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Abstract 

This thesis contains a study of cost structures through a cost minimisation approach. 

Estimations reveal predicted u-shaped unit cost functions for three types of vessels 

participating in the Norwegian pelagic fisheries: coastal vessels, purse seiners and pelagic 

trawlers. Interaction terms on defined vessel groups identify relative advantages in the unit 

cost of the most important species. Through a cost minimisation problem, we assess the 

potential for reductions in variable costs. The data origins from the profitability surveys 

conducted by the Norwegian Directorate of Fisheries in the period 2000-2014. 

The estimated cost functions take a polynomial form. Such a functional form is sufficiently 

flexible to estimate/fit a u-shaped unit cost function. OLS analyses reveal the predicted long-

run cost curve for several of the species included in the estimation. For the coastal vessels, 

these are herring, capelin and cod and pollock. In the combined fleet of purse seiners and 

pelagic trawlers, we find the predicted non-linear specification of costs for blue whiting and 

capelin. For both fleets, a linear relationship describes the underlying structure between 

variable costs and output of mackerel in the final specification. This specification applies 

also to the output of herring in the case of purse seiners and pelagic trawlers. These 

differences in the predicted relationships seem consistent with the structure of the data. 

We find a potential reduction of variable costs of NOK 10.5 billion in the optimal solution to 

the cost minimisation problem. This amount serves as an indication of the costs of certain 

regulations within the management system in the period. Our optimal solution disregards 

policy constraints such as redistribution of catches between vessel groups.  







1. Introduction 

In the most improved societies […] there are always a few commodities of which the price resolves 

itself into two parts only, the wages of labour, and the profits of stock […]. In the price of sea-fish, for 

example, one part pays the labour of the fishermen, and the other the profits of the capital employed in 

the fishery. Rent very seldom makes any part of it, though it does sometimes […]. 

Adam Smith (1776), The Wealth of Nations (p. 42) 

Creating an optimal fishery management system in the capture fisheries is a daunting task for 

the regulator. The fish, in particular pelagic species, follows changing migration patterns and 

cross several international borders. As is true for many natural resources, it is hard to assess 

optimal volumes of extraction. Variations in the levels of the stock make it difficult to plan 

according to the expected future setting of quotas.  

To further complicate the picture, policies are supposed to fulfil numerous and often 

conflicting objectives. In addition to environmental sustainability, an optimal management 

system should preserve the economic and social sustainability. Recent policies have focused 

on improving the economic outcome. Some have argued that the introduction of these 

policies have been at the expense of employment in the coastal communities and thus a 

breach of the social contract. 

It is interesting to read the above quotation from Adam Smith’s famous work The Wealth of 

Nations. Smith lived and worked in a time of technological improvement and changing 

social structures. Thus, it is no wonder he concluded that the rent dissipation in the fisheries 

were a feature of progress. Today, this curve has turned. Due to the natural production 

process of the fish, we know that rent generation is a feature only possible in the properly 

managed fisheries. The costs of acquiring this knowledge have been immense, with stock 

depletion and economic waste as outcomes in earlier management regimes. Thus, 

understanding the historical development is crucial to grasp the functioning of modern 

regimes establishing pre-catch property rights to the fish. 

Norwegian management of fisheries has improved in the last decades. Stocks are better 

preserved and the continuous focus on management of capacity has improved the economic 

foundation. Nevertheless, the overall economic state is still unclear given a complicated 

landscape of laws, regulations and objectives. Cost efficiency plays a crucial role in any 



 

economic assessment of an industry. The aim of this thesis is to assess the cost structure of 

vessels participating in the Norwegian pelagic fisheries. We run an optimisation using 

estimated cost functions for two fleets: coastal vessels and the combined fleet of purse 

seiners and pelagic trawlers. The estimation work takes a cost minimisation approach, and 

allows for within fleet differences using interaction terms on different vessel groups. We use 

data from the profitability surveys of the Norwegian Directorate of Fisheries from 2000-

2014. Natural variations and conflicting policy goals could make a diversified fleet best 

suited to catch the seasonal quotas. We conduct optimisations both restricting and not 

restricting reductions of vessels within a fleet to highlight this.     

