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Abstract 

Unfavorable weather raises cost of doing business around the world. According to the 

CME Group, around 30 percent of gross domestic product (GDP) of the United States (US) is 

affected by the weather. Only in the US total exposure to meteorological conditions accounts 

for nearly USD 5.3 billion. In order to address those risks, a market for weather derivatives 

emerged in 1996 which allows companies and individuals to use this financial instrument to 

hedge against losses associated with volatile weather. 

In this thesis, I examine the impact of unanticipated fluctuations in air temperature on 

electricity prices to explore the relevance of weather derivatives for Norwegian companies. I 

conduct a time series analysis on historical observations for air temperatures in Oslo, Norway, 

along with the respective historical prices for electricity in the same area in order to either 

prove or dismiss the causality between the two variables. The data for electricity prices is from 

Nord Pool, while the series for air temperatures is from the Norwegian Meteorological 

Institute (MET Norway). In case the causal relation exists, it would provide local enterprises 

that are sensitive to air temperature fluctuations with a strong argument for using derivatives 

issued on temperature-based indices to mitigate their weather-related risks. 

My study proves the causality between the two variables: air temperatures and electricity 

prices. In particular, it finds that warmer-than-expected winters cause the decline in electricity 

prices presumably due to their effect on demand for power. This adversely affects utilities 

which end up with selling less power. 

In addition, there is the lack of academic works discussing the fast-growing market for weather 

derivatives. This is explained by the fact that this market is just recently developed. This thesis 

therefore aims at adding to the knowledge of weather-indexed instruments, and explicitly 

underlines the importance of further research on this topic.  
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1. Introduction 

“But who wants to be foretold the weather? It is bad enough when it comes, without our 

having the misery of knowing about it beforehand.” 

– Jerome K. Jerome, Three Men in a Boat 

1.1 Description of topic 

In August 2005, hurricane Katrina has made landfall on the Gulf Coast of the United States 

and caused the economic damage that accounts for nearly USD 125 billion. In contrast with 

the quote by Mr. Jerome which my thesis begins with, the rapid growth of the financial market 

for weather during the last two decades implies that a great number of investors, which are 

represented by both individuals and companies, would rather mitigate their weather-related 

risks than not. 

Weather derivatives are financial instruments that allow investors to hedge their exposure to 

unfavorable meteorological events. Straightforwardly, the side of the weather derivatives 

contract which issues the instrument, gets a premium and agrees to bear the risks if the 

unfavorable weather event, which the contract is written on, occurs. 

The empirical research that underlies my thesis focuses on the impact of the air temperature 

fluctuations in Oslo on the power price in NO1 bidding area in Norway. NO1 bidding area 

covers Oslo region. The purpose of the study of temperature and electricity price is to prove 

the causal relationship between the two time series and argue that it creates opportunities for 

the development of the financial market for weather. If the causality is the case, this would 

suggest that Norwegian companies that suffer from unanticipated fluctuations in temperature 

may be interested in using weather derivatives for hedging purposes. 

1.2 Background 

People suffer from bad weather. In particular, extreme weather events increase cost of doing 

business and cause in turn financial losses. In order to decrease economic and financial impact 

of volatile weather, people have started to protect their assets initially by means of insurance. 

With the development of financial and energy markets, other types of financial instruments 
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appeared. The market of weather derivatives, for instance, has been experiencing a rapid 

growth since 1997. 

It is not clear who made the first deal related to weather risk mitigation or what was the bargain 

about or when was the contract signed. Nevertheless, there will be no mistake to claim that the 

first transactions on financial markets that involved weather risk abatement were insurance 

contracts. Insurance for weather were widespread in 20th century all over the world. For 

example, it is acknowledged that ICICI Lombard, a private sector general insurance company 

in India, offered weather insurance for Indian farmers in the early 20th century. The product 

referred to the risks related to temperature and precipitation turmoil (Sivakumar Mannava, p. 

410). 

The integration of capital and insurance markets in 20th century gave birth to new financial 

instruments that allowed to hedge against extreme weather events. Catastrophe bonds and 

weather derivatives are cases in point (Taušer Josef, p. 309). 

Industry experts agree on the fact that financial market for weather developed in 1990s after 

the deregulation of US electricity market. New market conditions of the second half of 20th 

century forced American government to modify energy legislation in favor of market 

competition. The reform focused on utility industry and presumed the switch from the 

government regulation of utility rates to the price formation by means of market mechanism 

(The Center for Responsive Politics (CRP)). 

The cornerstone of new institutional environment of American power market was Energy 

Policy Act of 1992. The bill enabled electricity producers to sell their power to utilities (102nd 

Congress (1991-1992), 1992). This increased competition on the market and was supposed to 

push the prices for end consumers down. 

Another key element of the electricity deregulation reform was Order #888 issued by the 

Federal Energy Regulatory Commission (FERC) in 1996. According to this directive, electric 

utilities had to provide all of players with free access to transmission lines. This shortened in 

turn the supply chain network of electric power (Federal Energy Regulatory Commission, 

1996). 

Free access to American transmission capacity along with new approach to pricing based on 

the laws of demand and supply created new opportunities for weather risk mitigation. Such 
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financial instruments as weather derivatives appeared. Targeting on weather forecasts, these 

became soon an efficient tool for hedging against extreme weather events. 

In 1996, for instance, Consolidated Edison Company of New York (Con Edison) signed the 

contract on power supply with Aquila. The deal included weather risk abatement and 

prevented Con Edison from financial losses in case the August would be cold and people's 

demand on electricity for air conditioning would decline. Companies relied on the weather 

forecast supplied by New York City's Central Park weather station. According to the deal, 

Aquila had to provide Con Edison with the predetermined discount to the electricity price in 

case the number of cooling degree days prevailed the expectation by more than 10 percent 

(Bishnupriya Mishra, p. 17). 

Another example dates back to 1997, when Willis Group Holdings, Koch Industries and Enron 

Corporation incorporated weather data to risk indices and conducted one of the first 

transactions that the one may describe as weather risk management by means of derivatives 

(The Weather Risk Management Association). 

The El Niño oscillation in winter of 1997-1998 became a crucial driver of the development of 

the weather derivatives market. According to National Climatic Data Center, the event brought 

the second warmest winter since 1895 (National Climatic Data Center, p. 3). As a result, many 

companies suffered from serious financial losses owing to an uncharacteristic mild winter. At 

the same time, this was a trigger for investors who subsequently started to look for 

opportunities to hedge against the risk associated with the weather (Considine, p. 1). 

The deal between Con Edison and Aquila along with Willis-Koch-Enron contract referred to 

the weather risk management on over-the-counter market (OTC). The rapid growth of OTC 

market for weather derivatives in 1990th was due to its unique features. Specifically, OTC 

contracts allow an investor to hedge weather-related risks for almost any location. The 

International Securities and Derivatives Association (ISDA) Master Agreement, however, 

decelerated the further growth of the OTC market because of the credit risk issues that OTC 

contracts include. 

Organized market subsequently became major driver in trade of weather-related financial 

instruments. The boom  refers to 1999 when Chicago Mercantile Exchange (CME) introduced 

standardized futures and options on weather indices. Initially, CME listed only temperature 

contracts. These were standard contracts of HDD and CDD. Both of them represented hedging 
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opportunities in only ten cities in the US at the initial lunch (CME Group, p. 1). Nowadays, 

there is more weather related contracts traded on exchange than on OTC. 

To sum up, the liberalization of commodity markets, which took place in the second half of 

the last century, resulted in new opportunities on financial markets. Hedging weather risk with 

the help of derivatives is a case in point. Since 1997, when El Niño increased the demand for 

the derivatives written on weather indices, both OTC and organized market for weather has 

grown remarkably. Nevertheless, the latter one has a greater potential for further development 

given the market legislation and credit risk constraints imposed on OTC market. 

1.3 Relevance 

The market for weather derivatives is completely new. The first trade dates back to 1996 and 

the first exchanged-traded derivatives appeared just in 1999. For that reason, there is a small 

amount of literature and research with the focus on weather derivatives. In case of Norway, 

the lack of interest of Norwegian academic community to the topic is also partially explained 

by absence of the market being considered. Simultaneously, Norway is one of the largest 

European countries with the seventh largest coastline in the world (Central Intelligence 

Agency). The country is exposed to various hurricanes that arrive from the Atlantic Ocean. 

Norwegian hydropower stations along with its ski resorts depend on the level of precipitation. 

Moreover, the country’s second largest export good – fish – depends on water temperature 

(World's Richest Countries, 2016). All of these vulnerabilities can be reduced using weather 

derivatives. With this work, I hope therefore to enhance the knowledge about the market for 

weather derivatives. 

In addition, I aim at finding the causal relationship between the air temperature in Oslo and 

the power price for the same region. If the causality is the case, then the temperature-based 

indices like Heating Degree Days (HDD) and Cooling Degree Days (CDD), which are 

calculated by CME Group, may be considered as the underlying for futures or forwards. The 

use of temperature-indexed contracts for hedging could help Norwegian enterprises to mitigate 

their exposure to unfavorable weather events. The exposure of energy companies like Statkraft 

to warmer-than-expected winters is a good case in point. 
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2. Nordic Electricity Market 

As mentioned earlier, I examine the impact of air temperature fluctuations in Oslo on the 

electricity price in Oslo bidding area. Additionally, I control my model for both the electricity 

prices in neighboring bidding areas as well as the transmission capacities between the last-

mentioned ones and Oslo bidding area. In order to understand the prospective impact of all of 

these variables on my model, it is necessary to explore Nordic power market at first. This is 

the market for electricity that combines trade in electricity as well as power generation, 

transmission and distribution in the Nordic and Baltic countries. In this paper, I usually use 

the terms power and electricity as synonyms. They have slightly different meanings in real 

world, though. 

2.1 Electricity as commodity 

With regard to physics, electricity is defined as the fact of accumulation and movement of 

electrons – elementary particles that hold electric charges (Suckling, 2015 ). In this paper, I 

use the economic interpretation of electricity. Specifically, I look at electricity as the 

commodity that includes both energy itself and its transportation to consumers. Unique 

qualities of electricity as commodity define the essence of power market. It is therefore 

necessary to discuss these qualities at first. 

To start with, electricity is the commodity that should be supplied immediately. Unlike oil, 

crops, metals, or other typical commodities, the delivery period for electricity is zero. There 

is therefore no predetermined conditions for transportation and delivery such as the 

International Commercial Terms (Incoterms) or similar rules. By way of illustration, consider 

the consumer of electricity who is supposed to get his or her light as soon as he or she turns a 

switch on. Immediate consumption causes in turn immediate generation. 

Immediate generation and consumption lead to another quality of electricity. The logistics of 

the power market is, in a nutshell, an electric circuit that contains a continuous flow of 

electricity. The continuous flow is a very important characteristic because it allows to provide 

consumers with electric power instantly – it stands with the immediate supply characteristic. 

Moreover, electricity is intractable and intangible, meaning an individual cannot see electrical 

current as well as the one cannot grasp it. This implies for electricity consumers that they are 
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unaware of which generator have supplied to them precisely. Frankly, all of active power 

plants constantly supply electricity to a common transmission network, whereas consumers 

just take electricity from the network whenever they need it. 

Although true, the process is in fact slightly more complicated than that. For the sake of clarity, 

I move to the other quality of electricity as commodity – a common grid. Transmission 

network of a country is defined by its grid. The one may think of the grid as a chain or, more 

accurately, a system of interconnected power lines and nodes that form the electric circuit with 

a continuous flow of electric current and transmit this current from producers to consumers. 

Electric current carries in turn some amount of electrical energy. This energy is partially 

wasted while being transmitted by means of power lines. The following relationship is true: 

the longer is the total length of lines used to transmit electricity from one location to the other 

one, the more energy is wasted in the process of transmission. This is why the existence of 

several competing grids is not optimal. This also describes the monopoly on the transmission 

market. 

Additionally, electricity is a variable and unpredicted commodity in the sense that the quantity 

of electricity produced often depends on unpredicted factors such as the weather. Indeed, 

various hourly, daily, weekly, monthly, and seasonal discrepancies define the amount of 

electricity that enters the grid. In the power markets full of solar energy, for example, the 

amount of energy produced is highly sensitive to the amount of sun during days. The power 

markets with dominating hydro power, as another example, are affected by precipitation 

during either rainfall or snowfall seasons, or both. Norway is a good case in point. 

Furthermore, the weather has impact on the other side of the market too, meaning the weather 

influences the demand for electricity. In my empirical analysis in Section 4, for instance, I 

study how different is the impact of warmer and colder winters in Oslo, Norway, on both the 

demand and price for electricity. 

Last but not least, electricity is not storable. This is probably the most important difference 

between electricity and crops, oil, metals, and other typical commodities. Here, I need to shed 

light on the issue. There exist batteries nowadays that can store electrical energy in actual fact. 

A good and contemporary example would be the famous Powerwall (Tesla Motors). This 

product of Tesla Motors is mainly for households, but there are larger and more powerful 

batteries as well which can even charge small factories for some short time interval. 

Nevertheless, there is currently just under 1 gigawatt (GW) of storage capacities in the form 
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of the batteries connected to the grids around the world. Although Bloomberg New Energy 

Finance (BNEF) forecasts the increase in market value of the world battery market to 

astonishing USD 250 billion by 2040, none of the today’s battery technologies is capable of 

storing the amount of electrical energy that makes difference to national economies 

(Bloomberg New Energy Finance, 2016). There is even no battery technology that can provide 

an economic unit such as an aluminium smelter with electricity over some noticeable period. 

For the reason stated above, I am eligible for saying that electricity is the commodity that 

cannot be stored directly. Electricity can be stored, however, if it has been changed into some 

other form of energy in advance. Bulk electricity storage which stores electrical energy in the 

form of water is the case in point. I will discuss this technology in Subsection 2.5 in detail. 

2.2 Power market preliminaries 

Norway has implemented a substantial reform of its power marker in 1991. The reform 

presumed the transition from the traditional regulated market organization to the modern 

deregulated market of electricity. In the past, Norwegian power market was vertically 

integrated. This means basically that there existed a state monopoly on power generation, 

transmission and distribution. This was a very inefficient system that resulted in a number of 

issues. There was, for example, the discrepancy between domestic and foreign electricity 

prices. It was often difficult to logically explain high prices for electricity in Norway. 

Moreover, the market was characterized by overcapacity, so that there was potential for 

producing enough electricity with fewer generators. 

The power market reform of 1991 has brought the number of changes in the market 

organisation. Firstly, the power market was deregulated and vertically disintegrated. Every 

generator got equal access to the grid. As a result, the state monopoly in power production was 

replaced by competition among generators. Transmission and distribution of power remained 

monopolistic, though. Secondly, the approach to pricing of electricity became different. 

Indeed, electricity price has been formed by competitive forces on the spot market since 1991. 

With respect to a functional role, the one may split a typical power market into the following 

four dimensions: generation of power, transmission, distribution, and selling electricity to 

customers. Figure 2.1 reflects the idea of four basic functional dimensions within the power 
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market. Now, let me discuss this classification in detail with focus on power market of 

Norway. 

Figure 2.1 Market players of the power market of Norway 

 

Source: S. Oren 

To start with, I refer generation to electricity production. Production of electricity traditionally 

presumes either burning fossil fuels or nuclear fission process. However, power generation 

from renewable energy sources such as sun and wind has become common over the last 

decade. In Norway, above 96 percent of electricity is produced by hydropower plants. Table 

2.1 includes the figures that show the amounts of electricity that were produced from different 

energy sources in 2013. The statistics is for Norway. Particularly, the hundreds of small and 

big hydropower plants located in the country produced in 2013 around 129 terawatt hours 

(TWh) of electricity and besides, the authorities estimate that there is the potential to produce 

additional 35 TWh of power from water flow (The Royal Norwegian Ministry of Petroleum 

and Energy, 2016). 

Table 2.1 Electricity produced from different sources, 2013, Norway 

Source Amount (TWh) 
Hydropower 129 
Wind power 1.9 

Thermal power 3.3 
Total 134 

Source: The Royal Norwegian Ministry of Petroleum and Energy 

Statkraft is the largest electricity producer in Norway. It operates almost 150 hydropower 

production units in Norway and is also present in 19 other countries around the world. 

Statkraft’s annual electricity production equals 56.3 TWh (Statkraft). The company is state-
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owned. Another major electricity producer in the country is Norsk Hydro. Although its main 

focus is on aluminium production, Norsk Hydro owns 20 power plants that produce annually 

nearly 10 TWh of electricity. This makes the company the second biggest producer of 

hydroelectric power on the Norwegian power market (Norsk Hydro ASA). Lastly, Norwegian 

state-owned company Statoil, which is one of the world’s largest oil and natural gas producers, 

has started to produce electricity from offshore wind in the North Sea. Statoil’s offshore wind 

projects portfolio consists of five locations today. The company has declared its ambition to 

make use of its offshore experience and become eventually a substantial player on the power 

market (Statoil). 

The second and third functional dimensions within the power market are respectively 

transmission and distribution of electricity. Here, it is crucial to identify the underlying 

differences between the two. In general, transmission stands for electrical energy 

transportation over long distances using high-voltage (HV) cables, whereas distribution 

captures both the conversion of HV electricity to electricity of low voltage (LV) and the 

delivery of the latter one to consumers. In contrast with transmission, distribution presumes 

electrical energy transportation over shorter spans (Bjørndal, ENE424 Design and operation 

of deregulated electricity markets. Lecture notes, p. 16). 

The key characteristic of transmission to point out is the utilization of HV cables. In Norway, 

for example, the voltage in the transmission grid varies from 300 kilovolt (kV) to 420 kV. The 

reason for HV is Ohm’s law in physics. It presupposes that the current in electric circuit such 

as the power grid is defined solely by voltage and resistance. The rule is the following: 

𝐼𝐼 = 𝑉𝑉
𝑅𝑅
, 

where 𝑉𝑉 stands for voltage in the line, 𝑅𝑅 describes resistance, and 𝐼𝐼 is electric current. 

