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1 Introduction

Public hospital systems, like those in Scandinavia, the UK, and other OECD countries,
are mainly �nanced through general taxation or compulsory social insurance. Patients
face zero or very low money prices and consequently non-emergency treatment is rationed
by waiting time (Cullis et al., 2000; Siciliani and Iversen, 2012). Such waiting times are
often long and a source of concern to both patients and policy makers.1 There are also
considerable variations in quality and costs amongst hospitals. Hospitals in these systems
are increasingly paid prospectively for each case treated (Paris et al., 2012) and in some
countries there are attempts to improve hospital quality by linking payment directly to
quality as well as to output (Jha et al., 2012; Sutton et al., 2012).

In this paper we derive optimal rules for paying hospitals in a public health care system
in which patient demand is rationed by waiting time and hospitals can choose quality and
make supply decisions that change the distribution of waiting times facing patients.

Although both quality and waiting time a¤ect patient demand and both can be in-
�uenced by hospital decisions, quality is determined solely by hospital decisions whereas
waiting time is determined by both patient demand and hospital supply. Waiting time is
not just another type of quality and cannot be treated as just another quality dimension
when analysing payment rules: it is necessary to allow for the fact that waiting time is
also a rationing device which equates patient demand and hospital supply and does so by
imposing costs on patients which are not o¤set by gains to providers. Payment rules have
to be designed in the light of their e¤ect on these rationing costs as well as on hospital
quality and the number of patients treated.

The literature on the welfare implications of alternative hospital payment systems is
reviewed in Chalkley and Malcomson (2000). The aim of the payment system is to induce
welfare maximising hospital behaviour: treatment of an optimal number of patients with
optimal quality at minimum cost. In this literature it is assumed that payment cannot be
linked directly to unveri�able or unobserved quality and cost reducing e¤ort. Policy mak-
ers are restricted to setting a price for output and to reimbursing hospitals for their costs.
In Ellis and McGuire (1986) the number of patients requiring treatment is not a¤ected by
hospital decisions and �rst best quality and cost reducing e¤ort are not achievable. They
show that the second best welfare maximising reimbursement rule combines a prospec-
tive price per patient treated and partial reimbursement of hospital costs. With only a
prospective price and an exogenously determined number of patients requiring treatment
the hospital will skimp on quality, unless it is perfectly altruistic, because quality is costly
and has no e¤ect on its revenue. Partial reimbursement of costs reduces the marginal cost
of quality and so induces the hospital to increase quality. But partial cost reimbursement
also reduces the incentive for cost reducing e¤ort so that the second best mixed reim-
bursement scheme trades o¤ quality and cost reducing e¤ort. Despite having two policy
targets (quality and cost reducing e¤ort) and two policy instruments the �rst best is not
achievable because, with a �xed number of patients, the prospective price is equivalent to
a lump sum payment with no incentive properties: the only instrument which a¤ects the

1For example, the median waiting time from being placed on the waiting list for hip replacement to
treatment in 2011 was 108 days in Australia, 113 in Finland, 87 in Portugal, and 82 in England (Siciliani
et al., 2014). See Cullis et al. (2000), Iversen and Siciliani (2011) and Siciliani and Iversen (2012) for
surveys of the health economics waiting time literature.
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hospital quality decision is cost reimbursement.
Chalkley and Malcomson (1998) consider payments regimes when patient demand

varies with quality.2 They show that, if (a) there is only one dimension of quality and
(b) it is optimal to treat all patients who demand care at the optimal quality, then �rst
best quality and output can be achieved at minimum cost with a single instrument: a
prospective output price. Because higher quality attracts more patients, thus increasing
revenue, hospitals respond to a higher price by increasing quality. It is thus possible to set
the price so that the hospital chooses the optimal quality and this results in the optimal
number of patients being treated. And with no cost reimbursement the hospital bears all
the costs of producing care and so has the appropriate incentive for cost reducing e¤ort.
Remarkably, this result does not depend on the policy maker and patients having the same
valuation of quality and the bene�ts of treatment. It is not even necessary that patients
correctly perceive quality when demanding care, only that their demand is increasing in
quality as perceived by the policy maker. But Chalkley and Malcomson (1998) also show
that if quality is multi-dimensional, the �rst best is implementable via the output price
only if the policy maker and patients have the same relative marginal valuations of the
di¤erent quality dimensions.

The insights from this literature are obtained from models which do not take account of
rationing by waiting time which is a salient feature of many public health care systems. It is
implicitly assumed that demand is not a¤ected by waiting time.3 But there is considerable
evidence that waiting times do a¤ect demand for elective care. Higher waiting times lead
patients to switch within the public sector to hospitals with lower waiting times (Sivey,
2012), to opt for private hospitals (Besley et al. 1999, Aarbu, 2010) or to forgo care
entirely (Martin and Smith, 1999; Gravelle et al., 2002; Windmeijer et al., 2005).

Following Lindsay and Feigenbaum (1984) most formal models of rationing by waiting
in health care assume that demand and supply, and hence waiting time, are deterministic.4

The certain waiting time adjusts, like the money price in standard markets, to ensure that
the certain demand equals the certain supply. Such deterministic waiting time models
are useful for some purposes but are �awed as a basis for modelling hospital behaviour
and the welfare implications of regulation and pricing regimes. With a positive waiting
time a hospital can reduce quality whilst holding supply constant. Waiting time will fall
to equate demand and the unchanged supply and so hospital revenue is unchanged. Since
cost is reduced because quality is lower, pro�t is increased. Hence, a pro�t maximising
hospital whose revenue varies with the volume of patients treated will never choose to have
both positive waiting time and positive quality. Thus in deterministic models of rationing
by waiting, the only way to explain the coexistence of positive waiting times and positive
quality, is by assuming su¢ ciently great direct provider concern with quality.

In stochastic queueing models waiting times are determined by the random demand
for treatment (conditional on quality) and random length of treatment. Waiting times are

2The Ellis and McGuire (1986) setting is akin to emergency treatment and in Chalkley and Malcomson
(1998) it is akin to elective treatment where patients choose amongst alternatives (including no treatment).

3When demand exceeds supply Chalkley and Malcomson (1998) assume that there is perfect rationing
(all patients treated have higher bene�ts that those who are not selected for treatment) or random rationing.
But neither method of rationing is assumed to impose any direct costs on patients (other than not being
treated if not selected) and patient demand is assumed una¤ected the probability of treatment.

4See, for example, Marchand and Schroyen (2005), and Gravelle and Siciliani (2008).
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therefore also random. In equilibrium there is a steady state distribution of waiting times
determining the mean waiting time and the mean number of patients treated per period.
The mean number treated is equal to the mean demand and less than the capacity of the
hospital. The mean waiting time is positive since only an in�nitely large service capacity
can result in all patients having a zero realised waiting time. A reduction in quality will
reduce costs but it will also reduce expected demand and thus expected output and revenue
and so may not increase expected pro�t. Thus the equilibrium of the system will always
have positive expected waiting time and may, if quality is not too costly, have a positive
quality.

Two papers in the health economics literature have considered stochastic waiting time
models with demand depending on the distribution of waiting times.5 In Goddard et al.
(1995) it is assumed that a patient observes the length of the waiting list before deciding
whether to join the list or not. The resulting complicated expressions for the steady state
probabilities on the number of people in the system and expected waiting time are used
to derive comparative static predictions about the e¤ects of patient income and the price
of private care. Iversen and Lurås (2002) use a much simpler queueing model to examine
competition between GPs via their choice of quality and expected waiting time.

Because we use our model of rationing with random waits for normative rather than
positive analysis we derive demand functions for treatment from patient preferences over
income, quality and waiting times, rather than making plausible but ad hoc assumptions
about the demand functions. We derive a welfare function based on these preferences to
examine policy options. Like Iversen and Lurås (2002) we take an ex ante, or rational
expectations, approach, though we have a much more general speci�cation of the queueing
model and of individual preferences.6 In the rational expectations equilibrium individuals
decide whether to seek public treatment on the basis of an anticipated waiting time distri-
bution and their decisions generate the anticipated distribution. By contrast to Goddard
et al. (1995), this approach has the advantage of yielding an analytically tractable equi-
librium steady state distribution of waiting times for the public system which can be used
to examine the welfare properties of payment schemes.7

We derive �rst and second-best payment schemes for a public hospital taking into
account their e¤ects on the hospital�s choice of quality, the number of beds and its service
rate, and their impacts on the equilibrium waiting time distribution. In the �rst best,
when a prospective price is combined with payments related to any two of quality, beds,
and service rate, the �rst best price per patient treated is less than the marginal social

5There are stochastic waiting time models of hospitals in the operations research literature (see, e.g.,
Worthington (1987, 1991) and the survey by Fomundam and Herrmann (2007)). But none of these allow
for balking, i.e., for patient decisions to join the waiting list being a¤ected by the distribution of waiting
times.
Some of the queuing literature does consider endogenous arrival processes or balking (Hassin and Haviv,

2009). Analyses of pricing have focussed on the use of user charges to in�uence demand and curb congestion,
rather than on provider prices to encourage supply and quality. For economic analyses of user charges in
stochastic queueing models see Edelson and Hildenbrand (1975) and Naor (1969).

6For example, we allow demand to depend on the distribution of waiting times not just on the mean
waiting time.

7The assumption also explains the purchase of supplementary insurance against the cost of private
treatment by individuals before they fall ill. This decision must be made ex ante and so be based on
unconditional expectations about the distribution waiting times, not the distribution conditional on the
number waiting at the date the individual falls ill.
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bene�t per additional patient. This di¤erence is larger the stronger the hospital�s degree
of altruism, the greater the marginal cost of public funds, and the greater is the e¤ect of
waiting lists and waiting times on lost earnings due to waiting for care. With a prospective
price and one other instrument the optimal second best price per patient treated is higher
than the �rst best price to compensate for the fact that only one of the hospital decisions
(quality, service rate, number of beds) is directly incentivised. Only if the welfare function
respects patient preferences over waiting time and quality, all patients are willing to trade
o¤waiting time and quality at the same rate, and if there are no lost earnings from waiting
for treatment, can a prospective output price yield the �rst best quality and service rates
in the absence of other policy instruments.

In the Section 2 we describe the stochastic queueing process and patient choices be-
tween public and private treatment, examine the e¤ects of hospital choice of quality and
supply decisions on the equilibrium demand and waiting time distribution, and set out the
welfare function. In Section 3 we derive the �rst best hospital �nancing scheme when the
regulator has a su¢ cient set of instruments. In Section 4, we limit this set and derive and
discuss second and third best pricing rules. Section 5 compares stochastic and determin-
istic waiting time models and shows that the deterministic speci�cation is unsatisfactory
as a model of hospital behaviour and hence as a the basis for a welfare analysis of optimal
hospital payment systems. Section 6 concludes.

2 Model

2.1 Queueing model

We use a general model of the queueing process which includes some of the standard
stochastic queueing models as special cases.8 However, unlike most queueing models
we allow for the fact that demand (the arrival process) depends on the distribution of
waiting times. Our focus is on obtaining a tractable analytical model of the resulting
market equilibrium as a basis for deriving �rst and second-best payment schemes for
public hospitals.

We assume that patients require elective treatment for a non-epidemic condition with
probability �. All patients have the same severity and health gain from treatment and
there is no prioritisation of patients who are treated in order of arrival on the waiting
list: the queue discipline is ��rst come, �rst served�. The mean rate of arrivals (patients
joining the waiting list) per unit of time is �.

The hospital has k beds allowing it to treat k patients simultaneously. A patient�s
length of stay once admitted is uncertain though the hospital can in�uence it by varying
sta¢ ng levels, theatre hours, and better coordination between departments. We sum-
marise these supply decisions by �. Both k and � will a¤ect the distribution of the length
of time a patient waits on the list to be treated. � will also e¤ect the distribution of length
of stay for patients when admitted. Note that although for de�niteness we interpret k,�
as hospital decisions on beds and service rate they could be any hospital decisions shifting
the distribution of waiting times.

8See Taylor and Karlin (1985, ch 9) or Gross et al. (2008, ch 2) for an introduction to queueing theory.
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Because the arrival rate and length of stay are random, the time between being placed
on the waiting list and admission to the hospital is also random. We assume that the
stochastic processes governing additions to the list and length of stay imply that the
total time w between referral to the hospital and completed treatment has a steady state
distribution function

H(w;�; k; �), H� < 0;Hs > 0 (s = k; �): (1)

Thus increases in � and reductions in k and � produce �rst degree stochastic dominating
changes in the distribution of waiting times, implying that the mean wait �w is increasing
in the referral rate and decreasing in (k; �):

�w =

Z 1

0
wdH(w;�; k; �) = �w(�; k; �); �w� > 0; �ws < 0 (s = k; �): (2)

More importantly for our purposes, (1) implies that under the assumption that patients
prefer shorter waiting times, increases in � and reductions in k or � reduce the expected
utility of patients who decide to join the queue.

Table 1. Symbols and de�nitions
Symbol De�nition
� probability of ill health
� demand for public hospital (referral rate)
�; k public hospital supply decisions: service rate, number of beds
w; �w random, mean wait for public hospital
H(w;�; k; �) waiting time distribution function
q quality in public hospital
y income
F (y) income distribution function
u(y; q; w) utility if ill and treatment in public hospital after wait of w
�u(y; q; �; k; �) expected utility if ill and treatment in public hospital
uN (y) utility if not ill
v = ��u+ (1� �)uN expected utility if treatment in public hospital when ill
vo(y � ) expected utility with private insurance at premium 
ŷ threshold income: choice of public hospital if y � ŷ
B(q; �; k; �) aggregate patient welfare
cH(q; �; k; �) public hospital expected cost
cI(q; �; k; �) expected total earnings loss due to waiting

Our results hold for all queuing systems which yield a waiting time distribution sat-
isfying (1). One speci�c, and relatively straightforward, example is the M=M=k system9

in which the number of arrivals has a Poisson distribution with mean rate �, the length
of stay has a negative exponential distribution with parameter �, and there are k servers
(beds), with � < k�, so that the mean number of patients joining the waiting list is less
than the mean number who are treated per unit of time. When k� exceeds the arrival

9M=M=k is the Kendall notation for a queueing system with Markov (memoryless) arrivals, Markov
service time and k servers.
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rate �, there is a steady state for the queueing system such that the probabilities for a
given number of patients in the system (either waiting or being treated) are well-de�ned.
From these, one can derive the probability of a patient being admitted without waiting,
�0(�; k; �) (�0� < 0, �0k > 0, �0� > 0) as well as the distribution for the waiting time
when all beds are occupied. The distribution of the total waiting time (time on the list
plus and time under treatment) is the convolution of two negative exponential distribu-
tions and the mean wait is �w(�; k; �) = 1

� +
1��0
k��� . In the simple but instructive M=M=1

system the expected wait is �w(�; �) = 1
��� . In the Appendix (Theorem A.1) we prove

that the M=M=k system has a distribution of waiting times satisfying (1).

