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Abstract 

 

The following thesis examines the existence of contrarian profits in the Norwegian equity 

fund market. Three different pricing models are used to determine if a contrarian strategy is 

able to create abnormal returns in the Norwegian equity fund market from 1995-20141. 

Firstly, we apply a similar approach as De Bondt and Thaler (1985) by using a single-index 

CAPM model. Our results initially support the work of De Bondt and Thaler, as we find 

significant reversals in fund returns with a two-year ranking and two-year holding strategy. 

Secondly, we expand the CAPM model by adding size- and value risk factors as suggested 

by Fama and French (1993), which results in a statistically insignificant alpha, suggesting 

that the strategy significantly loads on size and value. Finally, we extend the model even 

further, by adding Carhart's momentum factor, which also yields an insignificant alpha. Our 

research suggests that the single-index CAPM model, initially tested by De Bondt and 

Thaler, is an inferior model compared to the three-factor model introduced by Fama and 

French. The results indicate that contrarian investors do not obtain abnormal returns as they 

are simply compensated for the inherent risk of their portfolios, mainly suggested by the size 

effect literature by Banz (1981).  

 

 

 

 

 

 

                                                 
1
 Abnormal returns, refers to returns in excess of a relevant benchmark. Excess returns, refers to returns in 

excess of the risk-free rate. 
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I. Introduction  

 

This thesis is based on a specific request from Gabler AS to perform a quantitative analysis 

on contrarian strategies in the Norwegian equity fund market over the last two decades. We 

find this research to be particularly interesting and relevant for a couple of different reasons. 

Firstly, interest rates are at a historical low level in many parts of the world, mostly because 

of the global financial crisis in 2008-2009. The recent decline in oil prices has also played a 

crucial a role in pushing interest rates down, especially for oil exporting countries such as 

Norway (Aarø, 2015). Low interest rates imply low returns for investors that are currently 

invested in bank deposits, especially in Norway, where interest rates are lower than inflation 

(Statistics Norway, 2015). The Norwegian Fund and Asset Management Association 

(Verdipapirfondenes forening) reports that small private investors are investing more in 

mutual funds than ever before (Verdipapirfondenes forening, 2015). This might be seen in 

relation to the negative real returns for Norwegian bank deposit holders, which should 

provide reasonable incentives to invest in the mutual fund market. Furthermore, this low 

interest rate regime is predicted to persist as Norges Bank’s third quarter Monetary Policy 

Report (Pengepolitisk rapport) projects interest rates below one percent at least until 2018 

(Olsen, 2015, p. 21). Secondly, in recent decades, plenty of research papers have been 

written on stock selection strategies such as contrarian strategies. However, to our 

knowledge, there is little research to be found on contrarian strategies regarding mutual 

funds. Research available on fund investment strategies mostly revolve around momentum 

strategies. For this reason, our thesis is not only relevant due to the current macroeconomic 

outlook, but also because of the modest amount of research on this specific mutual fund 

selection strategy. Although the latter remark makes our research more interesting, 

unfortunately, it also limits our basis of comparison to contrarian strategies performed on 

stocks. Finally, to our knowledge, this is the first paper to examine the existence of 

contrarian profits in the Norwegian equity fund market, and hopefully both academics and 

investors alike will appreciate this contribution.  

 

Our research is inspired by Svalestad (2015), who questions the value of quantitative 

analysis in regards to fund selection. Specifically, the relationship between Information 

Ratio (IR) based fund ratings and subsequent performance is scrutinized. His findings 
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suggest that fund selection strategies based on IR ratings could in fact generate significant 

abnormal returns in the short run, meaning that the highest rated funds generate higher levels 

of annualized abnormal returns than lower rated funds. Although these findings are 

somewhat unreliable as they are based on a simplistic approach, they do provoke some 

interesting questions, especially as the analysis also indicates a long run reversal effect in 

fund performance. The long run reversal effect indicates that the lowest rated funds generate 

the highest annualized average abnormal returns, while the highest rated funds experience 

diminishing abnormal returns over time, however, this effect is statistically insignificant 

(Svalestad, 2015, p. 44). Despite an insignificant long run reversal effect, Svalestad’s 

research begs the question; is there a way of generating abnormal returns by constructing a 

portfolio consisting only of the lowest rated funds? 

 

In the following thesis, we are going to examine a variety of contrarian strategies in the 

Norwegian equity fund market over the last 20 years. However, we will mostly focus on the 

optimal two-year ranking and two-year holding strategy, which gives both maximum 

performance and statistical significance with a single-index CAPM model. Three different 

pricing models will be utilized to perform the analysis, and the goal is to examine returns in 

excess of relevant benchmarks over the last 20 years. Previous critique such as disregard to 

risk changes in ranking periods, beta estimation biases, size effect implications and the 

potential impact of the January effect, will also be addressed. Finally, the formal hypothesis 

testing will be based on the theory of efficient markets, specifically at a semi-strong level of 

market efficiency.   

 

I.I Contrarian strategies 

 

Chan (1988) briefly explains the theoretical basis of a contrarian strategy, and suggests that 

equity markets often overreact to news, both good and bad, which often leads to winners 

being overvalued and loser being undervalued. In financial theory, this idea or assumption is 

commonly known as the Overreaction Hypothesis (Chan, 1988, p. 147). Contrarian investors 

exploit this tendency by going long in stocks in period n that have performed relatively 

poorly (loser stocks) in period (n-1), and by short-selling stocks in period n that have 

performed relatively well (winner stocks) in period (n-1). However, the purpose of this 
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thesis is not to verify or debunk the Overreaction Hypothesis, as it is only presented as a 

theoretical justification for contrarian strategies. In previous research, such as De Bondt and 

Thaler (1985) and Chan (1988), the Overreaction Hypothesis is tested by creating winner 

and loser portfolios. In the following thesis, we are only interested in the applicability of a 

contrarian strategy on loser funds in the Norwegian equity fund market. This is mostly due 

to practical considerations as short-selling of funds is rarely an option for small private 

investors.  

 

According to the Overreaction Hypothesis, an over- or undervaluation of an asset is usually 

followed by a reversal effect, which is illustrated in figure 1. The curved orange lines 

illustrate possible overreactions to unexpected news on a certain asset, both good and bad, 

and the straight green lines illustrate changes in fundamental value of that particular asset. 

Figure 1 shows that an overreaction is usually followed by a reversal in the opposite 

direction towards the fundamental value of the asset. 

 

 

Figure 1: Overreaction in capital markets 
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II. Literature review  

 

II.I An influential contribution to contrarian strategies 

 

In general, contrarian strategies are well documented and frequently applied by investors, 

however, they have their share of critics among theorists. Chan (1998) reminds us that any 

trading strategy that relies on historical performance might violate the weakest form of 

market efficiency. According to the theory of efficient markets at the semi-strong level, all 

news, expected or unexpected, should immediately be priced in all relevant assets. Thus, a 

reversion over time as illustrated in figure 1 should not take place (Brealey et al., 2011, p. 

345). However, famous research papers such as De Bondt and Thaler (1985, 1987) present 

convincing evidence, not only consistent with an inefficient market at the semi-strong level, 

but also with the Overreaction Hypothesis. According to themselves, this was the first 

attempt at using a behavioral principle, i.e. the Overreaction Hypothesis, to examine the 

existence of a contrarian investment anomaly (De Bondt & Thaler, 1985, p. 795). Most, if 

not all research papers on contrarian strategies refer to De Bondt and Thaler’s (1985) work. 

 

By making use of a single-index CAPM model, De Bondt and Thaler (1985) report large 

abnormal returns when applying a contrarian strategy on stocks traded on the New York 

Stock Exchange (NYSE) from 1926-1982. Maximum performance is found with a three-

year ranking and three-year holding strategy, with a portfolio consisting of 35 stocks. 16 

ranking periods are created to isolate the top and bottom 35 stock performers by computing 

cumulative residual returns (CU), each over the previous 36 months, and 16 holding periods 

are created to track performance, each over the following 36 months2. For the loser portfolio, 

the average cumulative residual returns (CAR) in month 36 (CAR36) over all 16 holding 

periods is 19.6%, and the CAR in month 36 (CAR36) over all 16 holding periods for the 

winner portfolio is -5%. This implies that the loser portfolio outperforms the winner 

portfolio by 24.6%, with a t-statistic of 2.203 (De Bondt & Thaler, 1985, p. 800). 

 

                                                 
2
 Residual returns, refers to returns beyond a relevant benchmark:(𝑅𝑖 − 𝑅𝑀). 

3
 CAR is the average of the cumulative residual return (CU) of each month (month = 1,..., N; N = 36) in each 

of the 16 holding periods.  
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II.II Conflicting empirical results 

  

Generally, empirical evidence of the Overreaction Hypothesis in stock returns is a 

controversial topic in the international finance community (Maheshwari & Dhankar, 2014). 

Empirical results seems to be highly dependent on variations in methodology, meaning 

length of ranking and holding periods, market of interest, choice of pricing models and 

assumptions. 

 

In UK’s stock market for instance, the conclusion is unclear. At first, Campbell and 

Limmack (1997) provide evidence against the Overreaction Hypothesis with a one-year 

ranking and one-year holding strategy. However, when they extend the analysis with both a 

two-year ranking and two-year holding and a four-year ranking and four-year holding 

strategy and restrict the sample exclusively to smaller companies, they find evidence in 

support of the Overreaction Hypothesis with a sample from 1979-1990. In contrast, Clare 

and Thomas (1995) examine UK’s stock market from 1955-1990, but they find little 

evidence in favor of the overreaction effect. They suggest that an appropriate inclusion of 

the size effect leads to lower abnormal returns, thus undermining the overreaction effect in 

UK’s stock market. Evidence from the Spanish stock market is also divided. Alonso and 

Rubio (1990) and Forner and Marhuenda (2000) both contradict each other’s findings. The 

former pair are in support of a strong overreaction from 1967-1984, as they observe that 

losers outperform winners with a one-year ranking and one-year holding strategy. They also 

find that longer ranking and holding periods generate stronger overreactions than shorter 

ranking and holding periods. Furthermore, they suggest that their results are robust even 

after correcting for size. In complete contrast, the latter pair of researchers provide evidence 

against the Overreaction Hypothesis from 1963-1997. Kryzanowsko and Zhang (1992) test 

the Canadian stock market from 1950-1988, and they find little evidence consistent with the 

Overreaction Hypothesis, even after testing both shorter and longer ranking and holding 

periods. The same result is evident in Brailsford's (1992) research of the Australian stock 

market, as he finds little evidence of a mean reversion in winner and loser portfolios from 

1958-1987. Finally, Baytas and Cakici (1999) test the overreaction effect in seven developed 

stock markets, specifically in USA, Canada, Japan, France, Italy, Germany and the United 

Kingdom. Generally, the results support the overreaction effect and significant long-term 
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reversal are found in all stock markets except for the US and Canadian (Baytas and Cakici, 

1999).  

 

Previous research is most certainly divided, and support can be found on either side of the 

overreaction anomaly, thus the applicability of contrarian strategies is questioned. However, 

based on previous research, Dissanaike (1994) finds the performance of contrarian portfolios 

to be quite sensitive to methodological approach, specifically in regards to computing 

returns in both ranking and holding periods. Therefore, we use several different models and 

consider previous criticism in regards to methodology and approach, especially in terms of 

considering risk changes in ranking periods, beta estimation biases, the size effect, and the 

January effect.  

 

II.III Quantifying contrarian strategies 

 

A validation of the Overreaction Hypothesis implies that well performing funds in period n 

usually perform poorly in period (n+1), and that poorly performing funds in period n usually 

perform well in period (n+1). In fact, we see a clear tendency of this behavior in our two-

year ranking and two-year holding strategy, in which funds are ranked based on geometric 

average return over a two-year ranking period. We observe that highly ranked funds in 

period n, often perform poorly in period (n+1), and eventually revert back to being highly 

ranked in period (n+2). This behavior is illustrated in figure 2 with a fictive example of a 

successful contrarian portfolio.   