The thesis constitutes of five main chapters (2-6). In chapter 2, we introduce the Norwegian 

management of fisheries. This includes a presentation of central developments with respect 

to the three sustainability criteria: environmental, economic and social sustainability. Due to 

the similarities in trends and regulations, the discussion is not limited to regulations only on 

pelagic species. For a broader introduction to Norwegian fishery management, we 

recommend e.g. Iversen et al. (2016). 

Chapter 3 introduces the theoretical approaches to fishery management. We begin with the 

open-access fishery introduced by Gordon (1954), and describe the predicted outcome in 

such a fishery. Second, we discuss a regulated open-access fishery by presenting a paper by 

Homans & Wilen (1997). Finally, we describe a management system with individual vessel 

quotas (IVQs). In this discussion, we modify an idealised system of individual transferable 

quotas (ITQs) by Arnason (1990), though we also build on other papers.  

In chapter 4, we present descriptive statistics and explain the division of fleets and groups. 

We include the distribution of catch, the cost structure of the fleets, description of variables, 

selected trends and the structure of the data. To connect theory and the chosen estimation 

approach, chapter 5 begins with a discussion of seasonal and long run behaviour in an IVQ 

fishery. We present the functional form specification and the estimated cost functions. 

Papers by Sandberg (2005) and Nøstbakken (2006) serve as a point of departure for the work 

towards the chosen approach. Chapter 6 contains a cost minimisation problem. We optimise 

based on the estimated cost functions from chapter 5, and discuss the feasibility of the 

results. We use results and discussions from Steinshamn (2005) and Grimsrud, Lindholt & 

Greaker (2015) as background material. Chapter 7 includes concluding remarks. 





2. A brief introduction to Norwegian management of 

fisheries 

Norway has long traditions within the management of and extraction from fisheries. In this 

chapter, we discuss developments and policy goals within this management. This yields an 

important introduction to the analyses conducted in the modelling chapters. We do not limit 

ourselves to look only at regulations directed towards the conservation and optimal 

extraction of pelagic species. 

The discussion primarily centres on important developments within the three pillars of 

current fishery policies: environmental, economic and social sustainability. Thus, there are 

many important aspects of Norwegian fishery management that we have not found room for 

in this short chapter. The processing industry has an important relation to the fishing fleet, 

and, historically, the regulation of landings has been important. Liberalisation and the 

growth of market solutions have been present in the sales process. Improving prices abroad 

have made export an important factor, and fish today totals 9% of Norway’s total export 

revenues (though this includes aquaculture).1 Other trends include developments with 

respect to legislation such as the participation law of 1999. 

Fishery management cannot rely solely on national legislation. Extraction on stocks that 

migrate between different countries is a challenge in need of international solutions. Around 

90% of the fishing conducted in Norway is on stocks shared with other states.2 This helps 

explain the growing focus on the spatial dimension in fishery management. We are not 

primarily concerned with spatial or biological matters in this thesis. However, it is important 

also for the economist to understand how single fishery models may fail to represent the 

challenge of optimal extraction. We assume that an exogenous TAC determines revenues in 

chapter 5. This thesis thus gives the spatial and biological dimensions less consideration than 

they deserve. We do however mention a few selected international developments in this 

chapter. 



1  Iversen et al. (2016), p. 92. 

2  Årland & Bjørndal (2002), p. 308. Together with Norwegian Directorate of Fisheries (2016), Grimsrud et al. (2015) and 

NOU 2006:16 (2006), this paper introduce trends and developments discussed in this chapter.  



 

Management policies have developed as a response to technological developments and 

political goals. A century ago, open-access systems persisted in fishery management. The 

current regime is a complex mixture of regulated open-access and IVQ policies. Several 

conflicting objectives are the basis for the Norwegian regulations of fisheries. This further 

complicates the picture, as the regulator faces trade-offs in the selection of appropriate 

regulations. Such trade-offs help explain deviations in outcome as compared to the economic 

models we discuss in chapter 3. 

Fish has always been one of Norway’s primary commodities. Stockfish became an important 

export product already in the 12th century. From around 1350 to the 18th century, the 

Hanseatic League kept a strong presence in Bergen to gain control over the revenue streams 

generated by this export. Coastal cities like Stavanger and Bodø experienced sudden and 

explosive growth in inhabitants due to the repercussions from the fishing industry.  

