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Abstract

In this paper, we examine the time-series relation between risk and return.
We replicate the methodology of Moreira and Muir (2016a) and construct
volatility managed portfolios that decrease the risk exposure when volatility is
high, and vice versa. We implement the strategy on well-known risk factors in
Norway and the UK, in addition to industry portfolios in Norway and in the
U.S. The strategy in general produces large alphas and increased Sharpe ratios
and the results are robust when controlling for exposure to other risk factors.
We further show that using forecasted variance from sophisticated forecasting
models rather than realized variance can improve the results of the volatility
managed portfolios.
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1 Introduction

An important assumption of traditional finance is the positive relation between risk
and return, and early models such as the Capital Asset Pricing Model (CAPM), in-
troduced by Sharpe (1964), predict a positive linear relationship between systematic
risk and expected return. However, the relation does not seem to hold empirically.
In fact, various research have found that the opposite may hold in practice. His-
torically, the majority of research has examined the cross-sectional relation between
risk and return, which has led to the Low Volatility Puzzle1. In more recent years,
empirical studies of the time-series relation between risk and return indicate that it
is beneficial for investors to increase the risk exposure of systematic factors when
volatility is low, and vice versa. Barroso and Santa-Clara (2015) find that managing
the risk of the momentum factor eliminates the well-known momentum crashes and
nearly doubles the Sharpe ratio, while Moreira and Muir (2016a) find that manag-
ing the volatility of several factors, including the well-known Fama-French factors,
leads to increased Sharpe ratios and utility gains for mean-variance investors. These
findings are interesting as they challenge the presumptively positive relation between
risk and return in the time-series of returns.

In this thesis, we examine the time-series relation between risk and return. We
replicate the methodology of Moreira and Muir (2016a) and construct volatility man-
aged portfolios that decrease the risk exposure when volatility is high, and vice versa.
Specifically, the volatility managed portfolios are constructed by monthly scaling each
factor by the inverse of its realized variance in the previous month. If the realized
variance is high one month, the managed portfolio will decrease the exposure to the
factor the following month and the investor would rather allocate his wealth into a
risk-free asset. Monthly realized variance is simply calculated using daily returns,
and the method does only rely on return data; thus the strategy is easy to implement
for investors in real time.

Our main contribution in this thesis is to manage the volatility of portfolios that
have not been considered by Moreira and Muir (2016a). They manage the volatility
of the well-known Fama-French factors in the U.S., momentum, profitability, return
on equity, investment factors in equities and the currency carry trade. They also
demonstrate the results for stock market indices of 20 OECD countries. We con-
struct volatility managed portfolios of the Fama-French factors plus the momentum

1The Low Volatility Puzzle is that low-volatility stocks outperform high-volatility stocks
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factor in Norway, which has not been done earlier, and for the UK, where only a
few factors have been considered in previous research.2 For the Norwegian analysis
we also consider a liquidity factor. In addition to managing volatility of these pric-
ing factors, we also manage volatility for Norwegian and U.S. industry portfolios.
The industry portfolios consist of several single stocks within an industry, thus the
portfolios are not as diversified as the systematic Fama-French factors. We find it
interesting to see if it also is beneficial to manage the volatility of portfolios that do
not consist of systematic diversified factors.

We run OLS regressions of the volatility managed portfolios on the non-managed
portfolios in order to evaluate the performance of the managed portfolios.3 A positive
alpha from these regressions implies that the managed portfolios expand the mean-
variance frontier relative to the non-managed portfolios. This assumption holds when
we consider systematic factors that are well diversified. In general, we see large and
significant alphas for the volatility managed portfolios. For the Norwegian factors,
three out of five factors has a large and significant alpha, the highest for the mo-
mentum factor. For the U.K factors, only the momentum factor has a positive and
significant alpha. The finding of large significant alphas for the momentum factor is
consistent with the findings of Moreira and Muir (2016a); they find the largest alpha
for the volatility managed momentum factor in the U.S. This is also consistent with
Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016). To show directly
how much the managed portfolios increase the Sharpe ratio, we report the appraisal
ratio (AR).

Even larger alphas and appraisal ratios are obtained when we construct three
mean-variance efficient portfolios based on the Norwegian pricing factors, and then
manage the volatility of these portfolios. More specifically, the mean-variance ef-
ficient portfolios are constructed using (1) the three Fama-French factors (”FF3”),
(2) the three Fama-French factors plus momentum (”FF4”) and (3) the three Fama-
French factors plus momentum and liquidity (”FF5”). The largest alpha is found
for the ”FF4” managed portfolio. The mean-variance efficient portfolios are well
diversified, and the large alphas and appraisal ratios we find implies that managing
these portfolios expands the mean-variance efficient frontier.

2Moreira and Muir (2016a) consider a UK market indice excluding dividends, and Barroso and
Santa-Clara (2015) only examine the momentum factor.

3As we point out later, this is exactly what Moreira and Muir do to evaluate the performance
of the volatility managed portfolios.
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The volatility managed industry portfolios also in general have large and signifi-
cant alphas, where the results are most consistent for the U.S. industry portfolios. In
fact, 8 out of 10 managed U.S. industry portfolios have large and significant alphas.
Also for the Norwegian industry portfolios the majority of the managed portfolios
have large and significant alphas, but 3 out of 7 portfolios we consider have in-
significant alphas. Note that since the industry portfolios are not well diversified
systematic factors, we can not conclude directly that the positive alphas imply that
the managed portfolios expand the mean-variance efficient frontier, as we can for the
managed Fama-French factors, the momentum factor, the liquidity factor and the
mean-variance efficient portfolios.

We do the same analysis as Moreira and Muir (2016b) do to analyze the relation
between risk and return more directly. We focus on the Norwegian factors in this
analysis, and show for the majority of the factors that variance is able to predict
future variance, but not future returns. This is in general the reason why managing
the volatility of portfolios leads to higher risk-adjusted returns; if variance predicts
future variance but not future returns, the risk-return trade-off will be less attractive
when variance increases. An interesting finding is that for the HML factor, variance
predicts positive future returns. The volatility managed HML factor in Norway and
the UK has a negative alpha, which might be consistent with the fact that variance
of the HML factor predicts positive returns. Another interesting finding is that for
the market factor, variance predicts negative returns, and we find a positive and
significant alpha for the volatility managed portfolio of this factor.

Using lagged realized variance to construct the managed portfolios is easy to
implement for the average investor. More importantly, the realized variance in the
previous month is a good proxy for the realized variance the following month.4 We
aim to find a better proxy for realized variance than its lagged value, and consider
two different forecasting models in order to do so. First, we consider a forecasting
model where we run an OLS regression of realized variance on lagged realized vari-
ance, and use the coefficients obtained in the regression to forecast monthly variance.
We call this method the ”OLS method”, and we do both an in-sample forecast using
the whole sample, and an out-of-sample forecast where we use a rolling estimation
window of 24 months. Not surprisingly, the OLS method does not forecast out-of-
sample variance in a particularly good way. Next, we consider a more sophisticated
method to forecast variance, and use a GARCH (1,1) model to forecast monthly vari-
ance. The forecasted variance by the GARCH model in general seems to be a better

4Remember, variance is highly predictable at short horizons.
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proxy for realized variance than both the forecasted variance by the OLS method
and lagged realized variance.

We re-construct the volatility managed portfolios using both the OLS- and GARCH
forecasted variance rather than lagged realized variance. When we manage portfolios
with the out-of-sample forecasted variance from the OLS method, we see that the
alphas and appraisal ratios decrease compared to scaling the managed portfolios with
lagged realized variance. This is not surprising as the forecasted variance seems to
be a weaker proxy for realized variance. Managing the portfolios with the GARCH
forecasted variance leads to higher alphas and appraisal ratios for the majority of
the portfolios that we consider, and we see a pattern that finding a better proxy for
realized variance in general leads to stronger results.

The rest of the thesis is organized as follows. In section 2 we review the rele-
vant literature. Section 3 describes the data. Section 4 shows the methodological
approach. In section 5 we present our main results. Section 6 evaluates the perfor-
mance of the forecasting models. In section 7 we discuss and analyze the results.
Section 8 presents the conclusion.
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2 Literature Review

In this section, we highlight the relevant literature for our thesis. Our main focus is
on research examining the time-series relation between risk and return, and especially
the findings of Moreira and Muir (2016a). In addition, we choose to focus on studies
on the time-series relation between risk and return for the momentum factor. Since
the majority of the research on risk and return historically has been in the cross-
section, we also highlight research which has led to the ”Low Volatility Puzzle”.

2.1 Studies of the time-series relationship between risk and
return

2.1.1 The findings of Moreira and Muir (2016)

Our thesis is to a large extent a replication of the study of Moreira and Muir (2016a),
who examine the time-series behavior of risk and return. They find that managing
volatility benefits both short- and long-term mean-variance investors and produces
large utility gains. They construct volatility managed portfolios that increase the
risk exposure when the volatility is low, and vice versa. Specifically, the volatility
managed portfolios scale monthly factor returns by the inverse of the realized vari-
ance in the previous month. A remarkable feature is that the strategy is easy to
implement for investors in real time.

Moreira and Muir (2016b) show that volatility predicts future volatility but not
future returns; thus an increase in volatility leads to a weaker risk-return trade-off.
This is proved by running regressions of future returns on realized volatility and
regressions of future volatility on lagged volatility.5 They further show that the
conditional variance increases by far more than the expected return in response to
a variance shock, where a variance shock leads to an immediate increase in future
variance, while expected returns increases more slowly over time. The large increase
in variance, however, decreases more quickly. The optimal strategy of an investor
is therefore to reduce the risk exposure after a variance shock until the risk-return
trade-off is favorable again due to mean-reverting volatility and a slow increase in ex-
pected returns. The volatility managed portfolios reduce risk after volatility spikes,
while in traditional finance the common advice is to hold the risk exposure constant.

5Later in the thesis, we run the same regression using variance rather than volatility.
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Moreira and Muir (2016a) find significant and positive alphas for the majority of
the volatility managed portfolios. In fact, only the SMB factor has a negative alpha.
As they point out, a positive alpha implies that the managed portfolios expand the
mean-variance frontier and increase the Sharpe ratios compared to the non-managed
portfolios.6 The finding of positive alphas for the volatility managed portfolios is
documented for the market factor, value, momentum, a profitability factor, return
on equity, investment factors in equitites and the currency carry trade. The results
are robust when examining 20 OECD countries, including a betting against beta
(BAB) factor, using expected rather than realized variance and considering leverage
constraints. The results are relatively unchanged when they control for other well-
known risk factors. They also show that the strategy produces large utility gains for
investors who are already invested across several factors by managing the volatility
of mean-variance efficient portfolios.

2.1.2 Managing the Momentum factor

The momentum factor deserves special attention on its own. As Barroso and Santa-
Clara (2015) state, the momentum factor is a pervasive anomaly in asset prices, but
in addition to remarkable good performance, the momentum factor has large occa-
sional crashes.7 This makes the momentum factor very volatile and unattractive to
investors who dislike left skewness and kurtosis. Barroso and Santa-Clara (2015)
find that the risk of momentum is highly variable over time but predictable, and
that managing the risk of momentum eliminates the crashes and nearly doubles the
Sharpe ratio compared to the static momentum factor. They argue that the most
important benefit of managing the volatility of the momentum factor comes from a
reduction in crash risk, and they show that the excess kurtosis drops significantly
and that the left skewness becomes less negative or even turns positive.8

Daniel and Moskowitz (2016) also study volatility timing related to momentum
crashes. They find that momentum strategies are negatively skewed, and that the
negative returns can be pronounced and persistent. Investigating the predictability
of momentum crashes, they find that crashes tend to occur in times of market stress,
when the market has fallen and ex-ante measures of volatility are high. Consistent

6Moreira and Muir point out that this holds if one consider systematic factors that summarize
pricing information for a wide cross-section of assets and strategies.

7The momentum factor was discovered by Carhart (1997).
8Inspired by this analysis, we also analyze higher-order moments of our volatility managed

portfolios in Section 7.
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with Barroso and Santa-Clara (2015), they find that a volatility timing strategy sig-
nificantly outperforms the standard static momentum strategy, more than doubling
its Sharpe ratio and delivering significant positive alphas.

Both Barroso and Santa-Clara (2015) and Daniel and Moskowitz (2016) man-
age the volatility of the momentum factor using a relatively similar methodology
as Moreira and Muir (2016a). Barroso and Santa-Clara (2015) estimate the risk of
momentum by the realized variance of daily returns, and they scale the momentum
portfolio by its realized volatility in the previous six months, with a constant tar-
get volatility. To evaluate the performance of the managed portfolios, they run a
regression on the Fama-French pricing factors and find positive alphas.9 Daniel and
Moskowitz (2016) evaluate a strategy which dynamically adjusts the weight on the
basic WML strategy. The WML strategy is a zero-investment Winner-Minus-Loser
portfolio, i.e. the difference between the winners and losers each period. The weights
are depending on its forecast return and volatility, and the dynamic strategy is lev-
ered up or down over time to maximize the unconditional Sharpe ratio. To see the
exact design of the strategy, see Section 5 in their paper.

