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Abstract 

The thesis investigates the value of a switching option for an LR2 product tanker, which can 

switch between dirty and clean freight markets, using a real option valuation model based on 

a stochastic freight rate differential between the two markets along with the optimal 

switching policy. The parameters have been estimated based on empirical methods of the 

freight rates from two resembling routes in the time interval of January 1997 to November 

2015. The authors find that the flexibility may add value to owners engaging in switching 

strategies, especially at the end of the time series, when the freight rate differential is in favor 

of the dirty market. 

However, the value of the option and the optimal switching policy is highly dependent on the 

parameters. This is indicated in the sensitivity analysis and rolling window estimation. The 

sensitivity analysis shows how some of the parameters affect the value and optimal switching 

policy. Meanwhile, the rolling window estimation indicates that the model’s assumptions 

regarding constant parameters seem to be unrealistic over time, thus the model may not be 

suitable to use when valuating the option and finding the optimal switching strategy. 

Furthermore it indicates that the sample used to estimate parameters has a large impact on the 

value of the option.    

Finally, the general limitations of the model are discussed and how these may lead an 

unrealistic valuation.  
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1. Introduction 

1.1 Aim of the Thesis 

Tanker freight rates have a highly volatile and cyclical nature. High capital investments are 

required to enter the market. For these reasons risk management and managerial flexibility 

are key in increasing profits or mitigating losses for shipowners. Risk management tools can 

consist of forward or future agreements of different kinds, but can also be embedded in the 

real asset (i.e. the vessels themselves). This managerial flexibility depends on the 

specifications of the vessel. It will be the aim of this paper to investigate the value of such 

real asset flexibilities in the product tanker market. 

The tanker shipping industry distinguishes between two submarkets; the dirty market, 

including crude and dirty refined products, and the clean product market. While we will 

investigate the characteristics of these in detail later on, let’s for now say that there are dirty 

oil products and clean oil products, which cannot be transported by the same vessel. Dirty 

products might lead to pollution of clean ones, while clean products may lead corrosion of 

tanks if not equipped with the correct coating. This has led to different ship types serving the 

two markets. On one hand there are classical crude oil tankers of different sizes, which 

transport crude oil and its dirty derivatives around the world. On the other there are product 

tankers, which are used for transporting clean refined oil derivatives. While a crude oil tanker 

is generally not able to serve the clean product market, due to its tank characteristics and risk 

of contamination after transportation of dirty products, a product tanker would be able to 

switch between markets. Intuitively a rational, risk-taking shipowner would like to exploit 

arbitrage opportunities whenever the spread between the two markets allows. 

The relevance of such an option to switch becomes apparent when looking at the Clean – 

Dirty TCE spread between Clarksons routes over the course of 1997 till today, see Figure 1.1. 

Both routes range from the Middle East to the Singapore/Japan region and are operated with 

tankers of Aframax or LR2 size with 80,000/75,000 dwt cargo intake. 

While in a period from 1997 till 2003q3 the higher newbuilding price of a product tanker was 

generally rewarded with a freight rate premium, since then the market seems to have shifted 

from clean dominance to dirty dominance. It looks like two markets have been going through 
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different phases of integration. The varying volatility and persistence of shocks to the 

differential depicts possible gains from switching between markets.  

 

Figure' 1.1' Earnings' Spread' Clean' –' Dirty' (adjusted)' ($/day),' weekly' 3.' Jan.' 1997' –' 27.' Nov.' 2015;' Source:' (Clarksons'

Research'Ltd,'2015c)'

Switches between transport of clean and dirty products have recently gained a lot of media 

attention, see for instance Mohindru and Wang (2015) and Papachristou (2014). However 

such switches seem to be influenced by variety of other factors than just the freight rate 

differential, such as segregation between upstream and downstream operations in large, 

integrated oil companies and the requirement for outperformance of one market over the 

other for a long period of time  (Poten & Partners, 2014). While some shipowners are already 

engaging in switching, there is to the authors’ knowledge no previous academic research on 

market switching between clean and dirty.  

Switching product tankers could serve as the integrator of the two. Hence, the motivation for 

the thesis is to test whether the switching of markets is coherent with economic theory, to 

establish to what extent there is any value of such flexibilities and if so what the optimal 

switching policy is. The aim is to extend the empirical research on real options, switching 

options specifically. Through the process we are able to investigate market integration 

between dirty and clean freight rates. Additionally, we are contributing to theory on product 

tanker valuation.  
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More precisely, the thesis will investigate the following problem: 

An owner of a LR2 product tanker has the option to let it operate in the clean or in the dirty 

market. The tanker is travelling between Middle East and Singapore/Japan over the time 

frame 1997 to 2015. The value of this option is determined by the differential in freight rate 

between the two markets and the active switching policy of the owner. On the contrary, the 

alternative passive strategy would be to let the tanker run in the freight market for clean 

products only. 

The aims for the thesis will be accomplished by building a mathematical exit-entry model 

under uncertainty mainly based on two academic papers; Sødal et al. (2008; 2009). The 

model applies an Ornstein-Uhlenbeck process to model the freight rate differential to 

calculate the value and optimal strategy of the real option given certain parameter estimates. 

A sensitivity analysis will describe if and how the estimated parameters affect the value of 

the option. Finally, we will test for stability of parameters and model outcomes. 

1.2 Literature review 

An intensive search on existing empirical literature did not lead to directly related academic 

work in the field of product tanker market switching. This works as additional motivation to 

dive into and elaborate on the topic. Nevertheless, there is a series of academic papers, which 

provides us with the relevant theoretical framework for our analysis. Another set of literature 

is of empirical nature, thereby applying this theory to problems largely different from ours. 

However these practical applications work as a guideline for our research process. 

Modeling'Freight'Markets'

The extensive literature for modeling freight market is divided into two main schools: the 

classical school, focusing on supply and demand models for transport, and the modern 

school, modeling freight rates as stochastic processes.  

One of the earliest efforts in the classical school was the model for freight markets by 

Tinbergen (1934) presenting the sensitivity of freight rate following movements in demand 

and supply. Similarly Koopmans (1939) examined the determinants for supply and demand in 

the spot markets for tanker freight rates. The classical school later divided into two 

approaches of modeling the freight markets; firstly by using static supply and demand models 
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(see e.g. Zannetos (1964)); secondly by using dynamic econometric models (see e.g. 

Beenstock and Vergottis (1989)).  

The modern school, on the other hand, has modeled freight rates as stochastic processes of 

various types, typically including mean reversion to account for stationarity in freight rates. 

Bjerksund and Ekern (1997) modeled freight rates as a mean-reverting stochastic process, 

using an Ornstein-Uhlenbeck process. Meanwhile other mean reverting processes have also 

been used. See Tvedt (1997) presenting a geometric mean reverting process to model the 

freight rates, which in contrast to the Ornstein-Uhlenbeck process does not allow negative 

freight rates. Other papers, such as Adland & Cullinane (2006) and Adland & Koekebakker 

(2007), use a non-parametric stochastic process to model freight rates. Finally, there is 

research merging desirable features of the two schools together in so-called stochastic partial 

equilibrium models, see Tvedt (1996; 2003), Adland & Strandenes (2004).  

EntryOExit'Literature'

The problem above describes an option to switch under uncertainty. As the switch is 

reversible, there is an entry and an exit to markets. Mossin (1968) was the first to set up such 

a model for combined exit-entry decision by describing a rule for optimal decision policy 

regarding the lay-up and reentry for vessels. A general real option framework for an exit-

entry model was later developed in Brennan and Schwartz (1985) and Dixit (1989). The two 

works present a general valuation framework for highly uncertain prices with slightly 

different degrees of complexity of the setting. All three works point out certain price 

thresholds to drive the decisions; one upper threshold, which should trigger an entry decision, 

and one lower threshold, which should trigger an exit decision. The triggers are in turn 

dependent on the nature of the stochastic price process and the costs of switching.  

Several theoretical contributions to the entry-exit model have been made since, extending the 

literature with slightly different approaches. Brekke and Øksendal (1994) considered scenario 

where a resource is extracted taking into account the depletion of the resource. Bar-Ilan and 

Strange (1996) implements investment lags, i.e. the time between when the decision is made 

and when revenues change to that of the new mode. Sødal (2006) proposed simplified 

versions of works mentioned in this paragraph along with some other by applying the 

discount factor approach from Dixit et al. (1999). 
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While there is some theoretical research for exit-entry decisions the empirical research is 

scarce. Sødal et al. (2008; 2009) serve as empirical research. The former paper investigates 

the value of switching between wet and dry cargo using a combination carrier. The latter 

paper discusses switching between the same markets using an asset play strategy where 

tankers and dry vessels are acquired and sold whenever the freight rate spread allows. 

Bjerknes and Herje (2013) consider a similar scenario where the flexibility stems from the 

mobility of dry bulks by doing geographical switching between the Atlantic basin and the 

Pacific basin. Considering the similarities in flexibility and industrial setting between this 

thesis and three mentioned works our thesis will to an extent share the intuition and 

mathematical models.  
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2. Seaborne Transport of Crude Oil and Oil 
Products  

To understand the model presented in later chapters it is important to have some knowledge 

about the practical properties of transport of crude oil and oil derivatives. This segment will 

provide a fundament for understanding of the trade and seaborne transport of crude oil and oil 

products.  

2.1.1 Geography of Crude Oil and Oil Products 

The demand for crude oil and oil derivatives is widespread across the world. Meanwhile, the 

distribution between the supply sources and the demand is uneven. Figure 2.1 shows the 

production and consumption of oil. Note that Asia Pacific produces very little, while the 

consumption is the highest. Similarly, the reversed relationship can be seen for Middle East. 

The production and consumption is almost the same in size, thus indicating that the 

mentioned regions can be seen as the biggest net importer and net exporter respectively. 

 

 

2.1'Oil'Production'(left)'and'Oil'Production'(right)'in'2014;'Source'(BP,'2015)'

Figure 2.2 shows the density of tanker routes in 2014. A lighter color indicates a higher 

density of tanker routing through the area. Some of the more notable areas with a high 

density are Middle East, the Mediterranean, Cape of Good Hope, the US Gulf, East Asia and 

Western Europe. The density comes either from a high demand, high supply or the 

geographical restrictions of oil freight. In the case of the Middle East it is reasonable to think 

that the high density is based on the high supply of crude oil, whereas in the case of East Asia 

a high demand drives the high density, which makes routes between these two regions 
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particularly interesting. The high density tankers at the Cape of Good Hope is no less than the 

geographical limitations of transporting oil from the Middle East to the Americas and to 

some extent to Europe (due to the draught restrictions of the Suez Canal) via other routes. 

 

Figure'2.2'Density'map'for'tanker'voyages'in'2014;'Source:'(MarineTraffic,'2015)'

2.1.2 Tanker - A Liquid Bulk Vessel 

As a consequence of the high demand for oil, transport from the sources to the consumer has 

risen. The means for transporting oil is via pipelines, ships, and to some extent railways. The 

seaborne transport is conducted via tankers. Tankers take an active part of the value chain for 

oil-based energy. Firstly they transport crude oil from the oil wells to the refineries; secondly 

they transport the oil products from the refineries to the market. Thereby they are the mean to 

reduce geographical imbalance between demand and supply of oil and its derivatives.  

The concept of seaborne oil transport may initially seem simple. This is to a great extent true 

for crude carriers, but the activity becomes more complex when oil derivatives are included. 

Stopford (2009) describes two important factors, in which crude oil and oil products can 

differ from a transport viewpoint; specific gravity and standards of cleanliness needed to 

transport it. Table 2.1 illustrates that the heavy fuel oils, i.e. the fuel oils with a higher 

specific gravity, typically are referred to as dirty cargoes. On the other side of the scale for 
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specific gravity we find the light fuel oils, these are referred to as clean cargoes. The 

implication of cargoes being ‘clean’ is that these products are sensitive to chemical reactions 

with the traces of previous cargoes, whereas ‘dirty’ products are less sensitive. Gas oil is 

categorized as ‘mainly clean’ because it is neither very sensitive nor polluting. It can thus be 

used as a transitional product to “clean up” the tanks after having carried dirty cargoes. 

 

The categorization into clean and dirty products also has an impact on the vessels used. 

Firstly, the typical parcel sizes for the dirty products tend to be higher. For this reason the 

tankers used for clean products are either smaller, or contain more tanks for different 

products. Secondly, vessels carrying clean products have coated tanks to facilitate the 

cleaning process and prevent corrosion. Usually they are equipped with special pumping 

systems to enable separate loading and unloading of different products (Kegl, 2015). Dirty 

products can generally be shipped in conventional tankers (Stopford, 2009). These vessels are 

carrying more viscous products, which requires a heating coil in the cargo tank to prevent the 

liquid from becoming too viscous. Hence, the vessels built for carrying clean products have 

to uphold higher requirements and may carry both clean and dirty products. Vessels built for 

dirty products may only carry dirty products, unless it has never carried dirty cargo or the 

tank is coated at a later stage. A clean tanker will hence be able to switch between the two 

markets.  

