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Abstract 

We consider an infinite horizon optimization problem with arbitrary but finite periodicity in 

discrete time. The problem can be formulated as a fix-point problem for a contraction 

operator, and we provide a solution scheme for this class of problems. Our approach is an 

extension of the classical Bellman problem to the special case of non-autonomy that 

periodicity represents. Solving such problems paves the way for consistent and rigorous 

treatment of, for example, seasonality in discrete dynamic optimization. In an illustrative 

example, we consider the decision problem in a fishery with seasonal fluctuations. The 

example demonstrates that rigorous treatment of periodicity has profound influence on the 

optimal policy dynamics compared to the case where seasonality is abstracted from by 

considering average effects only. 
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1. Introduction 

Periodicity is an important characteristic of many systems that are subject to control. 

Examples include demand systems subject to supply control (that is, demand for newspapers 

likely have a daily periodicity; demand for winter garments likely has an annual periodicity), 

transport and logistics systems subject to routing control (that is, transport and logistics 

systems likely has periodicity in stress), or natural systems subject to management control 

(renewable resources such as fish stocks may have periodicity in growth or other natural 

processes as well as periodicity in prices and costs). Periodicity is a special type of non-

autonomy, and non-autonomy typically renders many optimal control problems difficult and 

costly to deal with or even intractable. Thus, periodicity is either treated in some ad-hoc 

manner or abstracted from altogether, for example by considering aggregate or mean forcings. 

To our knowledge, periodicity in infinite horizon optimal control problems in discrete time is 

not treated formally in the theoretical literature. We show that the problem can be formulated 

as a fixed-point problem for a contraction operator, and further provide a solution scheme. As 

such, we extend the classical Bellman problem to include the special case of non-autonomy 

that periodicity represents. 

 To illustrate our approach to periodic problems, we develop a numerical 

[discretization] algorithm that we apply to a stylized fisheries management problem with 

seasonal fluctuations. Our routine exploits the equivalence between the low-dimensional, 

coupled equations problem formulation and the high-dimensional, single equation problem 

formulation. The example serves to demonstrate the feasibility of our approach, and also to 

suggest significant, practical implications of taking periodicity explicitly into account. We 

contrast the solution of the periodic problem to the solution of a problem that abstracts from 

the inherent periodicity.  

 Given the prevalence of periodic characteristic of many systems subject to control, we 

think our contribution is important and valuable. We show that the classical Bellman problem 

approach can be extended to periodic problems, and that this extension is – both conceptually 

and numerically – feasible and practical.  

 

2. Contraction of the periodic problem 

A general, infinite horizon, autonomous, dynamic, discounted, discrete-time optimization 

problem considers the following: 

 max
{𝑢𝑘}𝑘=0

∞
∑ βk+1 ⋅ Π(𝑥𝑘, 𝑢𝑘)

∞

𝑘=0
 (1) 
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such that 𝑥𝑘+1 = 𝐹(𝑥𝑘, 𝑢𝑘), 𝑢𝑘 ∈ 𝑈(𝑥𝑘), 𝑘 = 0, 1, 2, …, and 𝑥0 ∈ 𝑋 given. 0 < 𝛽 < 1 is a 

discount factor. 𝑋 ⊂  ℝ𝑛 is the system state space, 𝑥𝑘 is the dynamic state variable at the 

beginning of period 𝑘; 𝑦𝑘 is the state variable at the end of period 𝑘 and is identical to the 

state variable at the beginning of period 𝑘 + 1. Π: {ℝ𝑛  ×  ℝ𝑝} →  ℝ is bounded and 

continuous and gives the return at the end of each period. 𝐹: {ℝ𝑛  ×  ℝ𝑝} → ℝ𝑛 is a 

continuous dynamic operator that governs the state variable such that 𝑥𝑘+1 = 𝑦𝑘 is the state at 

the beginning of period 𝑘 + 1. 𝑈: ℝ𝑛 → ℝ𝑝 is a nonempty and compact valued 

correspondence that specifies the feasible controls 𝑢𝑘 from the state 𝑥𝑘. That is, 𝑢𝑘 is the 

decision or control variable that has to be decided for each instant of the infinite time 

sequence {𝑡0, 𝑡1, 𝑡2, … }. With these conditions in place, optimal controls {𝑢𝑘
∗ }𝑘=0

