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Abstract

Price stickiness is often taken for granted in modern macroeconomic models, without

adequate knowledge of the underlying microeconomic foundations. We want to assess

whether the assumptions of price stickiness are consistent with actual pricing patterns.

There is a broad consensus in the literature that prices exhibit a pattern of inaction

followed by large price changes, so called “zeros and lumps”. A key topic, however, is

how to explain the observance of small price changes. This thesis proposes a model

specification which sets out to explain small price adjustments, as well as inaction

and large price changes.

We search for evidence of thresholds and inertia in producer price data. Parameters

are estimated using a Simulated Method of Moments (SMM) approach, based on

yearly product specific price observations from the Norwegian manufacturing industry.

In the simulation model, the adjustment towards the frictionless price is conditional

on thresholds and partial adjustments. Price frictions seem to play a major role in

explaining how producers change prices, as modeling with friction parameters gives

a much better fit than frictionless modeling.

Overall, the evidence in this thesis supports assumptions of nominal stickiness. We

find evidence of both thresholds and inertia in the price setting, which indicates that

prices are affected by different forms of rigidities. Even when we control for inflation,

our findings suggest that there are more frictions downwards than upwards. Thus, we

can cannot exclude the possibility that it is easier to increase than to decrease prices.

An assessment of the literature shows that, in general, macroeconomic models fail to

include all the evidence presented in this thesis. While some models assume that firms

have pricing thresholds, others assume inertia in the price setting. However, none of

the models considered incorporates the combination of both features. Our findings

therefore suggest new ways in which macroeconomic models can be improved.
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1 Introduction

1.1 Motivation and Purpose

How monetary policy affects economic activity is a classic issue in macroeconomics.

Measures taken by the central banks are assumed neutral in the long run, as nominal

prices will adjust and offset the effect on real prices. In the short run, however,

the notion of nominal price stickiness may cause an effect on real values in the

economy. If nominal prices are sticky, measures used by central banks, such as the

interest rate, may have short run effects on the economic activity. These policy

effects may be large, even though the frictions are small at the micro level (Romer,

2012).1 If, on the other hand, prices are fully flexible, monetary action does not

affect real prices. Thus, the existence of nominal rigidities is a prerequisite for the

functioning of monetary policy measures. The assumption of price stickiness is often

taken for granted in macroeconomic models, without adequate knowledge about the

underlying microeconomic foundations. Overall, there seems to be a need for an

empirical assessment of the theoretical premises in the macroeconomic models we use

today.

One way to look for price frictions in empirical data is to search for thresholds in

the pricing patterns of individual firms. A method commonly used to search for

pricing thresholds is the (s, S) rule proposed by Sheshinski and Weiss (1977). In this

method, firms follow a pricing rule where (s, S) denotes the bounds in which the

nominal price is kept fixed. As a result, prices exhibit a pattern of inaction followed

by large price changes, so called “zeros and lumps”. The authors argued that this

pattern is caused by the fact that changing the price induces a cost for the firm,

which is referred to as the menu cost. The (s, S) methodology has later been adopted

1See appendix A.7 for an illustration of a representative firm’s incentive to change its price in
response to a fall in aggregate output.
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and further extended by many, and thereby represents a large share of the current

price stickiness literature (see e.g. Caballero and Engel, 1993; Ratfai, 2006; Alvarez

et al., 2011; Dhyne et al., 2011; Honoré et al., 2012). An essential assumption is that

firms set prices according to market conditions, and the methodology thereby implies

state dependency. Furthermore, these models usually assume that the adjustment

cost is independent of the size of the price change (Zbaracki et al., 2004).

An important issue when searching for thresholds in prices is whether there seems

to be symmetry in the findings, i.e. if the frictions have the same size upwards

and downwards. If the thresholds are asymmetric, this suggest that there are more

frictions one way than the other. For example, one might find only upper thresholds

and no lower thresholds, which indicate that there are more frictions upwards than

downwards. However, most research in the field of asymmetric price frictions points to

the opposite result, that firms are more willing to increase than to decrease prices. A

study on microeconometric evidence from Switzerland, which allows for asymmetric

thresholds and heterogeneity (the thresholds can vary over time and differ across

products) finds a smaller upper than lower threshold. According to this study, price

changes are more likely to be positive than negative. The study ignores, however,

the magnitude of price changes, as only the frequency and the duration of inaction

are accounted for (Honoré et al., 2012). Loupias and Sevestre (2012), on the other

hand, include the magnitude of price changes, and find that when firms face cost

variations, they appear to adjust their prices more often and more rapid upwards

than downwards. This study allows for heterogeneity in the thresholds across years,

industries, firms and products.

A challenge in studies of thresholds in firm pricing is how to include small price

changes. Earlier research with (s, S) pricing rules has in part failed to include small

price changes. One example is Dhyne et al. (2011), which in a model with time- and

outlet varying symmetric thresholds, find it difficult to explain small adjustments.

Similarly, using a model that allows for heterogeneity across firms, Asphjell (2014)
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finds no evidence of quadratic adjustment costs and fails to explain small price

changes.

Another approach in the literature is to assume that the adjustment cost is a convex

function of the size of the price change, i.e. that larger changes lead to higher costs

(Rotemberg, 1982). While the assumption of fixed costs implies that one should

observe large and infrequent price changes, the convex cost assumption implies the

opposite: frequent changes of small size. As emphasized by Zbaracki et al. (2004),

most of the literature finds evidence supporting the former. However, if there are

only fixed and not convex price adjustments costs, we fail to see why the pricing data

shows a relatively high proportion of small price changes.2

As highlighted by Klenow and Malin (2011), access to good microeconomic data is

crucial, and is a common problem in all empirical research related to pricing. The basis

of our analysis is monthly collected micro price data for Norwegian manufacturers,

which is obtained from Statistics Norway (SSB). Although consumer prices are

relevant for the monitoring of inflation by central banks, it is the prices on producer

level that are modeled into the macroeconomic policy models (Vermeulen et al., 2012).

Accordingly, knowledge about producer price adjustments is essential to improve

macroeconomic modeling and central bank policies.

In this thesis, we propose a model where the adjustment towards the frictionless price

is conditional on thresholds and partial adjustments. Our model therefore allows for

both inaction and inertia in pricing. The hypothesis is that the firm has a fixed cost

when setting a new target price and that there exist convex costs associated with

adjusting to this price. For example, as in Zbaracki et al. (2004), the convexity of

managerial-, customer- and negotiation costs makes the firm favor slow adjustments

2The study of Eichenbaum et al. (2014) on CPI data suggests that the observance of small
price changes is largely due to measurement errors and quality adjustments, and should therefore be
neglected. However, the study is opposed by a vast majority of empirical research suggesting that
small price changes are relatively common (Klenow and Kryvtsov, 2008; Wulfsberg, 2009; Barros
et al., 2009; Bhattarai and Schoenle, 2014; Midrigan, 2011, etc.).
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and small price changes. The intuition is that the periods of inaction in the data <are

explained by fixed costs, while the observance of small price changes are explained by

convex adjustment costs. Thus, our model sets out to explain both the occurrence

of large and small price adjustments in the data. A quote from Zbaracki et al.

(2004), who study a large U.S. industrial manufacturer and its customers, sums up

the justifications of our model:

“The firm often reacted to major changes in supply and demand conditions

slowly and/or partially because of the convexity of the costs they faced

in justifying and communicating these changes to other members of the

organization and to their customers.”

1.2 Research Question

Below is the formulation of the research question of our thesis.

How do price frictions affect producer price changes? Are there evidence

of certain thresholds and/or inertia in producer pricing, and how do these

findings relate to assumptions in modern macroeconomic models?

1.3 Outline

The thesis is structured in the following way. Chapter 2 presents an overview of

relevant macroeconomic literature on price stickiness, and serves as a basis for the

discussion in the analysis. Chapter 3 presents detailed descriptions of the data used in

our thesis and give considerations related to inclusions and exclusions of certain parts

of the dataset. Chapter 4 presents our model and chapter 5 analyzes our findings.

Finally, chapter 6 summarizes our thesis and draws out some important conclusions.
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2 Macroeconomic Pricing Models

The literature on price stickiness can be divided in two categories: Time dependent

models and state dependent models. In models assuming time dependency, price

changes occur with fixed intervals and are independent of the economic environment.

In state dependent models, firms change prices at random points in time and as a

response to changes in market conditions.

The extensive literature on the topic requires that this review focuses on what is

most relevant for our thesis. In particular, the relevance of models assuming time

dependency is restricted in our research.

Two arguments advocate our decision to concentrate on state dependent pricing.

Firstly, we use yearly data in our research.3 It can be argued that researchers using

monthly observations should account for seasonality, as descriptive price data shows

spikes in certain months, especially in January. The notion of seasonality is closely

related to assumptions in time dependent models, particularly that firms change prices

in fixed time intervals. Thus, time dependency would be relevant using monthly data.

Secondly, our model specification assumes that price changes are driven by shocks in

the economy.4 Considering that we use yearly data, and that our model does not

include any time dependent components, this chapter will focus entirely on models

assuming state dependency.

The following sections will review the underlying micro assumptions of commonly used

state dependent pricing models. The models are divided into three groups, depending

on what is assumed to cause the price rigidity. These are menu cost models, convex

adjustment cost models and consumer anger models. We propose a model that allows

for inaction, as well as both small and large price changes. Accordingly, we want to

3Our decision to use yearly data is discussed in chapter 3 and section 4.4.
4See section 4.1 for a presentation of our model solution.
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know whether the underlying micro assumptions in macro models are consistent with

these characteristics.

