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Abstract 

This paper considers a decision problem in the context of the worth of a wind mill project with 

profitability dependent on the average wind speed. This is partly known and the issue is 

whether to go on with the project now or, with an additional cost, put up a test mill and 

observe, say for a year, and then decide. The problem is studied within a Bayesian framework 

and given a general analytic solution for a specific loss function of linear type, with the normal 

case as illustration.  Explicit formulas are then derived in the case when the wind speed 

distribution is Weibull with known shape parameter, and the sensitivity with respect to the 

specification of this parameter is explored. Based on Norwegian wind speed data we then give 

a justification of the Weibull model.  This also provides some insight to parameter stability. 

Finally, a complete numerical scheme for the Bayesian two-parameter Weibull model is given, 

illustrated with an implementation of pre-posterior Weibull analysis in R.  

 

Keywords: Weibull distribution, decision analysis, pre-posterior Bayesian analysis.  
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Weibull Wind Worth: Wait and Watch? 
 

1. The problem 

 

Suppose W is the yearly worth of a wind mill project. In the case that the worth increase linearly 

with average wind speed, we may just as well assume W to be wind speed itself. In our 

illustrations we will do that. We assume W to be a random variable with probability distribution 

𝐹(𝑤|𝜃) depending on a location parameter , typically the mean, so that higher the better 

(except for extreme winds).  We will assume that 𝐹 is known, but  partly unknown. The project 

is profitable if  is at or above a certain threshold t and not profitable otherwise.  In this context 

the issue is: Do we have enough information on  to launch the project now or should we at a 

cost set up a wind mill and observe, say for a year, and then decide: launch the full project or 

scrap it. We have the following actions 

a1 = Accept project now 

a2 = Reject project now 

a31 = Accept project after observation 

a32 = Reject project after observation 

so that a3 ={a31, a32} corresponds to the action “wait and watch”. If   >t (threshold) acceptance is 

preferred, otherwise rejection is preferred.  

We will assume a linear loss function as follows (negative loss being gain): 

Action: a a1 a2 a31 a32 

Loss: 𝐿(𝜃, 𝑎) c1  (t - ) c2  ( - t) c0 + c1  (t - ) c0 + c2  ( - t) 

 

Here the cost components are given by   

c0 = Cost of setting up a windmill and observe  

ci = Cost per unit difference from threshold t, i=1,2 

where c2 represents an opportunity cost for not launching a profitable project.    

The loss function may be made more general by having different constants c´, i=1,2 for negative 

losses. An alternative loss function may simply be the regret of wrong action, i.e. replacing the 

linear term (t- )  by 𝐼(−∞,𝑡](𝜃) etc. 
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2. A Bayesian solution 

 

We will analyze the two-stage decision problem within the common Bayesian framework, 

minimizing the expected loss, see Berger (1995). In general we have 

Prior distribution of  𝜃:    𝜋(𝜃) 

Distribution of observation W given 𝜃:  𝑓(𝑤|𝜃) 

Posterior distribution of  𝜃 given 𝑊 = 𝑤 : 𝜋(𝜃|𝑤) 

The decision rule after observing 𝑊 = 𝑤 depends on 𝜃(𝑤) = 𝐸(𝜃|𝑤), while the decision rule 

before the observation will depend on the predictive distribution of 𝜃(𝑊) , which may be 

derived from the predictive (pre-posterior) distribution of W. We illustrate this in the case of 

Normal observations and Normal prior, for which we have a (well known) closed form solution. 

We may typically expect a solution depending on the prior expectation 𝜃0 = 𝐸(𝜃) , so that we 

accept/reject now when 𝜃0 is sufficiently large/small, and we go for observations when 𝜃0 is in a 

middle region 

Example: Normal-Normal 

Prior:    𝜃        ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜃0, 𝜏2)  

Observation:   𝑊|𝜃  ~  𝑁𝑜𝑟𝑚𝑎𝑙(𝜃, 𝜎2) 

Posterior given W=w:   𝜃|𝑤  ~  𝑁𝑜𝑟𝑚𝑎𝑙(𝜃(𝑤), 𝜏2(𝑤)) 

where   𝜃(𝑤) =
𝜎2

𝜎2+𝜏2 ∙ 𝜃0 +  
𝜏2

𝜎2+𝜏2  ∙ 𝑤       and         𝜏2(𝑤) =
𝜎2∙𝜏2

𝜎2+𝜏2. 