The power companies that install and serve transmission lines favor slim cables made of 

aluminum and copper. The choice of slim cables simply saves money to these companies. The 

price for it, however, is the increased resistance. Indeed, one of the numerous laws in physics 

implies that there is the inverse relationship between electric resistance and the cross-sectional 

area of the cable the electrical energy runs through, so that lower cross-sectional area 

corresponds to higher resistance (The Physics Classroom). In agreement with Ohm’s law 



 14 

represented by the equation above, slimmer cables adversely affect the level of the current 𝐼𝐼 

in the system. The transmitted electric power may be expressed as follows: 

𝑃𝑃 = 𝑉𝑉𝑉𝑉, 

where 𝑉𝑉 is voltage, 𝐼𝐼 is electric current, and 𝑃𝑃 is electric power. 

According to the equation above, lower level of the electric current owing to slimmer 

transmission cables has to be neutralized by higher voltage in the system in order to get the 

same amount of electricity transmitted. This explains the utilization of HV cables for 

electricity transmission over long distances (Narbel, Hansen, & Lien, p. 9). 

Regarding the distribution power network, it uses LV cables. In case of Norway, the country’s 

distribution power network may be split into two parts. These are the so-called regional and 

distribution networks. The voltages of 66 kV and 132 kV characterize the former one, while 

the voltage of 22 kV is typical for the latter one. The distribution grid provides final consumers 

with electricity. Simultaneously, the regional grid connects the distribution network with the 

country’s transmission network. 

Furthermore, transmission of electricity and distribution of electricity are also different in 

terms of a number of companies operating at every stage. There is the only company that 

controls and serves the transmission grid in Norway, for instance. As to distribution of 

electricity, many small companies, which are mostly owned by local governments, control 

countywide distribution grids around Norway. These companies have exclusive rights to 

deliver electricity to consumers in particular areas (Bartes & Wasenden, p. 3). 

As to power consumption, the dimension is represented by two sectors: households and 

industry. The former one speaks on behalf of above 5.2 million citizens of Norway that 

consume electricity on the daily basis. The latter one stands for companies that create 

Norwegian GDP producing goods and services. Appendix 1 shows the most electricity 

consuming industries in 2014 in Norway. The data are taken from the official statistics agency 

of Norway (Statistisk sentralbyrå, 2015). Pay attention to the basic metals. According to the 

data, this niche consumed above 31 terawatt hour (TWh) of electricity. The niche is 

represented first and foremost by Norwegian aluminium smelters. An interesting fact is that 

the industry representative, Norsk Hydro, is the largest aluminium producer in the Nordic 

countries and therefore of one of the largest electricity consumers. Simultaneously, it was 
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already mentioned that the company is one of the largest power producers in Norway (Ministry 

of Trade, Industry and Fisheries, 2001). 

Last but not least, Figure 2.1 corrects for five important power market players. These are the 

following five bodies that make the whole system of generation, transmission, distribution and 

marketing work: 

• Transmission owner (TO). TO is simply the company that is in charge of transmission 

network. In case of Norway, the state-owned company Statnett owns the whole 

transmission network in the country, which, incidentally, includes above 10 thousand 

kilometres of HV cable lines (Statnett, 2014). 

• System operator (SO). SO is in control of security of supply. The body deals with 

supply breaks and other system externalities that have a detrimental effect on power 

balance. In order to balance the power market, SO monitors capacity margins in the 

system. Moreover, the body keeps both voltage and frequency in the grid at an adequate 

level. 

In addition, depending on how a particular market is designed, the functions of SO can 

be merged with functions of TO, so that the only body is established, call it 

transmission system operator (TSO), that owns the power grid and is responsible for 

security of supply simultaneously. This is the case in Norway and Figure 2.1 represents 

the issue. 

• Scheduling coordinator (SC). The one may think of a SC as of a broker on financial 

market that acts on behalf of its clients. To be precise, SC is an intermediary that links 

generators, consumers and the TSO. In Norway, SCs are also known as balance 

responsible entities, because they are responsible for providing the TSO with balanced 

schedules. The balanced schedule of a particular SC reflects the information about 

generation and consumption of its clients, as well as the SC’s prediction about 

utilization of transmission lines by market participants. Condition on the market 

design, SC can also play the role of power exchange (Wangensteen, p. 85). The 

California Power Exchange (CalPX) was a good case in point. 

• Power exchange (PX). PX is the spot market for electricity. It gets bids from power 

producers and fits them to bids obtained from power consumers. Market price is the 
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outcome of this process. Nord Pool is PX for the Nordic power market. I include more 

information about PX in my next subsection. 

• Load serving entity (LSE). LSE is basically an electricity company that sells power to 

customers. LSE guarantees energy security, meaning every consumer gets the 

electricity it needs whenever it needs it. 

2.3 The physical and financial market for electricity 

The last functional dimension of the power market is selling electricity. This commonly 

suggests selling electricity to final customers. Overall, how it is happening, depends on the 

architecture of a particular market. There are two typical marketing systems subject to market 

architecture. The first one is called integrated system. It is typical for various local power 

markets in the United States of America (US). In brief, it presumes higher authority for system 

operators and pricing based on solving optimization problem. In the second system, on the 

other hand, both competition among generators and competition among consumers influence 

the spot price at every time. The name for it is unbundled system. This one is typical for the 

Nordic countries and Australia (Wilson, pp. 1299-1315). In this subsection I only focus on the 

unbundled system partially because the region of my interest is Norway. A comprehensive 

analysis of integrated systems is therefore beyond the scope of this paper. 

Let me now examine the process of price settlement in the unbundled system in detail. 

Consider price settlement in the Nordic countries as an example. Here, the price is settled on 

Nord Pool, which is PX for Nordic countries. In brief, Nord Pool is a physical exchange for 

power. It was established by Norwegian TSO in 1993. The exchange covers seven Nordic and 

Baltic countries nowadays. These are Norway, Sweden, Denmark, Finland, Lithuania, Latvia, 

and Estonia. Nord Pool is owned by TSOs of these countries. I provide with the thorough 

ownership structure in Appendix 2. 

I indicated earlier that pricing in unbundled system is based on competition. The correct term 

for this is in fact market clearing. Market clearing on the power market means that the spot 

price for electricity equates the demand for electricity to the electricity supply. On the Nordic 

power market, market clearing consists of two phases. In the first phase, Nord Pool collects 

bids for the entire market and aggregates them as follows. The bids collected from consumers 

are put together in the decreasing order, so that they form the aggregated demand curve. 
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Simultaneously, the bids collected from suppliers are arranged in the increasing order, so that 

they form the aggregated supply curve. The spot market price corresponds to the level of price 

for which the two aggregated curves meet. The trade of electricity based on the described 

procedure is called auction trading. The spot price calculated at auction is called system price. 

The system price is the same for every region and country. 

The second phase is zonal pricing. The problem with the system price is that it does not control 

for transmission capacities between regions. Norway, for instance, consists of five pricing 

areas. With regard to transmission constraints, local TSO defines the size of pricing areas as 

well as the number of separate pricing areas in the country. These areas are officially named 

bidding areas. 

Truly, the limited transmission capacities do not let to set electricity price completely on the 

market basis. Zonal pricing solves the problem in the following way. If the flow of electricity 

which is required to equalize the prices between two regions is higher than the transmission 

network is capable of holding, then the price in the bidding area with surplus of power is 

artificially reduced. At the same time, the electricity price in the bidding area which suffers 

from deficit of power is artificially raised. Both prices are changed to some preset optimum 

level. This intervention intensifies consumption in the surplus bidding area due to lower prices 

and simultaneously distracts electricity consumers in the deficit bidding area due to higher 

prices. As to power generation, it falls in the surplus bidding area, because it becomes 

unprofitable for generators to produce power. The power generation in the deficit bidding area 

increases at once, because it becomes more profitable to produce power. The overall effect of 

the manipulation with the prices is the decreased flow of power between the regions to the 

level when the transmission capacity constraints are not violated. 

Figure 2.2 reflects the result of market clearing mechanism in the Nordic countries quite well. 

The system price is calculated for September 15th, 2014. It equals EUR 39.87 and is the same 

for all bidding areas. However, this is not the price people or industries pay for electricity. The 

real price is adjusted for every bidding area conditional on transmission capacities. The real 

electricity price in Oslo, for example, is lower than the system price and equals EUR 34.33 

per megawatt hour (MWh). At the same time, the real price for electricity in Tromsø is higher 

than the system price and equals EUR 42.45 per MWh. 
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Figure 2.2 Bidding zones 

 

Source: Statnett 

As it was already mentioned, the physical trade of electricity in the Nordic countries occurs 

on the spot market managed by Nord Pool through auction trading. In actual fact, the spot 

market in question is the generalized term for the three sequential markets – two spot markets 

operated by Nord Pool with the addition of balancing power market. Figure 2.3 below is a 

very decent representation of the matter. 

Nord Pool includes Elspot and Elbas market. The former one is a day-ahead market. This 

means that electricity for the delivery the following day is traded on Elspot market. An hourly 

power delivery the following day is considered as underlying of contracts. The trade of 

contracts ceases at 12:00 every day. This allows the purchase of electricity from 12 to 36 hours 

before it is needed. 

Elspot is regarded as the most liquid electricity market in Europe. Around 84 percent of the 

traded power in the Nordic countries is either bought or sold on the Nord Pool’s day-ahead 

market. Even though, the trade on this market is not compulsory and there are other options to 

buy or sell electricity such as bilateral contracts. 

Elbas market is in turn an hour-ahead market. The power market participants trade on Elbas 

with the contracts for the same hours as they do on Elspot market. The difference is the actual 

time when this trade happens. Indeed, the trade for the hours starts as soon as the trade on 

Elspot ceases and lasts until one hour before the delivery. Elbas market allows in this way to 

adjust the amount of electricity bought and sold to the real needs of market participants. 
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The third market in the sequence is the balancing market. This one is a real-time market. It is 

considered as the last chance to reach power balance. Unlike Elspot and Elbas, which are 

managed by Nord Pool, the balancing power market is operated by local TSO, which is Statnett 

in case of Norway. 

Although Elspot and Elbas deal with managing power balance quite well, it is sometimes 

impossible to avoid deviations in either real power production or real power consumption from 

the levels predetermined by contract obligations. One possible explanation for the deviations 

is new meteorological information which makes producers and consumers adjust their 

electricity needs in real time. TSO serves as balance keeper that keeps the transmission system 

working in the modified market conditions. The balancing market can be explained in the 

following way (Bjørndal, 2014). 

Frequency in the grid is the indicator of the market which is in balance. As it was mentioned 

in the previous subsection, TSO is responsible for keeping frequency at the adequate level. 

With regard to the Norwegian standards, the “adequate level” corresponds to 50 hertz (Hz). If 

the real frequency in the system exceeds this level, this indicates overproduction of electricity. 

In this case, TSO orders producers to send less electricity to the grid and the power market 

becomes balanced again. The alternative scenario is overconsumption. Consider it is winter 

and air temperature outdoors is lower than it was forecasted by meteorologists. In this case 

Norwegians would consume more electricity in order to heat their houses. If the customers 

require more electricity than was contracted, the real frequency in the transmission system 

falls below the level of 50 Hz. In order to get frequency back to the adequate level, TSO orders 

producers to send more power to the grid. If it is not technically possible, TSO may order large 

power consumers to take less electricity from the grid. 

Figure 2.3 Future and spot markets 

 

Source: M. Bjørndal, Lecture notes 
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Apart from the physical market for electricity, there is also the financial market where 

electricity can be bought or sold using derivatives. As the one may see on Figure 2.3, financial 

market for power is represented by futures market which precedes the spot markets. 

The financial market for power dates back to 1990 when Futures and Options Exchange in 

London (London FOX) has tried to organize the futures market for power. This was the first 

attempt in the history of the world financial markets to trade power. Unfortunately, 

London FOX has failed with the exchange-based trade for electricity. Nevertheless, 

Statnett Marked established the forward market for electricity in 1992. This was the market 

for weekly contracts. Nowadays, the corporation NASDAQ OMX Group has gained control 

over the financial market for power trade in the Nordic countries. 

With regard to the time interval, NASDAQ OMX Group offers a large variety of types of 

futures issued on power price for the Nordic countries (NASDAQ OMX Group). In particular, 

contracts for weeks, workdays, weekends, months, quarters and years are offered for trade. 

The system price, which was mentioned earlies, is taken from Nord Pool as reference price for 

futures contracts. Note that the Nord Pool’s system price does not control for transmission 

capacity constraints. This means in turn that investors of such futures price do not care about 

the maximum electricity flow between bidding areas while investing in power futures. 

Furthermore, it is worth mentioning that the futures are settled financially. This means that no 

physical delivery is presumed. 

Futures with power as the underlying are regarded as risk management instruments. These 

contracts allow to hedge against the risk that the power price is moving in unfavourable 

direction (Rud, 2014). 

2.4 Bulk electricity storage 

As it was already mentioned, there are around 150 operational hydropower plants in Norway. 

Moreover, the country possesses nearly 50 percent of the European reservoir capacities. For 

that reason, Norway is often regarded by power market analysts as the Europe’s “green 

battery”. In order to explain the meaning of this term, I refer to Subsection 2.1, where I 

mentioned that electricity can be stored in the form of water. In this subsection, I am discussing 

a bulk electricity storage technology and how it influences the power market. Be advised that 

I use here the term “bulk electricity storage” as the synonym for battery and vice versa. 



 21 

To begin with, hydropower plants transform kinetic energy of water to electricity. The most 

ordinary type of hydropower plant is called impoundment. The basic working principle of an 

impoundment is straightforward: water is stored in reservoir. The reservoir may be artificially 

created when, for instance, a dam is constructed on the river. When there is a need to produce 

electricity, the sluice gates are opened and water flows from the upper reservoir through a 

turbine located downhill. The force of gravity makes this water spin the turbine. The electricity 

generator is attached to the turbine. It turns automatically when water gets to the turbine 

(Office of Energy Efficiency & Renewable Energy). 

Since the energy is accumulated in the form of water in the upper reservoir, the power 

company which owns the impoundment can, in theory, release water whenever it is profitable. 

Nevertheless, the real energy storage is associated with another type of hydropower plant – 

pumped hydro storage (PHS). The basic working prince of PHS is very similar to the one of 

impoundment. It is shown on Figure 2.4 below. The major difference in technology is the 

availability of a pump in PHS. The general idea is as follows: when electricity price is low, 

water is moved from the lower reservoir to the upper reservoir using the pump. When 

electricity price increases, the pumped water can be released. This process can be described 

as buying electricity at lower price and selling it at higher price. There is of course the cost of 

pumping which may even make the power plant a nett consumer of electricity. Nevertheless, 

the power company would win from selling electricity at peak demand. Its profits will 

increase. 

Figure 2.4 Pumped hydro storage 

 

Source: M. Kloess & K. Zach 

It has been proven by a number of researchers that the power market can benefit when PHS 

works together with such energy sources as wind energy (Kapsali & Kaldellis, 2010). PHS 

works as battery in this way. Truly, wind farms produce a lot of electricity, but at the time 
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when the demand is low. PHS can consume this electricity and pump the water uphill. The 

electricity will be stored in the form of kinetic energy of water. The energy will be released 

when the demand for electricity increases. It is estimated, that PHS accounts for around 

99 percent of the world’s total battery storage nowadays. 
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3. The Market for Weather Contracts 

The one may consider weather derivatives as the combination of traditional insurance and 

financial instruments. The difference between insurance and weather derivatives is that the 

former one deals with mostly the events which are highly unlikely to happen, but with an 

enormous potential damage. The latter one, on the other hand, deals with the events which are 

likely to happen, but the risk of loss, however, is lower compared to the one covered by 

insurance. Furthermore, insurance provides with a fixed payoff only in case the predetermined 

event has happened. Weather derivatives, on the other hand, provide with a flexible payoff 

and it does not matter whether the predetermined event has actually happened. 

3.1 Introduction to derivatives 

It is necessary to get introduced to the basic terms that appear in the derivatives theory, before 

the one carries on with the discussion about the market for weather. In this subsection, I present 

the terminology that a derivative trader uses on the daily basis. In particular, I describe major 

instruments. 

To begin with, derivatives are the instruments that transfer risk between the two sides of a 

contract. Derivatives are traded either on the organized market, or on OTC. The former one 

stands for the trade arranged by an exchange. Different instruments are offered for trade 

subject to the type of market. Futures, for example, are offered only by exchanges. Futures 

contracts are standardized contracts that include the bearer’s obligations either to buy or to sell 

the underlying at a pre-agreed price during a pre-agreed future time interval. The word 

“standardized” means that the asset’s volume, quality and terms of delivery are already 

predetermined by exchange and reflected in a futures contract. 

Forward contracts, on the other hand, are solely offered on OTC. These are non-standardized 

contracts that include the bearer’s obligations to buy or sell the underlying at a pre-agreed 

price during a pre-agreed future time interval. The advantage of a forward is that it is non-

standardized. This means that the two sides of the contract can agree on the quantity, quality 

and terms of the delivery. The disadvantage of the contract is that there is the risk that the 

other side of the contract defaults. This risk is called credit risk. It is typical only for the 

forward market. In case of the futures market, the credit risk is neutralized by marking to 

market mechanism. This mechanism presupposes that every futures contract is revalued in the 
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end of a trading day in order to reflect the new price of the underlying that has changed over 

the day (Federal Reserve Bank of Chicago, pp. 3-5). 

Unlike futures and forwards, options are offered for trade on both exchange and OTS. An 

option contract gives it bearer the right, but not obligation to buy or sell the underlying. The 

option to buy speaks about a call option, whereas the option to sell characterises a put option. 

For every option, there is the party which considers buying the underlying and the party that 

considers selling the underlying. The official market terminology defines that the former one 

takes a long position in a contract, while the latter one takes a short position in a contract. 

In addition, options can be European, American and Asian. European options can be exercised 

solely when they expire, whereas American options can be exercised whenever it is optimal. 