In addition to serve as an introduction to macroeconomic price stickiness models,

this chapter will be used as a basis when comparing the existing literature with

our empirical findings in chapter 5. A summary of the discussion in this chapter is

presented in Table 1.

2.1 Menu Costs

Descriptive research shows evidence of prices remaining unchanged for several months

(Álvarez, 2008). One possible reason for this observation is that the action of changing

the price of a product induces a cost for the firm. An example of such a cost is the

direct cost for a restaurant of printing new menus, which is where the term “menu

costs” originates from. Menu cost models assume that firms have to pay a lump

sum, or a menu cost, to adjust the price of a product. Thus, the price changes are

not assumed continuous. Instead, the firms adjust prices if the expected profit of

changing the price is higher than the menu cost, which is likely to imply infrequent

adjustments.

Traditionally, classic menu cost models set out to explain price patterns characterized

by series of inaction followed by large price changes, so called “zeros and lumps”.

Sheshinski and Weiss (1977) laid the foundation for the current literature on menu

costs. The idea is that prices exhibit a pattern of finite intervals where nominal price

is held constant, followed by discrete price adjustments. This lumpy pricing pattern

is justified by the direct costs which incur in both the decision process itself and in the

distribution of information to customers and other stakeholders. Examples of direct

costs are the costs of producing new price lists, retagging, making new promotions

and informing and convincing interested parties.
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Several studies from the last decade build on the literature assuming pricing

thresholds. Golosov and Lucas (2007) develop a model of a monetary economy where

price rigidities are due to fixed adjustment costs which are calibrated using micro

data. Gertler and Leahy (2008) use a similar approach, and add certain technical

assumptions that permit an approximate analytical solution. In general, classic menu

cost models, such as the above, assume that price changes are infrequent and large.

Other menu cost models allow for small adjustments. One example is Dotsey et al.

(1999), who assume that the adjustment cost is stochastic, which may imply that firms

make small price changes when the cost is low. Further examples include the several

contributions in recent years assuming economies of scope in price setting (Lach and

Tsiddon, 2007; Midrigan, 2011; Alvarez and Lippi, 2014). This assumption implies

that in multi-product firms, the total menu costs are independent of the number of

prices the firm changes. Hence, small price adjustments arise naturally because once

a firm pays the menu cost, it can adjust the prices of more than one good. The models

assuming stochastic menu costs and the models assuming economies of scope in price

setting allow for price changes of all sizes, and therefore stand out from traditional

menu cost models.

2.2 Convex Adjustment Costs

While menu cost models assume that the costs of adjustment make firms change

prices infrequently, the opposite is the case in convex adjustment cost models. These

models assume that adjustment costs increase convexly with the size of the price

change. Here, firms increase the price of a product as often as possible, i.e. each

period.

Because convex adjustment costs put a penalty on large adjustments, many small

price changes occur. In Rotemberg (1982), the price is set by minimizing deviations
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from the frictionless price subject to quadratic frictions, which implies that large

adjustments are very costly.5 In another model, Kozicki and Tinsley (2002) capture

price frictions through a polynomial characterization. Both these approaches to

modeling frictions result in gradual price adjustments. Accordingly, pricing models

assuming convex adjustment costs imply small and frequent price changes.

2.3 Consumer Anger

Another theory of price stickiness is the reluctance to increase prices in fear of negative

reactions from consumers. Models building on such theories assume that consumers

have imperfect information about the pricing process. The information the consumers

have is varying over time, and their reactions to price increases will also be changing

over time. Thus, the firms adjust their prices infrequently and with certain intervals,

depending on the views of consumers (Álvarez, 2008).

In Rotemberg (2005), consumers react negatively only when they are convinced that

prices are unfair. The assumption is that price changes trigger the consumers to reflect

on whether the price level is fair or not. A price increase is considered fair, if consumers

perceive that this increase reflects a change in the costs of the firm. Conversely, if the

price change is not justified, both price decreases and price increases are unwanted.

The intuition is that a price decrease followed by a price increase of the same size

would cause consumers to react negatively, while keeping the price constant would not

trigger any reactions from consumers.6 In consistence with the findings of Zbaracki

et al. (2004), this model assumes that firms are more worried about negative reactions
5Adjustment costs may also be modeled by linear frictions, such as in Letterie and Nilsen (2016).

In models assuming linear adjustment costs, the punishment on large price changes are softer than
in the models assuming quadratic costs, but still the adjustment costs are increasing with the size
of the price change and may therefore contribute in explaining small price changes.

6Note that the common assumption is that consumers’ reactions to price changes are embedded
into the demand curve. Therefore, one could argue that consumer anger does not cause rigidities.
However, the model discussed here assumes that price stickiness is caused by frictions due to
irrational consumer behavior, as consumers are assumed to maximize something beyond their
material payoffs.
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to large price increases than they are about smaller ones. Accordingly, large price

changes may occur, but small price adjustments are preferred. Overall, consumer

anger models imply infrequent price changes of all sizes.

Infrequent
adjustments

Small
adjustments

Menu Costs
Dotsey et al. (1999) Yes Yes
Gertler and Leahy (2008) Yes No
Golosov and Lucas (2007) Yes No
Sheshinski and Weiss (1977) Yes No
Economies of Scope
Alvarez and Lippi (2014) Yes Yes
Lach and Tsiddon (2007) Yes Yes
Midrigan (2011) Yes Yes
Convex Costs of Adjustment
Kozicki and Tinsley (2002) No Yes
Rotemberg (1982) No Yes
Consumer Anger
Rotemberg (2005) Yes Yes

Table 1: Underlying Assumptions of Different Macro Models
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3 Data and Descriptive Statistics

The basis for our empirical analysis is the raw data behind the commodity price

index for the Norwegian industrial sector (VPPI) obtained from Statistics Norway

(SSB).7 The data is collected on a monthly basis for a selection of Norwegian

producers. Firms with more than 100 employees are included in the sample at all

times, and the selection of producers is updated continuously, securing a high level of

relevance (SSB, 2015; Asphjell, 2014). Firms are repeatedly surveyed, participation

is compulsory and Statistics Norway revise the data regularly to detect measurement

errors and nonconformity. Considering this, and that the VPPI is an important tool

for governing bodies, it is fair to assume that the data is representative for Norwegian

producers and of high quality.

The exact dataset we have gained access to is prepared by Asphjell (2014) and contains

monthly price observations for Norwegian producers ranging from year 2001 until

2009. In this dataset, firms with observations for less than 24 months have been

omitted, as well as firms with less than 10 employees and firms consisting of several

plants. Furthermore, producers related to the energy sector (oil, gas, electricity, etc.)

have been left out of the sample as they are known to have an abnormally high

adjustment frequency. The original dataset also contains prices for both domestic

and export markets, but to prevent interference by exchange rate movements and

international competition, export market prices are omitted (Letterie and Nilsen,

2016). Additionally, since very large price changes are likely to reflect changes to

design or quality of the product rather than common pricing decisions, price growth

observations outside the [0.01, 0.99] interval are considered new products.

Due to the implementation of a new sampling procedure at Statistics Norway, there

was a clear shift in the reported price change frequency in 2004. Following Letterie

and Nilsen (2016), we therefore choose to discard the data prior to January 2004.
7See SSB (2015) for more information about the VPPI.
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In order to focus our analysis on the manufacturing sector, we also choose to omit

products related to mining and quarrying. Lastly, to avoid controlling for seasonal

differences in firms pricing decisions, we use yearly observations (June every year)

instead of monthly. Even though abstaining from using monthly data disregards

valuable information, we found it necessary due to computational considerations.8

This leaves us with a final sample of 4864 observations for 1584 products over the

years 2004-2009 covering 21 2-digit SIC2002 industry codes.9

Figure 1: Distribution of Yearly Price Changes (June to June)

Figure 1 shows the proportion of observations in different price change intervals.

The price changes in this figure are calculated using the following logarithmic

approximation: ln(pit)− ln(pit−1) ≈ pit−pit−1
pit−1

, where pit denotes price. Because this is

a differenced variable, we loose one year for every product.

If adjustment costs are fixed, and not dependent on size, one would expect to observe

several periods of inaction as well large price changes. As we can see from Figure

1, observations with price changes equal to zero represent the largest proportion.

This means that most observations are characterized with inaction, which is a clear

8Our decision to use yearly data is discussed in chapter 3 and section 4.4.
9See appendix A.1 for distribution of industries represented.
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indication of fixed adjustment costs. There is also a high proportion of price changes

above ten percent, which further asserts the existence of fixed adjustment costs.

At the same time, we observe that a substantial proportion of the observations are

small positive price changes below five percent. If there is only a fixed cost, which is

independent of the magnitude of the price change, one would not expect to see these

small price changes. This observation could, however, be an indication of convex

adjustment costs, which put a penalty on large adjustments and thereby force the

producers to adjust gradually.

By looking at the negative price changes, we see that most of them are below minus

ten percent, but also that there is a substantial share above minus five percent. The

observation of several periods of inaction combined with series of both small and

large price changes may tell a story of firms being faced with both fixed and convex

adjustment costs. Nevertheless, Figure 1 shows only the aggregate share of price

changes in different intervals, and thereby does not tell anything about the individual

pricing decisions of each producer. We will therefore look at a more product specific

approach in the following.