(
Specific(
gravity(
(at(15°C)(

Cargo(
type(

Special(
characteristics(

Typical(
cargo(size(
(tons)(

Stowage/ton(
(M3)(

Heavy(
fuel(oil( 0.98! Dirty! Cargo!heating! 50<80.000! 0.93!

Heavy(
crude(oil( 0.95! Dirty! Cargo!heating! 60<300.000! 0.95!

Diesel(
oil( 0.86! Dirty! ! 40.000! 1.05!

Light(
crude(oil( 0.85! Dirty! ! 60<300.000! 1.07!

Gas(oil(
(light(
fuel(oil)(

0.83! Mainly!
clean! ! 30.000! 1.09!

Paraffin( 0.80! Clean! Clean!tanks! 30.000! 1.14!
Petrol( 0.74! Clean! Clean!tanks! 30.000! 1.22!
Aviation(
spirit( 0.71! Clean! Clean!tanks! 30.000! 1.28!

Naphtha( 0.69! Clean! Clean!tanks! 30.000! 1.31!
Table'2.1'Characteristics'of'and'requirements'for'some'oil'products;'Source:'(Stopford,'2009)'
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2.1.3 Size Matters – Segmentation Across Vessel Size  

Apart from the segmentation with regards to the product transported, segmentation can arise 

from size differences of the vessels. Vessels of different sizes engage in different types of 

transport over different regions for reasons of economies of scale. However, scaling up the 

size of vessels may have adverse effects on the flexibility of the vessel, diseconomies of 

scale.  

Kavussanos (2003) suggests that the volatility level of the freight rates generally increases 

along with the size of the vessel. However, there are some common forces driving volatilities 

of freight rates for different sizes in the same direction after an external shock, typically 

higher freight rate levels imply higher volatility. Meanwhile, there are also idiosyncratic 

factors making volatility unique for different sizes. 

While there are several ways to define the size of tanker vessels we use the definitions 

presented in Table 2.2. 

Product!Tankers! Crude!Carriers!
Name! Size!Interval! Name! Size!Interval!
MR' 40,000O55,000'dwt' Panamax' 55,000O85,000'dwt'

LR1' 55,000O80,000'dwt' Aframax' 85,000O120,000'dwt'

LR2' 80,000O120,000'dwt' Suezmax' 120,000O200,000'dwt'

?! O' VLCC' 200,000+'dwt'

Table'2.2'Product'and'Crude'Carrier'Size'Categories;'Source:'(Scorpio'Tankers,'2015)'

2.1.4 Charter contracts 

The two specific charter contracts relevant in this thesis are: voyage charter and time charter. 

In a Voyage charter a specific cargo is transported from one specified port to another 

specified port within a pre-specified time. A voyage charter contract is typically agreed upon 

in the spot market, and the charterer only pays a fixed freight rate on an USD/ton-basis. The 

freight rates in the tanker market are based on Worldscale (WS), instead of USD/ton 

(Alizadeh & Nomikos, 2009).  

Time charter contracts give the charterer the operational control over the ship for a specified 

period of time. Under time charter contracts, the shipowner continues to pay capital costs and 

operational costs (crewing, maintenance, etc.), while the charterer pays the voyage costs 

(bunker, port charges and canal dues). Unlike voyage charter rates, time charter rates are 
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denoted in USD/day. Voyage charter freight rates and time charter freight rates can be 

compared through TCE (time-charter equivalent), see formula in appendix 1.  

2.1.5 Shipping economics 

Supply and Demand 
To refresh the understanding of freight rate dynamics this section will describe some of its 

mechanisms. This foundation is important for building the model presented in the 

methodological chapter 3. Note that this will be an overview of and may thus contain 

simplifications in order to facilitate the modeling. Stopford (2009) singles out the five most 

important variables affecting the demand and supply for seaborne transport, respectively. 

These variables are noted in Table 2.3 and will be further investigated in this section. For a 

detailed discussion of the factors see Stopford (2009). 

Demand( Supply(

1.!The!world!economy! 1.!World!fleet!

2.!Seaborne!commodity!trades! 2.!Fleet!productivity!

3.!Average!haul! 3.!Shipbuilding!production!

4.!Random!shocks! 4.!Scrapping!and!losses!

5.!Transport!costs! 5.!Freight!revenue!

Table'2.3'Demand'and'supply'variables;'Source:'(Stopford,'2009)'

The shippers are central players of demand for seaborne transport. Shippers constitute the 

entity that wants to ship a cargo from one place to another. These can for example be oil 

companies wanting to take crude oil from the drilling site to the refineries. The shippers are 

typically big companies shipping large quantities of the commodity each year. There are few 

alternatives to shipping when transporting large quantities of bulk cargoes efficiently. 

Furthermore, the shipping costs constitute a small proportion of the total cost of the end 

product, that the demand side is relatively inelastic. Shippers are not always the ones renting 

the vessel. Vessels are rented by charterers, who might be operators or other players taking 

the shipping order from the shipper. 

On the supply side, the central players are the shipowners. However, other players such as 

shippers/charterers, financiers and authorities, may also force building or scrapping of 

vessels. The supply of ships is by nature slow in responding to an increased demand, due to 

the time lag of about 1-4 years (depending on the orderbook) between the order and the 
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delivery of a vessel. Similarly, vessels have a physical life of about 15-30 years, making it 

difficult to respond to rapidly decreasing demand. As a consequence the tanker markets are 

often characterized by longer periods of oversupply followed by shorter periods of 

undersupply. Norman (1980) argues that this pattern is a sign of that the tanker market is 

functioning efficiently, based on the relatively low cost of oversupply as opposed to the costs 

incurred if the oil company would be unable to find a transport. In the following segment the 

supply variables as described by Stopford (2009) will be discussed. 

Supply is by nature relatively fixed in the short-run, compared to the dynamically fluctuating 

demand. These factors create a market with extreme volatility and with self-reinforcing 

cycles. Furthermore, supply is greatly influenced due to behavioral traits when forecasting 

the demand before making decisions for investing or divesting in vessels, which makes the 

markets even more unpredictable. The following section will more closely examine how 

freight rates are determined, through the relationship between supply and demand.  

The freight rate mechanism 
The freight rate mechanism is an adjustment mechanism of supply and demand. In practice, 

shipowners and charterers negotiate the freight rate. The final price reflects the balance of 

ships and cargoes available. The freight rate mechanism here will be based on a model for 

perfect competition, since the tanker market inhibits many of the features characterizing 

perfect competition. There are three core concepts in the model: the supply function, the 

demand function and the equilibrium price, the latter of the three will be described below. 

The point at which the demand curve intersects with the aggregate supply defines the 

equilibrium prices. This is the point where the shipowner and charterer agree on a price 

acceptable to them both. This is however not a complete description of how freight rates are 

formed. Stopford (2009) points out a time dimension, which also plays a central role in the 

formation of freight rates. The time dimension can in turn be decomposed into three time 

periods: the momentary equilibrium, the short-run equilibrium and the long-run equilibrium.  

The momentary equilibrium describes the freight rates negotiated for an immediate deal, i.e. 

when vessels are available for instant loading of awaiting cargo. Due to the tight time frame 

the market is highly fragmented by geographic locations. Hence, regional shortages and 

surpluses can build up, causing temporary peaks and troughs. Once a vessel is in the region it 

must decide whether to make a deal or wait and lose money. Figure 2.4 illustrates how the 
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momentary equilibrium works. When the demand for the vessels is relatively low, as shown 

by D1, the shipowners will compete with low freight rates. The equilibrium will hence give a 

freight rate at the marginal costs of the least efficient operating vessel, illustrated by E1. 

However, when the demand for freight is higher than the supply, as illustrated by D2, the 

charterers will compete about paying the higher freight rates. This will, as shown by E2, 

create equilibrium at a higher level than in E1, the exact level is given by the marginal 

shippers willingness to pay.  

The curvature of the demand indicates that shippers will chose not to freight at very high 

freight rates, this does however not mean that the price inelasticity of demand does not exist 

in a momentary situation. The curvature reflects that the shipper can wait until the freight rate 

becomes cheaper. As has been implied the freight-rate spread between the two situations can 

be sizable, although the demand and supply does not change very much. For this reason the 

short-term volatility of freight rates can become high.  

The short-run equilibrium allows shipowners and charterers to adjust for price changes 

through productivity measures.  In the short run the supply curve is J-shaped. The curve starts 

at the point where the most efficient vessel starts operating and continues to increase as more 

vessels can follow and as the vessels speed up until the maximum capacity is reached and no 

D2 D1 
S Freight rate 

Ton-miles  

E2 

E1 

Figure'2.4'Momentary'equilibriums;'Source:'(Stopford,'2009)'
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further supply can be provided by increasing the productivity. Figure 2.5 describes the short-

term freight rate mechanism given three scenarios with different demand levels: D1, D2 and 

D3.  In the first scenario, D1, the demand is quite low, thus setting a low freight rate at the 

short-term equilibrium in point A. As demand increases to scenario D2, the freight rate 

increases, but quite slowly, as more ships breaking lay-up still start operating in the market. 

However, when the demand shifts to D3, the level of the freight rate jumps, this is because 

the oldest, least efficient vessels in the fleet become the marginal vessel. Since no more 

capacity is available in the market the charterers will bid against one another thus pushing up 

the freight rates even further.    

The third and last time-dependent equilibrium is the long-run equilibrium. In the long run the 

shipowner has several tools in response with the market conditions. These responses can 

involve scrapping, second-hand purchases and newbuilding, which gradually will create 

shifts in the supply curve. This implies that the adjustment mechanism also balances supply 

and demand via other markets than the freight market. These are the three markets briefly 

described in a previous chapter: the shipbuilding market, the sales and purchase market and 

the demolition market. As freight rates fall in a recession, the profitability of ships falls. As 

profitability falls, the second-hand value of vessels falls as the expected future cash flow 

decreases. Eventually, the second-hand value of the least efficient ship has fallen to the 

D1 

Freight rate 

D2 

D3 

Ton-miles 

A 

B 

C 

Figure'2.5'ShortOrun'equilibriums;'Source:'(Stopford,'2009)'
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demolition value and is hence sold for scrapping. As the vessel is scrapped the capacity it 

provided is permanently removed from the market.  

On the other hand, in a market with shortage on vessels freight rates will increase. Thus, have 

a positive effect on the value of second-hand vessels. Furthermore, such increase will 

eventually drive shipowners to expand their fleet through newbuildings, which will lead to an 

increase of supply a few years into the future. At the time when the fleet has started to grow 

the demand may already have declined. Thus, such an order backlog may come to depress the 

future freight market even more. Figure 2.6 illustrates the intuition behind this. D1 and S1 is 

demand and supply respectively today, whereas D2 and S2 is demand and supply when the 

vessels are delivered at a future point. Notice that the long-term equilibrium is set by the 

intercept between D2 and S2, which is well below the intercept between D1 and S2, which in 

turn would have been the case if the demand were fixed in the long run. 

The concept behind long-term equilibrium is to illustrate how shipping cycles work. 

However, there is reason to question the concept of long-term freight rates. In a market with 

the described supply and demand dynamics it is reasonable to assume that steady earnings 

cannot be expected over several years, hence it is uncertain whether the average freight rate 

level will be high enough to pay for the vessel.  

Freight rate 

D2 
D1 

Ton-miles 

S1 S2 

Figure'2.6'LongOrun'equilibriums;'Source:'(Stopford,'2009)'
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3. Theory and Methodology 

This chapter will explain the economic theory and methodology upon which the analysis is 

based. Firstly, an introduction to fundamental theoretical concepts will be given. In the latter 

part of the chapter the model used in the analysis will be presented and explained.      

3.1 Option theory 

This segment will explain the general function of how options work and how their inherent 

value may benefit their holder. Followed by a more thorough discussion of the switching 

option analyzed in this thesis. Finally, some real option pricing methods will be presented 

and discussed.  

3.1.1 Introduction to option theory 

There are two categories of options. Financial options are standardized financial products 

traded in international financial markets in large quantities. The owner has either the right or 

the obligation to buy or sell a certain underlying at a prespecified price at a prespecified 

point(s) in time. The other category of options is real options. Similarly to financial options, 

real options offer a right – but not an obligation – to make a business decision. However, real 

options are related to the real, physical, often unique assets and are hence not standardized. 

Every real option is unique and can thus not be traded in financial markets. Consequently, a 

synthetic portfolio cannot replicate them (McDonald, 2013). There are several types of real 

options, such as options to switch (input or output), abandon or expand.  Real options can be 

embedded in contracts or can stem from flexibility of an asset. In shipping, embedded real 

options can be discovered as optionality to order more vessels from shipyards or as period 

time-charter extension options. On the other hand, real options may arise from the flexibility 

of the asset itself. For example, a vessel may have the ability to switch markets by switching 

cargo or geographical location1.  

Since options can be said to defer the business decision to a future point in time, they give the 

holder flexibility, which reduces the uncertainty of the investment and thus the risk. 