2.2 The Low Volatility Puzzle: Studies of the cross-sectional
relationship between risk and return

A positive linear relationship between risk and return has been the core of tradi-
tional finance and asset pricing since the introduction of the Modern Portfolio The-
ory (MPT) by Markowitz (1952) and the Capital Asset Pricing Model (CAPM) by
Sharpe (1964). However, a large number of empirical studies have found that the
relationship is flatter as predicted by the CAPM and also negative. The volatility
puzzle is that low-volatility stocks outperform high-volatility stocks, and is consid-
ered to be one of the greatest anomalies in the field of finance, according to Baker
et al. (2011). The vast majority of research has been about the cross-sectional rela-
tion between risk and return of volatility, thus the research is conceptually different
from the time-series relation which we consider in this thesis. Anyhow, we believe it
is relevant to give a brief overview of the findings which has led to what is known as
the low volatility puzzle.

A wide amount of research has been conducted on the relationship between id-
iosyncratic risk and return. Ang et al. (2006) examine the pricing of aggregat volatil-

9They also find negative loadings on the risk factors, implying that momentum diversified risk
in the sample.
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ity risk in the cross-section of stock returns, and find that stocks with high idiosyn-
cratic volatility relative to the Fama and French model have low average returns.
They show that the results cannot be explained by exposure to aggregate volatility
risk, size, book-to-market, momentum or liquidity effects. Ang et al. (2009) verify
these results and show that the effect is significant in international markets. They
find a strong co-movement in the low returns to high idiosyncratic volatility, imply-
ing that broad, not easily diversifiable factors may lie behind the anomaly. Chen
and Petkova (2012) find that portfolios with high idiosyncratic volatility relative to
the Fama-French model from 1993 have positive exposures to innovations in average
stock variance and therefore produce lower expected returns. Note that several stud-
ies have found the opposite relation to hold, see for instance Goyal and Santa-Clara
(2003) and Fu (2009) among others.

As for the relation between systematic risk and return, early research as Black
et al. (1972) found the CML10 to be flatter than as predicted by the CAPM, see also
Fama and MacBeth (1973) and Haugen and Heins (1975). The beta puzzle is the
phenomenon that low beta stocks historically have performed better than high beta
stocks. Frazzini and Pedersen (2014) construct a Betting against Beta (BAB) factor
which is long low-beta assets and short high-beta assets, and show that it produces
significant positive risk-adjusted returns. Among others, Baker and Haugen (1991),
Baker and Haugen (1996), Baker et al. (2011) and Clarke et al. (2010) find similar
results.

10The Capital Market Line (CML) is the allocation of capital between risk-free securities and
risky securities for all investors combined.
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3 Data description

The Norwegian factors and industry portfolios are downloaded from Bernt Arne Øde-
gaards website11. The Norwegian single factors consist of daily and monthly return
data for the three original Fama French factors: Market, SMB and HML12, plus the
Fama French momentum factor UMD, and a liquidity factor, LIQ.13 All the portfo-
lios are value weighted and the data is available in the period July 1980 to December
2015. For information of exactly how these portfolios are constructed, see Ødegaard
(2016b) and Ødegaard (2016a).

The Norwegian industry data consists of stocks traded on OSE stock exchange
that are sorted into industry portfolios based on their Global Industry Classification
Standard (GICS). See Ødegaard (2016b) for how the industry portfolios are con-
structed. We have used both daily and monthly return data in the period 1980-2015
for all the factors and industries. Note that for HML and SMB we have missing
values for the first year.

For the American industry portfolios, we have used data from Kenneth French´s
website.14 The industry portfolios consist of stocks traded on NYSE, AMEX and
NASDAQ that are sorted into industry portfolios based on their four digit Standard
Industrial Classification (SIC) code. We have used both daily and monthly return
data from the period 1926-2015 to construct volatility managed portfolios for the
U.S. industry portfolios.

The U.K return data is collected from the University of Exeter’s website.15 This
data consists of monthly and daily return data for the market, SMB, HML and the
Carhart momentum factor. We use both daily and monthly return data from the
period 1988-2015 to construct managed portfolios for the U.K factors. For more
information, see Christidis et al. (2013).

11www.finance.bi.no/ bernt
12SMB (Small Minus Big) is the average return on the three small portfolios minus the average

return on the three big portfolios. HML (High Minus Low) is the average return on the two value
portfolios minus the average return on the two growth portfolios

13See Næs et al. (2008) for more information on the liquidity factor.
14www.http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/
15http://business-school.exeter.ac.uk/research/centres/xfi/famafrench/
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4 Methodology

4.1 Portfolio construction

We replicate the methodology of Moreira and Muir (2016a) and construct volatility
managed portfolios by scaling monthly factor returns by the inverse of their realized
variance (RVt) in the previous month.16 Thus, the portfolios are rebalanced each
month. The volatility managed portfolio of a given factor in month t+1 then look
like:

fσt+1 =
c

RVt
ft+1 (1)

where c is a constant which controls the average risk exposure of the strategy.17

More specifically, c is set such that the total unconditional standard deviation of the
managed portfolio is equal to the total unconditional standard deviation of the non-
managed portfolio. ft+1 is the return of the non-managed factor. Realized variance
(RV) is calculated by squaring the monthly standard deviation, where the monthly
standard deviation is calculated based on daily return data.

RVt = σ2
t =

1∑
d=1/td

(
ft+d −

∑1
d=1/td ft+d

td

)2
(2)

where td is the number of trading days in a given month.

In section 6.2, we re-construct the volatility managed portfolios using forecasted
variance from more sophisticated forecasting models rather than using lagged real-
ized variance. The managed portfolio at time t then looks like:

fσt =
c

σ̂t
ft (3)

16The notation in this section is similar to the notation of Moreira and Muir (2016a). See the
section ”Portfolio formation” in their paper.

17We also tried different specifications of c, e.g. to target a volatility which is higher than the
unconditional variance of the non-managed portfolio. This does not have eny effects on the Sharpe
ratio; thus the fact that we use the full sample to compute c does not bias our results.
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where σ̂t is the forecasted variance in month t. Note that when we manage
the portfolios with forecasted variance, we scale the monthly portfolio returns by
the forecasted variance from the same month, compared to scaling with the lagged
realized variance in the main results. Both forecasted variance and lagged realized
variance is a proxy for realized variance, and both methods are implementable in
real time.

4.1.1 Empirical regressions and performance evalution

Both the empirical regressions and the performance evaluation we consider in this
section is similar to the approach of Moreira and Muir (2016a). We evaluate the
portfolio performance from a mean-variance perspective, and focus on the mean-
variance trade-off (risk-return trade-off):

Et[Rt+1]

V art[Rt+1]
(4)

where Rt+1 is the excess return. In order to evaluate the performance of the
volatility managed portfolios, we run a regression of the volatility managed factor
portfolios on the non-managed factor portfolios:18

fσt+1 = α + βft+1 + εt+1 (5)

A positive intercept from this regression implies that the volatility managed port-
folios expand the mean-variance frontier relative to the non-managed portfolios19,
thus increasing the Sharpe ratio. The Sharpe ratio is defined as the excess portfolio
return divided by the standard deviation of the portfolio.

In order to quantify directly how much the volatility managed portfolios increase
the Sharpe ratio relative to the non-managed portfolios, we consistently report the

18The notation is similar to Moreira and Muir (2016a). See the section ”Empirical Methodology”
in their paper.

19As Moreira and Muir (2016a) point out, this holds when we consider systematic factors that
summarize pricing information for a wide cross-section of assets and strategies.
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annualized appraisal ratio (AR)20

AR =
√

12
α

RMSE
(6)

where α is the unconditional alpha and RMSE is the Root Mean Square Error of
regression (5). Formally, RMSE is defined as:

RMSE =

√√√√ 1

n

n∑
t=1

(ŷn − yn)2 (7)

where yn is the observed values and ŷn is the predicted values from our model.

In the following section, we present a volatility timing strategy in the cross-section
of returns, which is conceptually different from the main strategy we presented above.

4.1.2 Long-short strategy

We want to test a volatility timing strategy that exploits the variation in volatility
between factors. As we show later in the thesis, volatility does not predict future
returns, but volatility predicts future volatility. The risk-return trade-off will then
in general be weak when volatility is high, and vice versa. The idea is that buying
factors with low volatility (stronger risk-return trade-off), and selling factors with
high volatility (weaker risk-return trade-off) will give higher risk-adjusted returns.
Note that the methodology that replicates Moreira and Muir (2016a) scale in and out
of a single factor, while in our ”long-short strategy” we go long and short between
different factors and do not consider any risk-free asset. Specifically, we construct
portfolios that go long $1 in the factor with the lowest realized variance in the pre-
vious month, and short $1 in the factor with the highest realized variance in the
previous month.21. The portfolios are rebalanced each month. Formally:

Consider a portfolio p which consists of factors x and y, with returns rxt+1 and
ryt+1 at time t+1 and realized variance σ2

xt and σ2
ytat time t. The long-short portfolio

at time t+1 is then:

20In other words, the appraisal ratio is the excess Sharpe ratio of the volatility managed portfolios,
as pointed out by Moreira and Muir (2016a).

21Realized variance is calculated as shown in equation 2
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rpt+1 = rxt+1 − ryt+1 if σ2
yt > σ2

xt (8)

and

rpt+1 = ryt+1 − rxt+1 if σ2
xt > σ2

yt (9)

Note that we consider the long-short strategy both for two factors and several
factors. When including several factors, we only go long in the factor with lowest
realized variance in the previous month and short in the factor with highest realized
variance in the previous month.22

22The factor(s) which do not have the highest or lowest variance in the previous month, are not
invested in.
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4.2 Forecasting variance

In our main results, we use lagged realized variance as a proxy for realized variance.
We also consider two other sophisticated forecasting models to predict monthly vari-
ance. The hypothesis is that if forecasted variance is a better proxy for realized
variance than its own lagged value, the risk-adjusted returns of the volatility man-
aged portfolios will be higher.

An important feature of the volatility managed portfolios is that the strategy
is easy implementable for investors in real time. We therefore initially consider a
relatively simple forecasting model, less sophisticated than forecasting models such
as the ARCH and GARCH models. We emphasize that our intention is not to find
the optimal forecasting model, but to show that forecasted variance can be a better
proxy for realized variance than its own lagged value, and subsequently improve the
results for the volatility managed portfolios.

In the following, we will present our two forecasting models. We start by pre-
senting a model which we call the ”OLS method”. This model is relatively easy to
implement for the average investor.

4.2.1 OLS forecasting

As Ederington and Guan (2004) point out, several past studies have considered the
forecasting ability of linear regression models.23 We forecast variance using ordinary
least squares regressions (OLS). In this method, we define realized variance in a
month as the sum of the squared daily returns in that particular month.24 We then
run an OLS regression of the realized monthly variance on lagged realized monthly
variance, and use the coefficients to forecast future variance. Formally:

We define the daily return for a given day d in a given month m as rd. The
realized variance (σ2

m) in a given month m is then estimated as:

23These models have typically forecasted volatility as σt+1 = α0 +
∑N

n=0 αnr
2
t−n, where the

forecasted volatility is a function of the squared residuals.
24Note that this definition of realized variance is only used for the OLS forecasting. When we

evaluate the performance of both the OLS forecasted variance and the GARCH forecasted variance,
we compare the forecasted variance with realized variance as we defined it in section 4.1.
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σ2
m =

d∑
d=1

r2d (10)

We then run an OLS regression of the realized monthly variance (σ2
m) on the

lagged monthly realized variance (σ2
m−1):

σ2
h = α + βσ2

m−1 + ε (11)

We use the obtained coefficients explicitly in the forecasting of monthly variances.
The forecasted variance in month m+1 is:

σ̂2
m+1 = α̂ + β̂σ2

m (12)

The idea is to exploit the close relationship between realized variance and lagged
realized variance, knowing that variance is highly forecastable in the short-term.25

By using the beta coefficient explicitly to forecast variance, the forecasted variance re-
flects the linear relationship between realized variance and lagged realized variance.26

We initially include the whole sample in the regression to estimate the coefficients
and call the forecasted variance ”OLS Whole Sample”. Note that because we use the
whole sample, the method is not directly implementable for investors in real time. In
order to make an out-of-sample forecast, i.e. making the method implementable in
real time, we create a rolling window of 24 months when estimating the coefficients
with the OLS regressions. The estimated alpha and beta coefficients used for the
forecast at any given month m are dependent on the observations from the past 24
months.27 The forecasted variance for month m is then:

25We show later in the thesis that variance predicts future variance. Also, Andersen and Bollerslev
(1997) state that volatility is time-varying and predictable.

26In other words, it is an autoregressive model. The method is relatively similar to a Simple
Regression method which, according to Granger and Poon (2003), forecasts volatility as a function
of its past values and an error term, i.e. it is principally an autoregressive method.

27That is, we obtain the coefficients to forecast variance in month 25 by running an OLS regression
of realized variance on lagged realized variance based on month 1 to 24. For month 26, we estimate
the coefficients based on month 2 to 25, and so on. Note that we also tried different length on the
rolling windows, but that 24 months in general gave the best results.
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σ̂2
m = α|θm−i + (β|θm−i)σ

2
m−1, i =∈ [1, 24]

where we define θm−i as the available information in month m; that is, the ob-
servation in the past 24 months. σ2

m−1 is the realized variance which we defined in
equation 10.