2.2 Patients

A compulsory public health insurance system covers the costs of treatment in the public
hospital. Income y per unit of time is distributed over [ymin; ymax] with distribution func-
tion F (y). We assume that a patient waiting for treatment is unable to work but is fully
reimbursed by the social insurance system for foregone earnings of w � y.10

Utility when ill and treated in the public hospital with quality q after a time w is

u = u(y; q; w); uy > 0; uq > 0; uw < 0:

u(�) is a cardinal function which is increasing and concave in y and q and decreasing in
w.11 We assume usually that there is a single dimension of quality but also consider the
implications of multiple quality dimensions. We normalize the quality variable so that the
minimum quality is q = 0. Quality q re�ects aspects of the hospital stay and treatment
that alter utility but do not a¤ect length of stay. Examples might be the extent to which
patients receive adequate pain management, are informed about the diagnosis, treated
with respect by sta¤, and aspects of hotel services, such as privacy, visiting hours, and
quality of food. The adoption of minimally invasive surgery techniques, nursing intensity
or e¤ective hygiene which reduce the risk of acquiring hospital infections, are interpreted
as e¤orts to reduce average length of stay and are captured by the treatment intensity �.

Waiting time in the public hospital is uncertain and expected utility when ill for a
patient who decides not to take out private health care insurance and to be treated in the
public hospital is

�u(y; q; �; k; �) =

Z
u(y; q; w)dH(w;�; k; �); �u� < 0; �us > 0 (s = k; �):

The �rst order stochastic dominance properties of H and the assumption that patients
dislike waiting (uw < 0) imply that expected utility is decreasing in the arrival rate and
increasing in k and �.12

10Allowing the proportion of income lost whilst waiting to be less than one or to vary with income or
to be jointly distributed with income would not change the results substantively.

11 In general, patients may distinguish between time spent on the waiting list and time spent in the
hospital til discharge. We ignore this distinction because it would unnecessarily complicate the model
without a¤ecting its main results.

12 In their seminal paper, Lindsay and Feigenbaum (1984) assume that the e¤ect of waiting time is
captured by exponential discounting: u(y; q)e��w. With these preferences and uncertain w expected
utility is u(y; q)Ee��w = u(y; q)JH(��), where JH(��) is the moment generating function for distribution
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We sometimes consider two benchmark cases of patient preferences over public treat-
ment. In the �rst case preferences are quasi-separable (QS) so that the marginal rate of
substitution between quality and waiting time is independent of income. Equivalently,
the marginal rates of substitution between any pair of q; �; �; k are independent of income

�u =

Z
[a1(y) + a2(y)r(q; w)]dH(w;�; k; �) = a1(y) + a2(y)R(q; �; k; �): (3)

with R(q; �; k; �) def=
R
r(q; w)]dH(w;�; k; �).

In the second special case (LN preferences) u is linear in w so that citizens only care
about the expected wait:

�u =

Z
[t1(y; q) + t2(y; q)w]dH(w;�; k; �) = t1(y; q) + t2(y; q) �w(�; k; �): (4)

With LN preferences the marginal rates of substitution amongst �; �; k are independent
of income and quality.

Utility when in good health and not requiring hospital treatment uN (y) is an increas-
ing concave function of income with uN (y) > u(y; q; w) (all y; q; w), so that immediate
treatment never makes a patient better o¤ than if healthy. Expected utility from not
taking out private health care insurance and being treated in the public hospital when ill
is

v(y; q; �; k; �)
def
= ��u(y; q; �; k; �) + (1� �)uN (y); vy > 0; v� < 0; vz > 0 (z = q; k; �):

There is also a private hospital sector which provides care with a low certain wait wo

and higher quality qo than the public hospital. Individuals who know they will prefer
to use the private sector when ill buy full cover supplementary private insurance at an
actuarially fair price . Thus their utility when ill is uo = u(y � ; qo; wo) = uo(y � )
and utility when in good health is uN (y � ). Expected utility from taking out private
insurance and being treated in the private hospital is

vo(y � ) def= �uo(y � ) + (1� �)uN (y � ):

We assume that vy(y; q; �; k; �) < voy(y � ), which holds if there is declining marginal
utility of income, weak Edgeworth complementarity between income and quality of treat-
ment (uyq � 0) and uyw � 0. Hence there is a threshold income level ŷ (assumed to be in
the interior of [ymin; ymax]) de�ned by

v(ŷ; q; �; k; �)� vo(ŷ � ) = 0; (5)

such that all individuals with y � ŷ choose the option of no private insurance and treatment

H(w). This has the analytical advantage of yielding tractable expressions for expected utility with some
distributions. For example, in theM=M=k system w has a negative exponential distribution and JH(��) =
k���+��0
k���+� . However, the utility function is convex in w implying that a mean preserving spread in the
distribution of w would increase expected utility: the patient would be better o¤ with a riskier waiting
time distribution.
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in the public hospital when ill. The threshold income ŷ(q; �; k; �) has derivatives

ŷz(q; �; k; �) = � vz(ŷ; q; �; k; �)

vy(ŷ; q; �; k; �)� voy(ŷ � )
> 0; (z = q; k; �) (6)

ŷ�(q; �; k; �) = � v�(ŷ; q; �; k; �)

vy(ŷ; q; �; k; �)� voy(ŷ � )
< 0: (7)

2.3 Rational expectations equilibrium

Since individuals fall ill at a rate � and choose the public hospital if and only if they
have y � ŷ(q; �; k; �), they join the waiting list at the rate �F (ŷ(q; �; k; �)). Hence the
equilibrium arrival rate (patient demand for public hospital care), �(q; k; �), is implicitly
de�ned by

�� �F (ŷ(q; �; k; �)) = 0:

This embodies the rational expectations assumption: the distribution H(w;�; k; �) upon
which decisions about joining the waiting list for the public hospital are based coincides
with the distribution H(w;�(q; k; �); k; �) that these decisions give rise to. Demand is
increasing in quality and supply since both increase the utility of the marginal patient:

�z(q; k; �) =
�f(ŷ)ŷz

1� �f(ŷ)ŷ�
> 0; z = q; k; �: (8)

We use e to denote equilibrium values of variables and functions. At the equilibrium
the threshold income level depends on hospital quality and supply decisions

ŷe(q; k; �) = ŷ(q; �(q; k; �); k; �);

with

ŷez = ŷz + ŷ��z = ŷz + ŷ�
�f(ŷ)ŷz

1� �f(ŷ)ŷ�
=

ŷz
1� �f(ŷ)ŷ�

2 (0; ŷz); (z = q; k; �): (9)

Using these results we have

Lemma 1 Hospital attributes z; x (z; x = q; k; �, z 6= x) have the same relative marginal
e¤ects on demand, threshold income and expected utility :

�z
�x
=
byz(q; �(q; k; �); k; �)byx(q; �(q; k; �); k; �) = byez(q; k; �)byex(q; k; �) = vez(by; q; k; �)

vex(by; q; k; �) = vz(by; �(q; k; �); q; k; �)
vx(by; �(q; k; �); q; k; �) : (10)

If utility is linear in the waiting time then it also true that

vz
vx
=
wz
wx

(z; x = �; k; �): (11)

The direct e¤ects of q and k; � on the expected utility v of those choosing the public
hospital are positive. But they all also have an indirect e¤ect in increasing � and this
reduces v. De�ning ve(y; q; k; �) = v(y; q; �(q; k; �); k; �) and using (6) and (7), the e¤ect
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of z = q; k; � on the expected utility of those choosing the public hospital is

vez(y; q; k; �) = vz(y; q; �; k; �) + v�(y; q; �; k; �)�z = vz + v�
�f(ŷ)ŷz

1� �f(ŷ)ŷ�
;

= vz
1 + �fŷz

�
v�(y;q;�;k;�)
vz(y;q;�;k;�)

� v�(ŷ;q;�;k;�)
vz(ŷ;q;�;k;�)

�
1� �f(ŷ)ŷ�

: (12)

Thus we have

Proposition 1 In equilibrium an increase in z = q; k; � will make all users of the public
hospital better o¤ if the marginal rate of substitution of z for � is constant or increasing
with income.

The marginal rate of substitution of z for � (�v�=vz) is the increase in z required to
compensate the individual for an increase in �. For the marginal individual with income
ŷ we know that vez(ŷ; q; k; �) > 0 (z = q; k; �) and so, with an increasing marginal rate
of substitution, all individuals with y < ŷ are also made better o¤ by an increase in z
despite the induced increase in demand. The condition in Proposition 1 is satis�ed for
QS preferences (3). From Lemma 1 (11), the condition in Proposition 1 is also satis�ed
for z = k; � (but not for q) for LN preferences (4).

2.3.1 Equilibrium mean wait

Denote the equilibrium mean waiting time as

we(q; k; �) = �w(� (q; k; �) ; k; �):

An increase in quality increases demand and so always increases the equilibrium mean
waiting time

weq(q; k; �) = �w�(�(q; k; �); k; �)�q > 0: (13)

However, it is possible that the expected waiting time increases after an increase in supply
because it also induces a change in demand13

wez(q; k; �) = �wz(�(q; k; �); k; �) + �w�(�(q; k; �); k; �)�z; (z = k; �) (14)

This possibility would be worrying if we were considering a market in which the money
price varies to equate demand and an exogenous supply: the only way in which price could
increase following an increase in exogenous supply would be if demand was increasing in
the price.

In the market for the public sector hospital, demand depends on the distribution of
waiting times. In general we cannot interpret the mean wait as the price which adjusts to
clear the market and hence need not be concerned about whether an increase in supply
reduces or increases the expected wait. What matters is the demand response to an
exogenous supply increase and, as we showed above (see (8) and (9)), an increase in

13Braess (1968) demonstrated that adding an additional connection in a road network can increase the
journey time of all users. Cohen and Kelly (2005) provide an example of a stochastic queuing network in
which adding an additional route increases the mean wait of all users.
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supply induces a change in the distribution of waiting times which increases the expected
utility for the marginal patient choosing public hospital and so increases demand.

To ensure that wez(q; k; �) < 0 (z = k; �) requires further restrictions on preferences or
on the distribution of waiting times generated by the queueing system.

Proposition 2 The equilibrium expected waiting time is decreasing in z = �; k if (a)
preferences are linear in waiting time (4) or (b) equal increases in the arrival rate � and
in supply z leave the mean waiting time unchanged ( �wz = � �w�).

The proofs are in the Appendix. One example of a queueing process satisfying the
second condition isM=M=1.14 We stress that none of the subsequent analysis requires the
assumption that an increase in supply reduces the equilibrium mean waiting time, though
it is sometimes useful in interpreting some of the results on optimal pricing rules.

2.3.2 Equilibria in deterministic and stochastic models.

Almost all waiting time models in the health economics literature assume that both de-
mand and supply and hence the waiting time are certain. The purpose of this section is
to highlight some qualitative di¤erences with our approach by comparing simple versions
of the stochastic and deterministic waiting time models.

Suppose that the stochastic queueing system is M=M=1 with a single server and an
exponential distribution of waiting times and that patients have linear preferences (4) and
so are concerned only with the expected waiting time �w which in the M=M=1 system is
just �w = 1=(� � �). Hence demand is �(q; �w), with �q > 0, � �w < 0. In Figure 1 , with
the service rate set at �0 the expected waiting time �w = 1=(�0� �) increases with � from
(1=�0) at � = 0 and tends to in�nity as �! �. Because demand depends on the mean
waiting time, the equilibrium is determined by the intersection of the downward sloping
demand curve �(q0; �w) and the upward sloping expected waiting time locus �w = 1=(�0��).
The equilibrium mean wait �w0 and the equilibrium expected number of patients treated
per period is �0 = �(q0; �w0).15 Note that the expected output (number of patients treated
per period) is equal to expected demand �(q0; �w0) and strictly less than the service rate
�0 which is the maximum possible expected output.

Suppose that a reduction in quality from q0 to q1 induces a parallel downward shift in
the demand curve to �(q1; �w). The new equilibrium is �w1 with lower mean waiting time
and a smaller expected number of patients �1 = �(q1; �w1) treated.

Now consider a deterministic waiting time process. Since both demand and service
times are certain so is the waiting time. In each period nature randomly picks a proportion
� of patients to become ill, so that the number falling ill each period is certain but each
patient faces the probability � of falling ill. Expected utility for a patient who will choose
the public hospital when ill is

vD(y; q; wD) = �u(y; q; wD) + (1� �)uN (y);
14 In a "one bed"-hospital, w = 1

��� so that w� = �w�.
15 In the usual stochastic queueing model demand is exogenous�there is no balking by patients, and the

equilibrium mean wait is determined by the intersection of the �w = 1=(�0 � �) locus and the vertical line
at the exogenous arrival rate.
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where wD is the certain wait in the deterministic system. To ensure that the demand curve
is the same as in the stochastic case shown in Figure 1 we assume that patient preferences
are also given by (4). The certain demand for treatment in the public sector is

�D(q; wD) = �F (ŷD(q; wD));

where the threshold income ŷD(q; w) is de�ned by

vD(y; q; wD)� V o(y � ) = 0:

Hence in Figure 1 LN preferences ensure that the deterministic and stochastic demand
curves are identical: �D = �(q; wD) = � (q; �w).

Figure 1. Equilibria in stochastic and deterministic waiting time models. w
expected waiting time in stochastic model, wD certain waiting time in deterministic
model, �(q; w), expected demand in stochastic model, �(q; wD) certain demand in

deterministic model.