An Asian option follows the average price of the underlying and pays the amount of money 

which is computed on the basis this average (Hull, pp. 7-9). 

3.2 Hedgers 

Hedgers on the market for weather are the investors who trade in the weather-indexed 

contracts with the aim of reducing their volume risk. The last-mentioned term should be now 

explained. The point is that unfavourable weather events influence the volume of business. 

The price is in turn affected indirectly. Consider Norwegian energy company Statkraft. 

Norwegians commonly use electricity for heating. This means that warmer-than-expected 

winters would result in the decrease of demand, so that Norwegians would need to consume 

less electricity during the winter season than Statkraft may have predicted initially. In case of 

Statkraft, the decline in annual profits may follow. 

Another illustration of hedgers I am using in my paper is the owners of Norwegian ski resorts 

in a particular area. This business is highly exposed to the level of snowfall in the same area. 

Indeed, both the length of the skiing season and the amount of incoming tourists depend on 

the snowfall. If there is less snow than was predicted, the owners of the ski resorts experience 

financial losses. 

Overall, the revenues of the owners of Norwegian ski resorts may be hedged using the snowfall 

index similar to the one computed by CME Group, while the profits of Statkraft may be hedged 

using HDD indexed. 
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3.3 The Weather Risk Management Association 

The Weather Risk Management Association (WRMA) is a non-profit organization that 

connects professionals of the weather risk management industry. It was founded 1999 by six 

companies which where pioneers of the market for weather contracts. These were such well-

known companies as Aquila and Koch Industries, which I mentioned earlier in the context of 

the development of the market for weather, as well as Castlebridge Partners, Enron Capital 

and Trade Associates, Southern Company Energy Marketing, and Swiss RE New Markets. 

Nowadays, WRMA includes nearly 40 market participants representing 12 countries. 

The association’s professional ambition is to encourage the development of weather 

derivatives and help weather exposed businesses to mitigate their risk of unfavorable weather 

events. WRMA accomplishes this mission through informing the community about the market 

for weather contracts. 

In addition, WRMA is involved in standardization of the market for weather indexed 

derivatives. For example, the association has created the preset format of ISDA confirmations 

for transactions with weather derivatives. Another example is the assistance of WRMA to the 

National Oceanic and Atmospheric Administration (NOAA) and the National Weather Service 

(NWS) in upgrading data reporting standards. The association educates also the public through 

organizing conferences and webinars (The Weather Risk Management Association). 

3.4 Organized Market. CME Group 

CME Group is a top-tier marketplace where trade of derivatives takes place. Its first quarter 

revenue reached a substantial figure of USD 934.2 million in 2016 (The Financial Times, 

2016). The group is the world’s largest futures exchange with the average daily exchange 

volume for May 2016, for instance, approximated to USD 14.9 million (CME Group, 2016). 

The Economist names it “the biggest financial exchange you have never heard of” (The 

Economist, 2013). 

CME Group is headquartered in Chicago and owns a number of exchanges in the US and 

Europe, as well as financial indices such as Dow Jones Industrial Average. It brings together 

companies, institutions and individuals that want to mitigate their risks using the set of 

instruments CME Group provides. 
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The company takes its roots from grain, dairy, butter and egg merchants. Particularly, one of 

its ancestors is the Chicago Board of Trade which was founded as early as in 1848. Unlike 

competitors, CME has always linked its business to products, not clients. Furthermore, the 

group has always been at the forefront of technological progress. A successful transition to 

electronic trading is a good case in point (The Economist, 2013). All of this, along with the 

network effect from annual portfolio made up of 3 billion contracts, has resulted in a success 

story for the world’s greatest derivatives exchange. In the same way, these advantages allowed 

CME Group to offer brand-new products time to time (CME Group). For example, CME was 

the first exchange that introduced standardized futures and options on weather indices. This 

dates back to 1999. 

3.5 Temperature derivatives 

The futures and options written on weather-based indices are considered as the most liquid 

instruments. Nowadays, the CME’s portfolio of weather products consists of financial 

instruments that are written solely on three temperature based indexes for a number of 

American and European cities. Specifically, the company lists the indices of CME Heating-

Degree-Days (HDD) and CME Cooling-Degree-Days (CDD) for the following American 

cities: Atlanta, Chicago, Cincinnati, Dallas, Las Vegas, Minneapolis, New York, and 

Sacramento. As to European cities, the exchange calculates and lists the index of Cumulative 

Average Temperature (CAT) for London and Amsterdam (CME Group). 

CME Rulebook explores the approaches used to calculate these three indices. Take for 

example Chapter 403 that discusses both HDD and CDD index futures. It states that for every 

day t, 𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡 is either zero, or the difference between 65 and the daily average temperature – 

the highest value is taken into consideration. The formula is as follows: 

𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑚𝑚 �65 − 𝑇𝑇𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑡𝑡

𝑚𝑚𝑚𝑚𝑚𝑚

2
; 0�, 

where 𝑇𝑇𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑇𝑇𝑡𝑡𝑚𝑚𝑖𝑖𝑛𝑛 are respectively maximum and minimum day temperatures, 𝑇𝑇𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑡𝑡

𝑚𝑚𝑚𝑚𝑚𝑚

2
 

represents arithmetic mean, and 65 is constant. 

As to 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡, it is defined as the highest value out of the following two: zero or the difference 

between the daily average temperature and 65. It may be expressed in the following way: 
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𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑚𝑚 �𝑇𝑇𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑡𝑡

𝑚𝑚𝑚𝑚𝑚𝑚

2
− 65; 0�, 

where 𝑇𝑇𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑇𝑇𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 are respectively maximum and minimum day temperatures, 𝑇𝑇𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑡𝑡

𝑚𝑚𝑚𝑚𝑚𝑚

2
 

represents arithmetic mean, and 65 is constant. 

The air temperature for every day t is taken from the predefined weather station. The weather 

station is in turn submitted to the city mentioned in the contract. The meaning of the constant 

term is compelling. The measure of 65 degrees Fahrenheit corresponds to 18 degrees Celsius. 

The one may refer to it as to the air temperature on the Fahrenheit temperature scale. It is the 

basis considered by utility companies when a population neither demands heating indoors, nor 

turns air conditioning on. 

HDD and CDD indices for both a monthly contract and a seasonal contract are the cumulated 

values of 𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡 and 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 over the duration of the contract: 

𝐻𝐻𝐻𝐻𝐻𝐻 = ∑ 𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡𝐷𝐷
𝑡𝑡=1  and 𝐶𝐶𝐶𝐶𝐶𝐶 = ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐷𝐷

𝑡𝑡=1 , 

where D corresponds to the number of days in the month or season. 

The underlying idea of the HDD and CDD indices is to estimate the time during which the 

ancillary demand for electricity was caused respectively by turned heating or air conditioning 

(Chicago Mercantile Exchange). 

Chapter408 describes in turn the calculation of CAT. Here, the index at day t is simply the 

arithmetic mean of the maximum and minimum temperatures: 

𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 = 𝑇𝑇𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑡𝑡

𝑚𝑚𝑚𝑚𝑚𝑚

2
, 

where 𝑇𝑇𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑇𝑇𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 are respectively maximum and minimum day temperatures. 

CAT index for both a monthly contract and a seasonal contract is the cumulated value of 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡 

over the duration of the contract: 

𝐶𝐶𝐶𝐶𝐶𝐶 = ∑ 𝐶𝐶𝐶𝐶𝐶𝐶𝑡𝑡𝐷𝐷
𝑡𝑡=1 , 

where D stands for the number of days in the month or season (Chicago Mercantile Exchange). 
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Furthermore, it should be mentioned that CME measures days differently subject to the indices 

and cities in question. In case of HDD and CDD indices, for instance, the daily average 

temperature for day t is measured by weather stations during the interval [00.00𝑡𝑡; 00.00𝑡𝑡+1), 

or from midnight at day t to twenty three hours and fifty nine minutes after midnight of the 

same day. The same measurement interval is true for Amsterdam in case of CAT index. The 

exception is the measurement interval for London, where the weather station at Heathrow 

airport collects the data on temperature for day t from nine hours after midnight of day t to 

eight hours and fifty nine minutes after midnight of day t+1, so that the measurement interval 

is [09.00𝑡𝑡; 09.00𝑡𝑡+1). 

According to CME’s catalogue of products, the group offers its clients both futures and options 

on these three weather indices. The latter ones are explicitly European options (CME Group, 

2016). The company’s weather products summary is shown in Appendix 3. In addition, the 

clients can chose between monthly futures/options contracts and seasonal strip futures/options 

contracts. To explain the latter term, the one may consider futures strip as a series of sequential 

futures sold on an exchange as a separate and unique contract (Kumar, 2015). Similarly, 

options strip can be explained as a series of sequential options sold as a separate and unique 

transaction. In case of CME’s catalogue of products, both futures strips and options strips are 

strictly bounded to the delivery periods mentioned in Appendix A. 

One crucial thing to mention about the pricing of futures/options strips is the value additivity 

principle. This is the valuation principle that states that no profit can come from combining as 

well as dividing cash flows. This means in turn that the expected payoff from a seasonal strip 

contract has to equal the expected payoff from the number of corresponding monthly contracts 

(Bjerksund, 2016). 

In general, the trade of temperature derivatives is very similar to the trade of other index 

products. HDD, CDD, and CAT indices explain the deviations from monthly or seasonal 

averages. The deviations are attached to some amount of money. Specifically, one index point 

deviation equals USD 20 for American cities, GBP 20 for London, and EUR 20 for 

Amsterdam. Minimum price fluctuation accounts for one index point. All of contracts are 

settled financially, which means open positions are marked to market (MTM) with respect to 

the settlement price on a daily basis. 
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3.6 Other weather derivatives offered by CME Group 

In the past, CME offered its clients a large variety of instruments linked to weather 

instruments. Precipitation derivatives along with derivatives written on frost and hurricane 

indices are good cases in point. It is unfortunate that all of these were delisted on October 20, 

2014. As the exchange explains in its notice SER-7216, the reason for this was the lack of 

open interest from market participants (The Chicago Mercantile Exchange Inc., 2014). With 

the development of the market for weather derivatives, the futures and options on rainfall, 

snowfall, frost and other indices have nevertheless potential for attracting investors’ attention 

in future. For that reason, I want to describe them briefly in this subsection. Please be advised 

that I have replaced the exchange-based symbols with the abbreviations for the names of 

indices mentioned from now on. 

To begin with, the constructions of rainfall and snowfall indices are very similar and the 

derivatives written on these two indices are therefore integrated into the common term 

“precipitation derivatives”. Formerly, CME Group offered its clients both index futures on 

precipitation and options written on precipitation futures. In terms of time interval, there were 

two options: monthly futures and options and seasonal strip futures and options. 

The precipitation derivatives traded by the exchange were issued on so called CME Snowfall 

Index (SI) and CME Rainfall Index (RI). The former one provided with the estimate of how 

much it snows over a certain time interval. Logically, the instruments written on this index 

were offered only for snowfall season, which corresponds to the period from November to 

April. 

An interesting fact is that the first contracts linked to SI which the exchange started listing, 

were monthly futures contracts issued on just two locations: New York Central Park and 

General Edward Lawrence Logan International Airport in Boston. The listing started in 2006. 

The underlying idea of “snow” futures and options is to aid investors in mitigating their risk 

related to either insufficient snowing or excessive snowfalls (CME Group, 2006 ). For 

example, skiers are highly sensitive to the level of snowing. If there is no snow, ski resorts 

lose money. Therefore, it may be a good idea for the owners of the latter ones to hedge against 

warmer than expected winter. Alternatively, airports may be forced to stand idle in case of 

dramatic snowfalls. This means that SI contract may attract both operators of airports and 

airline companies in terms of hedging against excessive snowing during the winter season. 
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Regarding RI, the index measured the amount of rain fallen over a certain period. Furthermore, 

the instruments issued on this index were offered only for rainfall season, which relates to the 

time interval from March to October. Cabrera, Odening, and Ritter have conducted an explicit 

empirical study on pricing rainfall derivatives according to CME’s approach (Cabrera, 

Odening, & Ritter, 2013). 

Chapter 418 described the calculation procedure of SI, whereas Chapter 441 described the 

calculation rule for RI. The procedures are very similar to the calculation rule of CAT index. 

Really, the indices at day t were simply the total amounts of snow or rain on this day: 

𝑆𝑆𝑆𝑆𝑡𝑡 = 𝑆𝑆𝑡𝑡, 

𝑅𝑅𝑅𝑅𝑡𝑡 = 𝑅𝑅𝑡𝑡, 

where 𝑆𝑆𝑡𝑡 and 𝑅𝑅𝑡𝑡 are respectively the amounts of snow and rain measured in inches that has 

fallen on the ground on day t. 

SI and RI for both a monthly contract and a seasonal contract were respectively the cumulated 

values of 𝑆𝑆𝑆𝑆𝑡𝑡 and 𝑅𝑅𝑅𝑅𝑡𝑡 over the duration of the contract: 

𝑆𝑆𝑆𝑆 = ∑ 𝑆𝑆𝑆𝑆𝑡𝑡𝐷𝐷
𝑡𝑡=1 , 

𝑅𝑅𝑅𝑅 = ∑ 𝑅𝑅𝑅𝑅𝑡𝑡𝐷𝐷
𝑡𝑡=1 , 

where D stands for the number of days in the month or season. 

One last point about SI and RI is that one indexed futures contract, regardless of whether it is 

snowfall or rainfall indexed contract, was USD 500 times the index, meaning the investor who 

considered purchase of such a derivative for price F, would expect the payback equal to USD 

500 times the value of the index at the expiration date. The contracts were settled financially 

and the practice of MTM was applied during the life of the contract. As to the options, these 

were European call and put options. Every option was issued on a single precipitation index 

futures contract – either snowfall index contract, or rainfall index contract (CME Group, 

2014). 

The key attribute of the frost index listed by CME was that the exchange designed it 

specifically for the airline industry. The correct name for it was Frost Index Amsterdam (FIA) 

because it was issued on the only city – Amsterdam. The idea was to allow air companies that 
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operate at the Schiphol airport to manage the risk related to the airport standing idle while the 

runway is covered with frost. 

Frost is the weather event when the air temperature falls below zero and small crystals of ice 

cover surfaces such as trees, roads, and runways in airports (Oxford Dictionaries). Because of 

frost, the latter ones become slippery and aircrafts cannot safely land or take off. As a result, 

all flights cease and companies operating both airport and aircrafts lose money. 

Futures contracts on FIA were USD 100 times the index. They were offered only for frost 

season, which is November to March. The contracts were settled financially and the practice 

of MTM was applied during the life of the contract. As to the basis of the index, the weather 

station at the Schiphol airport collected data on frost every day on weekdays (Barchart.com). 

According to NOAA, a hurricane is the improbable weather event that is explained by a low 

pressure area formed in the tropical region. In terms of weather derivatives analysis, it is 

crucial to split the terms tropical depressions, tropical storms and hurricanes. Hurricanes are 

tropical cyclones with a maximum wind speed reaching 74 miles per hour (mph), which 

approximates 119 kilometers per hour (kph). Simultaneously, maximum wind speeds in case 

of tropical depressions and tropical storms are lower than that (The National Oceanic and 

Atmospheric Administration). This notation is important since CME had never counted for 

the tropical cyclones with the wind speeds lower than 74 mph while listing its hurricane 

indices. 

Another defining characteristic of hurricanes is that they cause enormous economic harm. 

Take for example the famous hurricane Katrina that hit several states on the southern coast of 

the US in 2005 and resulted in multibillion damage. The NOAA’s report includes the estimate 

of USD 125 billion of economic loss associated with this event (National Centers for 

Environmental Information). The hurricane that had such an adverse effect on households, 

companies, and US economy as a whole, aroused naturally the interest to new practices of 

hedging against hurricane risk exposure. CME Group, for instance, responded already in 2007, 

when it launched several hurricane-based indices and introduced a few new indexed 

instruments issued on these indices (CME Group, 2007). 

The hurricane index was initially calculated by a reinsurance company and was named after it 

as the Carvill Hurricane Index. All of the indexed instruments were traded on CME, though. 
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In 2009, the exchange bought the rights to the index and renamed it to the CME Hurricane 

Index (CHI). CHI was computed according to the following formula: 

𝐶𝐶𝐶𝐶𝐶𝐶 = �𝑉𝑉
𝑉𝑉0
�
3

+ 3
2
� 𝑅𝑅
𝑅𝑅0
� �𝑉𝑉

𝑉𝑉0
�
2
, 

where 𝑉𝑉 represents the maximum level of wind velocity, 𝑅𝑅 corresponds to the radius of storm, 

and respectively 𝑉𝑉0 and 𝑅𝑅0 stand for reference values of the wind speed and the radius. 

The equation above shows that there are just two factors that determine the index value: wind 

speed and size of hurricane. This provides a certain level of transparency and simplicity. The 

latter fact allows in turn for computing the index soon after a hurricane is announced and 

modifying it in the process when the data on the maximum wind speed and radius arrive. 

Besides, the National Hurricane Center (NHC) collects the data on wind speed and radius of 

every tropical cyclone (CME Group, 2007). 

The investors in CHI had the options that were very similar to the ones the investors in other 

weather-related indices had. CME traded both futures and options. However, the investors in 

CHI were not restricted with only two contract types, which were monthly contracts and 

seasonal strip contacts. In actual fact, they could choose between the following three 

alternatives: 

• Futures and options issued on a single storm that was officially named by NHC; 

• Futures and options issued on the number of officially named storms that landed on 

the Atlantic coast of the US; 

• Futures and options written on the largest storm that landed on the Atlantic coast of the 

US. 

Furthermore, CME has split both the Gulf Coast and the East Coast of the US into seven 

separate regions. The point in such a division is that every region out of the seven listed has a 

specific constant risk, or probability, that a tropical cyclone turns into hurricane and lands at 

the mainland. CHI indexed monthly futures and options contracts were issued on two regions. 

