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Executive summary

In this thesis we investigate the suitability of the Fama and French (2015a) �ve-factor model

for describing German and Norwegian average monthly stock returns in the period from

1991 to 2015. We do this by estimating factor exposures and risk premiums of test portfolios

formed on three di�erent double sorts on �rm characteristics. Estimation is done by means of

Fama and MacBeth (1973) regressions. To secure unbiased standard errors, we apply a GMM

approach when estimating the risk premiums. We evaluate both absolute and relative model

performance on the basis of the test statistic developed by Gibbons, Ross, and Shanken (1989).

The three-factor model serves as benchmark when describing German stock returns and a

two-factor model comprising the market and the size factor is the basis for comparison in the

case of Norway.

With our thesis we make three contributions to existing literature. Firstly, we construct

the Fama-French pro�tability and investment factors for the German and Norwegian stock

markets. Although the market, size and value factors are provided by others, we rebuild

them based on our model assumptions to secure internal model consistency. Secondly, by

estimating risk premiums with a GMM approach, we introduce robust standard errors to the

original estimation done by Fama and French. Thirdly, we show that the �ve-factor model does

not outperform the more parsimonious benchmark models neither in describing German nor

Norwegian stock returns within our sample period and that this result is una�ected by several

changes in underlying assumptions. By this, we extend others’ �ndings about the German

and the Norwegian stock markets with the conclusion that the inclusion of pro�tability and

investment factors, at least in our setting, does not add value to already existing models.
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1 Introduction

According to asset pricing theory, assets earn risk premiums when they are exposed to under-

lying systematic risk factors. It is however still an unanswered question what these risk factors

are. The research around this topic can be split into two groups. First, there are theoretical

approaches trying to �nd economic explanations for systematic risk. Second – and this is

by far the largest group – there are approaches that model systematic risk by variables that

empirically seem to correlate with asset returns. Among these empirical approaches, the

three-factor model introduced by Fama and French (1993) is probably best-known. This model

explains asset returns by market movement, �rm size and �rm value. Although there is no

theory that justi�es the latter two variables as source of systematic risk, a lot of research shows

that they have explanatory power in models that describe asset returns. Some see in this a

connection between size or value and yet undetected actual sources of risk. Others regard it as

pure coincidence given the lack of theoretical foundation.

Whoever is right, since the rise of the Fama and French three-factor model, a lot of research

has been done on �nding further variables that persistently identify patterns in stock returns.

One of the latest developed models is the �ve-factor model by Fama and French (2015a). In

this approach, the authors extend their original three-factor model by the in�uence of a �rm’s

operating pro�tability, as well as its investment behavior. Fama and French (2015a) test this

model on the U.S. stock market and �nd that including the two new factors persistently leads

to enhanced model performance, relative to the three-factor model. Besides, they show that

this model extension causes a redundant value-factor and thus argue that a four-factor model

containing market, size, pro�tability and investment factors is most adequate in describing

asset returns. Nevertheless, Fama and French (2015a) admit that these �ndings might be

sample-speci�c and thus call for further research to verify the model.

One way of testing whether a newly-developed factor model is useful to describe asset

returns or if it merely detects sample-speci�c e�ects, is to apply the model to other capital

markets. Under the assumption of globally integrated �nancial markets, fundamental �ndings

should hold for assets in any country, though derived from the U.S. stock market alone.

Against this background, Fama and French (2015b) test their �ve-factor model on four

regional markets – North America, Europe, Japan, and Asia Paci�c – as well as on one global

market composed of these four submarkets. They concede that a global version of the �ve-factor

model does not succeed in explaining international stock return patterns. For the regional

markets, augmenting the three-factor model leads though to better model performance in their

analysis. Fama and French (2015b) �nd that a four factor model excluding the investment factor

suits best to all regions outside of North America. This ambiguity relative to the �ndings for

pure U.S. data leaves us still uncertain about the universality of the model.

Gri�n (2002, p.798) �nds that international Fama and French three-factor models fail to

explain stock returns, and that “cost-of-capital calculations, performance measurement, and

1



risk analysis using Fama and French-style models are best done on a within-country basis”.

If this also holds for the latest �ve-factor approach, more model evidence might be found by

going further than Fama and French (2015b), and test the model on individual country stock

markets outside of the U.S. There are many candidate countries for such an analysis. Among

them, we chose Germany and Norway for several reasons:

1. As far as we know, there are at the moment of writing this thesis no studies applying the

Fama French �ve-factor model to the German and Norwegian stock markets.

2. These markets have quite di�erent characteristics, the �rst being a large economy with

heavy export orientation and a EU member, the latter being a little open economy and a

non-EU member that scarcely a�ects market prices with its actions. We argue that more

evidence is found for the model if it �ts to both markets.

3. Due to our own background we have better understanding of the German and Norwegian

stock markets than we do have for many foreign markets.

In this thesis we hence scrutinize the applicability of the Fama-French �ve-factor model by

testing its suitability for describing stock returns on the German and Norwegian markets.

To do so we construct the model factors as well as test portfolios by using stock market and

accounting data. Our test assets are portfolios based on three kinds of double sorts: size-

book-to-market, size-operating pro�tability and size-investment behavior. To evaluate the

relative performance of the �ve-factor model, we compare its performance relative to the

performance of the Fama-French three-factor model in the case of Germany and a two-factor

model comprising the market and size factor in the case of Norway. We �nd that the neither

the pro�tability nor the investment factors explain cross-sectional variation in stock returns

on the two markets. In several robustness checks we show that these results are una�ected by

changes in underlying assumptions.

This thesis is structured as follows. In Section 2 we present theoretical frameworks and

�ndings by others that form the basis for our analysis. In Section 3 we provide the reader with

a country-speci�c overview of the German and the Norwegian stock market. A description

of the methods we use is given in Section 4. This part is followed by Section 5 in which we

substantiate why and how we construct our data set. In Section 6 we present the results of our

analysis and go through several robustness checks. Section 7 concludes and gives an outlook

on further research possibilities.
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2 Theory and literature review

Factor pricing models try to explain risk premiums that can be observed in the market. They

originate from the assumption of rational investors whose utility is increasing in consump-

tion, but with a decreasing rate
1
. In bad times the investor has a higher marginal bene�t of

consumption than in good times, when his wealth level is already high. Companies that do

well in bad times, are thus highly valued by the rational investor who seeks opportunities to

increase his wealth level and consumption. The high demand of assets that give a high return

in bad times (low beta assets), drives up the prices of those assets. In the same manner, prices

of assets that have low returns in bad times (high beta assets) are driven downwards. These

dynamics explain the creation of risk premiums, which compensate the investor for the risk he

takes when investing in high beta assets.

At each point in time the investor is confronted with the trade-o� between instant con-

sumption and investing to increase future consumption. Formally this can be expressed as

U(ct, ct+1) = u(ct) + βEt[u(ct+1)] (1)

where u(ct) and u(ct+1) are the utility of consumption at time t and t + 1, respectively and

beta is a subjective discount factor that captures the investor’s impatience. The investor then

chooses the optimal consumption and investment level by maximizing Equation (1) subject

to the budget constraint that in order to consume more today, he has to reduce consumption

tomorrow and vice versa. The solution of this maximization problem is

pt = Et

[
β
u′(ct+1)

u′(ct)
xt+1

]
(2)

where pt is today’s price of an asset and xt+1 is the assets future payo�. Equation (2) is the

fundamental asset pricing formula. It is often expressed in a more general way, by de�ning the

stochastic discount factor

mt+1 = β
u′(ct+1)

u′(ct)
(3)

So that the pricing equation (2) simpli�es to

pt = Et[mt+1xt+1] (4)

Assuming rational investors, one can transform this equation into the Euler equations

1 = Et[mt+1rt+1] (5)

1
The part about the consumption-based model is based on Cochrane, 2005, chapter 1.
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Using the formula for the covariance and simpli�ed notation, the Euler equations can be

rewritten as expected return-beta representation
2

E(ri) =
1

E(m)
− cov(ri,m)

E(m)
(6)

⇔ E(ri) = α +

(
cov(ri,m)

var(m)

)(
−var(m)

E(m)

)
(7)

⇔ E(ri) = α + βi,mλm (8)

where βi,m can be interpreted as the quantity of risk in each asset and λm is the risk premium.

In theory, there is one single stochastic discount factor, which prices all assets in the

investment universe.

Factor pricing models assume that the stochastic discount factor takes the linear form
3

mt+1 = a+ b′ft+1 (9)

where ft+1 is a set of observable factors. In line with Equation (8) this can alternatively be

expressed as the multi-beta model

E(rt+1) = α + β′λ (10)

From Equation (3) and (9) follows directly that factors should be good proxies for the growth

of the marginal utility of consumption:

β

(
u′(ct+1)

u′(ct)

)
≈ a+ b′ft+1 (11)

Depending on the realization of the factors, they thereby represent states that let the investor

su�er from lower levels of consumption ("bad times") and favorable states that provide the

investor with increased consumption levels ("good times"). There is a wide range of literature

that deals with identifying such factors. In the following we give the reader an overview about

the main �ndings from others – both of theoretical and of empirical nature – which ultimately

led to the development of the Fama and French �ve-factor model that is the main subject of

this thesis.

The most basic factor model is the Capital Asset Pricing Model (CAPM) which was developed

out of the works of Treynor (1962), Sharpe (1964), Lintner (1965) and Mossin (1966). Building

on the �ndings on mean-variance preferences and portfolio diversi�cation by Markowitz (1952)

the CAPM is an attempt to give a theoretical explanation for risk premiums. According to the

CAPM, there is a a linear relationship between asset returns and market risk of the form

E(ri) = rf + β(E(rM)− rf ) (12)

2
See Cochrane, 2005, chapter 6.

3
see Cochrane, 2005, p.149.
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where rf is the risk-free rate, E(rM) is the expected return of a market portfolio and beta is

the asset’s covariation with this market portfolio. The CAPM is however tied to very strong

assumptions and is often called an “empirical failure” (e.g. Fama & French, 2015b, p.23) as many

empirical studies �nd stock return patterns, so-called anomalies, that cannot be explained by

the simple linear relationship assumed by CAPM.

There are two main theoretical approaches that were developed to overcome some of the

limitations of the CAPM. The �rst is the Intertemporal Capital Asset Pricing Model (ICAPM)

by Merton (1973). It is a multi-period model based on the assumption that the investor’s

utility does not only depend on his wealth level, but also on which state of the world occurs in

future time periods. Merton (1973) argues that it is unrealistic to assume constant investment

opportunities over time and therefore introduces the concept of state variables which “describe

changes in the opportunity set”. He extends Tobin’s two-fund separation (Tobin, 1958) which is

underlying CAPM to a three-fund theorem. According to this theorem, the investor’s optimal

investment choice is a linear combination of the risk-free asset and a risky asset – which give

the investor the optimal risk-return combination today – and a third asset that hedges against

intertemporal changes of the investment opportunity set. In this sense, asset excess returns do

not only re�ect market risk, but also risk caused by state variables.

The second theoretical alternative to CAPM is the Arbitrage Pricing Theory (APT) by Ross

(1976). According to this model, asset returns are a linear combination of the returns of multiple

systematic risk factors and an asset-speci�c return. Ross (1976) shows that the ideosyncratic

risk can be diversi�ed away by holding portfolios instead of single assets and that returns thus

should only incorporate the asset’s exposure to factor risk. He argues that then, in the absence

of arbitrage, an asset’s excess return is the sum of the factor risk premiums, weighted with the

degree to which it covaries with the respective factor:

Ei − rf ≈ βi,l(E
l − rf ) + . . .+ βi,k(E

k − rf ) (13)

where rf is the return of the risk-free asset and β is the asset’s factor exposure. In opposite to

CAPM, this model does not require equilibrium and opens up for more explanatory factors

than just the market factor.

The drawback of both ICAPM and APT is that the state variables, which de�ne systematic

risk and thereby risk premiums, are unknown. Breeden (1979) develops a setting in which the

unspeci�ed state variables in the ICAPM can be reduced to one speci�c explanatory variable.

He inter alia shows that state variables can be replaced by portfolios which correlate highly

with the same state variables. Grinblatt and Titman (1987) show that using “proxy portfolios”

as factor estimates is in line with APT. Huberman, Kandel, and Stambaugh (1987) examine the

attributes and framework of these portfolios, that are mostly called factor mimicking portfolios

in �nancial literature. By using mimicking portfolios that hedge state variable risk, one can

identify risk premiums despite the fact that the “true” risk factors are unobservable (Ferson,

Siegel, & Xu, 2006).
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Empirical asset pricing models then explain risk premiums by variables that empirically

appear to detect persistent asset return patterns. The rationale behind this is the assumption

that the model factors or factor mimicking portfolios have explanatory power because they

correlate with the actual underlying state variable risk. The foundation of this relationship is

though usually not evaluated any further but taken as given and only explained ex post.

The �rst anomaly whose presence was observed in many studies is the so-called size e�ect.

Reinganum (1981) �nds that returns of portfolios formed on �rm size are not well-described

by the CAPM. Banz (1981) observes that stocks of low market value �rms persistently show

higher returns than those of large �rms.

Value strategies, where investors �nance the acquisition of "inexpensive" assets by short

selling "expensive" assets, were �rst proposed by Graham and Dodd (1934). When a company’s

book equity value is high relative to its market price, the purchasing investor gains a high

proportion of book assets relative to a marginal dollar spent on the �rm. Countless of papers

written later on, have shown that such strategies generate pro�ts. Basu (1977, 1983) for example

uses price-earnings (P/E) as a measure of value and �nds that stocks with low price relative

to their earnings perform better than those with a high P/E-ratio. He thus shows that value

strategies produce both absolute and risk-adjusted average excess returns in the U.S. market.

In their three-factor model Fama and French (1993) integrate the �ndings of size and value

anomalies with the explanatory power of the market factor. They use book-to-market ratios

instead of P/E as value measure, because P/E is shown to be redundant in the multivariate

regression analysis conducted by Fama and French (1992). This results from both measures being

scaled versions of an asset’s price and hence explaining the same variation in cross-sectional

returns.

Fama and French (2006) reason that further factors are implied by the valuation relation of

Miller and Modigliani (1961), here divided by time t book equity

Mt

Bt

=

∑
E(Yt+τ − dBt+τ )/(1 + r)τ

Bt

(14)

where Mt is the market value of a �rms stocks at time t, Bt is the book equity at time t, dBt+τ

is the change in book equity, dBt = Bt−Bt−1, Yt+τ is equity earnings in period t+ τ , and r is

the long-term average stock return. This equation comes from combining the dividend discount

model with the clean surplus accounting relationship and contains three �rm characteristics:

Book-to-market equity as a measure of company value, earnings relative to book equity as a

measure of pro�tability and book equity growth as a measure of investment behavior. Fama

and French (2006) argue that Equation (14) implies that if one controls for two of the three

factors, the third factor should capture all variation in expected stock returns. They therefore

propose pro�tability and investment behavior as additional factors.

The reasoning above has the following implications about the relation between the three

anomaly variables and expected stock return:
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Firstly, given constant expectations about future cash �ows, a raise in book-to-market

equity will increase the future expected stock return, i.e. a value premium exists.

Secondly, holding the B/M-ratio and the change in book equity constant, higher pro�tability

leads to a higher expected stock return. Haugen and Baker (1996), Cohen, Gompers, and

Vuolteenaho (2002), and Fama and French (2006) all document this e�ect for U.S. data. Novy-

Marx (2013) questions though the way pro�tability is de�ned in previous papers. He argues that

“Gross pro�ts is the cleanest accounting measure of true economic pro�tability” (Novy-Marx,

2013, p.2), and �nds that gross pro�ts-to-assets absorbs asset return patterns arising from

earnings di�erences. Fama and French (2015a) extend their discussion of the valuation relation,

and use the �ndings of Novy-Marx (2013) to introduce the pro�tability measure as an additional

factor when presenting their �ve-factor model.

Thirdly, for �xed levels of the B/M-ratio and pro�tability, increasing book equity by in-

vesting, results in lower expected future stock returns. An economic intution for this may

be the investors’ willingness to increase investments when their equity cost of capital, i.e.

the long-term measure of return, is low. This phenomenon is called the q-theory of optimal

investment hypothesis (Liu, Whited, & Zhang, 2009). An alternative explanation is the overin-

vestment hypothesis (Titman, Wei, & Xie, 2004). According to this theory managers aim at

building a huge empire to seem successful and gain bonuses, instead of focusing on what is

actually best for the �rm’s shareholders at the moment in time. Doing so, they create a negative

relation between asset growth and stock returns. As predicted by the valuation equation,

Fair�eld, Whisenant, and Yohn (2003) and Richardson and Sloan (2003) �nd the existence of a

negative return/investment relation for U.S. companies. Fama and French (2006) however, �nd

an insigni�cant and positive relationship between the two variables when testing the model on

a per share level. Later on, Aharoni, Grundy, and Zeng (2013) show that the valuation relation

holds on all metrics when replicating the study of Fama and French (2006) using measures at

the �rm level. When Fama and French (2015a) include investment in the �ve-factor model they

adopt this �rm level view and �nd that investment in fact is negatively correlated to the cross

section of average U.S. stock returns. Instead of book equity growth, Fama and French (2015a)

use asset growth as a measure of investment behavior, since a robustness check shows that

results are not a�ected by the choice between the two measures.

Under the assumption of globally integrated �nancial markets, fundamental �ndings should

hold for assets in any country, though derived from the U.S. stock market alone. Applying

models that are recognized for the U.S. market to a global context, turns however out to lead to

inconsistencies and ambiguities with regard to risk factors and their premiums. Ferson and

Harvey (1993) �nd that international risk factors produce loadings that vary through time

when using portfolios constructed with data from di�erent countries. Others such as Dumas

and Solnik (1995) �nd that stock returns around the world price the exchange rate risk from

di�erent markets. Based on these and others’ �ndings, Fama and French (1998) argue that

a complete description of global stock returns requires an asset-pricing model that includes
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several dimensions of risk in addition to time-varying risk loadings. Nevertheless they assume

integrated capital markets, non-discrepant purchasing power parity, and time-constant risk

factors in their model. Many researchers come to the conclusion that an adequate global factor

model is hard to �nd. Gri�n (2002), Hou, Karolyi, and Kho (2011), and Fama and French (2012,

2015b) even �nd that local models perform better than their global counterparts.

An early documentation of international factor premiums is presented by Heston, Rouwen-

horst, and Wessels (1995), who �nd the size e�ect among stocks in the U.S. and twelve European

countries. In their studies they observe return di�erences between small and big stocks both for

German and Norwegian �rms in the period from 1978 to 1990. Amel-Zadeh (2011) investigates

German companies more extensively from 1996 to 2006 and observes the same e�ect during

this later time period. Næs, Skjeltorp, and Ødegaard (2009) examine the Oslo Stock Exchange

in the period from 1980 to 2006 and observe that �rm size provides risk compensation.

Capaul, Rowley, and Sharpe (1993) use data from 1981 to 1992 and �nd that international

stock returns, among others at the German stock market, are in�ated by persistent value

premiums, and hence that value stocks outperform growth stocks. Fama and French (1998)

scrutinize the time period from 1975 to 1995 and con�rm the global value premium. They use a

global portfolio consisting of twelve countries from Europe, Australia, and “Far East” in addition

to the U.S. sample. They discover a pervasive value premium both for the global portfolio

and for most individual countries, including Germany. Ziegler, Eberts, Schröder, Schulz, and

Stehle (2003) speci�cally analyse the German stock market and observe the presence of a value

e�ect in their data. Hou et al. (2011) however do not �nd evidence that supports a value e�ect

during 1981 to 2003, when using cross-sectional Fama-Macbeth regressions on a global portfolio

composed of 49 countries. Næs et al. (2009) neither observe a signi�cant value premium at the

Norwegian stock market.

Novy-Marx (2013) �nds that pro�tability is positively related to average stock returns

from international portfolios composed of companies in developed markets outside of North

America, including Germany and Norway. He uses a data sample covering the years 1990 to

2009, a period extended to 2015 by Fama and French (2015b). The latter test their �ve-factor

model in an international context, which supports the pro�tability e�ect found by Novy-Marx

(2013), for most regions including Europe.

International evidence suggests that the investment growth e�ect occurs in most developed

countries, but that the power of the e�ect varies a lot across countries (Titman, Wei, & Xie,

2013). During the period of 1982 to 2010 Titman et al. (2013) �nd that the highest asset growth

quintile in Germany achieves an equal-weighted size-adjusted monthly return of 0.298% less

than the lowest quintile. In Norway during 1988 to 2010 the equivalent was found to be 0.288%,

making this e�ect in both countries less severe than in the U.S. (0.953%). Fama and French

(2015b) conclude that dropping investment as a factor does not a�ect the �ve-factor models’

capability in describing international average stock returns.
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3 Description of the stock markets

3.1 The German and the Norwegian economies

Figure 1 shows the German and Norwegian GDP by sector. Apart from the fact that both

countries show the typical pattern of industrialised countries that most value is created in the

service sector, the two economies di�er clearly in nature. Germany is a large open economy

that due to its large industry sector is strongly export-oriented. At the same time its lack

of natural resources, especially in the energy sector, makes it also dependent on imports.

Important industries are machinery, automobile manufacturing, technology, etc. Furthermore,

Germany is one of the founding members of the European Union (EU) and has ever since played

a central role in European decision making. With the introduction of the Euro in January

1999, Germany additionally became a key nation for guidelines on the monetary policy in

the Eurozone. The German stock market consists today of eight stock exchanges, of which

Frankfurt Stock Exchange is by far the most important one. Traditionally companies are �rst

listed at a local exchange. When they succeed they reach for several listings, often by separating

stock types (i.e. preferred or common stocks etc.) at di�erent exchanges. Today 90% of all stock

trading are done through the electronic trading platform Xetra (Xetra, 2016).

The Norwegian economy is a small open economy that has little or even no impact on

international stock prices (Norman & Orvedal, 2010). A high proportion of the Norwegian

stock market consists of companies within the Energy sector, a sector often comprising around

50% of Oslo Stock Exchange’s total market value. This is mainly due to the two large companies

Statoil and Norsk Hydro (Næs et al., 2009). As a result, the Norwegian economy is strongly

a�ected by the oil price and especially by sudden changes in supply and demand of oil. Another

distinctive feature of the Norwegian stock market is the composition and distribution of market

value between large and small companies. At Oslo Stock Exchange (OSE) the three largest

companies (Telenor in addition to the two already mentioned) account for more than half of

the total exchange value.

3.2 Stock market developments

Figure 2 shows the total market value of the German and the Norwegian stock exchanges in

the period 1991-2015.

After the resolution of the former Soviet Union and the fall of the Berlin Wall in 1989, the

economic reuni�cation of the two German states started in July 1990 (Bundesministerium für

Wirtschaft und Energie, 2016). Around this time the households and the economy in general

were characterized by huge disparities between the former East and West. The new economy

faced large costs when trying to rebuild a uni�ed nation and investing heavily in infrastructure.

We see from Figure 2 that the value of the German stock market was relatively low in the

beginning of the 1990s, but that total market capitalization increased steadily from 1994 until
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Figure 1
GDP per sector, year 2015. The chart is based on numbers by Statistisches Bundesamt (2016) and

Statistisk Sentralbyrå (2016).

the recession caused by the burst of the dot-com bubble around the millennium.

In the mid-nineties the internet began seeing the light of the day. Companies staking this

new technology received increasing attention from investors, who sensed lucrative investment

opportunites. In 1999 a majority of U.S. IPOs came from such companies with a big proportion

doubling their value the �rst day of trading (The Economist, 2012). Investors grabbed every

opportunity from investing in technology-based companies, without looking into the likelihood

of future returns. When these returns never came, many companies got bankrupt and stock

market growth fell quickly (Doms, 2004).

At that moment Germany faced a balance sheet recession, while the Eurozone was in

need of individual monetary policy (Schnabl, 2013). To boost the German economy The

European Central Bank reduced interest rates, with solely marginal e�ect. Instead, other

member countries got in trouble and stopped demanding German products. This reinforced

the recession in Germany, so that steady stock market growth did not return until late 2003

and forward.

The dot-com boom did not hit the Norwegian economy as hard as the German one, even

though as of February 2003 the value of the Oslo Stock Exchange was market down to 1996-

levels (Oslo Børs, 2016a).

Figure 2 shows that total market capitalization increased fast in both countries during the

preceding years. Between 2003 and 2008 the exchange value more than tripled in Germany

and grew around 6.5 times in Norway. After these years of growth, the Financial Crisis hit

the world economy in autumn 2007. This crisis was mainly caused by securitized banking,

i.e. banks using short loans (Repos) to �nance their customers’ mortgages, i.e. long-term debt.

When house prices began to fall in the U.S. and the most risky mortgage holders stopped paying
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their bills, the concerned banks found themselves in an extreme need of liquidity. This problem

spread to non-�nancial industries and exceeded the scope of the U.S. stock market. We see from

Figure 2 that the German and Norwegian stock markets got heavily a�ected as well, collapsing

at about the same point in time.

Around 2010 these markets started to grow again, but rates remained highly volatile in the

aftermath of the global crisis.

Figure 2
Monthly total market value of the German and Norwegian domestic stock exchanges, July 1990-December 2015.

Market capitalization is calculated as a company’s shares outstanding multiplied with its respective price,

summed over all companies at the end of each month. For a company which is listed at several exchanges its total

market value is calculated as the weighted mean of all stock prices, using the respective number of shares

outstanding as weights. Values are denoted in billion USD.
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4 Method

In this study, we test to which extent German and Norwegian stock returns can be described

by the Fama French �ve-factor model

rit − rFt = ai + bi(rMt − rFt) + siSMBt + hiHMLt + riRMWt + ciCMAt + εit (15)

where rit is the return on test asset i for month t, rFt is the risk free rate of return, ai is the

pricing error, rMt is the return of the value-weighted market portfolio, SMBt is the return of

a diversi�ed portfolio of small stocks minus the return on a diversi�ed portfolio of big stocks,

HMLt is the di�erence between the return on diversi�ed portfolios of high and low value

stocks, RMWt is a portfolio constructed by robust minus weak operating pro�tability stocks

and CMAt is a portfolio of conservative minus aggressive investment �rm stocks.

In order to decrease return variation that originates from �rm-speci�c e�ects and thus

reduce our pricing problem to analysing the e�ect of systematic risk factors on asset returns,

we use portfolios instead of single stocks as test assets.

In the following we �rst explain how we construct the model components, i.e. the test

portfolios and the factors. After that, in section 4.2, we describe the procedures applied to test

the suitability of equation (15) for German and Norwegian stock returns.

4.1 Portfolio construction

4.1.1 Double sorting

Both the test portfolios and the factor mimicking portfolios are constructed using a double

sorting technique. For that, all sample stocks are �rst sorted by one �rm characteristic and

then, in an independent second sort by another characteristic. Based on each sort, the stocks

are divided into groups ranging from low to high values of the respective sorting variable. By

that, every stock is market as a group-x stock on the characteristic-1 scale and as a group-y

stock on the characteristic-2 scale. Portfolios are then formed by grouping all stocks that have

the same x-y combination. Double sorting hence gives us a set of portfolios consisting of stocks

with similar characteristics.

Double sorting aims at isolating the e�ect of one factor from the e�ect of the other factors.

As the �ve-factor model assumes the presence of four �rm-speci�c e�ects, ideal e�ect isolation

would be achieved by fourfold sorts that control simultaneously for the e�ect of all three other

factors. In practice such a four dimensional sort would however lead to 256 portfolios to be

�lled with stocks. This is way beyond possible within our work, considering the restricted

number of sample stocks. Therefore we stick to the double sorting procedure but are aware

that results might be biased in the presence of factor correlation.
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4.1.2 Sorting variables

(i) Size is de�ned as market capitalization at the end of each June of year τ . It is calculated as

market capiτ = share priceiτ × shares outstandingiτ (16)

For �rms that have several concurrent stock issues either at the same exchange (see

section 5.2.5) or at di�erent exchanges (see section 5.2.6), share price is the weighted mean

of the di�erent share issue prices and shares outstanding is the total number of shares in

all share issues. So total market capitalization is the sum of market capitalizations of each

stock issue.