We denote the certain supply of treatments per unit of time as sD. This is a function
of hospital decisions a¤ecting length of stay, number of beds and so on. To compare
the stochastic and deterministic models we assume that the certain supply is equal to the
number of beds times the service rate: sD = k�, which in the special M=M=1 case in
Figure 1 is just sD = �0.

With vwD < 0 the waiting time adjusts to clear the market: if �D exceeds sD the
number waiting to be treated will increase and so will the waiting time, reducing the
in�ow of new patients until �(q; wD) = sD. Conversely if �D is less than sD the waiting
time will fall until either �(q; wD) = sD or �(q; 0) � sD. Since supply has a positive
marginal cost the hospital will never choose to have sD > �(q; 0).

In Figure 1 the initial equilibrium waiting time wD0 in the deterministic case is given
by the intersection of �(q0; wD) and the vertical supply curve at sD = �0. The certain
equilibrium waiting time is less than the mean wait in the stochastic equilibrium because
with certain demand and supply there will never be unused capacity: e¤ective supply is
larger in the deterministic case and equal to the certain demand.
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Increases in supply have the same qualitative e¤ects in the deterministic model and the
stochastic models: equilibrium waiting time falls and the (expected) number of patients
treated increases.16 But the implications of a demand shift are di¤erent. An reduction in
quality from q0 to q1 with unchanged supply will reduce the equilibrium certain waiting
time to wD1and the equilibrium expected waiting time to �w1. In the stochastic case the
equilibrium expected output (patients treated) will also decrease to �1 = �(q1; �w1). But
in the deterministic case there is no reduction in equilibrium output which, by assumption
is equal to the unchanged supply. The deterministic equilibrium is re-established solely
by a reduction in waiting time so that demand is equated to unchanged supply. Thus in
the deterministic case a hospital whose revenue varies only with the number of patients
treated could increase its pro�t by reducing quality, shifting the certain demand curve
downwards, and allowing the certain waiting time to fall to keep demand and output
unchanged. In the stochastic waiting time speci�cation the hospital would lose revenue
if it reduced quality. We examine the implications of this crucial di¤erence between
stochastic and deterministic waiting time models for deriving optimal hospital payment
rules in Section 5.

2.4 Welfare function

2.4.1 Patient welfare

The patient welfare function is additive over individuals, with the bene�t to an individual
being be(y; q; k; �) = b(y; q; �(q; k; �); k; �), (y 2 [ymin; ymax]) and total patient welfare

Be(q; k; �) =

Z ŷe(q;k;�)

ymin
be(y; q; s)dF (y) +

Z ymax

ŷe(q;k;�)
bo(y; qo)dF (y);

with, for z = q; k; �,

Bez(q; k; �) =

Z ŷe(q;k;�)

ymin
bez(y; q; k; �)dF (y) + [b

e(ŷ; q; k; �)� bo(ŷ � ; qo)] f (ŷe) ŷez: (15)

We allow for the fact that the individual bene�t b(y; �) which the regulator takes into
account, may not coincide with the expected utility ve(y; �) on which citizens with income
y base their decision. Hence, the welfare of the marginal patient may not be the same
in the public and private hospital.17 The speci�cation also re�ects the assumption that
it is not possible to directly a¤ect the decision to seek public treatment except via q; k
or �, so that ŷ is determined by patient decisions, not by the regulator. In addition,
we assume that the level of q; k and � in the public sector does not a¤ect the insurance
premium, quality, or the waiting time in the private sector. With a utilitarian welfare
function respecting patient preferences be(y; q; k; �) = ve(y; q; k; �), bo = vo(y�) and the

16Although by less than the capacity increase in the stochastic model since �� < 1 (cf (8)).
17 For example, the regulator may be of the opinion that the individual bene�t should not vary with in-

come (b(q; k; �; �)), or that the marginal bene�t of attributes should be income independent (bz(q; �; k; �)),
or that the marginal willingness to pay should be independent of income: bz(y;q;k;�;�)

by(y;q;k;�;�)
= bz(q;k;�;�)

by(q;k;�;�)
. This

last is similar to what Tobin (1970: 264) called speci�c egalitarianism (�the view that certain speci�c
scarce commodities should be distributed less unequally than the ability to pay for them.�)
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last term in (15) vanishes because the marginal patient is indi¤erent between the sectors
(see (5)).

In one speci�cation of the welfare function, with implications which we discuss in
Section 3, patients have quasi separable preferences (3) which are partly respected by the
welfare function. The welfare of a patient choosing the public sector is

be(y; q; k; �) = �[m0(y) +m1(y)m2(Re(q; k; �))] + (1� �)mN (y); m2
R > 0: (16)

In this case the welfare function respects patient preferencesRe(q; k; �) =R(�(q; k; �); q; k; �)
over characteristics of hospital treatment in the sense that the regulator�s marginal rate of
substitution of q for k or � is the same as that of the patient. But the monetary valuation
of hospital treatment characteristics, and so the willingness to pay, may di¤er.

2.4.2 Costs

The second component of the welfare function is the public hospital�s expected cost

cHe(q; k; �) = cH(q; �(q; k; �); k; �):

We assume that increasing quality is costly (cHq > 0) as are supply decisions (c
H
z > 0; z =

k; �) which induce a more favourable distribution of waiting times. We also allow for the
possibility that expected hospital cost depend on the expected number of patients treated
(�), for example because each patient treated requires drugs and other consumables.18

The marginal cost of expected output is cH� > 0 and so c
He
z (q; k; �) = cHz + c

H
� �z > 0, (z =

q; k; �). We ignore, until section 4, the possibility that the cost of producing treatments
of given quality can be a¤ected by cost reducing e¤ort.

We assume that patients do not work whilst waiting and are fully compensated for
lost earnings with the cost of lost output borne by a social insurance fund. We normalise
labour supply when healthy to 1. Since the mean wait is we (q; k; �), the expected total
compensation payment from the insurance fund (cIe) in equilibrium is

cIe(q; k; �) = �we (q; k; �)

Z ŷe(q;k;�)

ymin

ydF (y):

An increase in attribute z(= q; k; �) alters expected insurance cost both by changing the
expected waiting time (waiting time e¤ect) and by changing the number of individuals
waiting (waiting list e¤ect):

cIez = �wez

Z ŷe(q;s)

ymin

ydF (y) + �we (q; s) ŷef(ŷe)ŷez: (17)

Since ŷez > 0 (z = q; k; �), increases in quality and supply conditions induce richer patients
to join the waiting list and so increase the income loss at a given mean wait. An increase in
quality also increases the waiting time (weq = �w�(�; k; �)�q > 0) and hence always increase

18We assume that in the steady state equilibrium the expected output rate equals the expected arrival
rate �. In queueing theory, this is property is known as Burke�s Theorem (Burke, 1956) and holds for the
M=M=k system.
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the compensation payment: cIeq > 0. As we noted in section 2.3.1 in general the e¤ect of
an increase in supply on the mean waiting time is ambiguous because whilst the increase
in supply reduces the mean wait it also induces a partially o¤setting increase in demand
which increases the mean wait: wez = �wz + �w��z (z = k; �). If we make the intuitive
assumption that wez < 0 the sign of c

Ie
z is ambiguous.

The regulator�s objective function is19 ;20

Ae(q; k; �)
def
= Be(q; k; �)� (1 + �)Ce(q; k; �);

where � is the marginal cost of public funds and

Ce(q; k; �)
def
= C(q; �(q; k; �); k; �) = cHe(q; k; �) + cIe(q; k; �): (18)

In the next sections, we inquire about the optimal hospital payment schemes under
di¤erent assumptions about which hospital decisions and outcomes can be observed.

3 Optimal payment schemes

We �rst derive �rst best levels of hospital quality and supply and then examine how they
can be implemented with payment schemes.21

3.1 First best regulation

Social welfare depends on hospital decisions about treatment quality (q), treatment inten-
sity (�) and the number of beds (k). The �rst best levels of these attributes satisfy the
�rst order conditions

Aes = B
e
s � (1 + �)Ces = Bq � (1 + �)Cs + [B� � (1 + �)C�]�s = 0; (s = �; k), (19)

Aeq = B
e
q � (1 + �)Ceq = Bq � (1 + �)Cq + [B� � (1 + �)C�]�q � 0; q � 0: (20)

The condition on q holds with complementary slackness: we allow for the possibility that
the �rst best quality is minimal (q = 0) but ignore the trivial solution where no patients

19One set of assumptions which yields this form is that the regulator is only concerned with patient
welfare and tax �nanced public expenditure, and sets a lump sum tax or subsidy so that provider just
breaks even �nancially after any incentive payments. Or welfare is the sum of patient bene�t and the
hospital utility and the lump sum tax or subsidy drives hospital utility to zero.

20 Implicitly, we renormalise patient bene�t to make it commensurable with the currency that costs are
measured in. Since both patient utility (v) or the regulator�s perception of that utility (b) are cardinal
functions, these can be rescaled by a positive constant.
Note that we could reformulate our model in terms of the willingness to pay for public treatment, P (y; �),

de�ned as v(y � P (y; �); �) = v0(y � ) and measure social surplus as
R ŷe(q;�)
ymin

P e(y; �)dF (y). The critical
citizen would have a willingness to pay P (by; �) = 0. Paternalistic social preferences would replace P e(y; �)
by some other WTP function, also measured in the same currency as income and costs.

21Strictly, we are considering the second best because we are not giving the regulator the means to
directly control patient demand. Such control would correct for the externality that arises because the
marginal patient ignores the e¤ect of her decision to join the waiting list on the average waiting time. See
Noar (1969), Littlechild (1974), and Edelson and Hildebrand (1975) on policies to control decisions to join
the queue.
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are treated in the public sector (� = 0 and k = 0).
To examine the circumstances in which �rst best quality is positive we use (19) to

substitute [Bs � (1 + �)Cs]=�s for [B� � (1 + �)C�] in (20) to get

Aeq =

�
Bq �Bs

�q
�s

�
� (1 + �)

�
Cq � Cs

�q
�s

�
(s = �; k). (21)

The rate at which s must be reduced to keep demand constant after an increase in q is
(��q=�s) so that �rst best quality is positive if, starting from q = 0, the net increase in
patient welfare from such a reform exceeds the net increase in production and insurance
cost.22

From Theorem A.3 in the appendix

Beq �Bes
�q
�s
= Bq �Bs

�s
�q
=

Z ŷ

ymin

bs(y; �)
�
bq(y; �)
bs(y; �)

� vq(ŷ; �)
vs(ŷ; �)

�
dF (y): (22)

We can sign the �rst term in (21) under some assumptions about welfare and patient
preferences. If the welfare function respects patient preferences in the sense that the
regulator�s marginal rates of substitution between quality and supply variables are equal
to those of patients then (22) is positive if the average marginal welfare valuation of q
in terms of s is greater than the marginal valuation revealed by the demand responses of
the marginal patient who is indi¤erent between the public and private hospital. If patient
preferences are quasi-separable and are respected in the welfare function then (22) is zero:
the reform does not increase patient bene�t.

Next consider the net cost implications of increasing q and adjusting s (s = �; k) to
keep demand constant. From (18) and Lemma A5 (A.8), we have

Cq � Cs
�q
�s

=

�
cHq � cHs

�q
�s

�
+

�
cIq � cIs

�q
�s

�
;

=

�
cHq � cHs

�q
�s

�
� � �ws

Z ŷ

ymin
ydF

�q
�s
(s = �; k).

If the marginal hospital cost of quality at zero quality is small then the overall e¤ect of the
reform is to reduce hospital cost. Since the reform keeps demand constant the number of
people who require income compensation is unchanged and the e¤ect of the reform is to
increase expected insurance cost because the reduction in attribute s increases the average
wait. Thus while the overall e¤ect of the reform on cost is ambiguous, we may expect it
to be negative if minimal quality in the public hospital encourages most citizens to take
out private insurance. So we conclude that �rst best quality is more likely to be above
its minimal level when (i) patients with lower incomes have a higher marginal valuation
of quality in terms of s, (ii) the marginal hospital cost of quality is low when quality is
minimal, and (iii) the e¤ect of increases in the equilibrium wait on the total income lost
due to waiting is small at minimal quality.

22Equivalently, multiplying (19) through by �q
�s
and subtracting from (20) yields (21). By construction,

this reform gets rid of the indirect e¤ects on B and C due to changes in demand so that Be
q �Be

s
�q
�s
= Bq

�Bs �q�s and C
e
q � Ces

�q
�s
= Cq �Cs �q�s :
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In what follows, we will assume that �rst best quality always exceeds the minimal level.

3.2 First best payment schemes

In general, we require as many policy instruments with linearly independent e¤ects on
hospital decisions as the hospital has decision variables. The hospital makes decisions
on q, � and k which result in an expected number of treatments, �(q; �; k), as well as an
expected waiting time we(q; �; k). We will assume that it is always possible to observe
output � and so to set a prospective price per completed treatment p�. It may also
be possible to attach a price to quality pq (a pay for performance scheme), a (possibly
negative) price to the average wait (p �w), and to reward supply decisions via p� and to have
a beds subsidy pk.23 With �ve instruments available to in�uence three provider decisions
there are 10 possible �rst best schemes. Given the increased use of prospective output
pricing, we examine three of the six pricing schemes which include a prospective output
price p�. In Section 4 we consider some examples of second best pricing schemes in which
there is only one other instrument available in addition to the prospective price. We then
discuss the third best prospective price when there are no other instruments. Finally,
we allow for the possibility that unobserved provider e¤ort a¤ects cost and consider cost
reimbursement rules.