∞  and 

corresponding paths {𝑥𝑘
∗}𝑘=0

∞  exist, as does the value function of the problem, 𝑉(𝑥) =

 ∑ βk+1 ⋅ Π(𝑥𝑘
∗ , 𝑢𝑘

∗ )∞
𝑘=0  with 𝑥 = 𝑥0. The value function is the fixed point of the Bellman 

operator, which is defined on the space 𝐶(𝑋) or real, bounded, and continuous functions on 𝑋 

and given by 𝐴𝑉 =  max
𝑢∈𝑈(𝑥)

{β ⋅ Π(𝑥, 𝑢) + 𝛽 ⋅ 𝑉(𝑦)}, with 𝑉 ∈ 𝐶(𝑋) and 𝑦 = 𝐹(𝑥, 𝑢). See 

Bertsekas (2001) for a general treatment of problems of type (1). 

 Now consider the non-autonomous but periodic problem where Π𝑘(𝑥, 𝑢) is the return 

function and 𝐹𝑘(𝑥, 𝑢) is the dynamic operator for period 𝑘. Feasible sets for the state and 

control variables may also vary with period, such that 𝑈𝑘 and 𝑋𝑘 are the feasible control and 

state variable sets for period 𝑘. The control set may vary with the state such that we have 

𝑈𝑘 = 𝑈𝑘(𝑥𝑘), but we typically omit the state argument. The problem is periodic in the sense 

that for a finite integer 𝑁 ≥ 2, we have Π𝑘(𝑥, 𝑢) =  Π𝑘+𝑁(𝑥, 𝑢), F𝑘(𝑥, 𝑢) =  F𝑘+𝑁(𝑥, 𝑢), 

𝑋𝑘 = 𝑋𝑘+𝑁, and 𝑈𝑘 = 𝑈𝑘+𝑁. We say that the performance or return measure and the dynamic 

constraint functionally repeats itself. To avoid notational mess, we redefine the state and 

control spaces from above as follows: 𝑋 =  ⋃ 𝑋𝑘
𝑁
𝑘=1 , 𝑈 =  ⋃ 𝑈𝑘

𝑁
𝑘=1 . Without adding 

complexity, we can allow for varying period length. Thus, each different period has 

potentially different discount factor values. We write the length of period 𝑘 as 𝑇𝑘 = 𝑡𝑘 − 𝑡𝑘−1 

and its discount factor as 𝛽𝑘. Periodicity implies 𝑇𝑘 = 𝑇𝑘+𝑁 and 𝛽𝑘 = 𝛽𝑘+𝑁. The length of the 

cycle of 𝑁 periods is then 𝑇 = ∑ 𝑇𝑖
𝑁
𝑖=1 = 𝑡𝑁 − 𝑡0, and the discount factor for the cycle of 𝑁 

periods is 𝛽 =  ∏ 𝛽𝑖
𝑁
𝑖=1 . Figure 1 accounts for period index references. 
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Figure 1: Period index reference for periodic problems. Note that the return (Π𝑘) is yielded at 

the end of period 𝑘, but that 𝑉𝑘 refers to the beginning of period 𝑘. 

 

Although a real discounted problem cannot have periodic present value, the running value 

will be periodic under a constant per time discounting if involved operators (Π𝑘, 𝐹𝑘) or spaces 

(𝑈𝑘, 𝑋𝑘) are periodic. That is, for a problem of type (1) to be periodic, one or more of Π𝑘, 𝐹𝑘, 

𝑈𝑘, and 𝑋𝑘 need to have a periodic feature. As suggested above, a periodic feature is such that 

it repeats itself with some inherent period. If a problem includes several periodic features, the 

problem period 𝑁 has to be the least common multiple of the potentially different inherent 

periods of the different features. (As noted above, we have 𝑁 ≥ 2 and thus abstracts from the 

trivial case with 𝑁 = 1.) 