The pre-posterior (predictive) distributions now are  

𝑊        ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜃0,  𝜏2 + 𝜎2 ) 

𝜃(𝑊)        ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜃0,  𝜏2 ∙  
𝜏2

𝜎2 + 𝜏2
 ) 

In case of n independent observations we have to replace w by the mean 𝑤̅  and 𝜎2by 
𝜎2

𝑛
. 

Returning to the general theory we now consider the expected loss (risk) by taking action a when 

the uncertainty about 𝜃 is given by the distribution 𝜋: 

𝑟(𝜋, 𝑎) = 𝐸𝜋𝐿(𝜃, 𝑎)   

For a1=Accept project now we use the given prior 𝜋 and get 

𝐸𝐿(𝜃, 𝑎1) = ∫ 𝑐1(𝑡 − 𝜃)𝑑𝜋(𝜃) = 𝑐1(𝑡 − 𝜃0) 
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where in general 𝜃0 denotes the prior expectation of 𝜃. Similarly for a2=Reject project now  

𝐸𝐿(𝜃, 𝑎2) = 𝑐2(𝜃0 − 𝑡). 

If we do not accept or reject the project right away, we set up the observational windmill and 

after having observed W=w the relevant distribution is the posterior 𝜋(𝜃|𝑤). We now get 

𝐸𝐿(𝜃, 𝑎31) = ∫(𝑐0 + 𝑐1(𝑡 − 𝜃))𝑑𝜋(𝜃|𝑤) = 𝑐0 + 𝑐1(𝑡 − 𝜃(𝑤))

𝐸𝐿(𝜃, 𝑎32) = ∫(𝑐0 + 𝑐2(𝜃 − 𝑡))𝑑𝜋(𝜃|𝑤) = 𝑐0 + 𝑐2(𝜃(𝑤) − 𝑡))
 

where in general 𝜃(𝑤) denotes the posterior expectation of 𝜃.  Of the two possible actions we 

choose the one that minimizes the expected loss, i.e. 

𝑎31   if   𝜃(𝑤) ≥ 𝑡   with expected loss    𝑐0 − 𝑐1(𝜃(𝑤) − 𝑡)) 

𝑎32  if   𝜃(𝑤) < 𝑡   with expected loss    𝑐0 + 𝑐2(𝜃(𝑤) − 𝑡)) 

The preposterior loss (W random) is: 

 𝑐0 − 𝑐1(𝜃(𝑊) − 𝑡)) if  𝜃(𝑊) ≥ 𝑡 

𝑐0 + 𝑐2(𝜃(𝑤) − 𝑡))  if  𝜃(𝑊) < 𝑡 

The expected preposterior loss is therefore 

 

𝐸𝐿3 = 𝑐0 + ∫ 𝑐2(𝑥 − 𝑡)𝑑𝐻0(𝑥) −
𝑡

−∞

∫ 𝑐1(𝑥 − 𝑡)𝑑𝐻0(𝑥)
∞

𝑡

= 𝑐0 − 𝑐1(𝐸𝜃(𝑊) − 𝑡) + (𝑐1 + 𝑐2)(𝐻1(𝑡) − 𝑡𝐻0(𝑡))

 

 

where 𝐻0 is the distribution of 𝜃(𝑊) and   𝐻1(𝑡) = ∫ 𝑥𝑑𝐻0(𝑥)
𝑡

−∞
 

Initially we compare 𝐸𝐿3  for the action set {a11 , a12} with 𝐸𝐿1 = 𝑐1(𝑡 − 𝜃0) for action a1 and  

𝐸𝐿2 = 𝑐2(𝜃0 − 𝑡) for action a2   and decide according to the minimum.  