3.2.1 Payment for output, beds and average length of stay

We �rst assume that the risk neutral public hospital receives a payment per patient treated,
p�, per bed installed, pk, and per unit of service rate, p� �recall that average length of
stay is 1

� . The risk neutral public hospital chooses q, k and � to maximise a weighted
sum of expected pro�t and patient welfare with � � 0 re�ecting the hospital�s degree of
concern for patients. It also receives a lump sum transfer T (possibly negative) to ensure
that it breaks even:24

max
q;k;�

p��(q; k; �) + pkk + p��� cHe(q; k; �) + �Be(q; k; �) + T (23)

First order conditions for an interior solution are

p��z + pk1(z=k) + p�1(z=�) + �B
e
z = c

He
z (z = q; k; �) (24)

where 1(�) is the indicator function equal to 1 if the condition (�) is true and equal to zero
otherwise. In the appendix (section A.5) we use a general approach to derive �rst, second
and third best prices. Here, we will focus on the main results and their interpretation.
To shorten notation, we will de�ne the residual marginal social bene�t (RMSB) of decision

z as Sez
def
= �Bez � cIez , where �

def
= 1��(1+�)

1+� . Sz denotes that part of the social welfare
e¤ect of decision z which is not internalised by the hospital. Recall that the hospital

23 In addition to the prospective output price Chalkley and Malcomson (1998) also consider linking
payment to the number of patients not treated but added to a waiting list. However, the costs of deferred
treatment for these patients is implicitly assumed to be zero and so both the �rst best and the payment
mechanism required to achieve it take no account of the costs of rationing demand.

24Hospital pro�t is � = p��(q; k; �)+pkk+p��� cHe(q; k; �)+T . For � to be zero, T = �p���pkk�
p��+ c(q; k; �). The hospital perceives T as lump sum.
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takes into account a fraction � of patient bene�t, as well as the entire hospital cost (see
(23)). Hence, Sez , is the remaining part, �discounted� by the marginal cost of public
funds. The conditions for �rst best imply that Sez > 0 (z = q; k; �). First best prices on
quality, beds and service rate would be set at Sez (z = q; k; �), the superscript e indicating
that demand responses are taken into account�a result of the fact that demand is not
directly controlled by the planner: thus Sez = Sz + S��z (z = q; k; �). However, we are
assuming that quality is not observed and that instead a price is attached to output, �,
which is a good substitute because demand (and therefore output) is sensitive to quality
of treatment. In the Appendix, we show

Proposition 3 The �rst best prices per treated patient, bed and unit of service rate are

pFB�� =
Seq
�q
; (25)

pFB�k = Sek � pFB�� �k (26)

pFB�� = Se� � pFB�� �� (27)

where all terms on the right hand sides are evaluated at the �rst best quality, service rate
and number of beds.

The �rst expression re�ects the fact that rewarding output incentivises quality choice.

Since
Seq
�q
= �

Beq
�q
� cIeq

�q
, the �rst best output price pFB�� is less than the marginal social

bene�t per patient attracted by higher quality
�
Beq
�q

�
to the extent that (i) hospitals are

intrinsically motivated, (ii) raising public funds is costly, and (iii) a quality increase results
in larger social insurance expenditure because it attracts more to public treatment if ill
and therefore increases the waiting time and the waiting list. To bring this out starkly,
suppose that the provider is not altruistic (� = 0) and that there is no loss of earnings
whilst waiting for treatment. Then (25) can be written as pFB� �q = B

e
q= (1 + �), so that

the provider�s marginal revenue from increasing quality should be less than the marginal
patient welfare from higher quality only because of the marginal deadweight cost of public
funds.

The remaining prices are adjusted for the fact that choice of beds and service rate
are also rewarded through output, and should therefore be rewarded at a lower rate than
their RMSB would require. Substituting for pFB�� , the prices for z (z = k; �) are pFB�z =
Sez � Seq �z�q and making use of (A.3) and (A.7), they can be written as

pFB�z = �

Z ŷe(q;k;�)

ymin
bq(y; �)

�
bz(y; �)
bq(y; �)

� vz(by; �)
vq(by; �)

�
dF (y)

��wz(q; k; �)
Z ŷe(q;k;�)

ymin
ydF (y) (z = k; �): (28)

The �rst term is the e¤ect of an increase in hospital decision z (z = k; �) on expected
patient bene�t when quality is simultaneously reduced in order to keep demand, �, con-
stant. bzbq is the regulator�s perception of citizen y�s marginal valuation for quality in terms

of hospital attribute z, while bvzbvq is the corresponding valuation for individual ŷ. If the
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regulator respects individual preferences, bz(y;�)bq(y;�) =
vz(y;�)
vq(y;�) and the �rst term will be positive

(negative) if the marginal valuation for quality in terms of income increases uniformly
faster (slower) with income than that for attribute z (cf (A.6)). If both increase equally
fast, which is the case of quasi-separable preferences, the �rst term vanishes. The �rst
term also vanishes when the regulator�s perception of the preferences of the person with
income ŷ respects their quasi-separable structure. The second term is the reduction in
sickness leave compensation because of a reduction in average wait. Both e¤ects call for
a positive incentive for supply decision z (z = k; �).

3.2.2 Payment for patients, beds, and quality

Next suppose that the prospective output price is combined with prices linked to quality
and the number of beds. The rationale given for the pricing structure stated in Proposition
3 immediately suggests

Proposition 4 The �rst best prices for output, beds, and quality are

pFB��� =
Se�
��

pFB��k = Sek � pFB��� �k

pFB��q = Seq � pFB��� �q

where all terms on the right hand sides are evaluated at the �rst best quality, service rate
and number of beds.

Since � is not priced, rewarding treated patients becomes a substitute for rewarding
the service rate. The rewards per bed and quality unit re�ect the MRSB, marked-down
to take into account that these attributes are indirectly rewarded through the prospective
output price.

3.2.3 Payment for output, beds and waiting times

Now consider combining a prospective price for output with a beds subsidy and a price
linked to the mean waiting time. In the hospital�s objective function (23) pwwe(q; k; �) is
substituted for p��, while the generic �rst order condition for attribute z turns into

p��z + pww
e
z + pk1(z=k) + �B

e
z = c

He
z (z = q; k; �):

In the appendix, we prove

Proposition 5 The �rst best prices for mean wait, treated patients, and beds are

pFB+w =

�
� dS

d�

���
d�=0;dk=0

�
(�w�)

; (29)

pFB+� =
Seq
�q
� pFB+w w�; (30)

pFB+k = Sek � pFB+� �k � pFB+w wk: (31)
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The substitution of w for � in the reward scheme (27) intuitively replaces pFB�� =�
� dS

d�

���
d�=0;dk=0

�
with (29). Since a reward for the waiting time now indirectly rewards

output as well to the extent that the average wait is responsive to demand (w� > 0), this
leads to a smaller �rst best reward per patient treated as given by (30). The reward per
bed is adjusted accordingly (31).25

Since w� < 0, it transpires from (29) that pFB+w should take the opposite sign of pFB�� ,

given by (28). Thus if b�(y;�)bq(y;�) is su¢ ciently smaller than
bv�bvq (e.g., when b�(y;�)

bq(y;�) =
v�(y;�)
vq(y;�) and

the marginal valuation for the service rate in terms of income rises su¢ ciently faster with
income than that for quality) low income people are regarded to be better o¤ with higher
quality and length of stay. It is then optimal to have a negative price on the service rate
and therefore a positive price on the average wait. The waiting time is then a signal of
quality and length of stay, and subsidising it will promote both attributes.

4 Second and third best prospective output pricing

4.1 Second best output and mean wait prices

We now assume that the regulator can observe only the output and the mean waiting
time. The hospital�s objective function is now p��(q; k; �) +pww

e(q; k; �) +�Be(q; k; �)
�cHe(q; k; �) and its choices satisfy the �rst order conditions

p��z + pww
e
z + �B

e
z = c

He
z (z = q; k; �): (32)

Before inquiring about the optimal second best price levels for p� and pw, notice that
the hospital is left with some discretion in the second best since it makes decisions on
three attributes, q; k and �, while incentives are provided on two outcomes, � and w. In
response to a marginal change in the output price, the three attribute levels are adjusted,
@z
@p�

(z = q; k; �), resulting in an increase in the expected number of patients treated,
@��

@p�

def
=
P
z �z

@z
@p�

and a change in the expected wait @w�

@p�

def
=
P
z w

e
z
@z
@p�
.26 Likewise, a

marginal change in pw triggers responses @z
@pw

(z = q; k; �) that result in an increase in the

25 It can be shown that 0@ pFB+�

pFB+k

pFB+w

1A =

0B@ 1 0 �w�
w�

0 1 �wk
w�

0 0 1
w�

1CA
0@ pFB��

pFB
�

k

pFB��

1A ;
indicating the recursive relationship between (25)-(27) and (29)-(31). The ratios �wz

w�
(z = �; k) adjust

the �rst best rewards for output and bed in a way that keeps the waiting time constant, and the reason is
that w is now separately incentivised. A third way of writing the �rst best price for output is by using
the equilibrium waiting time e¤ects wez (z = �; q):

pFB+� =
(�we��q)

��weq + (��qwe�)
Seq
�q
+

weq��

��weq + (��qwe�)
Se�
��
;

i.e., a weighted average of the MRSB for quality and service rate, the two hospital attributes that are not
directly rewarded by the present scheme.

26The equilibrium demand and expected waiting time are ��(p�; pw) = �(q(p�; pw); k(p�; pw); �(p�; pw))
and w�(p�; pw) = we(q(p�; pw); k(p�; pw); �(p�; pw)).
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expected wait, @w
�

@pw

def
=
P
z w

e
z
@z
@pw

and a change in expected output @��

@pw

def
=
P
z �z

@z
@pw

.27

Consider now the induced response change in output following an increase in p� when w�

is kept �xed. This hospital response is given by @��

@p�
� @��

@pw

�
@w�

@pw

��1
@w�

@p�
.28 Likewise,

the optimal change in bed use following an increase in p� when w� is kept �xed, is given

by @k
@p�

� @k
@pw

�
@w�

@pw

��1
@w�

@p�
. As a result, when w� is kept constant, the induced response

e¤ect on outcome � per unit change in decision k can be de�ned as

�irk jdw=0
def
=

@��

@p�
� @��

@pw

�
@w�

@pw

��1
@w�

@p�

@k
@p�

� @k
@pw

�
@w�
@pw

��1
@w�
@p�

: (33)

In the same vein, we can de�ne the induced response e¤ect on outcome we per unit
change in k when keeping � �xed :

wirk jd�=0
def
=

@w�

@pw
� @w�

@p�

�
@��

@p�

��1
@��

@pw

@k
@pw

� @k
@p�

�
@��

@p�

��1
@��

@pw

: (34)

We can now state our second main result.

Proposition 6 The second best prices for output and waiting time that decentralise the
second best allocation are respectively

pSB� = pFB++� +
pFB++k

�irk jdw=0
, and (35)

pSBw = pFB++w +
pFB++k

wirk jd�=0
: (36)

where pFB++� , pFB++w and pFB++k are the �rst best prices per treatment, waiting time and
bed as speci�ed by (30), (29) and (31), but evaluated at the second best allocation (q; k; �).

We interpret these pricing rules as follows. In second best, the number of beds can no
longer be directly incentivised. Therefore the prices on output and average wait should
take over the rôle that pk plays in �rst best. The optimal SB price for output is the
FB price plus the FB reward per patient attracted by an extra bed. However, since the
waiting time is steered through pw, the proper number of attracted patients to use is the
one given by �irk jdw=0. Similarly, the second best price per wait is the �rst best price minus
the �rst best reward per week reduction in average wait by installing an extra bed and

27Both @��

@p�
> 0 and @w�

@pw
> 0 follow immediately from the second order condition for an optimal choice

of z (= q; k; �).
28The direct best response is @��

@p�
. However, since dp� also triggers a change in waiting time @w�

@p�
and

since w needs to be kept constant, it is as if the (virtual) price per wait is reduced with
�
@w�

@pw

��1
@w�

@p�
, which

then triggers an indirect response of �� equal to � @��

@pw

�
@w�

@pw

��1
@w�

@p�
. The virtual price interpretation is

due to Neary and Roberts (1980).
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keeping output constant (assuming wirk jd�=0 < 0). Thus the fact that w (�) is still priced
calls for the use of induced responses in the pricing rule for � (w) that are conditioned on
the outcome w (�).

4.2 Can a price on output and waiting time achieve the �rst best?

From Proposition 6 it transpires that the second best prices pSB� , pSBw will coincide with
their �rst best counterparts if pFB++k = 0. The price pk enables the regulator to directly
in�uence the hospital choice of (�; k). Note �rst that if the regulator can use p� and pw,
he can control both demand (and therefore the length of the waiting list) and the average
waiting time, and therefore the social insurance cost cI . Thus from this perspective, there
is no need to in�uence the choice of (�; k). The other reason for doing so is that the
hospital ignores a fraction (1� �) of the aggregate bene�t B. This bene�t, though, will
be independent of the choice of (�; k) if preferences are quasi-separable or if they are linear
in the waiting time. In the former case, any change in either � or k accompanied by an
appropriate change in q to keep demand constant does not a¤ect patient bene�t. In the
latter case, any change in either � or k that leaves the expected wait constant will not
a¤ect patient bene�t either. Thus there is no reason for the regulator to wish to directly
in�uence the hospital choice of (�; k). Formally

Proposition 7 The �rst best allocation is achievable using only a prospective output price
and a price on waiting time if (a) individual and social preferences are quasi-separable as
in (3) and (16) or if (b) the expected waiting time is a su¢ cient statistic for the waiting
time distribution, both w.r.t. individual preferences and w.r.t. social preferences, i.e.,
u(y; q; �; k; �) = u(y; q; w(�; k; �)) and b(y; q; �; k; �) = b(y; q; w(�; k; �)).

The regulator can achieve the �rst best without the use of pk if the two instruments
were p� and pq only under the more stringent condition (b) of the proposition. In this
case the (�; k)-choice will a¤ect cI and B through its e¤ect on the expected wait. But if
preferences are linear in waiting time, the demand responses of the critical citizen depend
on the expected wait. Hence, any choice of (�; k) that leaves demand constant will have
no external e¤ects on B or cI that require internalisation via an additional instrument.

In general, when the prospective output price p� is complemented with either pk or
p�, it will not be possible to achieve a �rst best allocation. For example, if pk is used,
the margins left for the hospital are � and q. But since quality has no direct e¤ect on the
expected waiting time, any choice of (�; q) by the hospital that keeps demand constant
will always a¤ect cI . It will only be by accident that this e¤ect is exactly o¤set by the
e¤ect on (1� �)B such that direct in�uence on the choice (�; q) is required.