The first one combined all of locations in the Eastern US. This means that the futures and 

options contracts covered every hurricane making the landfall between Brownsville in Texas 

and Eastport in Maine. The second region listed as the underlying for futures corresponded to 
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the coastline which was clearly defined by the geographical coordinates of the following three 

vertices of a square: 

• 95°30’0”W to the west; 

• 87°30’0”W to the east; 

• 27°30’0”N to the south. 

CME titled the hurricane region related to the coordinates above CHI-Cat-In-A-Box – 

Galveston-Mobile.  

Futures and options issued on the number of officially named storms that landed on the 

Atlantic coast of the US could be regarded as seasonal futures and options contracts. In 

contrast with monthly contracts, these were written on six regions. These were Eastern US 

from Brownsville in Texas to Eastport in Maine, CHI-Cat-In-A-Box – Galveston-Mobile, as 

well as Gulf Coast, Florida, Southern Atlantic Coast and Northern Atlantic Coast. 

Figure 3.1 shows the division of the US coastline into separate regions according to the CME’s 

indexed risk of hurricanes with landfalls. 

Figure 3.1 The US coastline according to the CME’s indexed risk of 
hurricanes with landfalls 

 

Source: CME Group 

It is crucial to remember that all of the storms should correspond to the category “hurricane”, 

meaning the wind speed should be 74 mph or higher. They should be officially named and 

have landfall in the mainland. 
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And lastly, futures contracts on CHI were USD 1000 times the index. The contracts were 

settled financially and the practice of MTM was applied during the life of the contract (CME 

Group, 2009). 

3.7 Binary options 

In addition to futures and options contracts on weather indices, CME Group also listed binary 

options contracts. These should be distinguished from ordinary options. Overall, binary call 

option is a call option that pays off either a fixed quantity of money, or nothing at all. The 

expected value of this contract at maturity is as follows: 

𝔼𝔼[𝑚𝑚𝑚𝑚𝑚𝑚{𝐾𝐾, 0}], 

where K stands for the fixed quantity of money in future which both sides of the contract know 

today. 

The payoff from ordinary call option, on the other hand, depends on the future price of the 

underlying. In case of weather derivatives, the underlying would be the respective index. This 

means that the holder of ordinary call option will get either the difference between the future 

spot price and the strike price, or nothing. In contrast with binary options, the sides of ordinary 

call options do not know the quantity of money the holders of calls will obtain in future, 

because this amount is not predetermined. 

The advantages of binary call options compared to ordinary options are that binary options 

simplify hedging process, are easier to price, and may be used instead of call spreads. Binary 

options are also known as cash-or-nothing options. 

With regard to weather derivatives, CME listed binary call options contracts for the number 

of weather indices. These were, in particular, all of snowfall-, rainfall-, and hurricane-based 

indices. In case of the latter ones, CME listed not only binary options related to single storm, 

storming season and the largest storm, but also binary options related to the second largest 

storm with landfall. Moreover, binary options were offered for all of the seven regions shown 

on Figure 3.1. 

As to put options, CME did not list put binary options contracts because such options would 

result in the compensation for the weather event that does not happen (CME Group, 2009). 
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3.8 Weather derivatives offered by other exchanges 

One of the most promising sources of energy, according to industry experts, is wind power. 

Indeed, a number of wind farms globally has been growing geometrically during the last 

decade. In general, this has a positive impact on the environment and results in lower 

electricity bills. The latter fact is due to the impact of wind power on the merit order curve. 

Appendix 4 shows the merit order curve for Germany. Be advised that the blue line reflects 

marginal costs for electricity generated by wind farms. The graph suggests that the electricity 

generated by wind has the lowest marginal costs, which may be explained by the absence of 

fuel costs, and therefore enters the grid first causing lower average price for electricity 

(Ketterer, p. 26). Nevertheless, the increased input of wind in total electricity supply makes 

both producers and consumers highly dependent on the weather factor. 

The owners of wind power capacities are highly exposed to weather risk associated with the 

availability of wind and its speed, as it happens. Appendix 5 presents power curve of a typical 

turbine of a typical producer. Here, the model used is V90-3.0 MW made by a well-known 

company Vestas. The graph shows that the turbine starts producing only with the speed of 

wind equal to 3-5 meters per second (mps) and it is shut down at the wind speed of 25 mps. 

The wind speed which is lower than that interval just cannot make the turbine rotate. At the 

same time, when the speed is higher than the interval mentioned, there is the risk of damage 

and the wind mill cease to operate (Vestas). 

Wind power producers usually do not know exactly how strong the wind next month will be, 

as well as they cannot be sure about how many days in the upcoming summer the whole farm 

will stand idle because of storm season. As a result, they face difficulties in forecasting future 

returns. Similarly, the company owner of a coal plant, which is used as backup to renewable 

energy, lacks reliable data on future wind speeds and fails to predict whether the backup will 

be necessary. The company’s chair is unsure about future returns too. Moreover, if he or she 

decides to turn the plant on and the production from wind mills explodes, negative prices for 

electricity could follow. This may be true if it is costlier to pay consumers for buying electricity 

than to shut down the plant for a short time interval. This happened last month in the United 

Kingdom, for example, when local generators paid above GBP 30 MWh for their electricity 

to be taken off (Clark, 2016). 
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All of this describes the problem of wind speed volatility. This is the type of problem that 

generators face on everyday basis. In order to manage the risk related to wind speed volatility, 

U. S. Futures Exchange (USFE) introduced the set of instruments issued on the Nordix wind 

speed index (NI). These were futures and options contracts. The options were European puts 

and calls. Five wind sites in two American states, New York and Texas, underlay the contracts. 

The market for new indexed instruments lasted from 2007 to 2008, when the exchange ceased 

to exist (Cameron, 2008). 

The index relied on the data collected in two zones. The first zone, which was located in 

New York, included three sites out of five traded on USFE. The second zone, which was in 

Texas, covered the rest of two. Along with daily averages of wind speed from these two zones, 

the exchange worked with historical daily means. The historical period of interest was 20 

years. The formula for NI calculation for the interval from may be written as follows: 

𝑁𝑁𝑁𝑁 = 100 + ∑ (𝑊𝑊𝑡𝑡 − 𝑤𝑤𝑡𝑡
20)𝐷𝐷

𝑡𝑡=1 , 

where (𝑊𝑊𝑡𝑡 − 𝑤𝑤𝑡𝑡
20) is the deviation of the average wind speed at day t from the respective 

historical daily mean, the factor 𝑊𝑊𝑡𝑡 stands for the average wind speed at day t, the factor 𝑤𝑤𝑡𝑡
20 

corresponds to the 20-year historical mean for day t, D is the number of days in the month or 

season, and 100 is constant. 

As the one may see, the index above cumulates the wind speed deviations from the normal 

over the interval of D days and is corrected for the indicator 100. Logically, the value of the 

index under the indicator 100 means that NI overestimated the wind speed of a specific site, 

so that less electricity than predicted by historical means is entering the grid. The index value 

above the indicator 100 means in turn that NI underestimated the wind speed of a specific site, 

so that more electricity than predicted by historical means is entering the network 

(Alexandridis & Zapranis, pp. 20-21). 

Subject to the index value, the generator can either loose or win. If the generator’s top 

management does not want to risk, it may secure the position by means of hedging. 



 37 

3.9 OTC. Quantity-adjusted weather contracts 

The problem of traditional indexed-based weather derivatives traded on exchange is that they 

deal with volume risk, but not price risk. This does not provide investors with all-inclusive 

hedge. 

Compared to traditional weather products, quantity-adjusted options on energy markets, or 

simply energy quanto options, are brand-new instruments on the market for weather. These 

are hybrid options contracts that are available for trade over-the-counter and help investors to 

mitigate their exposure to the weather. Unlike traditional weather derivatives such as 

HDD/CDD indexed contracts, quantos help investors to manage both price and volume risk at 

the same time. For that reason quantos have become very popular recently. 

It crucial to note that quanto options described in this paper are explicitly related to energy 

markets. The one should not compare energy quanto options with their mature “brothers” 

currency quantos. The latter ones hedge against the risk exposure to exchange rate fluctuations 

and have nothing in common with energy quantos. 

A good and popular example of the application of energy quantos is the contracts for the supply 

of natural gas. Consider the wholesale natural gas market of Europe, where Norwegian gas 

supplied by Statoil is traded. Statoil sells its natural gas for the spot price settled on the basis 

of market equilibrium. Here, Norwegian company is exposed to two types of risk. Firstly, 

Statoil is sensitive to price changes caused by fluctuations in demand and supply at every 

particular point of time. Secondly, the company is exposed to volume risk. For example, if 

winter is warmer than expected, people in Europe use less natural gas for heating than 

predicted. This reduces in turn the demand for the fuel, which is literally the same as decline 

in the amount of gas sold. The price for natural gas eventually falls. Overall, the result is the 

decrease in the volume of gas sold as well as its price. Poor financial metrics of Statoil follows 

(Benth, Lange, & Myklebust, p. 3). 

Standard weather indexed contracts such as the ones traded by CME cannot cover both types 

of risk, but energy quantos can. In order to show how it works, I briefly describe the things 

inside energy quanto options. Specifically, I use the example of Statoil on the wholesale 

natural gas market of Europe to describe the payoff from a typical quantity-adjusted energy 

option contract. 
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Unlike traditional weather indexed derivatives, energy quantos depend on two indices. One 

index represents commodity. The other is one of the weather index. Following my example, I 

consider natural gas as commodity of interest and HDD as the weather index. Although I am 

using the index listed on CME, the hedge is supposed to happen on OTC market. I assume that 

the period of interest is 90 days, which corresponds to three winter months. The prices of 

natural gas are daily means measured in EUR. Lastly, I assume today is the end of 

November 30th trading day. 

I start the discussion with put quantos. The first step is to compute the values of indices. 

Referring the natural gas commodity index, I simply accumulate the values of natural gas spot 

prices over the period of interest and divide by the number of days 𝐷𝐷, which is 90. The equation 

may be expressed in the following way: 

𝐸𝐸 = 1
𝐷𝐷
∑ 𝑆𝑆𝑡𝑡𝐷𝐷
𝑡𝑡=1 , 

where 𝐷𝐷 stands for the duration of the period of interest and equals 90 in case of Statoil, 𝑆𝑆𝑡𝑡 is 

the spot price for natural gas on the wholesale market in Europe at day 𝑡𝑡, 𝑡𝑡 is the time index. 

Note that Statoil starts counting at day t=1 in the equation above. This corresponds to the next 

day after November 30. 

As to the weather index, I use the formula for HDD at day t shown in Subsection 3.7 of this 

paper: 

𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡 = 𝑚𝑚𝑚𝑚𝑚𝑚 �18 − 𝑇𝑇𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑡𝑡

𝑚𝑚𝑚𝑚𝑚𝑚

2
; 0�, 

where 𝑇𝑇𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 and 𝑇𝑇𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 are respectively maximum and minimum day temperatures, 𝑇𝑇𝑡𝑡
𝑚𝑚𝑚𝑚𝑚𝑚−𝑇𝑇𝑡𝑡

𝑚𝑚𝑚𝑚𝑚𝑚

2
 

represents arithmetic mean, and 18 stands for degrees Celsius and is constant. 

HDD for winter season is then simply the cumulated value of 𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡 and over the duration of 

the contract: 

𝐻𝐻𝐻𝐻𝐻𝐻 = ∑ 𝐻𝐻𝐻𝐻𝐻𝐻𝑡𝑡𝐷𝐷
𝑡𝑡=1 , 

where D corresponds to the number of days in the month or season. 

The payoff from one put quanto option for energy at maturity T is the following: 
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𝑃𝑃𝑇𝑇
𝐸𝐸,𝐻𝐻𝐻𝐻𝐻𝐻 = 𝛾𝛾 × 𝑚𝑚𝑚𝑚𝑚𝑚{(𝐾𝐾𝐸𝐸 − 𝐸𝐸); 0} × 𝑚𝑚𝑚𝑚𝑚𝑚{(𝐾𝐾𝐻𝐻𝐻𝐻𝐻𝐻 − 𝐻𝐻𝐻𝐻𝐻𝐻); 0}, 

where 𝛾𝛾 stands for volume adjustment factor such as one million British thermal unit 

(MMBtu), 𝐸𝐸 is the energy commodity index, 𝐻𝐻𝐻𝐻𝐻𝐻 stands for Heating-Degree-Days index, 𝑇𝑇 

is maturity, 𝑃𝑃𝑇𝑇
𝐸𝐸,𝐻𝐻𝐻𝐻𝐻𝐻 is the payoff from one call quanto option for energy at maturity 𝑇𝑇, and 

respectively 𝐾𝐾𝐸𝐸 and 𝐾𝐾𝐻𝐻𝐻𝐻𝐻𝐻 are the strike prices of the energy commodity index and the 𝐻𝐻𝐻𝐻𝐻𝐻 

index. 

The one may understand the equation above as the combination of two hedges: the first part 

of the equation, 𝛾𝛾 × 𝑚𝑚𝑚𝑚𝑚𝑚{(𝐾𝐾𝐸𝐸 − 𝐸𝐸); 0}, represents the price risk hedge, whereas the second 

part, 𝑚𝑚𝑚𝑚𝑚𝑚{(𝐾𝐾𝐻𝐻𝐻𝐻𝐻𝐻 − 𝐻𝐻𝐻𝐻𝐻𝐻); 0}, reflects the volume risk hedge. 

In case of Statoil, the company’s financial metrics is highly sensitive to the demand for natural 

gas. Let me assume now that Statoil predicts the level of consumption of natural gas in Europe 

three months ahead and sets its production plan according to this estimate. The level of 

consumption in turn depends on air temperature outdoors. Indeed, natural gas is commonly 

used in Europe for heating purposes. The heating is usually turned on in winter only. The truth 

is that the demand for gas decreases if temperature goes up, because less natural gas is burned 

during warm winters compared to harsh winters. Suppliers cannot swiftly shut down their 

extraction, on the other hand. This leads to the decline in the market price. Hence, if the winter 

gets warm, the demand for Norwegian gas falls, along with the price for it. As a result, Statoil’s 

three-month profit is lower than expected. 

For Norwegian company, it may sound as a good idea to protect itself against loss on both 

volume of gas sold and price per unit using the weather derivatives contracts. CME HDD 

futures and options contracts, however, cover only the former one. For that reason, Statoil may 

consider energy quantos as a better option. 

Regarding call quantity-adjusted options for energy, the form of their payoffs is very similar 

to the one of put quantos. One call energy quanto option at maturity T gives the following 

payoff: 

𝐶𝐶𝑇𝑇
𝐸𝐸,𝐻𝐻𝐻𝐻𝐻𝐻 = 𝛾𝛾 × 𝑚𝑚𝑚𝑚𝑚𝑚{(𝐸𝐸 − 𝐾𝐾𝐸𝐸); 0} × 𝑚𝑚𝑚𝑚𝑚𝑚{(𝐻𝐻𝐻𝐻𝐻𝐻 − 𝐾𝐾𝐻𝐻𝐻𝐻𝐻𝐻); 0}, 

where 𝛾𝛾 stands for volume adjustment factor, 𝐸𝐸 is the energy commodity index, 𝐻𝐻𝐻𝐻𝐻𝐻 stands 

for Heating-Degree-Days index, 𝑇𝑇 is maturity, 𝐶𝐶𝑇𝑇
𝐸𝐸,𝐻𝐻𝐻𝐻𝐻𝐻 is the payoff from one call quanto 
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option for energy at maturity 𝑇𝑇, and respectively 𝐾𝐾𝐸𝐸 and 𝐾𝐾𝐻𝐻𝐻𝐻𝐻𝐻 are the strike prices of the 

energy commodity index and the 𝐻𝐻𝐻𝐻𝐻𝐻 index. 

Major natural gas consumers like local authorities could find call energy quanto options very 

attractive. For instance, municipalities have to provide schools, universities and hospitals with 

heating during winter season. Similar to Statoil case, local governments make predictions 

about both the amount of natural gas they will need to buy during the winter season and the 

price per unit. These predictions are incorporated in local budgets. If the winter turns out to be 

colder than expected, the authorities would need to buy more gas. Furthermore, the aggregate 

demand for natural gas will increase the market price, as suppliers cannot respond to new 

market conditions fast enough. Higher price for energy together with greater volume that 

should be consumed for heating lead to financial loss of the locals governments. Considering 

the above mentioned, the authorities could use the weather derivatives market to manage their 

weather-related exposure to volume and price of the fuel they consume. 
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4. Empirical Analysis 

The goal of my empirical research is to investigate the causality between temperature 

variations and electricity prices. After the question of interest is posed, the database should be 

generated. The historical data for electricity prices in Oslo bidding area and air temperature in 

Norwegian capital are respectively my explained and explanatory variables. I work with 

monthly means. The time interval I take into consideration from August 2011 to December 

2015. This gives me 53 observations. In addition, 54 other variables constitute my data set. 

In Subsection 4.2 I pose the assumptions that underlie my empirical work. I describe 

methodology in Subsection 4.3. Model selection and regression analysis follow as soon as the 

database is complete and methodology is described. The final model and its interpretation are 

provided in the last subsection. 

4.1 Data collection and data description 

It should be mentioned that Norway is a very large European country – a total area of Norway 

is above 385 thousand square kilometers. Its population and industries are spread over the 

country, which means that electricity is consumed everywhere. For this reason, Norway is 

divided into several bidding areas (Figure 4.1). The term “bidding area” stems from Nord Pool 

definition of the specific geographical area within which producers and consumers can 

exchange electricity one with another without any transmission capacity constraints. Since the 

amount of electricity different zones can exchange with each other is limited by the bottlenecks 

in the system, the division into zones reflects local market conditions in the price. This means 

that prices in two different bidding areas in Norway may vary subject to transmission capacity 

constraints. In other words, market mechanism presupposes that electricity flows from the area 

with lower price of electricity to the area with higher price of electricity and bottlenecks in 

transmission system prevent the price in different regions from equalizing. Local transmission 

system operator defines a number of bidding areas within a country (Nord Pool, 2016). 
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Figure 4.1 Organization of Nordic transmission system 

 

Source: European Network of Transmission System Operators for 
Electricity (ENTSOE) 

Norway has five bidding areas. Officially, they are named as NO1, NO2, NO3, NO4, and 

NO5, but I mention them in this paper as Oslo, Kristiansand, Trondheim, Tromsø, and Bergen 

respectively. In the paper, I focus my empirical research on Oslo region, because the region is 

developed economically and has high population density. I import historical data on electricity 

prices in Oslo region from Nord Pool. I work with monthly averages. The price is measured 

in EUR. I define the period from August 2011 to December 2015 as the period of interest. This 

period contains 53 observations of electricity prices. These observations constitute the 

explained variable in my econometric analysis. 