In the following, we consider a more sophisticated GARCH model to forecast
variance.

4.2.2 GARCH forecasting

In this section, we consider the GARCH model introduced by Bollerslev (1986) in
order to forecast variance. As Starica (2003) points out, ”the GARCH model is widely
used and highly regarded in practice as well as in the academic discourse”(Starica,
2003, page 5). One of the reasons why there is a preference for the GARCH model,
is that it generally requires less parameters to be estimated in order to capture the
volatility process, compared to the ARCH model. Another important property of
the GARCH model is that it treats heteroskedasticity as a variance to be modeled.28

Furthermore, financial data often exhibits time-varying volatility, i.e. periods of high
volatility and periods of low volatility. This is called volatility clustering and is also
observed in our financial data.29 GARCH models are designed to deal with volatility
clustering, as pointed out by Engle (2001). The general GARCH (p,q) model looks
like:30

σ2
t = α0 +

p∑
i=1

αiε
2
t−i +

q∑
i=1

βiσ
2
t−i (13)

From equation (13), we see that the forecasted variance (σ2
t ) is dependent on a

weighted average of past residuals (ε2t−i) and own previous lags (σ2
t−i).

We use a GARCH (1,1) model when forecasting variance. The GARCH (1,1)
model looks like:

28Heteroskedasticity is when variances of the error terms are not equal, and is often observed in
financial data. As Engle (2001) points out, least squares models assumes that the expected value
of all error terms when squared is the same at any given point. This is called homoskedasticity.

29See Figure 5 in Appendix C where we plot monthly volatility of each individual factor in Norway.
30See appendix B for more information on the methodology of the ARCH and GARCH models
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σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1 (14)

We do not consider any AIC/BIC criteria in order to find the optimal GARCH
specification for our model, and we emphasize again that the intention of this thesis is
not to find the optimal forecasting model. Various research have concluded that the
GARCH (1,1) model forecasts volatility well. For instance, Akgiray (1989) concluded
that a GARCH (1,1) model showed a better forecasting capacity when compared to
other traditional models. Hansen and Lunde (2005) find no evidence that a GARCH
(1,1) model is outperformed by more sophisticated models when they study various
ARCH-type models in terms of their ability to describe the conditional variance.

Initially, we used monthly return data to forecast monthly variances, but this
gave unsatisfying results. As Goyal (2000) points out, it is likely that volatility es-
timated from daily data is more precise than GARCH forecasted volatility based on
monthly data, due to higher frequency of data. Figlewski (2004) comes to a similar
conclusion, and found that the GARCH methodology performed better with daily
data when the forecasting horizon is quite short.31 He emphasises that the GARCH
model can be improved by using daily data due to an increase in data points.

We forecast monthly variance as follows. First, we use daily return data and
forecast daily volatility using a GARCH (1,1) model. We call the daily forecasted
volatility σ̂d. The GARCH coefficients are obtained using an estimation window of
24 months.32 We then convert the forecasted daily volatility into an estimation of
monthly volatility by taking the square root of the number of trading days in the
month multiplied with the average of the forecasted daily volatilities in the month33:

σ̂m =
√
td

∑td
i=1 σ̂d
td

(15)

Where we define td as the number of trading days in any given month.

31Figlewski (2004) examined using daily data to forecast both daily and monthly volatility.
32That is, the GARCH coefficients used for the forecast of any given day is obtained from the

previous 24 months.
33Diebold et al. (1997) point out that there are no known analytic methods for computing h-day

volatilities from 1-day volatilities. Our method is therefore not very sophisticated and we are aware
of this.
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To convert monthly volatility to monthly variance, we simply square the monthly
volatility and obtain the forecasted monthly variance, σ̂2

m, which is our proxy of re-
alized variance.34

In the next section, we report our main results.

34We use σ̂2
m when re-constructing the volatility managed portfolios later in the thesis.
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5 Main Results

In this section, we report the results of the volatility managed portfolios where we
use lagged realized variance. First, we report the results for the Norwegian single
factors and mean-variance efficient portfolios. Next, we report the results for the
U.K. single factors. We then show the results for industry portfolios both in Norway
and the U.S. Lastly, we show the results from the long-short portfolios.35

5.1 Results for the Norwegian factors

Before reporting our main results, we refer to appendix A where we show the results
of replicating Moreira and Muir (2016a) for the U.S. factors MKT, SMB, HML and
MOM. We do this to verify that the method we use is the same as their method. We
obtain very similar results.36

Table 1, Panel A reports the results for the Norwegian single factors. The results
are obtained from running a regression of the volatility managed factors on the non-
managed factors. We see positive and significant alphas for the market factor, SMB
and the momentum factor. The liquidity factor is positive and marginally signifi-
cant37, while HML is negative and insignificant. The largest alpha is for the momen-
tum factor, with an annualized alpha of 8,2 percent. This is consistent with previous
research on managing volatility. Moreira and Muir (2016a) also find the largest alpha
for the momentum factor, while Barroso and Santa-Clara (2015) find that managing
momentum almost doubles the Sharpe ratio compared to the non-managed factor.
See also Daniel and Moskowitz (2016). As Moreira and Muir (2016a) point out, a
positive alpha implies that the managed portfolios expand the mean-variance frontier
relative to the non-managed portfolios. In other words, the risk-adjusted performance
is better for the managed factors than for the non-managed factors. Note that we
find a positive alpha for SMB and negative alpha for HML, while Moreira and Muir
(2016a) find the opposite.

35Note that Moreira and Muir (2016a) do not consider this long-short strategy, thus this strategy
is not a replication of their work.

36For the market factor, we get an annualized alpha of 4,87 (Moreira and Muir (2016a) got 4,86),
for momentum 12,53 (12,51), for SMB -0,51 (-0,58), for HML 1,88 (1,97). Note that we get the
same R2 and very similar RMSE. To see the results of Moreira and Muir (2016a), see Table 1 in
their paper.

37P − value < 0.10
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We also report the appraisal ratio (AR), which measures how much the managed
portfolios expand the slope of the MVE frontier compared to the non-managed fac-
tors, i.e. the increase in Sharpe ratios. Specifically, the appraisal ratio is calculated
as α

RMSE

√
12 where multiplying with 12 annualizes the ratio and RMSE is the Root

Mean Square Error. The appraisal ratios indicate large utility gains for the signifi-
cant factors, and range from 0,30 to 0,60. Momentum has the highest appraisal ratio
of 0,60 while the other appraisal ratios are: SMB (0,41), Market (0,35), Liquidity
(0,30). HML, which is not significant, has an appraisal ratio of (-0,22).

Figure 4 in Appendix D plots the monthly weights of the volatility managed
portfolio for the market factor versus the realized monthly variance.38 We see clearly
that following a spike in realized variance, the weight of the market factor goes sub-
stantially down. This is consistent with the theoretical properties of the strategy, i.e.
that the portfolios decrease the risk exposure when volatility is high and vice versa.
In figure 5 in Appendix D we plot the monthly volatility of each individual factor in
Norway. We see signs of volatility clustering, and also that volatility for the factors
follow the same cycle. When volatility is high for one factor, it is in general more
likely that the volatility is also high for other factors.

In panel B we show the results when testing for subsamples. We split the sam-
ple into two periods, 1981-1998 and 1998-2015. Moreira and Muir (2016a) test for
subsamples only for mean-variance efficient portfolios, but we find it appropriate to
test the single factors to see if the positive alphas still remain for shorter time inter-
vals. In the first subperiod 1981-1998, the market has a significant annualized alpha
of 7,36, while UMD is marginally significant and has an annualized alpha of 5,92.
SMB has an insignificant alpha, while HML has a negative and significant alpha. In
the subsample 1998-2015, the momentum factor has a large significant alpha of 10,6,
while SMB has a marginally significant alpha of 4,0. The market has a positive alpha
but insignificant alpha. Note that HML in this subperiod has a positive insignificant
alpha, compared to a negative significant alpha in the subperiod 1981-1998.

Compared to using the whole sample, the results in the subperiods are not as
consistent. We emphasize that we have a relatively small sample compared to Moreira
and Muir (2016a) where the sample is much larger. A possible explanation could be
that the sample is too small when testing for subperiods.

38We only show this for the market factor, but the pattern is the same for all single factors.
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Table 1: Results, single factors, Norway. The table reports the regression results of
the volatility managed portfolios on the non-managed portfolios: fσt+1 = α+βft+1+εt+1. A
positive alpha implies that the managed portfolios expand the mean-variance frontier, thus
increase the Sharpe ratio. The sample is 1981-2015. The portfolios are constructed based
on monthly data: fσt+1 = c

RVt
ft+1, where RVt is the realized variance in month t, calculated

based on daily data. The factors are annualized in percent by multiplying monthly factors
by 12. The appraisal ratio (AR) is calculated as

√
12 α

RMSE and is a measure of how much
the managed portfolios expand the slope of the MVE frontier compared to the non-managed
portfolios.

Panel A: Full sample portfolios

σMKT σSMB σHML σUMD σLIQ

MKT 0,76
(14.5)

SMB 0,78
(12.9)

HML 0,72
(12.8)

UMD 0,74
(14.4)

LIQ 0,78
(15.7)

α 4,9 3,9 -2,6 8,2 3,2
t-stat 1,96 2,42 -1,3 3,75 1,79

R2 0,57 0,62 0,52 0,55 0,61
N 431 412 413 418 419
RMSE 48,48 32,76 41,71 47,00 36,34

AR 0,35 0,41 -0,22 0,60 0,30
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Panel B: Sub-periods portfolios

1981-1998

σMKT σSMB σHML σUMD
α 7,36 2,61 -8,55 5,92
t-stat 1,97 1,3 -2,43 1,79

1998-2015

σMKT σSMB σHML σUMD
α 2,1 4,0 2,8 10,6
t-stat 0,61 1,78 1,07 3,76

In table 2 we show the results of managing volatility of mean-variance efficient
portfolios, similar to what Moreira and Muir (2016a) do.39 The mean-variance effi-
cient portfolios are constructed as follows. We first combine several factors40 and find
constant weights so that the multifactor portfolio is mean-variance efficient, using
the whole sample of monthly return data and the average risk-free rate. We then
find the monthly return of the mean-variance efficient portfolio by multiplying the
constant weights with the monthly returns. We define this as the static multifactor
portfolio, which we volatility manage using the methodology from section 4.1:

fMVEσ
t+1 =

c

RVt
fMVE
t+1 (16)

where fMVEσ
t+1 is the volatility managed multifactor portfolio and fMVE

t+1 is the
static multifactor portfolio. Note that the relative weights of single factors within
both the static and volatility managed multifactor portfolio are held constant. Thus,
the managed multifactor portfolio only scales in and out of the portfolio and a risk-
free asset. Also note that in order to find realized variance, RVt, which is used to scale
the managed multifactor portfolio on a monthly frequency, we use daily multifactor
returns.41 The daily multifactor returns are calculated by multiplying the constant
multifactor weights with daily return data. Because we use the whole sample to

39See Table 2 in their paper.
40FF3 is the original Fama-French factors, where we included Momentum in FF4 and Liquidity

in FF5.
41This is consistent with how we calculate realized variance for single factors, look at section 4.1
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estimate the weights of the mean-variance efficient portfolios, the strategy is not im-
plementable for investors in real time. However, the intention of managing volatility
of mean-variance efficient portfolios is to analyze whether the volatility managing
strategy expands the mean-variance frontier for investors who are already invested
in multiple factors, as Moreira and Muir (2016a) point out. Investors could easily
construct mean-variance efficient portfolios in real time based purely on historical
information.42

We see large and significant alphas and high appraisal ratios for all of the multi-
factor portfolios. In fact, the appraisal ratios for the managed multifactor portfolios
are in general higher than for the managed single factors. This is consistent with the
findings of Moreira and Muir (2016a).43 FF4 has the highest annualized alpha of 5,02,
while FF3 and FF5 have alphas of 4,96 and 4,70, respectively. The appraisal ratio is
0,68 for FF5, 0,63 for FF3 and 0,60 for FF4. This implies large utility gains relative
to the static mean-variance efficient portfolios. This might be an indication that
the utility gains of the strategy we consider in general is linked to the time-series of
returns and not the cross-section of returns; i.e. that it is not the single risk of an as-
set that makes the strategy beneficial to investors but the risk of the assets over time.

As a robustness check, we run regressions of both the managed Norwegian single
factors and the multifactor portfolios on well-known risk factors:

fσt+1 = α+βMktMktt+1+βHMLHMLt+1+βSMBSMBt+1+βUMDUMDt+1+βLIQLIQt+1+εt+1

We test if the alphas remain significant when controlling for exposure to well-
known risk factors. The results can be seen in Table 3. We see that all single
factors remain significant except for the market factor. This indicates that the high
Sharpe ratio of the volatility managed market factor can be explained by other risk
factors. As for the other managed portfolios, both single factors and the multifactor
portfolios, the alphas remain significant when controlling for risk exposure. The
significance of the alphas does not change when running a regression using only the
original Fama-French 3-factors as independent variables.