(ii) Value is de�ned as the ratio of a �rm’s book equity at the end of �scal year τ − 1 and its

market equity at the end of December of year τ − 1:

B/Mτ =
book equityτ−1

market equityDec τ−1

where market equity (ME) is market capitalisation calculated in Equation (16). Book

equity is calculated as

book equityτ = stockholder equityτ + deferred taxesτ + investment tax creditτ

If the value of the stockholder equity variable provided by Compustat is missing, we use

the di�erence of total assets and total liabilities as a proxy for book equity. Since preferred

stocks form part of the aggregate market capitalization in our approach (see section 5.2.6),

we do not subtract their book value from total book equity as Fama and French (1993,

2015a) do.

For companies whose �scal year does not end in December, this approach leads to a

time gap between the measurement point of book equity and that of market equity.

Intuitively the numerator and denominator of the book-to-market (B/M)-ratio should

be time-consistent. If however B/M-ratios at �scal year ends are used, ratios will di�er

across �rms not only due to di�erences in �rm characteristics, but also because of market

changes throughout the year. Fama and French (1992) �nd that the use of �scal year end

market equity does not a�ect their results signi�cantly. We adress this issue in Section

6.6.1.

(iii) Operating pro�tability is de�ned as operating pro�t less interest expenses relative to

book equity, all measured at the end of �scal year τ − 1:

OPτ =
total revenuesτ−1 − total operating expensesτ−1 − interest expensesτ−1

book equityτ−1

Book equity is calculated as in Equation (17). Fama and French (2014) use the sum of

costs of goods sold (cogs) and selling, general and administrative expenses (xsga) instead
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of total operating expenses. These two variables are however aggregated by the total

operating expenses variable in Compustat. Given that we have missing values for cogs

and/or xsga for many German and Norwegian �rms, we use the aggregate total operating

expenses variable instead.

(iv) Investment behavior is de�ned as book asset growth from year τ − 2 to year τ − 1:

Invτ =
total assetsτ−1 − total assetsτ−2

total assetsτ−2

all measured at �scal year-ends.

4.1.3 Portfolio dynamics

The double sorting procedure is conducted at the end of each June and is based on a company’s

accounting measures from the previous �scal year. The time lag aims to secure that the

companies’ annual reporting process is completed, and the necessary accounting measures

thus are ready and publicly available. The portfolio composition does not change until the

annual portfolio updating at the end of June. After having constructed the portfolios, we trace

their monthly excess return from July to the following June. This approach ensures that we

use known information to explain future returns and avoid a "look ahead bias". The portfolio

excess return at month t is calculated as

RPF
t =

n∑
i=1

(rit − rft)×MEi
t

MEPF
t

(17)

where n is the number of stocks in the respective portfolio, rit is the individual stock return in

month t, rft is the risk-free return in month t, and MEi
t and MEPF

t are the individual stock’s

market capitalization and the aggregate market capitalization of all stocks in the portfolio

respectively, both measured at the end of month t.

Figure 3 sums up this section by illustrating portfolio construction graphically.

Applying the double sorting procedure to our sample data makes the number of observations

di�er between portfolios throughout a year, as we for many companies do not have return data

for every month of the year. This is partly due to Compustat not providing the data, partly due

to our sample adjustments described in Section 5, and partly because �rms become listed or

delisted during a year. The most reasonable solution to this is to exclude �rms for which we

have incomplete return data. This is however unfavorable considering our already quite small

sample sizes. We thus keep the concerned observations and argue that accumulated portfolio

returns get approximately right by weighting them with the observations that actually are

available at each point in time.

4.1.4 Test assets

In their studies, Fama and French construct test assets by splitting sample stocks into �ve equal

groups for each sorting characteristic. The interface of the double sorts leaves them with 5× 5,
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Invt = atτ−1−atτ−2
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BEτ−1

B/Mτ = BEτ−1

MEDecτ−1

portfolio construction portfolio updating

hold

Figure 3
Illustration of portfolio construction. Portfolios are constructed in the end of June based on double sorts of size,

book-to-market (B/M), operating pro�tability (OP) and investment behavior (Inv). Size is de�ned as market equity

at the point of portfolio construction. B/M is the ratio of book-equity at the end of �scal year τ -1 and market

equity at the end of December of year τ -1. OP is total revenues less operating and interest expenses per end of

�scal year τ -1 all divided by book equity per end of �scal year τ -1. Inv is the growth of total assets from the end

of �scal year τ -2 to the end of �scal year τ -1. Once constructed, portfolios are held for one year before they are

updated again at the end of June τ+1.

i.e. 25, test portfolios. In the case of Germany we adhere to this procedure and divide the data

into quintile groups of each sorting variable. For the Norwegian data however, we deviate from

this approach because quintile sorts result in too few stocks per test portfolio due to the limited

number of companies in the Norwegian data set. Instead, we assign our sample stocks to only

3× 3 portfolios, using 30% and 70% sample quantiles as breakpoints.

As evidence found by others’ indicates that size is the most prevailing e�ect in both German

and Norwegian data (see section 2, we construct our test portfolios by �rst sorting sample

stocks by size and then by value, pro�tability or investment. This gives us three di�erent sets of

test portfolios: size-B/M portfolios, size-pro�tability portfolios and size-investment portfolios.

In table 17 in the appendix we show the mean number of stocks in each of the test portfolios

constructed by this procedure. For the German data the mean number of portfolio stocks

ranges mostly between 8 and 21. We �nd that pro�tability tends to increase with company

size since few stocks are allocated to the portfolio comprising large size and low pro�tability

stocks while the number of stocks in the portfolio comprising small size and low pro�tability

stocks is above average. The same applies to investment behaviour although the e�ect is

weaker. The mean number of stocks in each Norwegian portfolio ranges from three to ten.

This constrasts to the �ndings for the U.S. market (see Fama & French, 1993) where each test

portfolio contains between 23 and 512 stocks. Our test portfolios might thus, in spite of the
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reduction of variable groups, not be diversi�ed enough to rule out all company speci�c e�ects.

We adress this problem in Section 6.6.4.

In table 18 in the appendix we additionally show the mean of the respective sorting charac-

teristics in each of the constructed test portfolios.

4.1.5 Factor mimicking portfolios

The right-hand-side (RHS) variables of the Fama and French three-factor model are factor

mimicking portfolios built on two size groups (small and big) and three value groups (low,

neutral and high) of the sample stocks. The reason for the di�erent number of groups is that

Fama and French (1992) �nd that book-to-market ratios have higher explanatory power for

average stock returns than �rm size. Fama and French (2015a) scrutinize the impact of factor

construction by comparing three possible versions of RHS portfolio sorts: 2× 3 sorts based on

two size groups and 3 groups of the second sorting variable (i.e. B/M, OP or Inv), 2× 2 sorts

based on two size groups and two groups of the second sorting variable, and 2 × 2 × 2 × 2

sorts where each sorting variable is split into two levels, and all possible permutations of these

are built. The authors �nd that the 2× 2 and the 2× 2× 2× 2 sorts are not signi�cantly better

than the original 2× 3 sorts, which they used in their three-factor model. Hence we conduct

our base analysis with factor portfolios constructed from 2× 3 sorts. In Section 6.6.3 we re�ect

on whether the type of sort a�ects our results.

We split companies into small and big groups, using the domestic sample median as

breakpoint. Next we divide stocks into high, neutral and low value-stocks using the 30%

and 70% sample quantiles of B/M for each country. With the same procedure and breakpoints

we form the three investment groups (conservative, neutral and aggressive) and the three

pro�tability groups (weak, neutral and robust). Intersections from each of these sorts result in

six portfolios, which serve as the basis for the construction of factor mimicking portfolios.

The monthly values of the SMB factor are then calculated as the di�erence between the

simple average of the returns from the three small-stock portfolios and the simple returns

from the three corresponding big-stock portfolios. The HML factor is de�ned in a similar way,

except that the B/M dimension only produces two high-stock portfolios and two low-stock

portfolios. The monthly values of the HML factor are the di�erence between the simple average

of the returns from the two high and the two low book-to-market portfolios. Following the

same procedure, the RMW and CMA factors are de�ned as the monthly di�erence between the

average returns of the two robust and weak pro�tability portfolios, and the conservative and

aggressive investment portfolios, respectively. Table 2 shows the formal factor de�nitions.

By constructing the factors in this way, the SMB factor is supposed to be adjusted for

in�uences of �rm value, pro�tability and investment. This is a result of small and big stock

portfolios comprising approximately the same weighted average B/M, OP and Inv measures.

The same applies to the HML, RMW and CMA factors, which are supposed to be largely free of
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Table 1
Composition of the factor building blocks. Based on sorts by size, value, pro�tability and investment, the sample

stocks are assigned to speci�c groups. Firm size is divided into two groups, small and big, using the sample

median. The other three sorting variables are divided into three groups (low/neutral/high for book-to-market,

robust/neutral/weak for operating pro�tability and conservative/neutral/aggressive for investment) using 30%

and 70% quantile breakpoints. The interface of the size groups and the second variable groups gives 6 factor

building blocks per double sort.

Panel A: Size-B/M sorts

Low Neutral High

Small SL SN SH

Big BL BN BH

Panel B: Size-OP portfolios

Weak Neutral Robust

Small SW SN SR

Big BW BN BR

Panel C: Size-Inv portfolios

Conservative Neutral Aggressive

Small SC SN SA

Big BC BN BA

Table 2
Composition of the four factor mimicking portfolios SMB, HML, RMW and CMA. Factor building blocks as

described in table 1

Breakpoints Factor Construction

size sample median SMB = (SMBB/M + SMBOP + SMBInv)/3

SMBB/M = (SH + SN + SL)/3− (BH +BN +BL)/3

SMBOP = (SR + SN + SW )/3− (BR +BN +BW )/3

SMBInv = (SC + SN + SA)/3− (BC +BN +BA)/3

30
th

and 70
th

B/M sample percentiles HML = (SH +BH)/2− (SL+BL)/2

30
th

and 70
th

OP sample percentiles RMW = (SR +BR)/2− (SW +BW )/2

30
th

and 70
th

Inv sample percentiles CMA = (SC +BC)/2− (SA+BA)/2
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size e�ects.

Finally, we construct the market factor as the value-weighted return on all sample stocks,

including the negative book-equity stocks, in excess of the four-week U.S. Treasury rate.

Weighting is done based on a company’s market capitalization at the end of each month,

relative to the sum of all sample companies’ market capitalization.

4.2 Testing procedures

In this study we use the Fama-MacBeth two-step procedure to estimate �rst factor exposures

and then risk premiums. In the estimation of risk premiums we use a GMM approach in order

to cope with possible serial correlation and the generated regressor problem. We evaluate

model performance based on the GRS-test. In the following we explain the rationale behind

each technique and how to apply it.

4.2.1 Fama-MacBeth regressions

The fact that we analyse multiple �rm’s development over time, introduces cross-sectional

correlation to our model. Companies that operate on the same market are exposed to the

same environment, and thus will tend to make similar decisions at the same point in time.

In times of high economic growth, many companies will show higher stock returns, higher

pro�tability, etc. than during economic downturns. If this is the case, there is cross-sectional

correlation in the data and the error terms are correlated. Applying a simple ordinary least

squares (OLS) approach to the pooled data regardless of its two-dimensionality then leads

to incorrect standard errors. This phenomenon is called the errors-in-variables problem (see

Griliches & Hausman, 1986, for a formal description of the problem).

Asset pricing literature o�ers two main solutions to this problem. The �rst is the approach

by Black, Jensen, and Scholes (1972). They group securities on the basis of their ranked beta

values obtained from �ve years of historical data and run time-series regressions for each of

these portfolios on the model factors. Factor risk premiums are then given by the sample mean

of each factor. Such an approach is especially powerful when analyzing bonds and stocks at

the same time, because the factor loadings (i.e. the betas) have obvious meaning as factors

exposures for both types of securities.

When only stock returns are to be explained, the alternative approach developed by Fama

and MacBeth (1973) is more intuitive as factor loadings in this case originate from �rm charac-

teristics. We therefore choose this technique for our analysis.

The essence of the Fama-MacBeth approach is that estimation is split into two steps. In

the �rst step, the test assets’ exposure to each of the factors is estimated. For that, the excess

returns of the N test assets are regressed on the model factors in N time-series regressions of
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the form

Rit = ai + bi(rMt − rFt) + siSMBt + hiHMLt + riRMWt + ciCMAt + εit (18)

where ai is a constant term and bi, si, hi, ri and ci are the exposures to the market, size, value,

pro�tability and the investment factor, respectively. In the second step, risk premiums are

estimated by running T cross-sectional regressions of the form

Rit = at + λMkt
t b̂i + λSMB

t ŝi + λHML
t ĥi + λRMW

t r̂i + λCML
t ĉi + εt (19)

where at is a constant term, b̂i, ŝi, ĥi, r̂i and ĉi are the factor loadings found in step one and λLt

is the risk premium linked to factor L. The T risk premium estimates from these cross-sectional

regressions are averaged to receive one single risk premium estimate for each factor:

λ̂L =
1

T

T∑
t=1

λ̂Lt (20)

Factor loadings measure to which extent the test portfolio returns are a�ected by the model

factors. Risk premiums are a measure of how much extra excess return, ceteris paribus, a test

portfolio gives due to one unit increase in exposure to factor L, i.e. how the factor exposure is

priced.

Figure 4 illustrates the Fama-MacBeth procedure graphically.

4.2.2 GMM regressions

The second-stage Fama-MacBeth regression uses explanatory variables that are estimates

from the �rst-stage regression. Estimating risk premiums by an OLS approach does not take

into consideration that the factor loadings are generated regressors and will thus lead to

incorrect standard errors (see Pagan, 1984, for a more detailed description of the problem and

its implications).

Additionally, as risk premiums are estimated based on cross-sectional regressions, time-

variation in factor loadings is not taken into account. Petersen (2009) shows that the Fama-

MacBeth standard errors are biased in the presence of serial correlation. We run rolling

window estimations of the �rst-stage Fama-MacBeth regressions to scrutinize the assumption

of constant factor loadings and �nd that it indeed might be violated in our case. We do not show

this analysis in detail here as it is not the focus of this thesis. The interested reader though

�nds an exemplary visualization of some of the results in Figures 8 and 9 in the appendix.

Both the issues due to generated regressors and those due to time-varying betas can

be adressed by using a Generalized Method of Moments (GMM) approach to estimate risk

premiums.

The GMM approach was �rst formulated by Hansen (1982). It is just another way of looking

at estimation problems as known methods like OLS can be mapped into the GMM framework.
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Step 1: Obtain the test assets’ exposure to each of the factors

PF11

PF12

PF13

.

.

.

PF55

n

1 2 3 4
. . .

294
t

. . .

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

N time-series regressions

Step 2: Obtain the test assets’ risk premiums due to factor exposure

PF11

PF12

PF13

.

.

.

PF55

n

1 2 3 4
. . .

294
t

. . .

. . .

. . .

. . .

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

T cross-sectional regressions

Figure 4
Illustration of the Fama-MacBeth procedure.
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We con�ne the discussion here to giving a basic intuition of the GMM approach. Apart from

Hansen (1982), the interested reader is refered to Cochrane (2005, chapters 10, 11 and 13) for

an extensive overview of estimation features and implications.

Economic theory provides a set of so-called moment conditions which should hold. A

perfect model would make all conditions to be precisely met. In practice GMM �nds the

best model estimators by minimizing the overall deviation from the set of conditions. The

resulting deviations from each moment condition gives information about the importance of

each condition for the estimation. Therefore, in a second step, estimation errors are again

minimized, this time by weighting each error with its importance found in the previous step.

By using information originating from the data itsself, GMM produces unbiased estimates with

robust standard errors.

Hansen and Singleton (1982) derive and discuss the GMM approach for the setting of the

consumption-based model that is the fundament of all asset pricing approaches (see discussion

in section 2). This implies the economic theory needed for our approach, although we do not

draft the implications of investors utility functions on the GMM procedures, as this is not the

focus of this thesis.

Recall from section 2 that the fundamental asset pricing equation can be expressed as

pt = Et[mt+1xt+1] (21)

where pt is an asset’s price, mt+1 is the stochastic discount factor and xt+1 is the asset’s future

cash �ow. This equation can easily be transformed into the moment condition

0 = Et[mt+1xt+1 − pt] = Et[ut(θ)] (22)

which states that the pricing error ut(θ), which is dependent on some unspeci�ed parameters

θ, should in expectation be zero. As a correct asset pricing model should price all assets, there

is one moment condition (22) for each test asset.

By means of the Law of Iterated Expectations, equation (21) can be transformed into the

Euler equation

1 = Et[mt+1rt+1] (23)

where rt+1 is an asset’s return. The Euler equation implies the following moment conditions

for models that estimate returns instead of prices

0 = Et[mt+1rt+1 − 1] (24)

In our setting of estimating the �ve-factor model for a set of N test portfolios, we thus have

N moment conditions of the form (24). GMM estimation then �nds estimates for the model

parameters by minimizing all N pricing errors simultaneously.
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4.2.3 Evaluating model performance

In addition to assessing the absolute performance of the �ve-factor model, we also look at

its performance relative to a model without the two new factors. The intuition behind this

is the principle of parsimony, i.e. that a more extensive model is only appropriate when it

adds considerable informational value to the sparser model. If model �t does not increase

signi�cantly, the simpler model gives about the same information and should hence be prefered.

As one removes the pro�tability and the investment factor, one arrives at the Fama-French three-

factor model with the market, size and value factors as independent variables. As discussed in

section 2, others �nd evidence that all three factors have explanatory power on the German

stock market (see e.g. Ziegler et al., 2003). The three-factor model thus seems like a proper

benchmark model for the German data. For Norway though, the latest research rejects the

signi�cance of the value factor for explaining Norwegian stock returns (Næs et al., 2009). Hence,

in this case, using a two-factor model that contains the market and the size factor as benchmark

appears more appropriate.

In an attempt to embed this intuition more directly in our speci�c data, we run stepwise

regressions that backwards eliminate unnecessary factors based on the Akaike Information

Criterion. To enhance clarity we do not show the results of these regressions here. The

algorithm can however be found in our documentation of used codes. We can report that the

stepwise regressions do not converge to one speci�c model that shows best performance for all

test portfolios, neither for the German nor the Norwegian data. A two-factor model comprising

the market and size factors generally appears to �t best to the small stock portfolios, while the

value factor seemingly is more relevant in regressions on large stock portfolios. In order not to

lose the main thread of this thesis we leave out operating with individually adjusted benchmark

models. Instead, we build on existing evidence and argue that the �ve-factor model is useful

for describing German stock returns when it improves model �t relatively to the three-factor

model and enlarges the understanding of Norwegian stock returns when it enhances model �t

compared to the mentioned two-factor model.

In the context of the �rst-stage Fama-MacBeth regressions, model performance can be

assessed by looking at the absolute size of the estimated intercepts. If a model is correctly

speci�ed and thus captures all return variation, its pricing error ai equals zero (Merton, 1973).

In our setting of multiple simultaneous regressions on the set of test portfolios, this condition

is ful�lled if all N regression intercepts jointly equal zero. This can be tested with the modi�ed

F-test developed by Gibbons et al. (1989), in the following only referred to as GRS-test. It has

the form

T

N
× T −N − L

T − L− 1
× α̂′Σ̂−1α̂

1 + µ′Ω̂−1µ
∼ F (N, T −N − L) (25)

where N is the number of simultaneous regressions or test portfolios, T is the number of

time periods (in our case months), L is the number of explanatory variables i.e. factors in the
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model, α̂ is an N × 1 vector of estimated intercepts, Σ̂ is an estimate of the residual covariance

matrix, µ is an L × 1 vector of factor portfolios’ sample means, and Ω̂ is an estimate of the

factor portfolios’ covariance matrix. The null of the GRS-test is H0 : αi = 0,∀ i = 1, . . . , N .

If the null hypothesis holds, the GRS-statistic will be close to zero. The larger the regression

intercepts are in absolute value, the greater the GRS-statistic.

When estimating risk premia in the GMM-setting, model �t can be assessed by evaluating

the size of the pricing errors produced by the GMM. This is done by the test of overidentifying

restrictions, also called J-test (see Cochrane, 2005, chapter 10). It has the form

T × [gT (θ̂)′S−1gT (θ̂)] ∼ χ2(N − L) (26)

where T is the sample size, gT (θ̂) is the sample mean of the pricing errors, S is the variance-

covariance matrix of gT , N is the number of test portfolios (moments) and L is the number

of model factors (parameters). Under the null of this test, the second-stage GMM estimate is

χ2
-distributed with N − L degrees of freedom. Models are thus rejected when J-statistic is too

high.
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5 Data

5.1 Motivation for building factors from raw data

As the number of publications dealing with empirical multi-factor models is increasing, more

and more researchers make their constructed factors publicly accessible. The main source of

factors based on U.S. data is Kenneth French’s own database (French, 2016). Brückner, Lehmann,

Schmidt, and Stehle (2015) give an overview of the available sources of German factor data.

Extensive databases which cover several countries are among others provided by P. S. Schmidt,

Von Arx, Schrimpf, Wagner, and Ziegler (2014) and Marmi and Poma (2012). Ødegaard (2016a)

provides extensive data on factors for the Norwegian stock market. Nevertheless, none of

these databases provide data for the Fama and French-style pro�tability and investment factors

for Germany and Norway as we write this thesis. One possible approach would be to use

existing data for the market, size and value factor and only construct the two missing factors

from raw data. Brückner et al. (2015) argue however that the underlying assumptions for

factor construction di�er considerably from one database to another so that the choice of data

provider in itself can lead to di�erent model outcomes. With this in mind, we conclude that

it is most consistent to construct all model factors from raw data so that all are based on the

same set of assumptions and that we are certain about all assumptions made.

All data analysis is conducted in R. The interested reader can look up programming details

or follow our steps of analysis by looking at the R code attached in the appedix. To enhance

clarity, we divide the code into several parts. Later parts are however based on the output of

earlier parts and cannot be used as individual R programs. As we show the code in the order of

apprearance in the program we use, our results can still be reproduced by running all codes.

Further, we want to spare the reader many iterations of the same content and thus only show

one example code where we actually run the same analysis several times. In this sense we show

the code for the analysis of the German data, for one currency and for the base scenario only.

Most of the codes are based on our own understanding. We however follow the "recipe" of

Diether (2001) for calculating the GRS-statistic and use the code provided by Ødegaard (2016b)

as basis for GMM estimation of the risk premiums.

5.2 Sample construction

Our main source of data is the Compustat Global database. From there we extract two data �les

for each country, one that contains all available security data and one that contains all �rms’

accounting data. Table 3 gives an overview of the sample variables that we retrieve and use

in the following analysis. The original German security data set contains stock information

of in total 1210 companies, while the original German accounting data �le contains data of

1065 �rms. In the Norwegian sample the corresponding total numbers of �rms are 433 in the

security data set and 354 in the accounting data set. In order to make the data usable for our
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Figure 5
Number of companies in our sample, July 1990-December 2015.

purpose of analysis, we �lter and adjust the raw data and calculate new variables on the basis of

the given ones. Tables 4 and 5 give an overview of how each of these steps a�ects the number

of observations, �rms and time periods in our data set. In the following subsections we discuss

each step in further detail. After all security or accounting data-speci�c adjustments, we merge

the two revised data �les into one single sample. In this step the number of observations is

reduced quite a bit, since we only keep observations for which we have both accounting and

stock price data for at least one time period. Our �nal data set then contains in total 973 German

and 268 Norwegian �rms. Figure 5 shows the number of �rms per sample month. It is obvious

that the number of sample �rms di�ers a lot from the beginning of our sample period to its

end. The German data set comprises about 100 companies in the beginning of the nineties and

around 450 companies from year 2001 until the end of our sample period. The Norwegian data

set contains no more than 20 companies for the early nineties and about 100 companies from

year 2007 until the end of our sample period.

5.2.1 Time period and compounding

From Compustat we extract all available data for the period of June 1989 to December 2015.

This data enables us to investigate returns from July 1991 until December 2015, i.e. 294 months,

since the analysis of asset returns at any time t requires accounting data with a lag of two years
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Table 3
Overview of the sample variables retrieved from Compustat Global and used in our study.

Variable Content

Common ID variables
datadate Date

conm Company Name

gvkey Global Company Key

exchg Stock Exchange Code

�c Incorporation Country Code

Security variables
ajexdi Adjustment Factor

cshoc Shares Outstanding

curcdd Currency Code Daily

iid Issue ID

prccd Daily Close Price

tpci Issue Type Code

Accounting variables
curcd Currency Code

fyear Fiscal Year

fyr Fiscal Year-end Month

at Total Assets

cogs Costs of Goods Sold

lt Total Liabilities

revt Total Revenue

seq Stockholders Equity

txdb Total Deferred Taxes

txditc Deferred Taxes and Investment Tax Credit

xint Total Interest Expense

xintd Interest Expense Long-Term Debt

xsga Selling, General and Administrative Expense

xopr Total Operating Expenses

xopro Other Operating Expenses
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Table 4
Germany: Development of the number of sample observations from the original data �le to our �nal data set. The

single steps are described in detail throughout section 5.

Panel A: Security data observations companies months

number di� number number

Compustat �le 181330 1210 307

Local exchanges 178765 -2565 1206 307

Only stocks 177090 -1675 1176 307

Omit ZAR 176831 -259 1169 307

Day >25 173943 -2888 1168 307

Return calculation 159605 -14338 1164 306

Penny stocks 149520 -10085 1159 306

Data trimming 141697 -7823 1158 306

Panel B: Accounting data observations companies years

number di� number number

Compustat �le 13967 1065 27

Exchanges 13730 -237 1050 27

Omit at <0 13701 -29 1050 27

Omit BE <0 13224 -477 1046 27

Calculate Inv 11572 -1652 1017 26

Panel C: Merged �le observations companies years

number di� number number

Merge �les 9591 984 26

Align ME at june with τ − 1 8949 -642 973 25

Match with return data 98811 973 294
∗

∗
months
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Table 5
Norway: Development of the number of observations from the original data �le to our �nal data set. The single

steps are described in detail throughout section 5.

Panel A: Security data observations companies months

number di� number number

Compustat �le 41754 433 307

Local exchanges 40285 -1469 432 307

Day >25 37927 -2358 429 307

Price >1 35979 -1948 426 307

Return calculation 31360 -4619 416 306

Data trimming 29381 -1979 412 306

Panel B: Accounting data observations companies years

number di� number number

Compustat �le 3736 356 27

Local exchanges 3715 -21 355 27

Omit at <0.05 3690 -25 354 27

Omit BE <0 3578 -112 354 27

Calculate Inv 2678 -900 330 26

Panel C: Merged �le observations companies years

number di� number number

Merge �les 1878 301 26

Align ME at june with τ − 1 1581 -297 270 25

Match with return data 16391 268 294
∗

∗
months
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(more about this in Section 4.1.3 and Figure 3). The reason for this sample choice is twofold.

Firstly, we want to align our study with the studies of international stocks markets by Fama

and French (2012, 2015b) as well as Novy-Marx (2013) which all are based on this very time

horizon. Secondly, Compustat Global only provides data from the mid-80s due to poor reporting

in prior periods. Especially small stocks were not present in the global database before 1989. In

recent periods a higher proportion of companies reports its fundamentals.

The accounting data in Compustat Global is naturally reported annually. While one can

choose between daily and monthly compounding of security data for North-American countries,

Compustat does only provide daily data in its global database. We refer to the general practise

of testing multi-factor models on the basis of monthly stock returns (see for example Fama and

French (2015a), Næs et al. (2009) and Stehle and Schmidt (2014)) and convert the daily securities

data obtained from Compustat to monthly data. As monthly stock prices in Compustat are

de�ned as close prices for each calendar month, we aim to reduce our dataset by keeping only

end-of-month observations. Our data set contains several cases where a company’s reported last

day of the month deviates considerably from the actual last trading day of the respective month.

This occurs whenever a stock is not traded at the last days of a month, a case that mostly applies

to small stocks. As we later on interpolate between the end-of-month observations to calculate

monthly returns, keeping mid-month observations would lead to uneven return intervals,

which could not be compared to regular risk-free rate periods. Consequently, we restrict our

sample to end-of-month observations only. We however allow the reported data to deviate

slightly from actual last trading days – might it be due to inaccurate reporting or international

di�erences in local holidays – by de�ning reported last day of the month observations as

end-of-month observations if they fall on the 26
th

or later. This reasoning is supported by

the fact that our data shows a clear breakpoint between the number of observations with an

end-of-month day lower than the 26
th

and the number of observations with an end-of-month

day of at least 26 with the vast majority of observations belonging to the latter group.