According to standard economic theory reduced risk increases the value. Real options may be 

                                                
1 For more examples of real options in the shipping industry see Bendall (2010) or Alizadeh & Nomikos (2009). 
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of substantial value for shipowners, due to the volatility and time lags described in previous 

chapters. Despite significant value that real options may add, their explicit valuation is 

seldom, possibly since there is no straightforward method. (McDonald, 2013). 

3.1.2 Switching options 

A switching option is a type of real option that derives from a real asset’s ability to switch 

between input, output, contract types, markets, etc. A switching option grants the holder the 

flexibility to exploit temporal arbitrage opportunities. Switching options are referred to as a 

combination of several entry and exit decisions and have been generalized in a real option 

model in academic papers2. A modified version of this real option model will be described 

and used in later sections of this paper.  

The switching option considered in this thesis is the flexibility to switch between clean and 

dirty market. Bendall (2010) points out that in an industry, characterized by high uncertainty 

(with regards to both freight rates and second-hand price of vessels) and high capital 

intensity, flexibilities carry substantial value. To switch from transporting clean products to 

transporting dirty products the shipowner would have to expect higher freight rates over a 

certain time frame for dirty products, which offset the switching costs due to the cleaning 

process before switching back to clean (involves cost to clean tank, off-hire and up to three 

discounted voyages). Additionally, the shipowner incurs an opportunity cost of commitment 

to the other market for a certain period. A possible change of the freight rate differential in 

favor of the exited market might lead to forgone revenues. To illustrate this we assume that 

Tclean and Tdirty is the present value of expected earnings for transport of clean and dirty 

respectively. SC is the switching cost, which also could be interpreted as the exercise price. A 

rational investor would exercise the option, in this case switch from clean to dirty, when the 

expected earnings for transporting dirty products exceeds the expected earnings for 

transporting clean products and the switching cost. If otherwise, the switch would not occur 

and the payoff is zero. The payoff structure can be expressed as follows: 

!"#$%% = max 0,!!"#$% − !!"#$% − !"  (3.1) 

There are two important factors to whether switching would or would not occur; the spread 

between expected earnings of the two operation modes and the switching cost. Alizadeh and 

                                                
2 See for instance Brennan & Schwartz (1985) and Dixit (1989).  
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Nomikos (2009) point out that Equation 3.1 is true for a scenario where only one switch can 

be made. However, in cases when the company has the option to switch forth and back 

between the modes the equation would have to be extended to take into account certain 

dynamics that may influence the decision, such as additional costs in switching between the 

modes. An important influence to the decision to switch markets is the relative cost of 

switching. It is generally much more expensive to switch from dirty to clean than the other 

way around. Meanwhile the earnings for a clean vessel are expected to be on average higher 

than those of a dirty vessel. The option to switch back and forth between the modes is 

essentially a portfolio with an infinite amount of American put and call options. These enable 

the entry and exit of the market at any point in time. 

3.1.3 Real option pricing methods 

Real options are in many ways more complex and less concrete than financial options, thus 

more variables will have to be considered for valuation. Nevertheless, financial option 

pricing theory is a good basis for real option valuation. 

Discounted cash flow (DCF) is a conventional method used by companies to evaluate 

investments and projects. However, DCF is not an appropriate method for taking uncertainty 

and adaption of a started project into account since it is maximizing the value based on a 

static nature of cash flows. Due to the previously discussed nature of shipping, DCF is 

possibly inadequate for giving a fair value to an investment in a vessel since it does not allow 

for managerial flexibility (Bendall, 2010).  

To price real options other methods would have to be considered. Three prominent pricing 

techniques in academic works are: Monte Carlo simulations, binominal trees or closed-form 

solutions (McDonald, 2013). The typical way of conducting option valuation via Monte 

Carlo simulations is to run large numbers of simulations given a set of uncertainty variables 

affecting their value, the simulations are then used to determine the average path of payoffs, 

which is discounted to find the net present value of the option. Binominal trees are an 

iterative method in which a tree of potential payoffs is built given two states, up and down 

state, in discrete time. The final value at each option node is then found and calculated back 

to the initial node, which is then value of the option. Closed-form solution is a method in 

which a stochastic, continuous-time process is used to model the future price given certain 
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market dynamics. Whereas the real path of the future price is unknown initially, a stochastic 

differential equation is here used to represent the unknown function.  

In this thesis a closed-form solution is used to find the value of the switching option.  

3.2 Stochastic processes 

As described in the literature review, the functioning of freight markets and modeling spot 

freight rates have been subjects to much academic research starting with Koopmans (1939). 

Whereas the classic literature has focused on modeling demand and supply, similar to the 

framework presented in chapter 2.3, a more recent development has focused on modeling 

freight rates in stochastic models (Adland & Strandenes, 2004). This section will describe the 

intuition behind stochastic processes. 

Stochastic processes are sets of random variables indexed by time (McDonald, 2013). The 

future value of a stochastic variable is uncertain but conforms to a probabilistic distribution. 

Although the variable depends on a probabilistic distribution it develops randomly, hence 

follows a stochastic process. The variable can be either discrete (variable has certain, fixed 

value points) or continuous (variables has infinitely small increments between two discrete 

value points there is an infinite amount of other values points). Discrete approaches are 

simpler to present and interpret. However, continuous approaches are more useful for more 

complex scenarios through increased accuracy. While there are several types of stochastic 

processes with slight differences in the mathematical this thesis will focus on a mean-

reverting Ornstein-Uhlenbeck process. 

3.2.1 Markov Processes 

 In a Markov process the current value of a variable is the only relevant factor for predicting 

future developments of the variable. Hence, historical developments in the variable are 

irrelevant for the probability distribution of a stochastic process with Markov properties 

(Hull, 2009). For this reason, Markov processes are consistent with theory for weak market 

efficiency, where future prices cannot be forecasted by analyzing historical prices. Future 

prices are not carried by patterns reflected by historical data, but follow a random walk. The 

reason is that competition ensures that the current value of the variable fully reflects the 

historical development in the variable.  
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3.2.2 Wiener Processes 

Wiener process (or Brownian motion) is a special type of a Markov process. The Wiener has 

two properties, which distinguish it from the broader Markov process definition (Dixit & 

Pindyck, 1994). The first property of the Wiener process is independent increments, which 

means that the probability distribution is independent of other non-overlapping time intervals. 

The second property is that for any finite time interval the process is normally distributed and 

its variance increases proportionally to time.  

The properties can also be expressed formally, where z is a variable following a Wiener 

process if the following conditions are satisfied (Hull, 2009; Dixit & Pindyck, 1994):  

Property 1: The change in Δz in a short period of time Δt is given by: 

where !!!is a normally distributed variable with a mean of 0 and a standard deviation 

of 1. 

Property 2: The random variable !! is serially uncorrelated; ℇ !!!! = 0 for ! ≠ !. 

Hence, the values of Δz for two different time intervals will be independent. 

Consequently, these two properties implies that the change in a variable, Δz, following a 

Wiener process has a normal distribution, with a mean of 0 and a variance of Δt, in each of 

the short time periods Δt. Hence, the variance will grow linearly as time progress. By making 

Δt infinitely small, i.e. let !"! → !0, the increments of the Wiener process, dz, can be 

expressed in continuous time as !" = !!! !".  

3.2.3 Itô Processes 

An Itô process is a generalized Wiener process, in which there are two parameters a and b. 

Parameter a represents the instantaneous drift rate and parameter b represents the 

instantaneous variance rate. Both parameters are functions of x, which is following a Markov 

process with independent increments, and t, time. Hence, they can be expressed as 

!(!, !)!and ! !, ! . The Itô process is formalized through the following formula (Dixit & 

Pindyck, 1994): 

∆! = !! ∆! (3.2) 
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!" = ! !, ! !" + ! !, ! !" (3.3) 

where ! !, ! !" represents the amount of added variability and ! !, ! !" is the expected drift 

rate of per unit of time (Hull, 2009). Hence, the strength of using an Itô process is that it 

allows for adjusting the model for developments of the variables that affect decisions. 

3.2.4 Mean-Reverting Processes 

Non-stationary stochastic processes may only be realistic with regards to the behavior of 

some economic variables, such as stock prices. However, other economic variables may have 

long-term means to which they revert after a random shock; hence following so-called mean-

reverting processes. Examples of economic variables usually exhibiting such behaviors are 

freight rates, (renewable) commodity prices and interest rates (McDonald, 2013). Ornstein-

Uhlenbeck process is a process that allows for mean reversion, which is mathematically 

formulated as follows (Dixit & Pindyck, 1994): 

!" = ! ! − ! !" + !"# (3.4) 

Where, µ is the rate at which the variable reverts back towards mean (the speed of mean 

reversion), and x̅ is the level to which x tends to revert. The σ represents the standard 

deviation (error term). By making dt infinitely small, i.e. let !"! → !0, the increments of the 

Ornstein-Uhlenbeck process, dz, can be expressed in continuous time as !" = !!! !" .. 
Equation 3.4 indicates that the bigger the difference between x̅ and x, the more rapidly will 

the reversion occur.  

Since the difference between x and x̅ affects the development of the variable in the next time 

interval, the process does not satisfy the property of independent increments of a Wiener 

process. It does, however, satisfy the property of a Markov process by using the current value 

as the predictor of the future value. In cases with two integrated, competitive markets a 

stationary relationship can be expected, hence the use of mean-reverting processes seems 

reasonable. Testing for unit roots of the freight rate differential process later in this text will 

statistically confirm the mean reversion characteristic.    
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3.3 The Theoretical Entry-Exit Model  

As stated in the literature review, the technical foundation of this thesis is based on the entry-

exit model developed by Dixit (1989), further adapted to a more appropriate approach for 

switching options in bulk segments by Sødal et al. (2008) and by Sødal, et al. (2009). The 

latter serves as the main foundation for the theoretical model described here. The theoretical 

model shares many similarities with Bjerknes and Herje (2013), which are also based on the 

papers previously mentioned. 

3.3.1 Discount Factor Approach – An Introduction 

The objective of the discount factor approach is to calculate the net present value of a real 

option to switch between two markets. The possible added value of the flexibility stems from 

the size and persistence of freight rate differential between the two markets. The value of the 

flexibility is also affected by switching cost – i.e. switching will only happen when the 

expected net present value of the freight rate differential exceeds expected net present value 

of the switching cost. 

The switching will occur when the freight rate differential hits one upper and one lower 

threshold value, set by an optimal switching policy.  

3.3.2 General model 

Suppose a shipowner has a product tanker operating in the clean market. At time ! the freight 

rate in the clean market is !!(!), similarly the freight rate in the dirty market is !!(!). Hence, 

the freight rate differential can be formalized as ! ! = !! ! − !!(!). Now assume that the 

freight rate differential follows an Ornstein-Uhlenbeck process: 

!" ! = ! ! − ! ! !" + !"#(!) (3.5) 

where m is the long-run mean of the freight rate differential, µ (>0) is a constant parameter 

for the speed of the mean reversion, and σ (>0) is the constant measure of volatility, dt is the 

time increment and dB(t) is the increment of the standard Wiener process. A high µ suggests 

that the deviation from the long-run mean of the freight rate differential will revert back 

quickly. This implies that the higher the parameter for the mean-reverting speed, the higher 

the integration of the markets. Consequently, as the µ approaches zero, there is no force 
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pulling the two rates together, hence indicating that the markets are independent of each 

other. 

The future cash flows are discounted at a constant discount rate ! (>0). The discount rate 

itself is the sum of a real interest rate, r, a depreciation rate, !, and possibly a risk adjustment. 

The depreciation rate encompasses all considerations of the vessel’s lifetime, such as the risk 

that the vessel sinks; see Sødal et al. (2008) for a more detailed discussion.  

As noted previously, the switching cost is an important consideration. Let B be the fixed 

switching cost when the vessel switches from carrying clean products to dirty products, and 

correspondingly let ! be the fixed switching cost when the vessel switches back. The model 

assumes that the switching costs are constant, this may not be a realistic as the required 

cleaning process depends on several factors, such as degree of tank contamination.  

Assume, for now, that only one more switch can be made and let the expected, discounted 

value of future freight rate differentials at time t be denoted Vt, which gives: 

!! = ! !!!!!"!"!
!

!
= ! + !! −! !!!" ! !!" !"

!

!
= !!
! + ! +

!"
! ! + !  (3.6) 

where, ![∙] represents the expectations operator and !! is the current freight rate differential. 

Since the only variable in Equation 3.6 is pt, the expected net present value Vt will be a linear 

function of that variable. Sødal, et al. (2009) points out that Vt follows the Ornstein-

Uhlenbeck process by Itô’s Lemma: 

!" = ! ! − ! !" + !!" (3.7) 

where, ! = !/! and ! = !/(! + !). Furthermore, the time scripts have been omitted since 

the parameters for drift, !!, and volatility, !!, do not explicitly depend on time but may 

depend on !! (Sødal, Koekebakker, & Adland, 2008). 

