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Non-parametric estimation of conditional densities: A
new method

H̊akon Otneim ∗ Dag Tjøstheim †

Abstract

Let X = (X1, . . . , Xp) be a stochastic vector having joint density function
fX(x) with partitions X1 = (X1, . . . , Xk) and X2 = (Xk+1, . . . , Xp). A new
method for estimating the conditional density function of X1 given X2 is pre-
sented. It is based on locally Gaussian approximations, but simplified in order
to tackle the curse of dimensionality in multivariate applications, where both re-
sponse and explanatory variables can be vectors. We compare our method to some
available competitors, and the error of approximation is shown to be small in a se-
ries of examples using real and simulated data, and the estimator is shown to be
particularly robust against noise caused by independent variables. We also present
examples of practical applications of our conditional density estimator in the anal-
ysis of time series. Typical values for k in our examples are 1 and 2, and we include
simulation experiments with values of p up to 6. Large sample theory is established
under a strong mixing condition.

Keywords: Conditional density estimation, local likelihood, multivariate data, cross-
validation.

1 Introduction

The need for expressing statistical inference in terms of conditional quantities is ubiq-
uitous in most natural and social sciences. The obvious example is the estimation of
the mean of some set of response variables conditioned on sets of explanatory variables
taking specified values. Other common tasks are the forecasting of volatilities or quan-
tiles of financial time series conditioned on past history. Problems of this kind often call
for some sort of regression analysis, of which the literature provides an abundance of
choices.

Conditional means, variances and quantiles are all properties of the conditional den-
sity, if it exists, as are all other probabilistic statements that we might ever want to make
about the response variables given the explanatory variables. It is therefore clearly of
interest to obtain good estimates of the entire conditional distribution in order to make
use of all the evidence contained in the data, and to provide the user with a wide variety
of options in analysing and visualising the relationships of the variables under study.
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The classical method for non-parametric density estimation is the kernel estimator
(Rosenblatt et al., 1956; Parzen, 1962), which in the decades following its introduc-
tion has been refined and developed in many directions. Especially the crucial choice
of smoothing parameter, or bandwidth, has been addressed by several authors, includ-
ing Silverman (1986), Sheather and Jones (1991) and Chacón and Duong (2010). The
kernel estimator suffers greatly from the curse of dimensionality however, which quickly
inhibits its use in multivariate problems. Several alternative methods of estimation has
been proposed to improve performance if the subject of estimation is a joint multivari-
ate density function, most recently the LGDE (locally Gaussian density estimator) by
Otneim and Tjøstheim (2016), which the work in the present paper takes as its starting
point. Very few methods exist for the non-parametric estimation of conditional densities
though, especially if we do not wish to restrict ourselves to cases with one-dimensional
response and/or explanatory variables. This lack of methodology is surprising, consid-
ering the aforementioned importance of estimating conditional densities; the practical
use of which is of altogether greater interest than unconditional density estimates, as is
illustrated by some of its possible applications in Section 5.

In this paper we present a new method for estimating conditional densities based
on local Gaussian approximations. Let X = (X1, . . . , Xp) be a stochastic vector, and,
assuming existence, denote by fX(·) its joint density function. Further, let (X1;X2) =
(X1, . . . , Xk;Xk+1, . . . , Xp) be a partitioning of X. Then the conditional density of X1

given X2 = x2 is defined by

fX1|X2(x1|X2 = x2) =
fX(x1,x2)

fX2(x2)
, (1)

where fX2 is the marginal density of X2.
The problem of estimating (1) is not trivial. We do not observe data directly from

the density that we wish to estimate, so we need a different set of tools than those used
in the unconditional case. A natural course of action is to follow Rosenblatt (1969)
in obtaining good estimates of the numerator and denominator of (1) separately using
the kernel estimator, and use the definition directly. Chen and Linton (2001) provide a
discussion of choosing the bandwidths when using the kernel estimator to estimate the
components, as do Bashtannyk and Hyndman (2001). Hall et al. (2004, chap. 5) give
a unified approach to estimating conditional densities using the kernel estimator, which
allows a mix of continuous and discrete variables, and automatically smooths out the
irrelevant ones.

Unless one has a very good estimate of the marginal density, however, it is less than
ideal to put a kernel estimate in the denominator of (1). This is remedied by Faugeras
(2009), who writes the conditional density as a product of the marginal and copula
density functions in the bivariate case,

fX1|X2(x1|X2 = x2) = fX1(x1)c {F1(x1), F2(x2)} , (2)

where fX1 is the marginal density of X1, F1 and F2 are the marginal distribution func-
tions, c is the copula density of (X1, X2), and estimates those separately using the kernel
estimator. The formula (2) can be generalized to the case of several covariates, but its
practical use in higher dimensions is questionable because of boundary and dimension-
ality issues, unless one obtains better estimates of the multivariate copula density than
provided by the kernel estimator, such as the local likelihood approach by Geenens et al.
(2014).
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Hyndman et al. (1996) starts to move away from the kernel estimator by adjusting
the conditional mean to match a better performing regression technique, such as local
polynomials, while Fan et al. (1996) estimate the conditional density directly using locally
linear and locally quadratic fits, a method that Hyndman and Yao (2002) refine by
constraining it to always be non-negative. The latter authors propose in the same paper a
local likelihood approach which is based on some of the same machinery as we will employ
in this paper, and Fan and Yim (2004) provide a cross-validation rule for bandwidth
selection in the locally parametric models. These methods are to date implemented in
the bivariate case only, however, where the response- and explanatory variables are both
scalars.

Indeed, the main motivation behind our new method is to provide an estimator that
can handle a greater number of variables without the requirement that either response
or explanatory variables are scalar.

Holmes et al. (2012) develop a fast bandwidth selection algorithm, while correctly
pointing out that bandwidth selection is a formidable computational and time-consuming
task in non-parametric multivariate density estimation. We argue that the curse of di-
mensionality is an even bigger problem, because it will not be solved by clever algo-
rithms, but is an inherent problem in all non-parametric analysis. We therefore base our
method on the newly developed locally Gaussian density estimator (LGDE) (Otneim
and Tjøstheim, 2016), which shows a promising robustness against dimensionality issues
when estimating the multivariate unconditional density function. By exploiting locally
the property of the Gaussian distribution that conditional densities are again Gaussian,
we will see that conditional density estimates are readily available from the LGDE.

This paper is organized as follows: In Section 2 we give a short introduction to the
LGDE method for multivariate unconditional density estimation, and in Section 3 we
show that extracting conditional density estimates from the LGDE is straightforward
and requires neither additional estimation steps, nor integration over the joint density
estimate. In Section 4 we derive some large-sample properties for our estimator under
a strong mixing condition, and proceed in Section 5 with a series of examples using
real and simulated data, indicating the wide potential of conditional density estimation.
Some concluding remarks and suggestions for further research follow in Section 6, and
we include an appendix that contains the technical proofs.