Example: Normal-Normal (cont’d) 

In the case of Normal prior and Normal observations we have 

𝐻0 ~ 𝑁𝑜𝑟𝑚𝑎𝑙(𝜃0, 𝜏0
2)  where  𝜏0

2 =
𝜏4

𝜎2+𝜏2 

This gives 
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𝐻0(𝑥) = 𝐺(
𝑥−𝜃0

𝜏0
)

𝐻1(𝑥) = 𝜃0𝐺 (
𝑥−𝜃0

𝜏0
) − 𝜏0𝑔(

𝑥−𝜃0

𝜏0
)
  

where G and g are the standard Gaussian cumulative distribution and density respectively. We 

then get the preposterior expected loss for going on to observe (with possible actions 𝑎11 or 𝑎12) 

𝐸𝐿3 =  𝑐0 − 𝑐1(𝜃0 − 𝑡) + (𝑐1 + 𝑐2)( (𝜃0 − 𝑡)𝐺 (
𝑡 − 𝜃0

𝜏0
) − 𝜏0𝑔(

𝑡 − 𝜃0

𝜏0
)) 

This is then compared with  𝐸𝐿1 = 𝑐1(𝑡 − 𝜃0) for action a1 and  𝐸𝐿2 = 𝑐2(𝜃0 − 𝑡) for action a2 . 

The initial decision is according to the minimum. In the case that 𝐸𝐿3 is the minimum and we 

take action 𝑎3 = {𝑎31, 𝑎32} we have, after having observed W=w:  If   𝜃(𝑤) ≥ 𝑡 take action 𝑎31 = 

Accept project, if  𝜃(𝑤) < 𝑡 take action  𝑎32 = Reject project.    

Illustration: c0=1, c1=10, c2=5,  𝜎 = 4.0 𝜏 = 2.0 and t=8.0 

Computation of the expected losses for accepting now, rejecting now and for postponing the 

decision, for varying prior expectation 𝜃0, are graphed below. We also give the resulting loss 

curve taking the optimal choices. 

    

We see that we accept now (a1) if the prior mean  𝜃0 > 8.065, reject now (a2) if   𝜃0 < 7.935 and 

postpone the decision and observe (a3) if 7.935 < 𝜃0 < 8.065. 

From the above formulas it is easy to investigate the sensitivity of the conclusion with respect to 

varying the parameters involved. 
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The Normal-Normal model provided a complete analytic solution, which is very attractive. 

Although most models are a compromise between convenience and realism, normality may be 

quite unrealistic in our context. In general the main opportunities are: 

 A complete analytic solution, e.g.  using conjugate priors 

 Simulations based partly on some analytic features of the model 

e.g.  simulate from posterior using Markov chain Monte Carlo or Laplace approximation 

 Simulation of the decision process itself 

For non-normal prior and observation the exact closed form solution will be somewhat involved, 

and we typically gave to resort to numeric calculations and simulations.  
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3. The Weibull model  

 

In the case of W being wind speed itself available data have supported the Weibull model, and to 

illustrate the opportunities above we will examine this model.  

Observation distribution:  Weibull(k, 𝛾), 

Cumulative distribution:   𝐹(𝑤|𝛾) = 1 − 𝑒
−

𝑤𝑘

𝛾 , 𝑤 ≥ 0     

Probability density:      𝑓(𝑤|𝛾) =
𝑘

𝛾
𝑤𝑘−1𝑒

−
𝑤𝑘

𝛾 , 𝑤 ≥ 0 

Here k is a shape parameter assumed to be known and 𝛾 an unknown scale parameter.   

Expectation     𝜃 = 𝐸(𝑊|𝛾) = Γ (1 +
1

𝑘
) ∙ 𝛾

1

𝑘 

Instead of switching to our base parameter 𝜃 it is convenient to stick to  𝛾 one step further. 

