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The Impact of Bunker Risk Management on
CO2 Emissions in Maritime Transportation
Under ECA Regulation

Yewen Gu, Stein W. Wallace, Xin Wang

Abstract The shipping industry carries over 90 percent of the world’s trade, and is
hence a major contributor to CO2 and other airborne emissions. As a global effort to
reduce air pollution from ships, the implementation of the ECA (Emission Control
Areas) regulations has given rise to the wide usage of cleaner fuels. This has led
to an increased emphasis on the management and risk control of maritime bunker
costs for many shipping companies. In this paper, we provide a novel view on the
relationship between bunker risk management and CO2 emissions. In particular, we
investigate how different actions taken in bunker risk management, based on dif-
ferent risk aversions and fuel hedging strategies, impact a shipping company’s CO2
emissions. We use a stochastic programming model and perform various compari-
son tests in a case study based on a major liner company. Our results show that a
shipping company’s risk attitude on bunker costs have impacts on its CO2 emissions.
We also demonstrate that, by properly designing its hedging strategies, a shipping
company can sometimes achieve noticeable CO2 reduction with little financial sac-
rifice.
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1 Introduction

Maritime transport is one of the most important freight transportation modes in the
world, since it is by far the most cost effective alternative for transporting large-
volume goods between continents. In 2015, more than 90 percent of global trade is
carried by sea (ICS, 2015), therefore the shipping industry plays a vital role in the
world economy.

Due to the enormous amount of marine fuel consumed by the world fleet, the
maritime sector is one of the biggest sources of CO2 emissions among all trans-
portation industries. International shipping emits approximately 2.2% of the world’s
anthropogenic CO2 emissions. This number may further increase to 17% by 2050 if
no effective control measure is applied (Cames et al., 2015).

On the other hand, fuel cost is the major cost driver in the shipping industry. It
is therefore critical for a shipping company to manage its bunker purchasing and
consumption properly. In practice, fuel prices are highly volatile which could bring
considerable risks. Bunker risk management is then commonly applied by shipping
companies in order to control the risk brought by the high volatility of the fuel cost.
For example, risk measures such as CVaR (Conditional Value at Risk) from the field
of financial portfolio management may be used to represent a shipping company’s
risk aversion. Fuel hedging is also one of the popular risk control approaches in the
shipping industry. As a contractual tool, it allows the shipping company to reduce
its exposure to fuel risk by establishing a fixed or capped cost for its future fuel
consumption.

In Gu et al. (2016), a Maritime Bunker Management (MBM) problem that com-
bines tactical fuel hedging and operational ship routing and speed optimization is
introduced, which aims to minimize a shipping company’s expected total bunker
costs based on its risk attitude. Using a case study, the authors show that the integra-
tion of the tactical and operational levels of MBM is vital for a shipping company
after the implementation of Emission Control Areas (ECA) which regulate sulfur
emissions. In this study, the same mathematical model and a similar case are used,
but we focus on the impact of a shipping company’s bunker risk management on its
fleet’s CO2 emissions.

As individual research topics, both CO2 emissions and bunker risk management
have been intensively studied in the maritime transportation literature. Regarding
CO2 emissions, many studies focus on the relationship between speed reduction,
also known as slow steaming, and emission reduction. Corbett et al. (2009) eval-
uate whether speed reduction is a cost-effective option to mitigate CO2 emissions
for ships calling on US ports. Cariou (2011) examines the break-even price of the
maritime bunker at which the slow steaming strategy and the corresponding CO2
emissions reduction are sustainable in the long run. Lindstad et al. (2011) investi-
gate the impacts of slow steaming on CO2 emissions and costs in maritime trans-
port. They show that the emissions of CO2 can be decreased by 19% with a negative
abatement cost and by 28% at a zero abatement cost if a proper slow steaming strat-
egy is applied. Maloni et al. (2013) show that under current conditions, extra slow
steaming can achieve substantial reductions in both total cost and CO2 emissions.
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Tai and Lin (2013) compare the unit CO2 emissions in the cases when daily fre-
quency or slow steaming strategies is applied in international container shipping
on Far East-Europe routes. Wong et al. (2015) generalize the traditional discrete
cost-based decision support model in slow steaming maritime operations into novel
continuous utility-based models which balance fuel consumption, carbon emission
and service quality. Another research direction on CO2 reduction in maritime trans-
portation is green ship routing and scheduling. It extends the traditional ship routing
and scheduling problems and integrates environmental concerns. Related studies
can be found in, for instance, Qi and Song (2012), Kontovas (2014) and De et al.
(2016).

As regards bunker risk management, fuel hedging is the most commonly used
instrument in maritime transportation. Menachof and Dicer (2001) argue that the
bunker surcharges widely applied in liner shipping can be eliminated and replaced
by the utilization of oil commodity futures contracts. The hedging effectiveness of
futures contracts among different fuel commodities is examined and compared in
Alizadeh et al. (2004). Wang and Teo (2013) offer a comprehensive review of all
the fuel hedging instruments available on the market and integrate fuel hedging into
the modeling of liner network planning. Pedrielli et al. (2015) propose a game theory
based approach to optimize the fuel hedging contract so that the expected profit for
the bunker supplier and the expected refueling cost for the shipping company are
maximized and minimized, respectively.

To the best of our knowledge, none of the studies in the literature has explored
the relationship between bunker risk management and CO2 emissions in maritime
transportation. Such a gap in knowledge is, to a certain degree, expected as the
former had no impact on the latter in the past. This is because in most circumstances,
the sailing pattern of the fleet (and hence its CO2 emissions) is relatively fixed and
irrelevant to the shipping company’s bunker risk management, i.e., the shortest path
and the slowest possible speed is usually chosen during the whole voyage, no matter
what actions are taken in terms of the company’s bunker risk management, such as
the amounts of marine fuel hedged.