In earlier periods, the need for extensive regulations remained low. Natural variations 

undoubtedly created seasonal differences, but the open-access fishery persisted.3 However, 

technological progress and population growth created growing pressure on the stocks from 

the 19th century and onwards. While some continued to explain the collapse in several 

fishing stocks as natural variations, a growing number of researchers acknowledged man’s 

effect as a predator with respect to reduced biomass levels.4 

The developments led to the establishment of a directorate of fisheries and an institute of 

marine research in 1900. Internationally, the establishment of the International Council for 

the Exploration of the Sea in 1902 was important to promote cooperation between coastal 

nations. A 1906 law closed all Norwegian fisheries to foreigners, and a temporary law from 

1938 introduced minimum length with respect to catchability for the saltwater species.5 In 

1946, Norway became the first country in the world to establish a ministry of fisheries.  



3 This statement is not equal to saying that there existed no regulations in the fisheries. As stated by e.g. Norwegian 

Directorate of Fisheries (1951), one can trace the introduction of gear restrictions back to the administration of Magnus 6. 

of Norway (1238-1280). The legal right for everyone to fish meant, however, that fish remained an open-access resource. 

4 See section 3.1 for a further discussion. 

5 Norwegian Directorate of Fisheries (1951), p. 4. 





Figure 2.1 illustrates the number of fishermen and vessels in Norway from 1930-2015. 

Fishermen are defined as the number of workers with fishing as a primary or secondary 

source of income. For later years, we have included active vessels. These are vessels with a 

registered catch income during the year. People with fishing as a primary or secondary 

source of income totalled around 125 000 in 1940. This rapidly decreased to 50 000 in 1970. 

Some might interpret this as a sign of a reduction in the overall effort in the fisheries.6 There 

are good reasons why we should not accept such a storytelling. It is for example doubtful 

that the number of fishermen is an accurate measure of the total capacity in the fisheries. The 

introduction of larger vessels, stronger engines and improved gear and fish finding 

equipment is likely better explanations of the falling employment in the fisheries. This 

corresponds well to the overall growth expectation of productivity in the Norwegian 

economy after World War 2. 

 

Figure 2.1 – The development in the number of fishermen and vessels in the period 

1930-2015, including active vessels from 1990. Source: Norwegian Directorate of 

Fisheries (2015). 

It is however interesting to discuss whether the productivity growth in the fishing fleet has 

been as high as in other sectors. Such a discussion implies a need to measure both effort and 

capacity in a fishery. We can define capacity in a fishery in a number of different ways. This 

definition is of importance, as we will see in chapter 3, because a feature of the open-access 



6 Effort is a measure of the utilisation of the capacity in a fishery. There are different ways to measure this. Steinshamn 

(2005) uses capacity utilisation, defined as operating days/330. The number 330 is an assumed maximum of operating days. 



 

equilibrium is that actors commit capacity until all rents are dissipated. Thus, regulators 

wanting to improve the economic outcome should introduce accurate measures to limit 

capacity. As this thesis regards economic efficiency, one relevant definition is the following: 

“Economic capacity is reflected through the capital invested in vessels and gear. Optimal 

[capacity] is achieved when the economic result is maximized.”7 

A strong growth in capacity would potentially hint towards overcapitalisation and inefficient 

use of economic resources. Vessel development in Figure 2.1 shows such transitional 

dynamics towards the 1970s. If the development is accurate, persistent rents led to a 

continuous introduction of new capacity. The decrease in vessels from 1960 to 1970 would 

be equivalent to a correction due to (very high) overcapacity, leading some actors to leave 

the industry. In unregulated fisheries, we expect overcapacity to lead to overfishing. Thus, 

there exists a likely relation between the correction and lower levels of biomass. Continuous 

overfishing in an open-access fishery could, as discussed in chapter 3, lead to a collapse in 

the fishery and depletion of stocks.  

To what extent can the theoretical framework help explain the developments in the 

timeframe considered? As stated in NOU 2006:16 (2006), capacity reductions did not 

become an important governmental priority before the 1970s (NOU 2006:16, 2006, p. 22). 