Subsequently, I collect historical data on air temperature in Oslo region. I refer to this series 

as to my main explanatory variable. The data is imported from eKlima. It is a web portal of 

MET Norway. The one may refer to eKlima as to large database that saves both historical and 

present observations of air temperature as well as other kind of observations from all of the 

weather stations that belong to NMI. I import the monthly means for the city of Oslo. The 

period of interest is from August 2011 to December 2015. This gives me 53 observations of 

air temperature. The unit of measurement is Celsius unit (The Norwegian Meteorological 

institute, 2016). I plot the series in Figure 4.2. 



 43 

Figure 4.2 Air temperatures in Oslo (monthly means) 

 

Source: eKlima, NMI 

The figure above shows that the series of air temperatures has the form of cosinusoid. It is 

difficult to suspect any trend in the series. With respect to a season, the air temperature in Oslo 

varies from -5.1 to 20.8 degrees Celsius. 

In order to reflect how people’s financial security influences the demand for electricity and 

therefore its price, I wanted initially to control for either income or purchasing power of 

Norwegians. Unfortunately, there is no data showing monthly observations of either income 

or purchasing power. Official statistical services which are responsible for computing major 

indices for the well-being of economies, usually do not collect data for the measurements such 

as gross domestic product (GDP) per capita based on purchasing power parity (PPP) on a 

monthly basis. However, it is possible partially to capture the required effect by means of 

historical data for exchange rate. The one may think of the series of exchange rate as sort of 

instrumental variable (IV) for GDP per capita, PPP. This is not a very accurate term in terms 

of official statistical definition of IV, though. 

Thus, my second independent variable refers to the exchange rate between NOK and EUR. 

Specifically, the variable shows how many NOK the one can get in exchange of one EUR at 

time t. The data is imported from Norges Bank, which is the central bank of Norway (Norges 

Bank, 2016). The reason for including the exchange rate in my model is straightforward. The 

change in the value of foreign currencies measured in domestic currency reflect the wellbeing 

of the people of the country where domestic currency functions. Economic theory presupposes 

that the price for imported goods increase when the exchange rate falls. As a result, people can 

buy less good for the same amount of money. 
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In case of electricity price, the idea is that the decrease in the exchange rate of NOK to EUR 

worsens welfare of the Norwegians. They try therefore to spend less on electricity. Lower 

demand makes in turn the prices for electricity fall. The research conducted by Longva, Olsen 

and Strøm, 1988, supports the relationship above. Truly, they have estimated electricity price 

elasticities of demand for Norwegian economy using a general equilibrium model. The result 

was the elasticities of -0.53 and -0.65 for the household and industry sectors respectively. 

These are rather high elasticities (Longva, Olsen, & Strøm, p. 305). 

I plot the series of the exchange rates in Figure 4.3. Note that the decrease in the exchange 

rate of NOK to EUR means that the amount of NOK the one needs to get 1 EUR inflates. 

Figure 4.3 The exchange rates (EUR/NOK) 

 

Source: Norges Bank 

According to the plot above, there is a reason to suspect an upward trend in the series. Truly, 

the value of EUR has been rising from 7.3239 NOK in August 2012 to 9.4626 NOK in 

December 2015. I can therefore think of the decline in purchasing power of Norwegians. 

In my further analysis, I am exploring the relationship between the historical air temperatures 

in Oslo and the respective electricity prices for the Oslo bidding area. My initial guess is that 

lower temperatures outdoors correspond to higher electricity prices. The point is that 

Norwegians use solely electricity for heating purposes. In winter, the air temperature decreases 

and people start using extra amount of electricity for heating. This increases the demand, while 

the supply is stable. Transmission capacities between regions put some restrictions on how 

much of electricity Norway can import from its neighbors. As a result, the market price for 

electricity grows. The appropriate model for the relationship is as follows: 
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𝑙𝑙𝑙𝑙(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂)𝑡𝑡 = 𝛽𝛽0� + 𝛽𝛽1�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 + 𝛽𝛽2�𝑙𝑙𝑙𝑙(𝑁𝑁𝑁𝑁𝑁𝑁1𝐸𝐸𝐸𝐸𝐸𝐸)𝑡𝑡 + 𝑢𝑢𝑡𝑡�, 

where index t is time and 𝑢𝑢𝑡𝑡� stands for errors. 

The slope parameters from the regression above are interpreted in two ways. In case of a log-

level model with dependent variable in logs and independent variable in levels, I say that a 

one-unit change in independent variable changes dependent variable by �100 × 𝛽𝛽𝑗𝑗� percent. 

The index j refers to the specific explanatory variable. In case of log-log model with both 

dependent and independent variables in logs, the slope parameter stands for elasticity, so that 

a one percent change in explanatory variable changes explained variable by 𝛽𝛽𝑗𝑗 percent. 

In the model above, I also control for the development of the exchange rate between NOK and 

EUR. Moreover, I use the logs of the variables for historical electricity prices and exchange 

rate. I name the model above as Model 1. 

Furthermore, the database provides me with historical electricity prices for other bidding areas 

measured in EUR. The point is as follows. The availability of transmission lines between 

regions enables the flow of power from region to region. According to the laws of demand and 

supply, the electricity moves from low-priced zone to high-priced zone. Consequently, the 

domestic price of electricity in the former one increases due to the decrease in supply, whereas 

the declined domestic price of electricity in the latter region is ascribed to supplementary 

supply of power. I assume that transmitting power over long distances is not profitable, so I 

only control for bidding areas that are neighboring to Oslo. These are the following regions: 

Kristiansand, Trondheim and Bergen, and the bidding area SE3 in Sweden. The historical data 

of electricity prices in these regions constitute a set of secondary explanatory variables in my 

model. 

As to Sweden, the country had the only bidding zone SE up to November 2011. Since 

November 2011, there exist four bidding areas in Sweden: SE1, SE2, SE3 and SE4. In my 

regression model, I control for SE3. The variable SE3 in my data set misses the initial three 

observations, because the division of SE into four pieces happened three months after the first 

observation in my time series. In order to fill the blank observations, I copied the last three 

observations from SE variable and pasted them as the first three observations in SE3. 

The plot of historical prices for electricity for the period in question is shown on Figure 4.4. 

The red line on the plot stands for the time series of electricity prices in Oslo. The rest of power 
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prices of interest are represented by gray lines. It is possible to conclude that all of prices 

follow similar pattern. Moreover, electricity price in every region of interest has declined over 

the period of 53 months. Truly, the power price in Oslo has declined from EUR 36.58 in 

August 2011 to EUR 17.81 in December 2015. This suggests that a downward trend is 

common for all of series. 

Figure 4.4 Electricity prices in Scandinavia 

 

Source: Electricity prices in Scandinavia 

In my empirical analysis, I modify Model 1, so that electricity prices of the neighboring regions 

are included in the regression. I call the modified equation Model 2. It looks as follows: 

𝑙𝑙𝑙𝑙(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂)𝑡𝑡 = 𝛽𝛽0� + 𝛽𝛽1�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 + 𝛽𝛽2�𝑙𝑙𝑙𝑙(𝑁𝑁𝑁𝑁𝑁𝑁1𝐸𝐸𝐸𝐸𝐸𝐸)𝑡𝑡 + 𝛽𝛽3�ln (𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾)𝑡𝑡 +

𝛽𝛽4�ln (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)𝑡𝑡 + 𝛽𝛽5�ln (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒)𝑡𝑡 + 𝛽𝛽6�ln (𝑆𝑆𝑆𝑆3)𝑡𝑡 + 𝑢𝑢𝑡𝑡�, 

where index t stands for time, 𝑢𝑢𝑡𝑡� refers to the error term, and regressors ln(Kristiansand)t, 

ln(Bergen)t, ln(Trondheim)t, and ln(SE3)t represent natural logarithms of historical electricity 

prices in Kristiansand, Bergen, Trondheim, and SE3 respectively. 

Another set of secondary explanatory variables refers to the evolution of maximum 

transmission capacities. I have mentioned previously, that transmission capacity constraints 

influence prices of electricity in various regions. Figure 4.1 informs about the maximum 

transmission capacities in the Nordic countries. The values of the transmission capacity 

constraints are provided in megawatt (MW). I incorporate in my model the capacities related 

to the power transmission between the Oslo region and the neighboring regions, which are 

Kristiansand, Trondheim, Bergen and SE3 in Sweden. Moreover, I take the data on maximum 

transmission capacities for both directions, meaning I have separate variables for the 
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transmission capacity of import and export. I that my transmission capacities are not constant 

over time, because the construction of new transmission lines between two bidding areas 

increases the maximum transmission capacity between them. Appendix 6 reflects the revision 

of maximum transmission capacities between the regions mentioned that happened several 

times during the period of interest (European Network of Transmission System Operators for 

Electricity, 2016). 

I modify my Model 1 and include the set of transmission capacities in the regression. There 

are eight transmission capacities in total. I call the modified equation Model 3. It may be 

expressed in the following way: 

𝑙𝑙𝑙𝑙(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂)𝑡𝑡 = 𝛽𝛽0� + 𝛽𝛽1�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 + 𝛽𝛽2�𝑙𝑙𝑙𝑙(𝑁𝑁𝑁𝑁𝑁𝑁1𝐸𝐸𝐸𝐸𝐸𝐸)𝑡𝑡 + ∑ 𝑇𝑇𝑇𝑇𝑡𝑡,𝑐𝑐
8
𝑐𝑐=1 + 𝑢𝑢𝑡𝑡�, 

where the index t stands for time, the index c identifies the order number of the capacity in 

question, TC corresponds to the transmission capacity representation in MW, and 𝑢𝑢𝑡𝑡� refers to 

the error term. 

Last but not least, I generate the logs of every variable representing power price, as well as the 

logs of the variable standing for the exchange rate of Norwegian krone. All of these are natural 

logarithms of the variables from my data set. As to my major variable of interest, which is 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡, it is examined in levels. The point is that air temperature can be negative. 

There are actually nine negative observations in my data set. It is a known fact that the 

logarithm of negative number is undefined, so I cannot log transform 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 

(Murray). 

I have decided to work with explanatory variables in logs because of the number of reasons. 

Firstly, natural logarithms of the variables may help to get rid of heterogeneity problem, 

meaning there is a chance that the variance becomes stable due to log transformation (Nirian 

Martin, 2014). Secondly, logarithmic model is optimal in terms of forecasting by means of 

Box-Jenkins ARMA models, so the log transformation of the model may be useful for further 

research on weather derivatives. Finally, the economists like logarithmic models better as the 

causality may interpreted as elasticity. 

Finally, I make the choice between levels and logs of the dependent variable based on the test 

procedure described in Appendix 7. This appendix contains my do-file from Stata with 

comments related to the test procedure I used. 
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4.2 Assumptions for asymptotic normality of ordinary least 
squares 

Assumption 1: Linear in parameters, stationary and weakly dependent model 

The model is linear in its parameters when the stochastic process {(𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡): 𝑡𝑡 = 1, 2, … , 𝑛𝑛} can 

be represented in the following way: 

𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋𝑡𝑡,1 + ⋯+ 𝛽𝛽𝑘𝑘𝑥𝑥𝑡𝑡,𝑘𝑘 + 𝑢𝑢𝑡𝑡, 

where the sequence {𝑢𝑢𝑡𝑡: 𝑡𝑡 = 1, 2, … , 𝑛𝑛} refers to disturbances or errors with n time periods. 

The sequence �𝑥𝑥𝑡𝑡,𝑗𝑗: 𝑡𝑡 = 1, 2, … , 𝑛𝑛; 𝑗𝑗 = 1, 2, … ,𝑘𝑘� refers to j explanatory variables with n 

times. There are k explanatory variables in the model.   

We say that the model is stationary if its mean and variance do not change as time passes (Li, 

p. 4). The time series {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑛𝑛} is weakly dependent if 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑡𝑡, 𝑥𝑥𝑡𝑡+ℎ) → 0 𝑎𝑎𝑎𝑎 ℎ → ∞. 

This means that the correlation between xt and its future values weakens as time passes. 

Assumption 2: No perfect collinearity 

This assumption states that the value of an independent variable cannot be computed based on 

the exact linear combination of the values of other independent variables. The assumption also 

means that independent variables in the model should not be constant over time. 

Assumption 3: Zero conditional mean 

The zero conditional mean assumption states that the expectation of the error term ut, provided 

the independent variables xtj, equals zero for every time period t: 

𝔼𝔼�𝑢𝑢𝑡𝑡�𝑥𝑥𝑡𝑡,𝑗𝑗� = 0. 

In the notation, the index t stands for time and the index j refers to the specific explanatory 

variable. 

If the equation above holds, then the independent variables are contemporaneously exogenous. 

This means that the errors are uncorrelated with the independent variables at every time: 
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𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑥𝑥𝑡𝑡,𝑗𝑗,𝑢𝑢𝑡𝑡� = 0, ∀𝑗𝑗. 

This assumption holds for every explanatory variable j and is critical for a causal interpretation 

of a model. If it holds, I can be sure that the slope coefficient indicates the causal relationship 

between the independent variable it precedes and the dependent variable (Balsvik, The simple 

regression model. The zero conditional mean assumption, 2015). 

Assumption 4: Homoskedasticity 

This assumption implies that variance of error terms, conditional on explanatory variables in 

the model in question, is constant over time. In other words, the disturbances in the model 

should be contemporaneously homoskedastic: 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑢𝑢𝑡𝑡�𝑥𝑥𝑡𝑡,𝑗𝑗� = 𝜎𝜎2, 

with index t corresponding to time and index j relating to particular explanatory variable. 

Assumption 5: No serial correlation 

Subject to explanatory variables, the disturbances ut and us at two times t and s (t ≠ s) should 

be uncorrelated (Taber, p. 9): 

𝔼𝔼(𝑢𝑢𝑡𝑡 ,𝑢𝑢𝑠𝑠|𝑥𝑥𝑡𝑡, 𝑥𝑥𝑠𝑠) = 0. 

Taking assumptions 1 through 5 for granted provides me with the information about the 

accuracy of the OLS estimators. It does not inevitably allow me to conduct statistical 

inference. For the latter one, an additional assumption is necessary. 

Assumption 6: Normality 

In the population, the error terms {𝑢𝑢𝑡𝑡: 𝑡𝑡 = 1, 2, … ,𝑛𝑛} are independent of the explanatory 

variables �𝑥𝑥𝑡𝑡,𝑗𝑗: 𝑡𝑡 = 1, 2, … , 𝑛𝑛; 𝑗𝑗 = 1, 2, … ,𝑘𝑘�. Moreover, I say that the errors are 

independently, identically, and normally distributed with mean zero and variance σ2: 

𝑢𝑢 ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁(0,𝜎𝜎2). 

This results in turn in normally distributed OLS estimators of the linear regression model: 

𝛽̂𝛽𝑗𝑗  ~ 𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁𝑁�𝛽𝛽𝑗𝑗 ,𝑉𝑉𝑉𝑉𝑉𝑉(𝛽̂𝛽𝑗𝑗)�. 
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The normality assumption informs me about the exact shape of a probability density function. 

With this information, the one can calculate any area between the probability density function 

and the horizontal axis in a Cartesian coordinate system (Descartes, 1637). The horizontal axis 

represents in turn the values of estimators as well as population parameters. If the distribution 

is normal, it is possible to find the likelihood that an estimate is no less than a certain value. 

This is crucial for hypothesis tests. 

In case the assumptions 1 through 6 hold, I say that the OLS estimators are asymptotically 

normally distributed. I can also say that the distributions of the OLS estimators are centered 

in the actual values of the population parameters. This means that the estimations of error 

terms, t statistic, and F statistic are well founded. Hence, I can use them in a regression analysis 

(Wooldridge, p. 376). 

4.3 Methodology 

Ordinary least squares (OLS) 

The method of least squares or ordinary least squares (OLS) refers to the method of rough 

calculation of the parameters of a linear regression model. For the sake of argument, I describe 

the method based on a simple regression model with the only explanatory variable. 

Nevertheless, the same logic applies to multiple regression models with many regressors. In 

this paper, 𝛽𝛽0 and 𝛽𝛽1 represent intercept and slope parameter respectively. The goal of the 

OLS method is to minimize the sum of squared residuals (SSR). SSR measures how an 

estimated model deviates from the real-world dynamics, so that a low value of SSR represents 

a good fit of the model while a high value of SSR shows that the model in question poorly 

estimates the population: 

𝑆𝑆𝑆𝑆𝑆𝑆 = ∑ (𝑦𝑦𝑡𝑡 − 𝑦𝑦�𝑡𝑡)2𝑛𝑛
𝑡𝑡=1 , 

where 𝑦𝑦�𝑡𝑡 stands for the fitted values of 𝑦𝑦𝑡𝑡 and is derived from the following equation: 

𝑦𝑦𝑡𝑡� = 𝛽𝛽0� + 𝛽𝛽1�𝑥𝑥𝑡𝑡. 

Minimizing the sum of squared residuals presumes differentiating SSR, finding the first order 

conditions for intercept and slope parameter and setting them equal to zero (Lambert, 2013): 
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𝐹𝐹𝐹𝐹𝐹𝐹1 = 𝜕𝜕𝜕𝜕𝜕𝜕𝜕𝜕
𝜕𝜕𝛽𝛽0�

= 0, 

𝐹𝐹𝐹𝐹𝐹𝐹2 = 𝜕𝜕𝜕𝜕𝜕𝜕𝑅𝑅
𝜕𝜕𝛽𝛽1�

= 0. 