42In fact, Moreira and Muir (2016a) argue that the original mean-variance efficient Sharpe ratios
are likely to be overstated relative to the truth due to the in-sample bias, thus the potential increase
in Sharpe ratios are likely to be understated.

43Again: See Table 2 in their paper.
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Table 2: Results mean-variance efficient portfolios, Norway. The table reports
the regression results of the volatility managed mean-variance efficient portfolios on the
non-managed mean-variance efficient portfolios: fMVEσ

t+1 = α+ βfMVE
t+1 + εt+1. The mean-

variance efficient portfolios are formed in-sample and represent the relevant information
set for a given investor. The volatility managed mean-variance efficient portfolios are
constructed based on monthly data: fMVEσ

t+1 = c
RVt

fMVE
t+1 , whereRVt is the realized variance

in month t, calculated based on daily data. The factors are annualized in percent by
multiplying factors by 12. The appraisal ratio (AR) is calculated as

√
12 α

RMSE and is a
measure of how much the managed mean-variance portfolios expand the slope of the MVE
frontier compared to the non-managed mean-variance portfolios.

σMKT σFF3 σFF4 σFF5

MKT 0,76
(14.5)

FF3 0,75
(14.9)

FF4 0,76
(15.9)

FF5 0,77
(15.4)

α 4,9 5,0 5,0 4,7
t-stat 1,96 3,46 3,75 3,22

R2 0,57 0,56 0,57 0,59
N 431 413 413 413
RMSE 48,48 27,10 25,52 27,07

AR 0,35 0,63 0,68 0,60
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Table 3: Exposure to Fama-French factors, volatility managed single fac-
tors and mean-variance efficient portfolios. The tables reports the regression
results of the volatility managed portfolios on the Fama-French 5-factor model: fσt+1 =
α+βMktMktt+1+βHMLHMLt+1+βSMBSMBt+1+βUMDUMDt+1+βLIQLIQt+1+εt+1.
The sample is 1981-2015. The portfolios are constructed based on monthly data: fσt+1 =
c
RVt

ft+1, where RVt is the realized variance in month t, calculated based on daily return
data. The factors are annualized in percent by multiplying monthly factors by 12. We
report betas with t-stats in parantheses. The betas represent the managed portfolios’
exposure to the Fama-French factors.

σMKT σSMB σHML σUMD σLIQ σFF3 σFF4 σFF5

MKT 0,82 -0,04 -0,06 0,14 -0,05 0,44 0,42 0,43
(12.95) (-1.14) (-1.52) (3.37) (-1.37) (13.45) (14.35) (13.78)

SMB 0,03 0,81 -0,05 0,07 -0,03 0,34 0,31 0,37
(0.53) (12.79) (-0.87) (1.15) (-0.74) (9.23) (9.52) (10.17)

HML -0,02 -0,03 0,72 0,01 0,03 -0,07 -0,06 -0,05
(-0.54) (-0.73) (12.9) (0.29) (0.89) (-2.9) (-2.76) (-2.23)

UMD 0,02 -0,02 0,00 0,77 -0,03 0,04 0,07 0,07
(0.47) (-1.14) (0.00) (15.37) (-1.23) (1.56) (3.35) (2.97)

LIQ 0,11 -0,08 -0,01 0,03 0,77 -0,06 -0,04 -0,11
(1.68) (-1.48) (-0.27) (0.53) (12.41) (-1.44) (-1.13) (-3.03)

α 3,14 5,00 -0,78 4,44 5,07 5,20 5,36 5,04
t-stat 1,17 2,81 -0,44 2,12 2,41 3,61 4,05 3,5

R2 0,55 0,62 0,52 0,56 0,6 0,64 0,61 0,59
N 414 412 413 414 414 413 413 413
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5.2 Results for the UK factors

In this section, we report the results of the volatility managed portfolios for the UK
factors. Moreira and Muir (2016a) do not include UK factors when implementing
the strategy on various countries. Thus, we want to analyze whether the strategy
of managing volatility gives similar results for the UK. We also considered other
countries, but we choose to only implement the strategy in the UK where the data is
more reliable and avoiding possible issues with outliers, missing values and smaller
samples.44

Table 4 shows the results from the three original Fama-French factors plus the
Carhart momentum factor. We see that the momentum factor is the only factor
that has a positive and significant alpha. This is consistent with the findings of
both Moreira and Muir (2016a) and various other research. For instance, Barroso
and Santa-Clara (2015) and Daniel and Moskowitz (2016) show similar results. The
other factors are insignificant. The HML factor is the only factor with a negative
alpha for the UK factors, similar to what we found for the Norwegian factors.

Due to the general weak results for the UK factors, we choose not to include them
in any further analysis. We emphasize that the sample is 1988-2015, i.e. an even
smaller sample than for the Norwegian factors. We do not know whether the small
sample affects our results in any particular way.

44We considered implementing the strategy for factors in Germany, France and Japan, but these
countries have even smaller samples than the UK.
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Table 4: Results single factors, UK. The table reports the regression results of the
volatility managed portfolios on the non-managed portfolios: fσt+1 = α+ βRt+1 + εt+1. A
positive alpha implies that the managed portfolios expand the mean-variance frontier, thus
increase the Sharpe ratio. The sample is 1988-2015. The portfolios are constructed based
on monthly data: fσt+1 = c

RVt
ft+1, where RVt is the realized variance in month t, calculated

based on daily return data. The factors are annualized in percent by multiplying monthly
factors by 12. The appraisal ratio (AR) is calculated as

√
12 α

RMSE and is a measure of
how much the managed portfolios expand the slope of the MVE frontier compared to the
non-managed portfolios.

σMKT σSMB σHML σUMD

MKT 0,72
(11.44)

SMB 0,79
(11.03)

HML 0,65
(7.76)

UMD 0,53
(7.93)

α 1,01 0,98 -0,99 13,09
t-stat 0,54 0,73 -0,58 4,97

R2 0,52 0,63 0,42 0,29
N 320 320 320 320
RMSE 34,61 24,11 30,23 47,08

AR 0,10 0,14 -0,11 0,96

5.3 Results for the industry portfolios

Table 5 and 6 report the results of managing volatility for the Norwegian and U.S.
industry portfolios, respectively.45 Moreira and Muir (2016a) do not consider indus-
try portfolios, and we would like to see if the strategy achieves excess return for other
portfolios than systematic factors. In general, using alpha as a measure of portfolio
performance assumes that the portfolios are well diversified, thus eliminating unsys-

45See section 3 for description of the industry portfolios.
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tematic risk. The industry portfolios are less diversified than systematic factors such
as the Fama-French factors, but are on the other hand more diversified than single
securities.46 Because the industry portfolios are not as well diversified as the pricing
factors, we find it hard to compare the alphas and appraisal ratios directly. Even
though there are short-comings with the analysis of the industry portfolios, we still
find it interesting to examine them.

Panel A in Table 5 shows the results of running regressions of the volatility
managed industry portfolios on the non-managed industry portfolios for Norwegian
industries from 1980-2015. We would like to emphasize that some industry portfolios
in Norway occasionaly consist of a small number of individual securities, and these
portfolios are therefore less diversified than both the systematic factors and the U.S.
industry portfolios.47

We see positive and significant alphas for the majority of the managed industry
factors in Panel A. Material, Consumer Discretionary (ConsDisc), Consumer Staples
(ConsStapl) and Finance all have large positive and significant alphas. The largest
is found for Material, with a significant alpha of 16,72 percent. Energy, Industry and
Health all have positive alphas, but they are not statistically significant. The highest
appraisal ratio is found for Finance. As a robustness check, we also run regressions
of the managed portfolios on the three original Fama-French factors plus momentum
to see whether the excess returns can be explained by exposure to well-known risk
factors. From Panel B Only ConsStapl and Health now show a significant alpha. We
see that the alpha of Material goes from 16,72 to -2,68 and that the excess return can
be explained by a large exposure to the market factor. ConsDisc still has a positive
alpha, but it is insignificant.

Table 6 reports the results for the volatility managed U.S industry portfolios from
1926-2015. In Panel A, we see that the majority of the managed industry portfo-
lios have large significant alphas. Out of the 10 managed portfolios, only Consumer
NonDurables (NoDurbl) and Health have insignificant alphas. The positive and sig-
nificant alphas range from 5,25 percent to 7,23 percent, where Other has the highest
alpha of 7,23 percent. The appraisal ratios are also substantial for the majority of
the managed portfolios. The finding of large alphas and appraisal ratios for the in-

46A positive alpha only implies that the portfolios expand the efficient frontier if we consider
well-diversified portfolios that summarize pricing information for a wide cross-section of assets.

47The data for the Norwegian industries also has several missing values. We do not know whether
the missing values affect the results in any particular way.
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dustry portfolios indicates that managing the volatility for less diversified portfolios
than systematic factors also leads to higher risk-adjusted returns and utility gains
for mean-variance investors.

We test for exposure to well-known risk factors and report the results in Panel B.
We see that now all of the 10 managed portfolios have positive and significant alphas.
Thus, the excess return can not be explained by exposure to the risk factors. Some
factors, such as the Consumer Durables (Durbl), Hitec, Manufacturing (Manuf) and
Others, have a large exposure to the market factor but still has a significant alpha.
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Table 5: Results Industry Portfolios, Norway. The table reports the regression
results of the volatility managed portfolios on the non-managed portfolios: fσt+1 = α +
βRt+1 + εt+1. A positive alpha implies that the managed portfolios expand the mean-
variance frontier, thus increase the Sharpe ratio. The sample is 1981-2015. The portfolios
are constructed based on monthly data: fσt+1 = c

RVt
ft+1, where RVt is the realized variance

in month t, calculated based on daily return data. The factors are annualized in percent
by multiplying monthly factors by 12. The appraisal ratio (AR) is calculated as

√
12 α

RMSE
and is a measure of how much the managed portfolios expand the slope of the MVE frontier
compared to the non-managed portfolios.

Panel A: Industry Portfolios, Norway

σEnergy σMaterial σIndustry σConsDisc σConsStapl σHealth σFinance

Energy 0,8
(16.01)

Material 0,49
(2.76)

Industry 0,76
(13.48)

ConsDisc 0,67
(8.54)

ConsStapl 0,73
(13.68)

Health 0,75
(12.09)

Finance 0,6
(11.15)

α 4,41 16,72 2,58 12,55 8,90 3,60 11,57
t-stat 1,55 2,91 0,88 3,09 3,39 1,18 3,76

R2 0,65 0,24 0,58 0,46 0,53 0,56 0,37
N 431 431 431 431 431 431 431
RMSE 56,78 126,16 60,42 91,09 60,76 68,75 65,82

AR 0,27 0,46 0,15 0,48 0,51 0,18 0,61
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Panel B: Exposure to Fama-French factors. The tables reports the regression re-
sults of the volatility managed portfolios on the Fama-French 4-factor model: fσt+1 =
α + βMktMktt+1 + βHMLHMLt+1 + βSMBSMBt+1 + βUMDUMDt+1 + εt+1. The sam-
ple is 1981-2015. The portfolios are constructed based on monthly data: fσt+1 = c

RVt
ft+1,

where RVt is the realized variance in month t, calculated based on daily return data. The
factors are annualized in percent by multiplying monthly factors by 12. We report betas
with t-stats in parantheses. The betas represent the managed portfolios’ exposure to the
Fama-French factors.

σEnergy σMaterial σIndustry σConsDisc σConsStapl σHealth σFinance

MKT 0,87 1,15 0,83 0,93 0,63 0,50 0,6
(12.27) (9.63) (11.37) (9.97) (10.06) (7.08) (11.12)

SMB 0,047 0,19 0,04 0,435 0,07 -0,06 0,2
(0.72) (1.62) (0.58) (3.91) (0.70) (-0.74) (3.05)

HML 0,10 0,22 0,06 0,03 -0,00 -0,22 0,09
(1.59) (2.24) (1.08) (0.34) (-0,07) (-2.83) (2.09)

MOM 0,01 -0,08 0,03 0,02 0,13 0,04 -0,02
(0.12) (-1.13) -0,69 (0.2) (2.17) (0.81) (-0.42)

α -0,44 -2,68 0,80 5,01 11,27 9,27 3,48
t-stat -0,11 -0,46 -0,23 0,97 3,07 2,17 1.,02

R2 0,44 0,34 0,47 0,26 0,25 0,16 0,31
n 414 414 414 414 414 414 414
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Table 6: Results Industry Portfolios, U.S. The table reports the regression results of
the volatility managed portfolios on the non-managed portfolios: fσt+1 = α+βRt+1+εt+1. A
positive alpha implies that the managed portfolios expand the mean-variance frontier, thus
increase the Sharpe ratio. The sample is 1926-2015. The portfolios are constructed based
on monthly data: fσt+1 = c

RVt
ft+1, where RVt is the realized variance in month t, calculated

based on daily return data. The factors are annualized in percent by multiplying monthly
factors by 12. The appraisal ratio (AR) is calculated as

√
12 α

RMSE and is a measure of
how much the managed portfolios expand the slope of the MVE frontier compared to the
non-managed portfolios.

Panel A: Managed Industry Portfolios, U.S.