With the benefit of hindsight, we know that several herring stocks collapsed between the 

1950s and the 1970s (Lorentzen & Hannesson, 2004). This led to a closing of fisheries, and 

capacity reductions receiving an increased amount of attention from regulators. Even though 

the number of active fishermen decreased in the period 1930-1970, we can conclude that 

overcapacity and overfishing resulted in substantial biological and economic challenges for 

the Norwegian regulators. 

The above discussion implies that management of Norwegian fisheries was based on far 

from optimal policies in the years before 1970. Falling employment made it harder to 

preserve the many coastal communities dependent on the fisheries. However, Norway was 

not alone in experiencing these problems.  



7 Translated from (NOU 2006:16, 2006), p. 25. Chapter 3 of this government white paper introduce difficulties related to 

capacity estimation in a fishery. 





As a response, the international cooperation saw further developments in this period. An 

example of such a development was the establishment of the Norwegian-Russian fisheries 

commission in 1974 (Joint Russian-Norwegian Fisheries Commission, 2016). This 

establishment formalised negotiations on a TAC and the setting of minimum sustainable 

biomass levels. In 1977 and 1980 respectively, a protection zone around Svalbard and a 

fishery zone around Jan Mayen were established. Even more important was the conclusion 

of the United Nations Convention on the Law of the Sea (UNCLOS) in 1982. The law 

established the exclusive economic zone of 200 nautical miles as an international standard.8 

These developments were important prerequisites for current management regimes, as they 

gave states control over fishing activities in national waters. 

 

Figure 2.2 - Zones under Norwegian fisheries jurisdiction. * An agreement 

between Norway and Russia cover the adjacent area in the Barents Sea. Source: 

Ministry of Fisheries and Coastal Affairs (2007). 

Figure 2.2 shows the current fishing zones under Norwegian jurisdiction and surveillance. 

These are, in essence, the zones established through the mentioned agreements. The area of 



8 It is however important to note that the convention first came into force when Guyana in 1994 became the 60th country to 

ratify it. The limitation of the UNCLOS framework in the high seas, where vessels are subject only to the jurisdiction of 

their flag state, has led some to criticise the economic zones.    



 

the zones is more than six times larger than the Norwegian mainland, creating challenges 

with respect to maintaining control over fishing activities. To deal with this, Norway in 1994 

adopted a black list of vessels known to engage in illegal fishing, and banned such vessels 

from fishing in Norwegian waters. It is important to emphasise that countries periodically 

fished more than the agreed upon quotas during the period. Thus, one could question to what 

extent the establishment of fishing commissions and the UNCLOS framework actually 

helped protect stocks. 

While measures such as the above mentioned were developed to secure biologically sound 

levels of stocks, the focus on economic efficiency was still low. Rögnvaldur Hannesson 

wrote in a 1985 paper 

[Norway’s fishery policy] objectives put a low priority on economic efficiency, while various 

objectives based on equity are put in the foreground. The result is that the contribution of Norway’s 

fisheries to the national income is slight. Norway’s fishery policy consists of two largely 

uncoordinated parts, one concerned with maintaining fishermen’s incomes and the other with 

managing fish stocks.9 

Since the 1950s, the government had subsidised the Norwegian fisheries. In 1964, an 

agreement between the state and the fishermen’s association secured yearly transfers. Thus, 

the state contributed to high employment and overcapitalisation. Though the agreement 

lasted until 2004, actual abolishment of subsidies happened in the early 1990s. The European 

Free Trade Association’s conclusion of the free trade agreement for fish abolished distortive 

measures, and thus central parts of the subsidy regime (Flaaten & Isaksen, 1998). 

At this point, it is appropriate to make a divide between the demersal and pelagic parts of the 

fleet. Due to the volatility of the migration of pelagic species, the pelagic part of the fleet has 

not maintained the same regional affiliation as e.g. the vessels primarily fishing cod over 

time. These differences have increased the possibility for productivity improvements in the 

pelagic parts of the fleet, because the target of preserving coastal settlements has been less 

important. Thus, already in the 1950s and 1960s there was a rapid efficiency increase in the 

pelagic fisheries, with introduction of larger vessels and capital intensive equipment like the 

sonar and power block (Lorentzen & Hannesson, 2004). However, this discussion does not 



9 Hannesson (1985), p. 115. 





imply that the pelagic fleet did not have potential for restructuration in the 1990s. Higher 

efficiency could correspond to even higher levels of capacity, in line with the definition of 

economic capacity earlier in this chapter.  