2 A brief introduction to the LGDE

Because of its close relationship with our conditional density estimator, we include here
a basic account of the LGDE. Suppose that we wish to estimate the full p-variate density
fX based on n independent observations X1, . . . ,Xn. Hjort and Jones (1996) provide a
general setup for fitting a parametric family of densities ψ(·,θ) locally to the unknown
density by maximising the local log-likelihood function in each point x;

θ̂(x) = arg maxθ n
−1

n∑
i=1

Kh(Xi − x) logψ(Xi,θ)−
∫
Kh(y − x)ψ(y,θ) dy, (3)

so that the estimated density is given by f̂X(x) = ψ(x, θ̂(x)). We use standard notation,
letting h denote a diagonal matrix of bandwidths, K(·) a symmetric kernel function
integrating to one, and Kh(x) = |h|−1K(h−1x). Denote by φ and Φ the univariate
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standard normal density and distribution functions respectively,

φ(z) = (2π)−1/2 exp
{
−z2/2

}
, Φ(z) =

∫ z

−∞
φ(y) dy.

According to Otneim and Tjøstheim (2016), we can write the p-variate density function
fX as

fX(x) = fZ
(
Φ−1 (F1(x1)) , . . . ,Φ

−1 (Fp(xp))
) p∏
i=1

fi(xi)

φ (Φ−1 (Fi(xi)))
(4)

where fi and Fi, i = 1, . . . , p, are the marginal densities and distribution functions of
fX , and fZ is the density function of a stochastic vector Z = (Z1, . . . , Zp) with standard
normal margins, and Zi = Φ−1 (Fi(Xi)).

We estimate fZ by locally fitting the standardized normal distribution,

ψ(z,θ) = ψ(z,R) = (2π)−p/2|R|−1/2 exp

{
−1

2
zTR−1z

}
, (5)

with R = R(z) = {ρij(z)} denoting the correlation matrix, based on the marginally
Gaussian pseudo-observations

Ẑj =
(

Φ−1(F̂1(Xj1)), . . . ,Φ
−1(F̂p(Xjp))

)T
, j = 1, . . . , n, (6)

where F̂k(xk), k = 1, . . . , p are estimates of the marginal distribution functions, which,
in our asymptotic results are assumed to be the empirical marginal distribution func-
tions. There are several reasons for transforming all observation vectors to the standard
Gaussian scale. First of all, it makes the choice of the Gaussian distribution as local
parametric family in (5) very natural, where, in particular, we have fixed all means and
standard deviations so they are equal to 0 and 1 respectively, reducing the number of
parameters that we must estimate locally. Moreover, the normalisation (6) is a quick
way to make the data more tidy, because the pseudo-observations will all be on the same
scale, and there will not be any outliers which is otherwise known to create problems
when using cross-validation to select bandwidths (Hall, 1987). In general, distributions
become easier to estimate when they are closer to the Gaussian distribution, as shown
and exploited by Wand et al. (1991) and Ruppert and Cline (1994).

In (5), each correlation ρij(z) depends on the coordinates of the entire z-vector,
making its estimation difficult because of the curse of dimensionality. In regression
problems, this issue may be tackled by imposing an additive structure on the unknown
regression function:

Y = f(X1, . . . , Xp) + ε = f1(X1) + · · ·+ fp(Xp) + ε,

possibly with higher order interactions if the data can support it. One motivation behind
the LGDE is to introduce a similar idea to density estimation, and it is based on the
fact that a global Gaussian fit is produced by calculating the correlation coefficients
between each pair of variables by using only the corresponding observation vectors. In
order to circumvent the curse of dimensionality, Otneim and Tjøstheim (2016) carry this
procedure over to the local case by restricting ρij(z) so that it is only allowed to depend
on its own variables; i.e. ρij(z) = ρij(zi, zj). The corresponding estimate ρ̂(zi, zj) is
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computed from the corresponding simplified pairwise local log likelihood so that we can
take

ρ̂ij(z1, . . . , zp) = ρ̂ij(zi, zj). (7)

This technique effectively reduces the estimation of fX to a series of bivariate local
problems, which is reflected in the rate of convergence in the following asymptotic result,
that holds under some standard regularity conditions (Otneim and Tjøstheim, 2016) and
proven for sets of iid observations:√

nh2n

(
f̂X(x)− f0(x)

)
L→ N

(
0, σ2

fX

)
, (8)

where, in general, f0(x) 6= fX(x) is the population density towards which the LGDE
converges. Here, f0(x) is the simplified density obtained from (4) and (5) by replacing
fZ(z) with Ψ(z,R0), where R0 = {ρ0,ij(zi, zj)} and ρ0,ij is the true local Gaussian
correlation between Zi and Zj, as will be defined in Section 4.

Otneim and Tjøstheim (2016) propose two methods for bandwidth selection. Cross-
validation is used to determine the bandwidths that minimise the estimated Kullback-
Leibler distance between the density estimate and the true density. They also employ
the k-nearest neighbor technique in order to obtain adaptive bandwidths, but simulation
results suggest that, of the two, the global bandwidth selector performs better. Indeed, as
already mentioned, Hall (1987) shows that the performance of cross-validation bandwidth
selection depends on the tails of the underlying distribution not being thicker than the
tails of the kernel function. By transforming the data to marginal standard normality,
and using the Gaussian kernel function, it follows that the cross-validation procedure is
well suited for selecting the LGDE bandwidths.

3 Estimating the conditional density

Conditional density estimates are in principle available from any non-parametric estimate
of the unconditional density of all variables. Let us return to the problem in Section 1,
and suppose that we obtain an estimate f̃X of fX in the process of estimating the left
hand side of (1). The corresponding marginal density f̃X2 that ideally we should put in
the denominator of (1) is given by

f̃X2 =

∫
f̃X dx1,

but one must usually turn to numerical methods in order to obtain this integral, which
can be a costly affair in terms of computing power, especially when there are many
variables over which to integrate. Thus, estimating the marginal density directly from
the data is often quicker, but introduces a new source of uncertainty that, again, will be
difficult to handle in case of several explanatory variables.