σNoDurbl σDurbl σManuf σEnergy σHitec σTelecom σShops σHealth σUtils σOthers

NoDurbl 0,6
(9.16)

Durbl 0,63
(8.4)

Manuf 0,6
(9.18)

Energy 0,61
(14.43)

Hitec 0,62
(11.8)

Telecom 0,35
(11.76)

Shops 0,61
(11.28)

Health 0,67
(11.11)

Utils 0,44
(9.66)

Others 0,59
(8.9)

α 3,03 5,82 6,49 5,25 6,70 6,64 6,84 3,08 6,83 7,23
t-stat 1,85 2,78 3,67 3,19 3,32 4,46 3,87 1,83 3,74 3,90

R2 0,36 0,39 0,35 0,37 0,38 0,12 0,37 0,45 0,19 0,34
N 1081 1081 1081 1081 1081 1081 1081 1081 1081 1081
RMSE 44,20 72,23 60,42 57,97 68,75 51,74 55,79 49,92 59,93 62,72

AR 0,24 0,28 0,37 0,31 0,34 0,44 0,42 0,21 0,39 0,40
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Panel B: Exposure to Fama-French factors The tables reports the regression
results of the volatility managed portfolios on the Fama-French 4-factor model: fσt+1 =
α+ βMktMktt+1 + βHMLHMLt+1 + βSMBSMBt+1 + βUMDUMDt+1 + εt+1. The sample
is 1926-2015. The portfolios are constructed based on monthly data: fσt+1 = c

RVt
ft+1,

where RVt is the realized variance in month t, calculated based on daily return data. The
factors are annualized in percent by multiplying monthly factors by 12. We report betas
with t-stats in parantheses. The betas represent the managed portfolios’ exposure to the
Fama-French factors.

σNoDurbl σDurbl σManuf σEnergy σHitec σTelecom σShops σHealth σUtils σOthers

MKT 0,47 0,87 0,76 0,53 0,866 0,295 0,63 0,63 0,41 0,738
(9.6) (14.3) (15.99) (12.74) (15.32) (10.76) (12.43) (12.42) (11.02) (15.17)

SMB 0,06 -0,006 -0,02 -0,17 0,0137 -0,07 0,058 -0,009 -0,12 0,04
(1.11) (-0.08) (-0.31) (-2.87) (0.19) (-2.32) (0.92) (-0.17) (-2.40) (0.53)

HML 0,002 -0,07 -0,067 0,22 -0,215 0,009 -0,13 -0,13 -0,005 0,06
(0.06) (-0.99) (-1.24) (3.58) (-3.60) (0.27) (-2.7) (-2.79) (-0.13) (0.99)

MOM 0,16 0,22 0,26 0,2 0,288 0,1 0,17 0,21 0,127 0,26
(4.87) (4.32) (6.6) (4.61) (6.99) (4.42) (4.85) (5.73) (3.69) (5.95)

α 4,91 5,94 6,12 6,36 6,72 7,2 8,4 5,88 7,56 5,33
t-stat (2.87) (2.48) (3.25) (3.31) (3.09) (4.2) (4.37) (3.1) (3.77) (2.72)

R2 0.29 0.32 0.37 0.209 0.36 0.09 0.31 0.32 0.13 0.35
N 1069 1069 1069 1069 1069 1069 1069 1069 1069 1069

5.4 Results for the Long-short strategy

In the following, we report the results from the long-short strategy for the single
factors in Norway. This strategy is conceptually different from the original volatility
timing strategy: We form self-financed two- and multifactor portfolios where we go
long $1 in the factor with the lowest volatility in the previous month, and short
$1 in the factor with highest volatility.48 In this strategy, we time volatility in the
cross-section of returns and not in the time-series of returns. We do this to see if it

48See section 4.1.2.
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is possible to capture abnormal returns by timing volatility between factors rather
than scaling in and out of single factors and a risk-free asset as Moreira and Muir
(2016a) do. Previous research on the cross-section of risk and returns has typically
examined the low volatility puzzle and formed quantile portfolios based on volatility
that rebalance every month, see for instance Baker and Haugen (2012). They argue
that the low volatility puzzle is present in Norway.

Table 5 reports the results for the long-short strategy where we run regressions of
the long-short strategy returns on the factors used in the respective strategy. MKT-
UMD is a strategy where we go long in the market if the volatility of the market was
lower than the volatility of UMD in the previous month, this position is financed by
going short in the UMD factor. If the volatility of the market was higher previous
month, we go short in the market and long in UMD. The portfolio is rebalanced ev-
ery month. The strategies SMB-UMD and SMB-MKT follow the same principle. In
”ALL” we consider all the Fama French factors plus the liquidity factor in Norway.
Note however that we only go long in one factor and short in one factor each month,
where we go long in the factors with the lowest volatility in the previous month and
short in the factor with highest volatility.

We see positive but insignificant alphas for all the long-short strategies, and we
are not able to conclude that this strategy is able to increase the wealth of investors.
We have also implemented the strategy for the U.S. single factors as well as both
U.S and Norwegian industries, these results are very similar to the one we report on
the Norwegian single factors. Therefore, we choose not to present them.49

49We considered other long-short strategies with other specifications, but as the results were weak
we choose not to report these strategies.
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Table 7: Results Long-short strategy, single factors, Norway. The table reports
the regression results of the volatility managed long-short portfolios on the non-managed
factors: fσt+1 = α + βft+1 + εt+1. The sample is 1981-2015. The managed portfolios
are constructed based on monthly data and goes long (short) in the factor(s) that has
the lowest (highest) realized variance in the previous month. The realized variance in
month t is calculated based on daily return data. The factors are annualized in percent by
multiplying monthly factors by 12.

σMKT-UMD σSMB-UMD σSMB-MKT σ SMB-UMD-MKT σAll

α 4,14 5,48 7,28 8,16 -2,99
t-stat 0,71 1,34 1,09 1,26 -0,60

R2 0,10 0,09 0,01 0,09 0,07
N 413 413 413 413 413
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6 The Performance of Forecasting Models

We want to improve the results of the volatility managing portfolios by using fore-
casted variance rather than the previous month’s realized variance.50 The hypothesis
is that if forecasted volatility is a better proxy for realized variance than its own
lagged value, the performance of the volatility manged portfolios will increase. In
this section, we consider the forecasted variance by the OLS method and the GARCH
method. First, we evaluate the forecasted variance based on its ability to predict
realized variance. We compare the relationship between forecasted variance and re-
alized variance with the relationship between realized variance and its lagged value.
Next, we re-construct volatility managed portfolios using the forecasted variance
rather than lagged realized variance.

6.1 Evaluating the Variance Forecasts

As Lopez (2001) points out, the mean-square error (MSE) criterion is commonly
used to evaluate out-of-sample forecasts of volatility.51 We focus on the root mean
square error (RMSE) to evaluate the forecasting models. In our analysis, the RMSE
is the root of the mean squared differences between the realized variance, σ2

n, and
the forecasted variance, σ̂2

n.52 Formally, RMSE is calculated as:

RMSE =

√√√√ 1

n

n∑
i=1

(σ2
n − σ̂2

n) (17)

We obtain the RMSE by running an OLS regression of realized variance on the
forecasted variance. In general, the smaller the RMSE, the better the forecasting
ability. In addition to RMSE, we report the correlation between the forecasted vari-
ance and the realized variance, and compare it to the correlation between the realized
variance and its lagged value. A small RMSE and high correlation indicates a better
proxy for realized variance, which is what we try to find. We do not report the R2

50Moreira and Muir (2016a) show in their appendix that the strategy can be improved through
the use of sophisticated models of variance forecasting. They use three lags of realized log variance
to form a forecast, i.e. an AR (1) model.

51For instance, Medeiros et al. (2004) recommend the RMSE for the purpose of comparing volatil-
ity forecasts.

52Realized variance is as before calculated as shown in section 4.1.

42



from the regressions, but a lower RMSE generally yields a higher R2 in our regres-
sions.53

6.1.1 The OLS Method forecast

In Table 9 we show the correlation and RMSE between the forecasted variance from
the OLS method and realized variance, and we compare it to the correlation and
RMSE between the realized variance and lagged realized variance. We show this
for the Norwegian single factors. Panel A reports the results from using the whole
sample to estimate the forecasting coefficients, i.e. an in-sample forecast. As one
would expect, the results of the OLS method using the whole sample are very similar
to the results of lagged realized variance. Using the whole-sample beta as a constant
weight to forecast monthly variance, would necessarily lead to a quite similar proxy
for realized variance as its lagged value.

Panel B shows the results when using a rolling window of 24 months to estimate
the forecasting coefficients, i.e. the out-of-sample forecast.54 The results imply that
the forecasted variance by the OLS rolling method is a less satisfying proxy for
realized variance than lagged realized variance. The correlation is lower and the
RMSE is higher for all factors, except for the HML factor where the RMSE is equal
as when using lagged realized variance. The results are not very surprising, because
the forecasting model is not very sophisticated.55 We do not report the forecasted
variance using the OLS method for the U.S. and Norwegian industry factors, because
they give similar results. We are aware that the OLS forecasting model is slightly
naive, and that a more sophisticated forecasting model in general would give better
results.

53The R2 values are available on request.
54Note that in the rolling OLS, due to the estimation window, we do not forecast any variance

the first 24 months of the sample, and we therefore report the lagged realized variance in Panel B
for the same period as the OLS rolling forecasted variance.

55Ederington and Guan (2004) point out that linear regression models empirically do not forecast
out-of-sample volatility in a particularly good way.
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Table 8: OLS forecasted variance vs. Lagged Variance, Norway single
factors. The table reports the correlation and RMSE between the realized variance of
single factors and 1) lagged realized variance (Lagged variance) and 2) the OLS forecasted
variance (OLS full sample). The values give us a sense for the relation between realized
variance and the proxies of realized variance, where a high correlation and low RMSE in
general indicates a close relation.

Panel A: OLS whole sample

Lagged Variance MKT SMB HML UMD LIQ
Correlation 0,61 0,75 0,32 0,38 0,55
RMSE 0,28 0,14 0,23 0,23 0,22

OLS MKT SMB HML UMD LIQ
Correlation 0,62 0,78 0,32 0,37 0,57
RMSE 0,24 0,14 0,23 0,24 0,22

Panel B: OLS Rolling

Lagged Variance MKT SMB HML UMD LIQ
Correlation 0,61 0,76 0,27 0,35 0,56
RMSE 0,28 0,14 0,23 0,22 0,22

GARCH MKT SMB HML UMD LIQ
Correlation 0,42 0,72 0,22 0,25 0,52
RMSE 0,31 0,16 0,23 0,23 0,23

6.1.2 The GARCH method forecast

In Table 10 we evaluate the forecasting ability of the GARCH method, as we did
for the OLS method in Table 9. Again, we calculate RMSE and correlation between
the forecasted variance and the realized variance. For the GARCH method, we re-
port the Norwegian single factors, the Norwegian industry portfolios and the U.S.
industry portfolios. We choose to include the industry portfolios when examining
the GARCH method, because the method gave more satisfying results than the OLS
method. Panel A shows the Norwegian single factors. We see that the GARCH
forecasted variance has a higher correlation with realized variance for four out of five
factors, if we compare to lagged realized variance; only for the liquidity factor the
GARCH forecasted variance has a higher relative RMSE. These results indicate that
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the GARCH forecasted variance is a good proxy for realized variance for these factors.

The results are less consistent for the Norwegian industry portfolios, as shown
in panel B. The GARCH forecasted variance has a lower correlation for 4 out of 7
industries, if we compare to lagged variance. The RMSE is lower or equal for the
GARCH forecasted variance compared to lagged realized variance for 3 out of 7 in-
dustries. For the U.S. industry portfolios the results are more consistent, shown in
panel C. The GARCH forecasted variance has a high correlation for the majority
of the factors, and generally a lower RMSE than lagged realized variance. In fact,
the forecasted variance has a higher correlation with realized variance compared to
lagged variance in 8 out of 10 industries. This indicates that the GARCH forecasted
variance is a good proxy for realized variance for the U.S. industry portfolios. Note
that the sample of the U.S. industry portfolios is much larger than for the Norwegian
single factors and Norwegian industry portfolios.

Table 9: GARCH Predicted Variance vs. Lagged Variance. The table reports
the correlation and RMSE between the realized variance of single factors and 1) lagged
realized variance (Lagged Variance) and 2) the GARCH forecasted variance (GARCH).
The values give us a sense for the relation between realized variance and the proxies of
realized variance, where a high correlation and low RMSE in general indicates a close
relation.

Panel A: Norway Single Factors

Lagged Variance MKT SMB HML UMD LIQ
Correlation 0,61 0,76 0,27 0,35 0,56
RMSE 0,28 0,14 0,23 0,22 0,22

GARCH MKT SMB HML UMD LIQ
Correlation 0,63 0,79 0,39 0,39 0,47
RMSE 0,26 0,14 0,22 0,22 0,23
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Panel B: Norwegian industries.