In order to identify lumpy adjustment behavior, Doms and Dunne (1998), Nilsen

and Schiantarelli (2003) and Varejão and Portugal (2007) suggest ranking the price

changes from lowest to highest for each panel and comparing the first and last rank

to the rest, which is what we have done below.
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Figure 2: Price Changes by Rank (means)

Figure 2 is constructed by ranking the price changes of each firm by year and taking

the average of each rank across firms. We see that there are five ranks, one for

each year. Rank 1 thereby represents the average highest price change, Rank 2 the

average second highest price change, and so on. The intuition is that if there is a

large gap between the average largest (smallest) and average second largest (second

smallest) price change, this should indicate that producers are faced with fixed costs

of adjustment. On the contrary, Varejão and Portugal (2007) argue that if the ranks

have no signs of gaps and are of similar magnitude, this may indicate that adjustment

costs are convex, rather than fixed. If there are no costs preventing the producer

from adjusting continuously, one should expect to see a more linear distribution of

the ranks.

As we can see from Figure 2, there is a gap of approximately five percentage points

between both the first and second rank and the fourth and fifth rank. In contrast,

the difference between the three ranks in between is approximately three percentage

points. Since the differences on the extreme points are higher than the rest, one could

argue that producers are faced with fixed adjustment costs.
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However, since the difference between the gaps on the edges and the gaps between

the middle ranks is relatively small, the potential existence of both fixed and convex

adjustment costs can not be excluded. The intuition behind this argument is that

fixed adjustment costs are preventing the firms to adjust continuously and when they

do change their price, convex costs are forcing them to do so gradually. Ceteris

paribus, fixed costs would therefore make the gaps larger, while convex costs would

make the gaps smaller. The larger convex costs compared to fixed costs, the more

linear is the relationship between the ranks.

In addition, we observe that all the ranks are shifted to the left, as only rank five is

below zero. This observation is expected as inflation will cause the producers to have

more positive price changes than negative, but whether inflation is the only factor

causing this skewness is ambiguous.10

What we have learned from the descriptive statistics presented in this chapter is

that producer pricing is characterized with a high degree of inaction, as well many

periods with both small and large price changes. While it is impossible to make

any conclusions regarding pricing behavior on the basis of these characteristics, they

play an important role when designing the model solution presented in the following

chapter.

10See e.g. Honoré et al. (2012) for a discussion on the prevalence of positive price changes when
inflation is equal to zero.
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4 Econometric Approach

The price pattern of inaction and series of both small and large price changes is

consistent with findings in other countries (see e.g. Klenow and Kryvtsov, 2008; Barros

et al., 2009; Midrigan, 2011; Bhattarai and Schoenle, 2014). The purpose of this

chapter is to propose a model specification that can explain these characteristics.

In chapter 2, we found that assumptions in several macroeconomic pricing models

implicate that price changes are either large and infrequent or small and frequent.

However, neither of these implications seems to fit the characteristics described above.

Standard (s, S) models suggest a pricing pattern with several periods of inaction

followed by large price changes, while standard partial adjustment models suggests

that prices change continuously in small steps. Many have proposed alternative

model specifications to explain price rigidity, but most find it difficult to explain

both inaction and small price changes (Dhyne et al., 2011).

In this chapter, we present a model solution where we let an (s, S) rule decide when

producers change prices, but instead of being forced to adjust immediately, we allow

them to adjust gradually to the new price. The intuition is that the (s, S) rule should

explain periods of inaction and large price changes, and that the gradual adjustment

should explain small price changes.

Figure 3: Potential Evolution of Prices
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Figure 3 illustrates the difference between a traditional (s, S) pricing model and our

specification. The figure assumes that producers are faced with only positive shocks,

which implicates that prices are either constant or increasing. This simplification is

done for illustration purposes.

The graph to the left shows a potential evolution of prices if producers are faced with

only fixed costs of adjustment, as in a traditional (s, S) pricing model. Firms will

then adjust immediately to the new price whenever the expected profit of changing

the price exceeds the fixed cost of adjustment. The result is a lumpy pricing pattern

characterized by inaction and large price changes.

The graph to the right illustrates a potential evolution of prices in our model

specification, where producers are faced with both fixed and convex costs of

adjustment. Instead of getting a lumpy pricing pattern similar to the graph to the

left, we allow producers to be able to adjust to their target price in a smooth fashion.

This target price is defined as the desired price if there is no inertia. In particular,

our model suggests the following price change process: Firstly, the producer decides

to set a new target price if the expected profit of changing the price exceeds the fixed

cost of setting a new target price. Secondly, convex costs put a penalty on large price

changes, preventing producers to adjust to their new target price immediately. The

result is that producers have gradual adjustments, with inaction as well as both large

and small price changes.

One reason why we may observe the behavior described above is that the costs of

justifying and communicating price changes, both internally and externally, tend to

increase with the size of the price change. Examples include factors such as increased

internal discussion regarding larger price changes, restricted authority to alter prices

among middle management, anticipation by customers, etc.. To minimize such costs,

firms might prefer to change prices gradually, instead of immediately (Zbaracki et al.,

2004).

21



4.1 Model Solution

As firms require a degree of monopoly power to be able to set prices, we assume that

the producers operate in monopolistic competitive markets.11 Following Alvarez et al.

(2011), Dias et al. (2015), and others, we let the logarithm of the frictionless nominal

price, denoted by p∗it, for product i at time t follow a random walk with drift:

p∗it = α + p∗it−1 + εit, where εit ∼ N(0, σ2
ε) (4.1)

which by repeated substitution gives:

p∗it = p∗i0 + t× α +
t∑

j=1
εij (4.2)

Here, εit denotes idiosyncratic shocks with variance σ2
ε , and α denotes the

deterministic drift. εit is thought to reflect any shocks to either demand, cost or

technology. In principle, it is possible to allow for serial correlation in εit, but for

computational ease and in order to simplify the exposition, we assume that the shocks

are serially uncorrelated. The resulting p∗it represents the frictionless equilibrium price

decided by the market conditions applicable for each individual product.

Furthermore, we let the logarithm of the nominal target price for product i at time

t, which we define as the desired price if there is no inertia, be determined by:

p#
it


= p∗it if p∗it − pit−1 > U or p∗it − pit−1 < L,

= p#
it−1 otherwise

(4.3)

where L ≤ 0 ≤ U

11These markets have the following characteristics: differentiated products; many firms; no entry
and exit cost; independent decision making; market power; and imperfect information (Romer, 2012).
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which implicates that producers set their target price (p#
it ) equal to the frictionless

price (p∗it) if the gap between the frictionless and current price is larger than U or

lower than L. The upper and lower thresholds are thereby represented by U and

L respectively, and are supposed to capture the fixed costs of setting a new target

price. There are two implicit assumptions behind this formulation. First, since we use

yearly data, the target price stays fixed at least one year. Second, each firm is able

to continuously observe and monitor its frictionless price without any extra costs, i.e.

we assume that producer pricing is state dependent.12

Finally, we let the logarithm of the nominal price of product i at time t be given by:13

pit



= (1− θu)p#
it + θupit−1, if p#

it − pit−1 > 0,

= (1− θl)p#
it + θlpit−1, if p#

it − pit−1 < 0,

= pit−1, if p#
it − pit−1 = 0,

(4.4)

where θu ∧ θl ∈ [0, 1]

Expression (4.4) allows for the possibility that convex adjustment costs prevent the

producer to adjust immediately to its target price. This is done by letting the

evolution of price changes be decided by a partial adjustment model. An implication

is that the producer will close (1−θ) of its desired price change in the same period as

it decides to change its price. For example, θ = 0.10 will implicate that the producer

closes 90 percent of its desired price change in the first period. If the target price

remains unchanged in the following period, it will close 90 percent of the remaining

price change. This will keep on until the producer decides to set a new target price

or when the target price is reached.

If θ = 0, product i will reach its target price immediately, but if θ > 0, the producer

12For a discussion on state dependency, see chapter 2.
13The first two expressions are derived from a traditional partial adjustment model: (pit−pit−1) =

(1− θ)(p#
it − pit−1).
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will adjust to the new target price over several time periods. Ceteris paribus, a larger

θ means a smaller initial adjustment and more price inertia as it will take longer

time for product i to reach its target price. A smaller θ will have the opposite effect:

A larger initial adjustment and less price inertia as it will take shorter time for the

product to reach its target price. Since we observe both large and small price changes,

we expect θ to be closer to zero than to one.

In order to control for asymmetry in the inertia parameters, we have allowed pit to

have three outcomes, depending on whether the price is either equal to the target

price, heading upwards or heading downwards. We see that pit = pit−1 if the product

has reached its target price, which implicates that the price stays fixed until the

firm decides to set a new target price. If the price instead is heading upwards,

θu is supposed to capture inertia caused by convex costs of adjustment upwards.

Conversely, if the price is heading downwards, θl is supposed to capture inertia caused

by convex costs of adjustment downwards.

We see that if θu 6= 0, θl 6= 0, U = L = 0, the specification reduces to a partial

adjustment model, and conversely, if θu = θl = 0, U 6= 0, L 6= 0, the model reduces

to an asymmetric (s, S) pricing model.

This leaves us with the following parameters to be estimated:

Variance of idiosyncratic shocks: σ2
ε

Upper threshold: U

Lower threshold: L

Inertia upwards: θu

Inertia downwards: θl

Estimating a symmetric partial adjustment model is rather straight forward, and can

be done using simple estimation techniques. However, as emphasized by Di Iorio and
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Fachin (2006), estimating lumpy adjustment behavior, which is one of the properties of

our specification, is challenging. Because our specification does not have an analytical

closed form solution, it cannot be estimated using standard regression techniques. In

addition, since we want to include the magnitude of price changes, the commonly used

binary response models are ruled out (Dhyne et al., 2011). Others have used various

Maximum Likelihood approaches, but these often result in imprecise estimates with

large standard errors and unclear confidence intervals (Asano, 2002; Rota, 2004; Di

Iorio and Fachin, 2006). Therefore, we choose to follow Ejarque and Nilsen (2007);

Bloom (2009); Asphjell (2014); Asphjell et al. (2014), as we estimate our specification

using a Simulated Method of Moments approach, which is presented in the following

section.