We proceed to show that this problem is completely circumvented if we use the
LGDE strategy for estimation. As is well known for a multivariate Gaussian distribu-
tion, every conditional density that can be formed by partitioning the Gaussian vector
and computing the fraction (1), is again Gaussian, and where the (conditional) mean
and (conditional) covariance matrix in that Gaussian can be easily computed; see e.g.
Johnson and Wichern (2007, Chap. 4). This is of course also the case for the fraction
of Gaussians that are local approximations, and we can obtain estimates by using these
formulas. In more detail, starting from the p-variate density in (4),
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fX1|X2(x1|X2 = x2) =
fX(x)

fX2(x2)

=
fZ(z1, . . . , zp)

fZ2(zk+1, . . . , zp)

k∏
i=1

fi(xi)

φ (zi)
,

where fZ/fZ2 can be seen locally as a fraction of a p-variate and a p−k-variate Gaussian
function, each with all expectations equal to zero, and with correlation matrices R(z)
and R22(z) respectively. The latter notation is natural because of the pairwise analysis,
so that R22(z) is exactly equal to the lower right block of R(z). Thus, in every grid
point z, fZ2 is exactly the marginal density of the p− k last variables of fZ , and we can
use the basic result for the multivariate normal distribution mentioned above to rewrite
the fraction. Partition R(z) into four blocks, of which the lower right block is R22(z):

R(z) =

(
R11 R12

R21 R22

)
Then

fZ/fZ2 = Ψ∗(z1, . . . , zk;µ
∗,Σ∗), (9)

where Ψ∗(·) is the general k-variate Gaussian density with expectation vector and co-
variance matrix given by

µ∗ = R12R
−1
22 z2, (10)

Σ∗ = R11 −R12R
−1
22R21, (11)

where z2 = (zk+1, . . . , zp). Note that we may use correlation- and covariance matrices
interchangeably, because all standard deviations are equal to one in fZ and fZ2 .

We can now obtain an estimate of fX1|X2=x2 by plugging in local likelihood estimates
of R(z) = {ρij(zi, zj)}, resulting in

f̂X1|X2(x1|X2 = x2) = Ψ∗
(
ẑ; µ̂∗(ẑ), Σ̂∗(ẑ)

) k∏
i=1

f̂i(xi)

φ (ẑi)
, (12)

where µ̂∗(ẑ) and Σ̂∗(ẑ) are obtained by substituting local correlation estimates into

equations (10) and (11), and where we write ẑi = Φ−1(F̂i(xi)). Moreover, the second

factor in (12) requires estimates f̂i(xi) of the marginal densities fi(xi), i = 1, . . . , k. As
we will see in the next section, this can be any smooth estimate, and will not affect the
asymptotic results as long as they converge faster than

√
nh2. The current implementa-

tion of the LGDE uses the logspline estimator by Stone et al. (1997) for this purpose. It
is interesting to note that the computation resulting in (9), (10) and (11) can be done
directly on estimated quantities using results on fractions of exponential functions.

We modify the LGDE algorithm in Otneim and Tjøstheim (2016) according to the
discussion above, and estimate conditional densities by following these steps:

1. Transform each marginal observation vector to pseudo-standard normality using
(6).
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2. Estimate the local correlation matrix of the transformed data by fitting the
Gaussian family (5) using the local likelihood function in (3) and the simplifi-
cation (7). In practice, this amounts to fitting the bivariate version of (5) to

each pair of approximately marginally standard normal variables (Ẑi, Ẑj), and let

R̂(z) = {ρ̂(zi, zj)}i,j=1,...,p.

3. Calculate the local mean and covariance matrix of f̂Z/f̂Z2 using the formulas (10)
and (11), so that the conditional density estimate becomes as given in (12)

4. Normalize the density estimate so that it integrates to one.

Again, we point out that our simplification of the dependence structure (7) in general will
result in an estimate of an approximation f0(·) of the true density f(·). We proceed in the
next section to discuss the nature of the simplification, to discuss regularity conditions,
and to explore the large sample properties of our method.

4 Regularity conditions and asymptotic theory

The following theorems on consistency relative to f0 and asymptotic normality state
analogous results to those found in Otneim and Tjøstheim (2016), but they are proven
under a new set of regularity conditions that allow for dependence between the observa-
tions X1, . . . , Xn.

The simplification (7) means that we estimate the local correlations pairwise, which
also means that it suffices to derive most of the asymptotic theory in the bivariate case.
Consider, for the time being, a pair (Zi, Zj) of marginally standard normal random
variables. Denote by ρ0(zi, zj) = ρ0(z) the local Gaussian correlation between them,
as will be defined below, and by ρ̂(z) its estimate, calculated using the bandwidths
h = (hi, hj) according to the algorithm in Section 3. Denote further by Ln(ρ(z), z) the
local log-likelihood function in (3) with the bivariate version of (5) as parametric family
ψ(·, ρ). For a fixed h > 0 (where all statements about the vector h in this section are
element-wise), denote by ρh the local correlation that satisfies

∂Ln(ρ; z)

∂ρ
→
∫
Kh(y − z)u(y, ρh) {fij(y)− ψ(y, ρh)} dy = 0 (13)

as n → ∞, where u(·, ρ) = ∂ logψ(·, ρ)/∂ρ, and fij is the joint density of (Zi, Zj). We
assume hereafter that ρh exists and is unique for any h > 0 (see also Hjort and Jones
(1996) and discussion in Otneim and Tjøstheim (2016)). By letting h = hn → 0, at an
appropriate rate (see Assumption C), the local correlation in the expression above, as
mentioned in the previous section, satisfies

ψ(z, ρ0(z)) = fij(z), (14)

and we require the population value ρ0(z) to satisfy (14), cf. Hjort and Jones (1996) and
Tjøstheim and Hufthammer (2013). Assuming (14) is not enough to ensure uniqueness
of ρ0 just by itself, though, even in our restricted case with fij having standard normal
margins, and the expectations and standard deviations of ψ(·, ρ) being equal to zero
and one respectively. Consider for example the case where fij is the bivariate Gaussian
distribution with correlation coefficient ρ∗ 6= 0. It is obvious that ρ0(z) = ρ∗ is the
population parameter, but in the point z = 0, we see that ρ0 = −ρ∗ also satisfies (14).
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In this and more general situations, such problems are avoided by approximating with a
Gaussian in successively smaller neighborhoods. We must therefore make the following
assumption that guarantees a well defined population parameter at the point z:

Assumption A. For any sequence hn tending to zero as n → ∞ there exists for the
bivariate marginally standard Gaussian vector (Zi, Zj) a unique ρhn(z) that satisfies
(13), and there exists a ρ0(z) such that ρhn → ρ0(z).

See Tjøstheim and Hufthammer (2013) for a discussion of Assumption A, and see
Berentsen et al. (2016) for a discussion of an alternative neighborhood-free approach to
defining the population parameter by means of matching the partial derivatives of the lo-
cally Gaussian approximation with the true underlying density function. Assumption A
essentially ensures that we estimate the joint densities of each pair of transformed vari-
ables consistently, but the joint density f0(z) = Ψ(z,R0), where R0 = {ρ0,ij(zi, zj)}i<j,
and Ψ(·,R) is the standardized multivariate Gaussian density function with correlation
matrixR, is not necessarily equal to the true density of the standardized variables, which
we for simplicity denote by f(z). For this to be true, f(z) must be on the form

f(z) = Ψ(z,R0), (15)

and this is a restriction of a general density because the entire dependence structure
must be contained in the pairwise correlation functions ρ0,ij(zi, zj), which is true for
distributions with the Gaussian copula (for which the correlation functions are constant
in all directions), or a stepwise Gaussian distribution as described by Tjøstheim and
Hufthammer (2013), but it is difficult (but not paramount for our estimation procedure)
to find more analytic examples.