Based on the resulting system of two equations, I can find 𝛽𝛽0 and 𝛽𝛽1: 

⎩
⎪
⎨

⎪
⎧ −2��𝑦𝑦𝑡𝑡 − 𝛽𝛽0� − 𝛽𝛽1�𝑥𝑥𝑡𝑡� = 0

𝑛𝑛

𝑡𝑡=1

−2�𝑥𝑥𝑡𝑡�𝑦𝑦𝑡𝑡 − 𝛽𝛽0� − 𝛽𝛽1�𝑥𝑥𝑡𝑡�
𝑛𝑛

𝑡𝑡=1

= 0

⇒ 

𝛽𝛽0� = 𝑦𝑦 − 𝛽𝛽1𝑥𝑥, 

𝛽𝛽1� = ∑ (𝑥𝑥𝑡𝑡−𝑥𝑥)(𝑦𝑦𝑡𝑡−𝑦𝑦)𝑛𝑛
𝑡𝑡=1

(𝑥𝑥𝑡𝑡−𝑥𝑥)2 = 𝐶𝐶𝐶𝐶𝐶𝐶(𝑥𝑥𝑡𝑡,𝑦𝑦𝑡𝑡)
𝑉𝑉𝑉𝑉𝑉𝑉(𝑥𝑥𝑡𝑡)

. 

Inference with hypothesis test statistic 

The major problem in econometrics modeling is that a researcher does not know the true 

population parameter. In order to make any conclusions regarding the causality between the 

regressors and the regressand, the one needs to hypothesize the value of the population 

parameter. I call this statement of the null hypothesis H0: 

𝐻𝐻0: 𝛽𝛽𝑗𝑗 = 𝑐𝑐, 𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐.  

Usually, researchers who conduct econometrics analysis tend to be conservative and state the 

null hypothesis about what they hope is not true. The null hypothesis is considered true until 

researchers get the evidence that claims otherwise. The null hypothesis is rejected when the 

estimate includes a small probability of rejecting a true H0, meaning the estimate is such that 

it is not likely to make the type I error (David M. Lane). In this paper, I refer to the significance 

level as the probability of the type I error. In particular, the modeling subsection further in the 

paper includes 5 percent significance level unless started otherwise. 

The normality assumption implies that the OLS estimators are normally distributed. I can use 

this assumption as the foundation for creating a test statistic with a known distribution by 

means of 𝛽̂𝛽𝑗𝑗 and H0. As soon as I have the test statistic, I can compare it with the critical value 

of the test statistic for the given significance level. In case the constructed test statistic is higher 
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than the critical value, I am entitled to reject the null hypothesis H0 in favor of the alternative 

hypothesis H1 stating that H0 is not true: 

𝐻𝐻1: 𝛽𝛽𝑗𝑗
>
≠
<
𝑐𝑐, 𝑐𝑐 = 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐. 

Subject to the number of restrictions, researchers work with two major types of test statistic: 

t-distributed and F-distributed. If the null hypothesis presumes the only restriction, the statistic 

is t-distributed. In case of several restrictions, I work with F-distributed test statistic. 

The null hypothesis with the only restriction has two general cases: the population parameter 

is set to be equal to the constant term provided or a linear combination of two or more 

parameters is set to be equal to the constant term provided. For any occurrence, Student t-

distributed statistic is an appropriate tool to test the null hypothesis. William Sealy Gosset 

developed it in 1908. The statistician used the pen name Student for his published works 

(Student, pp. 14-19). The formula for the calculation of t-statistic is the following: 

𝑡𝑡 = 𝛽𝛽𝚥𝚥�−𝛽𝛽𝑗𝑗
𝑠𝑠𝑠𝑠�𝛽𝛽𝚥𝚥��

 ~ 𝑡𝑡𝑛𝑛−𝑘𝑘−1, 

where n stands for the number of observations, k is the number of explanatory variables that 

are included in the model. In this paper, I often refer to 𝑑𝑑𝑑𝑑 = 𝑛𝑛 − 𝑘𝑘 − 1 as to the degrees of 

freedom. 

In the formula above, I replace 𝛽𝛽𝑗𝑗 with the constant term in the null hypothesis H0. The term 

𝛽𝛽𝚥𝚥�  stands for the estimated population parameter. The standard error term 𝑠𝑠𝑠𝑠�𝛽𝛽𝚥𝚥� � = 𝜎𝜎� = �𝑆𝑆𝑆𝑆𝑆𝑆
𝑑𝑑𝑑𝑑

 

is the unbiased estimator of standard deviation of the estimated population parameter. 

After  𝑡𝑡𝑛𝑛−𝑘𝑘−1 is calculated, the interest of a researcher is to find the critical value tc of the t-

distribution with respect to the degrees of freedom provided and the significance level 

predetermined. The critical value tc can be extracted from the t-distribution tables or it can be 

calculated with the help of statistical software such as homoskedasticity. The method requires 

from a researcher to reject the null hypothesis if the test statistic calculated is higher than the 

critical value tc. 
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Alternatively, the researcher who is dealing with t-distributed test statistic may be interested 

in finding a p-Value while he or she is testing the null hypothesis. P-Value refers to the lowest 

level of significance that allows me to reject the null hypothesis. Hence, if the p-Value for a 

given test is lower than the chosen significance level, I reject the null hypothesis. Again, 

statistical software such as Stata provides with p-Values for every estimated value of 

population parameter right after the regression is run (Balsvik, 2015). 

The case when the researcher wants to test whether a group of regressors has zero effect on 

the regressand is the test with several exclusion restrictions. F-test is an appropriate tool for 

such a hypothesis. It tells me whether several slope coefficients in the regression equal zero at 

the same time. If it is true, the researcher is entitled not to include the population parameters 

tested with F-test in the model. The F-test was developed by American statistician 

George Snedecor and named in honor of English statistician Ronald Fisher (Snedecor, 1938). 

F-test presumes the comparison between SSR of the two models: the unrestricted model and 

the restricted one. The former one accounts for all of populations parameters, including the 

ones that are tested. The latter one excludes the population parameters to be tested, meaning 

the restricted model stands for the case when the group of explanatory variable has no effect 

on the explained variable. A low value of SSR represents a good fit of the model. If SSR for 

one model is lower than SSR for another one, it means that the former model explains larger 

part of the total variation in the dependent variable and for that reason the model with lower 

SSR fits population better.  

The logic behind the testing is that adding explanatory variables to regression model increases 

the part of the total variation in explained variable that the model can explain. The unrestricted 

model includes more variables than the restricted one. It should therefore possess smaller SSR: 

𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 > 𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢. 

The inference with F-distributed statistic includes several stages. First, the null hypothesis is 

stated that the correct model is the restricted one. Take for example the model with four 

parameters and two exclusive restrictions (𝑝𝑝 = 4, 𝑞𝑞 = 2). The null hypothesis would be that 

two out of four regressors should not be included in the model, so that the corresponding 

population parameters are set to equal zero: 

𝐻𝐻0: 𝛽𝛽3 = 0,𝛽𝛽4 = 0. 
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The alternative hypothesis is that H0 is not true, so that at least one population parameter does 

not equal zero and, in turn, at least one explanatory variable should be included in the model: 

𝐻𝐻1: 𝐻𝐻0 𝑖𝑖𝑖𝑖 𝑛𝑛𝑛𝑛𝑛𝑛 𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡. 

Secondly, the researcher rejects the null hypothesis if the unexplained variation of the 

dependent variable in the unrestricted model is sufficiently smaller that the unexplained 

variation in the restricted model. At this point, it is worth clarifying what the term “sufficiently 

smaller” means. The algebra behind the F-distributed statistics presumes the use of the 

following formula: 

𝐹𝐹 = (𝑆𝑆𝑆𝑆𝑆𝑆𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟−𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢) 𝑞𝑞⁄
𝑆𝑆𝑆𝑆𝑆𝑆𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢 𝑑𝑑𝑑𝑑⁄  ~ 𝐹𝐹(𝑞𝑞,𝑑𝑑𝑑𝑑), 

where q stands for the number of exclusive restrictions and 𝑑𝑑𝑑𝑑 = 𝑛𝑛 − 𝑘𝑘 − 1 corresponds to 

the degrees of freedom. 

From the equation above, I see that F-statistics depends on the relative change corrected for 

exclusive restrictions and degrees of freedom. 

In order to reject H0, the researcher should compare the calculated 𝐹𝐹(𝑞𝑞,𝑑𝑑𝑑𝑑) with the critical 

value of 𝐹𝐹𝑐𝑐 for the defined level of significance. I obtain the critical value Fc from the F-

distribution tables. If 𝐹𝐹(𝑞𝑞,𝑑𝑑𝑑𝑑) > 𝐹𝐹𝑐𝑐, the null hypothesis is rejected in favor of the alternative 

one. 

Testing for autocorrelation in the errors 

One of the most important assumptions in time series analysis is the assumption of no 

autocorrelation. This is Assumption 5 in the previous subsection. It states that the disturbances 

ut and us at two times t and s (t ≠ s) should be uncorrelated subject to explanatory variables 

(Taber, p. 9):  

𝔼𝔼(𝑢𝑢𝑡𝑡 ,𝑢𝑢𝑠𝑠|𝑥𝑥𝑡𝑡, 𝑥𝑥𝑠𝑠) = 0. 

The violation of this assumption presumes the presence of autocorrelation. In general, 

autocorrelation, also known as serial correlation, is the relationship between two values of the 

same variable over time. In this paper, I study autocorrelation in the error term based on the 
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first-order autoregressive (AR(1)) model. In particular, I suspect the following structure of 

autocorrelation in the errors: 

𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑡𝑡 + 𝑢𝑢𝑡𝑡, 𝑡𝑡 = 1,2,3, … ,𝑇𝑇 

𝑢𝑢𝑡𝑡 = 𝜌𝜌𝑢𝑢𝑡𝑡−1 + 𝑒𝑒𝑡𝑡 

𝔼𝔼(𝑒𝑒𝑡𝑡𝑒𝑒𝑠𝑠) = 0, ∀𝑡𝑡 ≠ 𝑠𝑠 

where 𝜌𝜌 speaks about the relationship or correlation between a residual and its lagged value, 

indices t and s refer to time, and the term 𝑒𝑒𝑡𝑡~𝑁𝑁(0,𝜎𝜎𝑒𝑒2). 

Although the presence of autocorrelation still provides me with unbiased estimate 𝛽𝛽1�, so that 

𝔼𝔼�𝛽𝛽1�� = 𝛽𝛽1, the standard error of the estimate is not unbiased. This means that the OLS 

estimate 𝛽𝛽1� is inefficient and I cannot rely on ordinary test statistic (Nilsen, Time-series 

analysis. Basics, pp. 20-23). 

Before testing for the presence of autocorrelation, one point should be made straight away. 

Researchers often assume strict exogeneity in the regressors of the model. This means that the 

zero conditional mean assumption stated in Subsection 4.2 holds. One particular characteristic 

of strict exogeneity is that it rules out the possibility of lagged dependent variables in the 

model. The one usually prefers to the scenario with strictly exogenous explanatory variables 

because of its relative simplicity compared to the scenario when the zero conditional mean 

assumption fails. Nevertheless, the latter scenario is more common, and in the vast majority 

of cases, the explanatory variables are not strictly exogenous. Moreover, I want to examine 

the presence of lagged dependent variables in my model. Hence, while testing for 

autocorrelation, I use the tests that do not require strict exogeneity in the regressors. 

In order to test for autocorrelation, I use the test based on AR(1) serial correlation model for 

the error terms. The test includes the following stages: 

• Firstly, I run the regression of historical electricity prices on historical temperature data 

and exchange rate. Previously, I have controlled the price of electricity and exchange 

rate for time trend. 

• Secondly, I find the OLS residuals from the regression that was just run. 
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• Thirdly, I run the regression of the residual 𝑢𝑢𝑡𝑡� on its lagged value 𝑢𝑢𝑡𝑡−1�. I also add the 

monthly temperature means and exchange rates as my second and third explanatory 

variables. The inclusion of these regressors allows me to avoid the problem of strictly 

exogenous explanatory variables. 

• Finally, I test for the presence of autocorrelation using t statistic. My null hypothesis 

is that there is no autocorrelation in the original model. The alternative hypothesis is 

that AR(1) autocorrelation is present (Wooldridge, pp. 409-411). 

In case the autocorrelation in the model is detected by the test described above, I correct for it 

by using Cochrane-Orcutt (CO) procedure (Donald Cochrane, 1949). The one may refer CO 

procedure to the feasible generalized least squares (FGLS) estimation method with the specific 

way to estimate the correlation 𝜌𝜌. FGLS estimation is the way to estimate the least squares 

when variance and autocorrelation pattern is not known and therefore the transformation of 

the initial model is required. One specific characteristic of the CO procedure is that it omits 

the first observation. 

CO estimation has the following stages: 

• I repeat the first three steps from the test based on AR(1) autocorrelation described 

above. 

• From the regression of residuals on their lagged values and other regressors, I find an 

estimate of 𝜌𝜌�. This is the slope coefficient next to the lagged values of residuals. 

• Next, I transform all of the variables from the original regression. The transformation 

procedure presumes the creation of so-called quasi-differenced data based on 

dependent and independent variables. The formulas for quasi-differencing are as 

follows: 

𝑦𝑦𝑡𝑡∗ = 𝑦𝑦𝑡𝑡 − 𝜌𝜌�𝑦𝑦𝑡𝑡−1, 

𝑥𝑥𝑡𝑡∗ = 𝑥𝑥 − 𝜌𝜌�𝑥𝑥𝑡𝑡−1, 

𝑐𝑐0∗ = 1 − 𝜌𝜌�, 

where 𝑦𝑦𝑡𝑡∗ is the rule for quasi-differencing the dependent variable, 𝑥𝑥𝑡𝑡∗ is the rule for 

quasi-differencing the independent variables, and 𝑐𝑐0∗ stands for the constant term. 
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• Following that, the original regression is run, but with transformed variables. The 

intercept, however, is not valid and has to be found separately based on the value of 

the constant term 𝛽𝛽0∗ and the estimate of 𝜌𝜌�. The formula is the following: 𝛽𝛽0∗ = 𝑐𝑐0∗

(1−𝜌𝜌�)
. 

This concludes the first iteration from CO procedure. 

• I repeat then the last three steps several times until my correlation coefficient does not 

change much from iteration to iteration (Nilsen, Corchrane Orcutt Manually, 2015). 

The CO procedure is a good way to correct for autocorrelation of unknown structure. If I have 

an idea about the autocorrelation structure, the other procedure may be useful. In other words, 

if I really believe that it is reasonable to correct for AR(1) autocorrelation specifically, I can 

apply the following mathematical procedure: 

𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑡𝑡,1 + 𝛽𝛽2𝑥𝑥𝑡𝑡,2 + 𝑢𝑢𝑡𝑡, 

𝑦𝑦𝑡𝑡−1 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑡𝑡−1,1 + 𝛽𝛽2𝑥𝑥𝑡𝑡−1,2 + 𝑢𝑢𝑡𝑡−1� × 𝜌𝜌 ⇒ 

⇒ 𝜌𝜌𝑦𝑦𝑡𝑡−1 = 𝜌𝜌𝜌𝜌0 + 𝜌𝜌𝜌𝜌1𝑥𝑥𝑡𝑡−1,1 + 𝜌𝜌𝜌𝜌2𝑥𝑥𝑡𝑡−1,2 + 𝜌𝜌𝜌𝜌𝑡𝑡−1, 

where index t represents time, 𝜌𝜌 speaks about the relationship or correlation, the variable y 

represents electricity prices, u relates to residuals, and variables x1 and x2 stand for temperature 

and exchange rate respectively. 

Next, I find the first difference and rearrange the resulting equation: 

(𝑦𝑦𝑡𝑡 − 𝜌𝜌𝑦𝑦𝑡𝑡−1) = 𝛽𝛽0(1− 𝜌𝜌) + 𝛽𝛽1�𝑥𝑥𝑡𝑡,1 − 𝜌𝜌𝑥𝑥𝑡𝑡−1,1� + 𝛽𝛽2�𝑥𝑥𝑡𝑡,2 − 𝜌𝜌𝑥𝑥𝑡𝑡−1,2� + (𝑢𝑢𝑡𝑡 − 𝜌𝜌𝑢𝑢𝑡𝑡−1), 

𝑦𝑦𝑡𝑡 = 𝛽𝛽0(1 − 𝜌𝜌) + 𝛽𝛽1𝑥𝑥𝑡𝑡,1 − 𝜌𝜌𝜌𝜌1𝑥𝑥𝑡𝑡−1,1 + 𝛽𝛽2𝑥𝑥𝑡𝑡,2 − 𝜌𝜌𝜌𝜌2𝑥𝑥𝑡𝑡−1,2 + 𝜎𝜎𝜎𝜎𝑡𝑡−1 + 𝑒𝑒𝑡𝑡, 

where 𝑒𝑒𝑡𝑡 = 𝑢𝑢𝑡𝑡 − 𝜌𝜌𝑢𝑢𝑡𝑡−1, and 𝑒𝑒𝑡𝑡 is independently and identically distributed 𝑒𝑒𝑡𝑡~𝑖𝑖𝑖𝑖𝑖𝑖(0,𝜎𝜎𝑒𝑒) 

The last equation is my restricted model. Now, I define the unrestricted one: 

𝑦𝑦𝑡𝑡 = 𝜃𝜃0 + 𝜃𝜃1𝑥𝑥𝑡𝑡,1 + 𝜃𝜃2𝑥𝑥𝑡𝑡−1,1 + 𝜃𝜃3𝑥𝑥𝑡𝑡,2 + 𝜃𝜃4𝑥𝑥𝑡𝑡−1,2 + 𝜃𝜃5𝑦𝑦𝑡𝑡−1 + 𝑒𝑒𝑡𝑡, 

where 𝜃𝜃1 = 𝛽𝛽1, 𝜃𝜃2 = −𝜌𝜌𝛽𝛽1, 𝜃𝜃3 = 𝛽𝛽2, 𝜃𝜃4 = −𝜌𝜌𝜌𝜌2, and 𝜃𝜃5 = 𝜌𝜌. 
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I start with the unrestricted model, run regression, and find the values for 𝜃𝜃1 through 𝜃𝜃5. 