Conjugate prior:   𝛾  ~ 𝐼𝐺(𝛼, 𝛽)     (Inverted Gamma distribution) 

𝐸(𝛾) =
𝛽

𝛼−1
   𝑀𝑜𝑑𝑒(𝛾) =

𝛽

𝛼+1
    𝑣𝑎𝑟(𝛾) =

𝛽2

(𝛼−1)2(𝛼−2)
 

Posterior:    𝛾|𝑤  ~ 𝐼𝐺(𝛼 + 1, 𝛽 + 𝑤𝑘) 

Posterior expectation:  𝐸(𝛾|𝑤) =
𝛽+𝑤𝑘

𝛼
 

Predictive:  𝑊| 𝛼, 𝛽 ~ 𝐹(𝑤|𝛼, 𝛽) = 1 − (1 + 𝑤𝑘/𝛽)−𝛼 

Translating this to our basic parameter 𝜃, it follows that 

𝐸𝜃 = 𝐸𝐸(𝑊|𝛾) = Γ (1 +
1

𝑘
) ∙ 𝐸(𝛾

1
𝑘) = Γ (1 +

1

𝑘
) ∙

Γ (𝛼 −
1
𝑘

)

Γ(𝛼)
∙ 𝛽1/𝑘 

For convenience we denote this expression for the expectation by 𝐸0 = E(k, 𝛼, 𝛽). We therefore 

have with 𝐸1 = E(k, 𝛼 + 1, 𝛽) 

𝐸(𝜃|𝑤) = 𝐸1 ∙ (1 + 𝑤𝑘/𝛽)1/𝑘 

so that the preposterior mean of the decision rule is  

𝐸(𝜃|𝑊) = 𝐸1 ∙ (1 + 𝑊𝑘/𝛽)1/𝑘= X (say) 
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Its required preposterior distribution 𝐻0(𝑥) is then obtained from the preposterior (predictive) 

distribution of 𝑋| 𝛼, 𝛽 above as 

 𝐻0(𝑥) = 𝑃(𝑋 ≤ 𝑥 ) = 1 − (
𝑥

𝐸1
)

−𝑘𝛼

, 𝑥 > 𝐸1 

from which we get 

𝐻1(𝑥) = 𝐸1  ∙
𝑘𝛼

𝑘𝛼 − 1
∙ (1 − (

𝑥

𝐸1
)

−𝑘𝛼+1

), 𝑥 > 𝐸1 

As the limit as x tends to infinity we get (𝜃(𝑊)) = 𝐸1  ∙
𝑘𝛼

𝑘𝛼−1
. We now have the necessary 

expressions to enter the general decision formula.  Before we return to that we look at a few 

more issues. 

From 𝐻0(𝑥) we obtain the density of the preposterior (predictive) distribution of 𝑋| 𝛼, 𝛽 as 

ℎ0(𝑥) =
𝑘𝛼

𝐸1
(

𝑥

𝐸1
)

−𝑘𝛼−1

, 𝑥 > 𝐸1 

From 𝐻0(𝑥) we also obtain an easy way to simulate from the (predictive) distribution of 𝑋| 𝛼, 𝛽: 

Generate 𝑈  ~ 𝑈𝑛𝑖𝑓𝑜𝑟𝑚[0,1]  and compute 𝑋 = 𝐸1 ∙ 𝑈− 
1

𝑘𝛼 

Suppose we want to determine the prior parameter values  (𝛼, 𝛽) = (𝛼0, 𝛽0) so that 𝜃 = 𝜃0. We 

may then compute the corresponding 𝛾0 form the formula above and require 𝛾0 =
𝛽0

𝛼0−1
.  

Since 𝛼 is increased by one for each observation, it is clear that small 𝛼 corresponds to little 

information and 𝛼>2 is required for the prior distribution of 𝛾 to have expectation and variance.  

If we assume that the standard deviation is a fraction 1/d of 𝛾0 we get 

𝛼0 = 2 + 𝑑2   and   𝛽0 = 𝛾0 ∙ (𝛼0 − 1) 

In the case of 𝜃0 = 𝑡 = 8.0 (the threshold) and k=2 we get  𝛾0 = 81.49. For d=4 (similar to the 

previous Normal-Normal example) we get  𝛼0 = 18 and 𝛽0 = 1385.3.  