Lagged Variance Energy Material Industry ConsDisc ConsStapl Health Finance
Correlation 0,65 0,78 0,59 0,58 0,58 0,32 0,65
RMSE 0,34 4,98 0,31 0,55 0,34 0,6 0,34

GARCH Energy Material Industry ConsDisc ConsStapl Health Finance
Correlation 0,67 0,76 0,59 0,60 0,55 0,23 0,64
RMSE 0,32 5,15 0,31 0,55 0,6 0,6 0,35

Panel C: U.S. industries.

Lagged Variance No durbl Durbl Manuf Energy Hi-Tec Telecom Shops Health Utility Others
Correlation 0,44 0,65 0,60 0,61 0,64 0,57 0,55 0,52 0,63 0,70
RMSE 1,34 3,12 2,29 2,53 2,97 1,8 1,79 1,83 2,23 2,19

GARCH No Durbl Durbl Manuf Energy Hi-Tec Telecom Shops Health Utility Others
Correlation 0,54 0,63 0,65 0,63 0,70 0,55 0,64 0,57 0,69 0,74
RMSE 1,26 3,19 2,17 2,47 2,75 1,82 1,65 1,8 2,08 2,03

6.2 Results Managed Portfolios Using Forecasted Variance

In the following, we re-construct the volatility managed portfolios using forecasted
variance rather than lagged realized variance. Note that the method still is similar
to the original method, the difference is that we now replace lagged realized variance
with the forecasted variance. The volatility managed portfolio at time t is then

c

R̂Vt
OLS ft when using the OLS forecasted variance and c

R̂Vt
GARCH ft when using the

GARCH forecasted variance.56

6.2.1 Results Using OLS Forecasted Variance

First, we show the results of re-constructing the volatility managed portfolios for the
Norwegian single factors using the OLS forecasted variance. Because the forecasted
variance using the OLS method indicated a worse proxy for realized variance than
the GARCH method, we do not re-construct the industry portfolios using OLS fore-
casted variance. Table 11 reports the results when scaling the volatility managed

56See equation 3 in section 4.1.
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portfolios with the OLS forecasted variance. Panel A reports the results of using the
OLS forecasted variance when we use the whole sample to obtain the coefficients,
while Panel B shows the results when using a rolling estimation window of 24 months
to obtain the coefficients. We see in Panel A that when using the whole-sample OLS
forecasted variance, the results are very similar to when we use lagged realized vari-
ance.57 This is not surprising given the fact that the forecasted variance seems to be
a similar proxy for realized variance as lagged realized variance.58 As we mentioned
before, using the whole sample OLS method can not be implemented directly by
investors because the forecast is in-sample.

In Panel B, we see that the managed portfolios using the OLS rolling method
exhibit substantial lower alphas and appraisal ratios compared to using the whole-
sample OLS method and the main strategy using lagged realized variance. This is
consistent for all factors which we consider. For instance, the appraisal ratio of the
managed market factor decreases from 0,33 to 0,19 when using the OLS whole sam-
ple method, and the momentum factor decreases from 0,60 to 0,56. An important
finding is that the market has the largest decrease in the appraisal ratio when using
the OLS rolling method. Looking at Table 9, we see that the correlation between the
OLS rolling forecasted variance and realized variance for the market factor is 0,42,
compared to 0,62 for the whole-sample OLS method; thus indicating that the fore-
casted variance for the market factor is the least satisfying proxy for realized variance
among all factors. The largest decrease in the appraisal ratio for the volatility man-
aged market factor is therefore consistent with the hypothesis that a better proxy for
realized variance would improve the results of the volatility managed portfolios.59

57See Table 1 for comparison.
58See Table 9, Panel A.
59In other words, the least satisfying proxy for realized variance yields the largest decrease in

Sharpe ratio.
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Table 10: Volatility Managed Portfolios using OLS forecasted variance for
Norway single factors. The table reports the regression results of the volatility man-
aged portfolios on the non-managed portfolios: fσt = α+βft+ εt. A positive alpha implies
that the managed portfolios expand the mean-variance frontier, thus increase the Sharpe
ratio. The sample is 1981-2015. The portfolios are constructed based on monthly data:
fσt = c

σ̂2
tOLS

ft, where σ̂2tOLS is the OLS forecasted variance in month t. The factors are

annualized in percent by multiplying monthly factors by 12. The appraisal ratio (AR) is
calculated as

√
12 α

RMSE and is a measure of how much the managed portfolios expand the
slope of the MVE frontier compared to the non-managed portfolios.

Panel A: Results OLS whole sample

σMKT σSMB σHML σUMD σLIQ

MKT 0,76
(14.42)

SMB 0,79
(12.88)

HML 0,72
(12.82)

UMD 0,74
(14.37)

LIQ 0,79
(15.67)

α 4,50 3,80 -2,70 8,16 3,18
t-stat 1,77 2,37 -1,30 3,75 1,79

R2 0,58 0,62 0,52 0,55 0,62
RMSE 47,82 32,83 40,97 47,00 36,34
N 419 413 413 418 419

AR 0,33 0,40 -0,23 0,60 0,30
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Panel B: Results OLS Rolling

σMKT σSMB σHML σUMD σLIQ

MKT 0,165
(8.09)

SMB 0,55
(13.79)

HML 0,86
(17.55)

UMD 0,86
(20.96)

LIQ 0,75
(20.03)

α 3,97 4,30 -2,91 5,61 2,28
t-stat 1,24 2,10 -1,90 3,23 1,24

R2 0,03 0,30 0,73 0,75 0,57
N 396 390 390 396 396
RMSE 72,70 43,49 30,20 34,62 37,01

AR 0,19 0,34 -0,33 0,56 0,21

6.2.2 Results Using Garch Forecasted Variance

We report the results from the volatility managed portfolios using the forecasted
variance by the GARCH method in Table 12. The results for the Norwegian single
factors are shown in Panel A; Norwegian industry portfolios in Panel B and the U.S.
industry portfolios in Panel C.

We see large and significant alphas for the Norwegian single factors in Panel A,
and the appraisal ratios increase relative to the main results for all factors except for
the liquidity factor.60 As mentioned in section 6.1.2, only for the liquidity factor the
GARCH forecasted variance has a higher RMSE if we compare to lagged realized

60When using the GARCH forecasted variance to manage the volatility of the portfolios, the
two first years of the original sample are not included due to the estimation period of 24 months.
Therefore, in Appendix D we report the volatility managed portfolios using lagged realized variance
excluding the first two years of data.
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variance. Thus it is consistent that the liquidity factor has the largest decrease in the
appraisal ratio when we use the GARCH forecasted variance to manage the portfo-
lios. It is also worth noticing that HML still has a negative and insignificant alpha,
but is less negative and has a higher t-stat when applying the GARCH forecasted
variance. Generally, the higher appraisal ratios are driven by both an increase in
alpha and a decrease in RMSE.

In figure 2 in appendix C, we plot the accumulated return of the volatility man-
aged market portfolio using both lagged realized variance and the GARCH forecasted
variance, as well as the accumulated return for non-managed portfolio. We see clearly
that the managed portfolios outperform the non-managed portfolio, where the man-
aged portfolio using GARCH forecasted variance has the highest accumulated return.
The managed portfolios avoid the largest declines in returns compared to the non-
managed portfolio. A sudden drop in returns is associated with high volatility, and
our volatility managed portfolios avoid these drops as they scale out of the factors.

Panel B reports the results of the volatility managed U.S. industry portfolios
using the GARCH forecasted variance. As for the Norwegian single factors, we see
substantial alphas and appraisal ratios for the U.S. industry portfolios. 5 out of 10
portfolios gets a higher alpha when using the GARCH forecasted variance compared
to lagged realized variance, and 8 out of 10 portfolios has higher appraisal ratios. The
higher appraisal ratios are due to generally lower RMSE’s for the managed portfolios
using GARCH forecasted variance. In fact, 9 out of 10 managed portfolios have a
lower RMSE when using GARCH forecasted variance rather than lagged realized
variance. It is worth mentioning that the Utility portfolio has a lower appraisal ra-
tio when using the GARCH forecasted variance compared to using lagged realized
variance, while at the same time the forecasted variance seems to be a better proxy
for realized variance than lagged realized variance.61

The results for the Norwegian industry portfolios can be seen in panel C. Only 2
out of 8 managed portfolios exhibit higher appraisal ratios when using the GARCH
forecasted variance, compared to using lagged realized variance, while four managed
portfolios exhibit lower appraisal ratios. The managed Health portfolio has a higher
appraisal ratio when using the GARCH forecasted variance, but the GARCH fore-
casted variance also has a lower correlation and higher RMSE compared to lagged

61For the Utility portfolio, the GARCH forecasted variance has a higher correlation and lower
RMSE relative to realized variance, if we compare to lagged realized variance; thus indicating that
the GARCH forecasted variance is a better proxy for realized variance.
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realized variance. Note however that the differences are marginal, and that both the
forecasted variance and lagged variance is a very similar proxy for realized variance.

Table 11: Volatility Managed Portfolios using GARCH forecasted variance.
The table reports the regression results of the volatility managed portfolios on the non-
managed portfolios: fσt = α+βft+εt. A positive alpha implies that the managed portfolios
expand the mean-variance frontier, thus increase the Sharpe ratio. The sample is 1981-
2015 for Norway single factors and industry portfolios, and 1926-2015 for U.S. industry
portfolios. The portfolios are constructed based on monthly data: fσt = c

σ̂2
tGARCH

ft, where

σ̂2tGARCH is the GARCH forecasted variance in month t. The factors are annualized in
percent by multiplying monthly factors by 12. The appraisal ratio (AR) is calculated as√

12 α
RMSE and is a measure of how much the managed portfolios expand the slope of the

MVE frontier compared to the non-managed portfolios.

Panel A: Norway single factors

σMKT σSMB σHML σUMD σLIQ

MKT 0,86
(22.34)

SMB 0,84
(15.11)

HML 0,82
(17.6)

UMD 0,88
(22.7)

LIQ 0,85
(16.44)

α 6,42 4,05 -1,51 8,55 2,10
t-stat 3,44 2,75 -0,9 5,03 1,39

R2 0,74 0,7 0,68 0,76 0,71
N 408 390 390 395 396
RMSE 37,62 28,7 33,25 33,36 30,36

AR 0,59 0,49 -0,16 0,89 0,24
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Panel B: U.S. industry factors.

σNoDurbl σDurbl σManuf σEnergy σHitec σTelecom σShops σHealth σUtility σOthers

NoDurbl 0,67
(13.85)

Durbl 0,68
(8.91)

Manuf 0,67
(9.51)

Energy 0,74
(17.84)

Hitec 0,7
(12.43)

Telecom 0,58
(16.52)

Shops 0,69
(12.75)

Health 0,75
(12.23)

Utility 0,39
(9.46)

Others 0,66
(8.97)

α 3,76 5,52 6,99 5,09 8,04 7,18 6,69 4,76 5,21 7,06
t-stat 2,97 2,79 4,18 3,39 4,23 5,19 4,12 3,32 2,65 4,00

R2 0,44 0,47 0,44 0,55 0,49 0,33 0,47 0,56 0,16 0,44
N 1059 1059 1059 1058 1058 1058 1058 1058 1058 1059
RMSE 41,36 67,62 56,52 49,42 62,77 45,35 51,07 44,78 61,44 58,57

AR 0,32 0,28 0,43 0,36 0,44 0,55 0,45 0,37 0,29 0,42
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Panel C: Norway industry factors.

σEnergy σMaterial σIndustry σConsDisc σConsStapl σHealth σFinance

Energy 0,81
(15.4)

Material 0,48
(2.7)

Industry 0,77
(13.52)

ConsDisc 0,67
(8.2)

ConsStapl 0,72
(21.2)

Health 0,76
(11.4)

Finance 0,66
(10.93)

α 4,75 16,4 1,92 12,49 9,06 3,84 9,67
t-stat 1,63 2,7 0,66 2,94 2,92 1,27 3,12

R2 0,65 0,23 0,59 0,44 0,53 0,58 0,43
N 408 408 408 408 408 408 408
RMSE 56,22 129,24 54,36 93,00 64,80 67,27 63,46

AR 0,29 0,44 0,12 0,47 0,48 0,20 0,53
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7 Discussion

In this section, we discuss our main results and link the analysis to Moreira and Muir
(2016b). First, we present a possible explanation for why it is beneficial to decrease
the risk exposure when volatility is high, and vice versa. Next, we consider whether
leverage constraints and transaction costs may affect our results. Lastly, we link
our results to higher order moments, similar to Barroso and Santa-Clara (2015), who
emphasize that their volatility managing strategy for the momentum factor improves
higher order moments such as left skewness and kurtosis.

7.1 The risk-return trade-off and the persistence of volatility

Moreira and Muir (2016b) show theoretically that the alpha of their strategy is
tightly linked to the strength of the risk-return trade-off in the time series, and point
out that the all conditional alphas are zero. By taking unconditional expectations
they decompose the unconditional alpha into a component that captures the ability
of the strategy to time volatility and a component that captures the co-movement
of the strategy with expected returns. They further point out that if the strategy
takes less risk when conditional variance is low, then the unconditional beta will be
lower than its average beta.

Further, they point out that when there are no time-series relation between ex-
pected returns and variance, the alpha increases in the ability to forecast volatility.
On the other hand, when the relationship between variance and expected returns is
strong, the unconditional alpha is approximately zero. A strong relationship between
variance and expected returns intuitively leads to sacrificing high expected returns
due to less exposure when the variance is high.