4.3 Third best prospective output price

If the hospital payment scheme can no longer be made contingent upon the expected
waiting time either, the regulator has only one instrument left to incentivise the hospital:
the prospective output price p�. Recall that @�

�

@p�
and @w�

@p�
are the increase in the number

of expected treatments and the change in expected wait, following the hospital�s responses
@z
@p�

to an increase in the prospective price. Then we can de�ne the unconstrained induced
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responses in � and w following the hospital responses to a marginal increase in p� as

�irk
def
=

@��

@p�
@k
@p�

and wir�
def
=

@w�

@p�
@��

@p�

: (37)

Using these de�nitions we can characterise the third-best prospective output price:

Proposition 8 The price for output that decentralises the third best allocation is given by

pTB� = pFB+++� + wir� � pFB+++w +
pFB+++k

�irk
: (38)

where pFB+++� , pFB+++w and pFB+++k are the �rst best prices per treatment and bed as
speci�ed by (30), (29) and (31) but evaluated at the third best allocation of q; � and k.

Suppose @w�

@p�
> 0 and @k

@p�
> 0. Then wir� > 0 and �

ir
k > 0 and the third best output

price is the �rst best price with two mark-ups: one equal to the �rst best reward for an
extra bed per patient attracted and another equal to the extra reward that the �rst best
price on waiting time (possible negative) would have triggered per attracted patient. Thus
the third best price for output picks up the incentives on bed installment and service rate
decisions (the latter through incentivising the waiting time). Unlike in (33) and (34) the
induced responses de�ned in (37) are no longer conditioned on a �xed wait or demand.
The reason is that the average wait is no longer separately incentivised. In this sense, the
third best output price is less sophisticated than the second best price.

The prospective output price by itself yields the �rst best only under stringent as-
sumptions:

Proposition 9 The �rst best allocation is achievable using only a prospective output price
if individual and social preferences are quasi-separable and sickness leave compensation is
zero.

With QS preferences, the only role for pw is to make the hospital aware of the con-
sequences of its choice of (�; k) for social insurance outlays. Without any sickness leave
compensation, e.g., because people can continue working while waiting for treatment, this
role disappears. If people had LN preferences as in (4), additional instruments are required
since (�; k) will in general a¤ect w and therefore patient bene�t.

4.4 Cost reducing e¤ort

So far we have ignored the possibility that the hospital can exert unobservable e¤ort to
reduce production cost cH . If the hospital bears all the production cost it has the incentive
to select e¢ cient cost reducing e¤ort. However, this presumes that the regulator has
a su¢ cient set of instruments available in order to provide the hospital with the right
incentives at the other margins �quality, service rate and number of beds.

If the regulator has insu¢ cient instruments to control quality, service rate and number
of beds, cost sharing will become optimal. For example, if the hospital is rewarded
per treated patient and receives a price (possibly negative) per week of average wait,
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but is not incentivised along the bed dimension, cost-sharing can be a useful second-best
instrument because it indirectly subsidises the installation of extra beds. To make this
claim more precise, suppose that the hospital is refunded a fraction ' of its production
cost cHe(q; �; k; t) where t is cost-reducing e¤ort which imposes non-veri�able cost g(t)
on the hospital. Suppose also that it receives a lump sum to ensure that it breaks even
�nancially29 and in the second best faces a prices on output and waiting time and in the
third best there is only a price on output. The cost sharing parameter and the prices
determine its decisions on q; �; k and t, which determine demand and the expected waiting
time we. De�ne the induced response marginal costs of an extra bed as

MC irk
��
d�=0

def
=

@cH�

@'

���
d�=0

@k
@'

���
d�=0

; and

MC irk
��
d�=0;dw=0

def
=

@cH�

@'

���
d�=0;dw=0

@k
@'

���
d�=0;dw=0

;

where @c
H�

@' is the ensuing increase in hospital cost when the cost-share parameter increases

and the hospital adjusts its decisions on q; �; k and t to maximise its utility, @k
@' is the

change in the number of beds and the vertical bars indicates that these induced responses
are conditioned on the output rate and, in the second best, the waiting time remaining
constant. Then we have (see Appendix):

Proposition 10 Suppose that (i) the hospital can reduce its cost by exerting an e¤ort
which has an unveri�able cost, (ii) the regulator rewards per treated patient and possibly
also per unit of waiting time, and (iii) the �rst-best reward per bed is pFBk and per unit of
waiting time is pFBw . Then the second-best value for the cost-sharing parameter, 'SBcs,
and the third-best value of that parameter when waiting time cannot be rewarded, 'TBcs,
respectively satisfy

'SBcs �MC irk jdw=0d�=0 = p
FB++
k ; and (39)

'TBcs �MC irk jd�=0 = pFB+++k + pFB+++w � bwirk jd�=0: (40)

where ++ (+++) indicates that the �rst-best prices are evaluated at the optimal second

(third) best values for the decision variables and bwirk jd�=0 def= @we�
@'

jd�=0
@k
@'
jd�=0

, the induced response

e¤ect of beds on the expected wait.

In second-best, when the waiting time is observable and rewardable, the responses used
to calculate the induced response marginal costs are conditional on � and w being held
constant (since both are directly rewarded). Expression (39) then shows that the optimal
second-best refund of the marginal cost of installing an extra bed should coincide to the
�rst-best bed reward; i.e., what is given as a direct subsidy in �rst-best should comes as
a cost refund in second-best. When w can no longer be rewarded, we enter a third-best

29The break-even condition includes the non-veri�able cost of e¤ort.
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situation. The proper induced marginal cost of an extra bed is then based on hospital
responses that keep � constant (because � is still directly rewarded). According to (40),
the third-best refund of the induced marginal cost of an extra bed amounts to the �rst-
best bed reward plus the extra revenue the hospital would receive through the �rst-best
waiting time reward. Thus cost sharing act as a good (but not perfect) substitute for
direct incentives at the cost of distorting the choice of cost-reducing e¤ort.

5 Optimal pricing with certain waiting time

We now contrast our results with those from a deterministic waiting time model. With the
same patient and regulator preferences over waiting time and quality as in the stochastic
case, patient welfare is

BD(q; wD) =

Z ŷD

ymin

b(y; q; wD)dF (y):

In addition to choosing quality, the hospital makes supply decisions which a¤ect the maxi-
mum number of patients who can be treated each period (sD). We do not need to specify
these decisions in detail but to retain as many similarities with the stochastic speci�cation
as possible we could assume that hospital capacity is give by the number of beds multiplied
by the number of patients treated in each bed per period: sD = k�. Whether made by the
regulator or the hospital, these decisions minimise the cost of treating any given volume
of patients at a given quality. Hence we can write the hospital cost as cHD(�D; q; sD) so
that, as in the stochastic case we allow for direct treatment costs to increase with the
number treated (cHD� > 0).

The welfare function is then

AD = BD(q; wD)� (1 + �)
�
cHD(�D; q; sD) + cDI(q; wD)

�
; (41)

where

cDI = �wD
Z ŷD(q;wD)

ymin

ydF (y)

is the insurance cost of lost working time.
The �rst best quality, waiting time, and supply are chosen to maximise (41) subject

to non-negativity constraints on quality and the waiting time and the market clearing
condition which determines the waiting time. Since supply is costly it will never be
welfare maximising to have �D > sD and so we can substitute �D(q; wD) for sD in the
hospital cost function. The �rst order conditions for a welfare maximum are

BDq � (1 + �)
�
cHD� �Dq + c

HD
q + cHDs �Dq + c

DI
q

�
� 0; q � 0;

BDw � (1 + �)
�
cHD� �Dw + c

HD
s �Dw + c

DI
w

�
� 0; wD � 0;

where the conditions on q and wD hold with complementary slackness.
There are four possible �rst best con�gurations of quality and waiting time: (i) positive

quality and waiting time; (ii) quality and waiting time both zero; (iii) positive quality and
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zero waiting time; (iv) zero quality and positive waiting time. All four con�gurations are
possible depending on the welfare function, patient preferences and the cost functions.

Consider the hospital�s choice of quality and supply when it receives only a prospective
price p�, with no direct reward for quality or penalty for waiting time. Its objective
function is �BD +p��

D �cH(�; q; sD) which is maximised by choice of q, sD and wD

subject to the market clearing constraint sD � �D(q; wD) and to non-negativity constraints
on q, wD. Given that supply is costly we can substitute �D(q; wD) for sD in the cost
function and the �rst order conditions are, ignoring the case where the hospital produces
no output,

�BDq + (p� � cHD� � cHDs )�Dq � cHDq � 0; q � 0; (42)

�BDw + (p� � cHD� � cHDs )�Dw � 0; wD � 0; (43)

where the conditions on q and wD hold with complementary slackness.
If the hospital�s optimal waiting time is positive (wD� > 0), then (43) implies that

��BDw =�Dw = (p�� cHD� � cHDs ). Substituting ��BDw =�Dw for (p�� cHD� � cHDs ), the sign
of the derivative of the hospital objective function with respect to q at q = 0, wD� > 0 is

sgn �

 
BDq

�Dq
�
BDq

�Dw

!
�
cHDq

�Dq
: (44)

Conversely if the optimal quality is positive, analogous substitutions give the same
expression for the sign of the derivative of the hospital objective function with respect to
wD at qD� > 0; wD = 0.

Hence we have

Proposition 11 There is a level of altruism �o � cHDq
�Dq

�����BDq�Dq � BDw
�Dw

������1 such that if � 2
[0; �o) the hospital will never choose to have both positive quality and waiting time when
rewarded only by a prospective output price.

The intuition is stark if altruism is zero and hospital is a pure pro�t maximiser. Sup-
pose that the hospital has a positive quality and waiting time. Then if it reduces quality
and keeps supply constant, demand will be reduced and the equilibrium waiting time will
fall to bring demand again in line with supply. Hence, hospital revenue is una¤ected but
production cost is reduced because quality has a positive marginal cost. Therefore it can
never be pro�t maximising for a hospital to have both positive quality and waiting time
in this deterministic setting.

Figure 2 illustrates. With a price less than p0� the hospital cannot cover its marginal
cost of output at zero quality and so output is zero with demand entirely choked o¤
by a waiting time w � wD0. For a price in the range (p0�; p

2
�) the hospital produces

a positive output where the price equals its marginal production cost cHD� (�D; 0; �D)
+ cHDs (�D; 0; �D). Further increases in price increase output and reduce the waiting
time. Thus with a price p1� 2 (p0�; p2�) output is s1 and the waiting time wD1 clears the
market so that �D(0; wD1) = s1. At a price p2� waiting time is zero and the hospital
can get an additional patient, and hence revenue, only by raising quality by 1=�Dq . Hence
the full marginal cost of additional patients is cHD� + cHDs + cHDq =�Dq . If the marginal
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cost of quality at zero quality and output sD2 is positive there will be a range of prices
[p2�; p

3
�] over which output and quality do not vary with price. Once the price exceeds p

3
�

= cHD� (s2; 0; s2) +cHDs (s2; 0; s2) +cHDq (s2; 0; s2)=�Dq (0; 0) the hospital will increase quality,
with zero waiting time, to attract additional patients as price increases. Thus at a price
p4�, there will be s

4 patients receiving immediate treatment.

Figure 2. E¤ect of prospective output price on quality, output, and waiting
time in deterministic waiting time model.

The implication of Proposition 11 is that with rationing by deterministic waiting time
it is impossible to achieve a �rst best allocation which has positive quality and waiting
time if the regulator is restricted to a prospective output price. If the demand for elec-
tive hospital care is rationed by waiting time then it is necessary to be speci�c about
the rationing mechanism when modelling the behaviour of hospitals and examining the
welfare implications of incentive schemes. But the apparently convenient simpli�cation of
assuming that demand and supply, and hence waiting time, are certain is not satisfactory
in this context.

6 Conclusion

In this paper we have expanded previous analyses of optimal payment schemes for hospitals
by taking explicit account of the facts that demand and treatment time are random and
that patients care about waiting time. Queueing theory shows that under reasonable
assumptions the stochastic processes generating demand and treatment time result in
an equilibrium distribution of waiting times. However, unlike queueing theory which
usually takes the demand (arrival) process as exogenous, we examine rational expectations
equilibria in which patient decisions to join the waiting list depend on the equilibrium
distribution of waiting times and their decisions give rise to the equilibrium distribution.
Even when the mean waiting time is a su¢ cient statistic for patients when making their
provider choices, our stochastic model has properties that are qualitatively di¤erent from
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those that model the waiting time as a deterministic �price� that balances demand and
treatment capacity.

We develop a general queueing model and use it to derive the optimal �rst best and
second best pricing rules for a hospital providing care to fully insured patients. In general
three prices are required ensure that the hospital chooses the welfare maximising quality,
the service intensity determining average length of stay, and the number of beds. The �rst
best price per patient treated should be equal to the residual marginal social bene�t of
treating an extra patient. This is the part of the social bene�t which the hospital ignores:
some or all of the direct bene�t of treatment plus the expected income loss to patients
whilst they are on the waiting list. In addition to the �rst best prospective output price
two other instruments are required. Candidates are a per bed subsidy, payments (possibly
negative) linked to the average waiting time and average length of stay, and payment for
quality. In a second best, when the regulator can only link payment to the number of
patients treated and to the expected waiting time, we show that the optimal price per
patient is the �rst-best price plus a mark-up that re�ects the extra �nancing the hospital
would have obtained in the �rst best by expanding the number of beds needed to attract
an extra patient while at the same time keeping the expected wait constant (Proposition
6, (35)). And vice versa, the optimal reward per waiting time (possibly negative) should
be set at the �rst best level minus the reward the hospital would have earned in �rst best
by expanding the number of beds to reducing the expected wait while keeping (expected)
demand constant ((36)). In other words, second-best prices should pick up the unavailable
�rst best incentives, but the way they is done depends on the set of prices available in the
second best.