Figure 2: Performance reversal from period n to period (n+1) 
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This “bouncing” pattern in fund performance has to be repeated systematically over the 

sample period in order to create a successful contrarian portfolio. De Bondt and Thaler 

(1985, 1987) contribute this type of behavior in stock performance to the Overreaction 

Hypothesis, which actually is nothing but a psychological phenomenon where market 

participants overreact to unexpected news, both good and bad. However, there have been 

attempts to translate this behavior into more quantifiable explanations, where researchers 

examine the mechanics behind mutual fund reversals. 

 

Morey’s (2003) research suggests a negative relationship between 5-star Morningstar mutual 

fund ratings and subsequent three-year fund performance, which is also supported by Jain 

and Wu (2000)4. His research suggest that highly rated funds generate relatively lower future 

three-year returns than lower rated funds. In addition, he finds that funds experience greater 

risk three years after receiving 5-star ratings, compared to the prior three years, where risk is 

measured by both the standard deviation of monthly returns and the systematic risk from a 

single-index model (Morey, 2003, p. 9). If contrarian investors believe this to be true, they 

can exploit this tendency by short-selling highly ranked assets. As one can see, Morey’s 

research sheds some light on the underlying dynamics of the Overreaction Hypothesis, 

especially for the potential overvaluation of winner assets. However, his research does not 

provide a conclusive explanation behind the relationship between 5-star Morningstar ratings 

and subsequent performance. More importantly, for us at least, his research does not try to 

explain if or why lower rated funds experience relatively higher average returns than higher 

rated funds.  

 

Guercio and Tkac’s (2002, p. 920) research suggests that an initial 5-star rating, on average, 

generates a seven-month abnormal capital inflow of 53% in excess of expected capital 

inflows. Morey (2003) also refers to their research and argues that excess capital inflows 

over normal levels may lead to poor investment decisions and cause a subsequent fall in 

performance. However, he does not provide any explanations behind his claim. Hauge 

(2011) on the other hand explains this by suggesting that large funds (relative to their 

                                                 
4 Morningstar ratings range from 1-5, where 5 is the highest rating and 1 is the lowest rating. Mutual funds are 

rated based on previous performance, where performance is adjusted for both risk and costs. Funds that rank 

among the top 10% receive a 5-star rating while the bottom 10% receive a 1-star rating (Morningstar, 2015). 
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investment mandate, i.e. Norway, Scandinavia, Asia etc.) might find it challenging to find 

good investment alternatives. The rationale behind this suggestion is that large funds are 

reluctant to take large position in any single company’s outstanding shares, because if they 

buy (sell) such large positions they might drive the price up (down) to unsustainable levels. 

Therefore, Hauge claims that equity funds managers are cautious when buying or selling 

stocks, and that they typically are comfortable with holding 5% or less of any single 

company’s outstanding shares. Given a maximum stake of 5% in any single company, funds 

with large capital bases only generate small gains on their investments in absolute terms, 

especially relative to their size. Thus, he summarizes by suggesting that the larger the funds, 

the harder it becomes to increase total returns. Other possible explanations might be that 

fund managers see excess inflows as an opportunity to invest in assets that they previously 

considered too risky given available resources at that particular time, thus are more willing 

to increase their downside risk by investing in relatively riskier assets after receiving 

abnormal inflows. Again, this is just a suggestion, and it is not based on any hard evidence. 

On the contrary, several researches disagree with Morey and Hauge by suggesting the 

opposite, such as Warther (1995) who finds a positive relationship between capital inflows 

and subsequent performance.  

 

Frazzini and Lamont (2008) substantiate Morey’s research, at least to a certain degree, as 

they discuss the “dumb money effect”, which refers to small private investors’ tendency to 

invest in funds that perform poorly in subsequent periods. This effect is measured through 

inflows and outflows in the fund market, and suggests that investors reallocate poorly. In our 

opinion, there is an obvious connection between Frazzini and Lamont’s “dumb money” 

argument, Morey’s abnormal inflows argument and the Overreaction Hypothesis. If small 

private investors are “dumb money” and follow a sentiment-orientated herd-like behavior as 

suggested by Frazzini and Lamont, they will most likely invest in highly rated funds, thus 

contribute to abnormal inflows. In turn, this might lead to a drop in performance, as 

suggested by Morey and Hauge. Alternatively, highly ranked funds that experience 

abnormal inflows, thus considered equivalent to overvalued funds, might experience 

downward revisions towards their true values, as suggested by the Overreaction Hypothesis. 

These examples are mostly suggested explanations as to why highly ranked funds perform 

poorly in subsequent periods, but they are vague in terms of explaining why poorly ranked 



 

 13 

funds perform well in subsequent periods. In any case, these examples are attempts at 

providing quantifiable explanations behind contrarian strategies.  

 

Literature on contrarian strategies is quite extensive and surprisingly unclear in terms of 

acknowledging abnormal returns as a result of contrarian strategies. However, it is even 

more unclear in terms of identifying the underlying causes that might or might not lead to 

contrarian profits. Antoniou et al. (2005, p. 73) brilliantly summarizes some of the more 

formal literature on contrarian strategies, which goes to show just how divided literature is 

on the explanations behind contrarian profits: i) overreaction and/or underreaction to firm 

specific information, ii) seasonality effects, iii) size effects, iv) lead-lag explanations, v) 

changes in risk and microstructure biases within an efficient market context and vi) 

behavioral aspects5. Our research however, is primarily consistent with the size effect as an 

explanation to why significant abnormal returns in a CAPM framework does not hold in a 

Fama and French framework, thus resulting in insignificant abnormal returns.  

 

III. Approach and modelling of abnormal returns 

 

III.I Risk changes, size effect and January effect 

 

De Bondt and Thaler’s publication in 1985 has not gone unnoticed in the finance literature, 

and as all important contributions, it is both praised and criticized. Several researchers have 

replicated their work by slightly modifying some of the methods and underlying assumption. 

One of them is Chan (1988) who criticizes De Bondt and Thaler’s (1985) use of rank period 

betas, and their lack of regard to risk changes in ranking periods. Further suggesting that 

rank period betas in their research might be biased. Chan argues that betas are assumed to 

vary with changes in market value, which he in turn relates to the size effect literature by 

Banz (1981). In fact, he finds that in De Bondt and Thaler’s sample, the average value of 

loser stocks from the beginning to the end of ranking periods, on average, changes by -45%, 

                                                 
5
 Antoniou et al. (2005) refers to the following literature: i) Pettengill & Jordan (1990), De Bondt & Thaler 

(1985, 1987), Lehman (1988), Mendenhall (1991) and Abarbanell & Bernard (1992), ii) Chopra, Lakanishok & 

Ritter (1992) iii) Clare & Thomas (1995), iv) Lo & Mackinley (1990), v) Chan (1988), Ball & Kothari (1989), 

Kaul & Nimalendran (1990) and Kaul, Conrad & Gultekin (1997) and vi) Barberis, Shleifer & Vishny (1997) 

and Amir & Ganzach (1998).     
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and the value of the winner stocks changes by 365% (Chan, 1988, p. 149). Considering the 

size effect, these results indicate that loser stocks become much riskier at the end, compared 

to the start of ranking periods, and that winner stocks become much safer at the end, 

compared to the start of ranking periods, therefore, rank period betas might be biased. He 

suggests that holding period betas should be estimated directly in order to perform the 

correct risk-adjustment. Chan (1988) uses the same sample as De Bondt and Thaler in his 

own research, however, when accounting for risk changes in ranking periods, only small 

differences are found between winner and loser portfolios. In addition, he assumes these 

small differences to be economically insignificant after transaction costs. Therefore, he 

claims weak support for the Overreaction Hypothesis and contrarian strategies. In order to 

avoid the issue of risk changes in ranking periods completely, we estimate betas directly 

from holding periods, as suggested Chan (1988). 

 

Zarowin (1990) documents the size effect by recreating De Bondt and Thaler’s (1985) 

research. Similar to our research, he finds initial support for De Bondt and Thaler research, 

however, when controlling for size by comparing winners and losers of somewhat equal 

size, he finds that losers outperform winners only in the month of January. In addition, he 

finds that when losers are smaller than winners, losers outperform winners, but also that 

when winners are smaller than loser, winners outperform losers. He contributes these results 

to the size effect, and concludes that De Bondt and Thaler’s research is nothing but a further 

strengthening of the already established literature on the size effect (Zarowin, 1990, p. 124). 

Clare and Thomas (1995) support this conclusion, as they also find no significant reversals 

when adjusting for the size effect in UK’s stock market. However, there is literature that 

contradicts both their research, as Alonso and Rubio (1990) find significant reversals with a 

one-year ranking and one-year hold strategy in the Spanish stock market, even after 

adjusting for size. Furthermore, they suggest that longer ranking and holding periods 

generate higher level of abnormal returns. Due to practical considerations, we do not create 

winner portfolios as shorting of funds is usually not an option. In any case, our research 

adjusts for the size effect by extending the single-index CAPM model with the SMB risk 

factor.  

 

De Bondt and Thaler's (1985) research clearly indicates that most of their returns are 
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generated in the month of January. This phenomenon is well known in finance, and Thaler 

(1987) refers to this effect as the January effect. Several researchers have addressed this 

effect, for instance, Pettengill and Jordan´s (1990) research shows that close to half of their 

yearly CAR in their 90-day portfolio is created in January. Chopra, Lakonishok and Ritter 

(1992) also support this finding as they criticize De Bondt and Thaler (1985) by pointing out 

that most of their overreaction effect is realized in the month of January. Due to this effect 

and its ability to misrepresent actual contrarian profits, we also perform tests to examine the 

significance of the January effect. However, tests performed with the Fama and French 

three-factor model and the Carhart four-factor model on the optimal two-year ranking and 

two-year holding strategy indicate a statistically insignificant January effect. Therefore, the 

January effect is not displayed in the regression model specifications in the methodology 

section6. 

 

III.II Efficient Market Hypothesis 

 

An efficient market is a market where new information regarding different securities is 

priced instantaneously (Brealey et al., 2011 p. 916). Maurice Kendall (1953), a British 

statistician, is considered the first to present a theory on efficient markets. His studies of 

stock prices indicate that stock prices are highly random from one week to the next, meaning 

that prices follow a so-called “random walk” (Brealey et al., 2011, p. 342). Furthermore, he 

adds, if capital markets were predictable, investors would easily make superior profits. 

Actually, any trading strategy that relies on historical performance might violate the weakest 

form of market efficiency (Chan, 1988). If markets are efficient, there should never be an 

overreaction, as new information on a particular asset should be priced instantly.  

 

The efficient market hypothesis proposes three levels of market efficiency; weak, semi-

strong and strong market efficiency (Brealey et al., 2011 p. 345). In the weak market 

efficiency assumption, it is believed that prices only reflect information that can be found in 

                                                 
6
 Regression specifications with a dummy variable for January (not displayed in methodology); 

i) Three-factor: 𝑅𝑖 − 𝑟𝑓 = 𝛼𝑖 + 𝛽𝑖𝑀(𝐸(𝑅𝑚𝑡) − 𝑟𝑓𝑡) + 𝛽𝑖𝑆𝐸(𝑆𝑀𝐵𝑡) + 𝛽𝑖𝐻𝐸(𝐻𝑀𝐿𝑡) + 𝛾𝑖𝐽𝜃𝑡 + 𝜖𝑖   and 

ii) Four-factor: 𝑅𝑖 − 𝑟𝑓 = 𝛼𝑖 + 𝛽𝑖𝑀(𝐸(𝑅𝑚𝑡) − 𝑟𝑓𝑡) + 𝛽𝑖𝑆𝐸(𝑆𝑀𝐵𝑡) + 𝛽𝑖𝐻𝐸(𝐻𝑀𝐿𝑡) + 𝛽𝑖𝑃𝐸(𝑃𝑅1𝑌𝑅𝑡) +

 𝛾𝑖𝐽𝜃𝑡 + 𝜖𝑖 . 
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historical price data. The validity of this level of market efficiency implies that it is 

impossible to earn superior profits by taking advantage of historical returns, which is what 

we are trying to do with a contrarian strategy. If an exploitation of historical data results in 

abnormal returns, it will most certainly also imply weak form inefficiency. In the semi-strong 

market efficiency assumption, pricing of an asset reflects both historical prices and all other 

publicly available information. At this level of market efficiency, prices should immediately 

adjust to changes in public information. The strong market efficiency assumption implies 

that prices should reflect all available information, including inside information. Thus, no 

superior investment strategy should exist, and no strategy should consistently outperform the 

market (Brealey et al., 2011 p. 346).  