In the graph below we show the density ℎ0(𝑥) for the three cases when 𝜃0 = 8.0, namely for 

d=1,2,4 corresponding to 𝛼0 = 3, 6,18. 
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The preposterior distribution of 𝐸(𝜃|𝑊) for W random that was needed in the decision rule and 

was here derived analytically.  Suppose that our theoretical knowledge is limited to the 

conjugate prior-posterior analysis of the basic parameter 𝛾.  The needed distribution can then 

instead be obtained by simulations as follows: Given (k,d) 

1. Decide on  𝜃0and compute  𝛾0 for the given k 

2. Compute  (𝛼0, 𝛽0) 

3. Simulate W according to the Weibull model 

4. Simulate 𝛾|𝑤 by the posterior Inverted Gamma2 

5. Compute corresponding 𝜃 

6. Repeat 4-5  (for the same w) m times giving 𝜃𝑖 , 𝑖 = 1,2, … , 𝑚  

and take 𝜃(𝑤) = 𝑀𝑒𝑎𝑛( 𝜃𝑖) 

7. Repeat 3-6 n times to give 𝜃(𝑤𝑗), 𝑗 = 1,2, … , 𝑛 

Note that we have avoided the temptation to use the posterior mean of 𝛾 and the link between 

𝛾 and 𝜃, which gets rid of the inner loop, since the means do not transform the same way unless 

k=1. 

The analysis above is heavily dependent on specific knowledge of the posterior of 𝛾. Lacking this 

for some reason (e.g. non-conjugate prior) there are nevertheless sampling opportunities, e.g. 

based on Markov chain Monte Carlo principles. 

 

Numerical illustration: From available windmill data we have found that hourly mean wind speed 

may be modelled by a Weibull model with shape at k=2. At prior expectation 𝜃0 = 8.0 this will 

give standard deviation of W about 4.1, close to the specification in our Normal-Normal example. 

                                                           
2  Simulation from the IG-distribution is available in R, among others in the package MCMCpack. 
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Taking d=4 we have produced the following graphs of expected losses for the cost structure c0=1, 

c1=10, c2=5: 

 

  

We see that we accept now (a1) if the prior mean  𝜃0 > 8.020 reject now (a2) if   𝜃0 < 7.935 and 
postpone the decision and observe (a3) if 7.935 < 𝜃0 < 8.02. The lower limit is exactly as the 
Normal example, but the upper limit is slightly lowered, meaning that we less often will postpone 
the decision. In fact, k=2.1 will give the exact standard deviation 4.0 of the Normal example, for which 

the region of postponing is narrowed to   7.955 < 𝜃0 < 8.015. Repeated computations for k=2.1 for 
various combinations of costs are given in the following table, which shows some interesting 
differences between the Normal and Weibull model that deserves to be studied in more detail:3 
 

c0 c1 c2 Normal Weibull 

1 10 5 7.935 8.065 7.955 8.015 

1 10 10 7.890 8.110 7.790 8.055 

1 20 5 7.855 8.145 7.845 8.045 

1 20 10 7.825 8.110 7.790 8.055 

1 20 20 7.790 8.210 7.600 8.100 

1 30 5 7.805 8.195 7.780 8.055 

1 30 10 7.790 8.210 7.655 8.070 

1 30 20 7.760 8.240 7.600 8.095 

1 30 30 7.735 8.265 7.600 8.115 
  

                                                           
3
 The computations are done on a grid  size of 0.005 
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The table shows some interesting differences between the Normal and Weibull model. The Weibull 

interval for postponement is skewed, while the Normal one is symmetric around 8.0 and typically wider 

than the Weibull interval. Seemingly the Weibull interval is slightly shifted downwards compared with the 

Normal one, meaning that we are less likely to reject the project without observation. ln the Weibull case 

it is of interest to see how the continuation interval depends on the shape parameter k. For the cost 

structure c0=1, c1=10 c2=5 in the first line of the table we have illustrated this in the following graph for 

the range [1.0, 2.5] : 