 If the optimal control {𝑢𝑘
∗ } was known, and for a generic state 𝑥𝑘 = 𝑥 at the beginning 

of the period, we have the current value function 𝑉𝑘: 

 
𝑉𝑘(𝑥) = 𝛽𝑘Π𝑘(𝑥, 𝑢𝑘

∗ ) + 𝛽𝑘𝑉𝑘+1(𝐹𝑘(𝑥, 𝑢𝑘
∗ )),   𝑘 = 1, … , 𝑁 − 1 

𝑉𝑁(𝑥) = 𝛽𝑁Π𝑁(𝑥, 𝑢𝑁
∗ ) + 𝛽𝑁𝑉1(𝐹𝑁(𝑥, 𝑢𝑁

∗ )) 
(2) 

Note that (2) consist of 𝑁 nested equations that follows from value additivity, that is, that the 

value at the beginning of a period is equal to the return from that period plus the discounted 

value at the beginning of the next period. Note also that since the return is yielded at the end 

of periods (see figure 1), the current period return is also discounted. Because it sometimes is 

customary to define the control to be the state variable at the beginning of the next period, we 

rather use 𝑦𝑘 = 𝑥𝑘+1 = 𝐹𝑘(𝑥𝑘, 𝑢𝑘) as control variable, with 𝑦𝑘 ∈ 𝑌𝑘, 𝑌𝑘 = 𝑌𝑘+𝑁 (periodicity), 

and 𝑌 = ⋃ 𝑌𝑘
𝑁
𝑘=1 . For convenience, we simply replace the control argument in the return 

function and in what follows write Π𝑘(𝑥, 𝑦𝑘). Equation (2) is by definition equivalent to the 

following set of equations: 

 

𝑉𝑘(𝑥) = max
𝑦𝑘∈𝑌𝑘(𝑥)

{𝛽𝑘Π𝑘(𝑥, 𝑦𝑘) +  𝛽𝑘𝑉𝑘+1(𝑦𝑘)} ,   𝑘 = 1, … , 𝑁 − 1 

𝑉𝑁(𝑥) =  max
𝑦𝑁∈𝑌𝑁(𝑥)

{𝛽𝑁Π𝑁(𝑥, 𝑦𝑁) +  𝛽𝑁𝑉1(𝑦𝑁)} 
(3) 



5 

To see how the optimal control can be derived, we consider the following operator for 

any bounded continuous function 𝑊 ∈ 𝐶(𝑋) in the state space: 

 𝐵𝑘 𝑊(𝑥) = max
𝑦𝑘∈Y𝑘(𝑥) 

{𝛽𝑘 Π𝑘(𝑥, 𝑦𝑘) +  𝛽𝑘𝑊(𝑦𝑘)} (4) 

We define 𝛽̂𝑖 = ∏ 𝛽𝑗
𝑖
𝑗=1  and further consider the nested operator for 𝑘 periods, 𝐵̂𝑘: 

 

𝐵̂𝑘𝑊(𝑥) = 𝐵𝑘 ∘ 𝐵𝑘−1 ∘ … ∘ 𝐵1𝑊(𝑥) 

= max
(𝑦1,𝑦2,…,𝑦𝑘)∈Γ𝑘(𝑥)

{∑ 𝛽̂𝑖Π𝑖(𝑦𝑖−1, 𝑦𝑖) + 𝛽̂𝑘𝑊(𝑦𝑘)
𝑘

𝑖=1
} 

(5) 

In (5), 𝑦0 = 𝑥 and Γ𝑘(𝑥) =  {(𝑦1, 𝑦2, … , 𝑦𝑘) | (𝑦1, 𝑦2, … , 𝑦𝑘) ∈ (𝑌1(𝑥), 𝑌2(𝑦1), … , 𝑌𝑘(𝑦𝑘−1))}. 

Note that the correspondences Γ𝑘(𝑥) are compact valued if the 𝑌𝑖 are compact. Γ𝑘(𝑥) is the set 

of 𝑘-step feasible paths starting from 𝑥. 