 

Fama (1970, p. 387) argues that capital markets that fully reflect all available information 

have the following characteristics; i) there are no transaction costs involved in trading 

securities, ii) all available information is available to all investors without costs associated 

and iii) all market participants agree on how current information affects current prices, and 

the distribution of future prices of all securities.  

 

III.II.I Hypotheses 

 

The relevant hypothesis for this thesis is derived from the theory of efficient markets. Much 

like De Bondt and Thaler (1985), we are interesting in testing the semi-strong level of 

market efficiency. The rationale behind the testing of this level of market efficiency is based 

on the idea that historical prices are used to rank funds in ranking periods, given that the 

Overreaction Hypothesis is assumed to be the theoretical justification behind contrarian 

strategies, the potential overreaction to unexpected news should occur in holding periods. In 

turn, this implies that any positive, statistically significant deviation from zero will indicate a 

semi-strong market inefficiency. Tests are conducted on the performance in all holding 

periods. Although individual holding periods are not sufficient to conclude efficiency or 

inefficiency, the whole sample of all holding periods is assumed sufficient.  

 

The empirical testing will be performed on a single-index CAPM model, in which statistical 

significance will be determined by the intercept, commonly known as Jensen’s alpha (Berk 
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& DeMarzo, 2014, p. 410). The following equation will be used to model returns in holding 

periods, 

 

(1)  (𝑅𝑖 − 𝑟𝑓) = 𝛼𝑖 + 𝛽𝑖(𝑅𝑚 − 𝑟𝑓) + 𝜖𝑖 . 
 

 

Here, (𝑅𝑖 − 𝑟𝑓) is the excess return of an equity fund i, 𝑟𝑓 is the risk-free rate, 𝛽𝑖 is the beta 

of an equity fund i, (𝑅𝑚 − 𝑟𝑓) is the excess return of the market index (e.g. OSEFX) and 𝜖𝑖 

is the error term (Fama & French, 2004).  

 

If a loser portfolio ranked on historical performance is unable to predict abnormal returns in 

subsequent holding periods, the estimated excess return of the loser portfolios relative to the 

market index should be below or equal to zero, indicating semi-strong market efficiency, 

 

     𝐻0: 𝛼 ≤  0. 

 

If historical performance can help a contrarian investor in consistently predicting a reversal 

in performance of loser funds from ranking to holding periods, the estimated excess return of 

the resulting loser portfolio relative to the estimated excess return of the market index should 

be greater than zero, indicating semi-strong market inefficiency,  

     𝐻1: 𝛼 > 0. 

 

However, it is important to note that several aspects of this testing procedure might 

potentially lead to spurious results. The cause might be a misspecification of the CAPM, 

meaning possible misestimations of alphas and betas, or simply because the inefficiency 

exists at a weak level instead of a semi-strong level of market efficiency (De Bondt & Thaler 

1985, p. 795). It would be careless to simply assume that these potential problems will not 

bias our results, therefore we introduce two additional models to challenge the robustness of 

the single-index CAPM model.   
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III.III Capital Asset Pricing Model 

 

The theoretical basis of this thesis relies mostly on the Capital Asset Pricing Model 

(CAPM), a framework developed by Sharpe (1964), Lintner (1965) and Mossin (1966) 

(Fama & French, 2004, p. 26). It is one of the first models to predict the relationship 

between risk and return in a single security. Several decades later, CAPM is still widely 

recognized as a simple and intuitive, yet powerful model in regards to determining the 

relationship between risk and expected return. For that reason, it is still used as a tool for 

cost of capital estimations and evaluations of actively managed portfolios (Fama & French, 

2004).  

 

III.III.I Mean-variance framework 

 

The CAPM itself builds on Markowitz’s (1959) mean-variance framework, where risk-

averse investors only care about the relationship between expected return and the variance of 

return. Furthermore, The CAPM builds on three key assumptions; i) investors incur no 

transaction costs, and they may borrow and lend unlimited amounts at the risk-free interest 

rate, ii) investors are assumed to be mean-variance optimizers, and they may buy and sell 

securities without incurring taxes, and iii) investors have homogenous expectations 

regarding volatilities, correlations and expected returns of securities (Berk & DeMarzo, 

2014, p. 379)7.  

 

Figure 3 provides an easy and intuitive interpretation of the idea behind the CAPM by 

illustrating different portfolio combinations. The horizontal axis shows portfolio risk, and 

the vertical axis shows expected return. The curve abc illustrates the minimum-variance 

frontier, which shows the lowest attainable risk for any given level of expected return 

(Santos, 2015). The tradeoff between risk and expected return is obvious, e.g. if an investor 

desires high expected return as illustrated by point a, he must accept greater risk. In addition, 

the global minimum is given by point b, which gives the lowest possible portfolio risk. Note 

                                                 
7 Investors construct a portfolio at (n-1) which gives a random return at time (n). As risk averse investors, they 

will strive to construct a “mean-variance-efficient” portfolio, meaning that they will, i) minimize the variance of 

the portfolio, given expected returns, and ii) maximize expected return, given variance (Fama & French, 2004). 
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that only portfolio combinations above point b along the abc curve are mean-variance-

efficient, meaning that all portfolio combination above point b dominate all other 

combinations below point b, given the same level of risk. This is often called the efficient 

frontier (Fama & French, 2004, p. 26).  

 

Figure 3: Investment opportunities (Fama & French, 2004, p. 27) 

 

By introducing risk-free borrowing and lending, the efficiency with a risk-free asset can be 

illustrated in a straight line. Assume a portfolio that invests a proportion x in a risk-free 

security (𝑟𝑓) and (1-x) in a risky portfolio, g. If x equals 1, everything will be invested in the 

risk-free security at the risk-free interest rate. The portfolio will carry no risk, and it will 

yield a return equivalent to the risk-free rate. Movements towards g along the straight line 

indicates lower proportion invested in the risk-free security and higher proportion invested 

in the risky portfolio, g. Movements to the right of g indicates borrowing at the risk-free rate, 

where the borrowed capital is used to increase investments in the risky portfolio (Fama & 

French, 2004, p. 27).  
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The mean-variance-efficient portfolio combinations with risk-free borrowing and lending 

can be found by drawing a straight line from the point (𝑟𝑓) to the point of tangency at point 

T. Now, all efficient portfolios are combinations of the risk-free security, and a single risky 

tangency portfolio, T8. This result is commonly known as Tobin’s (1958) “separation 

theorem” (Fama & French, 2004, p. 28)9.  

 

III.III.II Systematic risk, beta and SML 

 

The general risk associated with investing in securities can be divided in two types, firm-

specific risk and systematic risk. Securities fluctuate because of firm-specific news, e.g. 

lower earnings, which is called firm-specific risk. This risk however, can be diversified by 

holding a larger portfolio, hence investors with this type of risk will not be compensated 

with higher returns. Systematic risk on the other hand is not diversifiable because it occurs 

as a result of market-wide events, which in turn affects the whole economy. Thus, investors 

are compensated for this type of risk through higher returns (Berk & DeMarzo, 2014, p. 

332). The measure of systematic risk is denoted by beta (𝛽𝑖𝑀),  

 

(2) 𝛽𝑖𝑀 =
𝑐𝑜𝑣(𝑅𝑖,𝑅𝑚)

𝜎2(𝑅𝑀)
  

 

Systematic risk or beta is calculated by dividing the covariance between a certain security i 

and the market portfolio, with the variance of the market portfolio (Berk & DeMarzo, 2014 

p. 382). The interpretation of a security's beta is that it measures the sensitivity of its returns 

to fluctuations in market returns, essentially how much that particular security on average 

moves up (down) when the market portfolio goes up (down). When the market goes up, a 

high beta (>1) indicates returns higher than the market, and a low beta (<1) indicates returns 

lower than the market. Thus, the CAPM model prices expected returns of any security using 

                                                 
8
 This set of opportunities apply to all investors, and they all agree on this set of opportunities. This means that 

all investors hold the same risky tangency portfolio T, and combine it with the risk-free security according to 

their level of risk-aversion. The tangency portfolio is often referred to as the market portfolio, since all 

investors hold the same risky portfolio. The tangency portfolio should be a value-weighted portfolio of all risky 

assets (Fama & French, 2004).  
9 The total return is a function of the weight in the risk-free asset (𝑟𝑓) and the risky asset (𝑅𝑎): E(𝑅𝑝) =

𝑥(𝑟𝑓) + (1 − 𝑥)𝑅𝑎(Fama & French, 2004).  
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the market portfolio as a benchmark. The Sharpe-Lintner-Mossin CAPM equation is 

therefore formulated as, 

 

(3) 𝐸(𝑅𝑖) = 𝑟𝑓 + 𝛽𝑖(𝐸(𝑅𝑚) − 𝑟𝑓). 

 

Here, 𝐸(𝑅𝑖) is the expected return of a security i, 𝑟𝑓 is the risk-free rate,  𝛽𝑖 is the beta of 

security i and (𝐸(𝑅𝑚) − 𝑟𝑓) is the return of the market (e.g. S&P 500 index) less the risk-free 

rate (Fama & French, 2004, p. 29). The CAPM equation is assumed to price any security i, 

where the expected return is the risk-free interest rate (𝑟𝑓) plus a risk premium, which is a 

security's sensitivity to the market, 𝛽𝑖, multiplied by the premium per unit of beta risk, 

(𝐸(𝑅
𝑚

) − 𝑟𝑓) (Fama and French, 2004). As equation (3) implies, a linear relationship is 

found between a security’s systematic risk and its expected return. This linear relationship is 

usually illustrated with a straight line called the security market line (SML) (Berk & 

DeMarzo, 2014, p. 384). The intuition behind the SML is illustrated in figure 4. 

 

 

Figure 4: The SML (Berk & DeMarzo, 2014, p. 384) 
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According to the CAPM theory, all securities should lie on the SML. Securities above or 

below the SML (orange dots in figure 4) generate abnormal return, commonly known and 

measured by Jensen’s alpha (Berk & DeMarzo, 2014, p. 410). Abnormal returns in a CAPM 

framework are by definition unexplained returns, as abnormal returns are either higher or 

lower than what CAPM predicts.  

 

A linear regression can be used to determine the alpha and the beta of any security, i. This 

specific technique is used to identify the best-fitting line in a scatter plot, between a security 

and a relevant market index. The relationship is linear, and the intercept is used to estimate 

the alpha, while the slope is used to estimate the beta. The alpha can be interpreted as the 

“risk-adjusted measure of a stock’s historical performance” (Berk & DeMarzo, 2014, p. 

410). However, according to the CAPM and the efficient market hypothesis, the alpha of any 

given security should not significantly depart from zero because CAPM is assumed to price 

all securities. The CAPM equation is now formulated as a regression model, 

 

(4)     (𝑅𝑖 − 𝑟𝑓) = 𝛼𝑖 + 𝛽𝑖(𝑅𝑚 − 𝑟𝑓) + 𝜖𝑖 . 

 

According to the CAPM model, the beta of a security is assumed sufficient to determine the 

expected return of any security. However, Fama and French (1992) famously criticized the 

CAPM's applicability in empirical testing as they pointed towards convincing evidence of 

the fact that size, earnings-price, debt-to-equity and book-to-market ratios contribute to some 

of the expected return implied by the market beta (Fama and French, 2004, p. 37). For this 

reason, we cannot rely solely on the CAPM model, and we will introduce additional risk 

factors to adjust the return estimated by the single-index CAPM. 

 

III.IV Fama-French three-factor model 

 

In light of their critique towards the CAPM, Fama and French developed the Fama-French 

three-factor model in 1992. This model extends the CAPM framework with additional risk 

factors such as SMB (small-minus-big) and HML (high-minus-low) (Fama & French, 1992). 