The class of density functions satisfying (15), H(f0) say, is much richer than the
Gaussian case, however, and our performance in estimating a given unconditional density
f(·) is clearly sensitive to the distance from f(·) to its best approximant in H(f0).

Imposing a sparsity requirement like (7) can be viewed in one of two ways. First, as
a modeling assumption that can be formally tested, and then discarded if the test should
fail. On the other hand, it can be viewed as a simplification of reality that arises due to
computational necessity, much like additivity in non-parametric regression as explained
in Section 2. We focus on the latter interpretation, and so the method must therefore
be judged first and foremost by its performance in practical situations, like those being
presented in Section 5. We also refer to Otneim and Tjøstheim (2016) for comprehensive
simulations and discussions.

Next, we introduce time series dependence. A strictly stationary series of stochastic
variables {Xn}, n = 1, 2, . . . is said to be α-mixing if α(m)→ 0, where

α(m) = sup
A∈F0

−∞,B∈F∞m
|P (A)P (B)− P (AB)|, (16)

and where F
j
i is the σ-algebra generated by {Xm, i ≤ m ≤ j} (Fan and Yao, 2003,

p. 68). We require the mixing coefficients (16) of our observations to tend to zero at
an appropriate rate, which means that we can turn to standard theorems in order to
establish the asymptotic properties of our estimator.

Assumption B. For each pair (i, j), 1 ≤ i ≤ p, 1 ≤ j ≤ p, i 6= j, {(Zi, Zj)}n is α-mixing
with the mixing coefficients satisfying

∑
m≥1m

λα(m)1−2/δ < ∞ for some λ > 1 − 2/δ
and δ > 2.
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The next assumption links allowable bandwidth rates with the mixing rate:

Assumption C. n → ∞, and each of the bandwidths h tend to zero such that

nh
λ+2−2/δ
λ+2/δ = O(nε0) for some constant ε0 > 0.

In the current context {(Zi, Zj)}n is a bivariate process with standard normal mar-
gins. In the statement of Theorem 3, Assumption B means that the general p-variate
observations {Xn} are α-mixing with the specified convergence rate for the mixing coef-
ficients. This distinction has no practical importance when transforming back and forth
between these two scales, because the mixing properties of a process are conserved under
any measurable transformation (Fan and Yao, 2003, p. 69).

We need a compact parameter space and some regularity conditions on the kernel
function in order to prove consistency and asymptotic normality for the local correlations:

Assumption D. The parameter space Θ for ρ is a compact subset of (−1, 1).

Assumption E. The kernel function satisfies supz |K(z)| < ∞,
∫
|K(y)| dy < ∞,

∂/∂ziK(z) <∞ and limzi→∞ |ziK(zi)| = 0 for i = 1, 2.

Theorem 1. Let {(Zi, Zj)}n be identically distributed bivariate stochastic vectors with
standard normal margins. Denote by ρ0(z) the local Gaussian correlation between Zi and

Zj, and by ρ̂n(z) its local likelihood estimate. Then, under assumptions A-E, ρ̂n(z)
P→

ρ0(z) as n→∞.

Proof. See Appendix A.1.

Fan and Yao (2003, pp. 76-77) provide a general central limit theorem for non-
parametric regression. It is applicable to the local correlations, with obvious adaptations
in order to achieve consistent notation. Assume now that {Zn} is a sequence of p-variate
observations having standard normal margins, and denote by ρ = (ρ1, . . . , ρp(p−1)/2) the
vector of local correlations, which has one component for each pair of variables. The
local correlations are estimated one by one using the scheme described above, and denote
by ρ̂ the estimate of ρ. Further, as all bandwidths are assumed to tend to zero at the
same rate, statements like h2 are taken to mean the product of any two bandwidths hi
and hj.

The local correlation estimates are then jointly asymptotically normal:

Theorem 2. Under assumptions A-E,√
nh2n (ρ̂n − ρ0)

L→ N(0,Σ),

where Σ is a diagonal matrix with components

Σ(k,k) =
fk(zk)

∫
K2(yk) dyk

u2(zk, ρ0,k(zk))ψ2(zk, ρ0,k(zk))
,

where k = 1, . . . , p(p − 1)/2 runs over all pairs of variables, fk is the corresponding
bivariate marginal density of the pair Zk, ψ(·) is defined in (5) and u(·) is defined in the
paragraph following equation (13).
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When comparing with the corresponding result in Otneim and Tjøstheim (2016), we
see that the mixing has no effect on the asymptotic covariance matrix compared with
the iid case. See Appendix A.2 for proof.

The preceding theorems lead up to the following asymptotic result for the locally
Gaussian conditional density estimates, which is analogous to the corresponding result in
Otneim and Tjøstheim (2016) in the unconditional case. Denote by f0(x1|X2 = x2) the
locally Gaussian conditional density function of X1|X2 = x2 (where X = (X1,X2) does
not necessarily have standard normal marginals), which is obtained by replacing fZ/fZ2

with Ψ∗(z;µ∗0,Σ
∗
0) in equation (12). The parameters µ∗0 and Σ∗0 are again obtained from

formulas (10) and (11) using the population values of the local correlations as defined in
Assumption A.

Following the algorithm in Section 3, we must estimate the local Gaussian correlation
for pairs of variables Ẑn = {(Ẑi, Ẑj)}n as defined in equation (6), that are not exactly
marginally standard normal, because the distribution functions Fi(·), i = 1, . . . , p must
be estimated from the data. In the same way as for the iid case in Otneim and Tjøstheim
(2016), we need some extra assumptions on the pairwise copulas between the compo-
nents in X to ensure that using the empirical distribution distribution functions instead
of the true distributions will not affect the asymptotic distribution of the LGDE con-
ditional density estimate. The following assumptions are taken directly from Geenens
et al. (2014), who derive the asymptotic properties of a local likelihood copula density es-
timator in the bivariate case, that is also based on transformations to marginal standard
normality.

Assumption F. The marginal distribution functions F1, . . . , Fp are strictly increasing
on their support.

