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Abstract

We consider an electricity market organized with two settlements: one for
a pre-delivery (day-ahead) market and one for real time, where uncertainty
regarding production from non-dispatchable energy sources as well as vari-
able load is resolved in the latter stage. We formulate two models to study
the e�ciency of this market design. In the myopic model, the day-ahead
market is cleared independently of the real-time market, while in the in-
tegrated stochastic dispatch model the possible outcomes of the real-time
market clearing are considered when the day-ahead market is cleared. We
focus on how changes in the design of the electricity market in�uence the
e�ciency of the dispatch, measured by expected total cost or social welfare.
In particular, we examine how relaxing network �ow constraints and, for the
stochastic dispatch model, even the balancing constraints in the day-ahead
part of the dispatch models a�ects the overall e�ciency of the system. This
allows the dispatch to be infeasible day-ahead, while these infeasibilities will
be handled in the real-time market. For the stochastic dispatch model we
�nd that relaxing the network �ows and balancing constraints in the day-
ahead part of the market provides additional �exibility that can be valuable
to the system. In our examples with high up-regulation cost we �nd a value of
"overbooking" that lead to lower total costs. In the myopic model the results
are more ambiguous, however, leaving too many constraints to be resolved in
the real-time market only, can lead to infeasibilities or high regulation cost.
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1. Introduction

During the last decade many power systems around the world, have seen
large changes in the generation mix, with a move towards renewable power
sources, like wind, solar and small scale hydro power. Common to these
generation sources are that the availability in real time is highly uncertain
until close to real-time operation. On the other hand, some conventional
generation, like nuclear and base load thermal power, need to be planned in
good time before delivery in order to ensure minimum operating cost. An
important question thus is how to design markets to bene�t from the early
planning of conventional sources, while at the same time dealing with the
uncertainty of the renewables.

Electricity systems must balance supply and demand at every instance in
time, and in doing so, keeping within system limits. In practice, electricity
markets are often organized in sequential markets, from long term contract
markets between generators and consumer representatives to real-time ar-
rangements, where system operators deal with instantaneous frequency con-
trol. Some of the real-time tools of the system operators are market-based,
others are part of the regulated system operation, and the costs are socialized
through network tari�s or similar.

Organized trade of physical electricity is often accomplished by at least
a day-ahead market, and a real-time market, which is cleared close to the
delivery hour. Often, this is supplemented by intraday markets, taking place
between day-ahead and real time, where market agents can reposition their
obligations. An example from the Nordic market operated by Nord Pool
Spot is given in Figure 1.

The day-ahead market, Elspot, is cleared 12-36 hours before the deliv-
ery hour. Elspot balances supply and demand bids by setting simpli�ed
locational marginal prices, based on a zonal pricing or market splitting ap-
proach, implying that actual network constraints are only partially taken into
account in the day-ahead market dispatch by aggregate transfer capacities
between relatively large geographical regions (for a more detailed description
see for instance Bjørndal et al. (2014)). Figure 2 shows the price regions of
the Nordic day-ahead market.
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Figure 1: Illustration of the Nordic power market.
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Figure 2: Illustration of the price regions of the Nordic day-ahead market. Source: Nord-
Pool Spot.
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After Elspot is cleared, the intraday market, Elbas, opens for continuous
trading of "Feasible �ows", i.e. transfers that do not violate the aggregate
transfer capacities between regions. Elbas remains open for trading until one
hour before delivery. At the same time, on the evening the day before deliv-
ery, generators and large consumers provide bids for up- and down-regulation
to the regulation power market as well as other ancillary services markets op-
erated by the system operators. These bids are used for special regulation,
to alleviate congestion that remains after the day-ahead market clearing, and
for real-time balancing. As is clearly illustrated from the Nordic example,
the constraints that are taken into account in the di�erent sequential markets
may di�er. In the Nordic and European power markets, only a few aggregate
transfer limits between large regions are part of the day-ahead price process,
while all relevant constraints must be complied with in real time. In contrast,
in many US power markets, nodal pricing is used both for real-time and for
day-ahead markets, representing much more detailed constraints also at the
day-ahead stage of the market.

With more uncertainty due to renewables, more emphasis has been put
on intraday and real-time markets. Holttinen (2005) discusses for instance
the value for wind power generators in the Nordic power market to bid closer
to real time in order to avoid regulation costs. Weber (2010) considers how
the intraday markets in Europe can be adapted to account for the integra-
tion of large amounts of renewable generation in the years to come, whether
the non-dispatchable renewables are balancing responsible or not. Mauritzen
(2015) discusses further the interaction of subsidies for renewables and intra-
day markets, with data from Danish wind power production and the Elbas
intraday market. In a European context, day-ahead markets are to a large
extent integrated, however, intraday and real-time markets (or other short-
term arrangements) are still much more nationally oriented.

Fabbri et al. (2005) illustrate how the forecasting errors of wind power
may be reduced closer to the delivery hour. On the other hand, for conven-
tional generators, there may be a cost connected to resetting plans close to
the delivery hour. This may be due to a requirement to operate on a non-
optimal scale, and the need for using more expensive units. NETL (2012)
gives an overview over constraints that may be challenged and extra costs
that may be incurred due to short-term deviations from initial plans in con-
ventional power generation. Thus, there may be a trade-o� between delaying
dispatch until the uncertainty regarding production from non-dispatchable
sources and variable load is reduced, and the increased �exibility costs con-
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Figure 3: Illustration of the relation between uncertainty and �exibility costs.

nected to changes in production and consumption with short notice. This
trade-o� is illustrated in Figure 3, where early market clearing leads to plan-
ning of cheap base load under high uncertainty, while late clearing has little
uncertainty but higher production costs.