 

 

 
 
We see that the continuation interval is very wide at k=1.0 (the exponential distribution), narrows as k 

increases and collapses to zero at about k=2.5. The case k=2.1 of the first line in the table is illustrated by 

dotted lines. Beyond the point k=2.5 the wait and watch action is ruled out, and we simply take 

immediate action according to whether 𝜃0 < 𝑡  or 𝜃0 > 𝑡 , i.e.  the prior mean Iess than or greater than 

the threshold. This behavior is not surprising as increasing k, in a sense, represents more prior 

information. At some point additional information will be worthless. With a different cost structure like 

the ones lower down in the table, the continuation interval is wider and breaks down further to the right. 

As we will see in the next section, the realistic value of k will depend on the time scale of the observation 

(hourly, daily, weekly, monthly, yearly), which again, in a sense, reflects the amount of information. 
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4. Empirical support for the Weibull model 
 

The Weibull distribution is widely used for modelling wind speed data, see Carta et.al (2009) and Morgan 

et.al (2011) for a review of this and some alternatives. We have wind speed data for 13 years (2000-2012) 

registered hourly at 68 locations. Wind speed at a location varies, and shows some seasonality over the 

day and over the year, but the main component of variation is geophysical, which in our context appear as 

randomness. Hourly wind registration is clearly relevant for a windpower provider running the mills, but 

for investment decisions it may be sufficient to consider aggregated data, say daily, weekly, monthly or 

even yearly averages. The kind of model adopted may depend heavily on the chosen time scale. In the 

case of normal models it does not matter, since aggregates of normal variates turn out normal. For 

Weibull models we have that the time scale chosen will determine the shape parameter. Being consistent, 

we cannot switch time scale and stay within the Weibull class, since averages of Weibull variates are not 

Weibull. However, a model is always a compromise, and a Weibull model may provide good fit and turn 

out useful on different timescale, without internal consistency. We will therefore look at the Weibull 

model on different time scales.  

First consider the hourly wind speed data for one year (2000) at one location (Fjeldskar). The descriptive 

statistics are as follows4: 

Descriptive Statistics: Wind speed hourly at Fjeldskar (2000) 

 
Variable      N    Mean  SE Mean   StDev  Minimum      Q1  Median      Q3  Maximum 

WindSpeed  8780   7.436    0.047   4.415    0.090   4.300   6.560   9.780   44.610 

 

The observed empirical distribution is displayed in the following histogram:   

 

We see that the distribution is skewed with a fairly log right tail, and definitely different from the normal 

distribution. Alternative skew distributions to the symmetric normal may be lognormal, Gamma and 

Weibull, and comparative probability plots show that the Weibull is superior to the others. 5 

                                                           
4
 The observations started on 01.01.2000 at 04:00:00. 

5
 With this many observations the formal test would reject any specified model.   
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We adopt the Weibull-model, and the maximum-likelihood estimates of its parameters turned out to be: 

shape=1.78,  scale=8.37 

This is according to the parameterization commonly used in statistical software (like R and Minitab), 

which is (x/scale)shape  , instead of the one most suitable for Bayesian analysis with conjugate prior, which 

is x shape /scale.  This means that the estimate of our scale parameter  𝛾 = 𝑠𝑐𝑎𝑙𝑒𝑠ℎ𝑎𝑝𝑒 = 8.371.78=43.9. 

Repeating the estimation for each of the years 2001-2012 we see that the parameters are fairly stable. 

Shape:  Mean=1.73, Minimum=1.85, Maximum=1.94 

Scale:  Mean: 8.47, Minimum=7.95, Maximum=9.22    

A plot of these estimates in their time sequence is shown in the following plot, which also shows a 

noticeable correlation between the shape and scale estimates (of about 0.37). 

 

The estimated Weibull parameters (shape, scale) for the 68 locations for a specific year are of interest to 

us, since this may indicate the reasonable prior assumptions on these parameters for new locations.6  The 

actual values of (shape, scale) for year 2000 are given in the following scatterplot.  