Banz (1981) delivers one of the first significant blows to the CAPM framework by 
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documenting the size effect, as he finds that the average returns of small stocks, on average, 

generate higher returns than predicted by the CAPM. The procedure of creating the SMB 

involves dividing companies in a single market into two portfolios based on their market 

value of equity. Companies that are below the median size cut-off are defined as, S, and 

companies above the median cut-off are defined as, B. Thus, the small-minus-big (SMB) 

risk factor is added to the CAPM to account for the fact that buying a portfolio of stocks 

with small market capitalization (price multiplied by shares outstanding) and short-selling a 

portfolio of stocks with large market capitalization, historically has proven to generate 

positive risk-adjusted returns (Berk & DeMarzo, 2011, p. 437). Stattman (1980) and 

Rosenberg, Reid and Lanstein (1985) also find that stocks with high book-to-market equity 

ratios, on average, generate higher returns than what is captured by their respective CAPM 

betas (Fama and French, 2004, p. 36). The procedure involves creating a portfolio of 

companies with book-to-market ratios lower than the 30th percentile in a single market, 

defined as, L. Furthermore, a portfolio of companies with book-to-market ratios higher than 

the 70th percentile in the market is created, and defined as, H. Therefore, the high-minus-low 

(HML) risk factor is added to the CAPM to adjust for the anomaly, where buying a portfolio 

of stocks with high book-to-market ratios and short-selling a portfolio of stocks with low 

book-to-market ratios, historically has proven to generate positive risk-adjusted returns 

(Berk & DeMarzo, 2011, p. 437). Thus, the Fama-French model assumes to explain 

expected returns to a greater degree than the single-index CAPM (Fama & French, 2004, 

p.38),   

 

(5)  𝐸(𝑅𝑖) − 𝑟𝑓 = 𝛽𝑖𝑀(𝐸(𝑅𝑚) − 𝑟𝑓) + 𝛽𝑖𝑆𝐸(𝑆𝑀𝐵) + 𝛽𝑖𝑆𝐸(𝑆𝑀𝐵) + 𝛽𝑖𝐻𝐸(𝐻𝑀𝐿). 

 

The additional factors included has their own respective betas, which estimate the degree of 

contribution to the expected return of a security, i. The resulting linear regression model 

determines both alpha and beta values, 

 

(6)   (𝑅𝑖𝑡 − 𝑟𝑓𝑡) = 𝛼𝑖 + 𝛽𝑖𝑀(𝐸(𝑅𝑚,𝑡) − 𝑟𝑓𝑡) + 𝛽𝑖𝑆𝐸(𝑆𝑀𝐵𝑡) + 𝛽𝑖𝐻𝐸(𝐻𝑀𝐿𝑡) +  𝜖𝑖. 
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III.V Carhart four-factor model 

 

Carhart’s four-factor model (1997) is a challenger to the famous CAPM and Fama-French 

three-factor model. Carhart (1997) extends the latter by incorporating Jegadeesh and 

Titman’s (1993) one-year momentum anomaly as a fourth factor, denoted PR1YR. 

Jegadeesh & Titman (1993) find that buying a portfolio of stocks that ranked among the top 

30% in the previous year and selling short a portfolio of stocks that ranked among the 

bottom 30% in the previous year, yields a positive risk-adjusted return in the following year. 

Therefore, Carhart (1997) adds this momentum factor as a fourth explanatory variable in his 

research,  

 

(7) 𝐸(𝑅𝑖) − 𝑟𝑓 = 𝛽𝑖𝑀(𝐸(𝑅𝑚) − 𝑟𝑓) + 𝛽𝑖𝑆𝐸(𝑆𝑀𝐵) + 𝛽𝑖𝐻𝐸(𝐻𝑀𝐿) + 𝛽𝑖𝑃𝐸(𝑃𝑅1𝑌𝑅) . 

 

Actually, this multifactor model is considered the most popular choice among asset pricing 

models in recent times (Berk & DeMarzo, 2011, p. 347). The extended alternative linear 

regression model that determines alpha and beta values is now formulated as, 

 

(8)   (𝑅𝑖𝑡 − 𝑟𝑓𝑡) = 𝛼𝑖 + 𝛽𝑖𝑀(𝐸(𝑅𝑚,𝑡) − 𝑟𝑓𝑡) + 𝛽𝑖𝑆𝐸(𝑆𝑀𝐵𝑡) + 𝛽𝑖𝐻𝐸(𝐻𝑀𝐿𝑡) +

 𝛽𝑖𝑃𝐸(𝑃𝑅1𝑌𝑅) + 𝜖𝑖 . 

 

IV. Data and methodology 

 

IV.I Data retrieval 

 

The task of gathering and sorting return data for Norwegian equity funds has at times been a 

difficult and time-consuming process. We mostly ended up using the database administered 

by the Norwegian School of Economics (NHH), called Børsprosjektet/Amadeus. This 

database is a great source of information on end-month return data, especially in regards to 

relatively old data. However, it has limited tools in terms of isolating specific data. In our 

case, we are only interested in Norwegian equity funds and their end-of-month return data, 

but Amadeus does not differentiate between equity funds and other types of funds such as 
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bond funds, therefore, a lot of work has been done in Microsoft Excel. Keep in mind that 

whenever one is forced to sort data manually, there is always a risk of including or excluding 

the wrong funds, but at the same time, one would be naive to blindly trust pre-completed 

lists from any database. For the purpose of including and excluding the right funds, we use 

both Morningstar Direct and Børsprosjektet to collect vital information about the funds, such 

as investment mandate, region of sale etc. Furthermore, we use Bernt Arne Ødegaard’s data 

(Ødegaard, 2015) to collect the following factors; SMB, HML, Carhart’s momentum factor 

PR1YR and monthly risk free interest rates. Although Ødegaard (2015) creates these factors 

to perform regression analysis on stock returns in the Norwegian stock market, we have no 

reason to believe that these factors will be insufficient for running regressions on equity fund 

returns in the Norwegian fund market. The main justification is that our sample of funds is 

restricted to the Norwegian equity funds, meaning that the investment mandate for funds in 

our sample is mostly limited to the Norwegian equity market. Thus, we believe that it is 

unnecessary to create our own risk factors in the Norwegian equity fund market, as they 

most likely would be negligibly different from Ødegaard’s risk factors. In regards to the 

construction of risk factors, Ødegaard creates the SMB, HML and PR1YR by using the same 

approach as Fama & French (1992) and Carhart (1997). Furthermore, we use the monthly 

NIBOR (Norwegian Interbank Offered Rate) as the risk-free rate, which retrieved from 

Ødegaard (2015). Return data for Oslo Stock Exchange Fund Index (OSEFX) is retrieved 

from Morningstar Direct. According to the UCITS directives for mutual funds, OSEFX is a 

value-weighted index, but it is also considered as another version of the Oslo Stock 

Exchange Benchmark Index (OSEBX) (Oslo Børs, 2015). 

 

In our experience, Bloomberg and Datastream are relatively poor sources in terms of 

collecting fund returns, mostly because their databases do not display “dead” (liquidated) 

funds prior to the year of 2000. Børsprosjektet is much better at including dead funds, but is 

has its own drawbacks as previously mentioned. Therefore, we have to limit ourselves to a 

20-year horizon, specifically from 1995-2015. Ideally, a longer time frame is preferred, 

however, given that is difficult enough to find reliable information regarding funds from the 

previous 20 years, we conclude that we would much rather have accurate data with a 20-year 

time frame instead of unreliable data with a longer time frame. Fortunately, there are several 

research papers on stock selection strategies that have found contrarian profits with a similar 
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time frame as our own, such as Mun et al. (1999). However, from a statistical point of view, 

a longer sample period is not exclusively positive. Firstly, in order to limit survivorship bias 

it is important to include dead funds in the sample. This becomes more problematic with 

longer sample period, because the number of dead funds, in absolute terms, increase over 

time. Secondly, there are few databases except for Børsprosjektet/Amadeus, at least to our 

knowledge, which have reliable return data for much longer than 20 years back. Lastly, 

gathering return data is obviously important, but given our objective, it is even more 

important to only include Norwegian equity funds. Considering this last remark, we would 

not have been able to guarantee reliable data for a longer sample period, especially since we 

use Bloomberg and Morningstar Direct to manually verify which of the mutual funds that 

can be characterized as Norwegian equity funds. In our experience, these two databases are 

relatively poor sources for old equity fund data, thus we consider our time frame to be 

optimal given available data.   

 

After a coarse selection process, a set of requirements are established with the purpose of 

collecting data on all Norwegian equity funds from 1995-2015, both “dead” and “living”. 

Each fund has to pass these requirements in order to be included in the fund sample, and 

every single fund is manually verified through information collected from Bloomberg, 

Datastream, Morningstar Direct or Børsprosjektet. Again, there is always a possibility of 

making mistakes when performing such procedures manually, but we have no reason to 

believe that our sample does not sufficiently represent the Norwegian equity fund market, 

and we proceed with the assumption that it does. We also believe that we have managed to 

suppress survivorship bias to a level that will not alter any of the results in the analysis.  

 

Requirements for being included in the fund sample: 

 

- At least 80% is invested in stocks 

- “Region of sale” is Norway 

- “Base currency” is NOK 

- The investment market is Oslo Stock Exchange 

- Sector funds are not included unless they only invest in Norway 

- Only actively managed funds are included 
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The purpose of these restrictions is to limit ourselves to the Norwegian equity fund market. 

As previously mentioned, contrarian strategies have already proven to generate abnormal 

returns in France, Germany, UK, Spain, Italy and USA. Therefore, we do not find it 

necessary to test other markets than the Norwegian market. Furthermore, in comparison to 

the markets mentioned above, the Norwegian market is much smaller, which in turn makes 

the analysis a bit different, if not more interesting (Quandl, 2015). Finally, at least to our 

knowledge, this is the first paper on contrarian strategies in the Norwegian equity fund 

market, which in itself is interesting.   

 

A couple of remarks have to be made in regards to the requirements. Firstly, given that we 

only include actively managed funds, the active share in our fund sample, measured by long 

or short positions relative to the positions of the OSEFX index, might not always be ideal 

(Petajisto, 2013). This remark is related to Petajisto’s research on closet indexers. He points 

out that some mutual funds carry high management fees due to their active management, 

however, in reality their positions are highly correlated to the indices they are trying to 

outperform. In our research, we do not distinguish between “very active” funds and “slightly 

active” funds, we only distinguish between actively managed funds and index funds. In any 

case, if closet indexers prove to be a problem, they will probably bias towards our null 

hypothesis and lower abnormal returns, which is easier to justify than the opposite. 

Secondly, some fund managers might distribute two (or more) seemingly different funds, 

however, in reality they contain almost exactly the same positions, with the only difference 

being management fees or minimum capital barriers (Dagens Næringsliv, 2008). Often, this 

type of price discriminations is used to appeal to both small private investors and 

institutional investors. As a result, our sample might include two (or more) almost identical 

funds in a given holding period, meaning that they take very similar positions in the market. 

In turn, this might lead to an overrepresentation of a certain type of fund in a given holding 

period. Unfortunately, it is both difficult and time-consuming to address this problem, let 

alone solve it by conducting yet another selection process in a reliable fashion. Luckily, 

since our portfolios at most consist of five funds, it is relatively easy to identify funds 

managed by the same institution, however, we find this to be a rare occurrence in our 

strategies, and therefore we do not consider closet indexers to affect our results in any 

significant way.   
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The final sample consists of 82 equity funds with end-of-month return data from 1995-2015, 

which is comprised of 37 “dead” and 45 “living” equity funds10. 