4.2 Simulated Method of Moments

In its simplest form, the Simulated Method of Moments (SMM) approach sets out

to match empirical moments using simulated data which is a function of both

predetermined and unknown parameters.14 The moments are characteristics from

the data that are eligible to identify the unknown parameters. Examples of such

moments include the standard deviation of a variable, the correlation between two

variables, etc.. In the SMM approach, κ simulated datasets are generated for N

panels and 100 + T time periods, where N and T denote the number of panels and

time periods in the empirical data respectively. In order to limit the impact of initial

conditions, the first 100 time periods are discarded when calculating the simulated

moments, leaving only T time periods.15

If we let the vector of l unknown parameters be denoted by β, the SMM approach

14Our explanation of the Simulated Method of Moments approach is based on Mcfadden (1989);
Pakes and Pollard (1989); Adda and Cooper (2003). See these papers for more details regarding the
approach.

15In our estimation we use κ = 10, and have N = 1584 and T = 5.
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selects the set of β that minimizes the following criterion function:

Γ(β) = [ΦA − 1
κ

κ∑
j=1

ΦS(β)]′W [ΦA − 1
κ

κ∑
j=1

ΦS(β)] (4.5)

That is, the optimal vector of unknown parameters, β̂, is given by:

β̂ = argmin
β

[ΦA − 1
κ

κ∑
j=1

ΦS(β)]′W [ΦA − 1
κ

κ∑
j=1

ΦS(β)] (4.6)

W denotes the optimal weighting matrix, and ΦA and ΦS(β) denote the vector of m

actual moments and the vector of m simulated counterparts respectively. Now, we

see that Γ(β) is the weighted difference between the actual and simulated moments.

Γ(β) have a χ2 distribution with m − l degrees of freedom, which implies that m ≥

l is a necessary condition.16 The weighting matrix is given by the inverse of the

variance-covariance matrix of [ΦA− 1
κ

∑κ
j=1 ΦS(β)], which according to Lee and Ingram

(1991) is best estimated using the following matrix:

W = [(1 + 1
κ

)Ω]−1 (4.7)

Here, Ω denotes the variance-covariance matrix of the empirical moments, ΦA, and

(1+ 1
κ
) is a precision penalty due to the random nature of empirical data. Ω is obtained

by a block bootstrap with replacement on empirical data. In this procedure, 1000

draws from the initial distribution are used to calculate the empirical moments 1000

unique times, which is then utilized to calculate Ω. An implication of using this

weighting matrix is that moments with a large variation are given less weight than

moments with a small variation.

In order to say something about the significance of our parameter estimates, we need

to obtain their standard errors. These are calculated by taking the square roots of

16If m = l, the model is said to be just identified, and if m > l, the model is said to be
overidentified.
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the diagonals of the variance-covariance matrix for β̂, which is given by:

Qs(W ) = (1 + 1
κ

)[∂ΦS(β̂)
∂β

′

W
∂ΦS(β̂)
∂β

]−1 (4.8)

Here, ∂ΦS(β̂)
∂β

is the Jacobian matrix of the moment vector with respect to the

parameter vector β evaluated at β̂.17 In lack of an analytical solution of the

components of this matrix, numerical derivatives are used as approximations. More

specifically, we use the symmetric difference quotient which is given by:

f ′(x) ≈ f(x+ h)− f(x− h)
2h (4.9)

In expression (4.9), x denotes the components of β̂, f(x) denotes the components of

ΦS(β̂) and h is a small positive number. Figure 4 illustrates that the approximation

is given by the slope of the straight line between x+ h and x− h.

Figure 4: Symmetric Difference Quotient

A problem with this approach is that the approximate depends on the size of h. We

therefore follow Bloom (2009) and calculate four values of the numerical derivative

with steps of 0.1%, 1%, 2.5% and 5% from β̂, and use the median value of these

numerical derivatives. This should make the numerical derivatives more robust to
17This implies that ∂ΦS(β̂)

∂β is a m× l matrix.
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outliers caused by discontinuities in Γ(β). The W is the same weighting matrix as

used in the criterion function.

When searching for values of β that minimize the criterion function, we have used

a brute-force approach. That is, we search for values for every parameter within a

certain grid. The grid is defined as an interval between a starting value and an ending

value with a certain precision for every parameter. For example, if the starting value

is 0.00, the ending value is 0.20 and the precision is 0.05, we would run simulations

with parameter values equal to 0.00, 0.05, 0.10, 0.15 and 0.20. In order to capture

parameter estimates of all sizes, we start out by doing simulations with a large grid,

and a relatively low precision. The program then selects the values within this grid

that minimize Γ(β). Following this, we do repeated simulations in which we gradually

decrease the grid interval, while we increase the precision until we get a β̂ vector with

a satisfactory number of decimals.

Since the criterion function may contain multiple local optima, we would recommend

future research to use an annealing cooling algorithm as well. This routine can be

better suited to find a global optimum because it searches for values that lie far off

from the current best guess. However, an annealing cooling algorithm is not entirely

foolproof in locating global optima either. This is because it requires both a predefined

first and second guess at the parameter estimates, which will have an effect on the

final results. Considering the limited time we had available, and that an annealing

cooling algorithm is extremely slow, we choose to leave the implementation of this

routine for future research.

We have now established the dynamics of our proposed model and the estimation

technique we want to use. In the next section, we bring these two together in a

discussion on the set of moments we want to include.
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4.3 Moment Selection

In this section, we present moments that are supposed to identify each applicable

parameter. It should be noted, however, that there will be some effects across

moments and parameters, i.e. some moments will effect several parameters, and

vice versa.

The variance of the shocks to frictionless price, σ2
ε , is likely to be directly related to the

variance of price changes. We therefore choose to include the standard deviation of

price changes as a moment. The intuition is that σ2
ε should be identified through the

matching process of this moment, i.e. if sd(pt−pt−1
pt−1

) is the same in the empirical and

simulated data we would argue that σ̂2
ε ≈ σ2

ε . However, the variance of price changes

is also likely to be affected by the friction parameters in opposite ways: While higher

U and L will increase the variance, higher θu and θl will reduce the variance. Thus,

the standard deviation of price changes will not only identify σ2
ε , it will also contribute

to the identification of U, L, θu and θl.

As discussed in chapter 3, ranked price changes can be a good indicator of lumpy

adjustment behavior. We would therefore like to include the same ranks as presented

in the data section as moments. These are meant to be the primary identifiers of the

threshold parameters U and L. As in the discussion above, the ranks are likely to be

affected by σ2
ε and the inertia parameters as well: More variation in the frictionless

price will cause more variation in the ranks and higher inertia parameters will bring

the ranks closer to each other, ceteris paribus. Hence, even though the primary

objective of the rank moments is to identify U and L, they will also affect θu, θl and

σ2
ε .

Higher inertia parameters will make firms smooth their adjustments over time, which

implicates that there will be several consecutive periods of small price changes. A

consequence of this gradual adjustment is increased serial correlation in small price
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changes, ceteris paribus. To identify θu and θl, we therefore choose to include the

following moments:

Corr[I(smallchangeu)t, I(smallchangeu)t−1] (4.10)

Corr[I(smallchangel)t, I(smallchangel)t−1] (4.11)

Here, I(smallchangei)t is an indicator variable that has the value 1 if the price change

is within the (0%, 5%] interval (zero to five percent), and the value 0 otherwise. i

denotes whether the change is positive (u) or negative (l). The intuition is that the

moment in (4.10) should identify θu, while the moment in (4.11) should identify θl.

The threshold parameters will also be affected by these moments, as larger |U | and

larger |L| will lead to more inaction and lower serial correlation, and vice versa.

Finally, as we want our model to explain both inaction and small price changes at the

same time, we include the proportion of observations within the following intervals:

5% ≥ pit − pit−1

pit−1
> 2.5%

2.5% ≥ pit − pit−1

pit−1
> 0%

pit − pit−1

pit−1
= 0% (4.12)

−2.5% ≤ pit − pit−1

pit−1
< 0%

−5% ≤ pit − pit−1

pit−1
< −2.5%

These moments are what we define as the distribution of “small” price changes,

and should contribute in identifying all the parameters, especially the threshold

parameters and inertia parameters: Non-zero U and L will cause inaction, and positive

θu and θl will cause small price changes, ceteris paribus. Our definition of small price

changes (less than five percent) is consistent with the assumptions of Klenow and

Kryvtsov (2008) and Eichenbaum et al. (2014).
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Up until now, the contents of this chapter have been presented in its most general

form and can be applied to similar empirical data in any country. In the following

sections, some of the details are specific to our data, but the discussion and insights

given are relevant for every application of the proposed model solution.

4.4 Assumptions

As with all estimation techniques, our approach depends on a set of assumptions, some

easier justified than others. This section provides an overview of these assumptions

and a discussion of their implications.

When we estimate our model specification, we assume that the friction parameters are

constant across products and time. This means that U, L, θu and θl are independent

of product characteristics and do not vary across time.