In general, the increased share of renewables may lead to revisions of
market clearing procedures and the timing of di�erent sub-markets. It may
however also require a more fundamental rethinking of the market clearing
algorithms used, for instance if it makes sense to take explicitly into account
uncertainty at a later stage when clearing day-ahead or other pre-delivery
markets. This may be accomplished by using market clearing models based
on stochastic programming.

Numerous authors have developed stochastic market clearing models and
showed that they yield better plans, in terms of expected social surplus,
than deterministic market clearing models. Examples include Bou�ard et al.
(2005a,b); Bou�ard and Galiana (2008); Ruiz, Philbrick, Zak, Cheung and
Sauer (2009); Ruiz, Philbrick and Sauer (2009); Papavasileiou et al. (2011);
Papavasileiou and Oren (2012); Khazaei et al. (2014). Pricing issues are
discussed by Kaye et al. (1990); Wong and Fuller (2007); Pritchard et al.
(2010); Morales et al. (2012, 2014); Zavala et al. (2015). Pritchard et al.
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(2010) proposes a stochastic market clearing model for a system where load
and/or generation may be uncertain. They prove that their pricing scheme
is revenue-adequate in expectation. Morales et al. (2014), focusing on a
system with uncertain intermittent power generation, handles uncertainty
by proposing an improved version of the conventional deterministic market
clearing model, in which the system operator controls the intermittent gener-
ator's bid in the day-ahead market in order to optimize the system as a whole.
The procedure is solved using a bi-level optimization model, and yields an ex-
pected social surplus that is smaller or equal to the surplus under stochastic
market clearing. Bjørndal et al. (2016) discuss functional organization and
informational requirements related to implementation of stochastic market
clearing.

In this paper, we consider a sequential energy-only electricity market,
consisting of a day-ahead and a real-time market. We focus on the interaction
of the two when production is uncertain, and when congestion management
methods di�er between the two sub-markets. We study the e�ects of using a
stochastic dispatch model, following Pritchard et al. (2010), and in particular,
how relaxing network and/or energy balance constraints in the day-ahead
clearing a�ects the overall expected costs in the electricity market. We use
both the stochastic and a myopic or sequential market clearing model similar
to Morales et al. (2014) to provide further insights into the e�ects of relaxing
day-ahead network constraints. Pricing issues are discussed in a companion
paper (Pritchard et al., 2016).

The rest of the paper is organized as follows. In Section 2, a mathematical
formulation is presented, before a discussion of our model setup and di�erent
dispatch models is provided in Section 3. We then present two numerical
examples in Section 4 before conclusions are drawn in Section 5.

2. Mathematical model

2.1. Generation and load

Our model framework is similar to that of Pritchard et al. (2010). We
consider a collection of o�ers i ∈ I, where each o�er can represent either
generation (positive values) or load (negative values). For each i ∈ I we
require a solution (xi, Xi), where xi is the solution for the �rst-stage dispatch,
and Xi is a vector of stochastic variables representing the solution for the
second-stage dispatch. The �rst-stage dispatch corresponds to the market
clearing in the day-ahead market, while the second-stage dispatch is the
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results from the real-time market clearing. The set of feasible solutions for
the �rst stage is denoted C1

i , while the set of feasible solutions for the second
stage will depend on the realized scenario ω ∈ Ω as well as the decision xi
from the �rst stage. We denote this set as C2

i (ω, xi). A feasible solution
(xi, Xi) to both stages must satisfy

xi ∈ C1
i ∀i ∈ I

Xiω ∈ C2
i (ω, xi) ∀i ∈ I, ω ∈ Ω.

When considering di�erent dispatch models, we take on a system per-
spective, i.e. as if the dispatches were performed centrally in an energy only
mandatory dispatch. We do not consider unit commitment, intertemporal
constraints (water values are assumed to be the same in all models), other
types of ramping constraints, etc. These may be represented indirectly by the
�exibility costs, however they are not considered explicitly. We also assume
that all possible outcomes are modelled by our scenarios (which is clearly un-
realistic), and do not consider out-of-sample e�ects of the day-ahead market
clearing. When discussing up- and down-regulation we will use the conven-
tion from the Norwegian market. Up-regulation then refers to a change in
production or consumption that increases the net supply situation in the
system. Down-regulation, on the other hand, decreases the net supply sit-
uation in the system (i.e. generation is decreased and / or consumption is
increased).

Our focus is on deviations from the day-ahead scheduling, and the cost
and bene�t curves of �exible producers and consumers are modelled. That
is, the regulation costs refer to the costs of changing production and / or
consumption in the real-time market. If the consumers increase the quantity
consumed in real time, it is not as valuable as if it was planned in the day-
ahead market. If they reduce it, they would ask for more than the day-
ahead willingness to pay. If the generators must increase their production
beyond the planned level, it is more costly than the day-ahead marginal
cost, and if they reduce production from the planned level, they will not
save all day-ahead marginal cost. That is, the �exibility costs modelled are
a representation of real costs incurred by the participants in the market.

2.2. Objective function

The objective function for our models is minimization of total costs in
the system. This includes the sum of costs from the day-ahead market and
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the regulation costs incurred in the real-time market. Consumption bene�t
is represented as negative cost. An illustration of the components in the
objective function is provided in Figure 4. The �gure on the left illustrates
a supply function for a generator, while the �gure on the right illustrates a
demand function for a consumer. In addition, the two �gures illustrate the
�exibility costs incurred in the real-time market when there is a deviation
from the day-ahead market clearing. The day-ahead clearing is given by
volume xi, whilst examples of up- and down-regulation volumes are given by
Xd
iω1
, Xu

iω1
, Xd

iω2
and Xu

iω2
.