However, things have changed significantly in the shipping industry during the
last decade due to the implementation of the ECA regulation. It is a regional sulfur
emission control regulation that restricts the maximum sulfur content in the marine
bunker burnt inside the regulated areas, see Fig. 1. The ECA regulation has forced
the shipping companies, who has not invested in sulfur emission reduction technolo-
gies (scrubber system or liquefied natural gas powered propulsion), to switch their
fuels from the traditional heavy fuel oil (HFO) to the expensive marine gasoline oil
(MGO) when their vessels navigate inside ECA.

One of the consequences of the ECA regulation and the substantial price differ-
ence between MGO and HFO is that the shipping companies no longer necessarily
operate their fleet in the old-fashioned “shortest and slowest possible” way. They
now have the motivation to change the sailing behavior of the vessels, so as to mini-
mize the total bunker cost and simultaneously comply with the ECA regulation. Two
types of potential change in sailing behavior, namely speed differentiation and ECA-
evasion, are shown in Doudnikoff and Lacoste (2014) and Fagerholt et al. (2015).
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Fig. 1: Map and requirements of the Emission Control Areas.

We illustrate these two types of sailing behavior change in Fig. 2. First, in order to
reduce the consumption of MGO, a ship may choose to use different speeds inside
and outside ECA, as shown in Fig. 2a, if the voyage involves both regulated and un-
regulated sea areas. Second, a vessel may make a detour so that the sailing distance
inside ECA, and hence its MGO consumption, can be considerably decreased, see
for example Fig. 2b. However, to what extent the speed differentiation and ECA-
evasion strategies will be applied depends on the price difference between MGO
and HFO. For example, if the price difference increases, so will the incentive to re-
duce MGO consumption, in which case sailing a route with lower ECA involvement
may be more beneficial.

A vessel’s CO2 emissions mainly depend on its fuel consumption. The CO2 emis-
sion factors we use in this paper for MGO and HFO are 3.082 (tonnes/tonne fuel)
and 3.021 (tonnes/tonne fuel), respectively (Psaraftis and Kontovas, 2009). There-
fore, it is the total amount of the two fuels consumed that affects the CO2 emissions
the most, rather than the different combination of the two. Fuel consumption is fur-
ther determined by the vessel’s sailing speed and traveling distance. After the intro-
duction of ECA, the shipping company’s optimal speed and routing choices, which
may include speed differentiation and ECA evasion, also depend on the prices of the
two fuels and the associated hedging decisions made (Gu et al., 2016). In this pa-
per, we seek to investigate how different actions taken in bunker risk management,
including different settings of risk aversion and fuel hedging strategies, impact the
shipping company’s optimal speed and routing choices and the corresponding CO2
emissions.

We use the stochastic programming model introduced in Gu et al. (2016), and
propose various comparison tests based on different levels of risk aversion, fuel
hedging strategies and fuel prices. The tests are performed on a case based on a
real liner service offered by Wallenius Wilhelmsen Logistics (WWL), one of the
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(a) Speed differentiation (b) ECA-evasion

Fig. 2: Two types of sailing behavior change after the implementation of ECA reg-
ulation.

world’s largest liner service providers for rolling equipment. We aim to provide a
novel view on the relationship between bunker risk management and CO2 emissions,
which would hopefully contribute to the worldwide effort in reducing greenhouse
gas emissions.

The rest of the paper is structured as follows. Section 2 gives the description of
the Maritime Bunker Management (MBM) problem and the mathematical model.
In Sect. 3 we introduce the test case and the scenario generation process. Section 4
presents the results of our computational study. Our conclusion is given in Sect. 5.

2 The problem and mathematical model

The problem description and the mathematical formulation are given in this sec-
tion. In Sect. 2.1, we summarize the settings and assumptions of the problem. The
mathematical formulation is then presented in Sect. 2.2.

2.1 Problem statement

First, we introduce four important terms, loop, leg, leg option and stretch, which are
frequently used in this paper, see Fig. 3 for illustration. A loop refers to a round
trip calling several ports in a predetermined order, while a leg refers to the voyage
between two consecutive ports in the loop. A leg option represents a possible sailing
path for a leg. For different leg options of a same leg, the total sailing distance and
the sailing distance inside ECA are also different. A leg option may have one or
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more stretches. When the vessel crosses the ECA border, the current stretch ends
and a new one begins. We also combine the stretches of the same type (on which
we assume the same speed) for every single leg option, and thus represent each
leg option with only two segments: the ECA stretch and the non-ECA stretch. For
example, in Fig. 3c, we combine Stretch 1 and Stretch 3 as the ECA stretch.

Fig. 3: Illustration of a loop, and its associated legs, leg options and stretches.

For simplification, the MBM problem in this paper only considers one single
vessel operating on one single loop. The length of the planning period is assumed to
be equal to the scheduled time for the vessel to finish a round trip on the loop. The
sequence of the port calls on the loop and the related leg information, including all
possible leg options for every leg and the associated stretches, are also assumed to
be given as input to our model.

As an essential instrument in bunker risk management, fuel hedging reduces the
fuel consumers’ exposure to financial risk caused by volatile fuel prices. We con-
sider the so called forward-fuel contract with exit terms and physical supply (FFC
in the following) in this study. An FFC endows the shipping company with the right
to buy a specified amount of a certain type of fuel with a predetermined price during
an agreed time period. The forward price of a certain fuel in the FFC is normally
higher than this fuel’s expected price during the contract period. We assume this to
be the case in our tests as well, and as a result, a risk-averse shipping company can,
and normally will, use FFC for risk control purposes, while a risk-neutral one never
enters the forward market due to the expected loss. However, if the shipping real-
izes that the remaining fuel in the ongoing FFC is no longer needed and decides to
terminate the contract, the leftovers are sold back to the fuel supplier with a penalty.