 
IV.II Methodology 

 

We define a strategy based on ranking and holding periods, for instance, a two-year ranking 

and two-year holding strategy implies ranking funds based on each funds geometric mean 

over the past two years, and then measuring performance by holding a loser portfolio over 

the next two years11. In regards to funds disappearing, we use the same approach as 

Wermers (1997), where each fund is assigned a specific number, and the number stays with 

the fund as long as it exists. The implications of this approach is that funds will not be 

dropped even if their names or investment objectives change. They will continue to be a part 

of the portfolio over the entire holding period unless the funds merge into other funds or 

until they are liquidated. In the case of a fund disappearing in a portfolio of five funds, the 

portfolio will be explicitly rebalanced, and replaced with the sixth worst ranked fund in the 

previous ranking period. If more than one fund disappears, five plus n funds that 

immediately rank as the worst funds will replace the liquidated funds in the portfolio. 

Sometimes, rebalancing is not possible due to the absence of replacement funds. In those 

cases, the portfolio will be implicitly rebalanced by averaging the remaining funds (n minus 

liquidated funds). In addition, the portfolio is held for entire holding periods only, e.g. in the 

case of a two-year ranking and two-year holding strategy, all ranking and holding periods 

are exactly two years. Furthermore, the performance in holding periods is measured by 

monthly returns, which are calculated from changes in adjusted net asset value (adjusted 

NAV). In general, NAV is calculated by taking the value of all stocks and other securities in 

a fund, subtracting management fees and operating expenses, and then dividing the net value 

by the total number of outstanding shares (Morningstar, 2005). Adjusted NAV is NAV 

adjusted for dividend payouts, where dividend payouts are collected from Børsprosjektet. 

Furthermore, the justification for using monthly data is the same as for De Bondt and Thaler 

                                                 
10 For an overview of the number of living funds through the sample period, see figure 12 in appendix. 
11

 In our sample, loser funds are characterized as the bottom five performers over a certain ranking period, 

based on geometric mean returns. In other words, a portfolio will consist of five loser funds, unless a fund 

disappears, and it is not possible to replace it with another, in which case a portfolio will consist n minus 

liquidated funds. 
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(1985) as they suggest that daily or weekly returns may lead to problems with both risk and 

return variables, which includes bid-ask spreads and effects of infrequent trading. Pagan and 

Schwert (1990) support this decision, as they suggest that daily data comes with significant 

amounts of white noise, which in turn might disturb the analysis.  

 

In regards to the ranking procedure, we choose to calculate geometric mean returns instead 

of arithmetic mean returns. This decision is based on both Mun et al. (1999) and Chan’s 

(1988) critique of De Bondt and Thaler (1987) in which arithmetic mean returns are used. 

De Bondt and Thaler (1985, 1987) have been great sources of information to our research, as 

they have produced several key research papers on contrarian strategies. However, in this 

matter we choose to trust the critique directed toward the pair. Mun et al. (1999) explain that 

geometric average returns are more suited for time series data if one assumes an underlying 

growth rate, which we do. Furthermore, they explain that the squared value of an arithmetic 

mean is equal to the squared value of a geometric mean plus the variance of an underlying 

variable. This in turn implies that an arithmetic mean return will be equal to a geometric 

mean return, only if the variance of the underlying assets is assumed equal to zero (Mun et 

al., 1999, p. 219). However, fund returns can be both positive and negative, in addition, they 

often carry some degree of variance or risk. Given the fact that funds are risky assets and 

therefore will carry some risk, we comfortably proceed with geometric mean returns, as they 

are assumed to be more reliable and conservative compared to arithmetic mean returns. The 

formula used to calculate the geometric means is as follows, 

 

(9)  √(1 + 𝑅1) ∗ (1 + 𝑅2) ∗ … ∗ (1 + 𝑅5)
𝑛

− 1. 

 

Obviously, one has a lot of freedom when constructing loser portfolios as there is no golden 

rule as to how large or small a contrarian portfolio should be. In empirical testing of 

investment strategies, it is common to examine more than one portfolio size, however, we 

choose to stick to one approach only, which is to construct a portfolio of the bottom five 

funds in any given ranking period. The justification for this singular approach is simply that 

by having too many variables, we might complicate the analysis more than necessary, but 

also because it might restrict our ability to expose important patterns. For that reason, some 

variables are kept constant, such as portfolio size. Another reason, perhaps more important, 
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for applying the strict bottom five approach is that we impose a strict criterion that restricts 

the sample from which we can construct loser portfolios. In order to avoid funds that 

systematically perform worse than the majority of funds, we only construct loser portfolios 

consisting of funds that previously have been ranked in the top 30% in at least one out of 

two years prior to any given ranking period. This criterion proves effective in isolating the 

reversal effect, as it shuts out funds that do not display the characteristic bouncing pattern of 

a typical “contrarian-friendly” equity fund, as previously illustrated in figure 2. 

Unfortunately, this criterion also has a restricting impact on the size of the sample from 

which we can construct loser portfolios. Given our relatively small sample, due to the very 

nature of mutual fund markets in small countries such as Norway, this approach seems to be 

optimal. Therefore, a greater portfolio size would not adequately serve its purpose of 

selecting loser funds, given this strict criterion. In comparison, previous research on 

contrarian strategy is mostly performed on stock markets, which obviously allows for a 

greater sample size compared to fund markets, thus provides greater freedom when 

examining the optimal portfolio size.  

 

Figure 5 provides a visual illustration of the construction of the two-year ranking and two-

year holding strategy. Criterion periods C1 and C2 are used to sort the top 30% funds in 

1995 and 1996. The first ranking period stretches from 1997-1998, where a loser portfolio of 

the bottom five performing funds is created. Note that each and every fund in the loser 

portfolio must have performed among the top 30% funds in either C1, C2 or both C1 and 

C2. Furthermore, the portfolio’s performance is tracked from 1999-2000 before it is 

rebalanced. Finally, all 8 two-year holding period returns proxy the returns of the two-year 

ranking and two-year holding portfolio from 1999-2014. 
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 Figure 5: The construction of the two-year ranking and two-year holding strategy12 

 

Similar to De Bondt and Thaler’s (1985) approach, each of the five funds in the loser 

portfolio are given equal weight, and the performance is measured by monthly returns. 

Obviously, value weighting our portfolios in an option, which perhaps will have an impact, 

as it might be distinctive differences between small capitalization funds and large 

capitalizations funds in terms of contrarian movements, as suggested by Chan’s (1998) risk 

argument. However, we are only interested in identifying funds that pass our requirements 

and we do not differentiate between small cap funds and large cap funds. In any case, 

differences and/or changes in size, and the resulting implication of risk, will be adjusted with 

the SMB factor in the Fama and French three-factor model and the Carhart four-factor 

model. The return of an equally weighted portfolio is calculated as, 

 

(10)    
1

5
∗ 𝑟1 +

1

5
∗ 𝑟2 + ⋯ +

1

5
∗ 𝑟5 = 𝑟𝐸𝑊 . 

 

A regression analysis is conducted based on the equally weighted return of the two-year 

ranking and two-year holding portfolio, with respect to different models and their respective 

risk factors. Firstly, we use the same approach as De Bondt and Thaler (1985), by using the 

single-index CAPM model to measure the performance of the contrarian strategy. Secondly, 

we use the Fama and French three-factor model and finally, we use Carhart’s four-factor 

                                                 
12 C = criterion period(s), R = ranking period(s), H = holding period(s)  
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model with Jegadeesh and Titman´s one-year momentum factor. Abnormal return is 

measured while controlling for premiums in the market, and it is formally defined as 

Jensen’s alpha (Hendricks, 1993). The respective regression model specifications are listed 

below: 

 

(11)    𝑟𝑝𝑡 = 𝛼𝑝 + 𝛽𝑂𝑃𝐹𝑂𝑆𝐸𝐹𝑋 + 𝜀𝑖 , 

 

(12)   𝑟𝑝𝑡 = 𝛼𝑝 + 𝛽𝑂𝑃𝐹𝑂𝑆𝐸𝐹𝑋 + 𝛽𝑆𝑃𝐹𝑆𝑀𝐵 + 𝛽𝐻𝑃𝐹𝐻𝑀𝐿 + 𝜀𝑖 , 

 

(13)    𝑟𝑝𝑡 = 𝛼𝑝 + 𝛽𝑂𝑃𝐹𝑂𝑆𝐸𝐹𝑋 + 𝛽𝑆𝑃𝐹𝑆𝑀𝐵 + 𝛽𝐻𝑃𝐹𝐻𝑀𝐿 + 𝛽𝑃𝑃𝐹𝑃𝑅1𝑌𝑅 + 𝜀𝑖 . 

 

The single-index CAPM (11) uses OSEFX as the benchmark instead of the commonly used 

OSEBX. The justification is that we consider OSEFX to be a more relevant benchmark than 

OSEBX when adjusting returns of an equity fund portfolio against market returns. 

Nonetheless, we perform tests with both OSEFX and OSEBX and find that the differences in 

results are negligibly small, therefore, we proceed with OSEFX as the benchmark. The Fama 

and French three-factor model (12) simply adds two factors, SMB and HML, to respectively 

adjust for size and value. Lastly, Carhart’s four-factor model additionally includes PR1YR. 

 

Table 1 lists different variations of the contrarian strategy, where all of the strategies are put 

through each of the three introduced models. 
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Table 1: Different ranking- and holding periods 

 

3 months ranking 6 months ranking 

·         3 months holding ·         6 months holding 

1 year ranking 3 years ranking 

·         1 year holding ·         1 year holding 

·         2 years holding ·         2 years holding 

·         3 years holding ·         3 years holding 

·         4 years holding ·         4 years holding 

·         5 years holding ·         5 years holding 

2 years ranking 4 years ranking 

·         1 year holding ·         1 year holding 

·         2 years holding ·         2 years holding 

·         3 years holding ·         3 years holding 

·         4 years holding ·         4 years holding 

·         5 years holding ·         5 years holding 

 

 

IV.II.I Diagnostic tests  

 

Several diagnostic tests are run, specifically on the two-year ranking and two-year holding 

strategy, but also on other variations of the strategy. Results are presented in table 2, 

respectively for the two-year ranking and two-year holding strategy, and the mean of all 

other variations. The optimal two-year ranking and two-year holding strategy is specifically 

scrutinized, not only because it is the most profitable and statistically significant strategy, 

but also because it is in agreement with Benjamin Graham’s prediction that “the interval 

required for a substantial undervaluation to correct itself averages approximately 1½ to 2½ 

years” (De Bondt and Thaler, 1985, p. 799). Furthermore, tests are performed in STATA, 

approach and the selection of tests are based on diagnostic tests performed by Mun et al. 
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(1999) and the theoretical basis of all econometric procedures are mainly based on 

Wooldridge (2009).  

 

Dickey-Fuller tests for unit root are run with MacKinnon simulated critical values, and the 

results indicate stationary processes (Wooldridge, 2009, p. 631). In fact, we find all of the 

factors used in our analysis to be stationary processes, hence we are able to run regressions 

without the concern of spurious regression results. Furthermore, we perform a test for AR(1) 

serial correlation without strictly exogenous regressors, and find that the two-year ranking 

and two-year holding strategy indicates some degree of positive autocorrelation when testing 

with the CAPM (Wooldridge, 2009, p. 416). Due to the possibility of autocorrelation, we are 

neither able to fully trust standard errors nor t-statistics in the resulting regressions, which is 

a major concern in any empirical analysis (Wooldridge, 2009, p. 416). However, when 

examining the sample mean of all strategies, as well as the strategies individually, the 

problem of autocorrelation seems less severe, as most of the strategies do not display 

autocorrelation. Nevertheless, whenever autocorrelation is detected, it should be taken 

seriously, and adjusted for in order to obtain reliable results (Wooldridge, 2009, p. 419). 

Autocorrelation is adjusted by using a Prais-Winsten estimation (Wooldridge, 2009, p. 422). 

This method will probably lower t-statistics, hence significance levels, but at the same time 

it will also mitigate most of the problem of autocorrelation and provide more reliable results. 

Interestingly, an AR(1) serial correlation test on the Fama-French three-factor model does 

not suggest any problem of autocorrelation in any of the strategies. This might suggest that 

the problem lies with CAPM model, not with the data, since the Fama and French three-

factor model shows no signs of autocorrelation. It might just be that the CAPM model is 

insufficient in explaining the variations in returns of a security (Wooldridge, 2009, p. 411). 