Assumption G. Each pairwise copula Cij of (Xi, Xj) is such that (∂Cij/∂u)(u, v)
and (∂2Cij/∂u

2)(u, v) exist and are continuous on {(u, v) : u ∈ (0, 1), v ∈ [0, 1]}, and
(∂Cij/∂v)(u, v) and (∂2Cij/∂v

2)(u, v) exist and are continuous on {(u, v) : u ∈ [0, 1], v ∈
(0, 1)}. In addition, there are constants Ki and Kj such that∣∣∣∣∂2Cij∂u2

(u, v)

∣∣∣∣ ≤ Ki

u(1− u)
for (u, v) ∈ (0, 1)× [0, 1],∣∣∣∣∂2Cij∂v2

(u, v)

∣∣∣∣ ≤ Kj

v(1− v)
for (u, v) ∈ [0, 1]× (0, 1).

Assumption H. Each density ci,j of Ci,j exists, is positive, and admits continuous
partial derivatives to the fourth order on the interior of the unit square. In addition,
there is a constant K00 such that

c(u, v) ≤ K00 min

(
1

u(1− u)
,

1

v(1− v)

)
for all (u, v) ∈ (0, 1)2.

These smoothness assumptions are quite weak, as can be seen from the discussion in
Geenens et al. (2014). Finally, we need to assume that the final back-transformation of
the density estimate converge faster than the nonparametric rate of

√
nh2:

Assumption I. The estimates of the marginal densities and quantile functions that are
used for the back-transformations in (12), are asymptotically normal with convergence
rates faster than

√
nh2.
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As we use the logspline-estimator (Stone et al., 1997) for the back-transformations
in all our examples, we discuss its large sample properties in light of assumption I in
Appendix B. Another possible candidate is the basic univariate kernel estimator, which,
under some regularity conditions, converges as

√
nh.

Theorem 3. Let {Xn} be a strictly stationary process with density function fX(x).

Partition X into X1 = (X1, . . . , Xk) and X2 = (Xk+1, . . . , Xp), and let f̂X1|X2(x1|X2 =
x2) be the estimate of the conditional density fX1|X2 that is obtained using the procedure
in Section 3. Then, under assumptions A-I,√

nh2n

(
f̂X1|X2(x1|X2 = x2)− f0(x1|X2 = x2)

)
L→ N

(
0, ψ∗(z;µ∗0,Σ

∗
0)

2g(x)2uT (z;µ∗0,Σ
∗
0) Σu(z;µ∗0,Σ

∗
0),

where

g(x) =
k∏
i=1

fi(xi)/φ(zi),

z = {zi}i=1,...,p = {Φ−1(Fi(xi))}i=1,...,p,

and u(z) = ∇ logψ∗(z,µ∗0,Σ
∗
0), where the gradient is taken with respect to the vector of

local correlations.

See Appendix A.3 for a proof.

5 Examples

The asymptotic results of the preceding section will not give us the complete picture
on how the LGDE estimator of conditional densities behaves in practice for a finite
sample. We must also take into account that the simplification (7) of the dependence
structure could introduce an approximation error in practical applications, the size of
which depends on the problem at hand. We proceed to apply our new estimator to a
series of problems using real and simulated data, and compare it with existing methods.

It is customary in the copula literature to generate pseudo-observations by means of
the marginal empirical distribution functions, and this is why we can prove Theorem 3 by
mostly referring to existing results. The back-transformation (12) must be smooth and
invertible, making a standard marginal kernel estimate a natural choice. Extensive test-
ing, however, has revealed that we obtain better finite sample performance if we use the
logspline method by Stone et al. (1997) for marginal density and distribution estimates,
not only in the back-transformation (12), but also in generating the marginally Gaus-
sian pseudo-observations (6). The following examples, as well as the computer code that
accompany this article as supplementary material, therefore use the logspline estima-
tor for both of these purposes. We argue in Appendix B that the asymptotic properties
of the logspline estimator do not change when applied to α-mixing data compared to
independent data.

5.1 Conditional density estimation

5.1.1 Simulated data with relevant variables

In this section, we wish to investigate the sensitivity of various methods with respect
to the number of explanatory variables in the problem, and begin by presenting some
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Figure 1: The integrated squared error of conditional density estimates of fX1|X2,...,Xp as
a function of p, generated from a density with exponential margins and a Joe copula
with Kendall’s Tau equal to 0.6.

simulation experiments in which we generate data from test distributions, measure the
integrated squared error (ISE) of our conditional density estimate, and compare it with
the two natural competitors which are readily available for implementation: the näıve
approach, where the numerator and denominator of (1) are estimated separately using
the multivariate kernel estimator with the plug-in bandwidth selector of Wand and Jones
(1994), and the specialized kernel method by Hall et al. (2004), which we denote by the
name of the software package written in the R programming language (R Core Team,
2015) from which it can be calculated: “NP” (Hayfield et al., 2008).

The first test distribution has standard exponentially distributed margins, and the
dependence structure is defined by the Joe copula (see e.g. Nelsen (2013, p. 116,
distribution 6)) with parameter θ = 3.83, which corresponds to a Kendall’s Tau of 0.6
between all pairs of variables. For each dimension p, ranging from 2 to 6, we generate
27 = 128 data sets, and estimate the conditional density of X1|X2 = · · · = Xp = c,
with c being equal to 1,2 and 3 in this example. We calculate the ISE of the density
estimates numerically over 2000 equally spaced grid points, and graph the mean of the
estimated errors as a function of the dimension for two different sample sizes (n = 250
and n = 1000), see Figure 1.

The basic kernel estimator performs well in the center of the distribution, especially
in the example with sample size 1000. When we condition on values that are farther
out in tail, however, it quickly deteriorates as the dimension increases. This behavior is
of course expected because of the curse of dimensionality. The NP-estimator is clearly
a major improvement to näıve kernel estimation of conditional densities, but in this
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Figure 2: The integrated squared error of conditional density estimates of fX1|X2,...,Xp as
a function of p, generated from the multivariate t-distribution with 4 degrees of freedom.

example we see that the LGDE approach is the overall best performer. It matches the
purely non-parametric methods in lower-dimensional cases, but also boasts a greater
robustness against increasing dimensionality than its competitors. The tail behavior of
the LGDE is much better than the other two methods. It is governed by a Gaussian
distribution, which again is determined locally by the behavior of fX1|X2,...,Xp in the tail.

5.1.2 Simulated data from a heavy-tailed distribution

Otneim and Tjøstheim (2016) show that the unconditional version of the LGDE does
not work very well when fitted to the heavy-tailed t(4)-distribution. The reason for this
is not entirely clear, but one explanation is that the cross-validated bandwidths are too
small. The conditional version of the LGDE also starts to struggle when presented with
data from this distribution, as can be seen in Figure 2. It is expected that using the
t-distribution in the same pairwise and local manner as we use the Gaussian distribution
here, will improve this fit, and we discuss this more closely in Section 6. The conditional
density estimator by Hall et al. (2004) is the best alternative in this case if the explanatory
variables are not in the center of the distribution.