The spot prices for MGO and HFO fuels during the planning period are assumed
to be stochastic, and the MBM problem can be described using a two-stage model
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with scenarios representing the stochastics. In the first stage, decisions with respect
to the amounts of MGO and HFO to be hedged in an FFC must be made at the
beginning of the planning period. The spot prices of the two fuels in different sce-
narios are then realized in the second stage and are assumed to remain constant
during the whole planning period. Several operational decisions will be made after-
wards based on the realized fuel prices and the first-stage hedging decisions. These
second-stage decisions are made of two major parts. The first consists of speed and
routing choices on each leg. The second part consists of fuel allocation decisions,
i.e. how much spot- and forward-fuels should be used during operations. The objec-
tive of the MBM problem is to minimize the total bunker cost which is the sum of
the first-stage purchasing costs of the forward fuels and the expected second-stage
costs on spot fuels and penalties for unused forward fuels, meanwhile control the
bunker cost risk within a desirable level.

The relationship between a vessel’s sailing speed and its fuel consumption per
unit distance is normally considered as a quadratic function (Norstad et al., 2011).
We use a piecewise linearisation approach (Andersson et al., 2015) to approximate
the fuel consumption rate for different sailing speeds, as shown in Fig. 4. Note that
an overestimation is expected in the application of this approach (see Andersson
et al. for detailed discussion), but it is normally insignificant as long as sufficient
discrete speed points are used. A good estimation of the relation between speed and
traveling time can also be made using this approach.

Fig. 4: Piecewise linearisation of the fuel consumption function.

As part of the risk control measures for bunker risk management, we model the
risk attitude of the shipping company using a Conditional Value-at-Risk (CVaR)
approach, which is extensively used in the field of financial risk management to
evaluate various risks. In our model, we impose CVaR constraints on the expected
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total bunker costs to achieve the desired risk control effect. Two key parameters,
a confidence level and a maximum tolerable CVaR value, are defined and used as
inputs for our model. For instance, if the confidence level and the maximum CVaR
value are set to 95% and 1.2 million USD, respectively, the CVaR constraints will
then ensure that the expected total bunker costs in the worst 5% cases will not exceed
1.2 million USD during the planning period.

2.2 Mathematical formulation

The mathematical formulation is presented as follows:

Sets

J Set of sailing legs along the loop
R j Set of leg options for Leg j
V Set of feasible discrete speed points for the ship
S Set of scenarios

Parameters

PMGO−F Price per ton of MGO agreed in the forward-fuel contract
PHFO−F Price per ton of HFO agreed in the forward-fuel contract
PMGO−S

s Price per ton of MGO on spot market under Scenario s
PHFO−S

s Price per ton of HFO on spot market under Scenario s
PMGO−P Penalty per ton for the unused MGO left in the forward-fuel contract
PHFO−P Penalty per ton for the unused HFO left in the forward-fuel contract
W j Latest starting time for Leg j
W S

j Service time for Leg j in the departing port
W ECA

jrv Sailing time on ECA stretches on Leg j under Leg option r with Speed v
W N

jrv Sailing time on non-ECA stretches on Leg j under Leg option r with
Speed v

DECA
jr Sailing distance on ECA stretches on Leg j under Leg option r

DN
jr Sailing distance on non-ECA stretches on Leg j under Leg option r

Fv Fuel consumption per unit distance sailed with speed alternative v (same
for both HFO and MGO)

ps Probability of scenario s taking place
γ Confidence level applied in CVaR
Aγ The maximum tolerable CVaR value under confidence level γ

Decision variables

xECA
jrvs Weight of speed choice v used on ECA stretches on Leg j with Leg option

r under scenario s
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xN
jrvs Weight of speed choice v used on non-ECA stretches on Leg j with Leg

option r under scenario s
y jrs Binary variables representing the decisions on route selection, equal to 1

if Leg option r is sailed on Leg j under scenario s, and 0 otherwise
zMGO−S

js Amount of MGO from spot market used on Leg j under scenario s
zMGO−F

js Amount of MGO from forward contract used on Leg j under scenario s
zHFO−S

js Amount of HFO from spot market used on Leg j under scenario s
zHFO−F

js Amount of HFO from forward contract used on Leg j under scenario s
uMGO−F

s Amount of unused forward MGO left at the end of the planning period
under scenario s

uHFO−F
s Amount of unused forward HFO left at the end of the planning period

under scenario s
mMGO−F Agreed amount of MGO in the forward contract
mHFO−F Agreed amount of HFO in the forward contract
α Artificial variable for CVaR constraints
hs Artificial variables for CVaR constraints under scenario s

The mathematical formulation of the model starts here:

min PMGO−F mMGO−F +PHFO−F mHFO−F

+∑
s∈S

ps

{
∑
j∈J

(
PMGO−S

s zMGO−S
js +PHFO−S

s zHFO−S
js

)
−(PMGO−F −PMGO−P)uMGO−F

s − (PHFO−F −PHFO−P)uHFO−F
s

} (1)

Subject to

W j+1 ≥W j +W S
j + ∑

r∈R j

∑
v∈V

(
W ECA

jrv xECA
jrvs +W N

jrvxN
jrvs
)

s ∈ S, j ∈ J (2)

∑
v∈V

xECA
jrvs = y jrs s ∈ S, j ∈ J,r ∈ R j (3)

∑
v∈V

xN
jrvs = y jrs s ∈ S, j ∈ J,r ∈ R j (4)

∑
r∈R j

y jrs = 1 s ∈ S, j ∈ J (5)

zMGO−F
js + zMGO−S

js = ∑
r∈R j

∑
v∈V

FvDECA
jr xECA

jrvs s ∈ S, j ∈ J (6)

zHFO−F
js + zHFO−S

js = ∑
r∈R j

∑
v∈V

FvDN
jrx

N
jrvs s ∈ S, j ∈ J (7)
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∑
j∈J

zMGO−F
js +uMGO−F

s = mMGO−F s ∈ S (8)