Subsequently, I work with my restricted model. In particular, I use the special command in 

Stata that does both conducts nonlinear estimation for the least squares and fits the values of 

regression coefficients, so that after several iterations SSR is minimized. 

In the end, I compare the coefficients from the unrestricted model with those from the 

restricted one. If they are similar, this means that the linear model and the non-linear model 

provide with similar outcomes (Nilsen, Time-series analysis. Basics, pp. 38-39). 

Heteroskedasticity 

Researchers deal with heteroskedasticity in time series when the error term does not have 

constant variance subject to independent variables, meaning that the variance of disturbances 

is different for every time period. Clearly, heteroskedasticity is the problem when Assumption 

4 about homoskedasticity fails (Wooldridge, pp. 420-425). The problem may be detailed in 

the following way: 

𝑉𝑉𝑉𝑉𝑉𝑉�𝑢𝑢𝑡𝑡�𝑥𝑥𝑡𝑡,𝑗𝑗� = 𝜎𝜎𝑡𝑡2, 

where the subscript t suggests that the error terms are heteroskedastic. 

Heteroskedasticity leads to wrong estimation of the variance of the error term. Even though 

heteroskedastic errors are not biased and both R2 and adjusted R2 have the same meaning as 

in case of homoskedasticity, the one cannot do any statistical inference before the problem of 

heteroskedastic errors is solved. The reason for this is that heteroskedasticity affects the 

variance, so that the usual formulas for the calculation of variance are no longer valid. This in 

turn damages the test statistic – researcher can reach a wrong conclusion about statistical 

significance of the coefficients (Balsvik, Heteroskedasticity. ECN 402 - Part 14, 2015). 

In order to test for heteroskedasticity, I use the Breusch-Pagan (BP) test (Trevor Stanley 

Breusch, 1979). This one has the null hypothesis that the error terms in the model are 

homoscedastic: 

𝐻𝐻0: 𝑉𝑉𝑉𝑉𝑉𝑉�𝑢𝑢𝑡𝑡�𝑥𝑥𝑡𝑡,𝑗𝑗� = 𝜎𝜎2. 

If the zero conditional mean assumption holds, I may rewrite the null hypothesis in the 

following way: 
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𝐻𝐻0: 𝔼𝔼�𝑢𝑢𝑡𝑡�𝑥𝑥𝑡𝑡,𝑗𝑗� = 𝔼𝔼�𝑢𝑢𝑡𝑡2�𝑥𝑥𝑡𝑡,𝑗𝑗� = 𝔼𝔼(𝑢𝑢𝑡𝑡2) = 𝜎𝜎2 

The expression stated above means that in case of H0 is a correct hypothesis, the squared errors 

should be uncorrelated with the independent variables from the model. The alternative 

hypothesis allows in turn heteroskedasticity. 

In my regression analysis, I apply Stata in order to test for heteroskedasticity. This influences 

the expression, but not the logic, of my null hypothesis. Since the squared errors are 

unobserved, I am using the squared residuals 𝑢𝑢𝑡𝑡2� instead. In case of heteroskedastic errors, the 

squared residuals are the function of the independent variables: 

𝑢𝑢𝑡𝑡2� = 𝜔𝜔0 + 𝜔𝜔1𝑥𝑥𝑡𝑡,1 + 𝜔𝜔2𝑥𝑥𝑡𝑡,2 + 𝑣𝑣𝑡𝑡, 

where the index t corresponds to time, the index j relating to particular explanatory variable, 

and vt stands for the error terms. In the equation above, 𝑢𝑢𝑡𝑡2� is the linear function of two 

independent variables. 

The null hypothesis of homoskedasticity in the error terms is now the following: 

𝐻𝐻0: 𝜔𝜔1 = 𝜔𝜔2 = 0. 

The alternative hypothesis is that at least one coefficient does not equal zero. In order to test 

H0, I use F-test for the joint significance (Yamano, p. 4). 

In the end, if heteroskedasticity is detected, I correct for it by using heteroskedasticity robust 

standard errors after the model is estimated by means of FGLS. 

Test for functional form 

For the study of causality between temperature variations and electricity prices, it is also 

crucial to examine whether the zero conditional mean assumption holds. As I have put it 

earlier, the violation of this assumption leads to endogenous regressors. These ones correlate 

with the errors in the model: 

𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶�𝑥𝑥𝑡𝑡,𝑗𝑗,𝑢𝑢𝑡𝑡� ≠ 0, ∀𝑗𝑗. 

The index t stands for the time and the index j refers to the specific explanatory variable. 
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The presence of endogenous regressors speaks about a specification problem. One reason why 

a model may be incorrectly specified is that some variables are omitted. In case the regressand 

is a function of the omitted regressors, I say that the problem is in functional form 

misspecification (Tastan, pp. 2-4). 

In my econometric analysis, I want to check whether I have specified my model correctly. If 

I have not, the endogenous regressors in my model will result in biased and inconsistent OLS 

estimators. Hence, I want specifically to check whether the existing model is optimal in terms 

of the number of regressors, or it lacks some polynomials of the regressand. This requires the 

comparison of two nested models – there are two models to compare, and one model is 

identical to the other one with the exception of a few additional variables. Considering this, 

the Ramsey’s regression specification error test (RESET) is the right thing to do in my analysis 

as it suggests comparing nested models (Ramsey, 1969). 

Let me assume the following model: 

𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑡𝑡,1 + 𝛽𝛽2𝑥𝑥𝑡𝑡,2 + 𝛿𝛿1𝑦𝑦𝑡𝑡2� + 𝛿𝛿2𝑦𝑦𝑡𝑡3� + 𝑢𝑢𝑡𝑡, 

where the index t represents time, 𝑦𝑦𝑡𝑡2� and 𝑦𝑦𝑡𝑡3� stand for the polynomials of the fitted values 

from the regression of yt on xt,1 and xt,2, and 𝛿𝛿1 with 𝛿𝛿2 correspond to the slope coefficients in 

front of the polynomials. 

Let me think of the model above as of the unrestricted model representing the relationship 

between temperature fluctuations and electricity prices. The model includes two regressors. 

The part 𝑦𝑦𝑡𝑡 = 𝛽𝛽0 + 𝛽𝛽1𝑥𝑥𝑡𝑡,1 + 𝛽𝛽2𝑥𝑥𝑡𝑡,2 + 𝑢𝑢𝑡𝑡 represents in turn the restricted model without any 

nonlinear combination of the regressors. 

In the RESET, the null hypothesis is that the restricted model is correct. The alternative 

hypothesis is that the unrestricted model is preferred. 

The RESET test includes the following sequence of actions: 

• Firstly, I estimate the restricted model and obtain the fitted values of 𝑦𝑦𝑡𝑡� . 

• Secondly, I take the fitted values to the second and third power. This will give me the 

polynomials from the unrestricted model. 
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• Finally, I estimate the unrestricted model and test whether the estimates of the slope 

coefficients in front of the polynomials are significantly different from zero. Here, I 

use the F-test for joint significance. 

If the F-test shows that the estimates of the slope coefficients in front of the polynomials are 

significantly different from zero, I reject the null hypothesis that there is no functional form 

misspecification in the initial model in favor of the alternative hypothesis that I should control 

the model for additional nonlinearities (Balsvik, Specification problems. ECN 402 - Part 15A, 

2015). 

4.4 Model selection and empirical results 

In this subsection, I am trying to find the optimal model using statistical inference. I include 

mathematical expressions of the models tested. I also provide with the output of my empirical 

analysis in the form of tables produced with the help of data analysis and statistical software, 

Stata. The analysis is based on the methodology described in Subsection 4.3. 

The purpose of this study is to find the causality between air temperatures in the specified 

geographical area and electricity prices in the same region. The region of interest is Oslo, 

Norway. The correlation coefficient between the variable describing temperature monthly 

means, denoted by 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡, and the variable containing historical power prices in 

Oslo, denoted further by Oslo equals -0.54. Further, the correlation coefficient between 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡, and the variable containing natural logarithms of historical power prices in 

Oslo, denoted further by ln(Oslo) equals -0.53. These correlation coefficients indicate the 

inverse relationship between the two variables, so that lower temperatures correspond to 

higher prices. The correlation coefficient speaks about dependence, but cannot characterize 

“cause and effect” relationships. In order to find out whether the decrease in temperature really 

causes the increase in electricity prices, I need the inference with hypothesis test statistic. 

To begin with, the plots from the previous subsection allow me to assume that some variable 

contain a time trend. Therefore, I have to check the variables whether the time trend is really 

the case. If it is, I have to detrend the data. The whole procedure has several stages. First, I 

declare that my variable Date is a time series data. The variable describes the period of interest. 

I use tsset command in Stata. 
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Secondly, I run a regression of the variable of interest on Date: 

𝑦𝑦𝑡𝑡 = 𝛽𝛽0� + 𝛽𝛽1�𝑡𝑡 + 𝑢𝑢𝑡𝑡�, 

where yt is the variable of interest and t stands for time. 

I check the p-Value. If it shows statistical significance, meaning it is not higher than 0.05, I 

conclude that the data contains the time trend. If the p-Value is higher than 0.05, I conclude 

that there is no time trend in the data. 

Finally, I obtain the linear prediction 𝑦𝑦𝑡𝑡�  for the regression just run. Using this prediction, I 

generate the new variable by subtracting 𝑦𝑦𝑡𝑡�  from 𝑦𝑦𝑡𝑡. The variable generated is the detrended 

variable of interest. I repeat the procedure for every variable. 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡, for instance, 

showed the absence of time trend in the data, whereas all of the variables related to electricity 

prices, along with the exchange rate variable ln(𝑁𝑁𝑁𝑁𝑁𝑁1𝐸𝐸𝐸𝐸𝐸𝐸)𝑡𝑡, strongly suggested time trend 

and therefore had to be detrended. 

After the trend is removed, I search for optimal candidate model. I start with Model 1 from 

Subsection 4.1. The equation bellow incorporates the estimators from Stata output in the 

equation that represents Model 1: 

𝑙𝑙𝑙𝑙(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂)𝑡𝑡 = 0.194 − 0.0262 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 − 2.235𝑙𝑙𝑙𝑙(𝑁𝑁𝑁𝑁𝑁𝑁1𝐸𝐸𝐸𝐸𝐸𝐸)𝑡𝑡 + 𝑢𝑢𝑡𝑡�, 

where index t stands for time and 𝑢𝑢𝑡𝑡� refers to the error term. 

The output of this regression is in the second column of Table 4.1. Here, around 33.9 percent 

of the variation in 𝑙𝑙𝑙𝑙(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂)𝑡𝑡 is explained. Moreover, both slope coefficients are significantly 

different from zero. This indicates that Model 1 is good enough so far. It shows that the growth 

in the air temperature in Oslo by 1 degree Celsius causes approximately 2.62 percent decline 

in electricity price in the region. This is in agreement with my initial assumption: people tend 

to consume less electricity for heating as it gets warmer outside. 

Although Model 1 is good, I would like to check whether the explanatory power of the model 

increases after controlling for the set of variables characterizing the historical electricity prices 

in Kristiansand, Bergen, Trondheim and SE3. This is Model 2 I described in Subsection 4.1. I 

incorporate the estimators from Stata output in the model. This gives me the following 

equation: 
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𝑙𝑙𝑙𝑙(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂)𝑡𝑡 = 𝛽𝛽0� + 𝛽𝛽1�𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 + 𝛽𝛽2�𝑙𝑙𝑙𝑙(𝑁𝑁𝑁𝑁𝑁𝑁1𝐸𝐸𝐸𝐸𝐸𝐸)𝑡𝑡 + 𝛽𝛽3�ln (𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾𝐾)𝑡𝑡 +

𝛽𝛽4�ln (𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵𝐵)𝑡𝑡 + 𝛽𝛽5�ln (𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇ℎ𝑒𝑒𝑒𝑒𝑒𝑒)𝑡𝑡 + 𝛽𝛽6�ln (𝑆𝑆𝑆𝑆3)𝑡𝑡 + 𝑢𝑢𝑡𝑡�, 

where index t stands for time, 𝑢𝑢𝑡𝑡� refers to the error term, and regressors ln(Kristiansand)t, 

ln(Bergen)t, ln(Trondheim)t, and ln(SE3)t represent natural logarithms of the historical 

electricity prices in Kristiansand, Bergen, Trondheim, and SE3 respectively. 

The regression output is provided in the third column of Table 4.1. I put the p-Values in 

parentheses under the estimates. As Table 4.1 shows, the second candidate model, Model 2, 

explains 99 percent of the variance in the electricity prices in Oslo. The one should be 

suspicious when the coefficient of determination is this high. Along with the fact that the 

values of the slope coefficients in front of 𝑙𝑙𝑙𝑙(𝑁𝑁𝑁𝑁𝑁𝑁1𝐸𝐸𝐸𝐸𝐸𝐸)𝑡𝑡, ln (𝑇𝑇𝑟𝑟𝑜𝑜𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒)𝑡𝑡, and ln (𝑆𝑆𝑆𝑆3)𝑡𝑡 

are statistically insignificant, the value of adjusted R2 close to unity may indicate the problem 

of perfect collinearity, so that the Assumption 2 in Subsection 4.2 is violated. The issue is that 

the values of electricity prices in Oslo in Model 2 can be computed based on the linear 

combination of the values of electricity prices in neighboring regions. 

I may conclude that my initial idea to control for the laws of demand and supply on the power 

market in the Nordic countries does not increase the explanatory power of 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 as 

expected. Rather, it invalidates the model. I therefore refuse from Model 2, and decide to stand 

with Model 1 so far. 

Although Model 1 is good, I would like to check whether the explanatory power of the model 

increases after including transmission capacities to the regression. This is Model 3 from 

Subsection 4.1. The output is in the fourth column of Table 4.1. It is now the case that the 

slope parameter next to 𝑙𝑙𝑙𝑙(𝑁𝑁𝑁𝑁𝑁𝑁1𝐸𝐸𝐸𝐸𝐸𝐸)𝑡𝑡 is insignificant. Furthermore, Stata drops most of the 

estimates of transmission capacities. The only estimates for transmission capacities left are the 

ones for no2no1 and no5no1, which characterize the transmissions from Bergen to Oslo and 

from Kristiansand to Oslo respectively. However, these estimates are statistically 

insignificant. Consequently, there is no sense to represent Model 3 in the form of equation. 

The regression result indicates the problem of perfect collinearity and in turn the violation of 

Assumption 2 in Subsection 4.2. I suspect the issue is that the variables representing 

transmission capacities lack dynamics over time – only small amounts of changes happen over 

the period of interest. This does not allow me to rely on regression results from Model 3. 

Hence, Model 1 is preferable - it becomes the candidate model for further analysis.  
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Table 4.1 Estimates from the regressions of electricity prices in Oslo on air temperatures 
and other regressors 

 (1) (2) (3) 
 Model 1 Model 2 Model 3 
Temperature, Celsius -0.0262*** -0.00113*** -0.0270*** 
 (0.000) (0.000) (0.000) 
    
detrn_ln_nok1eur -2.235** 0.0279 -1.794 
 (0.041) (0.578) (0.106) 
    
detrn_ln_kristiansand  0.707***  
  (0.000)  
    
detrn_ln_bergen  0.259***  
  (0.000)  
    
detrn_ln_trondheim  0.0514  
  (0.239)  
    
detrn_ln_se3  -0.0125  
  (0.761)  
    
no1no2, MW   0 
   (.) 
    
no2no1, MW   -0.000830* 
   (0.069) 
    
no1no3, MW   0 
   (.) 
    
no3no1, MW   0 
   (.) 
    
no1no5, MW   0 
   (.) 
    
no5no1, MW   0.000123* 
   (0.098) 
    
se3no1, MW   0 
   (.) 
    
no1se3, MW   0 
   (.) 
    
Constant 0.194*** 0.00836*** 2.523** 
 (0.001) (0.002) (0.049) 
R2 0.365 0.999 0.408 
Observations 53 53 53 

p-values in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 
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In addition to time trend, it is necessary to control for seasonality in the model of interest. The 

one may suspect that either monthly changes in electricity price have different magnitude over 

a year and this magnitude depends on air temperature outdoors, or electricity price changes its 

value rapidly when the weather changes season to season. The latter one may be a logical thing 

to assume since when winter comes, for example, and it becomes colder outside in a very short 

time interval, the demand for electricity grows rapidly, because households consume more 

electricity for heating purposes. Simultaneously, power suppliers cannot react fast enough to 

the increase in demand, and thus the price for electricity grows. Another example to consider 

is the increase of power consumption in summer – the price can grow, because it becomes hot 

outside and people start using air conditioning. 

In order control for this type of weather changes, I use qualitative information in the form of 

dummy variables. The method is straightforward. I create a couple of binary variables with 

only two possible values: arbitrary zero and one. My first dummy variable equals one if the 

month is one of the three winter months: December, January, or February. The value is set to 

be zero otherwise. The second dummy variable is one if the month is one of the three summer 

months: June, July, or August. It is zero otherwise. 

Seasonal dummy variables when added to regression model as separate variables influence its 

intercept. In the context of my research, this means that when the appropriate season comes, 

the prices for electricity change instantly by some amount. Apart from dummy that influences 

the intercept in my candidate model, I want to control for dummy that influences the slope 

parameter next to 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡. If such a dummy were statistically significant, the 

interpretation would be as follows: air temperature effects power price differently conditional 

on the season of a year. In order to control for dummy that influences the slope parameter, I 

generate a couple of interaction variables multiplying ordinary dummies on the independent 

variable of interest, which is 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 (Balsvik, 2015). 