We use linear functions to represent the cost and bene�t functions for the
participants in the market. Each o�er i ∈ I is associated with a day-ahead
cost and bene�t function with non-negative parameters ai and bi, given by

ci(xi) = aixi + 0.5bix
2
i .

For the supply side, this cost function is based on an assumption of a
linear marginal cost function: ai + bixi. The second stage cost and bene�t
function parameters will typically di�er from those in the �rst stage, due to
reduced �exibility at this stage. We assume that this can be represented, for
any �exible generator, with parameters aui and bui for up-regulation and adi
and bdi for down-regulation, where a

d
i ≤ ai ≤ aui and min{bui , bdi } ≥ bi (refer

the supply function illustrated in the left-hand diagram in Figure 4).
To represent the demand side, and keep the formulation compact, we use

xi < 0 to represent consumed quantities. The inverse linear demand curve
is given as ai + bixi. Since xi will take negative values, this corresponds
to a downward sloping demand curve. For both generators and consumers,
the slopes of the cost and bene�t functions for changes in dispatch in the
real-time market are steeper than the corresponding functions in the day-
ahead market. Similarly as for the supply side, we assume that any �exible
consumer can be represented with parameters aui and bui for up-regulation
and adi and b

d
i for down-regulation, where a

d
i ≤ ai ≤ aui and min{bui , bdi } ≥ bi

(refer the demand function illustrated in the right-hand diagram in Figure
4).

With reference to Figure 4 we can formulate the total cost after the
second-stage regulation as:

ci(Xiω) + c̃i(xi, Xiω),

where ci(Xiω) is the total cost of the �nal schedule evaluated at the day-ahead
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Figure 4: Illustration of the cost and ben�t functions used in our models. The �gure on
the left illustrates a supply function for a generator, while the �gure on the right illustrates
a demand function for a consumer. In addition, the two �gures illustrates the �exibility
costs incurred in the real-time market when there is a deviation from the day-ahead market
clearing.

cost parameters, and c̃i(Xiω, xi) is the additional cost caused by in�exibility
in the real-time market. The �exibility cost associated with the �rst-stage
quantity xi and the revised quantity Xiω in scenario ω is

c̃i(xi, Xiω) = (aui −ai)Xu
iω+0.5(bui −bi)(Xu

iω)2+(ai−adi )Xd
iω+0.5(bdi−bi)(Xd

iω)2,

where Xu
iω = max{Xiω − xi, 0} and Xd

iω = max{xi −Xiω, 0}.
This formulation allows for many di�erent assumptions about cost and

bene�t curves for consumers and generators, both day-ahead and real-time.
Figure 5 shows three examples of how the initial schedules may be adjusted,
as well as the e�ect on cost and bene�t. The leftmost diagram illustrates
an example where ai = 0 and bi > 0, i.e., a generator with an increas-
ing marginal cost starting from zero. The day-ahead schedule is xi, and
in scenario ω this quantity is up-regulated to Xiω. The slope of the up-
regulation cost curve is given by the parameter bui > bi. The area of the
light gray triangle equals ci(Xiω) = 0.5bi(Xiω)2, i.e., the cost of the �nal
schedule given by the day-ahead cost function, and the area of the dark gray
triangle equals the �exibility cost c̃i(xi, Xiω) = 0.5(bui − bi)(Xu

iω)2. The mid-
dle diagram illustrates a generator with a constant day-ahead marginal cost
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Figure 5: Calculation of cost and bene�t for suppliers and consumers. The two �gures to
the left shows how the �exibility cost are for two suppliers with di�erent supply functions.
The light grey area illustrates the cost of the �nal dispatch with the original cost function
(not including �exibility costs), while the dark grey area is the �exibility cost due to up-
or down-regulation. The �gure to the right illustrates the same for the consumers. The
light grey area is the consumer bene�t with the original demand parameters, while the
chequered area shows the loss in consumer surplus due to �exibility costs.

ai, and a marginal cost adi < ai for down-regulation. The total cost after
down-regulation is aiXiω + (ai − adi )Xd

iω, where the last part (ai − adi )Xd
iω is

the non-avoidable cost that remains after the initial scheduled quantity has
been reduced by Xd

iω. The rightmost diagram illustrates a consumer with a
�rst-stage demand function with intercept and slope parameters equal to ai
and bi. Consumption quantities are negative, so the second-stage increase
in consumption is equivalent to down-regulation. Again, the light gray area
represents the bene�t of the �nal schedule evaluated at the day-ahead pa-
rameters, i.e., equal to −(aiXiω+0.5bi(Xiω)2), and the cross-hatched triangle
equals the �exibility cost c̃i(xi, Xiω) = 0.5(bdi − bi)(Xd

iω)2.

2.3. Network �ow equations

The generator and load entities are linked to a set of nodes N . For a
particular o�er i ∈ I we denote by ν(i) ∈ N the node where generator /
consumer i is located. We then consider the network as a directed graph
where the nodes are connected by a set of transmission lines L. For a given
�ow vector f = (fl)l∈L, we let τn(f) denote the net in�ow of power in node
n from the transmission network. We de�ne ν0(l) as the starting point and
ν1(l) as the end point of line l, and fl > 0 implies that power is �owing from
ν0(l) to ν1(l). We assume, as in Pritchard et al. (2010), that lines are lossless,
and this implies that:
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τn(f) =
∑

l:ν1(l)=n

fl −
∑

l:ν0(l)=n

fl. (1)

See Pritchard et al. (2010) for a discussion of how the network model can
be generalized to incorporate line losses. We will associate the day-ahead
schedule x with a �ow vector f . The production and consumption quantities
given by x must be consistent with the �ow f , and in a lossless system this
implies that

τn(f) +
∑
i∈I(n)

xi = 0 ∀n ∈ N. (2)

Similarly we associate the �nal schedule Xω with the �ow vector Fω, and
consistency implies that

τn(Fω) +
∑
i∈I(n)

Xiω = 0, ∀n ∈ N. (3)

The energy balance in the network is guaranteed by Equations (2) and
(3). Additional network constraints for the �rst and second stage are given
by:

f ∈ U1 (4)

Fω ∈ U2 ∀ω ∈ Ω (5)

The sets U1 and U2 can represent capacity constraints for individual lines,
loop �ow constraints, or other relevant network constraints. Note that we
may have U1 6= U2, since the representation of the network can di�er in the
day-ahead and real-time stages.