When the hospital can exert e¤ort to reduce its costs it is not necessary to directly
incentivise such e¤ort in the �rst best since it bears both production and e¤ort costs. But
in the second best it is optimal to refund a fraction of the total cost. This fraction should
be set such that the refund of the marginal cost of installing an extra bed re�ects the
optimal �rst bed subsidy for such a bed (Proposition 10, (39)).
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A Appendix

A.1 Waiting time distribution in the M=M=k model

In the M=M=k queueing model arrivals follow a Poisson process with mean arrival rate �.
The time it takes to treat a patient is negatively exponentially distributed with parameter
�. The mean treatment time is therefore 1

� . If there are k servers (beds), the maximum
number of patients that can be treated simultaneously is k. It can be shown that if
� < k�, there exists a steady state distribution for the system, in the sense that the
probability pn that there are n patients in the system (either waiting for treatment or
under treatment) is well de�ned (n = 0; 1; 2; :::). From these state probabilities, one then
can derive the distributions for the length of the waiting list, for the time spent waiting
for treatment and for the total time spent in the system (w).

Let �0 denote the probability that there is a vacant bed (i.e., �0 =
Pk�1
n=0 pn), and

� = �
� then

�0(k; �) =

�Pj=k�1
j=0

�j

j!

��Pj=k�1
j=0

�j

j!
+

�k

k! (1� �=k)

��1
=

d1(k; �)

d1(k; �) + d2(k; �)
; (A.1)

with obvious de�nitions of d1(�) and d2(�). If all beds are occupied, which happens with
probability 1 � �0, a patient joining the waiting list faces a time on the list which has a
negative exponential distribution with mean 1

k��� . In addition, this patient faces a time

under treatment which is negatively exponentially distributed with mean 1
� . Hence, the

distribution of the total time in the system is the convolution of the distribution of the
time on the waiting list given that this time is strictly positive, and the distribution of the
treatment time is (see Gross et al. (2008)30

H(w;�0; k; �; �) = �0 Pr[ ~w � wjn � k � 1] + (1� �0) Pr[ ~w � wjn � k]

= �0
�
1� e��w

�
+ (1� �0)

"
(k � �) (1� e��w)�

�
1� e�(k���)w

�
k � �� 1

#
: (A.2)

The expected total time in the system is.

w(�0; k; �; �) =

Z 1

0
wdH(w;�0; k; �; �) =

1

�
+
1� �0
k�� �:

Theorem A.1 Consider an M=M=k queueing system with mean referral rate � and mean
treatment time 1

� , satisfying the stability condition
�
k� < 1. Reductions in the number of

beds k, reductions in the treatment rate �, and increases in the arrival rate � all induce a
stochastically dominating distribution for the total waiting time (time on the waiting list
plus treatment time)

Proof of Theorem A.1
30Two useful results are: (a) Let a > 0. Then x(1 � e�a) � (1 � e�xa) ? 0 () x ? 1: (b) Let a > 0.

Then x(1�e�a)�(1�e�ax)
x�1 < 1 for all x. Hence the second square bracketed term in in (A.2) is lies in (0; 1):
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(a) We �rst show that

@H

@k
=
@H

@�0|{z}
(i)

@�0
@k|{z}
(ii)

+ (1� �0)
@G(w; k; �; �)

@k| {z }
(iii)

> 0;

where we treat �0 as di¤erentiable in k to reduce notational clutter.
(i) @H=@�0 > 0.

@H

@�0
= Pr[ ~w � wjn � k � 1]� Pr[ ~w � wjn � k] = e��w � e�(k��)�w

k � �� 1 :

If k� �� 1 > 0 the numerator and denominator are positive and if k� �� 1 < 0 they are
both negative.

(ii) �0(k; �) is increasing in k.
Consider

�0(k + 1; �)� �0(k; �) =
d1(k + 1; �)

d1(k + 1; �) + d2(k + 1; �)
� d1(k; �)

d1(k; �) + d2(k; �)

=
d1(k + 1; �)d2(k; �)� d1(k; �)d2(k + 1; �)

[d1(k + 1; �) + d2(k + 1; �)] [d1(k; �)d2(k + 1; �)]
;

and so

sign [�0(k + 1; �)� �0(k; �)] = sign
�
d1(k + 1; �)

d1(k; �)
� d

2(k + 1; �)

d2(k; �)

�
:

Now
d1(k + 1; �)

d1(k; �)
=

Pj=k
j=0

�j

j!Pj=k�1
j=0

�j

j!

> 1;

and

d2(k + 1; �)

d2(k; �)
=

�k+1

(k + 1)! (1� �=(k + 1))
k! (1� �=k)

�k

=
�

k + 1

(1� �=k)
(1� �=(k + 1)) =

�

k

(k � �)
(k + 1� �) < 1;

since the stability of the queueing system requires � < k. Hence

�0(k + 1; �)� �0(k; �) > 0;

and so �0(k; �) is increasing in k.
(iii) G(w; k; �; �) = Pr[ ~w � wjn � k] is increasing in k.
The random waiting time for a patient joining the queue, conditional on there being

no empty bed, is the convolution of the distribution of two random variables: the wait for
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a bed to become available w1 and the service time w2 whilst being treated:

Pr[ ~w � wjn � k] = G(w; k; �; �)

=

Z w

0
G1(w � w2; �1)g2(w2; �2)dw2

=

Z w

0

h
1� e��1(w�w2)

i
�2e

��2w2dw2;

where G1; g2 are the distribution and density functions for the exponentially distributed

wait for a bed (w1) and the treatment time (w2) which have means 1
�1

def
= 1

k��� and
1
�2

def
= 1

� .
Hence

@G(w; k; �; �)

@k
=

@

@�1

�Z w

0

h
1� e��1(w�w2)

i
�2e

��2w2dw2

�
@�1
@k

=

Z w

0
(w � w2)e��1(w�w2)�2e��2w2dw2� > 0;

which is positive since w2 2 [0; w].
(b) We establish

@H

@�
=
@H

@�0|{z}
(i)

@�0
@�|{z}
(iv)

@�

@�|{z}
(v)

+ �0
@ (1� e��w)

@�| {z }
(vi)

+ (1� �0)
@G(w; �1; �2)

@�| {z }
(vi)

> 0;

in similar fashion.
(iv) @�0(k; �)=@� < 0.
From (A.1)

sign
@�0(k; �)

@�
= sign

�
@d1(k; �)=@�

d1(k; �)
� @d

2(k; �)=@�

d2(k; �)

�
< 0;

since
@d1(k; �)=@�

d1(k; �)
=

�Pj=k�2
j=0

�j

j!

� �Pj=k�1
j=0

�j

j!

��1
< 1;

and

@d2(k; �)=@�

d2(k; �)
=

(1� �=k) k�k�1 + �k=k
k! (1� �=k)2

�
k! (1� �=k)

�k

�
=

(1� �=k) k��1 + 1=k
(1� �=k)

=
k

�
+

1

k � � > 1:

(v) Since � = �=� we have @�=@� < 0 and so the product of (i), (iv) and (v) is positive.
(vi) The distribution function for the waiting time for patients who �nd an empty
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queue is decreasing in �
@(1� e��w1)

@�
= w1e

��w1 > 0:

(vi) @G(w; k; �; �)=@� > 0.
� a¤ects both �1 = k�� � and �2 = � and so

@G(w; �1; �2)

@�
=

@G(w; �1; �2)

@�1

@�1
@�

+
@G(w; �1; �2)

@�2

@�2
@�

=
@

@�1

�Z w

0
G1(w � w2; �1)g2(w2; �2)dw2

�
k

+
@

@�2

�Z w

0
g1(w1; �1)G2(w � w1; �2)dw1

�
=

Z w

0
(w � w2)e��1(w�w2)�2e��2w2dw2k

+

Z w

0
�1e

��1w1(w � w1)e��2(w�w1)dw1 > 0 :

(c) Finally, we show

@H

@�
=
@H

@�0|{z}
(i)

@�0
@�|{z}
(iv)

@�

@�|{z}
(vii)

+ (1� �0)
@G(w; �1; �2)

@�| {z }
(viii)

< 0:

(vii) Since (i) is positive, (iv) is negative, and (viii) is positive because � = �=�, the �rst
term in @H=@� is negative. (viii) is

@G(w; �1; �2)

@�
=

@

@�1

�Z w

0

h
1� e��1(w�w2)

i
�2e

��2w2dw2

�
@�1
@�

= �
Z w

0
(w � w2)e��1(w�w2)�2e��2w2dw2 < 0;

which completes the proof of Proposition A1.�

A.2 Equilibrium mean waiting time

Lemma A.1 Increases in supply conditions that are accompanied by a quality reduction
to keep demand (expected wait) constant lower the expected wait and increase expected
demand.

Proof of Lemma A.1

dwe(q; k; �)
ds

����
d�=0

= �ws + �w��s � �w��q
�s
�q
= �ws < 0 (s = k; �),

d�
ds

����
d �w=0

= �s � �q
wes
weq

= �ws
wq

> 0 (s = k; �).
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Proof of Proposition 2 (a) Linear (LN) preferences. De�ne utility if ill and treated in
the public hospital after a wait of w as u(y; q; w) = t1(y; q)�t2(y; q)w so that expected util-
ity from choosing the public hospital is v� = (1��)uN (y)+�

�
t1(y; q)� t2(y; q) �w(�; k; �)

�
=

v�(y; q; �w(�; k; �)). The threshold income ŷ(q; �; k; �) is de�ned byG = v�(y; q; �w(�; k; �))�
vo(y � ) = 0. Equilibrium demand � satis�es �� �F (ŷ(q; �; k; �)) = 0. Then

�s =
�f(ŷ)ŷs

1� �f(ŷ)ŷ�
=

�f(ŷ)
�
�1
Gy

�
Gs

1� �f(ŷ)
�
�1
Gy

�
G�

=
�f(ŷ)

�
�1
Gy

�
v��w �ws

1� �f(ŷ)
�
�1
Gy

�
v��w �w�

(s = k; �);

and so

wes = �ws(�(q; s); s) + �w�(�(q; s); s)�s = �ws + �w�

24 �f(ŷ)
�
�1
Gy

�
v��w �ws

1� �f(ŷ)
�
�1
Gy

�
v��w �w�

35
=

24 �ws

1� �f(ŷ)
�
�1
Gy

�
v��w �w�

35�1� �f(ŷ)��1
Gy

�
v��w �w� + �w��f(ŷ)

�
�1
Gy

�
v��w

�

=
�ws

1� �f(ŷ)
�
�1
Gy

�
v��w �w�

< 0 (s = k; �):

(b) M=M=1: Letting s now be the service rate (inverse of expected length of stay) the
density function for waiting time is h(w;�; s) = (s � �)e�(s��) and the expected waiting
time is �w = (s��)�1 (see Gross et al. (2008)). Hence wes = �ws+ �w��s = �ws(1��s). Now

1� �s = 1� �f(ŷ)ŷs
1� �f(ŷ)ŷ�

=
1� �f(ŷ)ŷ� � �f(ŷ)ŷs

1� �f(ŷ)ŷ�

=
1� �f(ŷ) [ŷ� + ŷs]
1� �f(ŷ)ŷ�

;

where ŷ(q; �; s) is de�ned by

G = (1� �)uN (y) + �
Z 1

0
u(y; q; w)h(w;�; s)dw � vo(y � ) = 0:

Hence

ŷ� + ŷs =
�1
Gy

[G� +Gs]

=
��
Gy

�Z 1

0
u(y; q; w)[h�(w;�; s) + hs(w;�; s)

�
dw = 0;

and so
1� �s =

1

1� �f(ŷ)ŷ�
> 0;

implying that wes = �ws + �w��s = �ws(1� �s) > 0. �
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A.3 Demand constant welfare changes

Theorem A.2 In equilibrium an increase in hospital attribute z (= q; �; k) accompanied
by an adjustment in hospital attribute x (x = q; �; k; x 6= z) to keep demand constant has
no e¤ect on patient welfare Be(q; �; k) if and only if

(a) patient preferences are quasi-separable between quality and waiting time :

v = �

�Z
[a1(y) + a2(y)r(q; w)]dH(w;�; k; �)

�
+ (1� �)uN (y)

= �
�
a1(y) + a2(y)R(q; �; k; �)

�
+ (1� �)uN (y);

and (b) the welfare function respects patient preferences over quality and waiting time

be(y; q; k; �) = �[m0(y) +m1(y)m2(R(q; k; �))] + (1� �)mN (y); m2
R > 0:

Proof of Theorem A.2. In equilibrium an increase in hospital attribute z accompanied
by an adjustment in hospital attribute x to keep demand constant changes patient welfare
at the rate

Bez(q; �; k)�Bex(q; �; k)
�z(q; �; k)

�x(q; �; k)

From (15) and Lemma 1 in the main text:

Bez �Bex
�z
�x

=

Z ŷe(q;;�;k)

ymin

�
bez � bex

�z
�x

�
dF (y)

+ [be(ŷ; q; k; �)� bo(ŷ � ; qo)]�f (ŷe)
�
ŷez � ŷex

�z
�x

�
=

Z ŷe(q;�;k)

ymin

�
bez � bex

�z
�x

�
dF (y)

=

Z ŷ(q;�;�;k)

ymin

�
bz(y; q; �; k; �) + b��z � bx(y; q; �; k; �)

�z
�x
� b��x

�z
�x

�
dF (y)

=

Z ŷ(q;�;�;k)

ymin

�
bz(y; q; �; k; �)� bx(y; q; �; k; �)

�z
�x

�
dF (y)

= Bz(ŷ; q; �; �; k)�Bx(ŷ; q; �; �; k)
vz(ŷ; q; �; �; k)

vx(ŷ; q; �; �; k)
= T (ŷ; q; �; �; k): (A.3)

For T (ŷ; q; �; �; k) = 0 to hold for all the equilibria generated by the premium for private
health care , which a¤ects (A.3) only via the the threshold income ŷ, requires

@T

@ŷ
=

�
bz(ŷ; q; �; �; k)� bx(ŷ; q; �; �; k)

vz(ŷ; q; �; �; k)

vx(ŷ; q; �; �; k)

�
f (ŷ)

�Bx
1

v̂2x
[v̂zyv̂x � v̂z v̂xy] = 0 (A.4)

This holds in general (i.e., for all distributions of income) only if both square bracketed
terms are zero. The �rst term is zero only if the marginal rate of substitution between
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z and x for a patient of given income are the same for the regulator and the patient.
The second is zero only if the patient marginal rate of substitution between z and x is
una¤ected by patient income. Su¢ ciency of (a) and (b) is easily established.�

Theorem A.3 The e¤ect on social bene�t of an increase in hospital attribute z followed
by an adjustment in attribute x to keep demand constant is given by

Bez �Bex
�z
�x
=

Z by
ymin

bx

�
bz(y; �)
bx(y; �)

� vz(by; �)
vx(by; �)

�
dF (y) (A.5)

=

Z by
ymin

bz

264
0@@ log bz(y;�)by(y;�)

@y
�
@ log bx(y;�)by(y;�)

@y

1A
ey2[y;by]

(y � by) + � bz(by; �)
bx(by; �) � vz(by; �)

vx(by; �)
�375 dF (y):

(A.6)

The theorem asserts that when individual preferences are respected, the second round
bracket term is zero and Bez�Bex �z�x > 0(< 0) if the marginal willingness to pay for attribute
x increases faster (slower) with income than that for attribute z. Under quasi-separable
individual and social preferences ((3) and (16)), bz(y;�)bx(y;�) =

vz(by;�)
vx(by;�) = Rz(�)

Rx(�) and B
e
z�Bex �z�x = 0.