∑
j∈J

zHFO−F
js +uHFO−F

s = mHFO−F s ∈ S (9)

y jrs ∈ {0,1} s ∈ S, j ∈ J,r ∈ R j (10)

xECA
jrvs ,x

N
jrvs ≥ 0 s ∈ S, j ∈ J,r ∈ R j,v ∈V (11)

zMGO−F
js ,zMGO−S

js ,zHFO−F
js ,zHFO−S

js ≥ 0 s ∈ S, j ∈ J (12)

uMGO−F
s ,uHFO−F

s ≥ 0 s ∈ S (13)

CVaR constraints:

α +
1

1− γ
∑
s∈S

pshs ≤ Aγ (14)

hs ≥ 0 s ∈ S (15)

hs ≥ PMGO−F mMGO−F +PHFO−F mHFO−F

− (PMGO−F −PMGO−P)uMGO−F
s − (PHFO−F −PHFO−P)uHFO−F

s (16)

+ ∑
j∈J

(
PMGO−S

s zMGO−S
js +PHFO−S

s zHFO−S
js

)
−α s ∈ S

The objective function (1) minimizes the expected total bunker cost for the plan-
ning period. The purchasing costs for the stated amounts of both fuels in the FFC
are given in the first line of Eq. 1. The second line of the objective function refers
to the expected costs for the consumption of spot-fuels. The last line represents the
treatment of the unused forward-fuels. At the end of the planning period, the left-
overs in the FFC (if any) are sold back to the bunker supplier at “buyback” prices,
computed as their contractual forward prices subtracted by a penalty.

Constraints (2) enforce the time constraints for all sailing legs according to the
schedule. Constraints (3) and (4) connect x- and y-variables with respect to the
speed-routing choices in ECA and non-ECA stretches, respectively. They ensure
that the sums of the speed weights, xECA

jrvs and xN
jrvs respectively for ECA and non-

ECA stretches, are equal to 1 if Leg option r is chosen for Leg j in Scenario s,
and 0 otherwise. Constraints (5) ensure that only one leg option is used on any
specific leg. Constraints (6) and (7) make sure that for each scenario the sum of
the spot- and forward-fuels used on each leg equals the actual fuel consumption
on that leg based on the speeds and leg options chosen. Constraints (8) and (9)
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ensure that the forward-fuels used plus the leftovers equal the agreed amounts in
the forward contract. Constraints (10) - (13) define the domains of the decision
variables. Constraints (14) - (16) are the CVaR constraints representing the risk
attitude of the shipping company, restricting the risk on the total bunker costs to
be within an acceptable level.

It is important to notice that the CO2 emissions are not directly considered in the
formulation. Instead, they can be calculated based on the optimal solutions obtained
using the CO2 emission factors for the two fuels (see Sect. 1), 3.082 (tonnes/tonne
fuel) and 3.021 (tonnes/tonne fuel) for MGO and HFO, respectively. More details
will be discussed in Sect. 4.1.

3 The test case and scenario generation

In this section, we briefly describe the test case in Sect. 3.1, while the scenario
generation process is discussed in Sect. 3.2.

3.1 The test case

The case considered in this paper is based on a liner service offered by Walle-
nius Wilhelmsen Logistics (WWL). The company offers roll-on roll-off (RoRo) ser-
vices for transporting cars, trucks and other types of rolling equipment. In our case,
the service loop and its corresponding schedule are adapted from one of WWL’s
Europe-Americas trade lanes. The sequence of the port calls in the loop is shown in
Table 1. The scheduled total traveling time for a round trip on this loop is 35 days.
We therefore also set the planning period to 35 days.

Table 1: Sequence of the port calls in the case loop

Origin Port Destination Port

Leg 1 Brunswick Galveston
Leg 2 Galveston Charleston
Leg 3 Charleston New York
Leg 4 New York Bremerhaven
Leg 5 Bremerhaven Brunswick

We further assign five leg options to each leg in the case loop. Although different
leg options of a specific leg share the same origin and destination ports, they differ in
terms of ECA, non-ECA and total sailing distances. As an example, Fig. 5 illustrates
all five leg options of Leg 3 (Charleston-New York), where Leg option 1 takes the
shortest possible path which is completely inside ECA, and Leg option 5, on the
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contrary, has the least ECA sailing. The detailed information about sailing distances
for each leg option of every leg is displayed in Table 2.

Fig. 5: Five leg options for Leg 3 (Charleston - New York). (Google Maps, 2016)

Table 2: Travelling distances for all ECA/non-ECA stretches

Nautical mile Option 1 Option 2 Option 3 Option 4 Option 5
ECA / non-ECA

Leg 1 1191 / 35 569 / 774 495 / 870 469 / 905 408 / 1062
Leg 2 1271 / 34 686 / 704 524 / 906 458 / 1083 397 / 1241
Leg 3 632 / 0 560 / 330 499 / 429 443 / 515 423 / 602
Leg 4 1767 / 1629 1379 / 2125 1042 / 2503 899 / 2652 752 / 2903
Leg 5 2393 / 1626 1110 / 2984 1013 / 3109 817 / 3337 751 / 3428

Additionally, the fuel consumption data we use is collected from the historical
record of a real RoRo ship under normal conditions. Fig. 6 shows the fuel consump-
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tion per nautical mile for seven selected discrete speed points ranging from 15 to 24
knots.

Fig. 6: Speed and fuel consumption relation for the selected discrete speed points

3.2 Scenario generation

As mentioned earlier, the uncertainties considered in our problem refer to the spot
prices for MGO and HFO. We assume we know their marginal distributions and the
correlation between them, and apply a version of the scenario-generating heuristic
developed by Høyland et al. (2003) in order to generate scenarios for fuel prices.
However, since fuel prices are significantly dependent over time, generating fuel
prices using distributions derived from historical data directly can be problematic.
For example, the generated fuel prices will not be representative if the historical
data during the past booming period (e.g. 2008) is directly used in the process of
scenario generation, when the current market is actually in recession.