We assume, throughout the paper, that U2 represents the network con-
straints in a DC load �ow model without losses. Then the �ow vector g ∈ U2

is equivalent to

gl = yl
(
θν0(l) − θν1(l)

)
∀l ∈ L (6a)

θ1 = 0 (6b)

− capl ≤ gl ≤ capl ∀l ∈ L, (6c)
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where (6a) relates the �ow, gl, over line l to the voltage angle di�erence be-
tween the end nodes of the line, and where yl is a parameter that represents
the electrical characteristics of line l in the approximate DC representation
of the network (for instance the admittance). Constraint (6b) sets one of the
voltage angles equal to zero in order to obtain a unique solution. The inequal-
ities in (6c) represents the thermal constraints on the line �ow. One could
also add further constraints to the description of U2, such as the security
constraints that are discussed in, e.g., Bjørndal et al. (2014).

3. Dispatch models

3.1. Market clearing

We consider a situation where the electricity market consists of a planned
or day-ahead market and a real-time market at or very close to delivery. At
the day-ahead stage some load and/or generation levels in real time are uncer-
tain. In real time all uncertainty is resolved. In the following, we present two
di�erent dispatch models, termed stochastic and myopic, where the connec-
tion between the two markets is handled di�erently. In the stochastic market
clearing model, the �rst stage is solved taking into account the uncertainty
in the second stage and the connection between the costs and bene�ts in
the two stages. In the myopic market model, however, the day-ahead mar-
ket is cleared based only on given bids, not taking into account neither the
uncertainty nor the bids in the real-time market.

The myopic model, corresponding to the conventional dispatch model in
(Morales et al., 2014), solves the following problem in the day-ahead market
(�rst stage):

min
x,f

∑
i∈I

ci(xi) (7a)

s.t.

xi ∈ C1
i ∀i ∈ I (7b)

τn(f) +
∑
i∈I(n)

xi = 0 ∀n ∈ N [πn] (7c)

f ∈ U1 (7d)
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where τn is the shadow price for the nodal balance constraints. In the real-
time market (second stage), for every scenario ω ∈ Ω, the market clearing is
found by solving

min
Xω ,Fω

∑
i∈I

(
ci(Xiω) + c̃i(xi, Xiω)

)
(8a)

s.t.

Xiω ∈ C2
i (ω, xi) ∀i ∈ I (8b)

τn(Fω) +
∑
i∈I(n)

Xiω = 0 ∀n ∈ N [λnω] (8c)

Fω ∈ U2, (8d)

where (x, f) is �xed to an optimal solution to (7), and λnω is the shadow
price of the balance constraint of node n in scenario ω. The resulting expected
welfare from the two stages will be

E

[∑
i∈I

(
ci(Xiω) + c̃i(xi, Xiω)

)]
. (9)

In the stochastic market clearing model given by (10), the two markets
are considered in an integrated manner. This means that the model considers
the consequences for the real-time market clearing in the di�erent scenarios
when the day-ahead market is cleared. The objective function of this model
is analogous to (9).
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min
x,f,X,F

E

[∑
i∈I

(
ci(Xi) + c̃i(xi, Xi)

)]
(10a)

s.t.

xi ∈ C1
i ∀i ∈ I (10b)

Xiω ∈ C2
i (ω, xi) ∀i ∈ I, ω ∈ Ω (10c)

τn(f) +
∑
i∈I(n)

xi = 0 ∀n ∈ N [πn] (10d)

τn(Fω) +
∑
i∈I(n)

Xiω = 0 ∀n ∈ N, ω ∈ Ω [pωλnω] (10e)

f ∈ U1 (10f)

Fω ∈ U2 ∀ω ∈ Ω (10g)

To make the real-time shadow prices comparable, the shadow price of the
nodal balance constraint (10e) for node n in scenario ω is pωλnω, where pω is
the probability of scenario ω.1

3.2. E�ect of network constraints in the day-ahead market

In both market clearing models, we distinguish between the set of �ow
constraints in the two stages, i.e., U1 and U2. A key issue in this paper
is the e�ect of di�erent assumptions about U1. One alternative is to set
U1 = U2, i.e., include a full network representation also in the day-ahead
stage. We refer to this alternative as the nodal model. In European electricity
markets, the day-ahead market is currently cleared with a simpli�ed network
representation, based on a partitioning of the network nodes into zones. Let
z ∈ Z represent the set of price zones, Nz the set of nodes belonging to zone
z, and L(x, z) = {l ∈ L : ν0(l) ∈ Nx, ν1(l) ∈ Nz} the set of network lines
where the starting node belongs to zone x and the end node to zone z. The
day-head �ow constraints f ∈ U1 in a zonal model can then be expressed as

1The energy balance equation (10e) is di�erent from that in (Pritchard et al., 2010),
where a net formulation is used in order to use the real-time shadow prices for market
settlement. We do not discuss pricing, and it will be more convenient to use the gross
formulation here. Pricing will be discussed in a companion paper (Pritchard et al., 2016).

14



Table 1: The alternative network constraint formulations for the day-ahead market.