Under speci�c egalitarianism, bz(y;�)bx(y;�) is independent of income, and the sign of (A.5) is the

sign of bz(by;�)bx(by;�) � vz(by;�)
vx(by;�) .

Proof of Theorem A.3.
We have

Bez �Bex
�z
�x
=

Z by
ymin

�
bez(y; q; k; �)� bex(y; q; k; �)

�z
�x

�
dF (y)

=

Z by
ymin

bx

�
bz(y; q; �; k; �)

bx(y; q; �; k; �)
� bz(by; q; �; k; �)
bx(by; q; �; k; �) + bz(by; q; �; k; �)

bx(by; q; �; k; �) � �z
�x

�
dF (y)

=

Z by
ymin

bx(y; �)

24@ bz(y;�)bx(y;�)
@y

jey2[y;by](y � by) + bz(by; �)
bx(by; �) � vz(by; �)

vx(by; �)
35dF (y)

+ �(by; �) def= bz(by; �)
bx(by; �) � vz(by; �)

vx(by; �)
=

Z by
ymin

bx(y; �)

240@ bz(y; �)
bx(y; �)

@ log bz(y;�)bx(y;�)
@y

1A jey2[y;by](y � by) + �(by; �)
35dF (y)

=

Z by
ymin

bx(y; �)

264
0@ bz(y; �)
bx(y; �)

0@@ log bz(y;�)by(y;�)
@y

�
@ log bx(y;�)by(y;�)

@y

1A1A
ey2[y;by]

(y � by) + �(by; �)
375dF (y)
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+ consumer sovereignity: �(by; �) = 0
=

Z by
ymin

vx(y; �)

264
0@ bz(y; �)
bx(y; �)

0@@ log vz(y;�)vy(y;�)
@y

�
@ log vx(y;�)vy(y;�)

@y

1A1A
ey2[y;by]

(y � by)dF (y)
375

=

Z by
ymin

vx(y; �)
"
bz(y; �)
bx(y; �)

�
@ logMWPz(y; �)

@y
� @ logMWPx(y; �)

@y

�
ey2[y;by] (y � by)dF (y)

#
:

�

A.4 Demand constant change in insurance cost

Lemma A.2 The change in equilibrium insurance costs when supply s (s = k; �) is in-
creased and q is reduced to keep demand constant is

dcIe

ds

����
d�=0

= cIes � cIeq
�s
�q
= � �ws

Z ŷe

ymin

ydF (y) < 0; (s = k; �). (A.7)

The change in equilibrium insurance costs when quality is increased and supply attribute
s (s = k; �) is decreased to keep demand constant is

dcIe

dq

����
d�=0

= cIeq � cIes
�q
�s
= �� �ws

�q
�s

Z ŷe

ymin

ydF (y) > 0 (s = k; �). (A.8)

Proof of Lemma A.2

cIez � cIex
�z
�x

= �

�
wez � wex

�z
�x

�Z ŷ

ymin

ydF (y) + �w
Z ŷ

ymin

ydF (y)ŷf(ŷ)
�
ŷez � ŷex

�z
�x

�
= �

�
wz � wx

�z
�x

�Z ŷ

ymin

ydF (y) + �w
Z ŷ

ymin

ydF (y)ŷf(ŷ)
�
ŷz � ŷx

�z
�x

�
= �

�
wz � wx

�z
�x

�Z ŷ

ymin

ydF (y)

since the second round bracketed term in the second line is zero (cf (10)). �

A.5 Derivation of optimal pricing rules

Proof of Proposition 3 The hospital maximises (23), leading to decisions q(p�; pk; p�);
k(p�; pk; p�); �(p�; pk; p�) satisfying (24). The regulation problem is

max
p�;pk;p�

Be(q; k; �)� (1 + �)[p��(q; k; �) + pkk + p��+ T + cIe(q; k; �)]:

T is set to leave the hospital with no �nancial rent

T = �p��� pkk � p��+ cHe(q; k; �);
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and so the regulator problem is equivalently

max
p�;pk;p�

Be(q(p�; pk; p�); k(p�; pk; p�); �(p�; pk; p�))

�(1 + �)cHe(q(p�; pk; p�); k(p�; pk; p�); �(p�; pk; p�))
�(1 + �)cIe(q(p�; pk; p�); k(p�; pk; p�); �(p�; pk; p�))

The FOCs to this regulation problem can be written as0B@
@q
@p�

@k
@p�

@�
@p�

@q
@pk

@k
@pk

@�
@pk

@q
@p�

@k
@p�

@�
@p�

1CA
0@ Beq � (1 + �)[cHeq + cIeq ]

Bek � (1 + �)[cHek + cIek ]
Be� � (1 + �)[cHe� + cIe� ]

1A =

0@ 0
0
0

1A :
But making use of the hospital FOCs, the regulator�s FOCs can be written as0B@

@q
@p�

@k
@p�

@�
@p�

@q
@pk

@k
@pk

@�
@pk

@q
@p�

@k
@p�

@�
@p�

1CA
240@ Seq

Sek
Se�

1A�
0@ �q 0 0
�k 1 0
�� 0 1

1A0@ pFB��

pFB�k

pFB��

1A35 =
0@ 0
0
0

1A :
where Sez = �B

e
z � cIez where � = [1� �(1 + �)]=(1 + �).

The (3 � 3) matrix of price e¤ects is invertible. Hence, the FB optimal prices are
given by0@ pFB��

pFB�k

pFB��

1A =

0@ �q 0 0
�k 1 0
�� 0 1

1A�10@ Seq
Sek
Se�

1A =

0B@
1
�q

0 0

��k
�q

1 0

���
�q

0 1

1CA
0@ Seq
Sek
Se�

1A

=

0BB@
Seq
�q

Sek �
�k
�q
Seq

Sek �
��
�q
Seq

1CCA :�
Proof of Proposition 4 The generic �rst order condition for the hospital facing prices
p�; pk and pq is

p��z + pkI(z = k) + pq1(z=q) + �B
e
z = c

He
z (z = q; k; �):

The �rst order conditions for the regulator�s problem is0B@
@q
@p�

@k
@p�

@�
@p�

@q
@pk

@k
@pk

@�
@pk

@q
@pq

@k
@pq

@�
@pq

1CA
0@ Beq � (1 + �)[cHeq + cIeq ]

Bek � (1 + �)[cHek + cIek ]
Be� � (1 + �)[cHe� + cIe� ]

1A =

0@ 0
0
0

1A :
Replacing cHez by the LHS of the hospital�s �rst order condition shows that

Bez � (1 + �)[cHez + cIez ] = (1 + �) [S
e
z � p��z � pkI(k = z)� pqI(q = z)] ;
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which allows us to rewrite the regulator�s FOCs as0B@
@q
@p�

@k
@p�

@�
@p�

@q
@pk

@k
@pk

@�
@pk

@q
@pq

@k
@pq

@�
@pq

1CA
240@ Seq

Sek
Se�

1A�
0@ �q 0 1
�k 1 0
�� 0 0

1A0@ pFB���

pFB��k

pFB���

1A35 =
0@ 0
0
0

1A :
Since the (3� 3) response matrix is invertible, the FOCs are equivalent to the square

bracket vector being zero. Hence0@ pFB���

pFB��k

pFB���

1A =

0@ �q 0 1
�k 1 0
�� 0 0

1A�10@ Seq
Sek
Se�

1A =

0B@ 0 0 1
��

0 1 ��k
��

1 0 � �q
��

1CA
0@ Seq
Sek
Se�

1A ;

=

0BB@
Se�
��

Sek �
�k
��
Se�

Seq �
�q
��
Se�

1CCA =

0B@
Se�
��

Sek � �kpFB���

Seq � �qpFB���

1CA :�
Proof of Proposition 5 The hospital choices q(p�; pk; pw); k(p�; pk; pw); �(p�; pk; pw)
satisfy (24). The regulation problem is then

max
p�;pk;pw

Be(q(p�; pk; pw); k(p�; pk; pw); �(p�; pk; pw))

�(1 + �)cHe(q(p�; pk; pw); k(p�; pk; pw); �(p�; pk; pw))
�(1 + �)cIe(q(p�; pk; pw); k(p�; pk; pw); �(p�; pk; pw)):

The FOCs for welfare maximisation are0B@
@q
@p�

@k
@p�

@�
@p�

@q
@pk

@k
@pk

@�
@pk

@q
@pw

@k
@pw

@�
@pw

1CA
0@ Beq � (1 + �)[cHeq + cIeq ]

Bek � (1 + �)[cHek + cIek ]
Be� � (1 + �)[cHe� + cIe� ]

1A =

0@ 0
0
0

1A :
By making use of the hospital FOCs, the regulator�s FOCs can be written as0B@

@q
@p�

@k
@p�

@�
@p�

@q
@pk

@k
@pk

@�
@pk

@q
@pw

@k
@pw

@�
@pw

1CA
240@ Seq

Sek
Se�

1A�
0@ �q weq 0

�k wek 1
�� we� 0

1A0@ pFB+�

pFB+w

pFB+k

1A35 =
0@ 0
0
0

1A : (A.9)

The (3� 3) matrix of price e¤ects is invertible. Hence, under FB, the optimal prices
are obtained by setting the square bracket term to zero and solving for the prices:

0@ pFB+�

pFB+w

pFB+k

1A =

0BB@
we�

�qwe����weq
0 � weq

�qwe����weq
� ��
�qwe����weq

0
�q

�qwe����weq
��kw

e
����wek

�qwe����weq
1

�kw
e
q��qwek

�qwe����weq

1CCA
0@ Seq
Sek
Se�

1A :
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Using (13)-(14), and Sez = Sz + S��z, this reduces to0@ pFB+�

pFB+w

pFB+k

1A =

0BB@
Seq
�q
� (S� � Sq ���q )

w�
w�

(S� � Sq ���q )
1
w�

(Sk � Sq �k�q )� (S� � Sq
��
�q
)wkw�

1CCA ;
which gives (29)-(31). �

Proof of Proposition 6 When k cannot be priced, the regulator�s FOCs (A.9) on p�
and pw are 

@q
@p�

@k
@p�

@�
@p�

@q
@pw

@k
@pw

@�
@pw

!240@ Seq
Sek
Se�

1A�
0@ �q weq 0

�k wek 1
�� we� 0

1A0@ p�
pw
0

1A35 = � 0
0

�
:

Use (A.9) to replace

0@ Seq
Sek
Se�

1A by

0@ �q weq 0

�k wek 1
�� we� 0

1A0@ pFB++�

pFB++w

pFB++k

1A, and let ++ indicate that
prices are evaluated at the SB values for q; �; k. Then

�
0
0

�
=

 
@q
@p�

@k
@p�

@�
@p�

@q
@pw

@k
@pw

@�
@pw

!240@ �q weq 0

�k wek 1
�� we� 0

1A0@ pFB++�

pFB++w

pFB++k

1A
�

0@ �q weq 0

�k wek 1
�� we� 0

1A0@ pSB�
pSBw
0

1A35
This system of equations will hold in two distinct cases.
(i) the FB price for k is zero. This is the case discussed in section 4.2. In that case

the square bracket term is the zero vector when also pSB� = pFB� and pSBw = pFBw (the
(3� 3) matrix being invertible).