In 1990, the government closed the cod fisheries. This was the first utilisation of such a 

measure of pre-catch ownership rights in a Norwegian coastal fishery (NOU 2006:16, 2006, 

p. 23). During the 1990s, implementation in other fisheries followed. Today, only a small 

portion of the catch remains in an open group, available to everyone that wants to 

participate. The development towards a system of IVQs, giving the vessel a right to catch a 

portion of the TAC, has led some to argue that we have moved towards a “privatisation of 

the oceans”, see for example Røed (2016). We discuss the theoretical predictions of different 

management systems in chapter 3.  

The latter part of the 1990s also saw the introduction of another efficiency improving 

measure. The Norwegian government introduced a structural system to reduce overcapacity 

in the fleet. Such systems enable the transfer of a pre-determined part of the vessel quota 

from one vessel to another. A condition for this transfer is the scrapping of the vessel losing 

its quota. Thus, the government stimulates the less efficient actors to sell their vessels and 

leave the industry. This reduces overcapacity and potentially realises rent generation.  

Initially, the system operated with an 18-year duration on the structured part of the quota. A 

coalition government of centre-right parties decided to change this to indefinite. The change 

sparked a lengthy discussion on the ownership of the rights to fish. This discussion 

culminated in the reversal of the perpetuity by a centre-left coalition that came to power in 

2005. Owners of structural quotas tested the reversal in court, but the appeal fell through. A 

modified version of the structural quota system thus still exists. 



 

 

Figure 2.3 – The triangle of sustainability. Replicated from Iversen et al. (2016). 

In this chapter, we have briefly discussed three important developments in the Norwegian 

fisheries: the fall in employment, stock management and economic profitability. The 

foundation of current management of fisheries rests upon three pillars of sustainability. We 

illustrate these in Figure 2.3. Structural quota systems help maintain economic sustainability 

through the incentive to reduce overcapacity. Vessel quotas serve the same purpose because 

of the removal of the need to overcapitalise, as we will explain in section 3.3. Thus, later 

years’ developments have increased the profitability of the sector. 

The closing of previously open-access fisheries and the international cooperation sustain the 

environmental foundation of the industry. Management of stocks has improved and species 

such as herring have become economically profitable again. Social sustainability typically 

relates to the target of maintaining smaller coastal communities. As illustrated in Figure 2.1, 

the total number of fishermen has decreased every decade since the 1940s. Given innovation 

and the general economic development, this is an unsurprising trend. Nevertheless, one 

could argue that social sustainability has lost ground to the other two policy foundations. 

 

 

 





3. Theories on the management of fisheries 

This chapter contains a broad introduction to the development of theories on the 

management of fisheries. We start by introducing the “classical” theory of a fishery, the 

open-access model. In an open-access fishery, entry is open to and free for all, leading profit-

maximising actors to deplete the stock. Next, we extend the analysis to a regulated open-

access fishery, where the introduction of regulatory measures such as a closing of the fishing 

season and various forms of gear restrictions ensure conservation of fish stocks. While such 

systems have positive biological effects, they fail to eliminate the “race for fish”, creating 

economic waste and overcapacity. Finally, we discuss systems introducing private property 

rights to the fish stocks. Shifting individuals’ perspective from one of profit maximisation to 

cost minimisation, systems utilising ITQs or IVQs can, entirely or partially, eliminate 

economic waste and attain a socially desirable equilibrium. Understanding the IVQ system 

outcome is crucial when modelling the current and optimal cost structure for the Norwegian 

fisheries, and for the development of a theory on the cost minimising behaviour in section 

5.1.  

When participation is free and open, as in the open-access fishery, one say that the resource 

is common property. From a legal standpoint, this entails that no one exerts a property right 

with respect to the fish stock. This is not the same as saying that no one exerts property 

rights over the fish. As soon as the fish is caught, it is under the fisherman’s ownership, 

exerting the liberty to either sell or consume it. Comparing fishery management systems, a 

crucial point is whether establishment of the property right happens before or after the catch. 