Therefore, we use a two-step approach to construct the scenarios for the spot-fuel
prices for the next planning period. As a first step, we observe the latest fuel prices
on the spot market and use them as base prices, which are also the expected spot
prices during the planning period. Then, we generate price increments using the
scenario generation heuristic, either positive or negative, and add them to the base
prices. This approach corresponds to the special dynamic of the development of fuel
price, which can be seen as a Lévy process with independent increments (Krichene,
2008; Gencer and Unal, 2012).
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We use the historical data provided by Clarkson Research Services Limited
(Clarkson, 2015) to obtain an estimation of the distributions and correlation for the
price increments. The data is collected from three major ports, Rotterdam, Houston
and Singapore, and consists of monthly prices of the two fuels (HFO and MGO) at
these ports from January 2000 to December 2015. According to the data, the price
increments of HFO and MGO are positively correlated and the correlation coeffi-
cient is estimated at 0.75. Furthermore, we assume triangular distributions for the
random increments. The lower limit, mode and upper limit that control the marginal
distributions applied in the scenario-generating heuristic are set to (-40, 0, 40) and
(-120, 0, 120) for HFO and MGO, respectively. The latest observations of the spot-
fuel prices (used as base prices, or expected spot prices) are from December 2015,
and the prices of HFO and MGO are 150 USD/tonne and 375 USD/tonne, respec-
tively. Also note that in our model the forward prices are always set to be marginally
higher than the corresponding expected spot prices to prevent speculation.

Finally, an in-sample stability test (Kaut and Wallace, 2007) is performed to
check the reliability of the scenario generation process. By comparing the results
with different scenario trees generated under the same conditions, this test checks
whether the optimal objective function value has a significant dependence on the
specific scenario tree used. In our case, 10 scenario trees, each with 100 scenarios,
are generated. The difference among the objective values solved with all 10 scenario
trees is smaller than 0.02%, which shows that the scenario generation process used
in this paper is stable and reliable.

4 Computational study

In this section, we investigate how CO2 emissions may be affected by a shipping
company’s risk attitude (Sect. 4.1), and its fuel hedging decisions (Sect. 4.2).

4.1 Impact of risk attitude on CO2 emissions

In our model, the shipping company’s risk attitude towards its total bunker costs, i.e.
its risk aversion level, can be represented by a maximum tolerable CVaR value (Aγ )
and a confidence level (γ , set to a fixed value of 95% in our study). The A95% value
determines an upper bound of the average total cost allowed in the worst (5%) cases.
A larger A95% then corresponds to a higher tolerance of extreme risk, and hence a
lower risk aversion level. This allows us to use different A95% values to represent
the different levels of risk aversion, in order to study the impact of the company’s
risk attitude on its CO2 emissions.
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4.1.1 Effect of changing risk aversion levels

First, we assume a “standard” risk aversion level for our case study. The correspond-
ing A95% is set to 390,000 USD which is approximately 1%1 higher than the opti-
mal total bunker cost in a risk-neutral case, or the objective function value obtained
when solving the problem without the CVaR constraints. The standard risk aversion
level is then used as a benchmark for comparing the CO2 emissions at different risk
aversion levels.

We use in total 8 different A95% values, ranging from 388,000 USD (extremely
risk-averse) to 400,000 USD (least risk-averse). We also test the risk-neutral case
which can be equivalently considered as having an enormously large A95% value
and the CVaR constraints are thus no longer binding. We then solve the problem
with each of these A95% values and observe, in each case, the optimal fuel allocation
decisions, i.e. the forward-fuels (zMGO−F

js and zHFO−F
js ) and spot-fuels (zMGO−S

js and
zHFO−S

js ) consumed for every scenario s ∈ S. The amount of CO2 emitted (in tonnes)
for every scenario s can then be calculated using the following formula:

CO2 Emitted = ∑
j∈J

[
3.082(zMGO−S

js + zMGO−F
js )+3.021(zHFO−S

js + zHFO−F
js )

]
(17)

Out of 100 scenarios, we can then find the five scenarios with the highest amounts
of CO2 emitted, and calculate their average as the worst-case CO2 emission for each
given A95% value.

Table 3: Worst-case CO2 emissions under different risk aversion levels

Value set for A95% (maximum CVaR)

[1000 USD] 388 389 390∗ 391 392 393 395 400 Risk-
neutral

% -0.51 -0.26 0.0 +0.26 +0.51 +0.77 +1.28 +2.56 -

Worst-case CO2 emitted (average of five worst scenarios out of 100)

[tonnes] 5653 5695 5785 5787 5890 5930 6046 6046 6046
% -2.28 -1.56 0.0 +0.03 +1.82 +2.51 +4.41 +4.41 +4.41

∗ Benchmark case with “standard” risk aversion.

Table 3 displays the results comparing the worst-case CO2 under different risk
aversion levels (A95% values). We may observe that the worst-case CO2 emissions
increase when the company lowers its risk aversion level (or accepts a higher A95%
value). We may also notice that the amount of CO2 emitted stops increasing and
remains at 6046 tonnes when A95% is above 395,000 USD.