3.3.3 Optimal Switching Policy  

To determine the optimal switching policy of a vessel a value function has to be defined. The 

expected net present value is then maximized, when switching happens according to the 

lower and upper freight rate thresholds. Assume that the vessel already operating with clean 

cargo. It will switch to carrying dirty, as soon as the freight rate differential hits a certain 
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value. The upper threshold, !!, is a positive differential value and indicates when the vessel 

should switch from carrying clean to carrying dirty products. Conversely, the lower 

threshold, !!, is a negative differential value and represents the point at which the vessel 

should switch back from carrying dirty to clean products. Intuitively, there will be no switch 

if the differential remains in between the two triggers. The value function can be expressed as 

(Dixit et al., 1999)3 

!! =
! !!, !! !! − ! − ! !! , !! ! + !!

1 − ! !! , !! ! !! , !!
 (3.8) 

where, !!!(< !!) represents the current freight rate differential, while !! and !!  represents 

the expected net present values of future earnings given at the trigger points. The !(!,!) are 

discount factor functions, in which the motion of a current freight rate x is applied to the 

motion of another to another freight rate y. Consequently, !(!,!) = 1 when ! = ! and 

0 ≤ !(!,!) < 1 when ! ≠ !. Due to the instantaneous switching process of the model, the 

value function !!  requires ! + ! ≥ 0 . So the maximum value cannot be obtained by 

switching continuously, thus creating an infinite profit under the maximization (Bjerknes & 

Herje, 2013).  

The discount factor functions are specific to the type of stochastic process4. The discount 

factor functions for the Ornstein-Uhlenbeck process can be represented as (Sødal, 

Koekebakker, & Adland, 2009): 

! !! , !! = ! !! + ! !!
! !! + ! !!

 (3.9) 

! !! , !! = ! !! − ! !!
! !! − ! !!

 (3.10) 

where, !! > !!  and !(∙) and !(∙) are given by: 

! !! = ! !
2! ,

1
2 ,

!
!! !! −! !  (3.11) 

                                                
3 For!a!detailed!explanation!of!the!value!function!see!Bjerkenes!&!Herje!(2013)!

4 Compare for example the discount factor functions in Sødal et al. (2009) with the corresponding in Sødal (2006). 
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! !! =
2 !! −! !Γ 1 2 + !

2!
!Γ !

2!
∗ ! 1

2 +
!
2! ,

3
2 ,

!
!! !! −! !  (3.12) 

where, Γ ∙  is the Gamma function and !(∙) is Kummer’s confluent hypergeometric function. 

The Kummer function can be represented as found in Sødal et al. (2009): 

! !, !, ! = 1 + !! ! +
! ! + 1 !!
! ! + 1 2! +

! ! + 1 ! + 2 !!
! ! + 1 ! + 2 3! +⋯ (3.13) 

These equations presented in this chapter represent the framework for valuing the switching 

option with the discount factor approach, using an Ornstein-Uhlenbeck process. The optimal 

switching policy is found by maximizing the value function given two thresholds. The 

optimization problem will be solved in later chapters by iterating possible values for the 

thresholds in Matlab. 

Unlike Ilan & Strange (1996) the decision to switch will be assumed to be instantaneous. The 

chartering process generally assumes vessel deliveries about one month after the charter party 

was fixed (except for prompt tonnage). As such vessels operating in the spot market of one 

geographical region only, can be considered to instantaneously profit from changes in rates. 

Rates are being monitored on a continuous basis and as soon as they get near trigger values, 

shipowners can aim at fixing the next charter party in the opposite market. The switch is done 

as soon as the new charter party hire is mutually agreed on and not at the laycan. Hence as 

long as the vessel is not committed to a long-term charter or far away from the load port, the 

only time lag would be between decision to switch and the signed charter party. Negotiations 

usually do not take long in the case of high differential (as vessels are needed). As will be 

shown in the next chapter, the data is consists of round voyage routes, where the vessels 

ballast back to load port. Such ballast time could also be used for cleaning, supporting the 

instantaneous switch assumption. The data consists of weekly estimations, which allows for 

one week of negotiations/travelling to load port without changes in freight rate. On the other 

hand high rate differentials are usually a sign of prompt tonnage demand in at least one 

segment. 
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4.  Clean and Dirty Market – A Data Discussion 

4.1 Data Description 

To accurately estimate spread between the dirty in clean product market we had to find the 

TCE on comparable, representative routes in both of the markets over a sufficient time frame. 

Clarksons Research Ltd (2015) was used for data collection 

The data ranges from 3. January 1997 till 27. November 2015 in weekly increments of TCE 

($ per day) quotations, totaling 987 observations. Due to age of the benchmark vessels in 

January 2009 new vessel benchmarks were set.. The two routes are well comparable, since 

both have the same load port. Additionally, both routes have comparable cargo sizes. An 

overview of the relevant route specifics is given in Appendix 2 (Clarksons Reserach Ltd, 

2015c). 

One would assume that problems might arise from the difference in distance. The longer 

distance to Chiba leads to a lower port sea ratio for this route. The port charges, which can be 

assumed to be similar for both are divided over less voyage days for the route to Singapore. 

Hence the TCE is lower, than justified. Other possible flaws are the differences in 

consumption and speed of the vessels on the two routes. The differences in bunker 

consumption are sometimes more than 40 percent. Together with the increased route 

distance, bunker costs are likely to become the main cost of operations.  

Accordingly, it is necessary to adjust for the differences in vessel specifications. When the 

product tanker specified above would switch to the dirty market between Ras Tanura and 

Singapore the net earnings per day are likely to be lower due to differences in bunker costs. 

We calculated the dirty TCE back to a dollar per ton basis using the TCE formula (see 

appendix 1) and information regarding the TCE calculation provided by Clarksons (2015b). 

As such, we added current bunker costs, estimated port charges and commission back to the 

net profit per round voyage and divided the result by the cargo size. As data of port charges 

was not readily available we assumed fixed port charges of 14,048 dollars in Ras Tanura and 

of 25,000 dollar in Singapore for the entire sample (Platts McGraw Hill Financial, 2014; 

McQuilling Partners Inc., 2015). The bunker prices were benchmarked at Fujairah weekly 

fixtures, extracted from Clarksons Research Ltd (2015). The LR2 was assumed to be able to 

carry the same amount of crude oil an Aframax tanker could, namely 80,000 metric tons. 
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From the calculated dollar per ton rate, we converted back to the TCE, but using the product 

tanker specifics given in Appendix 2 and in Clarksons (2015b). This resulted in a mixed 

picture of positive and negative adjustments of the dirty freight rate. 

The adjustment process assumes that bunker consumption and vessel speed do not change 

when switching. This might in light of the necessity to heat dirty cargo to keep it liquid, 

inherit some remaining flaws. Additionally, port charges are not likely to be constant over 

time. These fluctuating differences in OPEX and port costs are tough to account for in a 

mathematical model, as the data is not readily available.  

The data is compiled of weekly estimates from surveys sent around H. Clarkson & Co. 

brokers and are hence based on the estimations of few individuals. This can lead to market 

sentiment being driven by emotion and overreactions to information flows. However, as the 

shipping industry does not have market-monitoring instruments like the financial industry, 

we have to rely on information of market makers such as Clarksons (Clarksons Research Ltd, 

2015b).  

The time-series of the two routes and their differential is presented in Figure 4.1 below. 

Based on graphical assessment implying that there are different dynamics characterizing 

different periods, we can divide the time series into three broad subsamples: 

'' From! To!

Full!Sample! 03.01.97' 27.11.15'

Period!1! 03.01.97' 26.09.03'

Period!2! 03.10.03' 14.11.08'

Period!3! 15.11.08' 27.11.15'

Table'4.1'Subsample'Periods'

From January 1997 to September 2003 the clean market almost continuously outperformed 

the dirty market, shown by the negative spread value in the figure above. In the following 

period from October 2003 until the outbreak of the financial crisis in December 2008 there 

was high volatility in the spread between the two markets. Since January 2009 the two 

markets seem to be characterized by a higher integration, which is expressed by less 

volatility.  
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The value of the option to switch derives from a higher dirty freight rate than clean rate, the 

size of this outperformance and its persistence. Accordingly, we expect the option to have a 

rather small value in the first period and increasing value from period two onwards. A look at 

the below descriptive statistics of the series in table 4.2 supports the claim. We have to 

understand that the option value derives from being able to exploit outperformance of dirty 

market over the clean market, the difference between Dirty and Clean (D-C). 

Variable! #obs! min! mean! max! std.dev!
Clean! 987' 5334' 25249' 79448' 14583'

Adjusted!Dirty! 987' 5481.8' 25260' 96442' 13257'

D?Ca! 987' O50156' 10.358' 36378' 10335'

D?Ca!(Period!1)! 352' O29308' O5185.5' 10899' 6359.5'

D?Ca!(Period!2)! 268' O50156' 1108.4' 36378' 14470'

D?Ca!(Period!3)! 367' O23883' 4192' 24431' 7162.4'

Table'4.2'Descriptive'statistics'of'the'freight'rate'differential'

While high volatility in period 2 has led to massive spikes in the data, the mean is in favor of 

the dirty market. It is the persistence of positive differentials in period 3 that leads to clear 

outperformance of the clean market. One would intuitively expect the option to have the 

highest value in the third period since the mean is largely in favor of the dirty market. 

4.2 Mean Reversion – Intuition and Test 

The graphical appearance of the freight rate differential, see Figure 4.1, indicates that the 

momentary differential can deviate vastly from long term average through demand and 

supply dynamics in either market, as described in Chapter 2.3. However, as time progresses it 

seems like the series reverts to a stationary differential level. To validate the choice of using a 

mean reverting stochastic process (Ornstein-Uhlenbeck) to model freight rates, the stationary 

hypothesis have to be tested.  

This means that the process has to be reverting to a constant mean with a constant finite 

variance. To fulfill this condition the coefficients have to be within unity (-1 < ! < 1). 

Following a random shock the process will now revert to its long run mean instead of 

exploding (Li, 2015). An Augmented Dickey Fuller (ADF) test is applied to test the 

stationary condition. A graphical assessment of the freight rate differential, see Figure 4.1, 

implies that it has no deterministic trend. Hence no a trend has to be included. 
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The ADF takes the following nature: 

∆ ! = ! + ! ! !!! + !!∆
!

!!!
! !!! + !! (4.1) 

With the following hypotheses: 

!!:!! = 0, !ℎ!!!"#$"!!!"!!"! − !"#"$%&#'(!

!!:!! < 0!!ℎ!!!"#$"!!!"!!"#"$%&#'(!!"#ℎ!!!!"! − !"#$!!"#$!
!

After careful evaluation of AIC and SBC a lag length of 2 lags was chosen, which proved the 

series to be stationary with a constant mean (Test statistic: -9.90< CV:-2.57) at a 99 percent 

confidence level (Hill, Griffiths, & Lim, 2012; Li, 2015). 

Hence it is appropriate to use a mean-reverting process. Furthermore, the results seem 

intuitive given the fairly high degree of integration between the two markets.  

In a perfect market without any frictions, the amount of vessels switching would bring the 

differential to the long-run average differential. This would correspond to the discounted 

premium cash flow on the additional investment cost of an LR2 relative to an Aframax. This 

is an unrealistic assumption, which will be discussed in this segment. In order to understand 

the speed of mean reversion one has to understand the frictions and rigidities affecting the 

premises for switching and thus the speed of mean reversion. The rigidities relate to the 

dynamics of the relatively static supply relative to a dynamic, inelastic demand functions.  

In the short run, the product tankers can switch from clean to dirty easily, thus lowering 

supply in the clean while increasing supply in the dirty market, which leads to mean 

reversion of the freight rate. The switch back from dirty to clean may require a bit of time 

lag, due to a screening regarding the ‘three last cargoes’. An alternative solution is converting 

Aframaxes to LR2’s by coating the cargo tank, doing this would however decrease the supply 

of Aframaxes and increase the supply of LR2’s, which eventually will bring the freight rate 

differential to the stationary point. In the long run, a relative undersupply or oversupply of 

either vessel type will be leveled out by shipbuilding or scrapping. Hence, the time lag will 

affect the speed of mean reversion, by delaying the opportunity switch, especially from dirty 

to clean.  
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Despite the theory described, rates do not seem to be perfectly integrated. While a negative 

differential can only be served by newbuildings, as crude carriers cannot switch to the clean 

market in the short run; the positive differential in recent years should have not occurred in 

such persistence, if product tankers would have switched over to the dirty market. Not all 

LR2 shipowners may be willing to engage in switching strategies, thus leaving room for 

deviation from the average long-run freight rate differential for longer periods of time. One 

reason is the uncertainty in whether the differential will remain beneficial over a sufficient 

period of time so that the switch will generate a profit. Furthermore, the switching strategy is 

a self-depleting business, meaning that the switching itself will increase the supply in the 

other market thus bringing the differential closer to the long-run mean. Note that the value of 

the option depends on only a few shipowners engaging in an active switching strategy. 

Furthermore, shipowners may have to fill a certain quota of cargo transported, stipulated by 

contracts. Other reasons include a missing institutional framework giving legal background to 

the switching process. No measure for contamination and cleanliness of tanks exists 

(Johnson, 2011). Little is known about the actual cost of switching. Risk and return are 

difficult to assess under such uncertainty. 