Model Network constraints

Nodal U1
nodal = U2

Balanced U1
bal = R|L|

Unconstrained U1
unc = R|L| and nodal balance equations removed

Zonal U1
zonal = {f ∈ R|L| : (11) is satis�ed}

− zcapzx ≤
∑

l∈L(x,z)

fl −
∑

l∈L(z,x)

fl ≤ zcapxz ∀(x, z) ∈ Z × Z. (11)

Another alternative is to leave out the network constraints altogether,
i.e., to set U1 = R|L|. For the stochastic model, we also consider leaving
out the nodal balance equations (10d). This gives us two variants of a less
constrained model. We de�ne the unconstrained model to be without neither
balancing constraints nor network constraints, while the balanced model in-
cludes balancing constraints, but no network constraints. Consequently, the
unconstrained model allows for over- or under-booking in the day-ahead part
of the electricity market, and is thus similar to the Newsvendor model.

In total, we then have four di�erent alternatives for the day-ahead mar-
ket clearing model, and we denote the corresponding sets of feasible �ows as
U1
nodal, U

1
zonal, U

1
bal, and U

1
unc, respectively. The four alternatives are summa-

rized in Table 1.
Since the balanced and the unconstrained models are obtained from the

nodal or zonal models by successively relaxing constraints, we can rank the
optimal value v of each of the problem instances for the stochastic clearing
model:

min[vstochnodal, v
stoch
zonal] ≥ vstochbal ≥ vstochunc

It is not possible to determine a general ranking of the optimal value for
the nodal and zonal model since both may be a relaxation of the other, de-
pending on how the node aggregation and zonal capacities are determined.
If the zonal network constraints are obtained by simply aggregating the net-
work constraints in the nodal model, i.e., if zcapxz =

∑
l∈L(x,z) capl for any

pair of zones x and z, then we would have U1
nodal ⊆ U1

zonal and v
stoch
nodal ≥ vstochzonal.
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In practice, the system operators often set the interzonal capacities based on
a number of considerations such as loop �ow and security of supply, and not
by simply summing the line capacities. In that case, we cannot determine
any general relationship between U1

nodal and U
1
zonal.

For the myopic market clearing model it is not possible to foresee how the
di�erent alternatives for the day-ahead market clearing model will perform
relative to each other. When clearing the day-ahead market, the myopic
model will maximize the net bene�ts in this market without considering
the e�ects on the real-time market. Depending on the �exibility costs and
network con�gurations, this may make either of the models arbitrarily bad
or good. Given that the representation of the uncertainty is the same as for
the stochastic clearing model, and that U1

myopic = U1
stoch, the upper limit on

the expected performance of the myopic model will be equal to the results
from the stochastic market clearing model.

4. Numerical examples

4.1. Example 1

In our �rst example we demonstrate that the speci�cation of the day-
ahead market clearing via U1 can be important. In the three-node network,
illustrated in Figure 6, the load is located in Node 1 and the generators in
Nodes 2 and 3. We consider two equiprobable scenarios ω ∈ {1, 2}. In this
stylized example, all cost parameters are equal to zero, except au1 = au2 = 1
and au3 = 0.25. This means that we have asymmetric �exibility costs where
it is costly to up-regulate, while down-regulation is free. The load and gen-
eration quantity vectors in the two scenarios are given by X1 = (30, 0,−30)
and X2 = (0, 60,−60). Since the real-time quantities are given, the only
decisions to be taken are the day-ahead quantities x.

ω = 1

1
30

10

2
0

10

3
−3020

ω = 2

1
0

20

2
60

40

3
−6020

Figure 6: Real-time schedules for the scenarios in Example 1.
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All lines in the network have identical impedances. Given a DC approxi-
mation of the network model, the real-time quantities will result in the �ows
shown in italics in the �gure. We assume further that line (2, 3) has a ther-
mal capacity limit of 40, equal to the �ow over this line in scenario 2. There
are no other constraints on line �ows. Further, we assume that there are no
feasibility constraints on the day-ahead schedule other than the requirement
that it must be possible to adjust the schedule to obtain the real-time solu-
tion in the respective scenarios. In the case where we require the day-ahead
schedule to respect the network constraints, the stochastic market clearing
model can be written as:

min 0.5 · 1 ·
(
[30− x1]+ + [0− x1]+ + [0− x2]+ + [60− x2]+

)
(12)

+ 0.5 · 0.25 ·
(
[−30− x3]+ + [−60− x3]+

)
s.t.

x1 = f13 + f12

x2 = −f12 + f23

x3 = −f13 − f23 (13)

f12 + f23 − f13 = 0

− 40 ≤ f23 ≤ 40

where x1, x2 and x3 are the day-ahead quantities. The constraints in (13)
can be rewritten, eliminating the �ow variables, as

x1 + x2 + x3 = 0, (14)

− 40 ≤ x2 − x3
3

≤ 40, (15)

where (14) represents the energy balance, while (15) is the thermal ca-
pacity constraint for line (1, 3). In Figure 7, the grey plane corresponds to
the set of solutions satisfying the balance constraint (14), while the solutions
in the dotted part of the plane also satisfy (15).