5.2.2 Operational vs �nancial �rms

The �nancial statements of most �nancial �rms di�er fundamentally from those of operational

�rms and leverage has a di�erent role in each of the �rm types. The following example

illustrates this point. While operational �rms’ capital ideally should consist of at least 50%

equity, banks (as an example of a �nancial �rm) normally hold no more than 10% equity. This is

the result of a bank’s role as �nancial intermediary and asset transformer, rather than a sign of

�nancial distress. As the measures of �rm characteristics that we de�ne in our further analysis

do not take these fundamental di�erences into consideration, including �nancial �rms in the

analysis may lead to biased results. Therefore we exclude �nancial �rms, which are identi�ed

by a standard industrial classi�cation (SIC) code between 6000 and 7000, from our sample. This

�ltering is already done when we retrieve the data �le from Compustat, so �nancial �rms are

29



not part of the Compustat �le numbers shown in Tables 4 and 5.

5.2.3 Exchange rates

In our study, we take the view of an U.S. investor who can choose to invest in the German or

Norwegian market as an alternative to his U.S. home market. Therefore we convert all data

in our sample to US Dollars (USD). The security data from Compustat does only contain local

currency observations after we have removed the stocks listed at foreign exchanges (see Section

5.2.5), so in this case we only need exchange rates between USD and Deutsche Mark (DEM),

Euro (EUR) and Norwegian Kroners (NOK). The accounting data comes however with a twist.

As some domestic companies have their main operations in foreign countries, their accounting

numbers are reported in foreign currencies. These are Australian Dollars (AUD), Great Britain

Pounds (GBP), and USD within the German sample, and EUR and USD in the Norwegian sample.

We keep these companies in our sample as long as they are legally registered at any German or

Norwegian stock exchange, and thus have stocks that are traded in domestic currency on the

local market. In the German security �le we have 259 observations, or 7 companies, which do

not ful�ll this requirement since they are all denoted in South African Rand (ZAR). We omit

these observations from our sample. We obtain most exchange rates from the U.S. Federal

Reserve. The DEM/USD exchange rate however, is the MSCI rate taken from Datastream. All

original exchange rate series contain daily closing spot rates. From these we calculate two sets

of exchange rates for each currency which contain rates for each �scal year end month of each

accounting year. The �rst set consists of balance sheet rates, de�ned as the exchange rate of

the last day of a company’s �scal year, i.e. the end-of-month rate depending on the �scal year

cycle. The second set comprises pro�t and loss exchange rates which we de�ne as the mean of

all daily exchange rates contained in a company’s �scal year.

5.2.4 The risk-free rate

In line with the assumption of an U.S. investor, we use the 4-week U.S. Treasury bill, provided

by the Center for Research of Security Prices (CRSP), as a proxy for the risk-free rate. Since this

time series comprises daily returns, we calculate monthly returns by multiplying with 30. This

is a simpli�cation given that the return periods we are looking at not always have the span of

exactly 30 days. An alternative would be to align the time span of the risk-free rates with the

speci�c time span of each stock return period. As these rates are quite small in size compared

to the stock returns, we assume though that the simpler alternative is su�cient.

5.2.5 Choice of stock exchanges

Since our Compustat query asks for all listed German and Norwegian stocks, the original data

set contains not only stocks that are listed at a local stock exchange, but also those that are

traded at foreign stock exchanges. Most of the companies that list at foreign exchanges also
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have stocks at least at one local exchange. We observe that the foreign listings of this kind are

duplicates of the local listings, as they show the exact same number of shares outstanding and

their stock price is simply converted to the foreign exchange’s local currency. Consequently, we

remove the observations listed at the foreign exchange to avoid double counting. This logic is

in line with Fama and French (1993), where the authors exclude American Depository Receipts

(ADRs), i.e. cross listings of foreign stocks on the U.S. market (see A. Karolyi, 2003), from

their sample. In addition to these double-listings, there are a few companies – four German

�rms and one Norwegian �rm – in our sample, which are listed on foreign exchanges only.

We exclude these observations from our sample since they might be subject to foreign rules

and regulations e.g. with regard to taxation or accounting and thus not be fully comparable

to locally listed stocks. Besides, these observations might lead to exchange rate uncertainties

that do not apply to the locally listed stocks. By excluding them from the sample, we focus on

country speci�c e�ects only. In the case of Germany we keep stocks listed at all eight domestic

stock exchanges, including those traded at Xetra. For the Norwegian data we keep stocks listed

at Oslo Stock Exchange and those traded over the counter (OTC).

5.2.6 Common vs preferred stocks

Analyses of American stock data are normally restricted to common stocks as the nature of

U.S. preferred stocks is closer to bonds than to stocks (Brückner et al., 2015) and therefore have

quite di�erent dynamics. In Germany it is very common that enterprises issue both ordinary

and preferred stocks. As argued by Stehle and Schmidt (2014), German preferred stocks have

more in common with ordinary stocks than with bonds and should hence be included when

studying stock returns. Therefore we keep preferred stocks in our sample when analyzing the

German stock data. In Norway preferred stocks are less common although some companies

do issue so called A- and B-stocks. Reading several annual reports of concerned companies

gave us the impression that the de�nition of these stock types is quite vague and di�ers from

company to company. In most cases which we examined, A-stocks were classi�ed as common

shares while B-stocks were de�ned as either another series of common shares or as shares

with restricted voting rights, restricted dividend payments etc. In some other cases B-stocks

are classi�ed as common shares, while A-stocks are subject to restrictions. The ambiguity in

the de�nition of B-stocks makes it di�cult for us to evaluate whether Norwegian B-stocks

should be included or excluded from our sample. As Compustat de�nes all Norwegian shares

to be common, irrespective of the existence of di�erent share series, we assume resemblance to

the German model and include all Norwegian shares in our analysis.

5.2.7 Penny stocks

Shares of very low value, commonly called penny stocks, can distort our analysis of returns

since even slight stock price increases are noted as very high returns. This is misleading when
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it does not re�ect the rise of a growth company but simply shows minimal price �uctuations of

inconsiderable stocks. The U.S. Securities and Exchange Commission (2013) de�nes a penny

stock as a security that is “issued by a very small company that trade(s) at less than $5 per share.”

According to the NASDAQ stock market rules (Nasdaq, Inc., 2016), stocks with this property

do not qualify for being listed yet or get delisted. This implies that studies of the U.S. stock

market automatically do not include penny stocks. In Germany however, there was no delisting

rule until recently (Stehle & Schmidt, 2014). Consequently, our German data set contains a lot

of penny stocks of companies that went bankrupt but where not delisted. To identify these

disadvantageous observations, we need a proper de�nition of German penny stocks. One of the

current Frankfurt Stock Exchange general standard listing requirements is that the “company

must provide evidence of a minimum nominal capital of EUR 750.000,- [. . . ] paid-in-capital

and the nominal value of shares must not be less than one Euro.” (FrankfurtStockExchange.de,

2016). We use this as the de�nition for German penny stocks and remove all observations from

the sample that do not ful�l these requirements. For the time period before 1999, requirements

are applied to prices denoted in DEM by using the irrevocably �xed conversion rate of 1,95583

DEM/EUR set by The Council of the European Union (1998). In the absence of a formal rule for

�rst sample years, we apply the market capitalization requirement to all sample years, although

the threshold value of EUR 750.000,- due to in�ation might be too high for earlier years. To

check if this simpli�cation has an impact on our results, we have looked closer at the companies

that become excluded by this procedure and found that most penny stocks occur after year

2000. This lets us assume that an in�ation adjustment of the market capitalization requirement

would not change our results signi�cantly. The delisting rules for the Oslo Stock Exchange say

that a company must not have a share price of less than one NOK during a period spanning

more than six months (Oslo Børs, 2016b). Because of the six-month rule, some companies do

have an unaccepted stock price for shorter periods. These observations are excluded from our

analysis.

5.2.8 Calculation of returns

As Compustat does not provide a return variable, we compute monthly individual stock returns

as

rit =

pit
adjit

pit−1

adjit−1

− 1 (27)

where pit is the monthly close price of stock i and adjit is the Compustat adjustment factor that

adjusts prices for stock splits and stock dividends. Stock splits and dividends lead to changes of

the actual stock price although the total company value remains unchanged. A simple example

of this is a 2-for-1 stock split where 100 company stocks at the price of 50 are diluted to 200

stocks at the price of 25. Due to this, actual prices before and after such an occurrence are
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not directly comparable and return computation across these prices would give misleading

results. The adjustment factor incorporates these cases. It takes the value 1 when a stock series

are not subject to any stock splits or stock dividends. A 2-for-1 stock split in year t leads to

adjustment factors of 2 for all periods prior to year t. Adjustment factors are cumulative, so an

additional stock split in year t− 2 leads to adjustment factors of 4 for all years prior to year

t− 2. Adjustments for stock dividends are indicated in a similar manner.

In Figure 6 we show the return distributions that we get by analyzing the German and

Norwegian data for the sample period spanning July 1990 to December 2015. What sticks out

is that our sample contains a disproportionately high number of stocks with a return equal

to zero. A return of exactly zero can only occur when neither the number of shares, nor the

stock price has changed from one period to another. Particularly the latter is quite improbable

given steady stock market movements. A closer look into the data gives us the impression that

returns exactly equal to zero indicate insu�cient reporting, since the respective observations

also lack other information. Another explanation for zero or close-to-zero returns can be low

trading volumes and hence poor liquidity of the stock. A closer look at our data shows though

that using a trading volume threshold does leave large parts of the zero-return observations

unexplained. We therefore choose to toss out all observations with zero return, although this

is a simpli�ed technical step and not directly based on a natural selection criterion.

Table 6 shows key measures of the return distribution at the two stock markets. It raises

the question of how to treat observations with extreme returns. On the one hand, investors are

particularly concerned about just these extreme realizations, on the other hand it is ordinary

practise to exclude extreme values in empirical work to avoid that results are distorted by

these outliers (see for example Aharoni et al., 2013; Novy-Marx, 2013). In principle, a correctly

speci�ed asset pricing model should price all assets, i.e. also extreme cases. Looking closer

at out data, we observe that the extreme returns are mostly caused by single �rms that have

quite low stock prices but are still not covered by the penny stock de�nition. In line with the

discussion in section 5.2.7 we consider it misleading to keep these observations in the sample

and thus choose to follow ordinary practice and trim our sample returns by 0.5 percent on

each side of the distribution. The right hand side of Table 6 shows that these adjustments lead

to a much more normalized return distribution. The right hand side of Figure 6 con�rms this

graphically. It shows the return distribution after all adjustments, and compares it to a normal

distribution that has the same mean and standard deviation as the sample data. We observe

that returns are bell-curve shaped, but have a higher kurtosis than the corresponding normal

distribution. The application of a Jarque Bera test to the trimmed data sample rejects the null

hypothesis of normally distributed returns. This is in line with others’ �ndings concerning

return distributions. Eberlein and Keller (1995) �nd that daily return data of DAX companies

has a hyperbolic distribution.
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Table 6
Descriptive statistics of the end-of-month sample stock returns for the period of July 1990-December 2015, before

and after adjustments. Both samples include only stocks listed at local stock exchanges and penny stocks are

removed. The adjusted sample equals the original sample less the 0.5% highest and lowest observations and does

not contain returns that equal exactly zero.

Original sample Adjusted sample

Panel A: Germany

Min -95.39 % -52.00 %

Mean 0.65 % 0.00 %

Max 13900.00 % 83.10 %

Std 44.72 % 14.02 %

Kurtosis 63270.95 4.46

Skewness 212.74 0.70

Panel B: Norway

Min -90.43 % -47.06 %

Mean 0.70 % 0.55 %

Max 471.43 % 66.67 %

Std 16.11 % 13.92 %

Kurtosis 48.53 2.43

Skewness 2.83 0.57
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Figure 6
Distribution of individual monthly stock returns before and after adjustments, July 1990-December 2015. Returns

are computed as the change in stock price from month t− 1 to month t, divided by the stock price in t− 1. All

stock prices are adjusted for stock splits and dividends. The adjusted sample excludes the 0.5% lowest and 0.5%

highest observations as well as returns that equal exactly zero.

5.2.9 Negative book equity and book assets

When a �rm shows both negative operating pro�t and negative book equity (BE), the operating

pro�tability (OP) measure will turn out to be positive. This is against the idea that a high level

of OP should be assigned to �rms that are more pro�table than their competitors. Mixing

highly pro�table �rms with those �rms that do very badly, will prone to distort our analysis.

Therefore we do not use �rms with negative book equity when constructing the pro�tability

measure. For consistency negative BE �rms are omitted as well when de�ning the other sorting

variables. They are however included in the market portfolio as this is supposed to re�ect all

stock variety. An equivalent reasoning lets us omit �rms that record a negative book value of

assets (at) as keeping them would lead to misleading measures of investment. Tables 4 and 5

show however that this is only a minor problem in our data set.
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6 Results

6.1 Overview of the test portfolio returns

6.1.1 Simple sorts

To get a �rst idea of which e�ects might be present in our German and Norwegian stock data,

we look at the return spreads between the two extreme portfolios that result from sorting and

splitting sample stocks by the single sorting characteristics. Here we only look at one anomaly

at the time while we in Section 6.1.2 adress returns of portfolios based on double sorting. Figure

7 shows the cumulative return of the two extreme portfolios throughout the 294 months of

our sample period for each of the two countries. Panel (a) shows the size spread, Panel (b) the

value spread, Panel (c) the pro�tability spread and Panel (d) the investment spread.

In the sort on size, German megacap stocks outperform microcap stocks until the year 2004.

Then the trend reverses and microcap stocks give a higher return than megacap stocks until the

end of our sample period. For the Norwegian data we �nd a large and unambigous spread with

microcap stocks clearly outperforming megacap stocks throughout the entire sample period.

When sorting by �rm value we cannot �nd clear return di�erences between German high

and low book-to-market stocks until the year 2003. Henceforth, high B/M stocks beat low B/M

stocks, consistent with Fama and French’s �ndings. For the Norwegian data we cannot identify

the same pattern. From year 2000 on, high value stocks show a lower accumulated return than

low value stocks, but since the spread then is not increasing in the course of time, we cannot

report a persistent value e�ect for the Norwegian data.

The sort on operating pro�tability does not reveal any particular return pattern of the

German data. For the Norwegian data we �nd that weak pro�tability stocks generate higher

returns than robust pro�tability stocks. This is the opposite of the �ndings for U.S. companies.

Splitting stocks by investment behavior does not seem to generate any return spread,

neither for German nor for Norwegian stocks.

This �rst analysis leaves us with the conjecture that neither the pro�tability nor the

investment factor explain return di�erences of the German stock data. For the Norwegian data

a pro�tablitity factor might have explanatory power while the investment factor does not seem

to play a role. These results are nevertheless based on appearance alone so we will support

them with actual data analysis in the following sections. Note as well that the returns that are

shown here are not adjusted for market risk. It thus remains to prove that premiums found

exceed the market premium. We adress this topic in Section 6.5.

6.1.2 Double sorts

Table 7, shows the average monthly percentage excess returns on the test portfolios formed by

double sorts on size and B/M (Panel A), size and OP (Panel B), as well as size and Inv (Panel C).
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(a) Size sorts

(b) Value sorts

(c) Operating pro�tability sorts

(d) Investment sorts

Figure 7
Spread between the two extreme portfolios of simple sorts by (a) company size, (b) value (B/M), (c) pro�tability

(OP) and (d) investment (Inv), July 1991 to December 2015, 294 months. Size is a �rm’s market capitalization at

the end of June of year τ . B/M is book equity at the end of �scal year τ − 1 divided by market equity measured at

the end of December of year τ − 1. OP is de�ned as total revenues less total operating expenses and total interest

expenses all divided by book equity, all measured at the end of �scal year τ − 1. Inv is the growth of total assets

from the end of �scal year τ − 2 to the end of �scal year τ − 1. Portfolios are updated in the end of each June,

with weights hold constant throughout the following 12 months. The graph shows monthly value-weighted

accumulated portfolio return in percent, not adjusted for market risk. The green lines show German portfolios,

the black lines the Norwegian ones.
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We cannot detect any clear size-pattern in the German data. In the size-B/M sorts, average

returns seem to evolve randomly in the vertical dimension when controlling for �rm value.

The only exception is an extraordinary high average return of the �rms that both are in the

group of the smallest �rms and in the group of lowest value. This risk premium might re�ect

the investors’ uncertainty about the development of this obviously most risky group of stocks.

The size-OP sorts resemble more the classical size e�ect patterns, as average returns of small

�rms are always higher than those of big �rms, ceteris paribus. In between those two extreme

points of the size scale we can however not detect a clear downwards trend. The returns of the

mid-level size groups show in almost all cases a peak before falling again. For the size-Inv sorts

we �nd falling average returns for the �rms with the most conservative investment behavior,

while returns increase in size for the �rms with the most aggressive investment behavior. For

mid-level investment behavior returns are oscillating without a clear trend. This ambiguity is

consistent with our �ndings in Section 6.1.1 that none of the German extreme size portfolios

dominates its counterpart over the whole sample period. In line with the large spread that we

observe in Panel (a) of Figure 7, we �nd the existence of a classical size e�ect in the Norwegian

data as the microcap portfolios’ average return falls consistently with increasing �rm size. An

example is the size-BM sort where monthly average excess returns for microcaps are 1.85%,

1.91% and 2.02%, with respective megacap-returns equal to 0.78%, 0.92% and 0.42%. This trend

is present in all portfolio sorts except for the companies with the most aggressive investment

behavior. In this case a premium applies to large companies investing heavily.

The tendency of German high value stocks to outperform low value stocks that we found

in Section 6.1.1, can also be seen in Panel A from Table 7. When controlling for size, the lowest

value portfolios have average returns much below the high value portfolios. An exception is

the high premium applying to the group of smallest and lowest value �rms. While only looking

at the endpoints of the value scale gives a clear picture, returns are not falling steadily with

increasing value, but oscillate for the mid-level value groups. This might be due to the unclear

value e�ect before the year 2003. For Norwegian data we do not �nd any signi�cant spread

between the two extreme value portfolios. This absence of the value e�ect is also re�ected in

the double sort return data as we �nd increasing returns for microcap stocks but an oscillating

and rather decreasing return trend for medium-sized and megacap �rms.

The spread analysis above suggests that there is no pro�tabily e�ect in the German data.

Table 7 shows however that when controlling for �rm size, stocks of the most pro�table �rms

outperform those of weak pro�tability �rms. This is valid for all size groups except the microcap

portfolios. For Norwegian stocks we assumed an opposite pro�tability e�ect. As the size e�ect

is ruled out, we now �nd robust stocks outperforming weak stocks for both micro- and megacap

�rms. While we �nd a monotonous rise in average returns within the megacap group, which

di�ers from 0.57% in the weak pro�tability group, via 0.71% in the mid-level OP group to

0.73% in the robust OP group, return development of the microcap stocks is not that steady.

Additionally, in the group of medium-sized companies weak pro�tability stocks have higher
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returns than robust pro�tability stocks.

The graphical analysis in Figure 7 lets us assume that we do not have any investment e�ect

in neither the German nor the Norwegian data. Table 7 shows however that at the German

stock market conservative investment strategies lead mainly to higher stock returns than

aggressive investing. For megacap �rms the opposite applies. The same pattern is observable

in the Norwegian data. We �nd Norwegian average returns to be falling steadily as investment

evolves from conservative to aggressive except for microcap stock returns which are higher for

aggressive than for conservative investment stocks. To give an example, the average excess

return of microcap-portfolios falls from 3.12%, to 1.96%, ending at 0.88%.

The analysis in this section leaves us still uncertain about whether or not operating prof-

itability and investment behaviour are useful to explain asset returns in Germany and Norway.

To �nd more evidence, we conduct regression analyses in Section 6.3. Before that we give an

overview of the returns of the factor mimicking portfolios.

6.2 Overview of the factor mimicking portfolio returns

The average return of the �ve factor mimicking portfolios, their standard deviations and t-

statistics are shown in Panel A of Table 8. We �nd that for Germany only the market factor is

signi�cantly di�erent from zero with an average return of 0.84%. For Norway, both the market

and the size factor have e�ects that are signi�cantly di�erent from zero at the 5% level. The

average return of the market portfolio is 1.01%, while the average return of the SMB factor

portfolio is 0.73%.

Table 19 in the appendix gives more insight into why most of the factors do not have a

signi�cant e�ect in explaining asset returns in our data. We list the average percent returns,

standard deviations and t-statistics of the RHS portfolios that form the basis for factor portfolio

construction. Almost all of these portfolios have signi�cantly positive average returns at least

at the 5%-level.

These do not di�er that much given relatively high standard deviations. When these

building blocks however are combined to the hedging portfolios in the way described in Table

2, large parts of the long- and short position returns cancel out and hence give average factor

portfolio returns that are insigni�cantly di�erent from zero, given the relatively high return

variation.

In Panel B of Table 8 we further show the correlations between the factor portfolio returns.

In an ideal model, explanatory factors should be independent from each other, i.e. the closer

the correlation coe�cients are to zero, the better. We do not detect this in our data set. For

Germany we get market portfolio returns that are negatively correlated with all other factor

portfolios. Particularly the quite high negative correlation of -0.44 between the market and the

SMB portfolio stands out. Further the returns of SMB and HML have a positive correlation of

0.27, while RMW and CMA have a positive correlation of 0.31. For Norway we �nd overall
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Table 7
Average monthly excess return per test portfolio in the period from July 1991 to December 2015 by three di�erent

double sorts, all numbers in %. Portfolios are constructed as described in Table 17. Each portfolio’s return is the

sum of the returns of the stocks it contains, weighted with the respective �rm’s market capitalization. Excess

returns are portfolio returns minus the 4-week U.S. Treasury bill rate.

Germany Norway

Low 2 3 4 High Low 2 High

Panel A: Size-B/M portfolios

Small 2.08 0.26 0.88 1.08 1.49 1.85 1.91 2.02

2 0.42 1.22 0.91 1.09 0.80

3 0.35 0.76 1.20 0.72 1.33 1.29 1.48 1.22

4 0.60 0.96 0.73 1.18 1.59

Big 0.85 0.54 1.00 0.69 1.61 0.78 0.92 0.42

Panel B: Size-OP portfolios

Small 1.23 1.32 0.91 1.23 1.03 2.07 1.88 2.23

2 0.67 0.72 0.71 1.21 1.03

3 0.57 0.81 0.57 0.99 0.97 1.52 1.22 1.37

4 0.85 0.91 0.97 0.91 1.39

Big -0.07 0.64 0.86 0.89 0.72 0.57 0.71 0.73

Panel C: Size-Inv portfolios

Small 1.62 1.34 0.56 0.83 0.44 3.12 1.96 0.88

2 0.82 0.63 1.09 1.34 0.58

3 1.00 0.55 0.89 1.07 0.51 1.84 1.08 0.62

4 0.89 1.18 1.00 1.03 0.73

Big 0.67 0.90 0.61 0.80 0.98 0.67 0.50 0.97
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Table 8
Summary statistics of monthly factor returns, July 1991-December 2015. Averages and standard deviations are

shown in percent. Mkt is the value-weighted return on a portfolio of all sample stocks in excess of the four-week

US Treasury bill rate. SMB is the size factor, HML is the value factor, RMW is the pro�tability factor and CMA is

the investment factor. Factors are constructed as described in Table 2.

Germany Norway

Panel A: Averages, standard deviations and t-statistics

Mkt SMB HML RMW CMA Mkt SMB HML RMW CMA

Mean 0.84 0.16 0.48 -0.06 -0.10 1.01 0.73 -0.29 -0.44 0.27

Std 5.77 3.95 5.17 5.77 5.44 5.98 5.10 7.70 7.60 6.33

t-stat 2.51 0.70 1.59 -0.17 -0.30 2.89 2.46 -0.65 -0.98 0.74

Panel B: Correlations

Mkt SMB HML RMW CMA Mkt SMB HML RMW CMA

Mkt 1.00 -0.44 -0.11 -0.16 -0.26 1.00 -0.13 0.11 -0.10 0.08

SMB -0.44 1.00 0.27 -0.12 0.12 -0.13 1.00 -0.14 -0.37 0.00

HML -0.11 0.27 1.00 0.06 0.15 0.11 -0.14 1.00 -0.18 0.08

RMW -0.16 -0.12 0.06 1.00 0.31 -0.10 -0.37 -0.18 1.00 -0.05

CMA -0.26 0.12 0.15 0.31 1.00 0.08 0.00 0.08 -0.05 1.00

less correlation between the factor returns. What sticks out is the negative correlation of -0.37

between the SMB and the RMW factor returns.

High factor correlations seem to be an issue in the U.S. as well. Fama and French (2015a)

�nd a positive correlation coe�cient equal to 0.70 between HML and CMA. Additionally they

�nd negative correlations between CMA and the market portfolio, and between HML and

RMW equal to -0.39 and -0.36 respectively.

Since we �nd relatively much correlation between the model factors, we conduct auxiliary

regressions where four factors are used to describe average returns on the �fth. Auxiliary

regressions that have an intercept that is statistically insigni�cant from zero, indicate factor

redundancy. In that case the explanatory power of the �fth factor is fully absorbed by the

other four factors. Regression results are shown in Table 20 and Table 21 in the appendix. In

Germany (Panel A) the auxiliary regression on the market factor is the only one that produces

an intercept signi�cantly di�erent from zero (at the 1% level). For Norway both the regression

on the market factor and the one on the size factor have intercepts indistinguishable from

zero, with signi�cance levels of 1% and 5% respectively. According to this simple method HML,

CMA and RMW (and for Germany SMB additionally) are all redundant in describing average
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monthly excess returns. To investigate this further we perform the regression approach by

Fama and MacBeth (1973) in the next section.

6.3 Factor exposures

Tables 9 to 14 show the factor exposures and their signi�cance estimated by the �rst-step

Fama-MacBeth regressions on test portfolios sorted on size-B/M, size-OP and size-Inv. The

right-hand-side of the tables shows the coe�cients produced by a �ve-factor model while

the left-hand-side of table shows the equivalent factor loadings estimated by the respective

benchmark model.

We start with an analysis of the factor exposures of the German test portfolios, shown in

Tables 9 to 11. We observe that the three-factor and the �ve-factor model produce very similar

factor exposure estimates and signi�cance levels for the common factors. In the following

discussion, we therefore focus on the estimated coe�cients of the �ve-factor model.

We �nd that all test portfolios have a signi�cant exposure of about 1 to the market factor,

regardless of the portfolio sort. Besides, we observe that all test portfolios but those belonging

to the largest size group are signi�cantly exposed to the size factor. Exposures are highest for

small-size/low-value stocks (maximum exposure of b̂=1.24 in the size-BM sort) and decrease

both with increasing company value and with increasing �rm size. This pattern is present for

all three portfolio sorts.

For portfolios sorted on size-BM we �nd signi�cant exposure to the value factor for most

portfolios of the largest two size groups and the group with lowest �rm value. According to

factor construction, exposures are negative for the low-value group (more negative the larger

the �rm size) and increase with �rm value. Large high-value stocks have the largest exposure

to the value factor (ĥ=0.63). Of the test portfolios sorted on size-OP, most of the mid and largest

size group show some signi�cant exposure to the value factor. Sign and size of the exposure

varies though from portfolio to portfolio without a clear pattern. Size-Inv sorted portfolios

are negatively exposed to the value factor when they contain aggressive stocks and mostly

positively exposed to value when they comprise large-size stocks.

We �nd that only some few portfolios that are part of the largest size group of the size-BM

sorts have a slightly positive exposure to the pro�tability factor. For several size-BM sorted

portfolios of the lowest value group we �nd a slight negative exposure to pro�tability. This is

though only at a 10%-signi�cance level. As expected, portfolios sorted on size-OP show positive

pro�tability exposure when they contain robust stocks and negative pro�tability exposure

when they are formed by weak pro�tability stocks. Size-Inv sorted test portfolios that are

comprised of aggresive stocks have a negative exposure between -0.10 and -0.26. Additionally,

portfolios of the largest size group have signi�cant exposure to pro�tability.

Four size-BM sorted portfolios show a negative exposure to the investment factor. These are

the group of large �rm size and low value in addition to some small-size/medium-value portfo-
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lios. For the size-OP sorted portfolios we �nd mostly negative investment exposure for medium-

high pro�tability stocks and positive investment exposure for most lweak pro�tability stocks.