Recall that the stochastics in our model come from the uncertain spot-fuel prices,
creating risk on the total bunker costs. The introduction of CVaR constraints is there-

1 It is feasible and reasonable to restrict the risk level to such extent in this test because the forward-
fuel prices are set to be only marginally higher than the expected spot-fuel prices.
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fore to contain such risk in the extreme cases. When the risk attitude is more relaxed
in a shipping company’s bunker risk management, i.e. with higher A95%, the com-
pany will have a higher willingness to take risks and rely more on the fuels from the
spot market, rather than buying from the forward market. This actually allows the
shipping company to operate the ship with higher flexibility in terms of more free-
dom to apply ECA-evasion and/or speed differentiation strategies, in order to avoid
consuming the more expensive MGO. In contrast, for example, if a fair amount
of MGO is already hedged, the shipping company’s routing decisions may be re-
stricted to the more traditional “shortest but more ECA involved” alternative, just to
commit to the hedging contract and thus avoid paying too much penalty for unused
MGO eventually. In Table 4, we show the fuel consumption for a specific scenario
(where the spot prices for MGO and HFO are 413 USD/tonne and 140 USD/tonne,
respectively) under different risk aversion levels. We can see that the total fuel con-
sumption (bottom row in Table 4) increases when setting a higher A95%, and hence
the CO2 emissions also increase (since the emission factors for MGO and HFO are
practically the same). This is due to the fact that when relying more on spot fuels
(at higher A95%) and in the light of the significant price difference between MGO
and HFO, the ship is sailing more “aggressively”: such as evading ECA at much as
possible and sailing as slowly as possible inside ECA (see Appendix 1 for details).
The aggressive sailing has brought down the consumption of MGO but increased
HFO consumption even more, which is beneficial in terms of total bunker costs but
leads to an increase in total fuel consumption and eventually more CO2 emitted.
Once the A95% exceeds 395,000 USD, nevertheless, the pattern of fuel consumption
for both fuels and thus the sailing behavior remain stable in the worst scenarios,
since the sailing behavior in these scenarios has already been pushed to the most ag-
gressive level. Therefore, the average CO2 emissions in the worst scenarios remain
unchanged after the A95% surpasses 395,000 USD, as observed in Table 3.

Table 4: Example of fuel consumption for a particular scenario under different risk
aversion levels

Value set for A95%
(1000 USD) 388 389 390 391 392 393 ≥ 395∗

MGO consumption
(tonnes) 482.2 473.1 455.4 454.4 435.5 426.5 404.8

HFO consumption
(tonnes) 1379.4 1402.6 1449.8 1451.9 1504.5 1527.8 1588.5

Total consumption
(tonnes) 1861.6 1875.7 1905.2 1906.3 1940.0 1954.2 1993.3

∗ Including the risk-neutral case.

It is important to notice that the above results are based on studying the worst-
case CO2 emissions under different risk aversion levels, which show a clear ten-
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dency that the imposition of financial risk control measures (CVaR constraints) is
also, to a certain degree, able to contain the “environmental risk” (CO2 emissions
in the worst scenarios). On the other hand, the relationship between average CO2
emissions and risk aversion level is more complicated, and is influenced by how
much more expensive MGO is than HFO.

4.1.2 Influence of price gap between MGO and HFO

In our model, the base prices for MGO and HFO (see Sec. 3.2), 375 USD/tonne and
150 USD/tonne, respectively, refer to the spot prices observed in Dec 2015, and are
used as expected spot prices for the planning period. This has lead to an Expected
Spot Price Gap (ESPG in short) of 225 USD/tonne. In the following test, we aim
to study how average CO2 emissions change with different ESPG. This is done by
altering the base price for MGO and hence the ESPG, solving the corresponding
MBM problem, and observing the average amount of CO2 emitted across all sce-
narios (instead of the 5-worst scenarios). We also test for two risk settings: standard
risk-averse (see Sec. 4.1.1) and risk-neutral.

Table 5: Average CO2 emissions at different ESPG, for both standard risk-averse &
risk-neutral settings.

ESPG
(USD/tonne) 100 150 200 250 260 270 300 350 400

CO2 (tonnes)
Risk-averse 5586.7 5618.2 5655.6 5743.3 5852.3 5988.1 6023.1 6045.2 6046.4

CO2 (tonnes)
Risk-neutral 5561.0 5619.7 5670.7 5821.2 5869.0 5913.0 5999.2 6043.8 6046.4

Difference%∗ -0.46 +0.03 +0.27 +1.36 +0.29 -1.25 -0.40 -0.02 0.00

∗ Relative increase in CO2 for the Risk-neutral case compared to the Risk-averse case.

Table 5 displays the average amounts of CO2 emitted, for both standard risk-
averse and risk-neutral settings, at various ESPG ranging from 100 USD/tonne to
400 USD/tonne. The corresponding expected spot MGO ranges from 250 to 550
USD/tonne while the expected spot HFO is fixed at 150 USD/tonne. We can clearly
see from Table 5 that for the risk-averse setting, the amount of CO2 emitted becomes
higher with increasing ESPG. It is also the case for the risk-neutral setting. This is
in fact consistent with the conclusion shown in Fagerholt et al. (2015), that is, in
general, CO2 emissions would also increase when the price gap between MGO and
HFO increases, due to a higher tendency to implement ECA-evasion and speed dif-
ferentiation strategies. However, when comparing the CO2 emissions between risk-
averse and risk-neutral settings, i.e. the Difference% row of Table 5, we cannot
easily tell which risk attitude is more “environmentally friendly”. We further illus-
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trate in Fig. 7 the comparison of average CO2 between risk-averse and risk-neutral
settings.

Fig. 7: Difference of expected CO2 emissions between risk-averse and risk-neutral
cases under different levels of price gap

In Fig. 7, the average CO2 emitted at different ESPG under the standard risk-
averse setting is represented by the solid line, and the risk-neutral setting by the
dashed line. Unlike the results shown in Sec. 4.1.1, where stronger risk aversion
leads to a lower worst-case CO2 emissions (which is, in fact, a general trend re-
gardless of ESPG according to our experiments), the effect of risk aversion on av-
erage CO2 emissions is undetermined, and depends upon the specific ESPG that we
face. For example, in Fig. 7, when the ESPG is around 250 USD/tonne, the risk-
averse setting has lower average CO2 emissions than the risk-neutral case; whereas
at around 270 USD/tonne the opposite situation is observed.

