008 21 

18 (168,248)  1.056 0.028 10  37 (138,187)  0.816 0.008 21 

19 (224,234)  1.028 0.028 10  38 (155,168)  0.808 0.008 21 

 

Next, we apply the MAX-OVERTHROW-COMPUTING (G) algorithm to the BI largest 

component in order to detect and overthrow the most powerful node to its weakest position.  

First, the algorithm calculates the initial SVs. The results were represented in Table 9. 

 

Node 242 is detected as the Target-node with SV=2.46. Next, the algorithm establishes the set 

of links in order to overthrow node 242 to the weakest position. The list of consequently 

established links is represented in Appendix B. Ninety six links were created to overthrow 



node 242 from the position of the most powerful node to the weakest position in the network. 

The resulting SVs for all nodes in the network are represented in Table 11. 

 

Table 11. Resulting SVs for the BI largest component based on the MAX-OVERTHROW-COMPUTING (G) 

 

Node  Shapley Value 
 

Node  Shapley Value 
 

Node  Shapley Value 
 

Node  Shapley Value 

66 0.9  167 0.79  181 0.59  230 1.46 

138 1.03  168 1.46  182 0.59  233 0.6 

155 0.68  169 0.66  184 0.6  234 1.34 

157 0.63  171 0.57  187 1.67  235 0.64 

162 1.82  175 1.46  224 1.46  242 0.54 

163 1.1  176 0.57  227 0.75  248 1.82 

166 0.79  179 1.02  229 1.14  249 1.34 

  

6. CONCLUSION 

 

An important factor in the analysis of leadership formation is to use a suitable measure. For 

this purpose, we employed the concept of Shapley value in the interpretation of Aadithya et 

al. (2010). Specifically, based on the SV concept we developed the algorithms that detect the 

network’s most influential nodes and overthrow them to the weaker positions. Specifically, 

the K-OVERTHROW-COMPUTING (G, k) establishes k-number of links allowed to build by 

the decision-maker and MAX-OVERTHROW-COMPUTING (G) algorithm establishes the set 

of links to get the leader’s SV to its minimally possible value. Both algorithms are based on 

the greedy approach. 

 

Initially, we showed how our approaches work based on the trivial network topologies. Next, 

we tested them based on two real-life networks. Specifically, we applied the algorithms to the 

NHH and BI largest connected components.  

 

The represented algorithms are applicable in the analysis of real-life cases, such as criminal 

networks with hidden patterns or money laundering networks. In these kind of networks, the 

overthrow of the detected leader may cause serious damage. In the real-life networks, the 

represented algorithms are not the unique solutions, but they are useful methods to detect and 

to plan the prospective network’s modifications.  
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APPENDIX A. MAX-OVERTHROW-COMPUTING (G) applied to the NHH largest 

component 

 