Assuming time-constant friction parameters are not considered restrictive, especially

when working with a small T like we do (Di Iorio and Fachin, 2006). Though, it

should be noted that according to the findings of Gautier and Le Bihan (2011),

allowing for time-varying thresholds can provide better explanatory power regarding

small changes.

However, assuming constant friction parameters across firms and products may be

regarded as restrictive. This is because there seems to be a broad agreement in

the literature that price setting is heterogeneous across sectors, firms and products

(Álvarez et al., 2006; Nakamura and Steinsson, 2008; Dhyne et al., 2011; Fougère et al.,

2007; Dias et al., 2015). One way of controlling for such heterogeneity, is to allow

for product- or firm specific friction parameters. This would enable the researcher

to explain producer pricing on a more specific level, but would also complicate the

inference of the friction parameters. Considering that the aim of this thesis is to
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explain producer pricing on an aggregate level, and not the exact price development

of each producer, we choose to make this simplification. If it is desired to allow for

more heterogeneity in producer pricing, our model could easily be estimated on a

more specific level. For future research, it could also be interesting to incorporate

economies of scope in the price setting rule.

In our model, demand shocks, technology shocks and cost shocks are considered as

one aggregate effect. More specifically, the idiosyncratic shocks to frictionless price,

εit, are meant to capture shocks to costs, technology and/or demand of product i

at time t. An argument against this is found in Dias et al. (2015) and Loupias and

Sevestre (2012), as both studies find opposite asymmetries: Firms react quicker to

positive than to negative cost shocks, but slower to positive than to negative demand

shocks. Nevertheless, differencing between the types of shocks would implicate a more

sophisticated derivation of both the frictionless price and the inertia parameters than

we have presented above. Considering this, and that the focus of our thesis is the

combination of thresholds and inertia, we choose to include the shocks as an aggregate

effect.

Furthermore, we do not allow common shocks to have an effect on the course

of the frictionless price. This is a simplification that is done for computational

ease. However, both Dhyne et al. (2011) and Golosov and Lucas (2007) find that

idiosyncratic (and not common) shocks are what drives the majority of price changes,

which asserts our approach.

As stated in section 4.1, we assume that εit is normally distributed with mean of zero,

variance equal to σ2
ε and is without any serial correlation. If other distributions are

thought to better depict the true path of the frictionless price, this can be altered

without much hassle. In theory, the mean and persistence could also be included as

parameters to be estimated. However, this would have required more computational

resources.

32



By not including persistence in the frictionless price, we risk getting a biased estimate

of the inertia parameters. If there indeed exists persistence in the shocks, and we

do not control for it, the persistence is likely to be captured by the θ parameters.

However, including a persistence parameter would also make it harder to isolate the

effect of the θ parameters. Considering this, and that it is unlikely that there is

considerable persistence in the shocks on a yearly basis, we assume that the shocks

are serially uncorrelated.

In addition, our model specification allows for both asymmetric thresholds and

asymmetric inertia, i.e. it is not a necessary condition that |U | = |L| or that θu = θl.

This contradicts with the traditional assumption that the adjustment cost is a fixed

cost associated with printing new pricing lists, retagging, making new promotions,

etc., as one would expect these to be independent of the sign of the price change.

However, several recent contributions in the microeconomic literature have found

evidence of asymmetries in price setting, and some explain this with asymmetric

adjustment costs (e.g. Peltzman, 2000; Yang and Ye, 2008; Xia and Li, 2010; Lewis,

2011; Loy et al., 2016). One example of such adjustment costs are asymmetric

“mistake costs”, where the intuition is that the costs of making errors in pricing are

asymmetric: Pricing mistakes downwards are more costly than upwards. A second

and related example is asymmetry in costs of stock-outs, which refers to the fact that

there is lower risk of stock-outs if the price is set too high than if it is set too low

(Loy et al., 2016). A third example is “consumption inertia” which suggests that

consumption habits cause demand to respond gradually (and not instantly) to price

changes. The argument is that this inertia makes it more attractive to increase prices

than to lower them (Xia and Li, 2010). Other explanations to asymmetric pricing

includes asymmetric search behavior and differences due to the shape of the demand

curve (Yang and Ye, 2008; Lewis, 2011; Loy et al., 2016).

It should also be noted that we use yearly data (June to June) when estimating our

model specification. One could, however, argue that monthly observations should

33



be preferred, as data observed on a monthly basis captures more information. For

instance, in order to get inertia parameters larger than zero in our estimations,

producers must set a target price with at least a two year horizon. If not, one would

not observe the gradual adjustment we hypothesize. If we instead used monthly data,

the inertia would capture any gradual adjustment over executive months, which could

be argued to be more likely to occur. We are also missing temporary changes during

each year: If a producer decides to change its price between June in one year and

June in a second year, our estimation would not capture it as long as the producer

return to its original price before June in the second year.

These potential problems could be solved by future research using monthly data. To

control for seasonality, we would suggest to estimate two sets of threshold parameters,

one set for January and another set for the rest of the year. The intuition behind this

specification is that the thresholds in January together with the inertia parameters

should capture the abnormally high price change frequency in the beginning of the

year, while the other set of thresholds should capture the rest of the price changes.

Using monthly data would imply a significantly larger simulated dataset and require

more parameters to be estimated, which in turn would increase the computational

time considerably. Due to constraints on time and resources, we therefore let this be

an exercise for future research, and we focus entirely on yearly observations in this

thesis. Considering studies such as Álvarez et al. (2006), which find that firms in

the Euro area have an average price duration close to one year, this may be a fair

assumption.

4.5 Predefined Parameters

An implication of using the SMM approach is that some parameters need to be

predefined. This is not only necessary to confine the required computational resources,
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some parameters also need to be predefined due to the nature of the approach. This

section presents the predefined parameters in our model specification, and provides a

discussion around them.

Our decision to include a trend parameter in the frictionless price is based on Ball

and Mankiw (1994). They emphasize that trend inflation can cause positive cost

shocks to trigger greater adjustment than negative costs shocks of the same size.18

The intuition is that if the nominal price of a product is constant, the real price (i.e.

price relative to other products) is falling because of inflation. Hence, a positive cost

shock means that the nominal price is rising while the real price is falling, creating

a large gap between the nominal and real prices of the firm. In contrast, if the firm

wants to lower the real price, it does not need to pay the adjustment cost, as inflation

does much of the work. As a result, positive cost shocks are more likely to induce

price adjustments than are negative cost shocks, and the positive adjustments that

occur are larger than the negative adjustments.

In order to control for the asymmetric price adjustment effect of trend inflation, we

have incorporated the deterministic growth (α) in the frictionless price. The logic is

that if α were not included, trend inflation would be embedded into the threshold

parameters.

By not including α, we would effectively get a simulated frictionless price below its

empirical counterpart. In order to get simulated prices closer to the observed series,

the simulation model is then likely to set U closer to zero and L more negative, such

that the probability of positive price changes would increase, while the probability

of negative price would decrease. Thus, if α is set too low (or equal to zero), the

estimated threshold parameters would be biased downwards. Conversely, if α is set

too high compared to the actual trend inflation, the threshold parameters U and

L would be biased upwards. The simulated frictionless price would then be above

18See appendix A.6 for an illustration of the effect on the frictionless price of a cost shock.

35



its actual counterpart, and the model would select threshold parameters that limit

positive price changes and allow more negative price changes.

On the one hand, we would like an α that is as close to the actual inflation as possible,

because this would limit the effect of the inflation bias. On the other hand, we want

to minimize the number of estimated parameters, since we have limited resources

available. As a compromise, we include α as a predetermined parameter equal to

0.03, which is the average annual inflation rate of the producer price index (PPI)

between year 2004 and 2009. In order to test the robustness of this approximation,

we have performed series of simulations with different values for α in chapter 5.

An implication of using the SMM approach is that we need to set the initial values

of the simulated dataset. As the parameters estimated in our model solution depend

on changes, and not absolute values, in the price series, the initial values should not

affect the estimates. Nevertheless, for the sake of good order, we set the initial values

of frictionless prices to match the price series in the empirical data. That is, we let the

initial frictionless price, p∗i0, be given by a random draw from a normal distribution

with both mean and variance equal to 2.5. The simulated price series for the last five

years then get a mean and standard deviation similar to the observed price series.19

19Yearly box-plots for both the simulated and observed price series are given in appendix A.8.
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5 Results and Analysis

In the following chapter, we present our main findings and discuss the robustness of

our results. Furthermore, we assess to what extent our results are consistent with

macroeconomic models and discuss the implications of our findings for monetary

policy.

5.1 Results

Column (1) in Table 2 presents the estimation results of our least restricted model.

This specification allows for both asymmetric thresholds and asymmetric inertia, as

we differentiate between upper and lower pricing thresholds, as well as between inertia

in price increases and price decreases. In this simulation, we find that U = 0.010,

L = −0.043, θu = 0.000 and θl = 0.116. We see that all parameters, except the one

representing inertia upwards, are statistically significant at the 1 percent level, or

less. Accordingly, there is at least a 99 percent probability that the estimated friction

parameters capture the actual characteristics and are not due to chance.

The interpretation of U = 0.010 and θu = 0.000 is that the firm adjusts immediately

to the frictionless price, as long as the gap between the frictionless and current price

is larger than 0.010. L = −0.043 and θl = 0.116 have the following interpretation.