4.3 The Clean and Dirty Market in a Historical Context 

Following the first oil crisis in 1973 the tanker shipping market was not able to recover until 

China joined the WTO in 2001 (see Figure 4.1). The following years’ rates were 

characterized by high volatility. In November 2003 the market shifted from close integration 

of clean and dirty with a negative differential mean to a floating less integrated market with a 

positive mean.. When the global financial crisis, falling demand for crude and oil products hit 

a massive order backlog in 2008, rates plummeted (Lun et al., 2013). The effect of a demand 

decrease first affected dirty market, before clean rates were falling too (see figure 4.1). 

Higher volatility led to more extreme differentials. The volatility in this period, same as for 

the full sample, derives in large parts from strong seasonality of the freight rate differential 

discussed in the following section. Other reasons are shocks in oil supply such as the 

announcement of increased production by the OPEC in September 2007, which immediately 

led to a spike in rates (Shi et al., 2013).  

After the financial crisis, markets stabilized again. In spite of the clean market’s better 

adaptation to the order backlog, from this point onwards it was outperformed by the dirty 
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(Clarksons Research Ltd, 2015a). This might be a regional development, though. When 

comparing the micro development above to that of the worldwide clean and dirty market the 

picture looks different. 

 

Figure'4.2'Accumulated'Growth'of'Clean'and'Dirty,'Aug.'1998'O'Nov'2015;'Source:'(Clarksons,'2015)'

Figure 4.2 shows the accumulated growth development of the Baltic Clean and Dirty Tanker 

Index between August 1998 and today. Assuming relatively similar levels in August 1998, 

the performance of each market since then has been largely better for the clean. Nevertheless, 

today the clean market is worse off than in 1998 and both markets have not been able to 

recover from the financial crisis yet. Lun et al. (2013) correctly claim that in capital-intensive 

industries booms based on bubbles are usually followed by bust that bring market down to a 

level, which is worse than pre-boom. Since the financial crisis freight rates have remained 

rather low and fairly integrated until a recent shift with decreasing oil price since mid 2014. 

Even though world economy has been able to recover, the vast overinvestment in the tanker 

shipping industry previous to the financial crisis has hindered sustained increase in freight 

rates. In revenue terms however, shipowners have largely been able to recover through 

increased effort towards profitability (Lun et al., 2013). 

We have calculated that the correlation coefficient has decreased over the three subperiods 

(from 0.99 to 0.35), which may indicate that the integration has decreased. Beta coefficients 

and mean reversion parameters over the subsamples in chapter 5.1 oppose this claim. 

However, later testing for parameter stability in chapter 6.4 will show, that this averaging 

over samples is superficial. 
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After looking at the freight rate differential in a historical context the next chapter will 

investigate which factors distinguish the movement of the tanker freight market from the 

other shipping markets. 

4.4 Qualitative Discussion of the Freight Rate Differential 

The petroleum industry can be divided into upstream, defined as exploration, development 

and production, midstream as trading and transportation and downstream as oil refining and 

marketing. Consequently the transportation of crude oil is part of the midstream operations, 

while the transportation of oil products, the clean market, belongs to the downstream (Inkpen 

& Moffett, 2011). Oil transportation demand is a derived from the demand for crude oil. 

Tankers reduce the regional imbalances between demand and supply for oil and oil products 

(Shi et al., 2013). 

The distance between markets and their corresponding demand drive international demand 

for tankers. While the dirty market links production with refineries, the clean market connects 

refineries and consumers. It is more efficient to transport crude oil to refineries than refined 

products to end consumers, which has led to a refinery structure close to the main consuming 

markets of the US, Europe and Japan. Recently however there has been a shift in refinery 

industry with large refinery capacity building up in the Middle East. This will increase the 

average haul. The average haul is the average distance a tanker travels in one voyage. If it 

increases, more vessels are needed to serve the same market. This will hence increase 

demand while decreasing supply. This comes in favor of the clean market as experts forecast 

(Roussanoglou, 2015). 

The link between clean and dirty markets is the refineries. The refinery margin is referred to 

as the crack spread. The crack spread is the difference in price of crude oil and that of oil 

products (Inkpen & Moffett, 2011). The disintegration of prices for crude oil and its main 

refined products heating oil and unleaded gasoline leads not only to high variations in crack 

spread, but also the clean and dirty product market (Chicago Mercantile Exchange, 2013). If 

prices reflect the supply and demand relationship in each market, then the refinery margin 

should intuitively be a good indicator for the freight rate differential of clean and dirty. 

Graphical comparison of movements in the Singapore Medium Hydrosourcracking spread 
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and clean and dirty rate, show close correlation of the three up until the financial crisis. 

Thereafter they behave very disintegrated (see Appendix 3).  

The Chicago Mercantile Exchange (2013) lists factors, which are influencing the crack 

spread. A number of these are likely to affect the freight rate differential, too. As already 

mentioned in the Chapter 2 geopolitics are highly important for the world economy and 

formation and demand of oil prices; hence also for the freight rate differential. Slow 

economic growth will first affect the demand for refined products and hence lead to a 

reduction in differential. The opposite is the case for an economic boom.  

The winter seasonality’s increased demand for distillates is hence likely to increase demand 

for product tankers, even though figure 4.3 below results suggest a time lead on the clean 

markets reaction. Summer seasonality has a similar effect as it increases the demand for 

gasoline. Picking up on the seasonality aspect of the freight rate differential we present below 

the average monthly freight rate differential over the full sample: 

 

Figure'4.3'Average'freight'rate'differential'per'month'3.Jan.'1997'O'27.'Nov.'2015;'Source:'(Clarksons,'2015c)'

The above suggested seasonality was tested in a regression and months March, April, August 

till October and December were found to have significant effect on the freight rate 

differential with 99 percent confidence. November effect was significant on a 95 percent 

confidence level (see appendix 4). The overall explanatory power of the model was at 10 
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percent. This strong seasonal effect suggests switching between markets on a pre-specified 

yearly pattern; staying in the clean market for August till October, before switching to the 

dirty market for the month of November till July. Such strategy would be interesting to 

discuss in detail in another paper. 

Non-USD Currency weakness will increase the price for crude oil, thereby reducing demand 

and hence reduce the clean and dirty freight rates. A time lag in effect is likely to increase the 

differential (Chicago Mercantile Exchange, 2013).  

Another important factor in the model is production of oil and its derivatives. Oil is 

considered a non-renewable finite asset. Accordingly one could say it is a supply driven 

market. Regardless of an increase in demand, supply behaves in limits of natural capacity. In 

this relationship demand for oil transportation is only going to rise if more oil or oil products 

have to be transported. Shi et al. (2013) finds that if there is a non-supply shock to the oil 

market, freight rates remain unaffected, as a higher demand, if not met by supply is not going 

to lead to more demand in transportation. On the other hand a negative supply shock is going 

to decrease freight rates. Meanwhile, a positive supply shock is going to increase demand for 

transportation, as more oil needs to be transported (Shi et al., 2013). The problem with this 

argument is that in reality capacity for oil production is far exceeding oil demand, as can be 

seen in the current market floating strategy of the OPEC. Hence increased demand for oil 

products in an oversupplied market is likely to find supply and is hence going to have a 

positive effect on freight rates. 

Lastly, the refinery lead time should play a role in the behavior of the freight rate differential. 

Crude oil is worthless until it is refined (Inkpen & Moffett, 2011). Hence all crude oil 

produced is going into the refinery process. Accordingly, an increase in freight rates of dirty 

tankers should be followed by an increase in product tanker freight rates after the increased 

amount of oil transported to the refineries is ready to hit the market. This time lag, equal to 

the lead time of refineries, could work as an indicator of differential movements. 
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5. Parameter Specifications 

5.1 Long-run Mean, Mean Reversion and Volatility 

As described above the freight rate differential follows a stationary process. It is hence not 

only fitting the underlying processes of the model, but also eligible for the modeling through 

an ARMA model. To estimate the parameters for our model we need to econometrically 

model the O-U process. We followed Sødal et al. (2008) and built autoregressive AR (1) 

models of the following form: 

!! = ! + !!!!! + !! (5.1) 

Clearly observable here, C is the constant term, A is the coefficient of pt’s own lagged value 

and !! represents the error term following a stochastic process. The parameters C and A as 

well as the standard deviation of the residuals (S) of the models were estimated through OLS 

regression for the full and the previously defined subsamples resulting in the below numbers 

(Table 5.1). The significance of the coefficients is given by the p-values. The N is the number 

of observations. 

'

A! p?value! C! p?value! S! N!
Full!Sample! 0.9100' 0.0000' 26.6589' 0.8459' 4305.00' 986'

Period!1! 0.9089' 0.0000' O444.7370' 0.0158' 2660.13' 351'

Period!2! 0.8917' 0.0000' 107.5170' 0.7906' 6588.60' 267'

Period!3! 0.8880' 0.0000' 506.5750' 0.013' 3355.04' 366'

Table'5.1'Results'AR(1)'Model'

The estimation results are in line with the descriptive statistics above. It is worth noting that 

the constant parameter C lacks significance in all but the first period subsample, where it is 

significantly different from zero on a 95 percent confidence level. This indicates high 

uncertainty about the parameter. Contrary, the estimates of A are all significantly different 

from zero with 99 percent confidence. Progressing in the subsamples the parameter is 

decreasing. The closer A is to one, the lower the speed of mean reversion, the less integrated 

are the markets of clean and dirty, the more the differential follows a random walk. With A 

approaching zero, the mean reversion increases and the market integration increases. This is 

contrary to our correlation analysis in chapter 4.3. 
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These estimations could now be used for the calculation of the model inputs. These are the 

mean reversion (µ), the long-run mean (m) and the volatility parameter (!) using the three 

functions found in Sødal et al. (2008): 

 

! = −ln!(!)
∆!  (5.2) 

 

! = !
1 − !!!∆! (5.3) 

 

! = !! 2!
1 − !!!!∆! 

(5.4) 

 

The time increment of our data is represented by ∆!, which in our case of weekly data 

corresponds to 1/52. Calculations of the parameters for all our samples led to: 

'
!! m! !!

Full!Sample! 4.9070' 155.0017' 32,520'

Period!1! 4.9651' O2,558.3272' 20,105'

Period!2! 5.9629' 524.6159' 50,260'

Period!3! 6.1787' 2,394.9883' 25,644'

Table'5.2'Parameter'Results'

The sigma reflects the volatility of the sample period, which was already discussed in the 

descriptive statistics. The long term mean is a product the interrelation of constant C and 

mean reversion. A slower mean reversion and more extreme constant C will lead to a more 

skewed long-term mean. According to the parameters one expects the option value to be 

lowest in period one and be higher in the following two periods.  

One surprising observation from the above table is that the full sample mean reversion is the 

lowest amongst the samples. One would assume it to resemble the weighted average of the 

three subsamples.  The explanation lies in the use of the O-U process. The regression line is a 
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difference equation with one lag and will approach a fixed positive value from below. The 

speed of this approach for the whole sample is interdependent with, but not the average of the 

subsamples. 

Although we assume the parameters to be constant in our model, the estimations among 

subsamples show that there is variation over time. The above equations show that running a 

sensitivity analysis on these parameters will lead to spurious results as they are interrelated. 

An increase in speed of mean reversion will lead to a decrease in absolute value of the long-

run mean, as the denominator in equation 5.3 will increase. Meanwhile, a decrease will lead 

to the opposite. The effect on the volatility is similar. An increase in speed of mean reversion 

(µ) will increase the numerator in equation 5.4 and increase in the denominator. Hence an 

increase in mean reversion has a multidirectional effect on volatility. The direction depends 

on the power of nominator in relation to denominator. This power is higher for the nominator 

part as with speed of mean reversion approaching infinity the denominator will approach one, 

while the nominator will approach infinity. Hence the volatility will increase along with 

increasing speed of mean reversion. 

One could assume m to only to change by a movement in C and sigma to change only 

through a development in S. However, this would mean running sensitivity analyses on S and 

C instead of m and sigma. Instead, we will focus our efforts on rolling window estimation to 

test the stability of the parameters later in this paper. 

5.2 Benchmark Value 

An approach to the benchmark value is presented in Sødal et al. (2008), where the value of 

the option is compared to the initial investment premium. This is set as the newbuilding price 

differential. If one wants acquire the option to switch, one needs to invest in a more 

expensive LR2 product tanker, instead of the standard Aframax vessel. This initial 

investment has to be deducted from the W0 to acquire the investments return.  

Unfortunately there was no reliable data on the newbuilding price differential of LR2s and 

Aframaxes for the full time period. The average differential of a 113-115k dwt Aframax and 

a 113-115k dwt LR2 from June 2013 till November 2015 found at Clarksons is a 2.09 million 

dollar premium for the LR2. We assume this to be relatively stable over time. Estimates for 

the additional cost of coating were set at 1.5 to 3 million by industry expert Alexander 
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Donger (2015). Hence we will set the newbuilding benchmark (B2) to a constant 2.5 million 

dollars. 