5.1.3 Simulated data with irrelevant variables

One challenge in estimating conditional densities is to discover, and take account of, in-
dependence between variables. We have not addressed this problem explicitly in the
derivation of our estimator, contrary to the NP-estimator by Hall et al. (2004), which
smooths irrelevant variables away automatically. In our next example, however, most
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Figure 3: The integrated squared error of conditional density estimates of fX1|X2,...,Xp as a
function of p, generated from a density in which the first two variables are marginally log-
normal with a t(10)-copula, and the rest of the variables are multivariate t(5)-distributed,
independently from (X1, X2).

of the explanatory variables are independent from the response variable, but they are
mutually dependent themselves. In the two-dimensional case with X = (X1, X2), we
generate data from a bivariate distribution with log-normal margins that has been as-
sembled using the t-copula with 10 degrees of freedom. For all dimensions greater than
two, the remaining variables X3, . . . , Xp are drawn from a multivariate t-distribution
with 5 degrees of freedom, but independent from (X1, X2).

It turns out that our approach handles this case very well, see Figure 3. None of the
methods have errors that grow sharply with the dimension, which indicate that they more
or less ignore the extra noise that the extra dimensions contains. The LGDE-method
is clearly the best, however, according to this particular choice of error measure. The
explanation for this is the equivalence between independence and the local correlation
being equal to zero between marginally Gaussian variables, which in turn means that,
by construction, variables that are independent from the response variable will have very
little influence in the final conditional density estimate.

5.1.4 Real data with irrelevant variables

We can explore this property using a real data set as well. Consider a subset of the data
set which is also analyzed in Otneim and Tjøstheim (2016) comprising daily log-returns
on the S&P 500 stock index observed on 1443 days from January 3rd 2005 until July
14th, 2010. In this example we will use only the first 500 observations, so the financial
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Figure 4: Estimate of the conditional density of the US log-returns conditioned on
Xt−1 = · · · = Xt−k = −1 with k = 1, 3, 7 respectively.

crisis of 2008 is not included in this particular analysis.
We know that there is very little extra information given the first lag in this time

series, thus estimating the marginal density of these log returns by conditioning on more
and more lags will not introduce more information, but rather noise, that should ideally
be ignored by the estimation routine.

Figure 4 displays the marginal density estimates of the data, calculated using the
three competing methods and conditioned on the preceding 1, 3 and 7 days’ values
respectively being equal to −1. All methods perform similarly in the first case in which
we condition on only one variable. In the second panel we condition on three lags,
which amounts to a four dimensional problem in terms of density estimation, and the
näıve kernel estimator, not surprisingly, struggles in this case. The other two methods,
however, the NP and the LGDE, remain largely unchanged, which indicates that they,
for the most part, ignore the additional two variables of data. When conditioning on 7
lags, the kernel estimator should not be trusted. The NP-estimator also appears to loose
some characteristics, like the sharpness of its peak and the fatness of its right tail. The
LGDE, on the other hand, seems to be the better performer in this case. Although the
estimate is slightly deformed compared to the other two figures, its main characteristics
are conserved. The tails in particular shows great robustness compared to the other two
methods, and we believe that this behavior to a large part explains its good performance
in simulation experiments, and we will also exploit this feature in Section 5.3.

5.1.5 Melbourne temperature data: comparison with local polynomials

The local polynomial conditional density estimators of Hyndman et al. (1996) and Hyn-
dman and Yao (2002) is in its current implementation restricted to the case where the
explanatory and response variables are both scalar, and is therefore not included in the
simulation experiments of the preceding subsection. We will, however, compare these
estimators to our approach using the Melbourne temperature data that is presented by
Hyndman et al. (1996). The data consists of daily recordings of the maximum air tem-
perature in Melbourne, Australia from 1981 until 1990. It is known that a low maximum
temperature one day most often results in a similar temperature the next day. Local
meteorological conditions, however, have the effect that a high maximum temperature is
often followed by either a large, or a much smaller observation, making the corresponding
conditional density bimodal. The Hyndman et al. (1996)-estimator, which in this exam-
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Figure 5: Australian temperature data, with estimated conditional density of the max-
imum daily air temperature, given a preceding recording of 10, 20, 30 and 40 degrees
Celsius respectively.

ple is a local polynomial of order zero, recovers this phenomenon nicely, and although
our locally Gaussian estimator is not identical, it gives a similar picture, see Figure 5.
The Hyndman and Yao (2002)-estimator is a locally quadratic polynomial, and mostly
agrees with the other methods, but seems to be slightly overfitting the density in the
lower right panel.

It is interesting to note that the bimodality of the LGDE-estimator is mirrored com-
pared with the local polynomials in the lower left panel.

5.2 Partial correlation and covariance

The partial autocorrelation function for a stationary time series at lag k is the correlation
between Xt and Xt−k, given the values of the intervening lags (Brockwell and Davis,
2013, p. 98). The concept of partial correlation is very important, especially in the
analysis of conditional dependencies in Bayesian networks. Partial local correlation is a
natural extension of local correlation in light of the new theory allowing for dependent
observations. Consider for example the nonlinear AR(1) model

Xt = 0.8Xt−1 + 0.5
√
|Xt−1|+ Zt,
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Figure 6: The top panel displays a simulated time series. The lower left panel displays
the average of the estimated conditional densities of Xt|Xt−2 = 5, and the lower right
panel shows the unconditional diagonal local correlation between Xt and Xt−2, as well as
the same quantity when conditioned on the intermediate value Xt−1, with 95% empirical
confidence intervals.

where the Zts are independent standard normal innovations. One realization of length
500 is plotted in the upper panel of Figure 6. There is strong serial dependence in this
model. Indeed, if we estimate the joint density of the lagged values Xt and Xt−2 using
the LGDE methodology, the estimated local correlation is close to 1. This can be seen
in the lower right panel of Figure 6, in which the local correlation for 300 realizations
has been averaged and plotted as a solid line along the diagonal xt = xt−2, along with
the empirical 95% confidence interval. We do know from the Markov property of {Xt},
however, that Xt is independent of Xt−2 given Xt−1, and this is clearly reflected in the
estimated local covariance between the two variables for the joint conditional density of
(Xt, Xt−2)|Xt−1 = xt−1 (where xt−1 = 5 in this particular case), that has been plotted as
a dashed line. We use the term local covariance here, instead of local correlation, because
the diagonal elements in Σ as defined by (11) are no longer 1. As seen in the lower right
panel of Figure 6, the local covariance practically vanishes when the intermediate variable
is conditioned upon.