Similar to Moreira and Muir (2016b), we study the relationship between risk and
return directly. We run the same regressions as they do on our sample: First, we
show that realized volatility for each factor predicts future volatility to a large ex-
tent. Specifically, we run a regression of log realized variance on log lagged realized
variance and report the coefficients in Table 12.62 We see that the variance of the
factors is persistent, and the average coefficient is approximately 0,6. We can con-
clude that there is a significant positive relationship between lagged realized variance

62The results do not change if we run the regressions on realized variance rather than log realized
variance.
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and variance for our sample, which is important in explaining the results.

Next, we show that realized volatility does not predict future returns by running
a regression of monthly returns on previous month’s realized volatility for each fac-
tor. The regression results can be seen in Table 13. The results are consistent with
the findings of Moreira and Muir (2016b), that find both positive and negative coef-
ficients, but in general the coefficients were not significant. An interesting finding is
that the HML factor has a significant and positive relation to future returns, which is
consistent with our finding that managing the volatility for the HML factor does not
yield positive and significant alphas. Another interesting finding is that the market
factor has a significant negative coefficient, implying that there is a negative relation-
ship between variance and future returns. This indicates that managing volatility
should lead to high risk-adjusted performance, which is in line with our results in
Table 1. For the other factors, the coefficients are negative and insignificant, and we
can conclude that variance does not predict returns for these factors.

We have also run regressions of variance on both variance and return for the U.S.
industry portfolios. The results are similar. We focus mainly on the Norwegian single
factors in the analysis, and report the results for the U.S. industries in appendix E.
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Table 12: Variance predicting variance, Norway single factors. The table
reports the regression results of log realized variance on log lagged realized variance:
lnRVt = α+ βlnRVt−1 + εt. The beta coefficients represent the relationship between real-
ized variance and lagged realized variance, i.e. if variance predicts variance. The sample
is 1981-2015 and we use monthly data. T-stats are in paranthesis.

lnRV Mkt
t lnRV SMB

t lnRV HML
t lnRV PR1Y R

t lnRV MOM
t lnRV LIQ

t

lnRV Mkt
t−1 0,55

(11.49)
lnRV SMB

t−1 0,68
(17.56)

lnRV HML
t−1 0.59

(14.76)
lnRV PR1Y R

t−1 0,62
(16.20)

lnRV MOM
t−1 0,56

(12.50)

lnRV LIQ
t−1 0,59

(13.74)

N 419 413 413 418 418 419
R2 0,3 0,46 0,35 0,39 0,32 0,35
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Table 13: Variance predicting returns, Norway single factors. The table
reports the regression results of future returns on realized variance: Rt+1 = α + βRVt +
εt. The beta coefficients represent the relationship between future returns and realized
variance, i.e. if realized variance predicts future returns. The sample is 1981-2015 and we
use monthly data. T-stats are in paranthesis.

RMkt
t RSMB

t RHML
t RMOM

t RLIQ
t

RV Mkt
t−1 -0,27

t-stat (-2.1)
RV SMB

t−1 -0,18
t-stat (-1.59)
RV HML

t−1 0,26
t-stat (2.17)
RV MOM

t−1 -0,25
t-stat (-1.87)

RV LIQ
t−1 -0,16

t-stat (-1.49)

N 419 413 413 418 419
R2 0,02 0,01 0,01 0,01 0,01

7.2 Leverage Constraints

We do not consider the impact of leverage constraints empirically, but refer to the
empirical tests which Moreira and Muir (2016a) do. Then, we compare their findings
to the properties of our managed portfolios, in order to examine if investors under
tight leverage constraints can benefit from the strategy. Moreira and Muir (2016a)
point out that several research has showed that the risk-return trade-off in the cross-
section of returns can be weakened when considering leverage constraints. They
further point out that high beta assets may be attractive to leverage constrained in-
vestors, and argue that low volatility periods are analogous to low beta assets. One
could think that investors are not able to take on leverage in periods of low volatility,
thus not being able to increase the risk exposure as the strategy suggests.

Moreira and Muir (2016a) consider a strategy that only updates the portfolio
when volatility is above its mean value, i.e. they do not use leverage in low volatility
periods where the risk exposure of the strategy would increase majorly. They also
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construct volatility managed portfolios with weights constraints of 1 and 1.5, i.e.
strategies that do not include leverage and portfolios with maximum leverage of 50
percent. Note that a leverage of 50 percent is consistent with standard margin re-
quirements. A third test they run is to implement the strategy using options, where
they use in-the-money call options instead of leverage when the strategy demands
high risk exposure. They find positive and significant alphas for all leverage con-
straint tests, indicating that the strategy can be implemented by investors in real
time.

We have analyzed the upper distribution of the weights for the volatility managed
market factor when using lagged realized variance, similar to what Moreira and Muir
(2016a) do. The mean weight is approximately 0,92, where the 70th, 90th, 95th, and
99th percentile is 3,6, 4,09, 4,18 and 4,48, respectively. Our strategy uses modest
leverage in the majority of the time, but the amount of leverage increases in the
upper part of the distribution. Increased leverage occur when the volatility is low,
as the strategy then increases the risk exposure to the factor.

When using GARCH forecasted variance the extreme weights decrease, and the
75th, 90th, 99th percentile is reduced to 3, 3,19 and 3,95, respectively. This indicates
that using a sophisticated forecasting model makes the strategy less dependent on
leverage. Moreira and Muir (2016a) find that using realized volatility63 decreases the
extreme weights of the strategy, thus making it less levered. We construct managed
portfolios using both lagged realized volatility and forecasted volatility from the
GARCH model to see if we obtain similar results. In Table 14, we show the maximum
weights and alphas of the managed market factor using four different proxies of
realized volatility to manage the portfolios. We find that the maximum weight of
the managed portfolio is reduced to 2,41 when we use lagged realized volatility,
compared to 4,48 when using lagged realized variance. The maximum weight is
further reduced to 2,13 when we use GARCH forecasted volatility. Note that the
weights of our managed portfolios are lower than the weights of Moreira and Muir’s
managed portfolios. This may be an indication that the strategy can be implemented
by investors with leverage constraints.

7.3 Transaction costs

Moreira and Muir (2016a) evaluate the volatility timing strategy for the market
portfolio when including transaction costs. They consider strategies that capture

63Realized volatility is defined as the standard deviation.
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the idea of volatility timing but reduce the trading activity. The strategies consid-
ered are among others using (1) realized volatility and (2) expected variance, rather
than realized variance when constructing the volatility managed portfolios. They
find that the strategies survive transaction costs at 1bps, 4bps and 10bps, which is
consistent with the findings of Barroso and Santa-Clara (2015).

We do not perform a robustness check by including transaction costs explicitly,
but we analyze important properties of the volatility managed market portfolio in
Norway and compare it to the managed U.S. market portfolio of Moreira and Muir
(2016a). In Table 14, we report the alphas, average absolute change in monthly
weights, maximum weights and mean weights using four different proxies for risk
for the volatility managed market portfolio in Norway. We find that the volatility
managed portfolio of the Norwegian market factor using lagged realized variance
has a monthly average change in weights of 0,52, compared to 0,73 of Moreira and
Muir.64 When applying the GARCH forecasted variance, the average change in
weights is 0,25, indicating that the transaction costs go further down when using
a sophisticated forecasting model to forecast variance.65 When using the GARCH
forecasted volatility, the monthly average change in weights goes further down to
0,14, which is substantially lower than Moreira and Muir found when considering
expected volatility (0,37). In general, the monthly average change in weights for
our managed portfolios is lower compared to the managed portfolios which Moreira
and Muir (2016a) consider. This may indicate that the strategy survives transaction
costs.

64To see Moreira and Muir (2016a) analysis of transaction costs, see Table 4 in their paper.
65We also tested this for other factors than the market factors, and the weigths consistently go

down when using the GARCH forecasted variance and volatility. These results are available on
request.
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Table 14: Weights managed portfolios for the market factor in Norway. The
table reports the annualized alpha, t-stat of the alpha, the average change in weight, the
maximum weight and the mean weight of the volatility managed portfolios for the market
factor in Norway. Lagged Realized Variance is the managed portfolio using lagged real-
ized variance, Lagged Realized Volatility is the managed portfolio using realized volatility.
GARCH Variance is the managed portfolio using the GARCH forecasted variance, and
GARCH volatility is the managed portfolio using GARCH forecasted volatility.

Proxy Alpha t-stat ∆weight Max Weight Mean Weight
Lagged Realized Variance 4,94 1,96 0,52 4,48 0,92
Lagged Realized Volatility 3,35 2,01 0,31 2,41 1,01
GARCH Variance 6,42 3,44 0,25 3,95 1,07
GARCH Volatility 3,36 2,73 0,14 2,13 1,06

7.4 Skewness and Kurtosis

We find it relevant to link the properties of our managed portfolios to the findings of
Barroso and Santa-Clara (2015), who investigate momentum crashes and volatility
time the momentum factor. As mentioned before, their method is quite similar to the
one of Moreira and Muir (2016a) which we replicate, and they find that managing the
volatility of the momentum factor improves the Sharpe ratios of the non-momentum
factor substantially.

What we find particularly interesting, is that Barroso and Santa-Clara (2015)
argue that the most important benefit from their volatility timing strategy is that it
reduces the excess kurtosis and the left skewness of the original factor. Kurtosis is a
statistical measure used to describe the distribution, or the skewness of observed data
around the mean, sometimes referred to as the volatility of volatility. Intuitively, a
distribution with a high/low kurtosis tend to have heavy tails/light tails. Skewness
is a measure of the symmetry or lack of symmetry of the distribution. Positive skew-
ness, or right-skewed distribution, indicates a distribution with an asymmetric tail
extending towards positive values. Negative skewness, or left skewed distribution,
similarly indicates a distribution with an asymmetric tail towards negative values. A
decrease in these two higher order moments can be viewed as reducing the downside
risk, as pointed out by Barroso and Santa-Clara (2015).

In figure 1, we show the distribution of the return for the market, and the volatility
managed market factor using both lagged realized variance and GARCH forecasted
variance. The figure shows that the market has a fat left tail; it is left skewed. When
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we manage volatility for the market factor, the left tail is removed and the distri-
bution gets positively skewed. Note however that the managed factor also shows
increased kurtosis relative to the non-managed factor, which indicates a distribution
with heavy tails or outliers. The excess kurtosis for the market factor increases by
3,12, and the reason may be that managing volatility yields a strategy with a highly
levered risk exposure when the volatility is low.

By using GARCH forecasted variance to manage portfolios, kurtosis is reduced
compared to using lagged realized variance. When we compare the managed port-
folios using the GARCH forecasted variance with the non-managed portfolios, left
skewness is turned to positive skewness, while kurtosis stays relatively unchanged.
See Table 15. One possible explanation is that the exposure to risk is lower when
applying the GARCH forecasted variance, and that the portfolios in general use less
leverage. The lower kurtosis and the right skewness may indicate that using GARCH
forecasted variance to manage the portfolios reduces downside risk compared to us-
ing the lagged realized variance.

It is worth mentioning that our distribution is not directly comparable to the one
of Barroso and Santa-Clara (2015). They experience a decline in excess kurtosis from
18,42 to 2,68 when managing the momentum factor, while the skewness drops from
-2,47 to -0,42. Our non-managed momentum factor in Norway has a substantially
lower kurtosis of 4,86 and it increases to 6,54 when managing the portfolio with
lagged realized variance. In other words, the momentum factor we consider is more
observed around the mean, thus indicating lower downside risk. When managing the
portfolios with the GARCH forecasted variance, the kurtosis goes down compared
to using lagged realized variance. We believe this is because these portfolios are less
exposed to risk due to less extreme weights, indicating a reduced downside risk.
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Table 15: Statistic summary, non-managed and managed portfolios. The
Table reports the statistical properties of the portfolio returns distribution for the non-
managed portfolios (Non-Managed) and volatility managed portfolios using (1) lagged re-
alized variance (Managed L.var) and (2) GARCH forecasted variance (Managed GARCH)
for single factors in Norway. Mean is the mean value of the portfolio returns, St.dev is
the standard deviation of the portfolio returns, Skewness is measuring the symmetry of
the distribution, while Kurtosis is a measure of the skewness of observed data around the
mean. The sample is 1981-2015.

Non-managed MKT SMB HML UMD
Mean 1,90 0,80 0,28 0,58
St.dev 6,12 4,35 4,89 5,70
Skewness -0,54 0,53 -0,14 -0,19
Kurtosis 4,64 6,4 4,22 4,86

Managed L.var MKT SMB HML UMD
Mean 1,88 0,98 0,02 1,26
St.dev 6,12 4,35 4,89 5,70
Skewness 0,62 1,08 -1,03 0,95
Kurtosis 7,76 10,91 14,89 6,54

Managed GARCH MKT SMB HML UMD
Mean 2,18 1,03 0,10 1,24
St.dev 6,12 4,35 4,89 5,70
Skewness 0,37 0,73 0,22 0,19
Kurtosis 4,68 5,78 5,91 4,69
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Figure 1: Distribution non-managed market factor portfolios. The figure
shows the distribution of the market factor for the non-managed portfolio, the volatility
managed portfolio using lagged realized variance and the volatility managed portfolio using
GARCH forecasted variance.
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8 Conclusion

In this thesis, we replicate the methodology of Moreira and Muir (2016a), and we
are the first to analyze whether it is beneficial to manage the volatility of well-known
risk factors in Norway and the UK, and of industry portfolios in Norway and the U.S.
The method is simple, and the volatility managed portfolios scale monthly returns
by the inverse of the realized variance in the previous month; when volatility is high
the managed portfolios take less risk, and vice versa.