The initial price decrease will be at least 0.038 of the current price, and there will

subsequently be several smaller adjustments downwards until the firm reaches the

target price or decides to set a new one.20

While our findings suggest that adjustments upwards are subject to threshold effects

exclusively, two different forms of frictions may affect adjustments downwards. Firstly,

the effect of the lower threshold is that it must be desired to decrease the price by

20The initial price decrease is found by multiplying L with (1−θl): -0.043× (1−0.116) ≈ −0.038.
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at least 0.043 before the firm decides to adjust downwards.21 Secondly, the effect of

inertia downwards is that the initial price decrease will be equal to 0.884 of the target

price gap, while subsequent adjustments will be smaller.22

As the initial adjustment of 0.038 is a minimum, larger price drops are allowed. For

example, if the firm would be faced with a negative shock making p∗it−pit−1 = −0.100,

this would cause an initial adjustment of -0.088 of its current price. This initial

adjustment would occur because -0.100 is below the lower threshold of -0.043, and

since we have an inertia downwards of 0.116 it would not adjust fully in the first

period.

(1) (2) (3)
All frictions No inertia Symmetric

thresholds

σ2
ε 0.051 0.037 0.037

(.00137) (.00062) (.00060)

U 0.010 0.015 0.015
(.00092) (.00055) (.00055)

L -0.043 -0.014 -0.015
(.00257) (.00075) (.00067)

θu 0.000
(.)

θl 0.116
(.04364)

N 1584 1584 1584

Γ(β̂) 507.645 541.705 586.082
Note: All parameter values are statistically significant at the one
percent level (p<0.01), standard errors in parentheses, N denotes
number of products and Γ(β̂) denotes the information criterion.

Table 2: Estimation Results

21Setting a new target price requires that the price gap, p∗
it − pit−1, is lower than -0.043.

22The target price gap refers to the difference between the target price and the current price:
p#
it − pit−1.

38



To assess the relative importance of the various parameters in our model specification,

we have estimated more restrictive models as well. These models are presented in

Column (2) and (3) in Table 2 and are discussed in the following.

Column (2) shows the estimation results without inertia parameters. An implication

of this specification is that the producer adjusts immediately to its target level,

whenever it finds it optimal to adjust. In other words, this specification is similar to

an (s, S) model with asymmetric thresholds. Table 2 shows that we get a statistically

significant upper threshold of 0.015, and a statistically significant lower threshold

of -0.014. These results suggest that the producer adjusts upwards only when it is

optimal to increase the price by at least 0.015, and only adjusts downwards when

it is optimal to decrease the price by at least 0.014. It follows that the estimated

thresholds from this specification differ from the least restrictive model in Column

(1).

However, when it comes to the model fit, the least restrictive model presented in

Column (1) outperforms the more restrictive model in Column (2). The critical

value is 15.507 for the χ2 distribution with eight degrees of freedom for 95 percent

significance. Since the difference between the criterion value, Γ(β̂), from the

least restrictive model and the model without inertia is approximately 34, we can

easily reject the hypothesis that θl = 0.23 Therefore, the specification with inertia

parameters provides a better fit than the specification without these parameters.

Column (3) shows a simulation with symmetric thresholds and no inertia, which could

explain rigidities caused by fixed menu costs that are independent of the sign of the

price change. As we can see, this simulation gives statistically significant symmetric

thresholds equal to |0.015|. Although, the specification with asymmetric thresholds

and inertia reduces the criterion function by more than the critical value. Thus, the

least restrictive version of our model provides the best fit.
23The difference in criterion value in the models in Column (1) and Column (2) is given by:

541.705− 507.645 ≈ 34
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By looking at the estimated values for σ2
ε in the three model specifications, we see

that this parameter decreases from 0.051 to 0.037 when θu and θl is set equal to

zero. This means that less variance is preferred in the shocks of the frictionless

price when the simulation is subject to more restrictions. One explanation can be

the relatively frequent occurrence of small price changes in the data. While the

model in Column (1) is able to recreate small price changes by using the inertia

parameters, the specifications in Column (2) and (3) do not have this ability. These

two specifications therefore choose to decrease the variance of shocks, so that the

probability of small price changes becomes larger, ceteris paribus. This argument

is also valid when explaining the lower absolute values of L compared to Column

(1). Since the simulation is unable to recreate small price reductions with the inertia

parameter, it chooses a lower |L| to increase the probability of small price changes.

A consequence of manipulating parameters to increase the probability of small price

changes is that the simulation is unable to replicate large price changes. This effect

is also reflected in the model fit. The reason why the simulation chooses to prioritize

the moments connected to the small price changes is the weighting matrix W , which

will be explained in greater detail below.

Table 3 compares the moments from the empirical data with the moments obtained

from simulations with and without friction parameters. Column (2) in Table 3

presents the moments from the actual data, Column (3) presents the moments

obtained from our least restrictive model, and Column (4) shows the moments from

a simulation where all parameters are set equal to zero. Additionally, Column (1) in

reports the z-values obtained from the block bootstrap procedure used to calculate the

weighting matrix. A higher |z|-value implies that the moment has a smaller variance

and that it gets relatively more weight, and a smaller |z|-value has the opposite effect.

The closer the simulated moments are to their empirical counterparts, the better the

model fits the data.
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(1) (2) (3) (4)

Bootstrap
z-values

Actual Full Model Frictionless

-5% to -2.5% 11.74 0.028 0.037 0.087
-2.5% to 0% 14.24 0.047 0.041 0.134
0% 30.84 0.237 0.246 0.000
0% to 2.5% 21.46 0.107 0.112 0.167
2.5% to 5% 29.49 0.185 0.185 0.174

Serial corr (u) 9.60 0.183 0.014 0.006
Serial corr (d) 2.44 0.055 0.249 0.006

Std(pt−pt−1
pt−1

) 16.05 0.112 0.048 0.056

Rank 1 27.12 0.132 0.085 0.095
Rank 2 27.26 0.082 0.051 0.058
Rank 3 17.64 0.049 0.027 0.030
Rank 4 10.82 0.022 0.007 0.002
Rank 5 -8.11 -0.027 -0.022 -0.036

Γ(β̂) - - 507.645 2133.996
The top five rows is the distribution of prices within the respective
intervals, Γ(β̂) denotes the criterion function.

Table 3: Empirical and Simulated Moments

By looking at the z-values for ranks and distribution of price changes, we see that

these moments have a small variation of similar size. As such, one should expect

that these moments were given approximately equal weights in the simulations.

However, the frictionless simulation seems to fit the rank moments much better

than it fits the moments for distribution of price changes. The simulated ranks

are fairly close to the actual ranks, while the distribution of price changes are far

from its empirical counterparts. One explanation is that the frictionless simulation

is allowed to manipulate only the standard deviation of the shocks, and not the

other parameters, which prevents the simulation to hold prices constant. Since the

simulation is unable to recreate the high proportion of zero price changes found in
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the actual data, it chooses to replicate the rank moments instead of the distribution

of price changes.

Furthermore, we see that the serial correlation moments have large variations, and

should therefore be given less weight. This is reflected in the bad fit for these moments

given by both the frictionless simulation and the simulation with frictions. Excluding

the serial correlation moments is therefore not likely to have an effect on the estimated

parameters.

Similarly, we see that both simulations fit the standard deviation of price changes

moderately, which reflects the medium sized variation of this moment. Overall, the

weighting matrix seems to work as intended, as the estimates for moments with a low

variance are more precise than the estimates for moments with a high variance.

Even though the frictionless simulation provides a good fit to the rank moments, the

full model is superior. The main reason is that the simulation with frictions has a

much better fit on the moments for distribution of price changes. The outperformance

is reflected in the criterion function, where we see that Γ(β̂) for the frictionless

simulation is four times larger than Γ(β̂) for the simulation with frictions.24

5.2 Robustness

In the following, we will assess the robustness of our results by doing several

computational exercises.

Earlier research suggest that there is heterogeneity in pricing patterns, both between

firms and between products (Midrigan, 2011; Dhyne et al., 2011; Honoré et al., 2012;

24The χ2 value for 8 and 12 degrees of freedom at a five percent significance level is 15.51 and
21.03 respectively. Thus, both simulations can easily be rejected as the true representation of the
data. This is common, however, in literature employing the SMM approach (Bloom, 2009; Asphjell
et al., 2014; Asphjell, 2014).
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Loupias and Sevestre, 2012; Asphjell, 2014). To look for evidence of heterogeneity

between products, we have done individual simulations for five different product

groups. Appendix A.4 presents the estimation results of these simulations.

For the product group “non-durables, food” we find a statistically significant upper

threshold equal to 0.100 and a statistically significant inertia upwards of 0.450. At

the same time, we find no evidence of frictions downwards in this product group.25

In all the other product groups we find no signs of frictions upwards, while we get

statistically significant parameter values for frictions downwards in three out of four

simulations. These are the results of simulations in the three product groups “capital

goods”, “durables” and “intermediate goods”, which together make up 73 percent of

the dataset. Our results therefore seem fairly robust to heterogeneity across product

groups.

In our estimation of the frictionless price, we include the deterministic trend, α, as

a predetermined parameter equal to 0.03. As discussed in chapter 4, the distance

between this approximation and the actual trend inflation is likely to affect the

estimated parameters. We have therefore done two alternative simulations where

α is set equal to 0.02 and 0.04 respectively. Appendix A.5 presents the estimation

results of these simulations.

While we expected that the threshold parameters would be sensitive to changes in the

trend parameters, we find no evidence of this effect. The parameters σ2
ε and θl are the

only ones which are considerably affected by our manipulations of the α parameter.