Since the real-time quantities are given, the objective function (12) is
the expected �exibility costs caused by di�erences between the day-ahead
schedule and the real-time schedules in the various scenarios. The general
expression for the expected �exibility cost is
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Figure 7: Day-ahead schedules in Example 1.
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E

[∑
i∈I

(
c̃i(xi, Xi)

)]
, (16)

where

c̃i(xi, Xiω) = (aui −ai)Xu
iω+0.5(bui −bi)(Xu

iω)2+(ai−adi )Xd
iω+0.5(bdi−bi)(Xd

iω)2

for scenario ω and o�er i. If there are no network or energy balance con-
straints on the day-ahead schedule of the stochastic dispatch model, the
day-ahead plan for the di�erent generators and loads can be determined in-
dependently of each other. In the unconstrained case then (Table 1), we can
always �nd an optimal day-ahead schedule that satis�es, for all i ∈ I,

min
ω
Xiω ≤ xi ≤ max

ω
Xiω, (17)

since choosing xi outside this interval will lead to up- or down-regulation
in all scenarios. For Example 1, this corresponds to the smallest box in Figure
7. Since down-regulation is costless, the value of (12) is maximal at the
corner point (30, 60,−30), i.e., all the o�ers are scheduled at their maximal
respective quantities, and no up-regulation is necessary. The optimal value
is zero.

Imposing the balance constraint (14) means that the value chosen for xi
will also a�ect the scheduled quantities for the other o�ers j 6= i. In this case
an optimal solution can be found in the interval given by, for all i ∈ I,

min

min
ω

Xiω,−
∑
j 6=i

max
ω

Xjω

 ≤ xi ≤ max

max
ω

Xiω,−
∑
j 6=i

min
ω

Xjω

 . (18)

For a supplier the interpretation of (18) is that xi is limited from below
by (1) the minimal own production across all real-time scenarios and (2)
the minimal residual demand. Similarly, xi is limited from above by (1) the
maximal own production across all real-time scenarios and (2) the maximal
residual demand. Similar interpretations may be given for demand o�ers.

For Example 1, (18) corresponds to the larger box in Figure 7. The
optimal day-ahead schedule when the balance constraints are imposed is
(30, 60,−90), which lies in the intersection of the balance plane and the
border of the box. The load in node 1 has to be up-regulated in both scenarios
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(that is, the load is reduced to increase net supply in the network), resulting
in an expected cost of

0.5 · 60 · 0.25 + 0.5 · 30 · 0.25 = 11.25.

The model chooses this solution because up-regulation of load has the lowest
�exibility cost.

Next, we impose the capacity constraint (15), and this will further con-
strain the optimal day-ahead schedule to lie within the dotted surface in
Figure 7. The optimal schedule is now (30, 45,−75). The load in node 1 will
have to be up-regulated in both scenarios, by 45 and 15, respectively, and
the generation in node 3 will have to be up-regulated by 15 in scenario 2.
The total expected cost is now

0.5 · 45 · 0.25 + 0.5 · (15 · 1 + 15 · 0.25) = 15.

This stylized example illustrates the potential bene�ts from relaxing the
network constraints in the day-ahead market clearing problem. In the next
example, we will extend the analysis with a more realistic example.

4.2. Example 2

The network con�guration as well as the various generators and loads are
described in Figure 8. The example is motivated by the bid curves that can
be observed in Nord Pool Spot, with a combination of hydro, wind, thermal
and nuclear power generation. For a more detailed description of bid curves
on Nord Pool spot, see Bjørndal et al. (2014).

The three nodes in our network are connected by three identical lines,
each with a transmission capacity of 5000 MWh/h. There are 5 generators of
various types. Their respective cost curves and �exibility costs are provided
in Table 4.2. In Node 1, there is an inelastic load of 15000 MWh/h, with
a bene�t curve given by the dashed lines. We assume that this load can be
shed, and that the VOLL (Value of Lost Load) is 2000 e/MWh. Moreover,
there is a wind and a thermal power producer, and the only uncertainty in
the system comes from the capacity of the wind generator. This uncertainty
is represented by three scenarios that are described in Figure 9. The thermal
generator has a capacity of 5000 MWh/h. In order to illustrate the cost
curves in our network, we have used the wind capacity from Scenario 2 in
Figure 8. Node 2 has a nuclear generator with a capacity of 10000 MWh/h,
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Figure 8: Cost parameters and capacities for Example 2.

as well as a hydro generator with a capacity of 5000 MWh/h. In Node 3
there is a hydro generator with a capacity of 15000 MWh/h.

The wind generator capacity is not known when the day-ahead market
bids are submitted. We assume that the wind generator may regulate up or
down without any additional costs2, but the �nal quantities must respect the
realized capacity constraints given by the scenarios in Figure 9. There are
three �exible generators in the system (in addition to the wind producer): the
two hydro generators and the thermal generator. Up- and down-regulation
by hydro generators is made costly by increasing the slopes of the corre-
sponding cost curves. In the example we increase the up-regulation slope
for the hydro generators by a factor of 10, giving the new slope parameters
buhydro2 = buhydro3 = 0.01 · 10 = 0.1, while down-regulation by these generators

2In the computations, we add a negligible down-regulation cost in order to break ties
in the unconstrained model.
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p1 = 0.2

p2 = 0.5

p3 = 0.3

Wind = 0

Wind = 7000

Wind = 15000

Figure 9: Wind scenario data for Example 2.

can be done without extra costs. For the �exible thermal generator, up-
regulation is made costly by increasing the intercept of the real-time market
cost curve relative to the corresponding intercept for the day-ahead mar-
ket, i.e., autherm = atherm + 6 = 36 e/MWh, while down-regulation can be
done without extra costs. Hence, the �exible generators all have asymmet-
ric �exibility cost parameters, where up-regulation is costly. The load is also
�exible, with the value of down- or up-regulation given by the VOLL constant
of 2000 e/MWh.1

Table 2: Cost parameters and �exibility in Example 2.
Entity Node Intercept (a) Slope (b) Flexible? Flex. cost up Flex. cost down

Wind 1 0 0 Partly au = a ad = a
Therm. 1 30 0 Yes au = a+ 6 ad = a
Load 1 2000 0 Yes1 au = a ad = a
Nucl. 2 2 0 No - -
Hydro 2 0 0.01 Yes bu = 10b bd = b
Hydro 3 0 0.01 Yes bu = 10b bd = b