Sorts on size-Inv give positive investment exposure in the group of large-size/conservative

stocks, while the exposure is negative for large-size/aggresive stocks.

The estimated factor exposures of the Norwegian test portfolios are shown in Tables 12 to

14.

As for the German stocks, we �nd that all Norwegian test portfolios have a market exposure

of about 1. High Size-exposure is prevalent in all three sorts for all small- and medium-sized

portfolios (with ŝ ranging from 0.31 to 0.84). Additionally, big-size stocks of the size-BM sort

show signi�cant slight size exposure.

As expected due to the construction of the value factor, we �nd that high-value size-BM

sorted portfolios have highly positive value exposure and that low-value portfolios have highly

negative value exposure. Small-size size-BM portfolios do however not show signi�cant value

exposure. Further we �nd that most portfolios of the largest size group of the size-OP sorts

show a slight negative exposure to the value factor. For the size-Inv sorts we observe signi�cant

value exposure for four of the nine portfolios. The size is however low and the sign is varying.

We �nd that both large-size and high-value portfolios sorted by size-BM have negative

pro�tability exposure. Little surprising, low-pro�tability size-OP sorted stocks show negative

exposure to the pro�tability factor while the opposite is true for high-pro�tability stocks of this

sort. This does however not apply to small �rm stocks. There are four size-Inv sorted portfolios

that have signi�cant exposure to the pro�tability factor, all of them negative. Small-size stocks

do in this case not show any signi�cant pro�tability exposure.

Investment exposure can almost not be found in the size-BM and size-OP sorts. Naturally

size-Inv sorted portfolios show negative exposure to the investment factor when they contain

aggressive stocks and positive investment exposure when they contain conservative stocks.

Again, small-size stocks do not show signi�cant exposure.

6.4 GRS-test

After having analysed the single factor exposures, we now look at the overall model performance

both in absolute and in relative terms.

As described in section 4.2.3, a good model is characterised by a zero pricing error. We thus

�rst look at the single estimated intercepts shown in Tables 9 to 14 and then at the GRS-test

which tests for all intercepts being jointly zero. The results of the GRS-test are shown in Table

15.

Among the 25 �ve-factor regressions on the German test portfolios sorted by size and

book-to-market, six result in intercepts that are signi�cantly di�erent from zero at a 10% level.

Positive pricing errors are found in the regressions of small size stocks with very low and very

high company value (a=0.91% and a=0.44%) as well as rather large-sized �rms with high value
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Table 9
Factor exposures of German size-BM portfolios. Results of the N �rst stage Fama-MacBeth time-series regressions

on test portfolios formed on double sorts on size and investment behavior. FF5F is the �ve-factor regression

Rit = ai + bi(rMt − rFt) + siSMBt + hiHMLt + riRMWt + ciCMAt + εit

where Rit is the excess return on portfolio i above the risk free rate of return rFt, αi is the pricing error, rMt is

the return of the value-weighted market portfolio, SMBt, HMLt, RMWt and CMAt are the returns of the

factor mimicking portfolios formed as described in Table 2. FF3F is the regression given above without RMW

and CMA as explanatory variables. July 1991-December 2015, 294 months.

FF3F FF5F

BM→ Low 2 3 4 High Low 2 3 4 High

â â

Small 0.009
∗∗

-0.008 -0.001 0.000 0.004
∗∗

0.009
∗

-0.008 -0.001 0.000 0.004
∗∗

2 -0.004 0.001 -0.001 0.001 -0.001 -0.004 0.001 -0.001 0.001 -0.001

3 -0.006
∗∗

-0.002 0.001 -0.002 0.002 -0.006
∗∗

-0.002 0.001 -0.002 0.002

4 -0.002 0.001 -0.002 0.002 0.005
∗∗

-0.002 0.001 -0.003 0.002 0.005
∗

Big 0.001 -0.003
∗∗

0.002 -0.004
∗∗

0.001 0.001 -0.003
∗∗

0.001 -0.004
∗

0.001

b̂ b̂

Small 1.24
∗∗∗

1.04
∗∗∗

1.00
∗∗∗

1.04
∗∗∗

0.99
∗∗∗

1.24
∗∗∗

1.08
∗∗∗

0.96
∗∗∗

1.04
∗∗∗

1.01
∗∗∗

2 0.89
∗∗∗

0.98
∗∗∗

0.99
∗∗∗

0.96
∗∗∗

0.96
∗∗∗

0.85
∗∗∗

0.94
∗∗∗

0.98
∗∗∗

0.97
∗∗∗

0.95
∗∗∗

3 1.08
∗∗∗

0.99
∗∗∗

1.00
∗∗∗

0.98
∗∗∗

1.07
∗∗∗

1.08
∗∗∗

1.00
∗∗∗

0.98
∗∗∗

0.98
∗∗∗

1.09
∗∗∗

4 0.97
∗∗∗

0.90
∗∗∗

0.97
∗∗∗

0.92
∗∗∗

1.02
∗∗∗

0.97
∗∗∗

0.89
∗∗∗

0.98
∗∗∗

0.92
∗∗∗

1.02
∗∗∗

Big 1.06
∗∗∗

1.02
∗∗∗

0.91
∗∗∗

1.06
∗∗∗

1.03
∗∗∗

1.00
∗∗∗

1.06
∗∗∗

0.96
∗∗∗

1.07
∗∗∗

1.01
∗∗∗

ŝ ŝ

Small 1.25
∗∗∗

1.12
∗∗∗

1.07
∗∗∗

1.14
∗∗∗

1.01
∗∗∗

1.23
∗∗∗

1.14
∗∗∗

1.05
∗∗∗

1.14
∗∗∗

1.01
∗∗∗

2 0.98
∗∗∗

1.00
∗∗∗

1.01
∗∗∗

0.93
∗∗∗

0.83
∗∗∗

0.93
∗∗∗

0.98
∗∗∗

1.03
∗∗∗

0.95
∗∗∗

0.82
∗∗∗

3 0.87
∗∗∗

0.77
∗∗∗

0.95
∗∗∗

0.78
∗∗∗

1.07
∗∗∗

0.86
∗∗∗

0.78
∗∗∗

0.94
∗∗∗

0.79
∗∗∗

1.09
∗∗∗

4 0.67
∗∗∗

0.64
∗∗∗

0.65
∗∗∗

0.55
∗∗∗

0.57
∗∗∗

0.64
∗∗∗

0.62
∗∗∗

0.67
∗∗∗

0.54
∗∗∗

0.57
∗∗∗

Big 0.20
∗∗∗

0.03 -0.07
∗

-0.03 0.26
∗∗∗

0.17
∗∗∗

0.07 -0.01 -0.04 0.26
∗∗∗

ĥ ĥ

Small -0.16
∗

-0.05 -0.10
∗

-0.05 0.09
∗∗

-0.16
∗

-0.07 -0.08 -0.05 0.08
∗∗

2 -0.10 0.00 -0.01 0.04 0.01 -0.09 0.02 0.00 0.04 0.01

3 -0.16
∗∗∗

0.02 0.02 0.02 0.03 -0.16
∗∗∗

0.01 0.03 0.02 0.03

4 -0.21
∗∗∗

-0.04 0.11
∗∗∗

0.20
∗∗∗

0.23
∗∗∗

-0.21
∗∗∗

-0.04 0.11
∗∗∗

0.20
∗∗∗

0.23
∗∗∗

Big -0.39
∗∗∗

-0.03 0.15
∗∗∗

0.35
∗∗∗

0.62
∗∗∗

-0.36
∗∗∗

-0.05
∗

0.13
∗∗∗

0.35
∗∗∗

0.63
∗∗∗

r̂

Small -0.09 0.03 -0.04 -0.01 0.02

2 -0.13 -0.03 0.05 0.05 -0.05

3 -0.04
∗

0.01 -0.04 0.03 0.04

4 -0.08
∗

-0.06
∗

0.04 -0.04 0.00

Big -0.06
∗

0.10
∗∗∗

0.16
∗∗∗

-0.04 0.00

ĉ

Small 0.10 0.12 -0.13
∗∗

0.02 0.05

2 0.00 -0.14
∗∗

-0.10
∗∗∗

-0.02 0.01

3 0.07 0.03 -0.05 -0.03 0.02

4 0.09
∗

0.03 0.00 0.03 0.00

Big -0.16
∗∗∗

0.07
∗∗

0.02 0.07
∗

-0.09

Note: Signi�cance levels:
∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01
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Table 10
Factor exposures of German size-OP portfolios. Results of the N �rst stage Fama-MacBeth time-series regressions

on test portfolios formed on double sorts on size and investment behavior. FF5F is the �ve-factor regression

Rit = ai + bi(rMt − rFt) + siSMBt + hiHMLt + riRMWt + ciCMAt + εit

where Rit is the excess return on portfolio i above the risk free rate of return rFt, αi is the pricing error, rMt is

the return of the value-weighted market portfolio, SMBt, HMLt, RMWt and CMAt are the returns of the

factor mimicking portfolios formed as described in Table 2. FF3F is the regression given above without RMW

and CMA as explanatory variables. July 1991-December 2015, 294 months.

FF3F FF5F

OP→ Low 2 3 4 High Low 2 3 4 High

â â

Small 0.001 0.003 -0.001 0.004 0.002 0.001 0.003 -0.001 0.004 0.002

2 -0.004 -0.003
∗

-0.002 0.003 0.002 -0.004 -0.003 -0.002 0.003 0.002

3 -0.005
∗

-0.002 -0.004
∗∗

0.000 0.001 -0.005
∗

-0.002 -0.004
∗∗

0.000 0.000

4 -0.001 -0.000 0.000 0.001 0.005
∗∗

-0.001 -0.000 0.000 0.000 0.005
∗∗

Big -0.009
∗∗

-0.002 -0.002 0.002 -0.002 -0.009
∗

-0.001 -0.002 0.002 -0.002

b̂ b̂

Small 1.12
∗∗∗

1.00
∗∗∗

0.91
∗∗∗

0.80
∗∗∗

0.82
∗∗∗

1.13
∗∗∗

0.97
∗∗∗

0.93
∗∗∗

0.79
∗∗∗

0.84
∗∗∗

2 1.13
∗∗∗

1.07
∗∗∗

0.89
∗∗∗

0.84
∗∗∗

0.80
∗∗∗

1.10
∗∗∗

1.03
∗∗∗

0.89
∗∗∗

0.84
∗∗∗

0.82
∗∗∗

3 1.15
∗∗∗

1.09
∗∗∗

0.96
∗∗∗

0.95
∗∗∗

0.88
∗∗∗

1.16
∗∗∗

1.08
∗∗∗

0.96
∗∗∗

0.95
∗∗∗

0.91
∗∗∗

4 0.98
∗∗∗

0.95
∗∗∗

1.01
∗∗∗

0.84
∗∗∗

0.92
∗∗∗

0.98
∗∗∗

0.93
∗∗∗

1.00
∗∗∗

0.84
∗∗∗

0.94
∗∗∗

Big 0.96
∗∗∗

1.03
∗∗∗

1.09
∗∗∗

0.88
∗∗∗

1.02
∗∗∗

0.94
∗∗∗

0.91
∗∗∗

1.09
∗∗∗

0.95
∗∗∗

1.03
∗∗∗

ŝ ŝ

Small 1.24
∗∗∗

1.01
∗∗∗

0.99
∗∗∗

0.73
∗∗∗

0.91
∗∗∗

1.22
∗∗∗

0.96
∗∗∗

1.02
∗∗∗

0.76
∗∗∗

0.95
∗∗∗

2 1.07
∗∗∗

1.00
∗∗∗

0.92
∗∗∗

0.89
∗∗∗

0.86
∗∗∗

1.03
∗∗∗

0.97
∗∗∗

0.93
∗∗∗

0.91
∗∗∗

0.88
∗∗∗

3 1.05
∗∗∗

1.01
∗∗∗

0.82
∗∗∗

0.75
∗∗∗

0.74
∗∗∗

1.02
∗∗∗

0.99
∗∗∗

0.83
∗∗∗

0.78
∗∗∗

0.77
∗∗∗

4 0.77
∗∗∗

0.76
∗∗∗

0.62
∗∗∗

0.53
∗∗∗

0.53
∗∗∗

0.66
∗∗∗

0.71
∗∗∗

0.62
∗∗∗

0.55
∗∗∗

0.54
∗∗∗

Big 0.17 0.08 0.03 -0.20
∗∗∗

0.16
∗∗∗

0.13 -0.07 0.05 -0.15
∗∗∗

0.21
∗∗∗

ĥ ĥ

Small -0.09 0.06 0.06 0.10 -0.03 -0.09
∗

0.07 0.05 0.11 -0.04

2 -0.08 -0.02 -0.03 0.01 0.06 -0.07 -0.00 -0.03 0.01 0.05

3 -0.10
∗

-0.15
∗∗∗

0.07
∗∗

0.04 0.12
∗∗∗

-0.11
∗∗

-0.14
∗∗∗

0.08
∗∗

0.05 0.11
∗∗

4 -0.01 -0.03 0.03 0.14 -0.03 -0.02 -0.02 0.03 0.14
∗∗∗

-0.04

Big 0.05 -0.07 0.28
∗∗∗

-0.09
∗∗∗

0.08
∗∗

0.05 -0.02 0.28
∗∗∗

-0.12
∗∗∗

0.08
∗∗

r̂

Small -0.06 -0.13
∗∗∗

0.05 0.10 0.09

2 -0.12
∗∗

-0.08
∗∗

0.02 0.06 0.04

3 -0.10
∗

-0.04 0.01 0.08
∗∗

0.09
∗∗

4 -0.33
∗∗∗

-0.13
∗∗∗

-0.00 0.06
∗

0.00

Big -0.17
∗

-0.37
∗∗∗

0.07
∗∗

0.11
∗∗∗

0.15
∗∗∗

ĉ

Small 0.11
∗∗

0.02 0.03 -0.13
∗

-0.02

2 0.01 -0.06
∗

-0.03 -0.08
∗

0.04

3 0.15
∗∗∗

-0.00 -0.02 -0.09
∗∗

0.02

4 0.36
∗∗∗

0.03 -0.02 -0.05
∗

0.08
∗

Big 0.08 -0.09
∗∗

-0.05 0.16
∗∗∗

-0.11
∗∗∗

Note: Signi�cance levels:
∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01
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Table 11
Factor exposures of German size-Inv portfolios. Results of the N �rst stage Fama-MacBeth time-series regressions

on test portfolios formed on double sorts on size and investment behavior. FF5F is the �ve-factor regression

Rit = ai + bi(rMt − rFt) + siSMBt + hiHMLt + riRMWt + ciCMAt + εit

where Rit is the excess return on portfolio i above the risk free rate of return rFt, αi is the pricing error, rMt is

the return of the value-weighted market portfolio, SMBt, HMLt, RMWt and CMAt are the returns of the

factor mimicking portfolios formed as described in Table 2. FF3F is the regression given above without RMW

and CMA as explanatory variables. July 1991-December 2015, 294 months.

FF3F FF5F

Inv→ Low 2 3 4 High Low 2 3 4 High

â â

Small 0.005
∗∗

0.003 -0.004 -0.001 -0.004 0.005
∗∗

0.003 -0.004 -0.001 -0.004

2 -0.002 -0.002 0.001 0.003 -0.004 -0.002 -0.002 0.001 0.003 -0.004

3 0.000 -0.004
∗∗

-0.001 0.001 -0.006
∗∗

0.000 -0.004
∗∗

-0.001 0.001 -0.005
∗∗

4 0.001 0.003 0.001 0.002 -0.002 0.001 0.003 0.001 0.002 -0.002

Big -0.001 0.001 -0.003
∗

-0.001 0.001 -0.000 0.001 -0.003
∗∗

-0.001 0.002

b̂ b̂

Small 1.08
∗∗∗

1.00
∗∗∗

0.96
∗∗∗

0.89
∗∗∗

0.91
∗∗∗

1.07
∗∗∗

1.01
∗∗∗

0.95
∗∗∗

0.86
∗∗∗

0.88
∗∗∗

2 1.04
∗∗∗

0.81
∗∗∗

0.97
∗∗∗

1.01
∗∗∗

1.03
∗∗∗

1.01
∗∗∗

0.80
∗∗∗

0.98
∗∗∗

1.02
∗∗∗

0.99
∗∗∗

3 0.98
∗∗∗

0.92
∗∗∗

0.95
∗∗∗

0.98
∗∗∗

1.18
∗∗∗

1.00
∗∗∗

0.93
∗∗∗

0.94
∗∗∗

0.97
∗∗∗

1.17
∗∗∗

4 0.81
∗∗∗

0.91
∗∗∗

0.90
∗∗∗

0.89
∗∗∗

1.12
∗∗∗

0.84
∗∗∗

0.92
∗∗∗

0.90
∗∗∗

0.88
∗∗∗

1.10
∗∗∗

Big 0.79
∗∗∗

0.94
∗∗∗

0.98
∗∗∗

1.04
∗∗∗

1.12
∗∗∗

0.86
∗∗∗

1.00
∗∗∗

1.02
∗∗∗

1.04
∗∗∗

0.94
∗∗∗

ŝ ŝ

Small 1.11
∗∗∗

1.10
∗∗∗

1.02
∗∗∗

1.01
∗∗∗

0.71
∗∗∗

1.09
∗∗∗

1.11
∗∗∗

1.04
∗∗∗

1.01
∗∗∗

0.62
∗∗∗

2 0.96
∗∗∗

0.91
∗∗∗

0.90
∗∗∗

1.03
∗∗∗

1.06
∗∗∗

0.91
∗∗∗

0.91
∗∗∗

0.92
∗∗∗

1.05
∗∗∗

1.02
∗∗∗

3 0.81
∗∗∗

0.85
∗∗∗

0.85
∗∗∗

0.85
∗∗∗

0.95
∗∗∗

0.82
∗∗∗

0.86
∗∗∗

0.86
∗∗∗

0.85
∗∗∗

0.93
∗∗∗

4 0.52
∗∗∗

0.75
∗∗∗

0.59
∗∗∗

0.54
∗∗∗

0.66
∗∗∗

0.51
∗∗∗

0.71
∗∗∗

0.60
∗∗∗

0.53
∗∗∗

0.61
∗∗∗

Big 0.21
∗∗∗

-0.01 0.01 0.06 0.06 0.17
∗∗

-0.01 0.06 0.10
∗∗

-0.05

ĥ ĥ

Small 0.01 -0.03 -0.01 0.06 -0.09 0.01 -0.04 -0.00 0.07 -0.08

2 -0.03 0.03 0.01 0.00 -0.11
∗∗

-0.02 0.04 0.00 -0.00 -0.09
∗

3 0.04 0.15
∗∗∗

0.04 -0.00 -0.19
∗∗∗

0.03 0.15
∗∗∗

0.05 0.00 -0.18
∗∗∗

4 0.03 0.02 0.13
∗∗∗

0.07
∗

-0.21
∗∗∗

0.01 0.02 0.13
∗∗∗

0.07
∗

-0.21
∗∗∗

Big 0.14
∗∗∗

0.03 0.19
∗∗∗

0.11
∗∗∗

-0.19
∗∗∗

0.10
∗∗

-0.01 0.17
∗∗∗

0.12
∗∗∗

-0.10
∗∗∗

r̂

Small -0.06 0.03 0.05 0.02 -0.26
∗∗∗

2 -0.11
∗∗

0.01 0.05 0.04 -0.10
∗∗

3 0.02 0.01 0.04 -0.00 -0.04

4 -0.05 -0.10
∗∗∗

0.05 -0.04 -0.13
∗∗∗

Big -0.15
∗∗∗

-0.02 0.13
∗∗∗

0.12
∗∗∗

-0.23
∗∗∗

ĉ

Small 0.05 0.02 -0.06 -0.16
∗∗∗

0.15

2 -0.02 -0.05 -0.02 -0.00 -0.04

3 0.08
∗

0.02 -0.08
∗∗

-0.05 -0.03

4 0.18
∗∗∗

0.12
∗∗∗

-0.04 0.02 0.07

Big 0.45
∗∗∗

0.30
∗∗∗

0.02 -0.12
∗∗∗

-0.48
∗∗∗

Note: Signi�cance levels:
∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01
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Table 12
Factor exposures of Norwegian size-BM portfolios. Results of the N �rst stage Fama-MacBeth time-series

regressions on test portfolios formed on double sorts on size and investment behavior. FF5F is the �ve-factor

regression

Rit = ai + bi(rMt − rFt) + siSMBt + hiHMLt + riRMWt + ciCMAt + εit

where Rit is the excess return on portfolio i above the risk free rate of return rFt, αi is the pricing error, rMt is

the return of the value-weighted market portfolio, SMBt, HMLt, RMWt and CMAt are the returns of the

factor mimicking portfolios formed as described in Table 2. Mkt + SMB is the regression given above without

HML, RMW and CMA as explanatory variables. July 1991-December 2015, 294 months.

Mkt + SMB FF5F

BM→ Low 2 High Low 2 High

â â

Small 0.001 0.004 0.005 0.001 0.004 0.005

2 0.000 0.003 -0.002 -0.000 0.003 -0.000

Big -0.006 0.000 -0.006 -0.007
∗∗∗

0.000 -0.003

b̂ b̂

Small 1.09
∗∗∗

0.92
∗∗∗

1.01
∗∗∗

1.09
∗∗∗

0.90
∗∗∗

1.01
∗∗∗

2 0.89
∗∗∗

0.82
∗∗∗

1.00
∗∗∗

0.90
∗∗∗

0.82
∗∗∗

0.91
∗∗∗

Big 1.03
∗∗∗

0.94
∗∗∗

1.09
∗∗∗

1.07
∗∗∗

0.93
∗∗∗

1.05
∗∗∗

ŝ ŝ

Small 0.64
∗∗∗

0.67
∗∗∗

0.75
∗∗∗

0.58
∗∗∗

0.62
∗∗∗

0.81
∗∗∗

2 0.65
∗∗∗

0.43
∗∗∗

0.54
∗∗∗

0.59
∗∗∗

0.43
∗∗∗

0.44
∗∗∗

Big 0.30
∗∗∗

-0.17
∗∗∗

0.13
∗

0.13
∗∗

-0.14
∗∗∗

0.15
∗∗

ĥ

Small -0.10 -0.00 0.07

2 -0.16
∗∗∗

0.02 0.35
∗∗∗

Big -0.55
∗∗∗

0.06
∗∗∗

0.44
∗∗∗

r̂

Small -0.06 -0.06 0.08

2 -0.05 -0.00 -0.29
∗∗∗

Big -0.11
∗∗∗

0.03 -0.11
∗∗∗

ĉ

Small -0.04 0.13
∗

0.11

2 -0.03 0.02 -0.06

Big 0.05 0.07
∗∗∗

-0.07

Note: Signi�cance levels:
∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01
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Table 13
Factor exposures of Norwegian size-OP portfolios. Results of the N �rst stage Fama-MacBeth time-series

regressions on test portfolios formed on double sorts on size and investment behavior. FF5F is the �ve-factor

regression

Rit = ai + bi(rMt − rFt) + siSMBt + hiHMLt + riRMWt + ciCMAt + εit

where Rit is the excess return on portfolio i above the risk free rate of return rFt, αi is the pricing error, rMt is

the return of the value-weighted market portfolio, SMBt, HMLt, RMWt and CMAt are the returns of the

factor mimicking portfolios formed as described in Table 2. Mkt + SMB is the regression given above without

HML, RMW and CMA as explanatory variables. July 1991-December 2015, 294 months.

Mkt + SMB FF5F

OP→ Low 2 High Low 2 High

â â

Small 0.005 0.005 0.006 0.005 0.005 0.006

2 -0.003 0.000 0.002 -0.002 0.000 0.002

Big -0.005 -0.004 -0.002 -0.003 -0.004 -0.003

b̂ b̂

Small 1.05
∗∗∗

0.80
∗∗∗

0.95
∗∗∗

1.03
∗∗∗

0.83
∗∗∗

0.96
∗∗∗

2 1.20
∗∗∗

0.81
∗∗∗

0.80
∗∗∗

1.09
∗∗∗

0.80
∗∗∗

0.82
∗∗∗

Big 1.16
∗∗∗

1.03
∗∗∗

1.00
∗∗∗

1.05
∗∗∗

1.01
∗∗∗

1.05
∗∗∗

ŝ ŝ

Small 0.79
∗∗∗

0.63
∗∗∗

0.74
∗∗∗

0.72
∗∗∗

0.72
∗∗∗

0.79
∗∗∗

2 0.84
∗∗∗

0.49
∗∗∗

0.38
∗∗∗

0.59
∗∗∗

0.50
∗∗∗

0.47
∗∗∗

Big 0.07 0.13
∗∗

-0.11
∗∗

-0.32
∗∗∗

0.03 0.02

ĥ

Small -0.02 0.06 -0.03

2 0.13
∗∗∗

0.07
∗

0.02

Big -0.06 -0.09
∗∗

-0.06
∗∗

r̂

Small -0.10 0.12
∗

0.11

2 -0.48
∗∗∗

-0.01 0.14
∗∗∗

Big -0.70
∗∗∗

-0.12
∗∗∗

0.24
∗∗∗

ĉ

Small 0.07 -0.08 -0.05

2 0.10
∗

0.00 -0.01

Big 0.00 0.03 0.04

Note: Signi�cance levels:
∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01
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Table 14
Factor exposures of Norwegian size-Inv portfolios. Results of the N �rst stage Fama-MacBeth time-series

regressions on test portfolios formed on double sorts on size and investment behavior. FF5F is the �ve-factor

regression

Rit = ai + bi(rMt − rFt) + siSMBt + hiHMLt + riRMWt + ciCMAt + εit

where Rit is the excess return on portfolio i above the risk free rate of return rFt, αi is the pricing error, rMt is

the return of the value-weighted market portfolio, SMBt, HMLt, RMWt and CMAt are the returns of the

factor mimicking portfolios formed as described in Table 2. Mkt + SMB is the regression given above without

HML, RMW and CMA as explanatory variables. July 1991-December 2015, 294 months.

Mkt + SMB FF5F

Inv→ Low 2 High Low 2 High

â â

Small 0.016
∗∗∗

0.004 -0.008 0.015
∗∗∗

0.004 -0.008
∗

2 0.000 -0.000 -0.007 0.001 0.001 -0.007

Big -0.004 -0.006
∗∗

-0.001 -0.005
∗

-0.006
∗∗

0.001

b̂ b̂

Small 1.05
∗∗∗

0.95
∗∗∗

0.95
∗∗∗

1.05
∗∗∗

0.94
∗∗∗

0.97
∗∗∗

2 1.03
∗∗∗

0.82
∗∗∗

0.93
∗∗∗

0.98
∗∗∗

0.78
∗∗∗

0.96
∗∗∗

Big 1.04
∗∗∗

1.00
∗∗∗

1.04
∗∗∗

1.00
∗∗∗

0.98
∗∗∗

1.07
∗∗∗

ŝ ŝ

Small 0.75
∗∗∗

0.72
∗∗∗

0.77
∗∗∗

0.79
∗∗∗

0.64
∗∗∗

0.81
∗∗∗

2 0.91
∗∗∗

0.35
∗∗∗

0.49
∗∗∗

0.84
∗∗∗

0.31
∗∗∗

0.47
∗∗∗

Big 0.07 0.07 0.08 -0.02 0.04 -0.01

ĥ

Small 0.04 -0.05 0.03

2 0.11
∗∗

0.15
∗∗∗

-0.10
∗

Big -0.12
∗∗∗

0.00 -0.04

r̂

Small 0.04 -0.12 0.05

2 -0.16
∗∗∗

-0.12
∗∗∗

0.01

Big -0.10
∗∗∗

-0.05 -0.13
∗∗∗

ĉ

Small 0.10 0.01 -0.12
∗

2 0.16
∗∗∗

-0.05 -0.16
∗∗

Big 0.45
∗∗∗

0.07
∗

-0.57
∗∗∗

Note: Signi�cance levels:
∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01
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(a=0.53%) while negative pricing errors are produced by regressions on large size stocks with

medium value (a= –0.31% and a= –0.36%) as well as growth stocks with medium �rm size (a=

–0.62%). Here it seems that it is the extremes of both portfolio sorts that lead to bad overall

model �t. Fama and French (1993, 2015a) �nd that for the U.S. stock market low-value microcap

stocks are troublesome. We detect this e�ect also in the German data although the problem is

not limited to this kind of stocks.