5.3 Switching Costs 

Switching costs can be divided into two categories: switching from dirty to clean and clean to 

dirty. The switch from clean to dirty is quite a simple process. As described in Energy 

Institute (2009) thorough draining of the tanks, necessary to avoid chemical reactions, has to 

be conducted even when switching from clean to dirty. This is the minimum cleaning that has 

to be done in any case of cargo change. Hence it is as a sunk cost (Energy Institute, 2009). 

Industry Expert Ulf Bäcklund (2015) described the cost of switching from clean to dirty as 

virtually zero. We will follow this suggestion. 

However, theory on the challenges and cost of switching from dirty to clean is scarce and 

circumstantial. Tanks and pipes have to be thoroughly cleaned to avoid pollution of the next 

cargo. This cleaning process takes time and chemicals. Thereafter, charterers usually demand 

three voyages with ‘mainly clean’ products to assure an inerrant transition process (Stopford, 

2009). As this restricts the cargo menu, these three voyages are expected to be rewarded at a 

discount. Therefore cost of switching resembles from expenses for cleaning, opportunity cost 

of cleaning, a possible difference in the cost of operations and a possible opportunity cost 

incurred by restrictions on cargo after the cleaning process. 

In contact with industry experts, estimations for switching costs were ranging widely. Ulf 

Bäcklund, head of Stena Bulk in Singapore, estimated the total cost of the switching process 

to be around 500,000 to a million dollars for an LR2 (Bäcklund, 2015). Platts reports quoted 

another insider on cleaning costs of 350,000 dollars plus 250,000 dollars in discount on 

follow-up voyages. The cleaning time ranged from seven days to three weeks (Wang & 

Mohindru 2015a, 2015b) 

Two articles by Johnson (2010, 2011) gave valuable insight into the cleaning process, its 

prerequisites, measurements of cargo contamination and actual estimation of cleaning costs. 

He shows that especially for modern product tankers the difficulties and costs of a switch 

from dirty to clean seem to be overestimated through historical bias. He argues that costs of 

cleaning could be significantly reduced and proposes, a more risk affine behavior of owners 

in switching negotiations with charterers could be of significant benefit.  
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Johnson (2011) comes up with concrete estimates for the cleaning cost of a 75k dwt DNV 

ETC (Easy Tank Cleaning) classified product tanker. The report argues that the cleaning 

process is often overestimated, and hence too much time, effort and resources are dedicated 

to it. He estimates that costs of a conventional cleaning process (not including the discount on 

follow-up voyages) to be about 137,000 dollars. Taking into account the marginal benefit of 

cleaning and the degree of dilution when refilling the cargo tanks these costs could be 

reduced to only about 76,000 dollars for the same tanker specifications. Additionally, the 

current legislation states that the owner is responsible for the cleaning of the tanks and hence 

fully responsible in case of pollution or loss of the cargo. Consequently, if experience would 

show that tank-cleaning effort could be reduced at no danger of polluting the cargo, the 

owner might well be willing to take that risk. Moreover, it is estimated that one voyage with 

“mainly clean” cargo would be sufficient to fully assure an inerrant transition process 

(Johnson, 2011). Assuming that cleaning costs are proportional to size of the vessel, the 

cleaning costs for in Aframax vessel of 115k dwt would have to be about 1.5 times higher. 

Industry experts, such as Alexander Donger (2015) from the Tanker Department of Hanseatic 

Unity Chartering estimate the difference in cost of operations to a few hundred dollars 

(Donger, 2015). Sødal et al. (2008) stated that the differences in operating cost are already 

reflected in the net freight rate. Regardless of this, applying a net freight rate to a different 

vessel, as done in our case might lead to flaws. As we assume these to be negligible however, 

we set the difference on operating costs to zero. 

The discount on following the voyages after the switch from dirty to clean stems from 

transitional cargos, which have to be transported to assure a clean voyage history of the 

vessel. Charterers are hesitant to accept a vessel in the clean market if the last three cargos 

have not been clean or ‘mainly clean’. Hence after the cleaning process three voyages with 

‘mainly clean’ cargos, such as fuel oil have to be done. These are likely to be rewarded at a 

discount. The size of that discount is tough to measure. Logical estimation however leads us 

to believe that the rate attained for the first three voyages after cleaning will not be lower than 

the dirty rate.  

On the basis of this rather ambiguous information, we will perform a sensitivity analysis on 

the switching cost. We will take the different estimates as possible scenarios, showing the 

effect on option value. These cost scenarios are shown in Table 5.3. In the base case we 

assume a cleaning cost according to Wang & Mohindru (2015) of 350,000 dollars and an 
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additional discount of 250,000 dollars. In the two Johnson cases, we adjusted for the 

difference in size plus a discount on three voyages for the high case and a discount of one 

voyage in the low case5. The range up to a million is based on the spread of the other sources 

we encountered. 

Cleaning!Costs! Scenario! Total!Cost!

Full!Sample!

Base'Case' 600,000'

Johnson'High' 460,000'

Johnson'Low' 200,000'

High' 1,000,000'

Table'5.3'Cleaning'Cost'Scenarios'

5.4 Miscellaneous 

The base case discount rate is set at 10 percent per annum, which corresponds to estimations 

in previous academic literature of Sødal et al. (2008) and Bjerknes & Herje (2013). This rate 

is based on an estimated expected return of 5 percent and an expected depreciation rate of 5 

percent applying to an expected lifetime of the vessel of 20 years. The discount rate is highly 

cyclical which is why we decided to apply different scenarios from 5 percent till 15 percent 

in 2.5 percent increment steps to the full sample to picture the effect of the discount rate. 

The value of the current differential p0 is set at the long-run mean of the sample, as the 

expected freight rate differential at any point in time is its long-run mean. 

 

 

                                                
5 !"#ℎ = 137000 ∗ !!"!" + 250000; !"# = 75000 ∗ !!"!" +

!"####
!  
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6. Model Results and Numerical Experiments 

After having decided upon the parameter values, we can now step over to run our model for 

the different scenarios and discuss the results. Matlab was used to calculate the value of the 

option and the thresholds of the optimal switching policy. The code for the model was based 

on Bjerknes and Herje (2013), however included iterations to calculate several scenarios at 

once; the code can be found in appendix 5. 

6.1 Base Case Results 

To start out observe the results for the option value and thresholds for the base case scenarios, 

as shown in the table 6.1 below. 

Base!
Cases!

Total!Cost! m! sigma! Value! Investment!Profit! PH! PL!

Full!
Sample!

600,000' 155' 32,520' 6,689,986' 4,189,986' 12,345' O12,345'

Period!1! 600,000' O2,558' 20,105' 421,353' O2,078,647' 12,540' O6,680'

Period!2! 600,000' 525' 50,260' 10,739,539' 8,239,539' 16,260' O16,540'

Period!3! 600,000' 2,395' 25,644' 8,065,868' 5,565,868' 8,600' O14,040'

Table'6.1'Estimation'Results'O'Base'Case'

The value of the option (V0) is about 6,7 million over the whole sampling period. The graph 

in Appendix 6 illustrates the chosen values for pH and pL for the full sample would have led 

to a total number of 14 switches when beginning in the clean market. Note however, that 

such strategy would imply that the shipowner would have perfect information about the 

future development of the differential, which is not a realistic assumption.  

Referring back to the hypothesis presented in the graphical and descriptive analysis of the 

freight rate differential, the results in the three subperiods meet our expectations. In period 

one, where the clean market was generally outperforming the dirty the value from switching 

is very low. In period two, which was characterized by high volatility, the option value is the 

highest and in period three, where dirty and clean market seemed more integrated the value 

decreases, but is still above that of the full sample. Deducting the newbuilding price 

differential shows a positive return over the course of the whole sample. In period one the 

option value is too small to justify the increased investment. The following periods however 

clearly exhibit environments, where gains are to be made from switching between markets. 
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The trigger values behave according to long-run mean and volatility. The more positive the 

long-run mean, the more skewed they are to the positive side and vice versa. The higher the 

volatility the further they drift apart, conversely the smaller the sigma, the smaller the range 

between the trigger values. 

6.2  Parameter influence on Option Value 

Now we examine the influence of long-run mean, speed of mean reversion and volatility on 

the option value over the three subsamples. The following graphics do not show the isolated 

effect of these parameters, as they are all interdependent. Rather, they serve as a basis to 

obtain information on which parameter is correlated closest with the development of the 

option value.  

 

Figure'6.1'Influence'of'longOrun'mean'on'option'value'

A negative long-run mean resembles a long-term premium for the clean market over the 

dirty. The closer this mean comes to zero the lesser the premium. If it becomes positive as in 

period three, the dirty market is expected to on average outperform the clean. Intuitively one 

would expect the value of the option to rise the more positive the long-run mean becomes, 

since the product tanker would be able to exploit this market shift. From figure 6.1 one can 

observe that the value of the option increases, the closer the long-run mean is to zero. This 

makes sense, as an active strategy will benefit from frequent switches in differential 

direction. The closer the differentials long run mean is to zero, the more likely is a switch 

from positive to negative and vice versa. 
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Figure'6.2'Influence'of'speed'of'mean'reversion'on'option'value'

Next up is the influence of speed of mean reversion on the option value among the base cases 

in whole sample and its subsamples, as shown above. The speed of mean reversion is 

increasing over the course of the full sample, indicating a higher cointegration of clean and 

dirty market. An increase in speed of mean reversion leads to less persistent shocks and 

deviations from the long-run mean. Hence one expects the option value to decrease with 

increased speed of mean reversion. This is to some extent depicted in the figure above.  

 

Figure'6.3'Influence'of'volatility'on'option'value'

The figure above shows how the change in volatility influences the option value. The 

graphical depiction shows very close correlation of option value and volatility, which 
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confirms the intuitive expectations. Higher volatility leads to more and higher extremes in the 

freight differential. An active switching policy is able to capture and exploit these deviations 

from the mean and hence has increased value. Volatility seems to be the most influential 

factor for the option value.  

6.3 Sensitivity Analysis 

 

Figure'6.4'Influence'of'discount'rate'on'option'value'

As the graph above clearly shows, an increase in discount rate decreases option value. This 

happens at a marginally decreasing rate. An increase from 5 percent to 7.5 percent will 

reduce option value by about a third, a step from 7.5 to 10 percent on only by about a fourth 

and the next step to 12.5 percent will leave a decreasing effect of about a fifth.  

Discount!Factor! p! Value! pH! pL!

Full!Sample!

Low!Risk! 0.05' 13.683.569' 12,340' O12,400'

'

0.075' 9,020,720' 12,400' O12,360'

Base!Case! 0.1' 6,689,986' 12,435' O12,345'

'

0.125' 5,292,090' 12,480' O12,320'

High!Risk! 0.15' 4,360,616' 12,540' O12,280'

Table'6.2'Estimation'results'O'Sensitivity'analysis'on'discount'rate'
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mean reverting process in perpetuity. Hence there will be no trend in freight rate development 

and unlike an exhaustible resource there will be no advantage in shipping more cargo at an 

earlier point in time, if the discount rate increases. Hence there is no possibility to adapt to 

increasing discount rates by changing the switching policy. Trigger values drift apart and to 

positivity to account for unequal effect of discount rate on switching cost and revenues. The 

switching cost is discounted at the beginning of the switch, while revenues, which have to 

overcome costs are discounted weekly. In perpetuity the effect is marginal, but to account for 

higher costs in relation to lower revenues the trigger values shift apart. 

Table 6.3 shows the effect of a change in current freight rate differential p0. The effect on the 

value is very small and the switching policy remains unaffected, as long as the trigger values 

do not get hit and no instantaneous switch is provoked. Such a switch at p0 might take a long 

time for reversion as can be seen in appendix 6. Sødal et al. (2008) point out that the effect 

could affect the initial investment decision for a product or a crude tanker. 

Current!Freight!Rate!Diff! p_0! Value! P_H! P_L!

Full!Sample!
Actual! O10,670' 6,565,589' 12,345' O12,345'

Base!Case! 155' 6,689,986' 12,345' O12,345'

Positive! 10,670' 6,979,581' 12,345' O12,345'

Table'6.3'Estimation'results'O'Sensitivity'analysis'on'current'freight'rate'differential'

Different switching cost scenarios and their corresponding option values are depicted in 

Figure 6.5 and Table 6.4 below.  

Figure 6.5 indicates an inverse relationship between the switching costs and the option value. 

The relationship is very intuitive as increased switching costs, everything else kept fixed, 

naturally will have an inverse effect on profits. The effect of switching cost seems to be 

persistent across all periods including the full sample. The cost increase has constant 

marginal effect. An increase of 400k from 200k to 600k reduces the option value by about a 

third. An increase of another 400k to one million results in reduction of another third.  