When we increase the α parameter, the simulation prefers higher values of σ2
ε and

θl. A higher value of the σ2
ε parameter will imply larger and more frequent price

25The product group “non-durables, food” consists of meat and fish products, fruit and vegetables,
animal oils and fats, dairy products, etc. (see appendix A.3). Ward (1982) argues that firms
that produce perishable products might hesitate to increase prices in fear of reduced sales leading
to spoilage. Ward’s argument is challenged by Heien (1980), who argues that the costs of stock
outs are higher for products that are more expensive for the consumer to store in the household
(perishable products). Our evidence of frictions upwards in this product group seem to favor the
former explanation.
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changes, while a higher θl will give smaller price reductions with higher frequency.

The net effect of increasing the α parameter will therefore be more frequent price

changes, with price increases larger than price decreases. When we instead decrease

the α parameter, we find that the simulation prefers lower values of both σ2
ε and θl.

A lower σ2
ε and a lower θl will imply less frequent price changes, with price increases

slightly larger than price decreases. As the empirical data shows high shares of both

small and large price changes, the implications of reducing the α parameter are likely

to provide a bad fit. Conversely, increasing the alpha is in favor of these empirical

observations, and it is therefore more likely that our approximate of 0.03 is too low

rather than too high. Nevertheless, when we set the trend equal to 0.02 and 0.04,

the criterion values are significantly higher than in our main specification. Thus, the

approximation of α = 0.03 provides the best fit, and our results seem fairly robust to

changes in the deterministic trend.

5.3 Implications

As can be seen by the friction parameters analyzed above, we find clear signs of both

thresholds and inertia in the price setting. The question is whether these frictions

are large enough to cause significant nominal rigidities and therefore affect output.

Romer (2012) shows that the firm level gain of changing the price is small, even if

the shift in the demand curve is large.26 As the firm has a small incentive to change

the price in response to an aggregate shock in demand, the firm may keep the price

constant. An implication is that small frictions at the micro level can cause significant

nominal rigidities and have a large effect on output. We can therefore conclude that

our estimated frictions are sufficiently large to affect economic activity.

Our findings of both thresholds and inertia indicate that different forms of

rigidities exist in the data, which is only partly consistent with the assumptions

26See appendix A.7 for a static model illustrating the incentive of the firm to change its price.
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of macroeconomic pricing models. As discussed in chapter 2, some menu cost models

include thresholds with (s, S) pricing rules, while others, such as the consumer anger

model of Rotemberg (2005), incorporate inertia by assuming partial adjustments.

However, none of the models incorporates both thresholds and inertia in price setting.

In general, macro models therefore fail to include all the evidence provided in this

thesis.

Moreover, our findings imply the occurrence of both large and small price changes.

These implications arise because of our findings of statistically significant friction

parameters. While the threshold parameters enable inaction, the inertia parameters

implicate a large initial price change followed by smaller adjustments. Accordingly,

the results imply that our model is able to account for periods of inaction, as well as

both large and small price changes.

Only half of the models considered in the literature review of chapter 2 allow for

both large and small price changes. Models accounting for both features include the

menu cost model of Dotsey et al. (1999), the consumer anger model of Rotemberg

(2005), as well as the models assuming economies of scope by Alvarez and Lippi

(2014); Lach and Tsiddon (2007); Midrigan (2011). The remaining price stickiness

models considered fail to explain either large or small price changes. In Rotemberg

(1982) and Kozicki and Tinsley (2002), the assumption is that convex adjustment

costs punish large adjustments, and these models therefore have trouble explaining

large price changes. In contrast, models such as in Golosov and Lucas (2007) and

Gertler and Leahy (2008), explain patterns of inaction followed by large price changes

by assuming thresholds, but these models seem to neglect small price adjustments.

We find no evidence of symmetric frictions, as we get different parameter values

upwards versus downwards. It follows that firms are more sensitive to positive than

to negative idiosyncratic shocks.27 Our findings imply that we cannot exclude the
27See appendix A.6 for an illustration of the effects on the frictionless price of shocks in demand,

costs and technology.
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possibility that prices are more flexible upwards than downwards.

The potential existence of asymmetric pricing has important implications for

monetary policy making. Firstly, if prices are more flexible upwards than downwards,

this will cause the relationship between inflation and aggregate demand (the Philips

Curve) to become non-linear, calling for asymmetric monetary policy rules (Laxton

et al., 1995). More specifically, interest rate increases must be larger when inflation is

above target than interest rate cuts when inflation is below target (see e.g. Dias et al.,

2015; Laxton et al., 1995, 1999; Dolado et al., 2005; Dobrynskaya, 2008). Secondly,

as we find no evidence of inertia upwards, this indicates that large positive monetary

shocks become neutral because firms find it optimal to adjust immediately when the

price gap is larger than the upper threshold. Hence, our findings suggest that positive

monetary policy shocks have real effects if they are sufficiently small, i.e. as long as

the price gap is within the bounds of inaction.28

28Generally, in static (deterministic) settings, an implication of standard menu cost models is
that only small monetary shocks will have real effects (Ravn and Sola, 2004).
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6 Conclusion

The existence of sticky prices is crucial for the functioning of monetary policy. While

measures taken by the central banks are assumed neutral in the long run, the notion

of nominal stickiness may enable monetary policy to have short term effects on the

economy. If, on the other hand, prices are fully flexible, nominal prices will adjust

and offset the effect on real prices. The aim of this thesis has therefore been to gain

greater insight into the nature of sticky prices.

Overall, the evidence provided in this thesis support macro assumptions of nominal

stickiness. Price frictions seem to play an important role in explaining producer

pricing, as we find evidence of both thresholds and inertia in price setting. These

findings indicate that prices are affected by different forms of rigidities, which likely

will cause different price patterns. While pricing thresholds may cause a pattern of

inaction followed by large price changes (zeros and lumps), inertia in the reaction to

shocks may cause gradual adjustments. The existence of both types of rigidities may

explain the observation of both small and large price changes in the actual data.

However, we find no evidence of symmetric price frictions, as we get different

parameter values upwards versus downwards when using our least restrictive model.

While this model indicates negligible frictions upwards, it suggests that it must be

optimal to decrease the price by at least 4.3 percent before the producer decides to

adjust downwards. Furthermore, it suggests that the initial price decrease will be

at least 3.8 percent of the current price, while the rest of the desired price decrease

will be distributed in the following periods. According to these findings, we cannot

exclude the possibility that price increases are more flexible than price decreases.

Our results are obtained through repeated simulations, and are backed up by several

robustness exercises. We compare our findings with results from a frictionless model,

as well as with models that are more restrictive. The comparisons show that the
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model with asymmetric frictions outperforms the other selected model specifications,

as it fits better to the actual data. In addition, the model seems to be fairly robust

to changes in the deterministic trend, as our approximation of the trend gives better

fit than alternative approximations.

The sample of macroeconomic models reviewed in chapter 2, have varying consistency

with our findings of different types of price frictions. In general, macroeconomic

models fail to include all the evidence presented in this thesis. Some models assume

that firms have pricing thresholds and others assume inertia in the price setting.

However, none of the models incorporates the combination of these two features.

While our evidence implies both large and small price changes, many contributions

in the literature only account for one characteristic to the exclusion of the other: The

models describing a pattern of inaction followed by large adjustments have difficulties

explaining the observation of small price changes, and vice versa. Amongst the models

inconsistent with our findings is the renowned menu cost model of Golosov and Lucas

(2007). Only a few of the models assuming thresholds in the price setting are able

to explain small price changes. These models assume either stochastic thresholds or

economies of scope in price setting, and represent an increasingly sophisticated group

of pricing models in which more micro evidence is incorporated.

Every study that relies on modeling exercises have to simplify and focus exclusively on

certain factors, which is also the case in this thesis. There are undoubtedly elements

that are not accounted for in the analysis, and future researchers are encouraged to

explore new possibilities within the topic of price stickiness. Inflation dynamics is a

complex field of study, and a clear consensus regarding the most appropriate pricing

model is yet to be reached. In order to optimize policies and their implications for

the economy, we should therefore strive to discover and implement empirical evidence

into macro models.

48



A Appendices

A.1 Distribution of Industries in the Dataset

2-digit
code

Standard Industrial Classification
(SIC2002)

Frequency Percent

15 Manufacture of food products and beverages 935 19.22
16 Manufacture of tobacco products 8 0.16
17 Manufacture of textiles 185 3.80
18 Manufacture of wearing apparel; dressing and

dyeing of fur
110 2.26

19 Tanning and dressing of leather; manufacture of
luggage, handbags, saddlery, harness and footwear

16 0.33

20 Manufacture of wood and of products of wood and
cork, except furniture; manufacture of articles of
straw and plaiting materials

510 10.49

21 Manufacture of pulp, paper and paper products 178 3.66
22 Publishing, printing and reproduction of recorded

media
3 0.06

24 Publishing, printing and reproduction of recorded
media

324 6.66

25 Manufacture of rubber and plastic products 328 6.74
26 Manufacture of other non-metallic mineral products 493 10.14
27 Manufacture of basic metals 60 1.23
28 Manufacture of fabricated metal products, except

machinery and equipment
496 10.20

29 Manufacture of machinery and equipment n.e.c. 521 10.71
31 Manufacture of electrical machinery and apparatus

n.e.c.
76 1.56

32 Manufacture of radio, television and communication
equipment and apparatus

81 1.67

33 Manufacture of medical, precision and optical
instruments, watches and clocks

136 2.80

34 Manufacture of motor vehicles, trailers and
semi-trailers

108 2.22

35 Manufacture of other transport equipment 1 0.02
36 Manufacture of furniture; manufacturing n.e.c. 280 5.76
37 Recycling 15 0.31
Industry codes and classification have been obtained from SSB (2016).