Table 10 shows that four out of the 25 regressions on the portfolios formed on size and

pro�tability lead to pricing errors that are signi�cantly di�erent from zero at a 10% level.

Negative intercepts are produced by regressions on medium-sized growth stocks (a= –0.52%)

and medium value stocks (a= –0.42%) as well as large size growth stocks (a= –0.86%). A

signi�cantly positive error can be observed in the regression of high-value medium-sized

stocks (a=0.54%). Here the bad model �t seems mainly anchored in the stocks of medium size

�rms.

In the 25 regressions on portfolios sorted by size and investment behavior we �nd four

intercepts to deviate from zero at a 10% signi�cance level. A positive pricing error exists

for the regression on microcap growth stocks (a=0.53%) whereas we detect negative errors

for medium-sized/medium-and high-value stocks (a= –0.44% and a= –0.55%) as well as large

medium value stocks (a= –0.31%). These �ndings do not seem to follow any particular pattern.

A three-factor model gives pricing errors for the same test portfolio returns. In addition

these pricing errors are at about the same size and are similarly signi�cant. This suggests that

the �ve-factor model does not explain German stock returns better than the three-factor model.

The regressions on the Norwegian size-BM portfolios give a negative pricing error for the

low-value megacap portfolio. Using portfolios sorted on size and operating pro�tability as

test portfolios does not lead to signi�cant pricing errors. Size-Inv sorts result in signi�cant

intercepts for low-value micro- and megacap stocks as well as for medium-value megacaps and

high-value microcaps. We �nd that the �ve-factor model produces more pricing errors than

the two-factor benchmark model and thus assume also in this case that the �ve-factor model

does not add value to the analysis of Norwegian stock returns.

In Table 15 we present the results of the GRS-test applied to the �rst-step Fama-MacBeth

regressions. Panel A shows the results for the double sorts on size and value, Panel B those

for the sorts on size and operating pro�tability, and Panel C those for the sorts on size and

investment behavior. We compare the models by their GRS-statistic and its p-value, the average

value of the 25 (9) regression intercepts, as well as the adjusted R
2
. Intercepts signi�cantly

di�erent from zero are contrary to the null-hypothesis of jointly insigni�cant pricing errors

and thus cause the GRS-value to increase. The GRS-test will therefore indicate bad model

performance in those cases where a regression model leads to too many high intercepts in

absolute terms. A low GRS-value means that the model �ts well in describing average excess

returns of the test portfolios. The p-value gives the probability of obtaining the observed or a

higher GRS-value if the null hypothesis that all intercepts jointly equal zero holds. For high
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p-values, good model �t can hence not be rejected.

In the case of Germany we �nd that all p-values are lower than 0.1, meaning that at a

10% level, the null hypothesis that all pricing errors jointly equal zero is rejected for all tested

models. We therefore conclude that none of the tested models is su�cient in explaining total

variation in monthly average excess returns of German stocks. Fama and French (2015a) �nd

the same result for all models they test but argue that one model still is to be preferred when

it shows better performance in relative terms. As all metrics remain almost una�ected by

the transition from the three-factor to the �ve-factor model, we hence reason that extending

the three-factor model with a pro�tability and an investment factor does not add value to an

analysis of German stock returns.

Looking at the Norwegian data, we see relatively high p-values for both the �ve-factor

model and the two-factor benchmark for portfolios formed on size-BM and size-OP sorts.

This indicates good absolute model �t although the adjusted R
2

measures at slightly above

0.5 are considerably lower than in Fama and French (2015a) where the authors �nd the �ve-

factor model to absorb more than 90% of the test portfolios’ return variation. Comparing the

performance of the �ve-factor model with that of the two-factor benchmark, we see that the

latter gives lower GRS-values both for the size-OP and the size-Inv sorts, whereas GRS-values

are equal for the size-BM sorts. The conclusion we draw from this is that the �ve-factor model

does not outperform a two-factor model comprising the market and size factors in describing

Norwegian stock returns. This conclusion is in line with the results from Table 21 that the

explanatory power of the HML, RMW and CMA factors is absorbed by the other model factors.

6.5 Risk premiums

The risk premiums associated with one unit of additional exposure to the RHS factors are

presented in Table 16. We present in Panel A the size-B/M sorts, in Panel B the size-OP sorts,

and in Panel C the size-Inv sorts. Again, we compare the premiums estimated by the �ve-factor

model with those of the respective benchmark model.

As in the previous analysis, we �nd that none of the German models shows good model

�t. Only the market factor is priced in regressions on size-BM sorted portfolios, no factors are

priced in when size-OP sorted portfolios are used as test assets and only the value factor is

priced by size-Inv sorts. In particular we �nd neither the pro�tability nor the investment factor

to be priced risk factors.

The good model �t of the two Norwegian models on size-BM and size-OP sorted portfolios

that we observed in the �rst stage Fama-MacBeth regressions can also be observed here. Irre-

spective of the test portfolio sort, the �ve-factor model does neither give signi�cant pro�tability

nor investment premiums. As in the two-factor model, only the market and the size factor

are priced. Both models with size-Inv sorted test portfolios are rejected by the J-test and the

�ve-factor model in this case does not result in signi�cant pro�tability or investment premiums
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Table 15
GRS-test based on data from July 1991-December 2015, 294 months. The GRS statistic tests if the intercepts of all

N time-series regressions given by Equation (18) jointly equal zero. A|ai| is the average absolute intercept value,

adj. R
2

is the adjusted coe�cient of determination. We show the test results for the �ve-factor model (FF5F) and

compare them to the results of two benchmark models. For the German portfolios, we use the three-factor model

(FF3F) as benchmark. The benchmark for the Norwegian portfolios is a two-factor model with the market

portfolio (Mkt) and the size factor (SMB) as explanatory variables.

Germany Norway

GRS p-value A|ai| adj. R
2

GRS p-value A|ai| adj. R
2

Panel A: Size-B/M portfolios

FF5F 1.48 0.07 0.0028 0.66 1.39 0.19 0.0028 0.57

benchmark 1.47 0.07 0.0028 0.64 1.39 0.19 0.0031 0.51

Panel B: Size-OP portfolios

FF5F 2.10 0.00 0.0024 0.63 1.63 0.11 0.0033 0.55

benchmark 2.12 0.00 0.0025 0.62 1.36 0.21 0.0035 0.50

Panel C: Size-Inv portfolios

FF5F 1.70 0.02 0.0023 0.66 2.81 0.00 0.0052 0.55

benchmark 1.70 0.02 0.0023 0.64 2.72 0.00 0.0052 0.50

either.

6.6 Robustness checks

To increase the reliability of our �ndings discussed above, we test to which extent they are

sensitive to various assumptions we made throughout our analysis. We do this by changing

one assumption at a time, holding everything else constant, and checking if the �ve-factor

model then outperforms the benchmark model in relative terms. For that we again compare the

GRS-statistics of the two models. In this section we summarize and evaluate these robustness

tests. Results are shown in Tables 22 and 23 in the appendix.

6.6.1 Avoiding time gaps due to di�erent �scal year ends

In section 4.1.2 we expounded that the value measure we build is in many cases based on book

equity and market equity measured at two di�erent points in time. There are two possible �xes

to this issue. Firstly, one can decide to omit all �rms whose �scal year does not end in December.

Secondly, one can adjust the measurement time of market equity to that of book-equity. Both

alternatives and their e�ects are discussed in the following.

Keeping only companies in the sample whose �scal year ends in December ensures a

constant time gap between the measurement time of book-to-market and the period in which
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Table 16
Risk premiums estimated by the T cross-sectional second stage Fama-MacBeth regressions

Rit = λMkt
t b̂i + λSMB

t ŝi + λHML
t ĥi + λRMW

t r̂i + λCML
t ĉi + εt

where Rit is the excess return of the test portfolios formed on the double sorts indicated in Panel A-C, b̂i, ŝi, ĥi,

r̂i and ĉi are the factor loadings found in the �rst stage Fama-MacBeth regression and λLt is the risk premium for

risk factor L. Estimation is done by GMM as described in section 4.2.2. Coef is the estimated risk premium

awarded for factor L in %, Std is its standard deviation in % and t-stat is its t-statistic. Low p-values of the

J-statistic indicate bad model �t. We compare the results of the �ve-model model with those of the respective

benchmark model. The benchmark for German portfolios is the Fama-French three-factor model. The benchmark

for the Norwegian portfolios is a two-factor model with the market and the size factor as explanatory variables.

Germany Norway

λMkt λSMB λHML λRMW λCMA λMkt λSMB λHML λRMW λCMA

Panel A: size-BM

a) FF5F

Coef 0.68 -0.05 0.31 -0.46 0.31 0.77 1.46 0.50 0.52 2.92

Std 0.32 0.24 0.40 0.72 0.61 0.39 0.36 0.51 1.41 2.33

t-stat 2.12 -0.21 0.77 -0.65 0.50 1.98 4.03 0.97 0.37 1.25

J-test J(χ2
(20)) = 43.92, p = 0.002 J(χ2

(4)) = 2.83, p = 0.59

b) benchmark model

Coef 0.61 -0.05 0.34 0.84 1.06

Std 0.31 0.23 0.40 0.36 0.33

t-stat 1.98 -0.20 0.84 2.32 3.21

J-test J(χ2
(22)) = 44.64, p = 0.003 J(χ2

(7)) = 11.50, p = 0.12

Panel B: size-OP

a) FF5F

Coef 0.39 0.25 0.42 0.68 0.95 0.74 1.74 -1.62 -0.22 -0.53

Std 0.32 0.25 0.64 0.45 0.64 0.46 0.57 2.57 0.50 2.73

t-stat 1.20 0.98 0.66 1.52 1.49 1.62 3.06 -0.63 -0.43 -0.20

J-test J(χ2
(20)) = 45.86, p = 0.001 J(χ2

(4)) = 1.00, p = 0.91

b) benchmark model

Coef 0.42 0.25 0.47 0.72 1.49

Std 0.31 0.25 0.59 0.38 0.36

t-stat 1.36 1.00 0.79 1.89 4.17

J-test J(χ2
(22)) = 51.15, p = 0.000 J(χ2

(7)) = 4.79, p = 0.69

Panel C: size-Inv

a) FF5F

Coef 0.45 0.11 1.53 -0.62 0.22 0.60 1.38 -0.53 -0.39 -0.28

Std 0.33 0.26 0.76 0.67 0.36 0.47 0.45 1.47 2.24 0.39

t-stat 1.36 0.41 2.01 -0.92 0.62 1.27 3.06 -0.36 -0.17 -0.73

J-test J(χ2
(20)) = 42.65, p = 0.002 J(χ2

(4)) = 20.21, p = 0.000

b) benchmark model

Coef 0.38 0.22 1.52 0.58 1.36

Std 0.32 0.26 0.62 0.40 0.38

t-stat 1.18 0.86 2.45 1.46 3.62

J-test J(χ2
(22)) = 42.80, p = 0.005 J(χ2

(7)) = 20.31, p = 0.005
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we track returns. Panel A of Table 22 indicates that this adjustment does not improve the

relative performance of the �ve-factor model on Norwegian portfolios as GRS-values are lower

for the two-factor benchmark regardless of the portfolio sort. For the German data we �nd

the �ve-factor model to produce a lower GRS-statistic in regressions on size-OP sorted test

portfolios. The di�erence is however no more than 0.12 and the average absolute values of the

intercepts is almost unchanged. We hence question that we see a real improvement here.

Aligning the measurement point of market equity with a �rm’s �scal year-end removes the

time inconsistency between the numerator and the denominator of the book-to-market ratio.

Market equity throughout the year is however dependent on the general market development.

A drawback of this approach is thus that di�erences in the B/M-ratio can be caused by a change

of external conditions throughout the year rather than due to cross-sectional di�erences. In

Panel B of Table 22 we show the e�ects of this alignment on the GRS-test. We �nd that the

GRS-values of the �ve-factor regressions on German size-OP and size-Inv sorted portfolios are

now smaller than those of the corresponding three-factor regressions. The di�erence is however

so slight that its signi�cance is questionable. Looking at the Norwegian stock market, the

adjustment leads to a relatively better performance of the �ve-factor model when size-OP sorted

portfolios are used as test assets. We conduct the Fama-MacBeth second-stage regressions in

this case, but �nd neither good model �t nor that any factors are priced. Therefore we do not

show the results here.

6.6.2 Rede�ning penny stocks

In 5.2.7 we discussed uncertainty about the German penny stock de�nition. Due to the lack of

a formal de�nition of German penny stocks we refered to the current listing requirements of

the Frankfurt Stock Exchange and calculated penny stocks as those stocks that not only have

a stock price of less than one Euro but also have a market capitalization lower than 750.000,-

Euro. The latter restriction leaves us though with many very low-valued stocks in the sample,

so if it is wrong to extrapolate from this listing requirement to which stocks should be kept in

the sample, this might change results noticeably. To test if this occurs, we drop the market cap

requirement and de�ne penny stocks simply as those stocks that have a value of less than one

Euro. The results of this change are shown at the left side of Panel C of Table 22. Since the

GRS-statistics of the two models still are almost equal for all portfolio sorts, we reject that our

penny stock de�nition a�ects model choice.

6.6.3 Better di�erentiation between LHS and RHS sorts

Our test portfolios and RHS portfolios are based on the same sorting variables. As in Fama

and French (2015a) the di�erence between them is that the test portfolios are the results of

“�ner sorts” than the RHS portfolios and that the factors do not build on observations with

medium �rm characteristics. In our base scenario for Norway the limited sample size leads us
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to reduce the number of LHS portfolios from 25 to 9 (see Section 4.1.4). These 3× 3 LHS sorts

might be too similar to the 2× 3 RHS sorts that form the basis of factor portfolio construction.

We test the importance of this assumption by building the factor portfolios on 2 × 2 RHS

portfolios instead. In this case sample medians are used as breakpoints. The reduction from

2× 3 portfolios to 2× 2 portfolios is only slight, but a further reduction is not possible when

double sorting still should be used. Besides, the 2× 2 sort increases the number of securities

in each RHS portfolio considerably, as we no longer exclude the mid 40% of the sample. The

right-hand side of Panel C of Table 22 shows the e�ects of this change on the GRS metrics. We

get an almost identical size-BM model quality, a small improvement for the size-OP sorts, and

a slightly less accurate model for portfolios sorted on size-Inv compared to the base-scenario.

The changes applied do however not increase the relative performance of the �ve-factor model.

6.6.4 Shorter time horizon

Finally, we test to which extent the GRS approach is sensitive to the choice of the sample time

period. E�ects are shown in Table 23.

(i) Germany
Since it is possible that stock return characteristics changed when Germany became part

of the European Monetary Union and replaced DEM with EUR, we divide our sample

period into pre and post Euro introduction time and see if the conclusions about the

usefulness of the �ve-factor model varies between the two subsamples. The resulting

e�ects are shown in the left part of Panel A and Panel B.

We observe that both models that use size-OP sorted portfolios as test assets seem to �t

the data of the DEM-period. In this case the GRS-statistic of the �ve-factor model is lower

than that of the three-factor model. For all other models, both those on the DEM-period

subsample and those on the EUR-period subsample, good model �t is rejected by the

GRS-test. The �ve-factor model produces lower GRS-values than the three-factor model

for the DEM-period when the dependent variables are portfolios formed on size-BM sorts.

The same applies to size-OP and size-Inv sorted test portfolio regressions based on the

EUR-period. Di�erences are however marginal again and can thus be questioned.

To investigate the case of size-OP portfolios on the DEM-period data more in detail,

we proceed to conduct the Fama-MacBeth second step regressions for this special case.

Results are shown in the left part of Panel B of Table 24, in the appendix. We �nd that in

these regressions size is a priced factor while the pro�tability and investment, as before,

are not priced.

In sum, our conclusions about the usefulness of the �ve-factor model for describing Ger-

man stock returns do not change when we split the sample into a DEM and a EUR period.

55



This gives us the impression that the currency transition is not a crucial explanatory

variable for German stock returns.

(ii) Norway
The reason for using portfolios instead of single stocks is that one eliminates �rm-speci�c

risk by diversi�cation. Ødegaard (2016c) �nds that one needs at least ten Norwegian

stocks to form a diversi�ed portfolio. In Figure 5 we see that the number of companies in

our Norwegian sample is quite low before year 2000. Table 17 con�rms that the number

of stocks in some of the Norwegian test portfolios is considerably less than ten. Therefore

we examine if our conclusions change when we postpone the sample period beginning

from 1991 to the year 2000. Results are shown in the right part of Panel A.

We �nd that the reduction of the sample period has a major impact on the GRS-test

statistic compared to our base scenario results. The GRS-value is clearly reduced, and the

increased adjusted R
2

measure for most models and sorting procedures indicateds better

model �t. This strengthens our presumption that our base-scenario is applied to portfolios

that do not completely rule out company-speci�c e�ects. In addition to general enhanced

model �t, we now observe that the �ve-factor model outperforms the two-factor model

regardless of the portfolio sort, both with respect to the GRS-statistic and to the adjusted

R
2
. We therefore show the updated results of the Fama-MacBeth second stage regressions

in the right part of Table 24 in the appendix. We �nd that even the better-�tted models do

not price the pro�tability and the investment factors.

To scrutinize the Norwegian data even more intensively, in another test we reduce the

sample period to the years 2007-2015. Thereby we secure that the number of sample

companies in each month is mostly three-digit. However, this also leads to the �nancial

crisis playing a more crucial role on returns, as it now amounts for a large part of the

sample period. Besides the overall sample size is then unfavourably small. The e�ect of

this sample period cut is shown in the right part of Panel B in Table 23. We see that this

adjustment leads to increased GRS-values when size-BM or size-OP sorted test portfolios

are used. The model �t of models based on size-Inv sorts is now improved. The relative

performance of the �ve-factor model is though worse than that of the two-factor model.

This adjustment thereby does not change conclusions drawn above.
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7 Conclusion and outlook

We evaluate the Fama-French �ve-factor model’s applicability to the German and Norwegian

stock markets in the period from July 1991 to December 2015. Our �ndings suggest that the

market portfolio and the size factor have a signi�cantly e�ect in describing cross-sectional

excess returns. These results support among others the analyses by Heston et al. (1995), Næs

et al. (2009) and Amel-Zadeh (2011). At the same time we conclude that the �ve-factor model

does not add any value relative to our country-speci�c benchmark models when trying to

describe return variation across companies in the two markets. In several robustness tests, we

scrutinize the sensitivity of this result to the assumptions made throughout the analysis. These

tests show that our restrictions are adequately reasonable since they do not a�ect our �nal

conclusions.

The pricing errors produced by the �rst-stage Fama-MacBeth regressions on German stock

data are almost identical for the three-factor and the �ve-factor model. Small companies with

low value appear to be troublesome, a result that con�rms earlier documentations of Fama

and French (1993, 2015a). The problem is however not limited to this stock type, as we �nd

that both models misspecify the returns of several other portfolios, regardless of test portfolio

sort. To evaluate the absolute and relative performance of each model we use the GRS-test.

Results show that none of the two model speci�cations gives good model �t. Additionally there

is no indication that the �ve-factor model performs better than the three-factor model. The

GMM estimation of risk premiums in the German market shows that only the sort on size and

value achieves to price the market factor, while other factors largely remain unpriced. As the

GRS-test, the J-test though suggests that both models, regardless of the test portfolio choice,

are inadequate asset-pricing models.

In the Norwegian sample, we �nd almost all pricing errors from sorts on size-BM and

size-OP to be indistinguishable from zero for both models tested. The GRS-test does in these

cases indicate good overall model �t. In relative terms, the �ve-factor model does not achieve a

lower GRS-statistic than the two-factor benchmark model. This is among others due to the

�ve-factor model giving a signi�cantly negative pricing error for the portfolio containing large

�rms with high company value. In the factor premium analysis, the J-test indicates good model

�t of both Norwegian models that have size-BM and size-OP sorted test portfolios. We then

�nd that the market and the size factors are priced, while there is no evidence for neither a

pro�tability nor an investment premium. We infer that the �ve-factor model does not give

more information about the variation in Norwegian stock returns than the sparser two-factor

model.

We test if these results are sensitive to several assumptions that we made when constructing

our data sample. Additionally, we examine whether conclusions change if the models are applied

to shorter period subsamples. Our �ndings reject both the former and the latter.

The meaningfulness of our results can still be questioned in several ways. Criticism can on
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the one hand be directed at the fundamentals of our approach and on the other hand at our

implementation.

There are many researchers who question the validity of an empirical search for systematic

risk factors due to its lack of theoretical foundation. They regard the process as pure data mining

(Lo & MacKinlay, 1990) and show that even factors that obviously are unrelated to risk exposure

can appear to have explanatory power (Ferson, Sarkissian, & Simin, 1999). Others argue that

empirically found factor premiums are a result of irrational investor behavior rather than a

compensation for systematic risk (Lakonishok, Shleifer, & Vishny, 1994, 5). As we scrutinize

the applicability of the Fama-French �ve-factor model to other markets, we presuppose that

this kind of models is in general useful for describing asset returns and do not dig deeper into

the basic principle.

Regarding our implementation, we see three aspects that are subject to potential improve-

ment.

1. We restrict our analysis to factors that form part of the �ve-factor model, and do not

take into account that there actually are other factors like liquidity, momentum or

macroeconomic variables that have been found to be signi�cant in multifactor models

(see e.g. Pástor & Stambaugh, 2003; Jegadeesh & Titman, 1993; Næs et al., 2009). As

omitting relevant risk factors may lead to biased results, we could have tested if an

inclusion of these factors leads to signi�cant pro�tability and investment factors.

2. We use test portfolios that are formed on the same characteristics as the factors themselves.

This potentially creates arti�cially high correlation between regressor and regressand.

Lewellen, Nagel, and Shanken (2010) therefore advocate that results found for this setting

should be veri�ed by using other test portfolios that correlate less with the factors. A

widespread approach to do so is to use portfolios comprising stocks sorted by industry

(see e.g. Næs et al., 2009; Fama & French, 1997).

3. Due to their deviating balance sheet structure we exclude �nancial �rms from our analysis

although a good asset pricing model is supposed to price all assets. By constructing

measures for �nancial �rms that align their �rm characteristics to those of industrial

�rms we could have included them in the analysis so that conclusions apply even more

generally.

All of these aspects give rise to future research possibilities and can be used to verify or revise

the �ndings of our thesis.
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Appendices

Table 17
Average number of stocks per test portfolio in the period July 1991-December 2015 by three di�erent double sorts.

At the end of each June sample stocks are independently sorted by the �rm characteristics size, book-to-market

(B/M), operating pro�tability (OP) and Investment (Inv) and assigned to di�erent groups. German stocks are

divided into �ve groups using quintile breakpoints, Norwegian stocks are divided into three groups using 30%

and 70% quantile breakpoints. The interface of the size groups (small to big) and the second variable groups (low

to high) gives 25 test portfolios for Germany and 9 portfolios for Norway. Size is a �rm’s market capitalization at

the end of June of year τ . B/M is book equity at the end of �scal year τ − 1 divided by market equity measured at

the end of December of year τ − 1. OP is de�ned as total revenues less total operating expenses and total interest

expenses all divided by book equity, all measured at the end of �scal year τ − 1. Inv is the growth of total assets

from the end of �scal year τ − 2 to the end of �scal year τ − 1. The sample is restricted to �rms with positive

book-equity.

Germany Norway

Low 2 3 4 High Low 2 High

Panel A: Size-B/M portfolios

Small 10 7 10 13 26 5 6 6

2 9 11 14 17 17

3 12 14 14 16 12 7 8 7

4 16 16 14 12 9

Big 20 19 16 9 5 6 8 4

Panel B: Size-OP portfolios

Small 29 13 9 6 8 8 6 4

2 16 18 13 10 10

3 11 14 16 15 12 6 10 6

4 8 13 15 16 17

Big 3 9 15 21 21 3 7 8

Panel C: Size-Inv portfolios

Small 23 14 11 9 9 7 6 5

2 16 15 12 12 13

3 12 12 13 13 17 6 9 7

4 8 14 14 15 16

Big 8 12 17 18 14 4 8 6
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Table 18
Average �rm size, book-to-market (B/M), operating pro�tability (OP) and investment (Inv) of the stocks in the 25

(9) test portfolios, July 1991-December 2015. Portfolios are constructed as described in Table 17.

Germany Norway

Low 2 3 4 High Low 2 High

Panel A: Average size

size-B/M portfolios

Small 22 22 25 20 19 56 54 43

2 67 71 68 63 61

3 167 168 145 160 150 258 278 276

4 589 545 493 496 492

Big 8790 11830 11504 12685 9114 2739 7789 3371

Panel B: Average B/M

size-B/M portfolios

Small 0.21 0.46 0.68 1.05 2.83 0.29 0.72 2.22

2 0.21 0.46 0.69 1.02 2.98

3 0.24 0.45 0.70 1.00 2.04 0.29 0.71 1.87

4 0.24 0.46 0.69 0.99 1.72

Big 0.23 0.46 0.67 0.95 1.64 0.31 0.74 1.17

Panel C: Average OP

size-OP portfolios

Small -2.95 0.10 0.22 0.36 1.64 -0.31 0.15 0.50

2 -0.89 0.10 0.22 0.32 1.01

3 -0.40 0.12 0.22 0.32 0.64 -0.30 0.16 0.59

4 -0.18 0.12 0.22 0.32 0.59

Big -0.08 0.15 0.23 0.32 0.56 -0.02 0.17 0.42

Panel D: Average Inv

size-Inv portfolios

Small -0.26 -0.01 0.09 0.21 2.31 -0.16 0.13 1.46

2 -0.23 -0.01 0.07 0.20 2.72

3 -0.19 -0.03 0.08 0.19 1.03 -0.13 0.10 1.23

4 -0.20 -0.04 0.08 0.18 3.11

Big -0.16 0.00 0.06 0.15 0.92 -0.08 0.12 1.30
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(a) size-Inv PF11, Exposure to all �ve factors

(b) size-Inv PF11, Exposure to the pro�tability factor

(c) size-Inv PF11, Exposure to the investment factor

Figure 8
Germany: Variation of the factor loadings over time, July 1991 to December 2015. We run rolling window

regressions with 50 observations at a time to see if the factor loadings are constant over the course of our sample

period. We only show results for the size-Inv sorted test portfolio containing conservative microcap �rm stocks.

In Panel (a) we show the variation of all factor loading estimates, while Panels (b) and (c) show the estimates of

the portfolios exposure to the pro�tability (RMW) and the investment factor (CMA) with con�dence bands.
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(a) size-Inv PF11, Exposure to all �ve factors

(b) size-Inv PF11, Exposure to the pro�tability factor

(c) size-Inv PF11, Exposure to the investment factor

Figure 9
Norway: Variation of the factor loadings over time, July 1991 to December 2015. We run rolling window

regressions with 50 observations at a time to see if the factor loadings are constant over the course of our sample

period. We only show results for the size-Inv sorted test portfolio containing conservative microcap �rm stocks.

In Panel (a) we show the variation of all factor loading estimates, while Panels (b) and (c) show the estimates of

the portfolios exposure to the pro�tability (RMW) and the investment factor (CMA) with con�dence bands.
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Table 19
Average monthly percent returns, standard deviations and t-statistic of the factor building blocks, July

1991-December 2015. All sample stocks are independently sorted and divided into two size groups (small and big),

three value groups (low, neutral and high), three pro�tability groups (weak, neutral and robust) and three

investment groups (conservative, neutral and agressive). The breakpoint for the size groups is the sample mean.

The three other variables are cut on the basis of the 30
th

and 70
th

percentile. The interface of the size groups and

the respective other variable groups gives six RHS portfolios which are the building blocks for the construction of

the factor mimicking portfolios.