(ii) when the FB price for k is di¤erent from zero. Then the (3 � 1) square bracket
vector should be orthogonal to the two row vectors of responses w.r.t. the prices p� and
pw. This is equivalent to 

@q
@p�

@k
@p�

@�
@p�

@q
@pw

@k
@pw

@�
@pw

!0@ �q weq 0

�k wek 1
�� we� 0

1A0@ pFB++�

pFB++w

pFB++k

1A
=

 
@q
@p�

@k
@p�

@�
@p�

@q
@pw

@k
@pw

@�
@pw

!0@ �q weq 0

�k wek 1
�� we� 0

1A0@ pSB�
pSBw
0

1A :
Using the de�nitions @�

�

@pi

def
=
P
z=q;k;� �z

@z
@pi

(i = �;w) and @we�

@pi

def
=
P
z=q;k;�w

e
z
@z
@pi

(i =
�;w) (i.e., the optimal demand and expected wait responses that follows from the optimal
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responses in q; k; �) gives: 
@��

@p�
@we�

@p�
@k
@p�

@��

@pw
@we�

@pw
@k
@pw

!0@ pFB++�

pFB++w

pFB++k

1A =

 
@��

@p�
@we�

@p�
@��

@pw
@we�

@pw

!�
pSB�
pSBw

�
+�

pSB�
pSBw

�
=

 
@��

@p�
@we�

@p�
@��

@pw
@we�

@pw

!�1 @��

@p�
@we�

@p�
@k
@p�

@��

@pw
@we�

@pw
@k
@pw

!0@ pFB++�

pFB++w

pFB++k

1A
=

�
pFB++�

pFB++w

�
+

 
@��

@p�
@we�

@p�
@��

@pw
@we�

@pw

!�1 @k
@p�
@k
@pw

!
pFB++k

=

�
pFB++�

pFB++w

�
+

1
@��

@p�
@we�
@pw

� @��

@pw
@we�
@p�

 
@we�

@pw
�@we�

@p�

� @��

@pw
@��

@p�

! 
@k
@p�
@k
@pw

!
pFB++k :

Then we obtain the following SB pricing rules:

pSB� = pFB++� +

@we�

@pw
@k
@p�

� @k
@pw

@we�

@p�
@��

@p�
@we�
@pw

� @��

@pw
@we�
@p�

pFB++k ;

pSBw = pFB++w +
� @��

@pw
@k
@p�

+ @��

@p�
@k
@pw

@��

@p�
@we�
@pw

� @��

@pw
@we�
@p�

pFB++k ;

which upon using the de�nitions (33)-(34) can be written as (35)-(36). �

Proof of Proposition 7 Using (29)-(31), the requirement for pFB+k = 0 amounts to

pFB+k = Sek � pFB+� �k � pFB+w wk

= Sek � Seq
�k
�q
�
�
Se� � Seq

��
�q

�
wk
w�

= 0:

Expanding by using the de�nition S = �B � cI gives

�

�
Bk �Bq

�k
�q

�
� �

�
B� �Bq

��
�q

�
wk
w�

= cIk � cIq
�k
�q
�
�
cI� � cIq

��
�q

�
wk
w�
:
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The RHS can be written as

�

�
wk � wq

�k
�q

�Z by
ymin

ydF (y)�
 
�

�
w� � wq

��
�q

�Z by
ymin

ydF (y)

!
wk
w�

=

��
wk � wq

�k
�q

�
�
��
w� � wq

��
�q

��
wk
w�

�
�

Z by
ymin

ydF (y)

=

�
wk � wq

�k
�q
� wk + wq

��
�q

wk
w�

�
�

Z by
ymin

ydF (y)

= �wq
�q

�
�k � ��

wk
w�

�
�

Z by
ymin

ydF (y) = 0;

where the last equality follows from the fact that q has no direct e¤ect on w (wq � 0). So
then we are left with the condition�

Bk �Bq
�k
�q

�
=

�
B� �Bq

��
�q

�
wk
w�
: (A.10)

The round bracket terms can be expanded as

Bs �Bq
�s
�q
=

Z ŷe(q;k;�)

ymin

�
bs � bq

�s
�q

�
dF (y); s = �; k;

and under individual and social preferences (3) and (16), this becomes

Bs �Bq
�s
�q
= �

Z ŷe(q;k;�)

ymin
m1(y)dF (y)m2(R)

�
Rs �Rq

�s
�q

�
= 0; s = �; k;

because �s
�q
= bvsbvq = �a2(y)Rs

�a2(y)Rq
(s = �; k).

Moreover, if the expected wait is a su¢ cient statistic for the waiting time distribution
w.r.t. preferences, (10)-(11) imply wk

w�
=

��
�q
and condition (A.10) reduces to Bk�B� �k�� =

0, which will be satis�ed if also social preferences depend only on the expected wait. �

Proof of Proposition 8 If w cannot be priced either, the regulator�s FOCs reduce to
the �rst FOC:

�
@q
@p�

@k
@p�

@�
@p�

�240@ Seq
Sek
Se�

1A�
0@ �q weq 0

�k wek 1
�� we� 0

1A0@ pTB�
0
0

1A35 = � 0
0

�
:
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Use (A.9) to replace

0@ Seq
Sek
Se�

1A by

0@ �q weq 0

�k wek 1
�� we� 0

1A0@ pFB+++�

pFB+++w

pFB+++k

1A, +++ indicating that

prices are evaluated at the TB values for q; �; k. Then

�
@q
@p�

@k
@p�

@�
@p�

�240@ �q weq 0

�k wek 1
�� we� 0

1A0@ pFB+++�

pFB+++w

pFB+++k

1A�
0@ �q weq 0

�k wek 1
�� we� 0

1A0@ pTB�
0
0

1A35 = 0:
Assuming that (pFB+++w ; pFB+++k ) 6= (0; 0), and using the de�nitions of @��@p�

and @we�

@p�
gives

�
@��

@p�
@we�

@p�
@k
@p�

�0@ pFB+++�

pFB+++w

pFB+++k

1A =
@��

@p�
pTB�

+

pTB� = pFB+++� +

@we�

@p�
@��

@p�

pFB+++w +

@k
@p�
@��

@p�

pFB+++k :

Using the de�nitions in (37), this can be rewritten as (38). �

Proof of Proposition 9 From (38) the third best output price will coincide with its
�rst best value when both pFB+w = 0 and pFB+k = 0. Using (29), the condition that
pFB+w = 0 is equivalent to

�

�
B� �Bq

��
�q

�
=

�
cI� � cIq

��
�q

�
;

= �w�

Z by
ymin

ydF;

which will only hold when preferences are quasi-separable and insurance costs are absent
such that both sides of the expression equal zero. The condition that pFB+k = 0 then
reduces to (see (31))

�

�
Bk �Bq

�k
�q

�
=

�
cIk � cIq

��
�q

�
= �wk

Z by
ymin

ydF;

which also holds under the same conditions. �

Proof of Proposition 10 The proof consists of three parts. In the �rst part, we derive
the �rst best pricing and cost-sharing rules. The second part then derives the second-best
rules (giving (39)). The last part derives the third-best rules (giving (40)).

(a) We �rst solve for the �rst best pricing/cost-sharing scheme. When the hospital
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faces prices p�; pk and pw and is refunded a fraction ' of its costs it solves

max
q;k;�

p��(q; k; �)+pkk+pww
e(q; k; �)�(1�')cHe(q; k; �; t)+�Be(q; k; �)�g(t)+T; (A.11)

where T is the lump sum amount that the regulator pays the hospital up front in order
that it breaks even after accounting for the cost of cost-reducing e¤ort, g:31

T = g � p��� pkk � p��+ (1� ')cHe(q; k; �):

The �rst order conditions for an interior solution are

p��z + pkI(z = k) + pww
e
z + �B

e
z = (1� ')cHez (z = q; k; �), and (A.12)

�(1� ')cHet = g0(t): (A.13)

and yield optimal hospital decisions q(p�; pk; pw; '); k(p�; pk; pw; '); �(p�; pk; pw; '); and
t(p�; pk; pw; ').

The regulation problem is then

max
p�;pk;pw

Be(q; k; �)�(1+�)[p��(q; k; �)+pkk+pww(q; k; �)+'cHe(q; k; �; t)+T+cIe(q; k; �)]

which since T = g(t)� p��(q; k; �)� pkk � pww(q; k; �) + (1� ')cHe(q; k; �; t) is

max
p�;pk;pw

Be(q(p�; pk; pw; '); k(p�; pk; pw; '); �(p�; pk; pw; '))

�(1 + �)cHe(q(p�; pk; pw; '); k(p�; pk; pw; '); �(p�; pk; pw; '); t(p�; pk; pw; '))
�(1 + �)cIe(q(p�; pk; pw; '); k(p�; pk; pw; '); �(p�; pk; pw; '))

�(1 + �)g(t(p�; pk; pw; ')):

The FOCs are0BBB@
@q
@p�

@k
@p�

@�
@p�

@t
@p�

@q
@pw

@k
@pw

@�
@pw

@t
@pw

@q
@'

@k
@'

@�
@'

@t
@'

@q
@pk

@k
@pk

@�
@pk

@t
@pk

1CCCA
0BB@
Beq � (1 + �)[cHeq + cIeq ]

Bek � (1 + �)[cHek + cIek ]
Be� � (1 + �)[cHe� + cIe� ]

0� (1 + �)[cHet + g0]

1CCA =

0BB@
0
0
0
0

1CCA :
The hospital FOC w.r.t. z (z = q; k; �) is

p��z + pk1(z=k) + pww
e
z + �B

e
z + 'c

He
Z = cHez (z = q; k; �);

so that

Bez � (1 + �)[cHez + cIez ] = [1� � (1 + �)]Bez � (1 + �)
�
p��z + pkI(z = k) + pww

e
z + 'c

He
z

�
31The break-even condition applies to the monetary part of the revenue, i.e., excluding �Be.
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or equivalently

Bez
1 + �

� [cHez + cIez ] = �B
e
z �

�
p��z + pkI(z = k) + pww

e
z + 'c

He
z

�
� cIez .

Then the regulator�s FOCs can be written as (since Se' = 0)0BBB@
@q
@p�

@k
@p�

@�
@p�

@t
@p�

@q
@pw

@k
@pw

@�
@pw

@t
@pw

@q
@'

@k
@'

@�
@'

@t
@'

@q
@pk

@k
@pk

@�
@pk

@t
@pk

1CCCA
2664
0BB@
Seq
Sek
Se�
0

1CCA�
0BB@
�q weq cHeq 0

�k wek cHek 1
�� we� cHe� 0

0 0 cHet 0

1CCA
0BB@
pFBcs�

pFBcsw

'FBcs

pFBcsk

1CCA
3775 =

0BB@
0
0
0
0

1CCA :
Since the (4� 4) matrix of responses is invertible, these FOCs are equivalent to0BB@

pFBcs�

pFBcsw

'FBcs

pFBcsk

1CCA =

0BB@
�q weq cHeq 0

�k wek cHek 1
�� we� cHe� 0

0 0 cHet 0

1CCA
�10BB@

Seq
Sek
Se�
0

1CCA (A.14)

=

0BBBB@
we�

�qwe����weq
0 � weq

�qwe����weq
� ��
�qwe����weq

0
�q

�qwe����weq
0 0 0

��kw
e
����wek

�qwe����weq
1

�kw
e
q��qwek

�qwe����weq

1CCCCA
0@ Seq
Sek
Se�

1A ;

which gives 'FBcs = 0 (and therefore (pFBcs� ; pFBcsw ; pFBcsk ) as derived earlier in Proposition
5).

(b) When beds can no longer be rewarded, the regulator has three instruments: p�; pw
and '. The hospital�s objective function reduces to

p��(q; k; �) + pww
e(q; k; �) + �Be(q; k; �)� (1� ')cHe(q; k; �)

and in (A.12) the term pk1(z=k) is absent.
When k cannot be priced, the regulator�s FOCs reduce to the �rst three rows:0B@
@q
@p�

@k
@p�

@�
@p�

@t
@p�

@q
@pw

@k
@pw

@�
@pw

@t
@pw

@q
@'

@k
@'

@�
@'

@t
@'

1CA
2664
0BB@
Seq
Sek
Se�
0

1CCA�
0BB@
�q weq cHeq 0

�k wek cHek 1
�� we� cHe� 0

0 0 cHet 0

1CCA
0BB@
pSBcs�

pSBcsw

'SBcs

0

1CCA
3775 =

0@ 0
0
0

1A :

We can then use (A.14) to replace

0BB@
Seq
Sek
Se�
0

1CCA by

0BB@
�q weq cHeq 0

�k wek cHek 1
�� we� cHe� 0

0 0 cHet 0

1CCA
0BB@
pFBcs++�

pFBcs++w

0

pFBcs++k

1CCA,
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with ++ indicating that prices are evaluated at the SB values for q; �; k. Then0@ 0
0
0

1A =

0B@
@q
@p�

@k
@p�

@�
@p�

@t
@p�

@q
@pw

@k
@pw

@�
@pw

@t
@pw

@q
@'

@k
@'

@�
@'

@t
@'

1CA�
2664
0BB@
�q weq cHeq 0

�k wek cHek 1
�� we� cHe� 0
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This system of equations will hold in two distinct cases.
(i) the FB price for k is zero. This is the case discussed in section 4.2. In that case

the square bracket term is the zero vector when also pSBcs� = pFBcs� and pSBcsw = pFBcsw

and 'SBcs = 0 (the (4� 4) matrix being invertible).
(ii) when the FB price for k is di¤erent from zero. Then the (4 � 1) square bracket

vector should be orthogonal to the three row vectors of responses w.r.t. the prices p�; pw
and '. This is equivalent to0B@
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(m = p�; pw; ') (i.e., the optimal demand, expected wait and cost responses that follow
from the optimal responses in q; k; �), we get:0B@
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Below in Lemma A.3 we show that the (3� 3) matrix on the RHS is positive de�nite and
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thus invertible. Then
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We now combine the two outcome variables (�;w) in the vector �0 and de�ne the
corresponding price vector p0� = (p�; pw). Then�
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Using the formulae for partitioned matrix inversion we can write the solution as
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Below in Lemma A.3 we show that @c
He�

@' jd�=0 > 0 (although smaller than @cHe�

@' > 0 by
the LeChatelier principle). Suppose that a higher cost sharing rate increases the number

of installed beds. Then 'SBcs > 0. Notice that
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inverse of a "induced response" marginal cost of beds, i.e., MC irk
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=
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. Then
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k . This proves (39).
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i.e., the SB marginal increase in hospital revenue from patient and waiting time reward
should equal the FB revenue increase from these rewards plus the FB revenue increase
from the bed reward. The triggered responses are conditioned on hospital costs being
kept constant (since that outcome is rewarded separately).

(c) When w cannot be priced either, the regulator�s FOCs reduce to the �rst and last
FOCs (because pw is no longer a decision variable):
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This system of equations will hold in two distinct cases.
(i) the FB price for k and w are zero. In that case the square bracket term is the zero

vector when also pTB� = pFB� and 'TB = 0(the (4� 4) matrix being invertible).
(ii) when the FB prices for k and w are di¤erent from zero. Then the (4� 1) square

bracket vector should be orthogonal to the two row vectors of responses w.r.t. the prices
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p� and '. This is equivalent to
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Lemma A.3 In the second best cost sharing case, the matrix
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Proof of Lemma A.3 Totally di¤erentiate the FOCs of the hospital. Let H be the
negative de�nite Hessian of the objective function. Let z = (q; k; �)0 and drop the H-
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04/16 March, Hiroshi Aiura, “The effect of cross-border healthcare on quality, public 

health insurance, and income redistribution" 
 
05/16 March, Jan Tore Klovland, “Shipping in dire straits: New evidence on trends 

and cycles in coal freights from Britain, 1919-1939” 
 
06/16 April, Branko Bošković and Linda Nøstbakken, “The Cost of Endangered 

Species Protection: Evidence from Auctions for Natural Resources” 
 
07/16 April, Cheti Nicoletti, Kjell G. Salvanes, and Emma Tominey, “The Family 

Peer Effect on Mothers’ Labour Supply” 
 
08/16 April, Hugh Gravelle and Fred Schroyen, “Optimal hospital payment rules 

under rationing by random waiting” 
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