Let 𝐿(𝑥, 𝑦) be defined by the argument of the maximum operator in (5). The nested 

operator (5) is well defined if 𝐿: 𝑋 × 𝑋𝑘 → ℝ is continuous and Γ𝑘: 𝑋 → 𝑋𝑘 is continuous and 

compact valued. By the Theorem of the Maximum, the operator 𝐵̂𝑘: 𝐶(𝑋) → 𝐶(𝑋) is well 

defined. It follows directly from the classical Bellman problem (Bellman 1957; see also 

Stokey et al. 1989) that this operator is contractive with contraction factor 𝛽̂𝑘. Alternatively, it 

is trivial to check that 𝐵̂𝑘 satisfies Blackwell’s sufficient conditions (Blackwell 1965; see also 

Stokey et al. 1989). In particular, we write 𝛽 =  𝛽̂𝑁 and consider the 𝑁-cycle operator: 

 𝐵̂𝑁𝑊(𝑥) = max
𝑦∈𝑌(𝑥)

{∑ 𝛽̂𝑖Π𝑖(𝑦𝑖−1, 𝑦𝑖) + 𝛽𝑊(𝑦𝑁)
𝑁

𝑖=1
} (6) 

In (6), we write 𝑦 = (𝑦1, … , 𝑦𝑁) and Γ𝑁 = 𝑌(𝑥). It is trivial to show that the argument of the 

maximum operator in (5) is continuous and bounded if 𝑊 and the Π𝑖 are continuous and 

bounded, and also that 𝑌(𝑥) has compact range if the 𝑌𝑖 are compact. We define 

 Π̂𝑘(𝑥, 𝑦) = 𝛽𝑘Π𝑘(𝑥, 𝑦𝑘) + 𝛽𝑘𝛽𝑘+1Π𝑘+1(𝑦𝑘, 𝑦𝑘+1) + ⋯ + 𝛽Π𝑘+𝑁(𝑦𝑘+𝑁−1, 𝑦𝑘+𝑁)  (7) 

Equation (6) can now be written 

 𝐵̂𝑁 𝑊(𝑥) =  max
𝑦∈𝑌(𝑥)

{Π̂1(𝑥, 𝑦) + 𝛽𝑊(𝑦𝑁)} (8) 

More generally, for the 𝑁-cycle operator that starts in period 𝑘, written 𝐵̂𝑁,𝑘 and defined by 

 𝐵̂𝑁,𝑘 = 𝐵𝑘−1°𝐵𝑘−2° … °𝐵1°𝐵𝑁°𝐵𝑁−1° … °𝐵𝑘 =  𝐵̂𝑘−1°𝐵𝑁°𝐵𝑁−1° … °𝐵𝑘 (9) 

That is, 

 𝐵̂𝑁,𝑘𝑊(𝑥) =  max
𝑦∈𝑌(𝑥)

{Π̂𝑘(𝑥, 𝑦) + 𝛽𝑊(𝑦𝑘−1)},   𝑘 = 1, … , 𝑁 (10) 

In (10), 𝑦0 = 𝑦𝑁. Equation (10) satisfies Blackwell’s sufficient conditions and is thus a 

contraction with contraction factor 𝛽. Let the unique fix points for 𝐵̂𝑁,𝑘, 𝑘 ∈ {1, … , 𝑁}, be 
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𝑊𝑘
∗(𝑥). It follows directly from the definitions that 𝑊𝑘

∗(𝑥) =  𝐵̂𝑘−1𝑊1
∗(𝑥) is the unique fix 

point for the 𝑁-cycle starting in period 𝑘. 

 Finally, note that (3) implies (10). Thus, our unique set of 𝑁 fix points must constitute 

the proper non-autonomous value function and hence solve (3) or vice versa. We have now 

proved the following proposition: 

 

Proposition: The infinite horizon, 𝑁-period optimization problem represented by (3) is well 

defined provided that {Π𝑘 , 𝑉𝑘, 𝑌𝑘},   𝑘 ∈ {1, … , 𝑁} are continuous and bounded and {𝑌𝑘} have 

compact range. Moreover, solving (3) is equivalent with solving the contraction problem (10) 

and hence has a unique solution for the cycle values, that is, a unique, non-autonomous 

(periodic) value function 𝑉(𝑘, 𝑥) = 𝑉𝑘(𝑥). 