Germany Norway

Panel A: Size-B/M

SL SN SH BL BN BH SL SN SH BL BN BH

mean 0.93 1.16 1.31 0.95 1.00 1.48 1.58 1.70 1.65 1.10 1.03 1.08

std 6.10 5.53 5.61 6.25 5.77 6.88 8.23 7.90 10.15 8.08 6.17 8.65

t-stat 2.62 3.59 4.01 2.62 2.97 3.68 3.30 3.69 2.78 2.34 2.85 2.13

Panel B: Size-OP

SW SN SR BW BN BR SW SN SR BW BN BR

mean 1.13 1.03 1.46 1.10 0.93 1.10 1.63 1.26 2.19 1.17 1.09 0.99

std 6.50 5.27 5.24 8.16 6.11 5.77 10.84 7.49 7.81 10.47 7.28 6.94

t-stat 2.99 3.36 4.77 2.30 2.61 3.28 2.57 2.90 4.81 1.91 2.56 2.46

Panel C: Size-Inv

SC SN SA BC BN BA SC SN SA BC BN BA

mean 1.31 1.24 0.98 0.91 1.05 1.04 2.15 1.48 1.11 1.34 1.03 1.24

std 5.68 5.29 6.02 5.77 6.00 7.07 10.07 7.04 8.52 8.16 6.74 8.08

t-stat 3.94 4.02 2.79 2.71 3.02 2.51 3.65 3.60 2.24 2.82 2.61 2.57
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Table 20
Germany: Auxiliary regressions to identify collinearity, July 1991-December 2015 (294 months). Four factors are regressed on the �fth to see to which extend one factor’s

average return is explained by the others’. Mkt is the value-weighted return on a portfolio of all sample stocks in excess of the four-week U.S. Treasury bill rate. SMB is the size

factor, HML is the value factor, RMW is the pro�tability factor and CMA is the investment factor. Factors are constructed as shown in Table 2.

Dependent variable:

Mkt SMB HML RMW CMA

Constant 0.009
∗∗∗

0.003 0.004 0.002 0.0001

(0.003) (0.002) (0.003) (0.003) (0.003)

Mkt −0.300
∗∗∗

0.050 −0.186
∗∗∗ −0.176

∗∗∗

(0.035) (0.058) (0.062) (0.058)

SMB −0.662
∗∗∗

0.383
∗∗∗ −0.374

∗∗∗
0.061

(0.078) (0.084) (0.091) (0.088)

HML 0.051 0.176
∗∗∗

0.074 0.102
∗

(0.059) (0.038) (0.063) (0.059)

RMW −0.163
∗∗∗ −0.148

∗∗∗
0.063 0.267

∗∗∗

(0.054) (0.036) (0.054) (0.053)

CMA −0.173
∗∗∗

0.027 0.099
∗ −0.302

∗∗∗

(0.054) (0.039) (0.058) (0.060)

Observations 294 294 294 294 294

R
2

0.263 0.287 0.093 0.153 0.157

Adjusted R
2

0.252 0.277 0.080 0.142 0.145

Residual Std. Error 0.050 (df = 289) 0.034 (df = 289) 0.050 (df = 289) 0.053 (df = 289) 0.050 (df = 289)

F Statistic 25.720
∗∗∗

(df = 4; 289) 29.038
∗∗∗

(df = 4; 289) 7.380
∗∗∗

(df = 4; 289) 13.078
∗∗∗

(df = 4; 289) 13.432 (df = 4; 289)

Note: Standard errors in parentheses. Signi�cance levels:
∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01
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Table 21
Norway: Auxiliary regressions to identify collinearity, July 1991-December 2015 (294 months). Four factors are regressed on the �fth to see to which extend one factor’s

average return is explained by the others’. Mkt is the value-weighted return on a portfolio of all sample stocks in excess of the four-week U.S. Treasury bill rate. SMB is the size

factor, HML is the value factor, RMW is the pro�tability factor and CMA is the investment factor. Factors are constructed as shown in Table 2.

Dependent variable:

Mkt SMB HML RMW CMA

Constant 0.011
∗∗∗

0.007
∗∗ −0.002 0.001 0.002

(0.003) (0.003) (0.004) (0.004) (0.004)

Mkt −0.129
∗∗∗

0.064 −0.163
∗∗

0.076

(0.045) (0.074) (0.067) (0.063)

SMB −0.212
∗∗∗ −0.347

∗∗∗ −0.630
∗∗∗

0.017

(0.074) (0.093) (0.079) (0.081)

HML 0.041 −1.133
∗∗∗

0.224
∗∗∗

0.062

(0.047) (0.036) (0.052) (0.050)

RMW −0.122
∗∗ −0.286

∗∗∗
0.266

∗∗∗ −0.017

(0.050) (0.036) (0.062) (0.055)

CMA 0.065 0.009 0.084 −0.019

(0.054) (0.042) (0.069) (0.063)

Observations 294 294 294 294 294

R
2

0.050 0.207 0.091 0.214 0.013

Adjusted R
2

0.037 0.196 0.079 0.203 −0.001

Residual Std. Error 0.059 (df = 289) 0.046 (df = 289) 0.074 (df = 289) 0.068 (df = 289) 0.063 (df = 289)

F Statistic 3.821
∗∗∗

(df = 4; 289) 18.852
∗∗∗

(df = 4; 289) 7.274
∗∗∗

(df = 4; 289) 19.629
∗∗∗

(df = 4; 289) 0.961 (df = 4; 289)

Note: Standard errors in parentheses. Signi�cance levels:
∗
p<0.1;

∗∗
p<0.05;

∗∗∗
p<0.01
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Table 22
GRS-test based on alternative assumptions, part 1. July 1991-December 2015, 294 months. The GRS statistic tests

if the intercepts of all N time-series regressions given by Equation (18) jointly equal zero. A|ai| is the average

absolute intercept value, adj. R
2

is the adjusted coe�cient of determination. We test if the model performance of

the �ve-factor model (FF5F) dominates that of the respective benchmark model (FF3F in the case of Germany,

Mkt+SMB in the case of Norway).

Germany Norway

GRS p-value A|ai| adj. R
2

GRS p-value A|ai| adj. R
2

Panel A: only �rms with �scal year-end = December

a) Size-B/M:

FF5F 1.75 0.02 0.0028 0.60 1.54 0.13 0.0031 0.55

benchmark 1.57 0.05 0.0028 0.60 1.44 0.17 0.0033 0.49

b) Size-OP:

FF5F 1.64 0.03 0.0023 0.59 1.61 0.11 0.0032 0.53

benchmark 1.76 0.02 0.0025 0.57 1.59 0.12 0.0033 0.48

c) Size-Inv:

FF5F 1.63 0.03 0.0027 0.63 2.73 0.00 0.0053 0.55

benchmark 1.63 0.03 0.0027 0.60 2.51 0.01 0.0049 0.50

Panel B: Market equity aligned with �scal year-end

a) Size-B/M:

FF5F 1.55 0.05 0.0026 0.64 1.43 0.28 0.0028 0.57

benchmark 1.49 0.07 0.0026 0.64 1.30 0.24 0.0030 0.51

b) Size-OP:

FF5F 2.39 0.00 0.0025 0.62 1.23 0.28 0.0031 0.56

benchmark 2.43 0.00 0.0025 0.61 1.37 0.20 0.0036 0.50

c) Size-Inv:

FF5F 1.79 0.01 0.0024 0.66 2.71 0.00 0.0055 0.55

benchmark 1.82 0.01 0.0023 0.64 2.70 0.00 0.0054 0.50

Panel C: penny stock adjustment 2×2 RHS PFs
a) Size-B/M:

FF5F 1.31 0.15 0.0025 0.63 1.40 0.19 0.0029 0.54

benchmark 1.32 0.15 0.0025 0.63 1.33 0.22 0.0030 0.52

b) Size-OP:

FF5F 2.14 0.00 0.0027 0.63 1.40 0.19 0.0029 0.54

benchmark 2.16 0.00 0.0027 0.62 1.54 0.13 0.0037 0.49

c) Size-Inv:

FF5F 1.94 0.01 0.0022 0.65 2.90 0.00 0.0053 0.53

benchmark 1.93 0.01 0.0022 0.63 2.75 0.00 0.0051 0.50
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Table 23
GRS-test based on alternative assumptions, part 2. The GRS-statistic tests if the intercepts of all N time-series

regressions given by Equation (18) jointly equal zero. A|ai| is the average absolute intercept value, adj. R
2

is the

adjusted coe�cient of determination. We test if the model performance of the �ve-factor model (FF5F) dominates

that of the respective benchmark model (FF3F in the case of Germany, Mkt+SMB in the case of Norway). For the

German data set we test if only looking at the DEM period, i.e. 1990-1998 (Panel A) or only looking at the EUR

period, i.e. 1999-2015 (Panel B) leads to di�erent conclusions. For the Norwegian data set we test if only analysing

the sample period 2000-2015 (Panel A) or 2007-2015 (Panel B) a�ects model choice.

Germany Norway

GRS p-value A|ai| adj. R
2

GRS p-value A|ai| adj. R
2

Panel A: DEM period 2000-2015

a) Size-B/M:

FF5F 1.95 0.02 0.0036 0.60 0.93 0.50 0.0028 0.60

benchmark 2.05 0.01 0.0036 0.60 1.04 0.41 0.0030 0.54

b) Size-OP:

FF5F 0.89 0.60 0.0030 0.57 0.74 0.67 0.0031 0.59

benchmark 0.96 0.53 0.0029 0.56 0.88 0.55 0.0033 0.53

c) Size-Inv:

FF5F 2.13 0.01 0.0031 0.57 2.50 0.01 0.0060 0.61

benchmark 1.92 0.02 0.0031 0.55 2.76 0.00 0.0063 0.56

Panel B: EUR period 2007-2015

a) Size-B/M:

FF5F 1.68 0.03 0.0031 0.67 1.25 0.27 0.0031 0.62

benchmark 1.67 0.03 0.0031 0.67 1.42 0.19 0.0038 0.58

b) Size-OP:

FF5F 3.09 0.00 0.0034 0.66 1.95 0.05 0.0038 0.64

benchmark 3.16 0.00 0.0034 0.64 1.60 0.13 0.0031 0.60

c) Size-Inv:

FF5F 1.94 0.01 0.0029 0.69 2.16 0.03 0.0056 0.66

benchmark 2.09 0.00 0.0029 0.67 1.93 0.06 0.0055 0.61
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Table 24
Results of the T cross-sectional second stage Fama-MacBeth regressions

Rit = at + λMkt
t b̂i + λSMB

t ŝi + λHML
t ĥi + λRMW

t r̂i + λCML
t ĉi + εt

where Rit is the excess return of the LHS portfolios formed on the double sorts indicated in Panel A-C, at is the

pricing error, b̂i, ŝi, ĥi, r̂i and ĉi are the factor loadings found in the �rst stage Fama-MacBeth regression and λLt

is the risk premium for risk factor L. Estimation is done by GMM as described in section 4.2.2. Coef is the

estimated risk premium awarded for factor L in %, Std is its standard deviation in % and t-stat is its t-statistic.

Low p-values of the J-statistic indicate bad model �t. We compare the results of the �ve-model model with those

of the respective benchmark model. The benchmark for German portfolios is the Fama-French three-factor model.

The benchmark for the Norwegian portfolios is a two-factor model with the market and the size factor as

explanatory variables. The results for Germany are based on the subperiod 1991-1998, i.e. the DEM period. The

results for Norway are based on the subperiod 2000-2015.

Germany, 1991-1998 Norway, 2000-2015

λMkt λSMB λHML λRMW λCMA λMkt λSMB λHML λRMW λCMA

Panel A: size-BM

a) FF5F

Coef 0.69 1.15 -0.11 -2.72 3.10

Std 0.48 0.44 0.44 2.79 2.54

t-stat 1.43 2.60 -0.25 -0.98 1.22

J-test J(χ2
(4)) = 4.68, p = 0.32

b) benchmark model

Coef 0.76 1.04

Std 0.45 0.39

t-stat 1.70 2.69

J-test J(χ2
(7)) = 6.51, p = 0.48

Panel B: size-OP

a) FF5F

Coef 0.55 -1.32 -0.48 0.45 -0.36 0.81 1.42 -0.18 -0.24 -0.65

Std 0.52 0.29 0.62 0.41 0.49 0.51 0.49 2.10 0.58 1.49

t-stat 1.05 -4.59 -0.78 1.10 -0.74 1.57 2.87 -0.09 -0.41 -0.44

J-test J(χ2
(20)) = 37.17, p = 0.011 J(χ2

(4)) = 3.27, p = 0.51

b) benchmark model

Coef 0.40 -1.11 -0.45 0.88 1.26

Std 0.50 0.26 0.58 0.45 0.43

t-stat 0.80 -4.31 -0.77 1.94 2.93

J-test J(χ2
(22)) = 40.77, p = 0.009 J(χ2

(7)) = 7.26, p = 0.40

Panel C: size-Inv

a) FF5F

Coef 0.64 1.26 0.28 1.27 0.05

Std 0.47 0.51 1.24 1.89 0.52

t-stat 1.36 2.49 0.23 0.67 0.10

J-test J(χ2
(4)) = 23.03, p = 0.000

b) benchmark model

Coef 0.65 0.90

Std 0.45 0.38

t-stat 1.45 2.36

J-test J(χ2
(7)) = 24.79, p = 0.000
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R code 1
Formatting exchange rates

l i b ra ry ( da t a . t ab l e )

l i b ra ry ( Quandl )

l i b ra ry ( TTR )

# ## Ba l an c e s h e e t ex change r a t e s ###

# Download d a i l y ex change r a t e s
USDEUR = Quandl ( " FED / RXI_US_N_B_EU " ,

s t a r t _ date = " 1988−01−01 " ,

end_date = " 2015−12−31 " )

# Change o r d e r such t h a t d a t e s a r e d e s c e n d i n g
attach ( USDEUR )

USDEUR <− USDEUR[ order ( Date ) , ]

# E x t r a c t end−of−month d a t e s
USDEUR <− USDEUR[ endpoints ( USDEUR$Date , on = " months " ) , ]

colnames ( USDEUR ) [ 2 ] <− "USDEUR"

# S p l i t t h e d a t e i n t o s e p e r a t e y ea r and month co lumns
USDEUR$Year <− as.numeric ( format ( USDEUR$Date , format = "%Y " ) )

USDEUR$Month <− as.numeric ( format ( USDEUR$Date , format = "%m" ) )

USDEUR <− subset ( USDEUR , s e l e c t =c ( " Year " , " Month " , "USDEUR" ) )

# make c omp l e t e t ime frame
USDEUR <− data.frame ( rep ( 1 9 8 8 : 2 0 1 5 , each = 1 2 ) ,

rep ( 1 : 1 2 , times = 2 8 ) ,

c ( rep ( 0 , times = 1 3 2 ) , USDEUR$USDEUR ) )

colnames ( USDEUR ) [ 1 : 3 ] <− c ( " Year " , " Month " , "USDEUR" )

i s . n a ( USDEUR$USDEUR ) <− USDEUR$USDEUR = = 0

# Form a mat r i x o f b a l a n c e s h e e t ex change r a t e s
USDEUR_ Ba l <− data.frame ( subset ( USDEUR , Month = = 1 ,

s e l e c t = c ( " Year " , "USDEUR" ) ) ,

subset ( USDEUR , Month = = 2 , s e l e c t = "USDEUR" ) ,

subset ( USDEUR , Month = = 3 , s e l e c t = "USDEUR" ) ,

subset ( USDEUR , Month = = 4 , s e l e c t = "USDEUR" ) ,

subset ( USDEUR , Month = = 5 , s e l e c t = "USDEUR" ) ,

subset ( USDEUR , Month = = 6 , s e l e c t = "USDEUR" ) ,

subset ( USDEUR , Month = = 7 , s e l e c t = "USDEUR" ) ,

subset ( USDEUR , Month = = 8 , s e l e c t = "USDEUR" ) ,

subset ( USDEUR , Month = = 9 , s e l e c t = "USDEUR" ) ,

subset ( USDEUR , Month = = 1 0 , s e l e c t = "USDEUR" ) ,

subset ( USDEUR , Month = = 1 1 , s e l e c t = "USDEUR" ) ,

subset ( USDEUR , Month = = 1 2 , s e l e c t = "USDEUR" ) )

colnames ( USDEUR_ Ba l ) [ 2 : 1 3 ] <− c ( "USDEUR_1 " , "USDEUR_2 " ,

"USDEUR_3 " , "USDEUR_4 " ,

"USDEUR_5 " , "USDEUR_6 " ,

"USDEUR_7 " , "USDEUR_8 " ,

"USDEUR_9 " , "USDEUR_ 10 " ,

"USDEUR_ 11 " , "USDEUR_ 12 " )
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# ## P r o f i t and l o s s s t a t em e n t ex change r a t e s ###

# Download d a i l y ex change r a t e s USDEUR
USDEUR_ avg = Quandl ( " FED / RXI_US_N_B_EU " ,

s t a r t _ date = " 1988−01−01 " ,

end_date = " 2015−12−31 " )

colnames ( USDEUR_ avg ) [ 2 ] <− "USDEUR"

# S p l i t t h e d a t e i n t o s e p e r a t e y ea r and month co lumns
USDEUR_ avg$Year <− as.numeric ( format ( USDEUR_ avg$Date , format = "%Y " ) )

USDEUR_ avg$Month <− as.numeric ( format ( USDEUR_ avg$Date , format = "%m" ) )

USDEUR_ avg <− da t a . t ab l e ( USDEUR_ avg )

# c a l c u l a t e mean r a t e p e r sample month and make d e s c e n d i n g o r d e r
USDEUR_ avg <− USDEUR_ avg [ , l i s t ( USDEUR_ avg = mean ( USDEUR ) ) ,

by = c ( " Year " , " Month " ) ]

USDEUR_ avg <− USDEUR_ avg [ order ( Year , Month ) , ]

# make c omp l e t e t ime frame
USDEUR_ avg <− data.frame ( rep ( 1 9 8 8 : 2 0 1 5 , each = 1 2 ) ,

rep ( 1 : 1 2 , times = 2 8 ) ,

c ( rep ( 0 , times = 1 3 2 ) , USDEUR_ avg$USDEUR_ avg ) )

colnames ( USDEUR_ avg ) [ 1 : 3 ] <− c ( " Year " , " Month " , "USDEUR_ avg " )

# c a l c u l a t e r o l l i n g mean f o r each f i s c a l y ea r
USDEUR_ avg <− data.frame ( USDEUR_ avg$Year , USDEUR_ avg$Month ,

SMA( USDEUR_ avg$USDEUR_avg , n =12 , na.rm=T ) )

colnames ( USDEUR_ avg ) [ 1 : 3 ] <− c ( " Year " , " Month " , "USDEUR" )

i s . n a ( USDEUR_ avg$USDEUR ) <− USDEUR_ avg$USDEUR = = 0 |

( USDEUR_ avg$Year = = 2016 & USDEUR_ avg$Month > 3 )

# form a mat r i x o f P / L s t a t em e n t ex change r a t e s
USDEUR_ avg <− data.frame ( subset ( USDEUR_avg , Month = = 1 ,

s e l e c t = c ( " Year " , "USDEUR" ) ) ,

subset ( USDEUR_avg , Month = = 2 , s e l e c t = "USDEUR" ) ,

subset ( USDEUR_avg , Month = = 3 , s e l e c t = "USDEUR" ) ,

subset ( USDEUR_avg , Month = = 4 , s e l e c t = "USDEUR" ) ,

subset ( USDEUR_avg , Month = = 5 , s e l e c t = "USDEUR" ) ,

subset ( USDEUR_avg , Month = = 6 , s e l e c t = "USDEUR" ) ,

subset ( USDEUR_avg , Month = = 7 , s e l e c t = "USDEUR" ) ,

subset ( USDEUR_avg , Month = = 8 , s e l e c t = "USDEUR" ) ,

subset ( USDEUR_avg , Month = = 9 , s e l e c t = "USDEUR" ) ,

subset ( USDEUR_avg , Month = = 1 0 , s e l e c t = "USDEUR" ) ,

subset ( USDEUR_avg , Month = = 1 1 , s e l e c t = "USDEUR" ) ,

subset ( USDEUR_avg , Month = = 1 2 , s e l e c t = "USDEUR" ) )

colnames ( USDEUR_ avg ) [ 2 : 1 3 ] <− c ( "USDEUR_1 " , "USDEUR_2 " ,

"USDEUR_3 " , "USDEUR_4 " ,

"USDEUR_5 " , "USDEUR_6 " ,

"USDEUR_7 " , "USDEUR_8 " ,

"USDEUR_9 " , "USDEUR_ 10 " ,

"USDEUR_ 11 " , "USDEUR_ 12 " )
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R code 2
Risk-free rate

# CRSP T r e a s u r i e s , r i s k f r e e s e r i e s 4−week monthly
R i s k _ f r e e <− r e a d . c s v ( " R i s k ␣ f r e e ␣ r a t e ␣ 4 ␣ week ␣ m.csv " , sep = " , " ,

s t r i n g s A s F a c t o r s =F )

colnames ( R i s k _ f r e e ) [ 2 ] <− " Date "

colnames ( R i s k _ f r e e ) [ 3 ] <− " Rf _d "

colnames ( R i s k _ f r e e ) [ 4 ] <− " Dura t ion "

# Reduce d a t e f rame
R i s k _ f r e e <− subset ( R i s k _ f r e e , s e l e c t =c ( " Date " , " Rf _d " , " Dura t ion " ) )

# Change t o numer i c and make a da t e column
R i s k _ f r e e <− transform ( R i s k _ f r e e ,

Date= a s . D a t e ( a s . c h a r a c t e r ( Date ) , format= "%m/%d /%Y " ) )

# S p l i t t h e d a t e i n t o s e p e r a t e y ea r and month co lumns
R i s k _ f r e e $Year <− as.numeric ( format ( R i s k _ f r e e $Date , format = "%Y " ) )

R i s k _ f r e e $Month <− as.numeric ( format ( R i s k _ f r e e $Date , format = "%m" ) )

# C a l u l a t e monthly y i e l d
R i s k _ f r e e $Rf _m <− R i s k _ f r e e $Rf _d ∗ R i s k _ f r e e $Dura t ion

R i s k _ f r e e $Rf _ 30 d <− R i s k _ f r e e $Rf _d ∗ 30

R i s k _ f r e e <− subset ( R i s k _ f r e e , s e l e c t =c ( " Year " , " Month " , " Rf _m" , " Rf _ 30 d " ) )

R code 3
Formatting security data

GERMANY_SD <− r e a d . c s v ( "GERMANY_SD_90−15 . c s v " , sep = " , " , s t r i n g s A s F a c t o r s =F )

# g e n e r a t e e a s i e r column names :
colnames (GERMANY_SD ) [ 3 : 4 ] <− c ( " Date " , " company " )

# Change t o NUMERIC and make a DATE column
GERMANY_SD <− transform (GERMANY_SD ,

Date= a s . D a t e ( a s . c h a r a c t e r ( Date ) , format= "%Y%m%d " ) ,

c shoc =as.numeric ( gsub ( " , " , " . " , c shoc ) ) ,

p r ccd =as.numeric ( gsub ( " , " , " . " , p r ccd ) ) )

# E x t r a c t l a s t company o b s e r v a t i o n p e r month
GERMANY_SM <− GERMANY_SD [ c ( d i f f ( as.numeric (

substr (GERMANY_SD$Date , 9 , 1 0 ) ) ) < 0 , TRUE ) , ]

# S p l i t t h e d a t e i n t o s e p e r a t e year , month and day co lumns
GERMANY_SM$Year <− as.numeric ( format (GERMANY_SM$Date , format = "%Y " ) )

GERMANY_SM$Month <− as.numeric ( format (GERMANY_SM$Date , format = "%m" ) )

GERMANY_SM$day <− as.numeric ( format (GERMANY_SM$Date , format = "%d " ) )

# Keep s t o c k s t r a d e d a t German S t o c k Exchange s on l y
# 115 − B e r l i n
# 149 − Du s s e l d o r f
# 154 − F r a n k f u r t
# 163 − Hamburg
# 165 − Hannover
# 171 − I B I S Germany , t oday c a l l e d " X e t r a "
# 212 − Munich
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# 257 − S t u t t g a r t
GERMANY_SM <− subset (GERMANY_SM , exchg = = 115 | exchg = = 149 |

exchg = = 154 | exchg = = 163 | exchg = = 165 |

exchg = = 171 | exchg = = 212 | exchg = = 2 5 7 )

# Keep common and p r e f e r r e d s t o c k s on l y
# 0 − Common , o r d i n a r y
# 1 − P r e f e r r e d , p r e f e r e n c e , e t c .
GERMANY_SM <− subset (GERMANY_SM , t p c i = = 0 | t p c i = = 1 )

# Keep on l y end−of−month o b s e r v a t i o n s
GERMANY_SM <− subset (GERMANY_SM , day > 2 5 )

# C r e a t e a da ta f i l e w i th d e s i r e d v a r i a b l e s
GERMANY_SM <− subset (GERMANY_SM , s e l e c t =

c ( " Year " , " Month " , " i i d " , " gvkey " , " company " ,

" curcdd " , " p r ccd " , " c shoc " , " t p c i " , " a j e x d i " ) )

# C a l c u l a t e a d j u s t e d p r i c e s a s b a s i s f o r c o r r e c t r e t u r n c ompu ta t i o n
GERMANY_SM$ a d j p r <− GERMANY_SM$ prccd / GERMANY_SM$ a j e x d i

# Make an ID−column t h a t c omb ine s gvkey and i s s u e number
# ( t h e r e a r e some compan i e s t h a t have t h e same name bu t d i f f e r e n t gvkey / I S IN ,
# t h e r e f o r e company name i s no t enough )
GERMANY_SM <− within (GERMANY_SM , i d <− paste ( gvkey , i i d , sep = " ␣ " ) )

# make c omp l e t e t ime frame t o e n s u r e t h a t r e t u r n s a r e c a l c u l a t e d f o r ONE month
# 1 . F i nd a l l un ique c omb i n a t i o n s o f Year and Month
# 2 . F i nd a l l c ompan i e s i n t h e sample
# 3 . Combine d a t e s and compan i e s ( c a r t e s i a n p r o d u c t ) −> g i v e s d e s i r e d g r i d
# 4 . Merge t h e d e s i r e d g r i d wi th t h e i n f o rma t i o n we have ,
# a l l =T g i v e s "NA" i n rows w i t h ou t i n f o rma t i o n
GERMANY_SM <− a s . d a t a . f r a m e (GERMANY_SM)

d f 2 <− unique (GERMANY_SM[ , c ( " Year " , " Month " ) ] )

d f 3 <− unique (GERMANY_SM[ , c ( " company " , " i d " ) ] )

d f 2 <− merge ( df2 , d f 3 )

GERMANY_SM <− merge (GERMANY_SM , df2 , a l l =T )

# F o r t h e r e t u r n c a l c u l a t i o n we d e f i n e a growth f u n c t i o n
Growth <− function ( x ) { c (NA, d i f f ( x ) / x [− length ( x ) ] ) }

GERMANY_SM <− da t a . t ab l e (GERMANY_SM)

GERMANY_SM[ , RETURN : = Growth ( a d j p r ) , by = i d ]

# C a l c u l a t e s h a r e s t o t a l and p r i c e , o v e r a l l e x chang e s
# and a l l t p c i ’ s f o r each company a t e v e r y t ime
GERMANY_SM <− da t a . t ab l e (GERMANY_SM)

GERMANY_SM <− GERMANY_SM[ order ( company , Year , Month ) , ]

GERMANY_SM <− GERMANY_SM[ , l i s t ( S h a r e s _ t o t = sum ( c shoc ) ,

P r i c e _ t o t = weighted.mean ( prccd , c shoc ) ,

RETURN = weighted.mean ( RETURN , cshoc ) ) ,

by = c ( " Year " , " Month " , " gvkey " , " company " , " curcdd " ) ]

GERMANY_SM <− na.omit (GERMANY_SM)

# Add a column wi th marke t c a p . d e n o t e d i n d i f f e r e n t c u r r e n c i e s
GERMANY_SM$ME_mixed_ c u r r <− (GERMANY_SM$ S h a r e s _ t o t ∗ GERMANY_SM$ P r i c e _ t o t )

# Merge GERMANY_SM and c u r r e n c y da ta by " Year " , and " Month .
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GERMANY_SM <− merge (GERMANY_SM , USDDEM, by = c ( " Year " , " Month " ) )

GERMANY_SM <− merge (GERMANY_SM , USDEUR , by = c ( " Year " , " Month " ) )

# Add a column c o n t a i n i n g marke t cap d e n o t e d i n USD
GERMANY_SM <− data.frame (GERMANY_SM)

h <− paste0 ( "USD" , GERMANY_SM$ curcdd )