A possible explanation to this might be that the SMB and HML risk factors are included in 

the CAPM model’s error term, thus causing autocorrelation. Furthermore, the same test is 

performed on the Carhart four-factor model, which also shows no sign of autocorrelation, 

thus further strengthening the suspicion towards CAPM´s inability to explain variations in 

returns of a security. Therefore, the Prais-Winsten estimation is used to adjust for 

autocorrelation in the CAPM model, which mostly lowered t-statistics. Several of the 

strategies that were significant at a 5% level are now only significant at a 10% level, due to 

the Prais-Winsten estimation adjustment. It might be that the autocorrelation detected in the 
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CAPM model prior to the Prais-Winsten estimation is an exception to typical autocorrelation 

results for the CAPM model. However, if that is not the case, one can wonder if 

autocorrelation is properly adjusted in papers written on contrarian strategies where CAPM 

is the main model. 

 

A Breusch-Pagan heteroscedasticity test is run to determine if the variance of the error terms 

is constant or non-constant (Wooldridge, 2009, p. 272). The test results indicate that our data 

has heteroscedastic features, however, it is quite easy to mitigate the problem of 

heteroscedasticity, which is done by simply running heteroscedastic-robust regressions 

(Wooldridge, 2009. p. 267). We also perform a normality test in accordance with Mun et al. 

(1999), but also because normality is one of the underlying assumption behind the OLS 

method (Wooldridge, 2009, p. 351). The residuals of the two-year ranking and two-year 

holding strategy do not seem to pass the criteria of a univariate skewness and kurtosis test 

for normality, hence these residuals appear to be non-normally distributed. However, the 

mean of all the strategies suggests otherwise. Generally, non-normality in empirical testing 

is not considered a crucial issue to deal with. Firstly, Wooldridge (2009, p. 173) explains 

that normality does not affect the unbiasedness of the OLS, and considers OLS to be the best 

linear estimator. He continues to explain that when a sample size gets sufficiently large, the 

central limit theorem leads to an approximate normal distribution (Wooldridge, 2009, p. 

174). Secondly, some researches such as Zuur et al. (2010) claim that linear regressions are 

fairly robust against non-normality. Other researches, such as Thode Jr (2002) question the 

accuracy of normality tests, thus their validity. Based on Woolridge’s explanation and the 

critique towards the importance of normality in applied finance, e.g. by Zuur et al. (2010), 

we proceed with the analysis and assume that non-normality will not affect any of our 

results. 

 

A Ramsey RESET test for functional form is also run in order to detect possible model 

misspecification. However, the RESET test only detects possible functional form problems, 

it does not provide nor does it suggest any other models that might be more suitable 

(Wooldridge, 2009, p.305). In order to avoid model misspecification, a Davidson-

MacKinnon test is performed on the three-factor model to examine the fit of a linear-log 

model specification instead of a linear specification (Wooldridge, 2009, p. 305). Also in this 
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test, it is important to note that it does not suggest any alternative model specification, it is 

only presumed to have the ability to detect functional form misspecifications (Wooldridge, 

2009, p. 306). The test results however, do not suggest a linear-log specification, thus we 

continue with linearly specified models, however, we remain cautious in claiming that our 

models are correctly specified. 

 

Table 2: Diagnostic tests 

 

Results from the Diagnostic Tests 

Models 
p-value                            

(two-year/two-year) 

p-value 

(mean) 

Implications 

Breusch-Pagan to test for heteroscedasticity 

 CAPM 0,001* 0,22 Heteroscedastic/Homoscedastic 

 three-factor 

model 
0,001* 0,22 Heteroscedastic/Homoscedastic 

 four-factor 

model 
0,001* 0,23 Heteroscedastic/Homoscedastic 

Augmented Dickey-Fuller test: Random Walk 

 Strategy 0,001* 0,001* Stationary 

 (OSEFX-Rf) 0,001* Stationary 

 SMB 0,001* Stationary 

 HML 0,001* Stationary 

 PR1YR 0,001* Stationary 

AR(1) test for serial correlation without strictly exogenous regressors 

 CAPM 0,001* 0,25 Autocorrelation/ No 

autocorrelation 

 three-factor 

model 
0,058 0,463 No serial correlation 

 four-factor 

model 
0,058 0,511 No serial correlation 
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Ramsey RESET test for misspecification 

 CAPM 0,009* 0,2491 Misspecification/No 

misspecification 

 three-factor 

model 
0,001* 0,0814 Misspecification/No 

misspecification 

 four-factor 

model 
0,001* 0,0784 Misspecification/No 

misspecification 

Davidson-MacKinnon test for model specification 

 three-factor 

model 
0,48 0,58 Linear model 

Skewness & Kurtosis test for Normality 

 CAPM 0,001* 0,10 Non-normal/normal 

 three-factor 

model 
0,001* 0,055 Non-normal/normal 

 four-factor 

model 
0,001* 0,059 Non-normal/normal 

*Significance level at 5% 

-Breusch-Pagan test for heteroscedasticity. Ho: homoscedasticity, H1: heteroscedasticity 

-Augmented Dickey-Fuller test:  Ho: Unit root, H1: Stationary process 

- AR(1) test for serial correlation: Ho: Autocorrelation, H1: No autocorrelation 

-DM-test for model specification: Ho: Linear model, H1: Not linear model 

-Ramsey RESET test for misspecification: Ho: no omitted variables, H1: omitted variables(misspecification) 

-Skewness/Kurtosis test for normality: Ho: Normally distributed, H1: Non-normally distributed. 

 

We also examine the existence of cross correlation between different risk factors in our 

analysis, which is assumed to detect multicollinearity (Carhart, 1997). The problem of 

multicollinearity in econometrics is not completely clear, but in general, one should have as 

little multicollinearity as possible (Wooldridge, 2009, p. 98). Carhart (1997. p. 62) argues 

that “low cross-correlation implies that multicollinearity does not substantially affect the 

estimated four-factor model loadings”. The correlation matrix below indicates acceptable 

levels of cross-correlations, therefore, it does not indicate a problem of multicollinearity. We 

proceed with the regression analysis with the assumption that our sample is not substantially 

affected by multicollinearity.   

 



 

 38 

Table 3: Cross-correlation 

 

 OSEFX-Rf HML SMB PR1YR 

OSEFX-Rf 1.0000    

HML -0.2158 1.0000   

SMB -0.5036 0.0029 1.0000  

PR1YR -0.2653 0.0096 0.1662 1.0000 
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V. Empirical Results  

 

V.I Initial results 

 

Figure 6 displays the actual development of both the two-year ranking and two-year holding 

strategy and the OSEFX index. The optimal two-year ranking and two-year holding strategy 

yields an accumulated return of 800% from 1999-2014, while the OSEFX index yields an 

accumulated return of around 450% over the same time period. Note also that the global 

financial crisis in 2008 is a potential outlier, however, since we measure the performance of 

the portfolio relative to the OSEFX index, the impact is considered relatively small.  

 

  

Figure 6: Accumulated returns of the two-year ranking and two-year holding strategy versus 

the OSEFX Index 
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V.II Findings with the Capital Asset Pricing Model 

 

Figure 7 displays the development of CAR’s (CAR = 1,..., N; N = 24) over all 8 holding 

periods for the two-year ranking and two-year holding strategy from 1999-2014. The loser 

portfolio outperforms the OSEFX index by a CAR of 7%, 24 months into the holding period 

(CAR24). Other than the obvious outperformance of the market index, a couple of analytical 

remarks can be made on the basis of figure 7. Firstly, the strategy seems to perform 

relatively poorly around 9 and 10 months into the average holding period. Secondly, the 

strategy seems to experience a bounce-back at 12 and 13 months into the average holding 

period, which substantially improves CAR from approximately 1% in month 10 and 11, to 

around 3% in month 12 and 5.5% in month 13.  

   

Figure 8 displays abnormal returns for all variations of the contrarian strategy, and it clearly 

indicates that medium term strategies outperform both short and long term strategies. This 

pattern is interesting for a couple of reason. Firstly, several researchers point towards short 

term persistence i.e. momentum in stock returns rather than a reversion, such as Brown and 

Goetzmann (1995), Elton, Gruber and Blake (1996), Jegadeesh and Titman (1993), Carhart 

(1997) and Davidson and Dutia (1989). Therefore, it is not surprising that short-term 

contrarian strategies on equity funds also perform poorly in the short term. Secondly, the 

two-year ranking and two-year holding strategy is categorized as a medium term strategy, 

and it is in agreement with Benjamin Graham’s prediction that reversal effects are especially 

noteworthy between 1½ and 2½ years (De Bondt and Thaler, 1985). This prediction further 

strengthens the notion that medium term strategies outperform both short and long term 

strategies13. A further discussion on the timing of investment will be conducted under 

“timing of investment and implications for general investors”.     

 

In figure 9, other variations of the contrarian strategy are compared to the two-year ranking 

and two-year holding strategy. The purpose of this illustration is to analyze apparent turn-of-

the-year changes (the January effect), as pointed out earlier in the thesis. De Bondt and 

                                                 
13 In our paper, we categorize strategies as short, medium and long term strategies. As mentioned previously, 

several researchers find significant long term reversal, therefore, it is worth mentioning that their long term 

strategies are equivalent to our medium term strategies. Thus, we generally agree with previous research in terms 

of the optimal timing of contrarian investments.  
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Thaler (1985) report that much of the abnormal return in their sample is realized in the 

month of January, and contribute this finding to the January effect. This effect refers to a 

tendency of substantial upturns in returns during the month of January (Thaler, 1987). Thaler 

suggests that tax-loss selling might be a contributing factor to this phenomenon. The 

argument behind tax-loss selling is that investors sell out of “bad” stock at the end of the 

year with the purpose of realizing tax benefits as a result of capital losses. In the beginning 

of the following year, as selling pressure dampens, prices tend to bounce back. Thus, 

holding poorly performing stocks at the turn-of-the-year might generate abnormal returns, 

but at the same time, he also points out that researchers are far from unanimous in support of 

the January effect (Thaler, 1987, p. 199). Figure 9 shows that a bounce-back occurs at the 

turn-of-the-year almost simultaneously in all of the four strategies. In figure 10, a four-year 

ranking and four-year holding strategy illustrates this effect even more clearly. However, 

when running a more formal test by creating a January dummy in the extended three-factor 

and four factor models, the optimal two-year ranking and two-year holding strategy, as in 

most of the other strategies, indicate a statistically insignificant January effect14. 

 

All of the strategies tested on the CAPM model are summarized in table 4. The output shows 

that 9 out of 22 strategies generate positive abnormal returns, while 13 strategies generate 

negative abnormal returns. However, only two strategies generate statistically significant 

positive abnormal returns at a 10% significance level. Besides the already mentioned two-

year ranking and two-year holding strategy, which generates monthly abnormal returns close 

to 0.43% with a t-statistic of 1.90, the two-year ranking and one-year holding strategy 

generates monthly abnormal returns close to 0.37% with a t-statistic of 1.79. In regards to 

the Overreaction Hypothesis, and the formal hypothesis testing procedure formulated earlier 

in the thesis, the single-index CAPM model indicates that a two-year ranking and two-year 

holding contrarian strategy does in fact generate abnormal returns, which by definition, is a 

violation of the semi-strong market efficiency. Thus, a single-index CAPM model indicates 

a semi-strong market inefficiency. 