Table A1: Distribution of Industries in the Dataset
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A.2 Product Groups

3-digit
code

Standard Industrial Classification (SIC2002) Number of
products

Share of
dataset

Capital goods 238 15.03 %
281 Manufacture of structural metal products
282 Manufacture of tanks, reservoirs and containers of

metal; manufacture of central heating radiators and
boilers

291 Manufacture of machinery for the production and
use of mechanical power, except aircraft, vehicle and
cycle engines

292 Manufacture of other general purpose machinery
293 Manufacture of agricultural and forestry machinery
294 Manufacture of machine tools
295 Manufacture of other special purpose machinery
311 Manufacture of electric motors, generators and

transformers
322 Manufacture of television and radio transmitters

and apparatus for line telephony and line telegraphy
331 Manufacture of medical and surgical equipment and

orthopedic appliances
332 Manufacture of instruments and appliances for

measuring, checking, testing, navigating and other
purposes, except

342 Manufacture of bodies (coachwork) for motor
vehicles; manufacture of trailers and semitrailers

343 Manufacture of parts and accessories for motor
vehicles and their engines

351 Building and repairing of ships

Intermediate goods 771 48.67 %
156 Manufacture of grain mill products, starches and

starch products
157 Manufacture of prepared animal feeds
171 Preparation and spinning of textile fibers
172 Textile weaving
173 Finishing of textiles
176 Manufacture of knitted and crocheted fabrics
201 Saw milling and planning of wood; impregnation of

wood
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3-digit
code

Standard Industrial Classification (SIC2002) Number of
products

Share of
dataset

202 Manufacture of veneer sheets; manufacture of
plywood, laminboard, particle board, fiber board
and other panels and boards

203 Manufacture of builders’ carpentry and joinery
204 Manufacture of wooden containers
211 Manufacture of pulp, paper and paperboard
212 Manufacture of articles of paper and paperboard
241 Manufacture of basic chemicals
243 Manufacture of paints, varnishes and similar

coatings, printing ink and mastics
246 Manufacture of other chemical products
251 Manufacture of rubber products
252 Manufacture of plastic products
261 Manufacture of glass and glass products
262 Manufacture of non-refractory ceramic goods other

than for construction purposes; manufacture of
refractory ceramic products

265 Manufacture of cement, lime and plaster
266 Manufacture of articles of concrete, plaster and

cement
267 Cutting, shaping and finishing of ornamental and

building stone
268 Manufacture of other non-metallic mineral products
271 Manufacture of basic iron and steel and of

ferro-alloys
274 Manufacture of basic precious and non-ferrous

metals
275 Casting of metals
285 Treatment and coating of metals; general

mechanical engineering
286 Manufacture of cutlery, tools and general hardware
287 Manufacture of other fabricated metal products
312 Manufacture of electricity distribution and control

apparatus
313 Manufacture of insulated wire and cable
315 Manufacture of lighting equipment and electric

lamps
321 Manufacture of electronic valves and tubes and

other electronic components
333 Manufacture of industrial process control equipment
371 Recycling of metal waste and scrap
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3-digit
code

Standard Industrial Classification (SIC2002) Number of
products

Share of
dataset

Non-durables, food 324 20.45 %
151 Production, processing and preserving of meat and

meat products
152 Processing and preserving of fish and fish products
153 Processing and preserving of fruit and vegetables
154 Manufacture of vegetable and animal oils and fats
155 Manufacture of dairy products
158 Manufacture of other food products
159 Manufacture of beverages
160 Manufacture of tobacco products

Non-durables, non-food 123 7.77 %
174 Manufacture of made-up textile articles, except

apparel
175 Manufacture of other textiles
177 Manufacture of knitted and crocheted articles
182 Manufacture of other wearing apparel and

accessories
191 Tanning and dressing of leather
193 Manufacture of footwear
222 Printing and service activities related to printing
244 Manufacture of pharmaceuticals, medicinal

chemicals and botanical products
245 Manufacture of soap and detergents, cleaning and

polishing preparations, perfumes and toilet
preparations

364 Manufacture of sports goods

Durables 128 8.08 %
297 Manufacture of domestic appliances n.e.c.
323 Manufacture of television and radio receivers, sound

or video recording
334 Manufacture of optical instruments and

photographic equipment
361 Manufacture of furniture
362 Manufacture of jewelery and related articles

Total 1584 100 %

Table A2: Product Groups
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A.3 Distribution of Yearly Price Changes by Product

Groups

Figure A1: Distribution of Yearly Price Changes by Product Groups
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A.4 Estimation Results in Different Product Groups

Capital
goods

Durables Intermediate
goods

Non-durables,
food

Non-durables,
non-food

σ2
e 0.075 0.050 0.100 0.050 0.100

(24.215) (18.280) (28.461) (28.630) (5.786)

U 0.000 0.000 0.000 0.100 0.000
(.) (.) (.) (21.103) (.)

L -0.100 -0.100 -0.125 0.000 -0.600
(-12.078) (-10.013) (-21.912) (.) (-0.583)

θu 0.000 0.000 0.000 0.450 0.000
(.) (.) (.) (13.411) (.)

θl 0.250 0.250 0.225 0.000 0.025
(8.103) (4.427) (16.432) (.) (0.022)

N 238 128 771 324 123

Γ(β̂) 188.144 2869.017 423.687 99.55 27.61

Note: z-statistics in parentheses, N denotes number of products, Γ(β̂) denotes the
information criterion. The results presented in this table are from searches within
a large interval with a small precision, which is done to save time. The exact
parameter estimates are therefore not representative, but the exercise provides a
guideline for the sign and magnitude of the potential coefficients in more precise
simulations.

Table A3: Estimation Results by Product Groups
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A.5 Estimation Results with Different Trend Parameters

(1) (2) (3)

α = 0.02 α = 0.03 α = 0.04

σ2
e 0.045 0.051 0.060

(.00088) (.00137) (.00206)

U 0.010 0.010 0.010
(.00070) (.00092) (.00110)

L -0.045 -0.043 -0.045
(.00150) (.00257) (.00351)

θu 0.000 0.000 0.000
(.) (.) (.)

θl 0.050 0.116 0.200
(.02602) (.04364) (.04787)

N 1584 1584 1584

Γ(β̂) 692.827 507.645 525.474
Note: All parameter values are statistically significant
at the one percent level (p<0.01), N denotes number of
products, standard errors are in parentheses, Γ(β̂)
denotes the information criterion.

Table A4: Estimation Results with Different Trend Parameters
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A.6 A Simple Model for Frictionless Price

If we assume that producer profit is given by:

π = p×D(p)− wL,

where p denote the prices, w denotes the costs, D(p) denotes the demanded quantity
and L denotes labor. Supplied and demanded quantity are given by:

QS = ALa

QD = Bp−ε

and the frictionless equilibrium price can be derived as:

p∗ =
[

ε

a(ε− 1)
1
B

[B
A

] 1
a

] a
ε(1−γ)

︸ ︷︷ ︸
(1)

×w
a

ε(1−γ)︸ ︷︷ ︸
(2)

, where γ = a(1− 1
ε
)

We see that a positive supply shock, A ↑, will implicate a lower price, as expression (1)
will get a lower value. This could, for example, be that the producer obtains better
technology that increases productivity. Given that a < 1, we also see that a positive
demand shock, B ↑, will implicate a higher price, as the net effect on expression (1)
will be positive. Thus, if the customers demand more goods, they have to pay a
higher price per good, ceteris paribus. Finally, if producers are faced with a positive
cost shock, w ↑, the frictionless equilibrium price will increase, as expression (2) will
be more positive. Therefore, any increase in costs will be borne by costumers.
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A.7 The Incentive of a Firm to Change the Price

The following illustration is based on Romer (2012). Consider an economy consisting
of many price setting firms. Assume that the economy is initially at flexible price
equilibrium, i.e. the price of each firm is such that if aggregate demand is at its
expected level, marginal revenue equals marginal costs. If a firm pays a menu cost, it
sets its price to the new profit maximizing level. As the economy is large, each firm
takes other firms’ actions as given. When all other firms hold their prices fixed,
constant nominal prices are an equilibrium if the maximum gain for the firm of
changing its price is less than the menu cost. The general issue involved is illustrated
in Figure A2.

Figure A2: A Representative Firm’s Incentive to Change its Price

In Figure A2, the representative firm starts in equilibrium with marginal cost equal
to marginal revenue, Point A. Consider a contractionary monetary policy measure
from the Central Bank, e.g. an increase in the interest rate. This will cause a fall
in aggregate demand, which, with other prices unchanged, reduces aggregate output,
and shifts the demand curve to the left. An implication is lower demand for the firm’s
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products, and the marginal revenue curve shifts in. If the firm does not change its
price, it ends up in Point B. Here, the firm has some incentive to reduce the price, as
the marginal revenue exceeds marginal costs. The firm’s alternative is to adjust the
price downwards to the new equilibrium in Point C. The area of the shaded triangle
shows the additional profits to be gained from adjusting the price downwards, and
thereby increasing quantity. As long as the shaded triangle is small, the firm has a
small incentive to change its price, even if the shift in its demand curve is large. Thus,
small frictions on firm level may have large effects on output.
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A.8 Yearly Boxplots

Yearly boxplots for the empirical and simulated nominal price series are given below.
Here, the bottom and top of each box represents the 75th and 25th percentiles
respectively, the line inside the boxes show the median, and the top and bottom
of the whiskers show the upper and lower adjacent value. The dots represent outside
values in each year.

Figure A3: Yearly Boxplots for Empirical and Simulated Data
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