GERMANY_SM$ME_usd <− GERMANY_SM$ME_mixed_ c u r r ∗ as.numeric (

GERMANY_SM[ cbind ( 1 : nrow (GERMANY_SM ) ,

match ( h , names (GERMANY_SM ) ) ) ] )

# ## Remove penny s t o c k s ###

# Add a column c o n t a i n i n g ME d en o t e d i n EUR
GERMANY_SM$EURDEM <− i f e l s e (GERMANY_SM$Year < 1 9 9 9 , ( 1 / 1 . 9 5 5 8 3 ) , 1 )

GERMANY_SM$ME_ eur <− i f e l s e (GERMANY_SM$ curcdd = = "DEM" ,

GERMANY_SM$ME_mixed_ c u r r ∗ GERMANY_SM$EURDEM,

GERMANY_SM$ME_mixed_ c u r r )

# Add a column c o n t a i n i n g s h a r e p r i c e d e n o t e d i n EUR :
GERMANY_SM$ P r i c e _ t o t _EUR <− i f e l s e (GERMANY_SM$ curcdd = = "DEM" ,

GERMANY_SM$ P r i c e _ t o t ∗ GERMANY_SM$EURDEM,

GERMANY_SM$ P r i c e _ t o t )

GERMANY_SM$ pennys tock <− i f e l s e (GERMANY_SM$ P r i c e _ t o t _EUR < 1 &
GERMANY_SM$ME_ eur < 7 5 0 0 0 0 , 1 , 0 )

GERMANY_SM <− subset (GERMANY_SM , pennys tock = = 0 )

# ## RETURN CALCULATION CONTINUES ###

# S o r t by company , t h en by t ime
GERMANY_SM <− da t a . t ab l e (GERMANY_SM)

GERMANY_SM <− GERMANY_SM[ order ( company , Year , Month ) , ]

# E x t r a c t d e s i r e d v a r i a b l e s
GERMANY_SM <− subset (GERMANY_SM , s e l e c t =

c ( " Year " , " Month " , " gvkey " , " company " , "RETURN" , "ME_usd " ) )

# Deno t e ME in M i l l i o n s
GERMANY_SM$ME_usd <− (GERMANY_SM$ME_usd / 1 0 0 0 0 0 0 )

# Add column wi th r i s k f r e e r a t e o f r e t u r n t o e x s i s t i n g da ta frame ,
# and s o r t by company and da t e
GERMANY_SM <− merge (GERMANY_SM , R i s k _ f r e e , by = c ( " Year " , " Month " ) , a l l =T )

GERMANY_SM <− GERMANY_SM[ order ( Year , Month , company ) , ]

# C a l c u l a t e e x c e s s r e t u r n , and e x t r a c t d e s i r e d v a r i a b l e s
GERMANY_SM$ E x c e s s _ r e t <− (GERMANY_SM$RETURN − GERMANY_SM$Rf _ 30 d )

GERMANY_SM <− subset (GERMANY_SM , s e l e c t =c ( " Year " , " Month " , " gvkey " , " company " ,

"ME_usd " , "RETURN" , " E x c e s s _ r e t " ) )

R code 4
Return descriptive statistics and histograms

# R e t u r n s o r i g i n a l sample
r _gb <− GERMANY_SM$RETURN
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# D e s c r i p t i v e s t a t i s t i c s
B e f o r e _ t r i m <− data.frame ( min ( r _gb , na.rm=T ) ,

mean ( r _gb , na.rm=T ) ,

max ( r _gb , na.rm=T ) ,

sd ( r _gb , na.rm=T ) ,

kurtosi ( r _gb , na.rm=T ) ,

skew ( r _gb , na.rm=T ) )

colnames ( B e f o r e _ t r i m ) [ 1 : 6 ] <− c ( " Min " , " Mean " , " Max " , " S td " , " K u r t o s i s " , " Skewness " )

B e f o r e _ t r i m <− data.frame ( t ( B e f o r e _ t r i m ) )

# ## R e t u rn a d j u s tm e n t s ###

# Remove r e t u r n s t h a t a r e e x a c t l y z e r o
GERMANY_SM <− subset (GERMANY_SM , RETURN ! = 0 )

# Trim f o r o u t l i e r s ( t h e 0 . 5 % h i g h e s t and l ow e s t o b s e r v a t i o n s )
qnt _up <− quanti le (GERMANY_SM$RETURN , . 9 9 5 , na.rm=T )

qnt _ low <− quanti le (GERMANY_SM$RETURN , . 0 0 5 , na.rm=T )

GERMANY_SM <− subset (GERMANY_SM , RETURN >= qnt _ low & RETURN <= qnt _up )

# R e t u r n s a d j u s t e d sample
r _ga <− GERMANY_SM$RETURN

# t e s t r e t u r n s on normal d i s t r i b u t i o n
j a r q u e . b e r a . t e s t (GERMANY_SM$RETURN )

# D e s c r i p t i v e s t a t i s t i c s
A f t e r _ t r i m <− data.frame ( min ( r _ga , na.rm=T ) ,

mean ( r _ga , na.rm=T ) ,

max ( r _ga , na.rm=T ) ,

sd ( r _ga , na.rm=T ) ,

kurtosi ( r _ga , na.rm=T ) ,

skew ( r _ga , na.rm=T ) )

colnames ( A f t e r _ t r i m ) [ 1 : 6 ] <− c ( " Min " , " Mean " , " Max " , " S td " , " K u r t o s i s " , " Skewness " )

A f t e r _ t r i m <− data.frame ( t ( A f t e r _ t r i m ) )

# H i s t o g r ams
par ( mfrow=c ( 2 , 2 ) )

h_gb <− hi s t ( r _gb , xlim=c (−0 . 7 5 , 0 . 7 5 ) , breaks =10000 , col= " red " ,

xlab= " s t o c k ␣ r e t u r n " ,main= " Germany , ␣ o r i g i n a l ␣ sample " )

h_ga <− hi s t ( r _ga , xlim=c (−0 . 7 5 , 0 . 7 5 ) , breaks =150 , col= " red " ,

xlab= " s t o c k ␣ r e t u r n " ,main= " Germany , ␣ a d j u s t e d ␣ sample " )

x f i t <− seq (min ( r _ga ) ,max ( r _ga ) , length = 1 0 0 )

y f i t <− dnorm ( x f i t ,mean=mean ( r _ga ) , sd=sd ( r _ga ) )

y f i t <− y f i t ∗ d i f f ( h_ga$mids [ 1 : 2 ] ) ∗ length ( r _ga )

l ine s ( x f i t , y f i t , col= " b l a c k " , lwd=2 )

h_nb <− hi s t ( r _nb , xlim=c (−0 . 7 5 , 0 . 7 5 ) , breaks =500 , col= " red " ,

xlab= " s t o c k ␣ r e t u r n " ,main= " Norway , ␣ o r i g i n a l ␣ sample " )

h_na <− hi s t ( r _na , xlim=c (−0 . 7 5 , 0 . 7 5 ) , breaks =150 , col= " red " ,
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xlab= " s t o c k ␣ r e t u r n " ,main= " Norway , ␣ a d j u s t e d ␣ sample " )

x f i t <− seq (min ( r _na ) ,max ( r _na ) , length =50 )

y f i t <− dnorm ( x f i t ,mean=mean ( r _na ) , sd=sd ( r _na ) )

y f i t <− y f i t ∗ d i f f ( h_na$mids [ 1 : 2 ] ) ∗ length ( r _na )

l ine s ( x f i t , y f i t , col= " b l a c k " , lwd=2 )

R code 5
Formatting accounting data

GERMANY_FY <− r e a d . c s v ( "GERMANY_FY_89−15 . c s v " , sep = " , " , s t r i n g s A s F a c t o r s =F )

colnames (GERMANY_FY ) [ 7 ] <− " Year "

colnames (GERMANY_FY ) [ 9 ] <− " Date "

colnames (GERMANY_FY ) [ 2 2 ] <− " company "

# Keep on l y f i rm s l i s t e d a t l o c a l e x c hang e s
GERMANY_FY <− subset (GERMANY_FY , exchg = = 115 | exchg = = 149 | exchg = = 154 |

exchg = = 163 | exchg = = 165 | exchg = = 171 |

exchg = = 212 | exchg = = 2 5 7 )

# Change t o numer i c and make a da t e column
GERMANY_FY <− transform (GERMANY_FY ,

Date = a s . D a t e ( a s . c h a r a c t e r ( Date ) , format= "%Y%m%d " ) ,

a t = as.numeric ( gsub ( " , " , " . " , a t ) ) ,

cogs = as.numeric ( gsub ( " , " , " . " , cogs ) ) ,

l t = as.numeric ( gsub ( " , " , " . " , l t ) ) ,

r e v t = as.numeric ( gsub ( " , " , " . " , r e v t ) ) ,

seq = as.numeric ( gsub ( " , " , " . " , seq ) ) ,

t x d i t c = as.numeric ( gsub ( " , " , " . " , t x d i t c ) ) ,

s i c = as.numeric ( gsub ( " , " , " . " , s i c ) ) ,

xsga = as.numeric ( gsub ( " , " , " . " , xsga ) ) ,

x i n t = as.numeric ( gsub ( " , " , " . " , x i n t ) ) ,

xopr = as.numeric ( gsub ( " , " , " . " , xopr ) ) ,

xopro = as.numeric ( gsub ( " , " , " . " , xopro ) ) ,

x i n t d = as.numeric ( gsub ( " , " , " . " , x i n t d ) ) ,

exchg = as.numeric ( gsub ( " , " , " . " , exchg ) ) ,

Year = as.numeric ( gsub ( " , " , " . " , Year ) ) ,

f y r = as.numeric ( gsub ( " , " , " . " , f y r ) ) ,

gvkey = as.numeric ( gsub ( " , " , " . " , gvkey ) ) )

# Dev id e b a l a n c e s h e e t and r e s u l t v a r i a b l e s i n s e p a r a t e da ta f r ame s
GERMANY_FY_ b a l <− subset (GERMANY_FY ,

s e l e c t =c ( " Year " , " f y r " , " gvkey " , " company " ,

" curcd " , " a t " , " l t " , " seq " , " t x d i t c " ) )

GERMANY_FY_ r e s <− subset (GERMANY_FY ,

s e l e c t =c ( " Year " , " f y r " , " gvkey " , " company " ,

" curcd " , " r e v t " , " cogs " , " xsga " , " x i n t " , " xopr " , " xopro " ) )

# Merge GERMANY_FY_ ba l w i th b a l a n c e s h e e t ex change r a t e s
GERMANY_FY_ b a l <− merge (GERMANY_FY_ ba l , USDAUD_Bal , by = " Year " )

GERMANY_FY_ b a l <− merge (GERMANY_FY_ ba l , USDDEM_Bal , by = " Year " )

GERMANY_FY_ b a l <− merge (GERMANY_FY_ ba l , USDEUR_Bal , by = " Year " )

GERMANY_FY_ b a l <− merge (GERMANY_FY_ ba l , USDGBP_Bal , by = " Year " )

# Merge GERMANY_FY_ r e s w i th P / L exchange r a t e s
GERMANY_FY_ r e s <− merge (GERMANY_FY_ res , USDAUD_avg , by = " Year " )

GERMANY_FY_ r e s <− merge (GERMANY_FY_ res , USDDEM_avg , by = " Year " )
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GERMANY_FY_ r e s <− merge (GERMANY_FY_ res , USDEUR_avg , by = " Year " )

GERMANY_FY_ r e s <− merge (GERMANY_FY_ res , USDGBP_avg , by = " Year " )

# Deno t e b a l a n c e s h e e t v a r i a b l e s i n USD
i <− paste0 ( "USD" , GERMANY_FY_ b a l $ curcd , " _ " , GERMANY_FY_ b a l $ f y r )

tmp <− as.numeric (GERMANY_FY_ b a l [ cbind ( 1 : nrow (GERMANY_FY_ b a l ) ,

match ( i , names (GERMANY_FY_ b a l ) ) ) ] )

GERMANY_FY_ b a l [ , c ( " a t _usd " , " l t _usd " , " seq _usd " , " t x d i t c _usd " ) ]

<− GERMANY_FY_ b a l [ , 6 : 9 ] ∗ i f e l s e ( i s . n a ( tmp ) , 1 , tmp )

# Deno t e P / L v a r i a b l e s i n USD
l <− paste0 ( "USD" , GERMANY_FY_ r e s $ curcd , " _ " , GERMANY_FY_ r e s $ f y r )

tmp <− as.numeric (GERMANY_FY_ r e s [ cbind ( 1 : nrow (GERMANY_FY_ r e s ) ,

match ( l , names (GERMANY_FY_ r e s ) ) ) ] )

GERMANY_FY_ r e s [ , c ( " r e v t _usd " , " cogs _usd " , " xsga _usd " ,

" x i n t _usd " , " xopr _usd " , " xopro _usd " ) ]

<− GERMANY_FY_ r e s [ , 6 : 1 1 ] ∗ i f e l s e ( i s . n a ( tmp ) , 1 , tmp )

R code 6
Sorting variable construction

# Combine a l l d e s i r e d b a l a n c e s h e e t and P / L v a r i a b l e s i n t o one f rame
GERMANY_FY <− subset (GERMANY_FY_ ba l , s e l e c t =c ( " Year " , " f y r " , " gvkey " , " company " ,

" a t _usd " , " l t _usd " , " seq _usd " , " t x d i t c _usd " ) )

GERMANY_FY <− cbind (GERMANY_FY , GERMANY_FY_ r e s [ , c ( " r e v t _usd " , " cogs _usd " ,

" xsga _usd " , " x i n t _usd " ,

" xopr _usd " , " xopro _usd " ) ] )

# Omit c ompan i e s w i th z e r o a s s e t s ( s i g n o f i n s u f f i c i e n t r e p o r t i n g )
GERMANY_FY <− da t a . t ab l e (GERMANY_FY )

GERMANY_FY <− subset (GERMANY_FY , a t _usd ! = 0 )

# D e f i n e s t o c k h o l d e r e q u i t y
GERMANY_FY [ , s t o c k h o l d e r _ e q u i t y : = i f e l s e ( ! i s . n a ( seq_usd ) , seq_usd ,

( a t _usd − l t _usd ) ) ]

# C a l c u l a t e book−e q u i t y
GERMANY_FY$BE_usd <− (GERMANY_FY$ s t o c k h o l d e r _ e q u i t y + GERMANY_FY$ t x d i t c _usd )

# D e f i n e marke t f rame as ba s e f o r marke t f a c t o r c o n s t r u c t i o n
GERMANY_mkt <− data.frame (GERMANY_FY )

GERMANY_mkt <− data.frame (GERMANY_mkt$Year , GERMANY_mkt$company , GERMANY_mkt$BE_usd )

colnames (GERMANY_mkt ) [ 1 : 3 ] <− c ( " Year " , " company " , " BE_usd " )

# Omit n e g a t i v e− and ze ro−BE f i rm s
GERMANY_FY <− subset (GERMANY_FY , ! BE_usd <=0)

# D e f i n e p r o f i t a b i l i t y
GERMANY_FY [ , p r o f i t a b i l i t y : = ( r e v t _usd − xopr _usd − x i n t _usd ) / BE_usd ]

# make c omp l e t e t ime frame t o s e c u r e monthly r e t u r n p e r i o d s
GERMANY_FY <− a s . d a t a . f r a m e (GERMANY_FY )

d f 2 <− unique (GERMANY_FY [ , " Year " , drop=F ] )

d f 3 <− unique (GERMANY_FY [ , c ( " company " , " gvkey " ) ] )

d f 2 <− merge ( df2 , d f 3 )
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GERMANY_FY <− merge (GERMANY_FY , df2 , a l l =T )

# D e f i n e i n v e s tm e n t
GERMANY_FY <− da t a . t ab l e (GERMANY_FY )

GERMANY_FY <− GERMANY_FY [ order ( company , Year ) , ]

GERMANY_FY [ , i n v e s t m e n t : = Growth ( a t _usd ) , by = company ]

GERMANY_FY <− na.omit (GERMANY_FY )

# E x t r a c t ME and add a yea r column
d f 2 <− subset (GERMANY_SM , s e l e c t =c ( " Year " , " Month " , " company " , "ME_usd " ) )

d f 2 <− subset ( df2 , Month = = 1 2 , s e l e c t =c ( " Year " , " company " , "ME_usd " ) )

# E x t r a c t BE , P r o f i t a b i l i t y and I n v e s t sm e n t
d f 3 <− subset (GERMANY_FY , s e l e c t =c ( " Year " , " company " , " BE_usd " ,

" p r o f i t a b i l i t y " , " i n v e s t m e n t " ) )

# Merge t o one f i l e
GERMANY <− merge ( df2 , df3 , by = c ( " Year " , " company " ) )

GERMANY <− da t a . t ab l e (GERMANY)

GERMANY <− GERMANY[ order ( Year , company ) , ]

# C a l c u l a t e Book−to−market
GERMANY$BM <− (GERMANY$BE_usd / GERMANY$ME_usd )

GERMANY <− subset (GERMANY, s e l e c t =c ( " Year " , " company " , "BM" ,

" p r o f i t a b i l i t y " , " i n v e s t m e n t " ) )

GERMANY$Year <− (GERMANY$Year + 1 )

# Make one f i l e c o n t a i n i n g BE , OP and Inv a t t ime t and ME a t June o f t +1
# E x t r a c t ME_ usd a t June o f t +1
d f 4 <− subset (GERMANY_SM , Month = = 6 , s e l e c t =c ( " Year " , " company " , "ME_usd " ) )

colnames ( d f 4 ) [ 3 ] <− " s i z e "

GERMANY <− merge (GERMANY, df4 , by = c ( " Year " , " company " ) , a l l =T )

GERMANY <− na.omit (GERMANY)

# C o n s t r u c t t h e marke t f a c t o r
GERMANY_mkt <− merge ( df2 , GERMANY_mkt , by = c ( " Year " , " company " ) , drop=F )

GERMANY_mkt <− na.omit (GERMANY_mkt )

GERMANY_mkt$Year <− (GERMANY_mkt$Year + 1 )

GERMANY_mkt <− merge (GERMANY_mkt , df4 , by = c ( " Year " , " company " ) , a l l =T )

GERMANY_mkt <− na.omit (GERMANY_mkt )

R code 7
Form test portfolios

# Add co lumns t h a t show which q u i n t i l e t h e o b s e r v a t i o n b e l o n g s t o
GERMANY <− ddply (GERMANY, . ( Year ) , transform ,

s i z e _ gr = cut ( s i z e , breaks = c ( quanti le ( s i z e , seq ( 0 , 1 , by=0 . 2 ) ) ) ,

l abe l s =c ( " 1 " , " 2 " , " 3 " , " 4 " , " 5 " ) , inc lude . lowest = T ) )

GERMANY <− ddply (GERMANY, . ( Year ) , transform ,

BM_ gr = cut (BM, breaks = c ( quanti le (BM, seq ( 0 , 1 , by=0 . 2 ) ) ) ,

l abe l s =c ( " 1 " , " 2 " , " 3 " , " 4 " , " 5 " ) , inc lude . lowest = T ) )

GERMANY <− ddply (GERMANY, . ( Year ) , transform ,
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Inv _ gr = cut ( inves tment , breaks = c ( quanti le ( inves tment ,

seq ( 0 , 1 , by=0 . 2 ) ) ) , l abe l s =c ( " 1 " , " 2 " , " 3 " , " 4 " , " 5 " ) , inc lude . lowest = T ) )

GERMANY <− ddply (GERMANY, . ( Year ) , transform ,

OP_ gr = cut ( p r o f i t a b i l i t y , breaks = c ( quanti le ( p r o f i t a b i l i t y ,

seq ( 0 , 1 , by=0 . 2 ) ) ) , l abe l s =c ( " 1 " , " 2 " , " 3 " , " 4 " , " 5 " ) , inc lude . lowest = T ) )

# Add co lumns c o n t a i n i n g i n f o rma t i o n abou t which s i z e _BM, s i z e _ Inv , and
# s i z e _OP p o r t f o l i o t h e o b s e r v a t i o n b e l o n g s t o
GERMANY <− within (GERMANY, s i z e _BM <− paste0 ( s i z e _gr ,BM_ gr ) )

GERMANY <− within (GERMANY, s i z e _OP <− paste0 ( s i z e _gr , OP_ gr ) )

GERMANY <− within (GERMANY, s i z e _ Inv<− paste0 ( s i z e _gr , Inv _ gr ) )

# To compare y e a r l y p o r t f o l i o u p da t e s t o monthly company r e t u r n s ,
# we need t o have each o b s e r v a t i o n 12 t im e s
GERMANY_LHS <− data.frame (GERMANY[ rep ( seq_ l e n (nrow (GERMANY ) ) , each = 1 2 ) , ] )

GERMANY_mkt <− data.frame (GERMANY_mkt [ rep ( seq_ l e n (nrow (GERMANY_mkt ) ) , each = 1 2 ) , ] )

# Add a month column t h a t run s from 1−12 f o r each company
GERMANY_LHS$Month <− rep ( c ( 7 : 1 2 , 1 : 6 ) , times=nrow (GERMANY_LHS ) / 1 2 )

GERMANY_mkt$Month <− rep ( c ( 7 : 1 2 , 1 : 6 ) , times=nrow (GERMANY_mkt ) / 1 2 )

GERMANY_LHS <− da t a . t ab l e (GERMANY_LHS )

GERMANY_LHS [ , Year _ r e t : = i f e l s e ( Month > 6 , Year , Year + 1 ) ]

GERMANY_mkt <− da t a . t ab l e (GERMANY_mkt )

GERMANY_mkt [ , Year _ r e t : = i f e l s e ( Month > 6 , Year , Year + 1 ) ]

# Merge da ta f r ame s t o i n c l u d e r e t u r n data , and s u b s e t d e s i r e d v a r i a b l e s
colnames (GERMANY_SM ) [ 1 ] <− " Year _ r e t "

GERMANY_LHS <− merge (GERMANY_LHS , GERMANY_SM , by = c ( " Year _ r e t " , " Month " , " company " ) )

GERMANY_mkt <− merge (GERMANY_mkt , GERMANY_SM , by = c ( " Year _ r e t " , " Month " , " company " ) )

GERMANY_LHS <− data.frame (GERMANY_LHS )

GERMANY_LHS <− data.frame (GERMANY_LHS [ , 1 : 3 ] , GERMANY_LHS [ , 1 7 : 1 9 ] ,GERMANY_LHS [ , 4 : 1 5 ] )

GERMANY_mkt <− data.frame (GERMANY_mkt )

GERMANY_mkt <− data.frame (GERMANY_mkt [ , 1 : 3 ] , GERMANY_mkt [ , 7 ] ,GERMANY_mkt [ , 9 : 1 1 ] )

colnames (GERMANY_mkt ) [ 4 ] <− " s i z e "

colnames (GERMANY_mkt ) [ 5 ] <− "ME_usd "

# Change back column name t o av o i d m i s t a k e s l a t e r on
colnames (GERMANY_SM ) [ 1 ] <− " Year "

GERMANY_LHS <− data.frame (GERMANY_LHS )

comp_ per _month <− aggregate (GERMANY_LHS$company , by= l i s t (GERMANY_LHS$Year _ r e t ,

GERMANY_LHS$Month ) , FUN= " l e n g t h " )

colnames ( comp_ per _month ) [ 1 : 3 ] <− c ( " Year _ r e t " , " Month " , " o b s e r v a t i o n s " )

R code 8
Test portfolio characteristics

# C a l c u l a t e mean e x c e s s r e t u r n o f each LHS p o r t f o l i o a t each t ime p e r i o d
GERMANY_LHS <− da t a . t ab l e (GERMANY_LHS )

Ret _ s i z e _BM <− GERMANY_LHS [ , l i s t ( R_ eweight = mean ( E x c e s s _ r e t ) ,

R_ vweight = weighted.mean ( E x c e s s _ r e t ,ME_usd ) ) ,
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by = c ( " Year _ r e t " , " Month " , " s i z e _BM" ) ]

# ## Tab l e 1 from FF2014 ###
# C a l c u l a t e t ime−s e r i e s mean p e r p o r t f o l i o
T1 <− Ret _ s i z e _BM[ , l i s t ( Ret _ s i z e _BM = mean ( R_ vweight ) ) , by = c ( " s i z e _BM" ) ]

colnames ( T1 ) [ 1 ] <− " P o r t f o l i o "

# Deno t e numbers i n %
T1$Ret _ s i z e _BM <− T1$Ret _ s i z e _BM ∗ 100

T1_ s i z e _BM <− t ( matrix ( T1$Ret _ s i z e _BM, nrow=5 , ncol =5 ,byrow=F ) )

# Number o f o b s e r v a t i o n s i n each LHS p o r t f o l i o
PF_ obs <− aggregate (GERMANY_LHS$ s i z e _BM, by= l i s t (GERMANY_LHS$Year ,

GERMANY_LHS$Month , GERMANY_LHS$ s i z e _BM) , FUN= " l e n g t h " )

colnames ( PF_ obs ) [ 1 : 4 ] <− c ( " Year " , " Month " , " P o r t f o l i o " , " s i z e _BM_ obs " )

PF_ obs <− da t a . t ab l e ( PF_ obs )

PF_ obs <− PF_ obs [ , l i s t ( s i z e _BM_ obs = mean ( s i z e _BM_ obs ) ) , by = P o r t f o l i o ]

R code 9
Double sorting as basis of factor construction

# C r e a t e co lumns c o n t a i n i n g t h e s t o c k o b s e r v a t i o n s ’ un ique group
GERMANY_LHS <− data.frame (GERMANY_LHS )

GERMANY_RHS <− data.frame (GERMANY_LHS [ , 1 : 1 1 ] )

GERMANY_RHS <− ddply (GERMANY_RHS , . ( Year ) , transform ,

s i z e _ gr = i f e l s e ( s i z e > median ( s i z e , na.rm=T ) , " B " , " S " ) )

GERMANY_RHS <− ddply (GERMANY_RHS , . ( Year ) , transform ,

BM_ gr = i f e l s e (BM > quanti le (BM, 0 . 7 , na.rm=T ) , "H" ,

i f e l s e (BM < quanti le (BM, 0 . 3 , na.rm=T ) , " L " , "N" ) ) )

GERMANY_RHS <− ddply (GERMANY_RHS , . ( Year ) , transform ,

Inv _ gr = i f e l s e ( i n v e s t m e n t > quanti le ( inves tment , 0 . 7 , na.rm=T ) ,

"A" , i f e l s e ( i n v e s t m e n t < quanti le ( inves tment , 0 . 3 , na.rm=T ) ,

"C" , "N" ) ) )

GERMANY_RHS <− ddply (GERMANY_RHS , . ( Year ) , transform ,

OP_ gr = i f e l s e ( p r o f i t a b i l i t y > quanti le ( p r o f i t a b i l i t y , 0 . 7 , na.rm=T ) ,

" R " , i f e l s e ( p r o f i t a b i l i t y < quanti le ( p r o f i t a b i l i t y , 0 . 3 , na.rm=T ) ,

"W" , "N" ) ) )

# Combine g r oup s
GERMANY_RHS <− within (GERMANY_RHS , s i z e _BM <− paste0 ( s i z e _gr ,BM_ gr ) )

GERMANY_RHS <− within (GERMANY_RHS , s i z e _OP <− paste0 ( s i z e _gr , OP_ gr ) )

GERMANY_RHS <− within (GERMANY_RHS , s i z e _ Inv <− paste0 ( s i z e _gr , Inv _ gr ) )

GERMANY_RHS <− na.omit (GERMANY_RHS )

# Number o f o b s e r v a t i o n s i n each RHS p o r t f o l i o
# s i z e _BM
RHS_ obs _ s i z e _BM <− aggregate (GERMANY_RHS$ s i z e _BM,

by= l i s t (GERMANY_RHS$Year , GERMANY_RHS$Month ,

GERMANY_RHS$ s i z e _BM) , FUN= " l e n g t h " )

colnames ( RHS_ obs _ s i z e _BM ) [ 1 : 4 ] <− c ( " Year " , " Month " , " P o r t f o l i o " , " s i z e _BM_ obs " )
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RHS_ obs _ s i z e _BM <− da t a . t ab l e ( RHS_ obs _ s i z e _BM)

RHS_ obs _ s i z e _BM <− RHS_ obs _ s i z e _BM[ , l i s t ( s i z e _BM_ obs = mean ( s i z e _BM_ obs ) ) ,

by = P o r t f o l i o ]