The average of the estimated conditional densities in question has been plotted along
its diagonal in the lower left panel of Figure 6.
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Table 1: Proportion of observations exceeding the estimated VaR

Level

Method 0.005 0.01 0.05

LGDE 0.014 0.017 0.072
np 0.084 0.097 0.161
Kernel 0.117 0.134 0.187
Gaussian 0.045 0.064 0.125

5.3 Forecasting the value-at-risk of a portfolio

There is a vast literature available on portfolio optimization theory. A vital element
when selecting the optimal distribution of wealth over a set of assets is the estimation
of risk, of which the Value-at-Risk (VaR) is a common measure. The VaR of a portfolio
at level α is simply the upper (1 − α)-quantile of the loss-distribution of the portfolio,
which usually needs to be estimated from past data.

We look at the S&P 500 data from Section 5.1.4, as well as the corresponding log-
returns on the British FTSE 100 index and the Norwegian OBX, and consider the obser-
vations on all 1443 days. In this toy example, we will show that our conditional density
estimator may well be used as an instrument in estimating the VaR.

We wish to estimate the daily VaR of a portfolio consisting of each of these in-
dices, equally weighted, conditioned on the observed log-returns on preceding days. The
log-returns of this portfolio is plotted in Figure 7. Denote by (X1, . . . , X4) the four-
dimensional vector that we observe each day, in which X1 is the value of the portfolio
that day, and X2, . . . , X4 are the values of its individual components on the preceding
day. On each day we estimate the conditional density of X1|X2 = x2, . . . , X4 = x4 and
calculate the α-level VaR by numerical integration. We do the same by using the non-
parametric kernel estimator by Hall et al. (2004), naive kernel estimator, as well as by
assuming the data to be jointly Gaussian and calculating the quantile from a fully para-
metric fit. We start our analysis on day number 500, and for computational feasibility,
we calculate the bandwidths for all methods on the first day of analysis only, and keep
them constant throughout the period.

Table 1 displays the result of our analysis. For each method we count the proportion
of observations that exceed the estimated VaR on the corresponding day. We see that all
methods under-estimate the risk, but the LGDE-approach is clearly the better performer,
which we believe is due to its tendency to allow fat tails in the density estimates, see
e.g. Figure 4, even though it has a local Gaussian tail.

A thorough treatment of this topic would include pre-filtering of the data using
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for example a GARCH-type model as found in Palaro and Hotta (2006), as well as
implementation of the LGDE in optimization over the portfolio weights, but that is
beyond the scope of this paper.

6 Conclusion and further work

Constructing non-parametric estimates of conditional density functions is a fundamental
problem in statistics, but it is difficult, because many of the existing methods rely either
on the traditional kernel density estimator, or on separate estimates of the numerator
and denominator in the definition of the conditional density, or, most often, both. This
could work in lower dimensional problems, especially if we keep ourselves away from the
tails of the distribution in question.

We have shown, however, that by using the LGDE methodology, both of these prob-
lems tend to disappear. The simplified locally Gaussian estimates cope far better in
higher dimensions than the kernel estimator, and it provides an explicit expression of
the conditional density estimates, without the need for separate estimates of the numera-
tor and denominator. The result is a general conditional density estimator for continuous
data that is robust against dimensionality issues, modeling error, as well as noise induced
by irrelevant variables.

These properties have been demonstrated through examples and asymptotic deriva-
tions. A more comprehensive theoretical analysis of the LGDE-framework and its possi-
ble generalizations remains to be developed, and will be the subject of later studies. For
example, the degree to which a general multivariate density function can be character-
ized by pairwise locally Gaussian correlations, or the distance between f(x) and f0(x)
in keeping with the notation from Section 4, is a challenge, cf. Otneim and Tjøstheim
(2016). Further, if the LGDE-approach can be labeled as a two-fold approximation com-
pared to the fully non-parametric, or p-fold, estimation procedure in which we omit the
simplification (7), it might be worthwhile to develop a general procedure allowing for
a k-fold model, in which each local correlation depends on k variables, with k increas-
ing, and these variables being selected based on data analogously to variable selection
methods in regression. In theory, this can be generalized even further by replacing the
normal distribution as a building block, with another member of the family of ellipti-
cal distributions that also organizes its parameters in a covariance-like matrix structure.
Deriving conditional densities from such a general model requires more work, but should
in principle be possible.

A Proofs

A.1 Proof of Theorem 1

Except from a slight modification that accounts for the replacement of independence
with α-mixing, the proof of Theorem 1 is identical to the corresponding proof in Otneim
and Tjøstheim (2016), which again is based on the global maximum likelihood case
covered by Severini (2000). For each location z, that we for simplicity suppress from
notation, denote by Qhn,K(ρ) the expectation of the local likelihood function Ln(ρ,Z).
Consistency follows from uniform convergence in probability of Ln(ρ,Z) towards Qhn,K
(ρ), conditions for which are provided in Corollary 2.2 by Newey (1991).
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The result requires compact support of the parameter space, equicontinuity and Lip-
schitz continuity of the family of functions {Qhn,K(ρ)}, as well as pointwise convergence
of the local likelihood functions. Compactness is covered by Assumption D, and the
demonstration of equi- and Lipschitz continuity in Otneim and Tjøstheim (2016) does
not rely on the independent data assumption. Pointwise convergence follows from a stan-
dard non-parametric law of large numbers in the independent case. Our assumption B
about α-mixing data, however, ensures that pointwise convergence still holds, see for ex-
ample Theorem 1 by Irle (1997), conditions for which are straightforward to verify in
our local likelihood setting.

The rest of the proof is identical to the corresponding argument by (Severini, 2000,
pp. 105-107).

A.2 Proof of Theorem 2

Consider first the bivariate case, in which there is only one local correlation to estimate.
The first part of the proof goes through exactly as in the iid-case of Otneim and Tjøstheim
(2016). We follow the argument for global maximum likelihood estimators as presented
in Theorem 7.63 by Schervish (1995). The statement of Theorem 2 follows provided that

Yn(z) =
n∑
i=1

K
(
|hn|−1(Zi − z)

)
u(Zi, ρ0) =

n∑
i=1

Vni, (17)

is asymptotically normal, and this follows from a standard Taylor expansion. In the
iid-case, the limiting distribution of (17) is derived using the same technique as when
demonstrating asymptotic normality for the standard kernel estimator, for example as in
the proof of Theorem 1A by Parzen (1962). We establish asymptotic normality of (17)
in case of α-mixing data, however, by going through the steps used in proving Theorem
2.22 in Fan and Yao (2003). Let Wi = h−1Vni, then

1

nh2
Var(Yn(z)) =

1

nh2

{
n∑
i=1

Var(Vni) + 2
∑ ∑

1≤i<j≤n

Cov(Vni, Vnj)

}

= Var(W1) + 2
n∑
j=1

(1− j/n)Cov(W1,Wj+1),

where

Var(W1) = E(W 2
1 )− (E(W1))

2

=

∫
h−2u2(z, ρ0)K

2(h−1(y − z))f(y) dy +O(h2)

=

∫
u2(z + hv)K2(v)f(z + hv) dv +O(h2)

→ u2(z, ρ0)f(z)

∫
K2(v) dv

def
= M(z) as h→ 0,

and
|Cov(W1,Wj+1)| = |E(W1Wj+1)− E(W1)E(Wj+1)| = O(h2),

using the same argument once again. Therefore,∣∣∣∣∣
mn∑
j=1

Cov(W1,Wj+1)

∣∣∣∣∣ = O(mnh
2).
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Fan and Yao (2003) require that

E(u(Zn, ρ0(z))δ) <∞ (18)

for some δ > 2, but this is of course true for our transformed data, because it is marginally
normal. In proposition 2.5(i) by Fan and Yao (2003) we can therefore use p = q = δ > 2
in order to obtain, for some constant C,

|Cov(W|,Wj+1)| ≤ Cα(j)1−2/δh4/δ−2.