Table 4.2 provides with the regression results for four cases. These four cases are as follows: 

candidate model plus dummy variable indicating summer, candidate model plus dummy 

variable indicating winter, candidate model plus interaction term for summer, and candidate 

model plus interaction term for winter. As the table shows, neither of the dummies and 

interaction terms is statistically significant. Furthermore, running regression on all of four 

additional variables and testing for the joint significance afterwards leads me to the result when 
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I cannot reject the null hypothesis that all of the four variables should be equal to zero. This 

states that seasonality is not the case in my model. 

Table 4.2 Estimates from the regressions of electricity prices in Oslo on air temperatures, 
exchange rates and seasonal dummy variables 

 (1) (2) (3) (4) 
 Seasonality: summer Seasonality: winter Seasonality: summer 

(interaction term) 
Seasonality: winter 
(interaction term) 

Temperature -0.0227*** -0.0276*** -0.0247*** -0.0275*** 
 (0.005) (0.001) (0.003) (0.000) 
     
Exchange rate in logs -2.259** -2.174* -2.244** -2.410** 
 (0.040) (0.054) (0.042) (0.038) 
     
dummy for summer -0.0761    
 (0.543)    
     
dummy for winter  -0.0311   
  (0.803)   
     
interaction term for summer   -0.00194  
   (0.803)  
     
interaction term for summer    0.0159 
    (0.631) 
     
Constant 0.187*** 0.211** 0.191*** 0.208*** 
 (0.001) (0.021) (0.001) (0.001) 
R2 0.369 0.365 0.365 0.368 
Observations 53 53 53 53 

p-values in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 

In fact, the absence of seasonality in my model does not correspond to my initial expectations. 

Before the model was run in Stata, I had suggested that the correction for summer season is 

not necessary. Norway is located up north in Europe and this fact has resulted in the maximum 

monthly mean of 20.8 degrees Celsius in my data set. This kind of temperature does not 

presume that Norwegians use a lot of air conditioning. 

Nevertheless, I expected that the correction for winter season would be required. Norway uses 

solely electricity for heating. Heating is turned on when winter comes. It was therefore logical 

to assume that winter seasonality presents and I need to include it in my regression model. 

The latter point is eventually not the case, though. I can explain the result as follows. The 

corrections for seasons are odd, because 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 already includes seasonality in itself. 

Figure 4.2 plots the series of air temperatures in Oslo – historical monthly means. The series 

plotted has the structure of cosinusoid, meaning it has two extremums per year: maximum and 
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minimum. Theses extremums repeat every year. Moreover, air temperature fluctuates during 

the year towards either maximum or minimum. In general, the whole series can be replaced 

by the comparable cosinusoid and still show similar impact on electricity prices. Hence, I do 

not really need to correct for seasonality, as 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑢𝑢𝑟𝑟𝑟𝑟𝑡𝑡 already includes such a correction. 

As for now, I have proven that Assumption 2 in my candidate model, Model 1, is not violated. 

Next, I want to check whether the model violates other assumptions from Subsection 4.2. In 

particular, Assumption 3, 4 and 5 are crucial. These are the assumptions for zero conditional 

mean, homoskedasticity and no serial correlation respectively. 

Referring to Assumption 5, I check for the presence of autocorrelation using the test based on 

AR(1) serial correlation model for the error terms. I run the regression of residuals from my 

candidate model on their lagged values and the independent variables. I find the value of the 

correlation coefficient 𝜌𝜌� that equals 0.63. This one represents the correlation between the 

residuals from my candidate model and their lagged values. The coefficient is statistically 

significantly different from zero. This speaks about the presence of autocorrelation – I reject 

the hypothesis of no serial correlation. In addition, Figure 4.5 (on the left) shows the plot of 

the residuals from Model 1 against their lagged values. Specifically, the comparison is between 

the residuals at time t and the residuals at time t-1. Most of the observations are located either 

on the top right quarter, or on the bottom left quarter. This is typical for positive 

autocorrelation. Moreover, Figure 4.6 (on the right) plots the residuals from Model 1 as a 

function of time and it reflects autocorrelation too. 

Figure 4.5-4.6 Residuals against the lagged values; residuals as a 
function of time 

 

As serial correlation appears to be an issue in this particular case, it is important to correct for 

it in the regression model. In Subsection 4.3, I describe CO correction procedure. This is a 
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valid instrument if the structure of serial correlation is unknown. The procedure presumes the 

transformation of dependent and independent variables through generating quasi-differenced 

data. For CO correction, I rely on formulas I mentioned earlier in Subsection 4.3. 

After quasi-differencing is done, I run the regression with the transformed variables. The 

output is free of serial correlation. P-Values are in parentheses. I provide it in Table 4.3 below. 

According to the method, I calculate the intercept separately using the formula from 

Subsection 3.2. It is equal to 0.49. As to the values of the slope parameters, these are -0.0281 

for 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 and -2.716 for ln(𝑁𝑁𝑁𝑁𝑁𝑁1𝐸𝐸𝐸𝐸𝐸𝐸)𝑡𝑡. However, the coefficient next to the 

exchange rate delta is now statistically insignificant. 

Table 4.3 Regression of the quasi-differenced data - CO procedure 

 (1) 
 Model 1 + correction 

for autocorrelation 
Temperature -0.0281*** 
 (0.000) 
  
Exchange rate in logs -2.716 
 (0.105) 
  
Constant 0.180** 
 (0.046) 
R2 0.272 
Observations 52 
p-values in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 

In Subsection 4.3, I have also mentioned an alternative procedure that may be used in order to 

correct for autocorrelation. That one is appropriate for the cases when the one is certain about 

autocorrelation structure in the model. The procedure presumes the comparison of coefficients 

from unrestricted and restricted model. Although I do not put much attention to the alternative 

procedure in this paper, I have done it in Stata with the only purpose to check my output from 

CO correction procedure. The result is that the coefficients in the restricted model are nearly 

the same as those in the unrestricted one, so that that the linear model and the non-linear model 

provide with similar outputs. This proves the output of CO correction procedure and supports 

the hypothesis that AR(1) autocorrelation structure is typical for my model (Nilsen, Corchrane 

Orcutt Manually, 2015). 

After the problem of autocorrelation is solved, I focus on Assumption 4, which assumes 

homoskedasticity. To begin with, informal diagnostics may help to detect heteroskedasticity 
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in the model. I therefore produce a plot where I put the residuals from my candidate model 

against the fitted values. This is Figure 4.7. Based on the plot, it is difficult to conclude the 

presence of heteroskedastic errors, as it is hard to detect any particular pattern on the plot. 

Nevertheless, I am a bit suspicious about a higher concentration of observations when fitted 

values positive compared to when they are negative. Thus, I need to proceed with formal tests 

for heteroskedasticity. 

Figure 4.7 The candidate model: residuals against fitted values 

 

As described in Subsection 4.3, I apply BP test (Trevor Stanley Breusch, 1979). My null 

hypothesis is that the error terms in my candidate model are homoscedastic. The test command 

in Stata is estat hettest. It provides me with the test statistic that that follows a chi-square 

distribution and equals 10.94, along with the p-Value of 0.0009. Because of the p-Value lower 

than 0.05, I reject the null hypothesis of homoskedasticity. I conclude that the variance in my 

candidate model is affected by heteroskedasticity. This means that I cannot calculate the 

variance applying the usual formulas. 

I solve the problem of heteroskedasticity by means of heteroskedasticity robust standard 

errors. The regression output with heteroskedasticity robust standard errors (the errors are in 

parentheses) is shown in Table 4.4 below.  
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Table 4.4 Correction for heteroskedasticity 

 (1) 
 Model 1 + correction 

for autocorrelation + 
correction for 

heteroskedasticity 
Temperature -0.0281*** 
 (0.00678) 
  
Exchange rate in logs -2.716 
 (1.646) 
  
Constant 0.180** 
 (0.0879) 
R2 0.272 
Observations 52 
Standard errors in parentheses 
* p < 0.10, ** p < 0.05, *** p < 0.01 

In contrast with Table 4.3, the standard errors in Table 4.4 are larger. This does not change the 

values of the coefficients or their significance, though. Truly, the slope parameter for 

𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 is -2.0281 and it is statistically significantly different from zero. 

Simultaneously, the slope parameter for exchange rate is -2.716 and it is not statistically 

significantly different from zero. 

Next, I turn my attention to Assumption 3, or zero conditional mean assumption. If the 

assumption holds, I can be sure that the slope coefficient represents the causal relationship 

between the independent variable it precedes and the dependent variable (Balsvik, The simple 

regression model. The zero conditional mean assumption, 2015). This is important, because 

my major goal in this empirical research is to examine the causality between weather and 

power prices. 

The underlying idea is to check whether the candidate model is specified correctly. If it is not, 

the endogeneity problem caused by the violation of Assumption 3 results in biased and 

inconsistent OLS estimators. In this particular case, the term “correct specification” 

corresponds to the following dilemma: is the model optimal in terms of the number of 

regressors, or some polynomials of the dependent variable should be included? To answer this 

question, I conduct the RESET test (Ramsey, 1969). I have described the test procedure in 

Subsection 4.3 of this paper. 

My null hypothesis is that the polynomials of the dependent variable equal zero, so that my 

current candidate model does not contain any misspecification of its functional form. The 
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RESET test conducted results in the F-statistics of 2.08 and the p-Value of 0.1366. This means 

that I cannot reject the null hypothesis even at the 10 percent level of significance. The 

candidate model is correctly specified. 

4.5 The final model and interpretation 

In this section, I aimed at finding the causality between the air temperatures in Oslo area, 

Norway, and the electricity prices in the same region. I applied the method of least squares 

(OLS) and used Stata as the main statistical and data analysis tool. In several steps, I succeeded 

in finding the optimal model that examines the causality between the variables of interest. 

To start with, I dropped a number of supplementary variables such as power prices in 

neighboring regions and transmission capacities in order to avoid the perfect collinearity 

problem. This way, I secured that Assumption 2 holds. 

Next, I use the test based on AR(1) autocorrelation model in order to check whether 

Assumption 5 holds. After the serial correlation was detected, I transformed my candidate 

model to get rid of it. I followed CO procedure. As a result, autocorrelation free candidate 

model was secured. 

The test for heteroskedasticity follows the test for autocorrelation. I detected heteroskedastic 

errors in the candidate model using BP test. I rerun the regression with heteroskedasticity 

robust standard errors and therefore guarantee that Assumption 4 holds. 

As to zero conditional mean assumption, I used RESET test to check for functional form 

misspecification. The misspecification was not detected. Considering this, my final model is 

the one presented in Table 4.4. Its mathematical expression is as follows: 

𝑙𝑙𝑙𝑙(𝑂𝑂𝑂𝑂𝑂𝑂𝑂𝑂)𝑡𝑡 = 0.49 − 0.0281 × 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡
(0.00678)

−2.716 × ln(𝑁𝑁𝑁𝑁𝑁𝑁1𝐸𝐸𝐸𝐸𝐸𝐸)𝑡𝑡 + 𝑢𝑢𝑡𝑡�
(1.646) , 

where standard errors are in parentheses, index t stands for time, 𝑢𝑢𝑡𝑡� refers to the error term, 

and the constant 0.49 is calculated separately using the formula in Subsection 4.3. 

The slope parameter next to ln(𝑁𝑁𝑁𝑁𝑁𝑁1𝐸𝐸𝐸𝐸𝐸𝐸)𝑡𝑡 is statistically insignificant, whereas the slope 

parameter nest to 𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑇𝑡𝑡 is statistically very significant. The latter one indicates that 

the growth in the air temperature in Oslo area by 1 degree Celsius causes approximately 
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2.81 percent decline in electricity price in the region. This result perfectly fits to what I 

expected at the time I started my research. The coefficient of determination, R2, equals 0.272. 

This means that the model describes nearly 27.2 percent of the total variation. 
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5. Conclusion 

This empirical study of temperature and electricity price is to argue that the causality between 

the two variables exists, which is a prerequisite for the establishment of the weather derivatives 

market. My final model proves my initial assumptions that the causal relationship exists. 

Specifically, the regression of the time series for the power price in Oslo bidding area on the 

time series of the air temperature in the capital of Norway, shows that one degree Celsius 

growth in the air temperature in Oslo area causes 2.81 percent decrease in electricity price in 

the region, while controlling for the time series representing the exchange rate for EUR. This 

result suggests that Norwegian companies that are exposed to unanticipated fluctuations in air 

temperature could consider the weather-indexed derivatives as an attractive tool to mitigate 

their temperature-related risks. 

The processes that underlie the variables of interest, electricity price and temperature, are very 

different. As I have mentioned in Subsections 2.2 and 2.3, the power price is settled 

overwhelmingly on the competitive basis in the Nordic countries. It depends on the three major 

factors: supply, demand, and transmission capacity. Regarding the process that underlies the 

series for air temperature, it may be described as cosinusoid-based. The observations of air 

temperature basically form the series of repeating cycles with the length equal to one year. 

The thesis has therefore the intention of showing how the two different processes can be 

examined by means of various econometric methods described in Subsection 4.3. An 

interesting finding of my work is that the model does not require controlling for seasonality, 

because the series of historical air temperature observations already includes seasonality in 

itself. I have found out that the whole series can be replaced by the comparable cosinusoid and 

still show similar impact on electricity prices. 

In addition, I have managed to explain a good deal of the total variation in my model. The 

total variation explained accounts for just above 27 percent. Nevertheless, the model can be 

improved. Indeed, one particular way to improve my model would be to control for bulk 

electricity storage. In Subsection 2.4 of this paper, I have explained a crucial role of this 

technology as the battery which allows to store electricity produced by renewables at times 

when the demand is low and sell it in future at higher price when the demand is high. I have 

also mentioned that Norway is the country that could benefit from energy storage the most, 

since in controls nearly 50 percent of the European reservoir capacities. For this reason, 

controlling for energy storage is a logical thing to do. 
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Specifically, I recommend adding the explanatory variable that includes the time series for 

reservoir levels in Norway. The one should be careful with this variable, however. Although 

the time series for reservoir levels captures the idea of bulk energy storage well, there are 

several pitfalls that could complicate the study very much. Firstly, the reservoirs are spread 

across the country. Transmission capacity constraints among various bidding areas would in 

turn make the reservoirs located far from Oslo irrelevant. Secondly, the reservoirs in Norway 

are managed by different companies. Every energy company decides on how and when to 

either pump or release water by itself using its own optimization model. 

All of this should be taken into account while controlling for bulk energy storage. The pitfalls 

associated with the reservoir levels as an explanatory variable is the reason why I have not 

included this variable in my model. The modified model which controls for energy storage 

should be the subject of a separate empirical research. 
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Appendices 

Appendix 1. Energy consumption and costs for manufacturing, mining and quarrying 

 Total energy consumption Energy costs 
GWh Percent NOK million Percent 
2014 ∆ 2014 ∆ 

Manufacturing, 
mining and 
quarrying 

76983 -1.0 19 699 -2.2 

Mining and 
quarrying 1 606 -7.5 909 -13.8 

Manufacture 75 376 -0.9 18 790 -1.5 
Manufacture of 

food products and 
beverages 4 795 7.8 2 389 2.6 

Wood and wood 
products 1 683 -2.9 467 1.3 

Paper and paper 
products 4 509 -26.4 1 179 -3.8 

Refined petro., 
chemicals, 
pharmac. 25 128 0.5 4 082 -1.9 

Rubber, plastic and 
mineral prod. 4 448 -8.1 1 442 -13.1 
Basic metals 31 304 3.0 7 314 1.0 

Manufacturing 
n.e.c. 3 509 -0.8 1 919 -4.2 

Source: Statistisk sentralbyrå. Statistics Norway 

 

Appendix 2. Ownership structure of Nord Pool 

 

Source: Nord Pool company presentation 

 

 

                                                 



 84 

Appendix 3. CME – Weather products summary 

 

Source: CME Group (CME Group, 2016) 
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Appendix 4. German merit-order curve 

 

Source: Ketterer (Ketterer, p. 26) 

 

Appendix 5. Power curve of a typical wind turbine 

 

Source: Vestas 
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Appendix 6. Organization of Nordic transmission system 

Time Direction From (MW) To (MW) Reason 
December 2013 Bergen-Oslo 700 3500 NA 
December 2013 Oslo-Bergen 650 300 NA 
December 2013 Kristiansand-Oslo 2900 3200 NA 
December 2013 Oslo-Kristiansand 1700 2200 NA 
December 2014 Bergen-Oslo 3500 3900 New system 

protection scheme 
December 2014 Kristiansand-Oslo 3200 3500 Installation of new 

reactive 
components 

Source: European Network of Transmission System Operators for Electricity (ENTSOE) 

 

Appendix 7. Stata do file: the choice between y- and ln(y)-models 

* Regressand in levels: reg oslo temperaturemonthlymean ln_nok1eur  
  

* Regressand in logs: reg ln_oslo temperaturemonthlymean ln_nok1eur  
  
* Step 1: 
 quietly reg ln_oslo temperaturemonthlymean ln_nok1eur  

// Estimation of the log(y) model. 
 predict hat_logs   // I am getting the fitted values here. 
  
* Step 2: 
 gen hat_m=exp(hat_logs)  

// Here, I am generating the following variable: 
m=exp(log(y)). 

  
* Step 3: 
 quietly reg oslo hat_m, noc // I am regressing y on m. I am dropping the intercept. 
 predict tilde_oslo   // I am saving the fitted values from the regression above. 
  
* Step 4: 
 corr oslo tilde_oslo  // I am looking for the correlation coefficient between 
     // the fitted values from the previous step and y 
  
* Step 5: 
 display 0.7239^2  / 

// I put the correlation coefficient to the power of two. Compare this with the adjusted R^2 from 
// the regression where the dependent variable does not contain logarithm. 
// Why not R^2? The difference between R^2 and adjusted R^2 is that the former one presumes 
// that all of regressors have the explaining power in terms of the variation in the regressand.  
// Adjusted R^2, alternatively, focuses only on the regressors that have the causal influence on 
// the regressand. 

 // My final model includes two regressors with the only one which is statistically significant. 
       
* Conclusion 
 // The model where the regressand in in logs is preferred: 0.52403121 > 0.5218 
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