R code 10
Construction of the SMB factor

# C a l c u l a t e monthly mean r e t u r n f i r s t w i t h i n each o f t h e 6 s i z e BM gr oup s
GERMANY_SMB_BM <− da t a . t ab l e (GERMANY_RHS )

GERMANY_SMB_BM <− GERMANY_SMB_BM[ , l i s t ( r _ eweight = mean ( RETURN ) ,

r _ vweight = weighted.mean ( RETURN ,ME_usd ) ,

ME_usd = sum (ME_usd ) ) ,

by = c ( " Year _ r e t " , " Month " , " s i z e _BM" , " s i z e _ gr " ) ]

# I n t h i s s u b s e t c a l c u l a t e t h e mean r e t u r n by s i z e group
GERMANY_SMB_BM <− GERMANY_SMB_BM[ , l i s t ( r _ eweight = mean ( r _ eweight ) ,

r _ vweight = weighted.mean ( r _ vweight ,ME_usd ) ) ,

by = c ( " Year _ r e t " , " Month " , " s i z e _ gr " ) ]

# S o r t su ch t h a t sma l l s t o c k s come b e f o r e b i g s t o c k s
GERMANY_SMB_BM <− GERMANY_SMB_BM[ order ( Year _ r e t , Month ,− s i z e _ gr ) , ]

# C a l c u l a t e monthly mean r e t u r n f o r sma l l minus b i g s t o c k s
GERMANY_SMB_BM <− GERMANY_SMB_BM[ , l i s t ( SMB_BM = d i f f (− r _ vweight ) ) ,

by = c ( " Year _ r e t " , " Month " ) ]

# R ep ea t t h e same p r o c e d u r e f o r s i z e _OP and s i z e _ I n v

# C a l c u l a t e mean t o t a l SMB ba s ed on t h e t h r e e SMB sub−f a c t o r s
GERMANY_5F <− data.frame (GERMANY_SMB_BM$Year _ r e t , GERMANY_SMB_BM$Month ,

(GERMANY_SMB_BM$SMB_BM + GERMANY_SMB_ INV$SMB_ INV

+ GERMANY_SMB_OP$SMB_OP ) / 3 )

colnames (GERMANY_5F ) [ 1 : 3 ] <− c ( " Year _ r e t " , " Month " , "SMB" )

R code 11
Construction of the HML, RMW and CMA factors

# C a l c u l a t e monthly mean r e t u r n f i r s t w i t h i n each o f t h e 6 s i z e BM gr oup s
GERMANY_SMB_BM <− da t a . t ab l e (GERMANY_RHS )

GERMANY_SMB_BM <− GERMANY_SMB_BM[ , l i s t ( r _ eweight = mean ( RETURN ) ,

r _ vweight = weighted.mean ( RETURN , ME_usd ) ,

ME_usd = sum (ME_usd ) ) ,

by = c ( " Year _ r e t " , " Month " , " s i z e _BM" , "BM_ gr " ) ]

# I n t h i s s u b s e t c a l c u l a t e t h e mean r e t u r n by s i z e group
GERMANY_SMB_BM <− GERMANY_SMB_BM[ , l i s t ( r _ eweight = mean ( r _ eweight ) ,

r _ vweight = weighted.mean ( r _ vweight , ME_usd ) ) ,

by = c ( " Year _ r e t " , " Month " , "BM_ gr " ) ]

# E x t r a c t High and Low BM s t o c k s on ly , i . e . omi t N e u t r a l BM s t o c k s
GERMANY_SMB_BM <− GERMANY_SMB_BM[ ! (GERMANY_SMB_BM$BM_ gr = = "N" ) , ]

# S o r t
GERMANY_SMB_BM <− GERMANY_SMB_BM[ order ( Year _ r e t , Month ,BM_ gr ) , ]

# C a l c u l a t e monthly mean r e t u r n f o r High minus Low s t o c k s
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GERMANY_SMB_BM <− GERMANY_SMB_BM[ , l i s t (HML = d i f f (− r _ vweight ) ) ,

by = c ( " Year _ r e t " , " Month " ) ]

# Add t h e HML column t o GERMANY_ 5 F
GERMANY_5F$HML <− GERMANY_SMB_BM$HML

# R ep ea t t h e same f o r s i z e _OP and s i z e _ I n v

R code 12
Construction of the market factor

GERMANY_mkt <− da t a . t ab l e (GERMANY_mkt )

GERMANY_mkt <− GERMANY_mkt [ , l i s t (RM_ eweight = mean ( E x c e s s _ r e t , na.rm=T ) ,

RM_ vweight = weighted.mean ( E x c e s s _ r e t ,ME_usd , na.rm=T ) ) ,

by = c ( " Year _ r e t " , " Month " ) ]

GERMANY_5F <− merge (GERMANY_5F , GERMANY_mkt , by = c ( " Year _ r e t " , " Month " ) )

R code 13
Figure extreme portfolio spread

# ## s i z e s o r t s Germany and Norway ###
# D e f i n e x , h e r e e qua l t o monthly c umu l a t i v e r e t u n s f o r Megacap s .
x_N <− da t a . t ab l e ( subset (NORWAY_LHS , s i z e _ gr = = 3 ) )

x_N <− x_N[ , l i s t ( RETURN = weighted.mean ( RETURN , ME_usd ) ) ,

by = c ( " Year _ r e t " , " Month " ) ]

x_N <− x_N[ order ( Year _ r e t , Month ) , ]

x_N$Cum_ r e t <− cumsum ( x_N$RETURN )

x_N <− t s ( x_N$Cum_ r e t , s t a r t =c ( 1 9 9 1 , 7 ) , f r e q =12 )

x_G <− da t a . t ab l e ( subset (GERMANY_LHS , s i z e _ gr = = 5 ) )

x_G <− x_G[ , l i s t ( RETURN = weighted.mean ( RETURN , ME_usd ) ) ,

by = c ( " Year _ r e t " , " Month " ) ]

x_G <− x_G[ order ( Year _ r e t , Month ) , ]

x_G$Cum_ r e t <− cumsum ( x_G$RETURN )

x_G <− t s ( x_G$Cum_ r e t , s t a r t =c ( 1 9 9 1 , 7 ) , f r e q =12 )

# D e f i n e y , h e r e e qua l t o monthly c umu l a t i v e r e t u n s f o r M i c r o c a p s .
y_N <− da t a . t ab l e ( subset (NORWAY_LHS , s i z e _ gr = = 1 ) )

y_N <− y_N[ , l i s t ( RETURN = weighted.mean ( RETURN , ME_usd ) ) ,

by = c ( " Year _ r e t " , " Month " ) ]

y_N <− y_N[ order ( Year _ r e t , Month ) , ]

y_N$Cum_ r e t <− cumsum ( y_N$RETURN )

y_N <− t s ( y_N$Cum_ r e t , s t a r t =c ( 1 9 9 1 , 7 ) , f r e q =12 )

y_G <− da t a . t ab l e ( subset (GERMANY_LHS , s i z e _ gr = = 1 ) )

y_G <− y_G[ , l i s t ( RETURN = weighted.mean ( RETURN , ME_usd ) ) ,

by = c ( " Year _ r e t " , " Month " ) ]

y_G <− y_G[ order ( Year _ r e t , Month ) , ]

y_G$Cum_ r e t <− cumsum ( y_G$RETURN )

y_G <− t s ( y_G$Cum_ r e t , s t a r t =c ( 1 9 9 1 , 7 ) , f r e q =12 )

setwd ( " . . . / Output / P l o t s " )

# Make a p l o t , where " j p e g " s a v e s t h e p l o t ,
j p e g ( " S i z e ␣VW" , width =1000 , height = 4 0 0 )

plot ( x_N, type = " l " , lwd=2 , xlim=c ( 1 9 9 0 , 2 0 1 5 ) , ylim=c (−0 . 5 , 8 . 1 ) , axes=F ,
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main= " S i z e ␣ s o r t s " , xlab= " Year _ r e t " , ylab= " Cumula t ive ␣ Return " )

axis ( 1 , a t = 1 9 9 0 : 2 0 1 5 , l abe l s = 1 9 9 0 : 2 0 1 5 ) ;

axis ( 2 ) ; box ( )

# add s e v e r a l t ime−s e r i e s
l ine s ( y_N, col= " B l ack " , l t y =2 , lwd=2 )

l ine s ( x_G , col= " Green " , l t y =1 , lwd=2 )

l ine s ( y_G , col= " Green " , l t y =2 , lwd=2 )

# add background l i n e s
grid (nx=T , ny=NULL , l t y =2 )

# f o rma t t h e l e g e n d
par (mar=c ( 5 . 1 , 4 . 1 , 0 , 2 . 1 ) , xpd=T )

legend ( " t o p l e f t " , inse t=c ( 0 , 0 ) , legend=c ( " Megacaps " , " Microcaps " ) , lwd=c ( 2 , 2 ) ,

l t y =c ( 1 , 2 ) , col= " b l a c k " , horiz=TRUE )

legend ( " t o p l e f t " , inse t=c ( 0 , 0 . 1 ) , legend=c ( " Germany " , " Norway " ) , lwd=c ( 2 , 2 ) ,

l t y =c ( 1 , 1 ) , col=c ( " green " , " b l a c k " ) , horiz=TRUE )

# t u r n o f f t h e p l o t d i s p l a y and s av e i n s t e a d
dev .o f f ( )

R code 14
Summary statistics for factor returns

f a c t o r _ r e t <− data.frame ( Mean = sapply (GERMANY_5F [ , 3 : 8 ] ,mean , na.rm=T ) ,

S td = sapply (GERMANY_5F [ , 3 : 8 ] , sd , na.rm=T ) )

# Deno t e numbers i n %
f a c t o r _ r e t $Mean <− f a c t o r _ r e t $Mean ∗ 100

f a c t o r _ r e t $ S td <− f a c t o r _ r e t $ S td ∗ 100

t t e s t = sapply (GERMANY_5F [ , 3 : 8 ] , t . t e s t , na.rm=T )

t t e s t <− t ( t t e s t )

f a c t o r _ r e t $ tMean <− as.numeric ( t t e s t [ , 1 ] )

f a c t o r _ r e t <− t ( f a c t o r _ r e t )

# C o r r e l a t i o n be tween f a c t o r s
GERMANY_5F <− transform (GERMANY_5F , SMB = as.numeric ( SMB ) , HML = as.numeric (HML) ,

CMA = as.numeric (CMA) , RMW = as.numeric (RMW) ,

RM_ eweight = as.numeric (RM_ eweight ) ,

RM_ vweight = as.numeric (RM_ vweight ) )

f a c t o r _ c o r r <− data.frame ( cor (GERMANY_5F [ , c ( 3 : 6 , 8 ) ] ) )

R code 15
Auxiliary regressions

# R e g r e s s i o n f u n c t i o n
SMB <− lm ( SMB ∼ RM_ vweight + HML + RMW + CMA, data = GERMANY_5F )

# Make t a b l e w i th r e g r e s s i o n c o e f f i c i e n t s , t−s t a t s and R−s qua r e d
T2 <− data.frame ( 1 : 5 , summary ( SMB) $ coe f f i c i en t s [ , c ( 1 , 3 ) ] , summary ( SMB) $ r . s q u a r e d )

colnames ( T2 ) [ 1 : 4 ] <− c ( "Row" , "SMB_ i n t e r c e p t " , "SMB_ t _ v a l u e " , "SMB_ r _ squared " )
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R code 16
Stepwise regressions

# s i z e−BM s o r t s
# FF3F as s t a r t i n g p o i n t
lapply ( s p l i t ( Ret _ s i z e _BM, Ret _ s i z e _BM$ s i z e _BM) , function ( d ) stepAIC (

lm ( R_ vweight ∼ RM_ vweight + SMB + HML, na .ac t ion=na.exclude , d= Ret _ s i z e _BM ) ) )

# FF5F as s t a r t i n g p o i n t
lapply ( s p l i t ( Ret _ s i z e _BM, Ret _ s i z e _BM$ s i z e _BM) , function ( d ) stepAIC (

lm ( R_ vweight ∼ RM_ vweight + SMB + HML + RMW + CMA, na .ac t ion=na.exclude , d= Ret _ s i z e _BM ) ) )

R code 17
Estimate factor loadings by Fama-MacBeth �rst-step regressions

# Make c omp l e t e r e t u r n t a b l e s f o r a l l 3 s o r t s
# s i z e _BM s o r t s
Ret _ s i z e _BM <− merge ( Ret _ s i z e _BM, GERMANY_5F , by=c ( " Year _ r e t " , " Month " ) )

Ret _ s i z e _BM <− a s . d a t a . f r a m e ( Ret _ s i z e _BM)

d f 2 <− unique ( Ret _ s i z e _BM[ , " Year _ r e t " , drop=F ] )

d f 3 <− unique ( Ret _ s i z e _BM[ , " Month " , drop=F ] )

d f 4 <− unique ( Ret _ s i z e _BM[ , " s i z e _BM" , drop=F ] )

d f 2 <− merge ( df2 , d f 3 )

d f 2 <− merge ( df2 , d f 4 )

Ret _ s i z e _BM <− merge ( Ret _ s i z e _BM, df2 , a l l =T )

Ret _ s i z e _BM <− subset ( Ret _ s i z e _BM, ! ( Year _ r e t = = 1991 & Month < 7 ) )

Ret _ s i z e _BM[ i s . n a ( Ret _ s i z e _BM) ] <− 0

# R ep ea t f o r s i z e _OP and s i z e _ I n v s o r t s

# ## GRS− t e s t ###

# Pa r ame t e r s :
# L = number o f RHS f a c t o r s i n t h e model
# t = number o f months i n t h e sample
# N = number o f LHS p o r t f o l i o s

L <− 5

t <− nrow (GERMANY_5F )

N <− length ( unique ( Ret _ s i z e _BM$ s i z e _BM ) )

# Time s e r i e s r e g r e s s i o n :
# Break up Re t _ s i z e _BM by LHS−PFs , f i t t h e s p e c i f i e d model t o each PF

# FF5F
models <− dlply ( Ret _ s i z e _BM, " s i z e _BM" , function ( Ret _ s i z e _BM)

lm ( R_ vweight ∼ RM_ vweight + SMB + HML + RMW + CMA,

na .ac t ion=na.exclude , data = Ret _ s i z e _BM ) )

# C a l c u l a t e i n t e r c e p t v e c t o r
b e t a s <− ldply ( models , coef )

a l p h a _ ha t <− a s . v e c to r ( b e t a s [ , " ( I n t e r c e p t ) " ] )

# C a l c u l a t e r e s i d u a l ma t r i x
r e s i d u a l s <− ldply ( models , r e s i d u a l s )

e p s i l o n _ ha t <− as .matrix ( r e s i d u a l s [ , 2 : ncol ( r e s i d u a l s ) ] )

e p s i l o n _ ha t _ t <− as .matrix ( t ( r e s i d u a l s [ , 2 : ncol ( r e s i d u a l s ) ] ) )
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# C a l c u l a t e e s t i m a t e o f t h e c o v a r i a n c e ma t r i x o f r e s i d u a l s :
sigma _ ha t <− ( e p s i l o n _ hat % ∗% e p s i l o n _ hat _ t ) / ( t−L−1)

# C a l c u l a t e v e c t o r o f f a c t o r means
Ret _ s i z e _BM <− data.frame ( Ret _ s i z e _BM)

mju_ bar <− a s . v e c to r ( apply ( Ret _ s i z e _BM[ c ( " R_ vweight " , "SMB" , "HML" , "RMW" , "CMA" ) ] ,

2 , mean , na.rm=T ) )

# C a l c u l a t e f a c t o r ma t r i x
f a c t o r m a t r i x <− as .matrix (GERMANY_5F [ , c ( "RM_ vweight " , "SMB" , "HML" , "RMW" , "CMA" ) ] )

# C a l c u l a t e e s t i m a t e o f t h e c o v a r i a n c e ma t r i x o f t h e f a c t o r s
F_ bar <− matrix ( rep ( t ( mju_ bar ) , each= t ) ,nrow= t )

omega_ ha t <− ( t ( f a c t o r m a t r i x−F_ bar ) % ∗% ( f a c t o r m a t r i x−F_ bar ) ) / ( t−1)

# Compute t h e GRS s t a t i s t i c
W_u <− ( t ( a l p h a _ ha t ) % ∗% solve ( s igma _hat , a l p h a _ hat ) ) /

( 1 + ( t ( mju_ bar ) % ∗% solve ( omega_hat , mju_ bar ) ) )

GRSs ta t <− ( t /N) ∗ ( t−N−L ) / ( t−N−1) ∗ W_u

# ## Con t en t o f t h e GRS t a b l e ###
# GRS− s t a t i s t i c
GRSs ta t

# p−va l u e o f t h e GRS− s t a t i s t i c
pf ( GRSstat , N , t−N−L , l o w e r . t a i l =F )

# av e r a g e a b s o l u t e v a l u e o f t h e PF i n t e r c e p t s
mean ( abs ( a l p h a _ ha t ) )

# av e r a g e ad j R−s qua r e d
T5_ ad jR2 <− laply ( models , function ( mod ) summary ( mod ) $ ad j . r . squared )

mean ( T5_ ad jR2 )

# ## Tab l e wi th f a c t o r e x p o s u r e s ###

# i n t e r c e p t s :
a l p h a _ ha t <− laply ( models , function ( mod ) summary ( mod ) $ coe f f i c i en t s [ 1 , 1 ] )

T5_a <− t ( matrix ( a l p h a _hat , nrow=5 , ncol =5 , byrow=F ) )

xtable ( T5_a , d i g i t s =3 )

# p−va l u e :
T5_p <− laply ( models , function ( mod ) summary ( mod ) $ coe f f i c i en t s [ , 4 ] )

T5_p_a <− T5_p [ , 1 ]

T5_p_a <− t ( matrix ( T5_p_a , nrow=5 , ncol =5 , byrow=F ) )

# b e t a s :
T5_b <− laply ( models , function ( mod ) summary ( mod ) $ coe f f i c i en t s [ , 1 ] )

T5_b <− T5_b [ , 2 ]

T5_b <− t ( matrix ( T5_b , nrow=5 , ncol =5 , byrow=F ) )

xtable ( T5_b , d i g i t s =2 )

# p−va l u e :
T5_p <− laply ( models , function ( mod ) summary ( mod ) $ coe f f i c i en t s [ , 4 ] )

T5_p_b <− T5_p [ , 2 ]

T5_p_b <− t ( matrix ( T5_p_b , nrow=5 , ncol =5 , byrow=F ) )
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R code 18
Rolling window regressions to assess the factor loadings’ time variation

# ## P o r t f o l i o 1 1 , Inv−s o r t
t e s t <− subset ( Ret _ s i z e _ Inv , s i z e _ Inv = = 1 1 )

# R o l l i n g window e s t i m a t i o n
B e t a s <− matrix (NA, nrow=245 , ncol =12 )

for ( i i n 5 0 :nrow ( t e s t ) ) {

f i t 1 <− lm ( R_ vweight ∼ RM_ vweight + SMB + HML + RMW + CMA, data = t e s t [ ( i −49 ) : i , ] )

B e t a s [ i −49 , 1 : 6 ] <− coef ( f i t 1 )

B e t a s [ i −49 , 7 : 1 2 ] <− summary ( f i t 1 ) $ coe f f i c i en t s [ , 2 ]

}

colnames ( B e t a s ) [ 1 : 1 2 ] <− c ( " I n t e r c e p t " , " Mkt " , "SMB" , "HML" , "RMW" , "CMA" ,

" I n t e r c e p t _SE " , " Mkt_SE " , "SMB_SE " , "HML_SE " , "RMW_SE " , "CMA_SE " )

B e t a s <− data.frame ( B e t a s )

B e t a s [ , c ( " Mkt_SE+2 " , "SMB_SE+2 " ) ] <− c ( B e t a s $Mkt+ B e t a s $Mkt_SE ∗ 2 , B e t a s $SMB+ B e t a s $SMB_SE ∗ 2 )

B e t a s [ , c ( " Mkt_SE−2" , "SMB_SE−2" ) ] <− c ( B e t a s $Mkt−B e t a s $Mkt_SE ∗ 2 , B e t a s $SMB−B e t a s $SMB_SE ∗ 2 )

# s t o r e t h e e s t im a t e d f a c t o r l o a d i n g s
mkt <− da t a . t ab l e ( B e t a s [ , 2 ] )

smb <− da t a . t ab l e ( B e t a s [ , 3 ] )

hml <− da t a . t ab l e ( B e t a s [ , 4 ] )

rmw <− da t a . t ab l e ( B e t a s [ , 5 ] )

cma <− da t a . t ab l e ( B e t a s [ , 6 ] )

# s t o r e t h e e s t im a t e d c o n f i d e n c e bands
smb_SE_ p l u s s <− da t a . t ab l e ( B e t a s [ , 1 4 ] )

smb_SE_minus <− da t a . t ab l e ( B e t a s [ , 1 6 ] )

# f i g u r e t h a t shows a l l e s t im a t e d f a c t o r l o a d i n g s
j p e g ( " FL_PF11 _3 " , width =1000 , height = 4 0 0 )

plot ( smb , l t y =1 , lwd=2 , xlim=c ( 1 , 2 4 5 ) , ylim=c (−0 . 7 , 1 . 8 ) , axes=F , main= " PF ␣ 11 ␣− ␣ Inv ␣ s o r t s ␣− ␣ Germany " ,

xlab= " Time ␣ ( Months ) " , ylab= " F a c t o r ␣ Load ings " )

axis ( 1 ) ;

axis ( 2 ) ; box ( )

l ine s ( mkt , col= " B l ack " , l t y =1 , lwd=2 )

l ine s ( smb , col= " Green " , l t y =1 , lwd=2 )

l ine s ( hml , col= " b l u e " , l t y =1 , lwd=2 )

l ine s ( rmw , col= " red " , l t y =1 , lwd=2 )

l ine s ( cma , col= " ye l l ow " , l t y =1 , lwd=2 )

grid (nx=T , ny=NULL , l t y =2 )

par (mar=c ( 5 . 1 , 4 . 1 , 0 , 2 . 1 ) , xpd=T )

legend ( " t o p l e f t " , inse t=c ( 0 , 0 ) , legend=c ( "MKT" , "SMB" , "HML" , "RMW" , "CMA" ) , lwd=c ( 2 , 2 , 2 , 2 , 2 ) ,

l t y=c ( 1 , 1 , 1 , 1 , 1 ) , col=c ( " b l a c k " , " green " , " b l u e " , " r ed " , " ye l l ow " ) , horiz=TRUE )

dev .o f f ( )

# f i g u r e t h a t shows on l y one f a c t o r and i t s s t a n d a r d d e v i a t i o n
j p e g ( " FL_PF11 _2 " , width =1000 , height = 4 0 0 )

plot ( smb , l t y =2 , lwd=2 , xlim=c ( 1 , 2 4 5 ) , ylim=c ( 0 . 2 , 1 . 6 ) , axes=F , main= " PF ␣ 11 ␣− ␣ Inv ␣ s o r t s ␣− ␣ Germany " ,

xlab= " Time ␣ ( Months ) " , ylab= " F a c t o r ␣ Load ings " )

axis ( 1 ) ;

axis ( 2 ) ; box ( )

l ine s ( smb , col= " Green " , l t y =1 , lwd=2 )

l ine s ( smb_SE_ p l u s s , col= " Green " , l t y =2 , lwd=2 )

l ine s ( smb_SE_minus , col= " Green " , l t y =2 , lwd=2 )

grid (nx=T , ny=NULL , l t y =2 )

par (mar=c ( 5 . 1 , 4 . 1 , 0 , 2 . 1 ) , xpd=T )
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legend ( " t o p l e f t " , inse t=c ( 0 , 0 ) , legend=c ( "SMB" , "SMB_+2_SE " , "SMB_−2_SE " ) ,

lwd=c ( 2 , 2 , 2 ) , l t y =c ( 1 , 2 , 2 ) , col=c ( " b l a c k " , " b l a c k " , " b l a c k " ) , horiz=TRUE )

dev .o f f ( )

R code 19
Estimating risk premiums with GMM

X <− da t a . t ab l e ( Ret _ s i z e _ Inv [ , 1 : 5 ] )

X <− X[ order ( Year _ r e t , Month ) , ]

X$Date <− paste (X$Year _ r e t , X$Month , sep = " . " )

X <− a s . d a t a . f r a m e (X)

X <− X [ , c ( " Date " , " s i z e _ Inv " , " R_ vweight " ) ]

R <− matrix (X [ , " R_ vweight " ] , nrow=294 , ncol =25 , byrow=T )

PF <− unique (X$ s i z e _ Inv )

colnames ( R ) <− PF

GERMANY_5F <− da t a . t ab l e (GERMANY_5F )

f a c t <− GERMANY_5F [ order ( Year _ r e t , Month ) , ]

X <− as .matrix ( cbind ( R , f a c t ) )

g1 <− function ( parms , X ) {

a <− parms [ 1 : 2 5 ]

b <− parms [ 2 6 : 5 0 ]

s <− parms [ 5 1 : 7 5 ]

h <− parms [ 7 6 : 1 0 0 ]

r <− parms [ 1 0 1 : 1 2 5 ]

c <− parms [ 1 2 6 : 1 5 0 ]

mcond <− c ( )

for ( i i n 1 : 2 5 ) {

e <− X [ , i ]−a [ i ]−b [ i ] ∗X [ , "RM_ vweight " ]−s [ i ] ∗X [ , "SMB" ]−h [ i ] ∗X [ , "HML" ]− r [ i ] ∗X [ , "RMW" ]

−c [ i ] ∗X [ , "CMA" ]

mcond <− cbind ( mcond , e )

mcond <− cbind ( mcond , e ∗X [ , "RM_ vweight " ] )

mcond <− cbind ( mcond , e ∗X [ , "SMB" ] )

mcond <− cbind ( mcond , e ∗X [ , "HML" ] )

mcond <− cbind ( mcond , e ∗X [ , "RMW" ] )

mcond <− cbind ( mcond , e ∗X [ , "CMA" ] )

}

return ( mcond )

}

t 1 <− as .matrix ( b e t a s [ 2 : 7 ] )

r e s 1 <− gmm( g1 , X , t 1 )

gmm_a <− r e s 1 $ coe f f i c i en t s [ 1 : 2 5 ]

gmm_b <− r e s 1 $ coe f f i c i en t s [ 2 6 : 5 0 ]

gmm_ s <− r e s 1 $ coe f f i c i en t s [ 5 1 : 7 5 ]

gmm_h <− r e s 1 $ coe f f i c i en t s [ 7 6 : 1 0 0 ]

gmm_ r <− r e s 1 $ coe f f i c i en t s [ 1 0 1 : 1 2 5 ]

gmm_c <− r e s 1 $ coe f f i c i en t s [ 1 2 6 : 1 5 0 ]

gmm_ coef <− matrix ( r e s 1 $ coe f f i c i en t s , nrow = 2 5 , ncol = 6 , byrow = F )

g2 <− function ( parms , X ) {

lambdaB <− parms [ 1 ]

lambdaS <− parms [ 2 ]
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lambdaH <− parms [ 3 ]

lambdaR <− parms [ 4 ]

lambdaC <− parms [ 5 ]

mcond <− c ( )

for ( i i n 1 : 2 5 ) {

e <− X [ , i ]− lambdaB ∗gmm_b [ i ]− lambdaS ∗gmm_ s [ i ]−lambdaH ∗gmm_h [ i ]− lambdaR ∗gmm_ r [ i ]

−lambdaC ∗gmm_c [ i ]

mcond <− cbind ( mcond , e )

}

return ( mcond )

}

t 2 <− c ( 0 . 0 1 , 0 . 0 1 , 0 . 0 1 , 0 . 0 1 , 0 . 0 1 )

r e s 2 <− gmm( g2 , X , t 2 )

summary ( r e s 2 )

s targazer ( r e s 2 )

gmm2_ coef <− 100 ∗ coef ( summary ( r e s 2 ) ) [ , " E s t i m a t e " ]

gmm2_ s t d <− 100 ∗ coef ( summary ( r e s 2 ) ) [ , " S t d . ␣ E r r o r " ]

gmm2_ t <− coef ( summary ( r e s 2 ) ) [ , " t ␣ v a l u e " ]

gmm2 <− rbind ( gmm2_ coef , gmm2_ s td , gmm2_ t )

xtable ( gmm2 , d i g i t s =2 )
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