 

With regard to boundedness, the proposition can be generalized in the sense of Rincón-

Zapatero and Rodriguez-Palmero (2003); see also the related discussion on boundedness in 

Stokey et al. (1989). 

Varying period length require suitable adaptions of Π𝑘, 𝐹𝑘, 𝑋, and 𝑌𝑘, as well as the 

following specification of 𝛽𝑘. If period 𝑘 represents a share 𝛿𝑘 of the 𝑁-cycle, such that 𝑡𝑘 −

𝑡𝑘−1 = 𝛿𝑘 ⋅ (𝑡𝑁 − 𝑡0),  we have 𝛽𝑘 = 𝛽𝛿𝑘. In many applications, the 𝑁-cycle represents a 

year, and 𝛽 is then the annual discount factor. The extension to varying period length is an 

important and useful extension, not least because it allows for reductions in dimensionality. 

To see this, consider a problem that is formulated on an annual level, but where one month is 

different such that the problem is periodic. Without the option of varying period length, the 

model would have 𝑁 = 12. With varying period length, 𝑁 = 2 suffices. 

 With the above proposition in place, we are equipped to deal with a wide range of 

optimization problems. That (3) implies (10) and that (10) has a unique solution means that 

(3) also has a unique solution. Thus, we can work directly with (3). This is useful in numerical 

schemes. Equation (10) maximizes over an 𝑁 dimensional (vector) space 𝑌, and numerical 

solutions can be cumbersome and costly to obtain. In contrast, the equations in (3) are 𝑁 

coupled equations that each maximize over a one-dimensional (vector) space, where 

established and reliable numerical routines converges fast. A numerical scheme can exploit 

this coupling and the fast convergence of the equations in (3). Technically, for an arbitrary 

state 𝑥𝑘 at the beginning of period 𝑘, we derive the optimal state 𝑦𝑘 at the beginning of period 

𝑘 + 1. (With periodicity, for 𝑘 = 𝑁, we derive 𝑦1.) When the 𝑁 optimal controls 𝑦𝑘 has been 
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found for all 𝑘, the optimal decision for any time and initial 𝑥0 in any initial period. Without 

loss of generality, we may assume that the initial period is the 𝑘 = 1 period. Then, for 

example, with initial 𝑥1 = 𝑥0, the optimal path is obtained as follows: 

 𝑥0 → 𝑦1 = 𝑥2  → 𝑦2 = 𝑥3  → ⋯  → 𝑦𝑁−1 = 𝑥𝑁  → 𝑦𝑁 = 𝑥1 → 𝑦1 = 𝑥2  → ⋯ (11) 

That is, (11) yields the chain of optimal decisions {𝑦(𝑡 = 𝑡𝑖)}, for all 𝑖, depending on the 

initial 𝑥0, and thus also the optimal path {𝑥𝑖}. 

 We have established a numerical routine based on the above proposition – using the 

set of equations in (3) – and further the inherent logic in (11). Below, we apply this routine to 

an applied example that suggests that taking account of periodicity may have significant 

practical implications. The numerical results were obtained from code written in standard 

FORTRAN. 

 

3. An example 

We illustrate the use of our method with a fishery management problem. To make sure our 

parameter values are grounded in the real world, we consider a discrete time model of Barents 

Sea capelin. This discrete time model corresponds to the continuous time model for the 

Barents Sea capelin fishery studied in Agnarsson et al. (2008), who established empirical 

parameter values and suitable functional forms. See Kvamsdal et al. (2015) for a detailed 

discussion of how to properly set up a corresponding discrete time model for a given 

continuous time model. Because the discrete time functional expressions are complex, and 

because the specific functions are of minor interest here, we do not delve into details but refer 

interested readers to the relevant papers. (The details are also available from the authors upon 

request.) For our purpose, it suffices to say that the return function Π𝑘 and the dynamic 

operator 𝐹𝑘 are both continuous on the compact state space 𝑋, and that the control space 𝑌(𝑥) 

has compact range for all 𝑥. 