Table 3 shows the optimal solution of the stochastic dispatch model given

1Load can be shed at VOLL = a = 2000 Euros / MWh. If day-ahead load shedding
takes place, then real-time down-regulation (increased consumption) is limited to shed
load quantity.
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by (10) for di�erent constraints in the day-ahead problem, see Table 3. We
split the value of the objective function (10a) in two parts, where c represents
cost and bene�t evaluated at the day-ahead parameters, and c̃ represents the
extra (�exibility) cost due to more expensive real-time adjustments. We
have also adjusted the objective values by removing the contributions from
the inelastic load, i.e., 15000 MWh/h valued at a price of 2000 e/MWh,
from all the numbers, in order to make them easier to compare (this term
would be identical in all model runs). In addition to the di�erent model
formulations that we discussed in Section 3.2, we also show the wait-and-see
value, i.e., the expected optimal value with perfect information.

The results show that the unconstrained model gives a cost value that
is 114.9 % of the wait-and-see value, while the corresponding values for the
balanced and nodal models are 117.4 % and 127.4 %, respectively. Hence,
the relaxation of the balance constraint and the network capacities will im-
prove the solution in this case. The zonal network constraints can be tighter
or looser than the corresponding nodal constraints. When the interzonal ca-
pacity is set at 10000 MWh/h, i.e., equal to the sum of the individual line
capacities, the zonal model is a relaxation of the nodal model, and we see
that the objective function value is slightly better, at 124.4 % of the wait-
and-see value. However, if the interzonal capacity is set too tight, e.g., at
5000 MWh/h, the value of the zonal model becomes much worse than the
nodal model, at 352.8 % of the wait-and-see value. These results are in line
with the discussion in Section 3.2.

Table 3: Optimal expected cost with stochastic market clearing in Example 2.

E[c] E[c̃] E[c+ c̃]

Model e Relative e Relative e Relative

Wait-and-see 66360 100.0 % 0 0.0 % 66360 100.0 %

Unconstrained 76250 114.9 % 0 0.0 % 76250 114.9 %
Balanced 76322 115.0 % 1600 2.4 % 77922 117.4 %
Nodal 82325 124.1 % 2190 3.3 % 84515 127.4 %

Zonal (cap{1},{2,3} = 5000) 116977 176.3 % 117168 176.6 % 234144 352.8 %
Zonal (cap{1},{2,3} = 10000) 79810 120.3 % 2769 4.2 % 82578 124.4 %

Table 4 shows the optimal schedules for the nodal and unconstrained
models, respectively. While the nodal model provides a balanced day-ahead
schedule, the unconstrained day-ahead schedule has an excess supply of 1500

23



MWh/h, i.e., overbooking of generation.3 Since the real-time schedule has
to be balanced, there is a net down-regulation of 1500 MWh/h in each of
the scenarios. The value in the overbooking comes from the �exibility with
respect to which generators the model choose to down-regulate in the real-
time market. For the nodal model, the table shows that the real-time ad-
justments for the nodal model involves costly up-regulation by one of the
hydro generators in the low-wind and medium-wind scenario. The uncon-
strained model schedules both of the hydro generators at higher quantities
and down-regulates them when necessary, thus avoiding costly up-regulation.

Table 4: Optimal schedules with stochastic market clearing.

Nodal model Unconstrained model

Entity Node Day-ahead Real-time adj. Day-ahead Real-time adj.
schedule Low Medium High schedule Low Medium High

Wind 1 153 -153 6847 9849 0 7000 10000
Therm. 1 5000 -5000 -5000 5000 -5000 -5000
Load 1 -15000 -15000
Nucl. 2 4998 5000
Hydro 2 155 -153 245 -155 1500 -1500 -1500
Hydro 3 4694 306 -2092 -4694 5000 -3500 -5000

Total 0 0 0 0 1500 -1500 -1500 -1500

We next investigate how the myopic model, which is more similar to the
market clearing methods used in many markets today, will react to di�erent
formulations of the day-ahead constraints. Note that it is not obvious how
the wind generator's production possibilities should be represented in the
day-ahead stage of the myopic model, i.e., how we should represent C1

wind.
In the stochastic market clearing models we let C1

wind = [0, 15000],i.e., the
support of the probability distribution shown in Figure 9. Since the wind
generator has a marginal cost of 0 e/MWh, bidding a capacity of up to
15000 MWh/h would lead the myopic schedule to include as much wind as
possible.

Figure 10 illustrates solutions for the myopic model with di�erent values
of the day-ahead wind bid from 0 MWh/h to 15000 MWh/h. The left part of