                                                           
6
 This can of course be improved by utilizing some specifics for the new location and selected other locations based 

on similarities. 
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We locate Fjeldskar (1) with (shape=1.78, scale=8.37), in the middle with respect to shape and in low 

region with respect to scale. The descriptive statistics for the estimated parameters for the 68 locations in 

year 2000 follows: 

Descriptive Statistics of shape and scale: 68 locations year 2000 

 
Variable   N    Mean  SE Mean   StDev  Minimum      Q1  Median      Q3  Maximum 

shape     68   1.828    0.021   0.171    1.276   1.709  1.832    1.947    2.178 

scale     68   9.933    0.119   0.982    8.033   9.254  9.972   10.575   12.187 

 
Pearson correlation of shape and scale = 0.400 

 

The empirical distributions of the estimated shape and scale parameters over the 68 locations are given in 

histograms as follows: 

 

The latter distribution is well represented by an Inverse Gamma, as shown in the probability plot. 
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We now look at the Weibull model for the aggregated data, taking the average of the hourly wind speeds 

over the year at each location for consecutive years 2000-2012. For location 1 (Fjeldskar) we have the 

following descriptive statistics for wind speed: 

Descriptive Statistics: Wind speed Fjeldskar Yearly means 

 
Variable    N    Mean  SE Mean   StDev  Minimum      Q1  Median      Q3 Maximum 

Wind speed  13   7.409   0.082   0.297    6.955   7.146   7.436   7.572   8.071 

 

We get the following probability plot for identification, with focus on the alternatives: Normal, Lognormal, 

Weibull and Gamma.  

 

We see that the Weibull model is seemingly slightly inferior to the others, but with just 13 observations 

none of the models can be rejected. The major lack of fit of the Weibull is in the low tail. In our context 

the upper tail is more important, and there all four models point to the possibility of an even more 

extreme yearly average wind speed not yet observed in the data.  

From estimation of a Weibull model for the 13 yearly averages, we get the following scatterplot for the 

combinations of estimates (shape, scale) for the 68 locations: 

  

In the scatterplot we locate Fjeldskar (1) with parameters (shape, scale)=(3.57, 9.81). 
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The descriptive statistics for the 68 shape and scale parameter estimates are as follows: 

Descriptive Statistics of shape and scale: 68 locations Yearly data 2000-2012  

 
Variable   N    Mean  SE Mean  StDev  Minimum      Q1  Median      Q3  Maximum 

shape     68   3.042    0.115  0.950    1.526   2.327   2.878   3.420    6.293 

scale     68  12.865    0.232  1.916    8.739  11.611  13.054  14.431   16.898 

 

The empirical distributions of the 68 shape and scale parameter estimates are as follows: 

  

The distribution of the scale parameter is not so well fitted to an Inverse Gamma as for the hourly data. 

Two-parameter alternatives like the lognormal give only marginally better fit. A fairly good fit is obtained 

by taking 1/scale to have a three-parameter Gamma, i.e. with a lower threshold. 

 

We see that going from hourly to yearly data the shape parameter for location 1 (Fjeldskar) increased 

from about 1.8 to about 3.0. It turns out that the optimal solution is not very sensitive to this 

specification, i.e. we get about the same break point for a given expected (average) wind speed. 
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5. Computational Bayesian  two-parameter Weibull analysis 
 

We have above assumed a Weibull model with the shape parameter known, which provides an explicit 

solution. We have also explored our uncertainty with respect to this parameter and the sensitivity of the 

solution. A more unified Bayesian approach would be to consider both shape and scale as unknown 

parameters, with a bivariate prior on (shape, scale) For this we have no neat analytic solution, but a 

computational solution is feasible. We then have full freedom to specify a prior. We now prefer the 

parameterization where  is the scale (now in greeks) and 𝜆 = 𝛾
1

𝜅  is the scale parameter 

corresponding to the expectation formula = Γ (1 +
1

𝜅
) ∙ 𝜆 .  In the literature we may find various 

suggestions for uninformative priors, among them so-called reference priors, and suggestions for 

informative priors, typically tied to the Gamma distribution combined with an independence assumption. 