We assume the fishery has seasonal differences in the harvest cost parameter; say, the 

summer quarter has favorable conditions. The remaining quarters have normal conditions. For 

simplicity, this variability in costs is the only periodic feature in our example. We thus have 

𝑁 = 2, with period 1 being the low cost period with cost parameter 𝑐𝐿𝐶 = 𝑐𝑁𝐶/2. Regarding 

notation, we denote the low cost period with subscript 𝐿𝐶 and the normal cost period with 

subscript 𝑁𝐶. The length of the 2 period cycle is one year. The two periods hasve different 

length, with 𝛿𝐿𝐶 = 1/4 and 𝛿𝑁𝐶 = 3/4. From the set of equations corresponding to (3) above, 
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we derive the optimal escapement biomass levels – the optimal control rules – for the two 

periods as functions of the stock level at the beginning of a given period: 𝑦𝐿𝐶(𝑥) and 𝑦𝑁𝐶(𝑥). 

To illustrate the potential impact of abstracting from the periodic feature, we also 

consider the non-periodic (stationary) management problem, that is, of type (1), where the 

cost parameter is the annual average: 𝑐𝐿𝐶 ⋅ 𝛿𝐿𝐶 + 𝑐𝑁𝐶 ⋅ 𝛿𝑁𝐶 = 𝑐𝑁𝐶 ⋅ 7/8. We denote the non-

periodic, annual case with subscript 𝐴: 𝑐𝐴 = 𝑐𝑁𝐶 ⋅ 7/8. We thus derive the annual optimal 

escapement biomass level as a function of the stock level at the beginning of the year: 𝑦𝐴(𝑥). 

Figure 2 (top panel) compares the period specific escapement rules 𝑦𝐿𝐶(𝑥) and 𝑦𝑁𝐶(𝑥) 

to the annual escapement rule 𝑦𝐴(𝑥). The figure also displays the replacement curve (the 45-

degree line), which is helpful because when the escapement rules are below the replacement 

curve, the stock level is effectively reduced in the relevant period. As seen in the highlighted 

part, the escapement rule for the low cost period is below the replacement curve for stock 

levels around 750 and 1,500 (thousand tonnes). Thus, if the initial stock is low, it may get 

trapped around these levels. An example of such trapping is shown in the bottom panel of 

Figure 2, where time paths are plotted against the decision rules. The replacement curve is 

also the identity map and is used to transfer between subsequent periods (𝑦𝑘 = 𝑥𝑘+1). The 

bottom panel also shows that in the seasonal model, the long run solution is a sub-annual, 

cycle with period 2. In comparison, the annual escapement rule is above the replacement 

curve for all positive stock levels up to the long run equilibrium at around 8,000. These 

features are further illustrated in Figure 3, where optimal time paths under both the seasonal 

model and the annual model are displayed. The figure shows that while the path under the 

seasonal model remains at a level around 1,000, the path under the annual model escapes to a 

high level near 8,000. Both paths start from an initial stock level of 500. If the initial stock 

level is higher (here, 1,500), also the path under the seasonal model ends up in a high state. 

The seasonal and the annual model leads to radically different dynamic system behavior, in 

other words. Also in Figure 3, we observe the sub-annual cycles of the seasonal model 

solutions. 
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Figure 2: Top panel – Escapement rules for the seasonal (𝑦𝐿𝐶, 𝑦𝑁𝐶) and annual (𝑦𝐴) model. 

45-degree line is the replacement curve. Bottom panel – Seasonal escapement rules (𝑦𝐿𝐶, 𝑦𝑁𝐶) 

with dynamic paths for a relatively low initial stock level (𝑥0 = 500) and a higher initial 

stock level (𝑥0 = 1,500) (thin solid lines). 
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Figure 3: Optimal time paths for the seasonal (𝑥𝑆,1(𝑡)) and annual (𝑥𝐴(𝑡)) model for initial 

stock level 𝑥0 = 500. Optimal time path for the seasonal model (𝑥𝑆,2(𝑡)) for initial stock level 

𝑥0 = 1,500. 