3The day-ahead quantity of the wind generator may be set anywhere in the interval
from 0 MWh/h to 10000 MWh/h without a�ecting the objective function value, and we
have chosen the lower end of the interval by adding a negligible down-regulation cost for
wind when computing the schedule.
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the �gure shows results for the myopic model with nodal network constraints
in the day-ahead stage, and the right part of the �gure shows results for the
myopic model with only balance constraints in the day-ahead stage.4 The
upper diagrams show the generation and load quantities in the day-ahead
schedules, and the middle diagrams show the physical �ows that would result
from the day-ahead schedules. We see that, for low values of the wind bid,
the day-ahead schedule will consist of mostly nuclear power, as well as a
small amount of hydro power. This will result in a �ow from Node 2 to Node
1 of more than 5000 MWh/h for wind bid values of less than 7400 MWh/h.
The hydro generators are �exible and can be regulated down in real time in
scenarios with little wind, but the quantity of the nuclear generator cannot be
adjusted. Any day-ahead schedule with more than 7500 MWh/h of nuclear
power production will cause an infeasible real-time schedule, since 2/3 of this
generation will �ow from Node 2 to Node 1, and since there are no generators
that can create a counter�ow in order to make the schedule feasible. This
will happen for all wind bid values of less than 7100 MWh/h. The nodal
model avoids the infeasibility problems, since the network constraints are
represented in the model used in the day-ahead stage of the market clearing.
Still, the expected cost of the day-ahead and real-time schedules depend to
a large degree on how the wind bid is represented in the day-ahead stage,
and this is illustrated by the lower diagrams in Figure 10. The diagrams
show total expected cost, i.e., E[c + c̃], and we have split c into VOLL and
generation cost. We see that the nodal model has (approximately) the same
optimal wind bid as the optimal wind in the stochastic market clearing model
with nodal constraints, i.e., 153 MWh/h. Note that this solution is equivalent
to the one proposed by (Morales et al., 2014), where the optimal wind bid is
found by solving a bi-level optimization problem. The best solution in the
balanced model is to set the wind bid equal to 9600 MWh/h, which yields
expected cost equal to 320' e, most of which, 224' e, is made up of extra
�exibility costs related to real-time regulation. Below the wind bid value of
9600, load shedding is necessary, and VOLL makes up an increasing part of
total cost.

Figure 11 illustrates the solutions for myopic market clearing with zonal

4We have not shown any results for an unconstrained myopic model, as this would
require that we make an explicit decision about day-ahead over- or underbooking. In the
stochastic model, any over- or underbooking is endogenously determined by the model.
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Figure 10: Myopic model with nodal (left) or balance (right) constraints, Example 2.
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Figure 11: Myopic model with zonal network constraints, Example 2. The interzonal
transfer capacity cap{1},{2,3} is set equal to 10000 (left) or 5000 (right).
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network constraints in the day-ahead stage. The left and right parts of
the �gure correspond to an interzonal capacity of 10000 MWh/h and 5000
MWh/h, respectively. For the case where the interzonal capacity is set at
10000 MWh/h, we see that, although the nuclear generator is never scheduled
at its full capacity of 10000 MWh/h, it is still scheduled above 7500 MWh/h
for low values of the wind bid, and it is therefore not possible to �nd a feasible
real-time schedule in any scenario. When the interzonal capacity constraint
is reduced to 5000 MWh/h, however, we see that the infeasibility issue is
avoided. In this case, any wind bid between 0 MWh/h and 5000 MWh/h in
the day-ahead stage results in an expected cost of 313' e. Tightening the
zonal capacity constraint resolves the infeasibility issue, but the resulting
schedule is inferior to the nodal model in terms of cost.

Example 2 illustrates that how energy balance and network constraints
are modelled a�ects the optimal solution and the overall welfare, both in the
stochastic and the myopic dispatch models. In the stochastic model, from an
optimization point of view, there is no need to keep these constraints in the
day-ahead stage of the problem, and leaving out the energy balance may give
a Newsvendor structure on the solution, with over- or under-booking of gen-
eration, depending on the relative cost for up- and down-regulation. For the
myopic model, the constraints in the day-ahead part of the market clearing
may make a big di�erence to the solutions. Leaving too many constraints to
be resolved only in the real-time market may lead to infeasible �ows or high
cost. Moreover, the results of the myopic market dispatch depend crucially
on the wind power bids to the day-ahead market, and the optimal bid is not
necessarily the expected wind power availability.

5. Conclusions

We have presented an analysis of an electricity market with two settle-
ments, i.e. a day-ahead market and a real-time market. When the day-ahead
market is cleared, there can be uncertainty regarding production from non-
dispatchable energy sources as well as variable load. We have formulated two
main models to study the e�ciency of this market design. The �rst model is
a myopic model, where the day-ahead market is cleared independently of the
real-time market. The second model is a stochastic dispatch model where
the possible outcomes of the real-time market clearing are considered when
the day-ahead market is cleared. We have studied how changes in the design
of the electricity market in�uence the e�ciency and feasibility of the �nal
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dispatches. In particular, we have studied e�ects of di�erent constraints for
the day-ahead part of the market clearing models.

For the stochastic dispatch model, we show analytically that the overall
e�ciency may be improved by relaxing constraints on network �ows and
energy balance in the day-ahead part of the model. We have illustrated
potential savings with two examples, both with asymmetric regulation cost,
where up-regulation is expensive. In this case, relaxing the energy balance
constraints allows for over-booking that leads to lower total system costs. The
value of over-booking depends on network con�guration, structure and size
of �exibility costs, and the uncertainty faced by the markets. For other cost
parameters it is possible to show similar values from under-booking. If we
are to include energy balance and network �ow constraints in the day-ahead
part of the dispatch, the type of network constraints matter. European-style
zonal constraints may yield solutions that are more or less e�cient than nodal
pricing depending on how the capacities of the zonal system are set.

For the myopic dispatch model, bids from the stochastic resources to the
day-ahead market clearing will not be determined endogenously by the mar-
ket clearing model, but must be provided in the day-ahead stage. The second
example, where only wind power is stochastic, shows that the e�ciency and
real-time feasibility of the dispatch is in�uenced by the assumed wind bids
to the day-ahead market, as well as by the network �ow constraints in the
day-ahead market clearing. In particular, we see that removing day-ahead
constraints can lead to plans that are infeasible in some real-time scenarios,
and that regulation cost may be very high.

In a companion paper (Pritchard et al., 2016), we investigate the pricing
of power in the proposed stochastic dispatch model. Other important aspects
to investigate further include revenue distribution and incentives in markets
using stochastic dispatch models, as well at how robust the optimal strategies
are with respect to out of sample realizations of the uncertain factors.
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