Table 6.4 shows that the switching thresholds diverge along with the switching costs. This is 

consistent with theory, as a more extreme negative or positive differential would be needed to 

profit from the switch as the switching costs increase. 
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Figure'6.5'Influence'of'switching'costs'on'option'value'

 

6.4 Testing for Parameter Stability 

As described in the methodology, our model assumes constant parameters over time. We 

already mentioned that this is not very realistic. To test the model on actual data we applied 

the switching policy estimated from period one to period two. It would have resulted in a net 

loss of 13.263 million; applying that of period two to period three would result in a net profit 

of 1.677 million (compare to expected results in table 6.1). Both values are compared to a 

passive policy of only operating in the clean market and are not net of investment cost. Of 

course this comparison is superficial, as the time horizon in the model is unlimited, while 

finite here, but it shows how far off estimations are from reality.  
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Cleaning!Costs! Total!Cost! Value! P_H! P_L!

Full!Sample!

Base!Case! 600,000' 6,689,986' 12,345' O12,345'

Johnson!High! 460,000' 7,690,714' 11,175' O11,130'

Johnson!Low! 200,000' 10,115,726' 8,175' O8,160'

High! 1,000,000' 4,480,563' 15,500' O15,200'

Table'6.4'Estimation'results'O'Sensitivity'analysis'on'switching'costs'
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To investigate how the values of speed of mean reversion, long-run mean, volatility and 

ultimately option value and trigger values change over time, we used rolling window 

estimation for the O-U process.  

A rolling window estimation involves choosing a fixed sample window which rolls along the 

time series in a fixed step size, running an operation at each step; in this case the OLS 

regression of the AR(1) model. We chose a step size of one i.e. one week. For significance of 

the results the freight rate in each window still had to follow a stationary process. The 

window size was set at three years, as this assured that the lion’s share of the samples 

fulfilled the stationary condition (see appendix 7). Additionally, it is worth taking a 

shipowner’s perspective. How far would he look back to properly assess the situation and 

make a decision on whether to switch or not? 

Choosing the window size is a tradeoff between beta variability (accuracy) and sampling 

error (reliability) (Dunis et al., 2003). Narrowing down the window size makes the results 

more sensitive to changes to depict the dynamics more accurately, but reduces significance as 

the sample size reduces. As we see later there might be problems of non-stationarity due to 

too small window size. An increased window size will also lead to a higher loss of 

observations, as estimation can only start at the end of the first window to not incur missing 

values.  

From the estimated regression coefficients, the model parameters were calculated again and 

plotted against the freight rate differential. The timeframe now starts 156 weeks after the first 

observation at the 24th of December 1999 and still ends on 27th of November 2015. 

An immediately striking insight is the behavior of speed of mean reversion at points where 

the freight rate does not follow a stationary process (see appendix 7). Then mu not only has 

values extremely close to zero but also negative observations. A speed of mean reversion 

parameter of zero would imply an explosion of the O-U process, which actually has to fulfill 

the stationary condition. The cause is the behavior of the beta coefficient A (see equation 

5.2). When plotting both over time we can clearly see the inverse relationship.  
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Figure'6.6'Rolling'window'estimation'results'–'Speed'of'mean'reversion'&'coefficient'A'

Comparing the graph above directly to the development of the long run mean shows the 

effect of negative speed of mean reversion. If the beta approaches 1, then the mean reversion 

will approach 0 and the long run mean will explode. As soon as beta exceeds 1 the mean 

reversion will approach -∞ and the long-run mean will approach zero. Referring back to the 

parameter equations above: If A becomes 1, then speed of mean reversion becomes zero, 

which result in the denominator of equation 5.3 to become 0, which in turn leads to an unreal 

answer. This problem arises from the differential in that particular period not following a 

stationary process and hence not fulfilling the conditions of the O-U process. This shows on 

one hand the limitations of the O-U process and on the other a possibly too small window 

size. These extremes have to be treated as outliers and were hence excluded from the data set 

and thus further analysis. Luckily, with a window size of three years these are just four 

observations. This is a good tradeoff. 
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Figure'6.7'Rolling'window'estimation'results'O'Speed'of'mean'reversion'

The graph above pictures the development of the mean reversion parameter over time in 

relation to the freight rate differential. As proven in earlier chapters, high mean reversion is 

indicating high integration of the two markets and vice versa. Contrary to subsample 

interpretations in 4.3 and 5.1, markets have not become less integrated over time but have 

gone through different phases, with integration increasing again recently. There is high 

variation from 0.72 on 26th of January 2001 to 12.24 on 21st of October 2010. Speed of mean 

reversion has largely been floating between four and 8 with spikes in October 2011 and 

September 2012. Since then the speed of mean reversion has been fairly stable around 4 with 

some recent fluctuation in summer 2015. If mean reversion becomes particularly low, high 

spikes in freight rate differential occur. Overall we can conclude that while there is 

significant volatility in the speed of mean reversion, over certain time frames of one to four 

years it seems to be relatively stable.  

Pictured below in figure 6.8 is the long run mean together with the freight rate differential 

over time. The figure reveals a trend in long term mean from negativity to positivity, as 

already seen over the course of the subsamples in previous analysis. This trend is almost 

linear between 2001 and 2015. Within this period however there are four subperiods: from 

2001 till mid 2008, till end 2011, till mid 2015, till today. The differential has risen 

substantially before falling back, during each of them. Nevertheless the upward trend is 

undeniable. 
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Figure'6.8'Rolling'window'estimation'results'O'LongOrun'mean'

The result is interesting for several reasons, firstly the additional investment of an LR2 as 

opposed to an Aframax is approximately in the range of USD 1.5-3 million (Donger, 2015). 

Assuming that long-run mean of the differential is approaching zero, or even becoming 

positive, there is will be no premium for a LR2 hence it seems irrational to pay for coating. 

Secondly, the picture may indicate that the two markets are not very integrated after all since 

the LR2 owners do not seem to take advantage of the higher freight rates in the dirty market. 

Thirdly, the estimated long-run mean varies over time, which implies that the model’s 

assumption regarding a constant long-run mean may not be very appropriate.  

 

Figure'6.9'Rolling'window'estimation'results'O'Volatility'
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Finally, we have plotted the development of sigma against the differential over time in figure 

6.9. The analysis shows the high variation in volatility. There are however some trends to be 

captured. Over time volatility of the differential went from low to high to low and has 

recently been increasing again. This can possibly be related to the increase in volatility of the 

underlying freight rates in periods with high levels of the freight rates (Kavussanos, 2003).  

6.5 Testing for Option and Trigger Value Stability 

Using the parameter values from rolling window estimation, we computed the option value 

and the corresponding trigger values. From a managerial viewpoint the expected option value 

was estimated each week, with data from the past three years. The result is shown in figure 

6.10 below.  

 

Figure'6.10'Rolling'window'estimation'results'O'Option'value'

As expected from the high variation in parameters the option value is highly volatile. It reacts 

according to our microanalysis in chapter 6.2. The long-run mean and speed of mean 

reversion of the sample has high influence on the option value (compare Figure 6.10 to 6.7 

and 6.8). Especially the correlation between long run mean and option value is strong. The 

volatility positively affects the option value. The high variation over time shows that the 

model clearly reacts to parameter changes and that the estimations are highly dependent on 
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market lets the value of flexibility increase following a linear trend till the financial crisis, 

after which a period of less higher speed of mean reversion till September 2011 reduces 

option value sharply. Beginning a climb in August 2011 with the shift in differential to favor 

of dirty market the expected option value has been high until the recent drop in oil price 

especially in summer 2015. Since then it has actually increased again.  

The lesson to be learned is that option value is highly dependent in disintegration of clean 

and dirty market, a shift in favor of the dirty market and the persistency of such a shift. Over 

time option value has increased substantially. The expected value cannot be considered 

constant, but has to be reassessed continuously. A larger window would lead to a more 

evened out result and might give a more accurate long-run fit of the expected option value. 

This would however make the model less responsive to structural changes in the market. 

 

Figure'6.11'Rolling'window'estimation'results'O'Trigger'values'

As can be seen in figure 6.11, the trigger values are also unstable. High volatility of the 

freight rate differential lets them drift apart, while in periods of stability they approach each 

other. If the freight rate differential is positive the triggers are negatively skewed and vice 

versa. Assuming an initial position in the clean market, the first switch would have happened 

in December 2003, reversed barely a year later in January 2005. Until the first switch markets 

have been relatively efficient. 
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As the model regards the parameters and trigger values as constant over time and models the 

option value over an infinite period, it does not seem to be well able to capture the volatility 

of the tanker market.  
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7. Limitations 

When modeling markets some simplifications make the process manageable. These affect the 

accuracy of the results of the research.. There are several limitations to the research 

conducted in this thesis, some of which deserve a description. This chapter will reflect some 

of the assumptions that may have had an adverse effect on the accuracy of the results 

presented. 

Firstly, the model is too static. Although the parameters move over time, they are assumed to 

remain at a constant level in the model. The parameters have a significant impact on the 

option value; see for instance volatility of freight rates, switching costs and the discount rate 

in the sensitivity analysis 6.2 and following. Such parameter rigidity may lead to inaccurate 

valuation results, especially when implemented for a real asset investment typically 

stretching over more than 20 years. In fact, the parameters may themselves follow stochastic 

processes. However, implementing such features would make the model less tractable, which 

in our case is less desirable. The lack of dynamics caused by constant parameters was 

investigated by the sensitivity analysis and the rolling window estimations. 

The models assumption of lifetime perpetuity of the asset is a problem. It should account for 

additional investment costs every 15 to 25 years, to model newbuildings. A simple way to do 

so would be altering the freight rate accordingly at expected newbuilding dates. 

Unfortunately this fixes the decision instead of giving the owner the option to either build 

another LR2 or switch to the dirty market completely by investing in an Aframax tanker. 

Moreover the model does not account for the possibility of Aframaxes switching to the clean 

market. In cases where newbuilt vessels are still completely clean, Aframaxes are well able to 

carry clean products, which simply leads to corrosion at the tank covers, which may have to 

be replaced after some years, as industry expert Dr. Kurt Klemme (2015), CEO of Reederei 

Nord Group, points out. Modern Aframax tankers are usually coated too, which would enable 

switching (Wang W. , 2015). 

Furthermore, the arithmetic Ornstein-Uhlenbeck process unrealistically allows the future 

underlying freight rates to become negative (Sødal et al., 2008). Intuitively, freight rates will 

not become negative in a market with rational shipowners. However, Sødal et al. (2008) 
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points out that the process can still serve as a good approximation of the freight rate 

differential. 

The switching process is assumed to happen instantaneously when the threshold is reached; 

in reality there is a time lag between the exercise and when revenue from the strategy starts 

coming in. The effect of the time lag is however unclear since fixtures are negotiated in 

advance, hence the spot market is not necessarily the same as prompt tonnage. It may 

however have a greater effect on the following fixtures in a case where all fixtures were for 

prompt tonnage or fixed shortly before loading. Our model could overestimate the value of 

the option, since time for cleaning would not be accounted for when switching from dirty to 

clean. As noted in 4.2, speed of mean reversion may also be asymmetric between the two 

markets due to the difference in cleaning time, conversion of vessel and newbuildings.  

The model is highly dependent on long-run mean. As such period three in our subsamples 

had the highest value. However if dirty market constantly outperforms clean, a shipowner 

might be able to achieve higher profit by simply investing in an Aframax vessel. The model 

does not account for this. Accurate benchmarking and a higher emphasis on continuous 

change of differential direction is needed. 

Another limitation is caused by the data, which is collected from two different routes sharing 

only one port and having slight differences in cargo intake. Although the data has been 

extrapolated to account for such deviations, this may cause an inaccurate option value. 

Furthermore, in a more realistic scenario the shipowner would be more flexible by being able 

to switch between several different routes. Due to the tractability of the model this cannot 

easily be taken into account.  

When running the Matlab model we have used increments of $15 to $20, for the base case 

and sensitivity analysis, and $50, for the rolling window and recursive estimations, instead of 

increments of $1 when running the model through the 1001*1001 matrix. The alternative 

would have been to run the $1 increments through a larger grid. The reason for choosing not 

to increase the matrix is the increased processing time for completing the calculations, which 

grows exponentially with the matrix. The consequence of higher increments is the likelihood 

of barriers deviate from the actual value.  
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8. Conclusion 

Product tankers have the flexibility to serve the clean and the dirty freight markets. However, 

clean and dirty tanker shipping markets are not perfectly integrated and efficient since the 

newbuilding price premium on a product tanker is not accurately reflected in the freight rate 

differential. Since 1997 there has been a shift in in the differential from a premium for clean 

to a premium for dirty tonnage, which leads to arbitrage opportunities. The substantial value 

to be gained is tied to flexibility of letting an LR2 tanker switch between clean and dirty 

market under the assumption we made. This suggests reevaluation of common product tanker 

valuation models. The development in freight rates suggests that the value of an active 

switching policy has grown from period one to period three.  

However there is a high degree of uncertainty involved. Model parameters cannot be 

considered stable over time, which makes results sensitive to situational dynamics. The 

instability has been shown in rolling window estimation, to indicate how the maximal option 

value shifts along with shifts in the parameters. When using the model based on a rolling 

window there is a trade off between realistic assumptions regarding the parameters and the 

responsiveness to changing market conditions. A larger window size will make the 

managerial decisions less responsive to the conditions, while shorter may cause overvaluation 

in certain periods.  