Our results indicate that it is beneficial to manage the volatility of both well-
diversified risk factors and less diversified industry portfolios. The volatility man-
aged single factors in Norway generally have large and significant alphas, where the
highest is for the momentum factor. For the UK. factors, the managed momentum
factor is large and significant, but the other factors are insignificant. The finding
of large alphas for the momentum factor is consistent with other empirical studies,
such as Moreira and Muir (2016a) and Barroso and Santa-Clara (2015).

We find similar qualitatively results for the volatility managed industry portfo-
lios, and the majority of the managed industry portfolios exhibit large significant
alphas. The results are more consistent for the U.S. industry portfolios than the
Norwegian. Because the industry portfolios are less diversified than the systematic
factors, we are not able to conclude directly that the managed industry portfolios
expand the mean-variance efficient frontier.

Because variance is highly predictable at short horizons, the previous month’s
realized variance is a good proxy for the realized variance the next month. We show
that finding a better proxy for realized variance using a sophisticated forecasting
model, such as the GARCH model, can improve the results of the volatility managed
portfolios.
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Appendices

A Replication of Moreira and Muir

Table 16: Volatility Managed Portfolios, replication of Moreira and Muir
for U.S. factors The table shows our replication of Moreira and Muir’s Volatility Man-
aged Portfolios for the Fama-French three factors plus the momentum factor. The table
reports the regression results of the volatility managed portfolios on the non-managed port-
folios: fσt+1 = α+βft+1+εt+1. A positive alpha implies that the managed portfolios expand
the mean-variance frontier, thus increase the Sharpe ratio. The sample is 1926-2015. The
portfolios are constructed based on monthly data: fσt+1 = c

RVt
ft+1, where RVt is the re-

alized variance in month t, calculated based on daily data. The factors are annualized in
percent by multiplying monthly factors by 12. The appraisal ratio (AR) is calculated as√

12 α
RMSE and is a measure of how much the managed portfolios expand the slope of the

MVE frontier compared to the non-managed portfolios.

σMKT σSMB σHML σMOM

MKT 0,61
(11.27)

SMB 0,62
(25.2)

HML 0,57
(7.58)

MOM 0,47
(7.15)

α 4,87 -0,51 1,88 12,53
t-stat 3,13 -0,54 1,85 7,33

R2 0,37 0,37 0,32 0,22
N 1065 1065 1065 1060
RMSE 51,41 30,62 34,75 50,38

AR 0,33 -0,06 0,19 0,86
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B ARCH/GARCH models

The mean value and the variance of a return of an asset or a portfolio is defined
relative to a past information set. The return in the present will be equal to the
mean value plus the standard deviation times the error term for the present period
(Engle (2001), page 5):

rt = µ+
√
σ2
t εt (18)

where µ is the expected value of r dependent on past information and
√
σ2
t is the

standard deviation.

The economectric challenge is to specify how the information is used to forecast
the variance of the return, conditional on only past information.(Engle (2001), page
5)

Before the introduction of the ARCH model by Engle (2001), virtually no meth-
ods were available to forecast the variance(Engle (2001), page 5). The general ARCH
(p) model looks like:

σ2
t = α0 + α1ε

2
t−1 + α2ε

2
t−2 + ...+ αpε

2
t−p (19)

which can be rewritten into

σ2
t = α0 +

p∑
i=1

αiε
2
t−i (20)

The ARCH(1) model specifies an equation for the conditional variance:

σ2
t = E[ε2t |θt−1] = α0 + α1ε

2
t−1 (21)

where θ is the information set in which the expected squared residual ε2t is de-
pendent on. We see that the model is an autoregressive model, and the predicted
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volatility for the next period is conditional on information in this period. Note that
α0 > 0 and α1 ≥ 0 in order to ensure positive variance and stationarity Reider (2009).
Intuitively, if the observed residual ε2 is large one month, the forecasted variance for
the subsequent month will also be large. The ARCH model estimated variance is
only dependent on the previous period’s squared residual, unlike the GARCH models.

The General Autoregressive Conditional Heteroskedastic (GARCH) model was
first introduced by Bollerslev (1986). The GARCH model adds a moving average
term, thus it is similar to an ARMA process. The moving average term allows a
slower decay in variance from random shocks. In the simplest version of the GARCH
model, the GARCH (1,1), the variance is dependent on last period’s squared return
(similar to the ARCH model) in addition to last period’s forecast of the variance.:

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1 (22)

where α0 > 0, α1 > 0 and β1 > 0 in order to ensure that σ2
t is positive.

Note that a GARCH(1,1) model can be written as an ARCH(∞) model (Reider,
2009):

σ2
t = α0 + α1a

2
t−1 + β1σ

2
t−1

= α0 + α1a
2
t−1 + β1(α0 + α1a

2
t−2 + β1σ

2
t−2)

= α0 + α1a
2
t−1 + α0β1 + α1β1a

2
t−2 + β2

1σ
2
t−2

(23)

The generalized GARCH (p,q) model looks like:

σ2
t = α0 +

p∑
i=1

αiε
2
t−i +

q∑
i=1

βiσ
2
t−i (24)

where p is the order of GARCH terms (σ2) and q is the order of ARCH terms (ε2).
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C Figures and graphs

Figure 2: Accumulated returns, market factor Norway. The figure plots the
accumulated return of the non-managed market factor (market), the volatility managed
market factor using lagged realized variance (managed var), and the volatility managed
market factor using GARCH predicted variance (managed garch).
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Figure 3: Risk Exposure Managed Portfolios, GARCH vs. Lagged Real-
ized Rariance. The figure plots the weights of the managed portfolios using GARCH
forecasted variance and lagged realized variance. We see that the risk exposure of both
managed portfolios follow the same pattern, but that when applying GARCH, the expo-
sure to the market factor tends to have lower spikes than when applying lagged realized
variance. Note that the average total risk of both strategies is equal.
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Figure 4: Weight vs. Realized Variance, Norway. The figure plots the monthly
variance of each market factor (var) in Norway and the monthly portfolio exposure (weight)
to the factor for the volatility managed portfolio of the market factor in Norway. We see
that when variance is high, the weight lowers, and vice versa. After the variance shocks
in the late 80s and in the recent financial crisis in the late 2000s, we see clearly that the
exposure to the market factor decreases towards zero, i.e. the managed portfolio weights
out of the factor.
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Figure 5: Volatility by factor, Norway. The figure plots the monthly volatility of
each individual factor in Norway. We see that the movement in volatility follows the same
pattern across factors, i.e. that the business cycle risk is relatively similar. We also see
that volatility increases substantially during bad times, especially in the bank crisis during
the late 80s/early 90s and the latest financial crisis starting in 2008.
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D Managed portfolios, comparable period GARCH

Table 17: Results Managed Portfolios Lagged Variance, Norway single fac-
tors. The table reports the regression results of the volatility managed portfolios on
the non-managed portfolios: fσt+1 = α + βRt+1 + εt+1. A positive alpha implies that
the managed portfolios expand the mean-variance frontier, thus increases the Sharpe ra-
tio. The sample is 1983-2015. The portfolios are constructed based on monthly data:
fσt+1 = c

RVt
ft+1, where RVt is the realized variance in month t, calculated based on daily

data. The factors are annualized in percent by multiplying monthly factors by 12. The
appraisal ratio (AR) is calculated as

√
12 α

RMSE and is a measure of how much the managed
portfolios expand the slope of the MVE frontier compared to the non-managed portfolios.

Mkt SMB HML UMD
β 0,76 0,79 0,73 0,77
t-stat 14,3 12,1 12,4 14,5

α 5,03 4,04 -2,13 9,6
t-stat 2 2,47 -1,03 4,46

R2 0,58 0,62 0,53 0,59
N 408 390 390 395
RMSE 47,47 32,30 40,31 44,02

AR 0,37 0,43 -0,18 0,75
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Table 18: Results Managed Portfolios Lagged Variance, Norway industry
factors. The table reports the regression results of the volatility managed portfolios on
the non-managed portfolios: fσt+1 = α + βRt+1 + εt+1. A positive alpha implies that the
managed portfolios expand the mean-variance frontier, thus increases the Sharpe ratio.
The sample is 1983-2015. The portfolios are constructed based on monthly data: fσt+1 =
c
RVt

ft+1, where RVt is the realized variance in month t, calculated based on daily data. The
factors are annualized in percent by multiplying monthly factors by 12. The appraisal ratio
(AR) is calculated as

√
12 α

RMSE and is a measure of how much the managed portfolios
expand the slope of the MVE frontier compared to the non-managed portfolios.

Energy Material Industry ConsDisc ConsStapl Health Finance
β 0,81 0,48 0,77 0,67 0,72 0,76 0,66
t-stat 15,4 2,7 13,52 8,2 21,2 11,4 10,93
α 4,75 16,4 1,92 12,49 9,06 3,84 9,67
t-stat 1,63 2,7 0,66 2,94 2,92 1,27 3,12

R2 0,65 0,23 0,59 0,44 0,53 0,58 0,43
N 408 408 408 408 408 408 408
RMSE 56,22 129,24 54,36 93,00 64,80 67,27 63,46

AR 0,29 0,44 0,12 0,47 0,48 0,20 0,53
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Table 19: Results Managed Portfolios Lagged Variance, U.S industry fac-
tors. The table reports the regression results of the volatility managed portfolios on
the non-managed portfolios: fσt+1 = α + βRt+1 + εt+1. A positive alpha implies that
the managed portfolios expand the mean-variance frontier, thus increases the Sharpe ra-
tio. The sample is 1928-2015. The portfolios are constructed based on monthly data:
fσt+1 = c

RVt
ft+1, where RVt is the realized variance in month t, calculated based on daily

data. The factors are annualized in percent by multiplying monthly factors by 12. The
appraisal ratio (AR) is calculated as

√
12 α

RMSE and is a measure of how much the managed
portfolios expand the slope of the MVE frontier compared to the non-managed portfolios.

Nodurbl Durbl Manuf Energy Hi-Tec Telecom Shops Health Utility Others

β 0,60 0,62 0,59 0,61 0,61 0,35 0,60 0,66 0,43 0,58
t-stat 9 8,32 9,07 14,27 11,65 11,58 11,12 10,97 9,52 8,85
α 2,76 5,56 6,36 5,34 6,4 6,11 6,92 2,71 6,9 6,95
t-stat 1,66 2,59 3,53 3,17 3,1 4,02 3,86 1,6 3,72 3,67

R2 0,35 0,38 0,35 0,37 0,37 0,12 0,37 0,45 0,19 0,34
N 1059 1059 1059 1058 1058 1058 1058 1058 1058 1059
RMSE 44,57 72,89 60,96 58,57 69,41 52,16 56,16 50,33 60,29 63,30

AR 0,21 0,26 0,36 0,32 0,32 0,41 0,43 0,19 0,40 0,38

E Variance predicting variance/return U.S. Industries

Table 20: Variance predicting variance, U.S. industries. The table reports the
regression results of realized variance on lagged realized variance: RVt = α + βRVt−1 +
εt. The beta coefficients represent the relationship between realized variance and lagged
realized variance, i.e. if variance predicts variance. The sample is 1926-2015 and we use
monthly data. T-stats are in paranthesis.

NoDurbl Durbl Manuf Energy Hitec Telecom Shops Health Utils Others
β 0,69 0,71 0,72 0,72 0,74 0,75 0,74 0,67 0,82 0,72
t-stat 31.87 31.37 34.34 34.49 35.83 36.15 36.26 29.21 46.83 34.67

R2 0,49 0,50 0,52 0,52 0,55 0,56 0,55 0,45 0,67 0,53
N 1081 1081 1081 1081 1081 1081 1081 1081 1081 1081
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Table 21: Variance predicting returns, U.S. industries. The table reports the
regression results of future returns on realized variance: ft+1 = α + βRVt+1 + εt+1. The
beta coefficients represent the relationship between realized variance and future returns, i.e.
if realized variance predicts future returns. The sample is 1926-2015 and we use monthly
data. T-stats are in paranthesis.

NoDurbl Durbl Manuf Energy Hitec Telecom Shops Health Utils Others
β 0,05 -0,18 0,11 -0,07 -0,02 -0,18 0,04 -0,01 0,02 -0,05
t-stat (0.19) (-1.14) (1.66) (-1.18) (-0.14) (-1.87) (0.18) (-0.04) (0.19) (-0.29)

R2 0,00 0,01 0.0025 0,00 0,00 0,01 0,00 0,00 0,00 0,00
N 1081 1081 1081 1081 1081 1081 1081 1081 1081 1081
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