  

 Figures 2 and 3 does not tell the full story of our example, where the seasonal model is 

the hypothetical true model, while the annual model is a simplified approximation. This 

approximation is a potentially costly endeavor. To see why, we need to consider two 

moments. The first is the total, annual harvest in the two models. Figure 4 plots the total 

harvest as functions of stock level for the low cost and normal cost period in the seasonal 

model and the annual harvest in the annual model. For sufficiently high stock levels, the 

harvests are constant. (The constant harvest levels has to do with particular features of the 

return function; see Agnarsson et al. 2008 for discussion.) In the seasonal model, harvest is 

taken both in the low cost and the normal cost period, and at high stock levels this annual 

harvest outpaces the (annual) harvest in the annual model by more than 50 %. This feature, 

which exploits that a model with more periods has more freedom, we call actualization of the 

growth rates (AGR); see Kvamsdal et al. (2015) for a discussion. At lower stock levels (below 

1,500), the case is more unclear as it depends critically, on the initial stock level and the time 

path, which of the models comes out on top in terms of annual harvest levels. 
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Figure 4: Total harvest (𝐻𝑡) as functions of period initial stock level (𝑥𝑡) for the low cost 

(𝐻𝐿𝐶) and normal cost (𝐻𝑁𝐶) periods of the seasonal model and for the annual model (𝐻𝐴). 

 

 The second moment to consider is how a rational agent (here, a resource user; a fisher) 

living in the true model adapts to management based on the approximate annual model. In the 

interest of simplicity, we consider a representative agent who is given a total allowable catch 

of ℎ𝐴(𝑥𝑡) for an initial stock level 𝑥𝑡. The rational agent who observes the different cost 

levels across the full period of which the catch quota is valid (the N-cycle), will maximize 

profits via heterogeneous distribution of harvest between periods. If we simplify by ignoring 

within-year discounting, the structure of the return function is such that the share distributed 

in the low cost period is independent of 𝑥𝑡 and given by 𝛼 = 0.85 (see Agnarsson et al. 2008 

for details of the return function). This adaptation of the rational agent subjected to an annual 

management scheme, but with freedom to exploit within-year differences in underlying 

conditions, has significant effects upon the resulting system dynamics. Figure 5 displays the 

effective escapement rules when 𝛼 𝐻𝐴 is harvested in the low cost period and (1 − 𝛼)𝐻𝐴 is 

harvested in the normal cost period. The dynamic system has an attractive fix-point around 

500, considerably lower than the optimal attractive fix-point for the optimal, seasonal system 

(around 1,000; see bottom panel of Figure 2). 

 



12 

 

Figure 5: Effective escapement rules for the low cost (𝑦𝐿𝐶,𝛼) and normal cost (𝑦𝑁𝐶,1−𝛼) 

periods given that the low cost period harvest is 𝛼𝐻𝐴 and the normal cost period harvest is 
(1 − 𝛼)𝐻𝐴. 

 

 The ability to solve periodic optimization problems is thus a potentially most valuable 

tool, obviously in fisheries, but likely in a wide range of settings. Our example here contains 

several valuable lessons about practical implications when periodicity is explicitly taken care 

of, or rather, the potential pitfalls of abstracting from periodicity. Figure 2 and 3 show that the 

periodic problem solution has a trap in the sense that for a low initial stock level, the stock 

level will remain at comparatively low stock levels. In contrast, the annual model, which has a 

similar initial dynamic behavior (figure 3), has no such trap. Thus, if low stock levels are 

biologically undesirable in the long run, the simplification inherent in the annual model may 

prove disastrous. 

 When we pursue the simplification of the annual model further by letting the resource 

users adapt rationally to the true, seasonal model while being subject to management based on 

the annual model, the problems with abstracting from periodicity are exacerbated. As shown 

in figure 5, management based on the annual model leads to a significantly suppressed stock 

level. In theory, the effect seen in figure 5 could become so severe that the stock could go 

extinct. Such inter-annual or within-season inefficiencies have gained some attention in the 

fisheries economics literature; see review in Smith (2012) and also Huang and Smith (2014). 
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4. Final remarks 

We have shown that the periodic problem (3) implies the problem (10), and that the operator 

defined in (9) is a contraction which unique fix-point yields the value function of the problem. 

Further, the formulation in (3) suggest a numerical scheme that is more efficient than that 

suggested by (10). Our example shows that explicitly taking periodicity into account may 

have significant, practical consequences in the short and long run. 
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