The model needs better adaptation to market reality and rolling backtesting on actual market 

data would be of high value. Seasonality in the differential suggests the investigation of 

alternative approaches to trigger value models. Additionally, the factors specifically 

influencing the freight rate differential need more attention. They are suspected to be 

economic boom or bust, oil production, seasonality, refinery margin and average haul. Future 

research should investigate their relationship to the freight rate differential to derive clear 

trading rules for product tanker market switching. Furthermore, no clear legislation exists to 

regulate switches. This leaves charterers and shipowners vulnerable to capriciousness of the 

opponent party. There needs to be clear rules for division of responsibility and a common 

measure for contamination of cargo. The risk of contamination needs to be investigated and 

be compared to the return of an active switching policy. It might well be that the profit does 

not justify the risk. 
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10. Appendix 

10.1 Time-charter Equivalent formula 

!"# = !" ∗ ! − !" − !" − !"
!  

!ℎ!"!: 

!" = !"#$%&!!"#$%ℎ!!!"#$ 

! = !"#$%!!"#$!!"!!"#$ 

!" = !"#$%!!"#$!!"#$#!
!" = !"#$%!!"#$!!"#$#!
!" = !"#"$!!"#$ 

! = !"#$%!!"#$%&!!"#$!(!"#$%&!"'!!"#$!!"!!"#$!!"#!!"#$!!"#$#%&!!"##"$!!!"#!!"#$%)! 

10.2 Route and Vessel Specifics  

'' '' '' Round'Voyage'Specs'

Time! Code! Cargo! Load!Port! Dis!Port!

Total!
Distance!
in!nm!

Total!
Voyage!
Time!in!
days!

Cargo!
Size!
(dwt)!

Vessel!
Size!
(dwt)! YoB!

1997O

2003'

T52' Dirty' Ras'Tanura' Singapore' 7404' 27,2' 80000' 89636' 1990/91'

T72' Clean' Ras'Tanura' Chiba' 13210' 42,5' 75000' 106000' late'90s'

2004O

2008'

T52' Dirty' Ras'Tanura' Singapore' 7404' 28' 80000' 96000' 1990/91'

T72' Clean' Ras'Tanura' Chiba' 13210' 43,9' 75000' 106000' late'90s'

2009O

today'

T181' Dirty' Ras'Tanura' Singapore' 7404' 29,5' 80000' 115000' 2010'

T72' Clean' Ras'Tanura' Chiba' 13308' 49,8' 75000' 115000' 2010'

'' '' '' Speed! Consumption!at!Sea!t/day!
Consumption!in!
Port!t!(gross)!

Time! Code! Cargo! Laden' Ballast'

CST380'

MDO' CST380' MDO'Laden' Ballast'

1997O

2003'

T52' Dirty' 13,5' 14,5' 39' 39' 2,5' 106' 0'

T72' Clean' 15' 15' 50' 50' 5' 20' 6'

2004O

2008'

T52' Dirty' 13,5' 13,5' 41' 39' 0' 80' 18'

T72' Clean' 14,5' 14,5' 50' 50' 0' 67' 0'

2009O

today'

T181' Dirty' 13,5' 12' 52' 30' 0' 115' 0'

T72' Clean' 13,5' 12' 42' 30' 0' 100' 0'



 68 

10.3 Crack Spread Correlation 

 

Source: (Clarksons & BP, 2015) 

10.4 Seasonality Regression Results 

!! Coefficients! Standard!Error! t!Stat! P1value!
Jan' 727,43' 1074,47' 0,68' 0,50'

Feb' O223,33' 1128,90' O0,20' 0,84'

Mar' 3184,90' 1087,33' 2,93' 0,00'

Apr' 3260,31' 1100,68' 2,96' 0,00'

May' 321,96' 1074,47' 0,30' 0,76'

Jun' 189,54' 1100,68' 0,17' 0,86'

Jul' 56,73' 1080,84' 0,05' 0,96'

Aug' O4927,85' 1074,47' O4,59' 0,00'

Sep' O5333,33' 1107,53' O4,82' 0,00'

Oct' O3915,95' 1068,20' O3,67' 0,00'

Nov' 2275,08' 1100,68' 2,07' 0,04'

Dec' 4907,55' 1114,52' 4,40' 0,00'

10.5 Matlab Code 

The code for this thesis is based on the code written in Bjerknes and Herje (2013). However, 

some code has been revised to facilitate iterations of the model used for the sensitivity 

analysis. The code is composed of one script and three functions, which will be presented 

below. 
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10.5.1 Loop.m 

This script calculates the value function using the parameters specified, and calls the other 

scripts that will be presented later in this appendix segment. The first part of the scrip 

specifies the fixed parameters used in the when running the model, i.e. the parameters that are 

expected to remain constant throughout the whole iteration grid: 

% Fixed Parameters 

rho=0.10; 

B=600000; 

F=0; 

p0=0; 

 

The second part of the script determines the grid through which the barriers are optimized. 

The variables determinines the starting points of the matrix that is being assessed, at what 

rate the increments are increasing and how many increment steps are required (note that 

small increments will give a more precise valuation, however will need an increased number 

of increments which in turn will require more processor power): 
  

% Start of iteration 

pHStart=0; 

pLStart=0; 

pIncrementSize=1; 

pNumberOfIncrements=10000; 

  

The third part empties the tables where the output of the value function calculations are 

stored: 
 

% Empty tables 

Low=zeros(); 

High=zeros(); 

Val=zeros(); 

  

The fourth and last part is the function describing the iteration process of the value function 

and the parameters that have been reestimated over time using the rolling window and 
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recursive estimation. Firstly the script starts with initiating the for-loop which updates the 

number of steps in the specified range 1:n, where n = the number of data observations for 

each parameter: 

 

% for loop used to iterate the formula change (1:n) to 

appropriate range 

for i=1:n 

     

After the for-loop has been specified the floating parameters are specified to be collected 

from tables my, mean and stdev at the position decided by the chronological order and 

number of iterations: 
 

% Floating Parameters 

mu=my(i); 

m=mean(i);  

sigma=stdev(i); 

 

Then the value function is formalized and calls for the DiscountFactorCalculation-function, 

where the specified parameters are used as input. 
  

% Value function 

[maxValue, pH, pL] = DiscountFactorCalculation(rho, mu, m, B, 

F,... 

    sigma, p0, pLStart, pHStart, pIncrementSize, 

pNumberOfIncrements); 

  

Lastly, the output of the maximum value of the function and the optimal barriers are plotted 

into three tables and the for-loop is ended: 
% Used to store output in a table 

Low(i)=pL; 

High(i)=pH; 

Val(i)=maxValue; 

end 
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10.5.2 DiscountFactorCalculation.m 

As noted in Loop.m the value function calls the DiscountFactorCalculation.m. That function 

will be discussed here. Firstly, the function is specified with the parameters denoted within 

the parenthesis: 

function [maxValue, pH, pL] = DiscountFactorCalculation(rho, 

mu, m, B, F, sigma, p0, pLStart, pHStart, pIncrementSize, 

pNumberOfIncrements) 

 

Secondly, the function defines and empties the matrix in which the barriers will be typed out 

later: 
 

valueMatrix = 

zeros(pNumberOfIncrements+1,pNumberOfIncrements+1); 

 

Thirdly, a sequence of loops is conducted which calculates the value, given the upper 

threshold and lower threshold for each pH and pL in the grid, given the increment size and 

start levels of the grid, see pHStart and pLStart in Loop.m. Note that the loop calls the 

function DiscountFactorApproach, this function will be described in the next segment. The 

loop then plots the results for W, pH and pL in the matrix defined before: 
 

for pHIndex = 0:pNumberOfIncrements 

          pHValue = pHStart + (pHIndex * pIncrementSize); 

          for pLIndex = 0:pNumberOfIncrements 

              pLValue = pLStart - (pLIndex * pIncrementSize); 

                    W = DiscountFactorApproach(rho, mu, m, B, 

        F, sigma, p0, pHValue, pLValue); 

              valueMatrix(pHIndex + 1, pLIndex + 1) = W; 

          end 

end 

 

Finally, the output of the maximum value of the grid and it’s the optimal switching policy 

(pH and pL) is plotted into the corresponding rows and columns. The column and row indices 

are subtracted with one since the index-loops starts at zero. Finally, the DiscountFactor-
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Calculation.m is ended: 
 

[maxValue, linearIndex] = max(valueMatrix(:)); 

[rowIndex, columnIndex] = 

ind2sub(size(valueMatrix),linearIndex); 

pH = pHStart + ((rowIndex - 1) * pIncrementSize); 

pL = pLStart - ((columnIndex - 1) * pIncrementSize); 

end 

 

10.5.3 DiscountFactorApproach.m 

In the previous segment, a function DiscountFactorApproach is called. This function 

represents the mathematical calculation of the value of the option, W, at given pH and pL 

levels.  

First, the value function W is specified given the parameters denoted in parenthesis: 

function W = DiscountFactorApproach(rho, mu, m, B, F, sigma, 
p0, pH, pL) 
 
Secondly the equations 3.11-3.12 [kummer functions in theory/methodology] are defined for 

p0, pH and pL. Note that similar to previous function these functions contain a third function, 

kummer: 

 
MpH = kummer(rho/(2*mu),1/2,(mu/sigma^2)*(pH-m)^2); 
MpL = kummer(rho/(2*mu),1/2,(mu/sigma^2)*(pL-m)^2); 
Mp0 = kummer(rho/(2*mu),1/2,(mu/sigma^2)*(p0-m)^2); 
  
UpL = ((2*(pL-m)*sqrt(mu)*gamma(1/2 + rho/(2*mu)))... 
    /(sigma*gamma(rho/(2*mu))))... 
    *kummer(((1/2)+(rho/(2*mu))),3/2,((mu/sigma^2)*(pL-m)^2)); 
UpH = ((2*(pH-m)*sqrt(mu)*gamma(1/2 + rho/(2*mu)))... 
    /(sigma*gamma(rho/(2*mu))))...  
    *kummer(((1/2)+(rho/(2*mu))),3/2,((mu/sigma^2)*(pH-m)^2)); 
Up0 = ((2*(p0-m)*sqrt(mu)*gamma(1/2 + rho/(2*mu)))... 
    /(sigma*gamma(rho/(2*mu))))...  
    *kummer((1/2)+(rho/(2*mu)),3/2,(mu/sigma^2)*(p0-m)^2); 
 
Third and finally, the value function W described in equation X.X calculated using the 

definitions described earlier, before the function is ended. 
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W   = (Mp0+Up0)/(MpH+UpH)*((pH*330)/(rho+mu)+(mu*m*330)... 
    /(rho*(rho+mu))-B-(MpH-UpH)/(MpL-UpL)... 
    *(F+(pL*330)/(rho+mu) + (mu*m*330)/(rho*(rho+mu))))... 
    /(1-(MpL+UpL)/(MpH+UpH)*(MpH-UpH)/(MpL-UpL)); 
  
end 
 

10.5.4 Kummer.m 

The last function required is the kummer function. Similar to Bjerknes and Herje (2013), the 

code used in this thesis was created by Mousaw (2011), and then uploaded on the user-based 

community forum for MathWorks. The function will be presented in its entirety, including 

the terms of use along with the copyright statement below. 

function f = kummer(a,b,x) 
% fprintf('Calling kummer with arguments: a=%f, b=%f, x=%f\n', 
a, b, x); 
% This function estimates the Kummer function with the 
specified tolerance 
% the generalized hypergeometric series, noted below. This 
solves Kummer's 
% differential equation: 
% 
%       x*g''(x) + (b - x)*g'(x) - a*g(x) = 0 
% Default tolerance is tol = 1e-10. Feel free to change this 
as needed 
tol = 1e-10; 
  
% Estimates the value by summing powers of the generalized 
% hypergeometric series: 
% 
% 
%       sum(n=0-->Inf)[(a)_n*x^n/{(b)_n*n!} 
% 
% until the specified tolerance is acheived. % 
%a= 
%b= 
%x= 
term=x*a/b; 
f=1 + term; 
n=1; 
an=a; 
bn=b; 
nmin=10; 
while(n < nmin||max(abs(term) > tol)) 
 n = n + 1; 
 an = an + 1; 
 bn = bn + 1; 
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 term = x.*term*an/bn/n; 
 f = f + term; 
end 
end 
 

Copyright (c) 2010, Patrick 

All rights reserved. 

Redistribution and use in source and binary forms, with or without modification, are 
permitted provided that the following conditions are met: 

    * Redistributions of source code must retain the above copyright 

      notice, this list of conditions and the following disclaimer. 

    * Redistributions in binary form must reproduce the above copyright 

      notice, this list of conditions and the following disclaimer in 

      the documentation and/or other materials provided with the distribution 

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND 
CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, 
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF 
MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR 
CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, 
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT 
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF 
USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED 
AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT 
LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN 
ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE 
POSSIBILITY OF SUCH DAMAGE. 
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10.6  Trigger Value Depiction 
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10.7 Rolling Window ADF-test (two lag) Results
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