 

                                                 
14

 The significance of the January effect is displayed in table 8 in appendix 
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Figure 7: CAR’s of the two-year ranking and two-year holding strategy 

 

 
 

 

 

Figure 8: Abnormal returns with the single-index CAPM model 
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Figure 9: A comparison of strategies with different ranking periods  

 

 

 

Figure 10: CAR’s of the four-year ranking and four-year holding strategy 
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Table 4: Output from the CAPM 

Portfolio 

Selection 

Period in 

Months 

(Ranking) 

Average 

Number 

of 

Funds 

Alpha values in CAPM (t-statistic) 

Months After Portfolio Ranking Period 

3 6 12 24 36 48 60 

3 5 
-

0.286% 

(-1,93*) 
- - - - - -  

6 5 - 
-0.251% 

(-1,68*) 
- - - - -  

12 5 - - 
-0.124% 

(-0,70) 
-0.076% 

(-0,48) 
0.061% 

(-0,29) 
-0.113% 

(-0,66) 
0.060% 

(0,34) 
 

24 5 - - 
0.365% 

(1,79*) 
0.430% 

(1,90*) 
0.278% 

(1,12) 
0.250% 

(1,04) 
0.180% 

(0,85) 
 

36 5 - - 
0.227% 

(1,53) 
0.094% 

(0,67) 
-0.063% 

(-0,59) 
0.195% 

(1,06) 
0.020% 

(0,17) 
 

48 5 - - 
-0.164% 

(-1,53) 
-0.085% 

(-0,79) 
-0.063% 

(-0,56) 
-0.048% 

(-0,46) 
-0.041% 

(-0,32) 
 

* =Significant at a 10% level 

** =Significant at a 5% level 

- =not applicable 

 

 

V.III Findings with the three-factor and four-factor model 

 

The extended models are primarily included to test the robustness of the single-index CAPM 

model, as they adjust for risk factors that are believed to affect our analysis, such as SMB, 

HML and PR1YR. SMB is considered to be particularly important as Chan (1988, p. 151) 

argues that, “since loser stocks are smaller than winner stock at the beginning of the test 

periods, the reversal effect may be related to the size effect”. Zarowin (1990) and Clare and 

Thomas (1995) also advocate the importance of size as both find no significant reversals 

when adjusting for size. Therefore, the alpha estimates should become more accurate by 

making this adjustment. The most noteworthy discovery from the Fama and French three-

factor model is that the SMB risk factor is always positive and significant in all of the 

strategies, thus further strengthening its explanatory power. The HML risk factor is always 

negative, suggesting that the contrarian portfolios loads on growth fund, however, it is not 
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always significant15. PR1YR is rarely significant, which perhaps is not surprising, as it is an 

adjustment for a one-year momentum effect, but also because we find that short term 

strategies perform poorly. Nevertheless, we choose to include this risk factor, as it is well 

documented in previous research e.g. Fama and French (1992).  

 

The output from the Fama and French three-factor model turns out substantially different 

from the single-index CAPM model. Now, most of the strategies generate negative abnormal 

returns. Only 4 of the 22 strategies still generate positive abnormal returns, while 18 

generate negative excess returns. Figure 11 displays abnormal returns for all strategies. 

Furthermore, table 5 shows that statistical significance is only accompanied by negative 

abnormal returns. The successful two-year ranking and two-year hold strategy is still the 

best strategy, but now, it only generates monthly abnormal returns of 0.19%, with a t-

statistic of 1.28. Our main finding is that the size effect seems to explain much of the returns 

previously contributed to the CAPM beta. Obviously, the Fama and French three-factor 

model cannot reject the null hypothesis of an efficiency at a semi-strong level. The results of 

the four-factor model did not add any value to the analysis, therefore, they are excluded in 

regards to illustrations and discussions16.  

 

                                                 
15

 Risk factor loadings are displayed in table 8 in appendix.  
16

 Illustrations of the four-factor model are presented in appendix. 
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Figure 11: Abnormal returns with the Fama and French three-factor model 

 

Table 5: Output from the Fama-French three-factor model 

 
Portfolio 

Selection 

Period in 

Months 

(Ranking) 

Average 

Number 

of Funds 

Alpha values in three-factor model (t-statistic) 

Months After Portfolio Ranking Period 

3 6 12 24 36 48 60 

3 5 
-0.459%  

(-3,33**) 
- - - - - - 

6 5 - 
0.392%  

(-2,75**) 
- - - - - 

12 5 - - 
-0.313%   

(-1,94*) 

-0.256% 

(-1,76*) 

-0.279%  

(-1,9*) 

-0.323% 

(-2,2**) 

-0.306% 

(-2,2**) 

24 5 - - 

 

0.141% 

(0,89) 

 

0.193% 

(1,28) 

 

-0.025%    

(-0,15) 

 

-0.048% 

(-0,30) 

 

-0.1%    

(-0,81) 

36 5 - - 

 

0.102% 

(0,80) 

 

-0.048% 

(-0,37) 

 

-0.147%  

(-1,41) 

 

0.032%  

(0,22) 

 

-0.112% 

(-1,22) 

48 5 - - 

 

-0.231%   

(-2,23**) 

 

-0.162% 

(-1,55) 

 

-0.140% 

(-1,3) 

 

-0.117% 

(-1,18) 

 

-0,149% 

(-1,24) 

* =Significant at a 10% level 

** =Significant at a 5% level  

- = not applicable 
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V.IV Timing of investment and implications for general investors 

 

Even though most of the results from the Fama and French three-factor model indicate 

negative abnormal returns, our analysis still adds value in terms of understanding the 

optimal timing of contrarian investment strategies. Our results indicate that betting on short 

term reversal of funds is unwise, as reversal strategies shorter than one year clearly generate 

negative abnormal returns. This is also supported in literature, as both Campbell and 

Limmack (1997) and De Bondt and Thaler (1985) find no evidence consistent with the 

Overreaction Hypothesis with a one-year ranking and one-year holding strategy. In addition, 

and perhaps more interestingly, short-term persistence in stocks is well documented, as 

mentioned previously, thus betting on short term reversal is not recommended. The best bet 

would be to aim for a medium term investment horizon, for instance with a two-year ranking 

and two-year holding strategy. This is supported by De Bondt and Thaler (1985) with a 

three-year ranking and three-year holding strategy, Campbell and Limmack (1997) with a 

two-year ranking and two-year holding strategy and finally by Alonso and Rubi (1990) who 

find stronger overreactions for strategies longer than a one-year ranking and one-year 

holding strategy.  

 

The final decision to invest depends on which asset pricing models the investor believes to 

be true. On one hand, our research suggests that a two-year ranking and two-year holding 

strategy is highly profitable within a CAPM framework, but on the other hand, at least from 

a theoretical or statistical point of view, it fails in a Fama and French framework. Our 

understanding is that investors rarely care about the origin of profits or where they come 

from. For instance, we explain that the CAPM model generates a significant alpha for the 

optimal strategy, which by definition is unexplained abnormal returns. By adjusting for 

SMB and HML risk factors and by verifying their significance we effectively reduce some 

of the previously unexplained alpha, implying that some of the abnormal returns are 

explained by a loading on these risk factors. This discovery might not be as important to an 

investor who is actively trying to outperform the market, as he only cares about beating the 

market index. Our results indicate that, yes, the optimal strategy generate abnormal returns, 

but not as a results of a contrarian profits, rather as a results of added risk through loading on 

risk factors such as SMB and HML, however, SMB seems to be the dominant risk factor. 
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Nevertheless, a couple of important remarks have to be highlighted. Firstly, the fact that one 

finds abnormal returns in historical data does not necessarily imply abnormal returns in the 

future. Secondly, some funds require high levels of minimum capital, such as Storebrand 

Norge I, which might not be optimal for small private investors (Netfonds Bank, 2015). 

Thirdly, the costs of trading on a contrarian strategy might be excessive. Sometimes, 

investors are charged fees both when buying and selling funds, as well as being charged for 

management fees. Needless to say, fees vary between funds, for instance, DNB Norge has 

management fees of 1.4% annually, however, buying and selling is free of charge (DNB, 

2015). Nordea Avkastning on the other hand, has annual management fees of 1.5%, but also 

buying and selling fees of respectively 0.5% and 0.05% (Nordea, 2015). Obviously, 

management fees and transaction cost have a direct negative impact on performance, and 

high costs of trading will therefore result in negative effects on returns.  

 

VI. Conclusion 

 

Data suggests that several different time lags generate positive abnormal returns when based 

on a single-index CAPM model, however, almost all abnormal returns become negative 

when SMB and HML is added. As for the two-year ranking and two-year holding strategy, it 

consistently generates the highest return across all models, and it remains positive with both 

the single-index CAPM model and the Fama and French three-factor model, with average 

monthly abnormal returns of respectively 0.430% and 0.193%. The general indication is that 

contrarian strategies perform relatively poorly in the short and long term, and perform best 

in the medium term. Furthermore, the single-index CAPM model initially indicates a 

rejection of the null hypothesis as the alpha of our optimal strategy is significantly larger 

than zero. However, an inclusion of additional risk factors leads to insufficient evidence to 

reject the null hypothesis. Overall, data suggests that the single-index CAPM model alone is 

insufficient in explaining abnormal returns of contrarian strategies, as it seems that investors 

are compensated for their inherent portfolio risk, where risk is mainly reflected by SMB, 

thus we are not able reject the null hypothesis.  

 

In terms of further analysis, it would be interesting to replicate Zarowin’s (1990) exercise of 

creating and comparing loser and winner portfolios of equal size in the Norwegian market. 
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Due to practical considerations of short-selling financial assets, this exercise should be 

performed on stocks, not on equity funds. In addition, the task of exclusively comparing 

funds of equal size might lead to an insufficient fund sample, therefore stock markets are 

preferred as they will provide more data than fund markets.  
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VIII. Appendix 

 

Attachment 1: Information about the fund sample  

 
Table 7: Final equity fund sample 

 

1 Avanse 2020 22 
OF Enter Mobile 

Internet 
43 

ABN AMRO 

Optimal 
64 DnB NOR SMB 

2 Avanse 2030 23 
Pareto Aksje 

Norge 
44 Avanse Norge I 65 Postbanken Fremtid 

3 Gjensidige Invest 24 Pareto Aktiv 45 
DnB NOR Norge 

Selektiv II 
66 

WarrenWicklund 

Norge 

4 Globus Norge 25 Pareto Verdi 46 Avanse Norge II 67 Fokus Barnespar 

5 
Handelsbanken 

Norge 
26 Postbanken Norge 47 

DnB NOR Norge 

Selektiv III 
68 

Danske Fund 

NorgeII 

6 Holberg Norge 27 
Storebrand Norge 

Institusjon 
48 

ABN AMRO 

Aktiv 
69 

Danske Fund 

NorgeI 

7 KLP Aksje Norge 28 
Danske Fund 

Norge Aksj Inst1 
49 

ABN AMRO 

Norge 
70 

Danske Fund Norge 

Vekst 

8 NB Aksjefond 29 Storebrand Norge 50 
ABN AMRO 

Norge + 
71 First Generator 

9 NB Plussfond 30 
Storebrand Norge 

I 
51 ABIF Norge 72 Fondsfinans Spar 

10 Nordea Norge Verdi 31 
Storebrand Norge 

H 
52 

Banco 

Humanfond 
73 FORTE Trønder 

11 Nordea Avkastning 32 Storebrand Vekst 53 
Carnegie Aksje 

Norge 
74 GAMBAK 

12 Nordea Kapital 33 Storebrand Verdi 54 
Carnegie 

Teknologi 
75 ABN AMRO Kapital 

13 Nordea Norge Pluss 34 Terra Norge 55 
Danske Fund 

Norge Aksj Inst2 
76 Avanse 2010 

14 Nordea SMB 35 RF Aksjefond 56 Delphi Vekst 77 Landkreditt Norge 

15 Nordea Vekst 36 RF Plussfond 57 
DNB Norge 

Selektiv 
78 Landkreditt Utbytte 

16 Atlas Norge 37 
Storebrand Norge 

A Inc 
58 DNB Barnefond 79 Globus Aktiv 

17 ODIN Norge 38 
Gjensidige Aksje 

Spar 
59 

Postbanken 

Folkefond 
80 

Storebrand Optima 

Norge A 

18 ODIN Norge II 39 Banco Norge 60 
DnB NOR 

Kompass 
81 

Storebrand Aksje 

Innland 

19 
Omega Investment 

Fund B 
40 

Alfred Berg Aksje 

fNorge 
61 DNB Norge IV 82 Delphi Norge 

20 
Omega Investment 

Fund C 
41 

Danske Fund Aktiv 

Formuesf A 
62 DNB Norge III   

21 
Orkla Finans Inv 

Fund 
42 

Alfred Berg 

Aksjespar 
63 

DnB NOR Norge 

I 
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Figure 12: Number of “living” funds from 1995-2015 
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Attachment 2: The results from the Carhart four-factor model 