In order to explain this somewhat surprising result, we first need to explain what
we call a jump in sailing behavior. If there is no price gap between MGO and HFO,
the shipping company has no incentive to change its sailing behavior, and thus sails
the traditional leg option (shortest path) between two ports in the same ECA. When
the price gap increases, a leg option change will not immediately occur. The vessel
will stick to the shortest path until the price gap between MGO and HFO reaches
a certain level, and then switch to another leg option, looking something like Leg
Option 2 in Fig. 5; the sailing pattern makes a jump. Fig. 8 is used to illustrate
the principle of a jump. The solid line represents the traditional leg option between
two ports located inside the same ECA, the dash-dot line illustrates the leg option
following a jump. For simplicity of the argument, let us simply assume that one
universal speed is applied both in- and outside ECA. Hence, fuel consumption is
proportional to distance. The fuel cost for the traditional leg is PMGO×a while the
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total bunker cost for the “Jump-to” leg option is PMGO × 2d + PHFO × (a− 2c).

Hence, until the MGO price becomes
a−2c
a−2d

times as high as the HFO price, it is

cheaper to sail the shortest path and a jump will not be triggered. However, once
the price gap exceeds that level, the optimal leg option switches to the “Jump-to”
leg option and the jump occurs. Note that jumps are a natural part of the underlying
problem and not caused by the fact that we have discretized sailing patterns into
possible leg options. Furthermore, if time and speed considerations are involved, the
“Jump-to” leg option will need a higher average speed, thus higher fuel consumption
to maintain the schedule, which leads to a even higher price gap to trigger the jump.

Fig. 8: Simple example illustrating a jump in sailing behavior change

A risk-averse company relies mainly on the forward market while using small
amounts of spot-fuels as supplements. Moreover, the forward price difference ap-
proximately equals the ESPG since the prices of the forward fuels are set to be
just marginally higher than the expected spot fuel prices (basis prices). Therefore,
the actual price gap which decides the sailing behavior in the risk-averse setting
is significantly affected by the ESPG, and only slightly influenced by the Realized
Spot Price Gap (RSPG in short) in each scenario. The RSPG in Scenario s can be
expressed as:

RSPGs = ESPG+(IMGO
s − IHFO

s ) (18)

where IMGO
s and IHFO

s represent the price increments of MGO and HFO, respec-
tively, in Scenario s. The risk-neutral company, however, is more willing to take
market risks and thus only buys from the spot market. Hence, in the risk neutral
case, the sailing pattern in each specific scenario purely depends on the RSPG in
that scenario. In sum, the price gaps in most scenarios in the risk-averse setting are
approximately the same as the ESPG while the price gaps in the risk-neutral setting
(RSPG) differ substantially from scenario to scenario.

Since most scenarios in the risk-averse setting have similar price gaps, the jump
happens almost simultaneously in these scenarios when the ESPG increases to the
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level that satisfies the requirement illustrated in Fig. 8. Such a clustered change in
sailing behavior (thus CO2 emissions) in most scenarios brings a sudden and major
increase in average CO2 emissions in the risk-averse setting, as observed in Fig. 7.
From Eq. 18, we see that RSPG increases together with the ESPG, but such that the
scenario with the largest price increment difference will also have the largest RSPG.
Hence, when ESPG increases, these scenarios with large price increment differences
will first trigger a jump. Then the scenarios with moderate price increment differ-
ences (thus moderate RSPGs) follow along with the increase of ESPG, and finally
the jump occurs in the scenarios which have small price increment differences (thus
small RSPGs). As we can see, contrary to the clustered jump in the risk-averse set-
ting, the jump in the risk-neutral setting happens gradually from the scenarios with
larger RSPGs to the ones with smaller RSPGs. The corresponding effect on average
CO2 emissions is much more widely distributed along the ESPG axis, which even-
tually leads to a smoother increasing curve for the risk-neutral setting, as witnessed
in Fig. 7.

To summarize, in this section we show that the shipping company’s risk attitude
has impact on its CO2 emissions in various ways. On one hand, the worst-case CO2
emissions will be reduced by financial risk control measures, i.e. a stronger risk
aversion will lead to less CO2 emitted in the worst scenarios; on the other hand, the
effect of risk aversion on average CO2 emissions is undetermined, and is influenced
by the expected price gap between MGO and HFO on the spot market.

4.2 Impact of hedging strategies on CO2 emissions

We now study how different hedging strategies affect a shipping company’s ex-
pected CO2 emissions. For all experiments presented in this section, we assume
the company’s risk attitude is always standard risk-averse (see Sec. 4.1.1), and the
expected CO2 emissions refer to the average amount of CO2 emitted across all sce-
narios.

Using the input data given in Sect. 3, we can first obtain the optimal hedging
amounts of both MGO and HFO by solving the stochastic MBM problem to opti-
mality. We then fix the hedging decision for one fuel, HFO for instance, and change
the hedging amount of the other (MGO) to get different combinations of hedging
decisions. For each such combination, we solve the problem after fixing the hedg-
ing decisions accordingly, and record the expected CO2 emissions. The results are
shown in Fig. 9a, where the hedged MGO varies from 70% to 120% of its optimal
amount. We also show in Fig. 9b the opposite case in which we vary the hedging
amount for HFO while fixing the hedged MGO at its optimal amount.

From the two charts in Fig. 9 we can see that the expected CO2 emissions will
(a) decrease when hedging more MGO, and (b) increase when hedging more HFO.
These changes in CO2 emissions may be explained by the changes in the com-
pany’s willingness to apply ECA-evasion and speed differentiation strategies. As
mentioned earlier, when more MGO is hedged, in order to commit to the forward
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(a) CO2 under different MGO hedging amount (b) CO2 under different HFO hedging amount

Fig. 9: Expected CO2 emissions under different fuel hedging strategies

contract and avoid paying too much penalty for unused forward MGO, the com-
pany may be restricted to the traditional “shorter but more ECA involved” routes. In
this case, the total fuel consumption (MGO&HFO) is usually lower because of the
shorter total distance sailed, hence the CO2 emissions are also lower. On the other
hand, when more HFO is hedged, the company may be more likely to sail “aggres-
sively”, e.g. with as little ECA involvement as possible, in order to consume more
HFO. As a result, the total sailing distance is usually longer, which eventually leads
to higher total fuel consumption and more CO2 emitted.