Let mn = (h2n| log h2n|)−1. Then mn →∞, mnh
2 → 0, and

n−1∑
j=mn+1

|Cov(W1,Wj+1)| ≤ C
h4/δ−2

mλ
n

n∑
j=mn+1

jλα(j)1−2/δ → 0,

which follows from assumption B. Thus,

n−1∑
j=1

Cov(W1,Wj+1)→ 0,

and it follows that
1

nh2
Var(Yn(z)) = M(z)(1 + o(1)).

The proof now continues exactly as in Fan and Yao (2003) using the ”big block small
block” technique, but with the obvious replacement of h with h2 to accommodate the
bivariate case.

We expand the argument to the multivariate case using the Cramèr-Wold device.
Let ρ = (ρ1, . . . , ρd)

T be the vector of local correlations, where d = p(p − 1)/2, write
u(z,ρ0) = (u1(z,ρ0), . . . , ud(z,ρ0)) and let Sn(z) = {Sni(z)}di=1, where

Sni =
n∑
n=1

uk(Zt,ρ0)K(|h|−1(Zt − z)).

We must show that ∑
k

akSnk
L→
∑
k

akZ
∗
k , (19)

where a = (a1, . . . , ad)
T is an arbitrary vector of constants, and Z∗ = (Z∗1 , . . . , Z

∗
k) is

a jointly normally distributed random vector. Because of Slutsky’s Theorem, it suffices
to show that the left hand side of (19) is asymptotically normal. This follows from
observing that it is on the same form as the original sequence comprising Sn, with∑

k

akSnk =
∑
n

u∗(Zn,ρ0)K(|h|−1(Zn − z)),

where u∗(Zn,ρ0) =
∑

k akuk(Zn,ρ0). It is well known that any measurable mapping
of a mixing sequence of random variables inherit the mixing properties of the original
series, so condition B is therefore satisfied by the linear combination. The new sequence
of observations satisfies (18) because it follows from Jensen’s inequality that for δ > 2,[

u∗(Zt,ρ0)∑
k ak

]δ
=

[∑
k akuk(Zt,ρ0)∑

k ak

]δ
≤
∑

k ak[uk(Zt,ρ0)]
δ∑

k ak
,
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so that

E[u∗(Zt,ρ0)]
δ ≤

∑
k

akE[uk(Zt,ρ0)]
δ

[∑
k

ak

]δ−1
<∞.

The off-diagonal elements in the asymptotic covariance matrix are zero using the
same arguments as in Otneim and Tjøstheim (2016).

A.3 Proof of Theorem 3

The key to proving 3 is to show that the asymptotic distribution of (17) remains un-
changed when the marginally standard normal stochastic vectors Zn are replaced with
the pseudo-observations

Ẑn =
(

Φ−1(F̂1(Xj1)), . . . ,Φ
−1(F̂p(Xjp))

)T
,

where F̂i(·), i = 1, . . . , p are the marginal empirical distribution functions. This is shown
in the independent case under assumptions F-G in Otneim and Tjøstheim (2016), by
providing a slight modification to Proposition 3.1 by Geenens et al. (2014). The essence
in that proof is the convergence of the empirical copula process, which remain unchanged
if we replace the assumption of independent observations with α-mixing, according to
Bücher and Volgushev (2013).

The multivariate delta method states that if
√
nh2(θn−θ)

L→ N(0, A) and q : Rn → R

has continuous first partial derivatives, then
√
nh2(q(θn)−q(θ)) L→ N(0,∇q(θ)TA∇q(θ))

(Schervish, 1995, p. 403)). In our case, q(ρ) = Ψ(z,R)g(x), and

∇q(ρ) = Ψ(z,R)g(x)u(z,R),

from which the result follows immediately.

B Large sample properties of the logspline estimator

The current implementation of our method in the R programming language (R Core
Team, 2015) uses the logspline method by Stone et al. (1997) for marginal density esti-
mation. The asymptotic theory for the logspline estimator is derived by Stone (1990),
but restricted to density functions with compact support. Otneim and Tjøstheim (2016)
relax this requirement using a truncation argument, so that the requirement of compact
support can be replaced by an assumption on the tails of the unknown density not being
too heavy.

In particular, Stone (1990) denotes by ε ∈ (0, 1/2) a tuning parameter that determines
the asymptotic rate at which new nodes are added to the logspline procedure. If ε is close
to zero, new nodes are added quickly to the procedure, and as ε → 1/2, new nodes are
added very slowly. Stone (1990) then provides the following asymptotic results (again,
under the assumption that the true density f(x) has compact support):

√
n0.5+ε

(
f̂i(x)− f(x)

)
L→ N(0, σ2

1),

and √
n0.5

(
F̂i(x)− F (x)

)
L→ N(0, σ2

2).
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Otneim and Tjøstheim (2016) show that these results hold if there exist constants M > 0,
γ > 2ε/(1− 2ε), and x0 > 0 such that f(x) ≤M |x|−(5/2+γ) for all |x| > x0, so the ’worst
case scenario’ with respect to assumption I when using the logspline estimator for the
final back-transformation, is ε being close to zero. In that case, we must require the
bandwidths to tend to zero fast enough so that n1/2h2 → 0, but on the other hand, that
will allow γ to approach zero, and thus the tail-thickness of the density to approach that
of |x|−5/2.

What remains here is to show that these results hold also in the case where the
observations are α-mixing. This is easily done by replacing the use of the iid central limit
theorem (clt) in the proof of Theorem 3 in Stone (1990), with a corresponding clt that
holds under our mixing condition. For example, Theorem A by Peligrad (1992) proves
the clt under α-mixing provided that the mixing coefficients satisfy

∑∞
n=1 α(n)1−2/δ <∞.

This condition follows from our assumption B.

C Supplementary material

The file code.zip, that accompanies this article, contains the data sets that has been
used, as well as routines for implementing the conditional density estimator in the R
programming language (R Core Team, 2015).
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