# Link SV(Target) Decrease 
 

# Link SV(Target) Decrease 

1 (40,58)  1.742 0.248 
 

35 (34,65)  0.731 0.008 

2 (40,60)  1.608 0.133 
 

36 (37,40)  0.723 0.008 

3 (40,67)  1.508 0.100 
 

37 (37,60)  0.716 0.008 

4 (53,58)  1.425 0.083 
 

38 (37,67)  0.708 0.008 

5 (58,67)  1.358 0.067 
 

39 (39,60)  0.702 0.006 

6 (40,65)  1.301 0.057 
 

40 (37,65)  0.696 0.006 

7 (53,60)  1.244 0.057 
 

41 (39,67)  0.689 0.006 

8 (60,67)  1.196 0.048 
 

42 (9,37)  0.683 0.006 

9 (9,58)  1.149 0.048 
 

43 (37,53)  0.676 0.006 

10 (9,40)  1.107 0.042 
 

44 (39,40)  0.670 0.006 

11 (40,53)  1.071 0.036 
 

45 (39,58)  0.663 0.006 

12 (58,65)  1.036 0.036 
 

46 (9,39)  0.658 0.005 

13 (9,60)  1.004 0.032 
 

47 (39,53)  0.652 0.005 

14 (53,67)  0.972 0.032 
 

48 (39,65)  0.647 0.005 

15 (9,65)  0.947 0.025 
 

49 (40,45)  0.641 0.005 

16 (53,65)  0.925 0.022 
 

50 (45,58)  0.636 0.005 

17 (21,67)  0.911 0.014 
 

51 (45,60)  0.630 0.005 

18 (21,40)  0.897 0.014 
 

52 (45,67)  0.625 0.005 

19 (21,58)  0.883 0.014 
 

53 (9,45)  0.620 0.005 

20 (21,60)  0.869 0.014 
 

54 (40,50)  0.615 0.005 

21 (26,58)  0.858 0.011 
 

55 (45,53)  0.611 0.005 

22 (26,40)  0.847 0.011 
 

56 (45,65)  0.606 0.005 

23 (26,60)  0.836 0.011 
 

57 (50,58)  0.601 0.005 

24 (26,67)  0.825 0.011 
 

58 (50,60)  0.596 0.005 

25 (9,21)  0.816 0.009 
 

59 (50,67)  0.592 0.005 

26 (21,53)  0.807 0.009 
 

60 (9,50)  0.587 0.004 

27 (34,40)  0.798 0.009 
 

61 (40,52)  0.583 0.004 

28 (26,65)  0.789 0.009 
 

62 (50,65)  0.579 0.004 

29 (34,58)  0.780 0.009 
 

63 (52,53)  0.575 0.004 

30 (34,60)  0.770 0.009 
 

64 (52,58)  0.571 0.004 

31 (34,67)  0.761 0.009 
 

65 (52,60)  0.567 0.004 

32 (37,58)  0.754 0.008 
 

66 (52,67)  0.563 0.004 

33 (9,34)  0.746 0.008 
 

67 (9,52)  0.559 0.004 

34 (34,53)  0.739 0.008 
     

 

 

 

 

 

 

 

 

 



APPENDIX B. MAX-OVERTHROW-COMPUTING (G) applied to the BI largest component 

 

# Link SV(Target) Decrease 
 

# Link SV(Target) Decrease 

1 (230,249)  2.128 0.332  42 (155,249)  0.778 0.008 

2 (230,234)  1.961 0.167  43 (157,168)  0.771 0.006 

3 (234,249)  1.828 0.133  44 (155,187)  0.765 0.006 

4 (230,248)  1.728 0.100  45 (157,175)  0.759 0.006 

5 (168,249)  1.644 0.083  46 (138,248)  0.752 0.006 

6 (224,230)  1.578 0.067  47 (157,224)  0.746 0.006 

7 (234,248)  1.511 0.067  48 (157,230)  0.739 0.006 

8 (175,249)  1.444 0.067  49 (157,234)  0.733 0.006 

9 (168,234)  1.397 0.048  50 (157,249)  0.726 0.006 

10 (175,230)  1.349 0.048  51 (155,248)  0.721 0.005 

11 (187,248)  1.302 0.048  52 (157,187)  0.716 0.005 

12 (224,249)  1.254 0.048  53 (162,168)  0.710 0.005 

13 (168,230)  1.218 0.036  54 (162,175)  0.705 0.005 

14 (175,234)  1.183 0.036  55 (162,224)  0.699 0.005 

15 (187,249)  1.147 0.036  56 (162,230)  0.694 0.005 

16 (224,248)  1.111 0.036  57 (162,234)  0.688 0.005 

17 (187,230)  1.083 0.028  58 (162,249)  0.683 0.005 

18 (168,248)  1.056 0.028  59 (157,248)  0.678 0.005 

19 (224,234)  1.028 0.028  60 (162,187)  0.673 0.005 

20 (175,248)  1.003 0.025  61 (163,168)  0.668 0.005 

21 (248,249)  0.980 0.023  62 (163,175)  0.663 0.005 

22 (187,234)  0.958 0.022  63 (163,224)  0.659 0.005 

23 (66,224)  0.946 0.011  64 (163,230)  0.654 0.005 

24 (66,168)  0.935 0.011  65 (163,234)  0.649 0.005 

25 (66,175)  0.924 0.011  66 (163,249)  0.644 0.005 

26 (66,230)  0.913 0.011  67 (162,248)  0.640 0.004 

27 (66,249)  0.902 0.011  68 (163,187)  0.636 0.004 

28 (66,187)  0.893 0.009  69 (166,168)  0.632 0.004 

29 (66,234)  0.884 0.009  70 (166,175)  0.628 0.004 

30 (138,224)  0.875 0.009  71 (166,224)  0.624 0.004 

31 (138,168)  0.866 0.009  72 (166,230)  0.619 0.004 

32 (138,175)  0.857 0.009  73 (166,234)  0.615 0.004 

33 (138,230)  0.847 0.009  74 (166,249)  0.611 0.004 

34 (138,249)  0.838 0.009  75 (166,187)  0.607 0.004 

35 (155,234)  0.831 0.008  76 (163,248)  0.604 0.004 

36 (66,248)  0.823 0.008  77 (167,168)  0.600 0.004 

37 (138,187)  0.816 0.008  78 (167,175)  0.596 0.004 

38 (155,168)  0.808 0.008  79 (167,224)  0.593 0.004 

39 (155,175)  0.801 0.008  80 (167,230)  0.589 0.004 

40 (155,224)  0.793 0.008  81 (167,234)  0.585 0.004 

41 (155,230)  0.785 0.008  82 (167,249)  0.582 0.004 

 

 

 

 



 APPENDIX B. Continued 

 

# Link SV(Target) Decrease  # Link SV(Target) Decrease 

83 (166,248)  0.578 0.003  90 (169,249)  0.556 0.003 

84 (167,187)  0.575 0.003  91 (167,248)  0.553 0.003 

85 (168,169)  0.572 0.003  92 (169,187)  0.550 0.003 

86 (169,175)  0.569 0.003  93 (171,224)  0.547 0.003 

87 (169,224)  0.565 0.003  94 (168,171)  0.544 0.003 

88 (169,230)  0.562 0.003  95 (171,175)  0.541 0.003 

89 (169,234)  0.559 0.003  96 (171,230)  0.538 0.003 

 