Note that the above tests only show how expected CO2 emissions change when
altering the hedging amount of one type of fuel alone. In addition, apart from the
environmental impact, different hedging decisions may also affect the total bunker
costs, which is more of a concern for most shipping companies. Therefore in the
following tests, we demonstrate the effects of simultaneously changing the hedging
amounts of MGO and HFO, both environmentally (in terms of expected CO2 emis-
sions) and financially (in terms of expected total bunker costs and worst-case total
bunker costs). We seek to provide an insight into the question: can we effectively
reduce CO2 emissions through different hedging strategies? And at what cost?

Let us look at two 3-D charts in Fig. 10. In both charts, we use the changes
(%) in the hedging amounts of MGO and HFO (relative to their respective optimal
amounts) as x- and y- axes, respectively. For Fig. 10a, we show two plotted surfaces
representing expected CO2 emissions (bottom surface) and expected total bunker
costs (top surface), both are changes (%) relative to their corresponding values ob-
tained with the optimal hedging decisions. For Fig. 10b, the surface of expected CO2
emissions remains the same, and we also show the surface for the worst-case total
bunker costs, computed as the average of the five worst scenarios out of 100. Let
us further focus on the red areas in the two charts, where the x- (change in MGO)
values and y- (change in HFO) values correspond to [+5%,+10%] and [-6%,-2%],
respectively. Therefore, by hedging 5% to 10% more on MGO and 2% to 6% less
on HFO, we are able to reduce expected CO2 emissions by 0.75% to 1.63%. This
is achieved at the expense of increasing the expected total bunker costs by 0.04%
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(a) Surfaces for Expected Total Bunker Costs & Expected CO2 emis-
sions

(b) Surfaces for Worst-case Total Bunker Costs & Expected CO2
emissions

Fig. 10: Illustration of the relation between CO2 emissions and expected & worst-
case total bunker costs under different hedging strategies.

to 0.50%, which are not significant. Furthermore, we show in Fig. 10b that such re-
duction in CO2 sometimes even coincides with an improved situation (decrease) in
the worst-case bunker cost (ranging from -0.27% to 0.08%). These results are meant
to provide an example that sometimes a shipping company can achieve noticeable
reduction in CO2 emissions with little sacrifice on its financial costs by changing the
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hedging strategies. For any single player in maritime transportation, such reduction
may not be significant. But for the shipping industry on a global scale, this could
become a sizable contribution if more companies are coming to the realization of
the potential environmental benefits of proper design of hedging and other bunker
risk management measures.

5 Conclusion

Bunker risk management is widely practiced in the shipping industry to reduce fi-
nancial risk and can be vital for a shipping company to remain competitive. Nev-
ertheless, dramatic changes have taken place after the introduction of the ECA reg-
ulation. In this paper, we use a stochastic Maritime Bunker Management (MBM)
model and a case study on a major liner shipping company to show that bunker risk
management has impacts on the company’s CO2 emissions.

We first study the impact of the shipping company’s risk attitude on its CO2
emissions. The results show that stronger risk aversion can also lead to lower “en-
vironmental risk”, i.e. less CO2 emissions in the worst cases. Meanwhile, we also
show that the effect of risk aversion on average CO2 emissions is undetermined, and
is influenced by the expected price gap between MGO and HFO on the spot market.
We then study the impact of hedging strategies on CO2 emissions. We show that
a shipping company can sometimes achieve noticeable reduction in CO2 emissions
with little sacrifice on its financial costs by changing its hedging strategies.
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Appendix 1

The detailed speed-routing decisions in scenario No. 26 under different maximum CVaR values are shown in the following table.

Table 6: Sailing behaviors in scenario No. 26 under different risk aversions

Max CVaR (1000 USD) 388 389 390 391 392 393 Neutral

Leg 1

Leg Option 4 5 5 5 5 5 5
ECA/non-ECA distance (nautical mile) 496/905 408/1062 408/1062 408/1062 408/1062 408/1062 408/1062
ECA/non-ECA speed (knot) 15/15 15/15 15/15 15/15 15/15 15/15 15/15

Leg 2

Leg Option 3 3 5 5 5 5 5
ECA/non-ECA distance (nautical mile) 524/906 524/906 397/1241 397/1241 397/1241 397/1241 397/1241
ECA/non-ECA speed (knot) 15/15 15/15 15/15 15/15 15/15 15/15 15/15

Leg 3

Leg Option 1 1 1 1 4 4 4
ECA/non-ECA distance (nautical mile) 632/0 632/0 632/0 632/0 443/515 443/515 443/515
ECA/non-ECA speed (knot) 15/15 15/15 15/15 15/15 15/15 15/15 15/15

Leg 4

Leg Option 4 4 4 4 4 4 5
ECA/non-ECA distance (nautical mile) 889/2652 889/2652 889/2652 889/2652 889/2652 889/2652 752/2903
ECA/non-ECA speed (knot) 15/20.6 15/20.6 15/20.1 15/20.1 15/20.1 15/20.1 15/20.5

Leg 5

Leg Option 5 5 5 5 5 5 5
ECA/non-ECA distance (nautical mile) 751/3428 751/3428 751/3428 751/3428 751/3428 751/3428 751/3428
ECA/non-ECA speed (knot) 15/18.1 15/18.1 15/18.1 15/18.1 15/18.1 15/18.1 15/18.1
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