 

 

Figure 13: Abnormal returns with the Carhart four-factor model  

 

 

 

Figure 14: T-statistics with the Carhart four-factor model 
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Attachment 3: Different risk factor loadings 

Table 8: Risk factor loadings for all strategies 

Strategy Beta* HML SMB* PR1YR 
January 

dummy 

(three-factor) 

January 

dummy 

(four-factor) 

3x3’ 
0.861        

(39.38) 
-0.0558          

(-1.85) 
0.246 

(6.28) 
-0.096     

(-3.29*) 
0.010                

(1.44) 
0.009                      

(1.34) 

6x6’ 
0.874        

(29.25) 
-0,0941         

(-2.62*) 
0.189 

(4.11) 
-0.149         

(-4.57*) 
0.013               

(1.75) 
0.011                      

(1.67) 

1x1 
0.800        

(22.89) 
-0.118           

(-1.87) 
0.263 

(4.79) 
-0.119         

(-3.47*) 
0.005                

(0.86) 
0.003                      

(0.66) 

1x2 
0.787        

(35.46) 
-0,0703         

(-2.23*) 
0.234 

(5,86) 
-0,0692        

(-2.27*) 
0.008               

(1.64) 
0.007                      

(1.53) 

1x3 
0.726        

(30.23) 
-0.139           

(-3.33*) 
0.291 

(7.40) 
0.0116 

(0.42) 
-0.001                      

(-0.18) 
-0.001                             

(-0.16) 

1x4 
0.863        

(35.66) 
-0.176           

(-5.55*) 
0.258 

(6.40) 
-0.0059        

(-0.19) 
0.004               

(0.80) 
0.004                      

(0.79) 

1x5 
0.894        

(37.32) 
-0.134           

(-4.49*) 
0.338 

(8.94) 
0.00379 

(0.13) 
0.011               

(1.97*) 
0.011                      

(2.00*) 

2x1 
0.810        

(31.61) 
-0.105           

(-3.14*) 
0.263 

(5.76) 
-0.0782        

(-2.39*) 
0.007               

(1.28) 
0.006                      

(1.21) 

2x2 
0.801        

(27.35) 
-0.128           

(-2.21*) 
0.269 

(5.50) 
0.0007 

(0.02) 
0.004               

(0.66) 
0.004                      

(0.67) 

2x3 
0.793        

(28.36) 
-0.157           

(-4.43*) 
0.329 

(6.88) 
0.0218 

(0.62) 
0.005               

(0.86) 
0.006                      

(0.91) 

2x4 
0.823        

(23.67) 
-0.162           

(-2.86*) 
0.350 

(6.73) 
0.0232 

(0.65) 
0.005               

(0.74) 
0.005                             

(0.78) 

2x5 
0.950        

(39.88) 
-0.138           

(-2.57*) 
0.296 

(7.40) 
0.0588 

(1.87) 
0.011               

(2.29*) 
0.011                      

(2.46*) 

3x1 
0.834        

(29.62) 
-0.0264          

(-0.95) 
0.173 

(5.17) 
-0.0003        

(-0.01) 
0.005               

(0.97) 
0.005                      

(0.97) 

3x2 
0.806        

(28.82) 
-0.0208          

(-0.77) 
0.190 

(5.44) 
0.0438 

(1.64) 
0.006               

(1.02) 
0.006                      

(1.10) 

3x3 
0.923        

(58.43) 
-0.0278          

(-1.21) 
0.123 

(4.01) 
-0.0025        

(-0.11) 
0.001               

(0.29) 
0.001                      

(0.28) 
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3x4 
0.834        

(27.63) 
-0.0289          

(-0.95) 
0.231 

(5.82) 
0.0200 

(0.63) 
0.009               

(1.52) 
0.009                      

(1.53) 

3x5 
0.932        

(62.76) 
-0.0140          

(-0.69) 
0.172 

(6.38) 
0.0414 

(2.09*) 
0.005               

(1.13) 
0.005                      

(1.24) 

4x1 
0.940        

(59.86) 
-0.0557          

(-2.30*) 
0.128 

(3.97) 
-0.0234        

(-1.02) 
0.008               

(1.87) 
0.007                      

(1.78) 

4x2 
0.918        

(58.26) 
-0.0300          

(-1.23) 
0.137 

(4.20) 
0.00957 

(0.41) 
0.005               

(1.16) 
0.005                      

(1.19) 

4x3 
0.927        

(60.12) 
-0.0254         

(-1.02) 
0.144 

(4.42) 
-0.0214        

(-0.92) 
0.007               

(1.95) 
0.007                      

(1.80) 

4x4 
0.947        

(51.84) 
-0.0427          

(-2.00*) 
0.133 

(5.07) 
0.0410 

(1.83) 
0.004               

(1.04) 
0.005                      

(1.18) 

4x5 
0.924        

(41.99) 
-0.0414         

(-1.77) 
0.176 

(6.61) 
0.00800 

(0.27) 
0.002               

(0.47) 
0.002                      

(0.48) 

* =significance at a 5 % level 

‘ =months not years 
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Attachment 4: Further description of the econometric analysis  

 

OLS assumptions for time series 

 

An Ordinary Least Squares (OLS) method is used to perform regression analysis on all of 

the different strategies. The OLS method has several underlying assumptions that should be 

addressed for the purpose of obtaining reliable results (Wooldridge, 2009, p. 345). 

 

1. A stochastic time series process is linear in parameters. Where, u, is the error term, 

representing the variations in y which is not explained by the explanatory 

variable(s), x. (Wooldridge, 2009, p. 346) 

 

2. The sample has no perfect collinearity, meaning, no explanatory variable is constant 

or a perfect combination of another explanatory variable (Wooldridge, 2009, p. 

346). 

 

3. The sample has a zero conditional mean, indicating that the expected value of the 

error term is zero for all periods (Wooldridge, 2009, p. 348). 

 

4. The error term is homoscedastic, where the variance of the error term remains 

constant for all periods (Wooldridge, 2009, p. 349). 

 

5. There is no serial correlation in the sample, meaning, that the error terms in 

different periods are uncorrelated (Wooldridge, 2009, p. 350). 

 

6. The errors are independent for every x, and are identically normally distributed 

(Wooldridge, 2009, p. 351). 

 

Breusch-Pagan test for heteroscedasticity 
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Heteroscedasticity is observed when the variance of the error term is non-constant, which is 

a violation of the fourth OLS assumption. Often, heteroscedasticity is observed through 

trends in the error term, either positive or negative (Wooldridge, 2009, p. 413). In statistical 

terms, the following is a description of heteroscedasticity 

 

(14)   𝑉𝑎𝑟(𝑢|𝑥1, 𝑥2, . . , 𝑥𝑛 )  ≠  𝜎2 (Wooldridge, 2009, p. 413). 

 

In order to detect heteroscedasticity, a Breusch-Pagan test is used to test for 

heteroscedasticity (Wooldridge, 2009, p. 432). This is done by regressing residuals on 

explanatory variables, furthermore, using the F-test on the resulting coefficients to test for 

heteroscedasticity. This is usually done by the hettest command in Stata. The null hypothesis 

indicates constant variance, which represents an insignificant F-statistic, while the 

alternative hypothesis, represents a significant F-statistic, indicating non-constant variance, 

hence heteroscedasticity (Wooldridge, 2009, p. 273),   

 

  𝐻0: Constant variance, 

 

  𝐻1: Non-constant variance. 

 

A rejection of the null hypothesis indicates heteroscedasticity. A common way of dealing 

with the issue of heteroscedasticity is to run robust regressions, to obtain robust standard 

errors, which will adjust for the heteroscedasticity in all series (Wooldridge, 2009, p. 267). 

 

Dickey-Fuller test for unit root processes 

 

The assumption of stationarity in time series analysis requires a transformation of non-

stationary processes into stationary processes. The problem of running regressions on non-

stationary time series, is that one may find relationships where there are not supposed to be 

any, which in turn might lead to unreliable conclusions, also called spurious regressions 

(Wooldridge, 2009, p. 636). Assets prices such as fund prices often display non-stationary 

processes through a random walk with an upward drift, or in econometric terms, a unit root 

process. This issue is resolved by using the percentage differences (i.e. returns) instead of 
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raw price data. A simple explanation of a unit root process is that a variable y is affected and 

correlated with it previous observation of itself yt-1.  

 

One of the ways to test a sample for unit root properties is to run the augmented Dickey-

Fuller test with Davidson and MacKinnon (1993) critical values (Wooldridge, 2009, p. 633). 

A Dickey-Fuller test examines the relationship between different observations in the same 

variable y, across time. If p-values are smaller (read: more negative), than previously 

determined Davidson and Mackinnon critical values, stationary processes are evident. The 

hypothesis tests are formulated below (Wooldridge, 2009, p. 632), 

 

  𝐻0: A unit root process, 

 

  𝐻1: A stationary process. 

 

AR (1) t test for serial correlation 

 

Serial correlation occurs when error terms are correlated across time, also called 

autocorrelation (Wooldridge, 2009, 413). This serves as a problem in time series analysis, as 

standard errors and t-statistics might be wrongly estimated due to serial correlation. This 

may lead to unreliable conclusions in regards to hypothesis testing (Wooldridge, 2009, p. 

409). A “t-test for AR (1) serial correlation with strictly exogenous regressors” is used to test 

for autocorrelation in the sample (Wooldridge, 2009, p. 412). This is done by regressing the 

predicted residual û on a lagged version of itself ût+1. Furthermore, the significance level of 

the lagged version is used to determine the degree of autocorrelation (Wooldridge, 2009, p. 

413). The null hypothesis says that the lagged coefficient is insignificantly different from 

zero, indicating no autocorrelation, while the alternative hypothesis says that the lagged 

coefficient is significant, indicating a problem of autocorrelation, 

 

  𝐻0: No autocorrelation, 

 

  𝐻1: Autocorrelation. 
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One way of adjusting for autocorrelation is to perform a Prais-Winston estimation 

(Wooldridge, 2009, p. 422). This estimation transforms data and adjusts the significant 

lagged error coefficient. Furthermore, it estimates a new OLS model with adjusted variables. 

 

Ramsey’s regression specification error test (RESET) 

 

A regression specification error test (RESET) is a general specification-test for functional 

form (Wooldridge, 2009, p. 303). The RESET test is performed by including quadratic terms 

of the dependent variable and testing their joint significance by using an F-test. This test will 

reveal if the model suffers from misspecification, but it does not provide any advice on how 

to correctly specify a given model. The null hypothesis represents an insignificant F-statistic, 

while the alternative hypothesis indicates a significant F-statistic, thus suggesting some sort 

of functional form misspecification (Wooldridge, 2009),  

 

  𝐻0: The model is correctly specified, 

 

  𝐻1: Some sort of functional form problem. 

 

MWD test for model specification 

 

A Davidson-MacKinnon test is used to find the best fit for our data in regards to model 

specifications (Wooldridge, 2009, p. 305). We primarily focus on the best fit between a 

linear-log model and a simple linear model. The Davidson-MacKinnon test uses fitted values 

of one model specification (linear-log), and test the significance of these fitted values in the 

other model specification (linear). Significant fitted values imply that the model 

specification might be wrong (Wooldridge, 2009). The hypothesis test is formulated below, 

 

  𝐻0: Linear model, 

 

  𝐻1: Linear-log model. 
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Skewness and kurtosis test for normality 

 

The OLS method assumes normally distributed error terms, therefore, a normality test 

should be performed. One may perform a skewness and kurtosis test for normality, but there 

are also other known tests that might be used (Ghasemi & Zahediasl, 2012). The null 

hypothesis indicates normally distributed residuals, hence high p-values indicate normal 

distribution. Small p-values indicate a rejection of the null hypothesis, hence non-normally 

distributed error terms (Ghasemi & Zahediasl, 2012),  

 

  𝐻0: Normal, 

 

  𝐻1: Non-normal. 
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