In our context we possess considerable prior knowledge on the parameter sizes and our empirical analysis 

indicates that it is unreasonable to assume independence. As indicated in a graph in the previous section 

they are likely to be positively dependent, at least for hourly data.  The situation is illustrated in the 

following graph, showing the relationship between for a given realistic expectation  

 

We see that the curve is increasing up to about 2.0, which is within the realistic range for hourly data. 

More aggregated data (daily, monthly, yearly) correspond to larger shape parameters, where the curve is 

eventually sloping downwards. In this case the prior on should possibly reflect a slight negative 

correlation. Since the expectation is our basic decision parameter, and the one easiest to express opinion 

about, the elicitation of super-parameters should depart from this and take into account the likely 

dependence. However, we could just as well use as parameterization. One convenient possibility is 

to assume both  and by choice uniform or triangular over a specified range with independence. For any 

combination of we can, if needed, compute or via the expectation formula.  
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The computations can be performed as follows: 

1. Decide on expectation and range of  (𝜅, 𝜃):  (𝜅0, 𝜃0) , (Δ𝜅0, Δ𝜃0) 

2. Make reasonable grids on 𝐺1 = [𝜅0−Δ𝜅0, 𝜅0+Δ𝜅0]  and 𝐺2 = [𝜃0−Δ𝜃0, 𝜃0+Δ𝜃0]  

3. Choose prior (uniform or triangular) for each of 𝐺1 and 𝐺2 giving prior 𝑝(𝜅, 𝜃) on  𝐺1 × 𝐺2 

4. Choose a sufficiently dense grid 𝐺0 of w-values 

5. For each 𝑤 ∈  𝐺0  compute the posterior 𝑝(𝜅, 𝜃|𝑤) from Weibull-model at each  

(𝜅, 𝜃) ∈ 𝐺1 × 𝐺2  

6. For each 𝑤 ∈  𝐺0  compute the posterior expectation 𝜃(𝑤) = ∑ 𝜃 𝑝(𝜃|𝑤)𝜃𝜖𝐺2
 

7. For each 𝑤 ∈  𝐺0 compute the predictive probabilities of W by 

  𝑝(𝑤) = ∑ 𝑝(𝑤|𝜅, 𝜃)(𝜅,𝜃)𝜖𝐺1×𝐺2
𝑝(𝜅, 𝜃) 

8. Use 6 and 7 to compute the pre-posterior distribution of 𝜃(𝑊), giving  𝐻0(𝑤) and 𝐻1(𝑤), as well 

as the expectation 𝐸𝜃(𝑊) 

9. Use 𝐸𝜃(𝑊),  𝐻0(𝑡) and 𝐻1(𝑡) at the threshold value t in the expected loss formulas.    

We have implemented the steps 1-8 of this algorithm in R (see R (2009)) as the function weibull2prepost. 

Illustration: Suppose   c0=1, c1=10, c2=5, t=8.0 and triangular prior determined by (𝜅0, 𝜃0) =

(2.0, 8.0), (Δ𝜅0, Δ𝜃0) = (0.2, 1.0)  with 31 grid points on both grids. Assume further that we choose a w-

grid with grid length 0.001 stored as vector w. The R-function call is then 

weibull2prepost(w, shape0=2.0, dshape0=0.2, mean0=8.0, dmean0=1.0, ngrid=c(31,31), triang=T). 

Then 𝐸𝐿1 = 𝐸𝐿2 = 0 while 𝐸𝐿3 = −1.41, that is, wait and watch is optimal. Here the expectation was at 

the threshold t, but wait and watch will of course be optimal in a region around the threshold as we have 

seen before. Again we can vary 𝜃0 in a range around t=8.0 and produce a graph of the corresponding 

losses. 

 

Here it turns out that, with the given prior, we have to  wait and watch, whenever the prior mean is above 

about 7.84, and never go on with the project immediately. 
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