We come back to this discussion in section 3.3.  

Optimal management of a natural resource can lead to the generation of a resource rent. This 

rent represents a return above the normal returns on capital and labour inputs. Such a rent 

may exist because nature does part of the production process, leading the unit cost faced by a 

single actor to be lower than social unit cost of production. As we will see, the resource rent 

may therefore only be realised when private actors take a long-term stake in the fishery. A 

natural theoretical outcome is to give private actors ownership of the fish prior to the catch. 

In systems where such an ownership is lacking, rents are always dissipated and economic 

resources wasted.  



 

Whenever we are discussing elimination of economic waste, we are therefore referring to the 

maximisation of such a resource rent. The resource rent is not a primary focus in this thesis 

per se. Mathematical discussions on stock dynamics are not a central theme of this thesis, 

and therefore not included in the following chapter. 

We are concerned with the pelagic fisheries in this thesis. Gordon (1954) emphasises that the 

analytical framework only holds true for demersal fisheries, but that the main conclusions 

nevertheless should be true for all species (Gordon, 1954, p. 129). We assume this claim to 

hold true for the other models as well. Chapters 5 and 6 include all relevant formulas and 

mathematical expressions in an attempt to make this chapter more accessible.  

Constructing an optimal management regime for a fishery is a difficult task. The size of the 

fish stock is an unobserved entity, as is true for many natural resources. Further complicating 

the task of a social planner, the stock is also subject to large changes due to variations. The 

economist, eager to maximise the sum of current and future profits, thus finds it necessary to 

accept a large degree of uncertainty when modelling an equilibrium. A focal point of our 

later analyses will be to bind together the following theories with estimations on real world 

data. 

3.1 The open-access fishery and the bionomic model 

An open-access fishery is a system of resource extraction where participation is open to and 

free for all. In this section, we introduce the open-access fishery and the bionomic model 

presented by Gordon (1954).10 Through the model illustrated in Figure 3.1, we explain the 

equilibrium under such a management regime and discuss why such an outcome is socially 

undesirable. The predicted outcome of such a fishery is important to include, explaining the 

development towards output regulations validating the usage of duality theory in the 

estimation. 

Historically, no universal agreement existed on the importance of economic theory in fishery 

management. One factor can in particular help explain the initial limited role of economics 

when designing fishery management systems. The extraction of fish from fisheries was, by 



10 However, we undoubtedly also include much of the analysis from Scott (1955). 





many, not viewed upon as extraction of a limited resource. Doctor Harden F. Taylor (1951), 

biologist and president of the Atlantic Coast Fisheries Company, argued: “no single species 

so far as we know has ever become extinct, and no regional fishery in the world has ever 

been exhausted.”11 

With such a point of departure, it is easy to take the stand that an open-access system leads 

to the socially desirable outcome. This is the standard microeconomic competitive 

equilibrium where marginal costs (MC) equal marginal revenues (MR) (which also 

corresponds to the constant, exogenous unit price).12 Assuming unlimited resources, such an 

equilibrium yields neither biological degradation nor economic waste.  

Economist H. Scott Gordon’s famous 1954 paper The theory of a common property 

resource: The fishery challenges this view. Gordon is critical of using standard 

microeconomic theory as a predictor of the realised outcome in a fishery. While the 

assumption of MC = MR holds on an individual level, the presence of negative externalities 

lead to social marginal costs being higher than those faced by an individual firm (Smith, 

1968, p. 413). He introduces an open-access fishery in a model combining biology and 

economy, also referred to as a “bionomic” or “bioeconomic” model of fisheries. A crucial 

element of this model is possible stock depletion, justified e.g. by substantial technological 

improvements.  

If stock depletion is possible, what is the optimal level of extraction over time? Gordon 

discusses potential equilibria. An obvious candidate for equilibrium extraction is to extract at 

the maximum sustainable yield (MSY).13 MSY is where the net growth of the stock is at its 

highest. This enables the maximum possible sustained catch levels. Gordon denies this 

approach as an optimal one. The management of fisheries is interesting because it is 

beneficial for man, e.g. as food or as a commodity, not because it is beneficial for the fish.  

With such a mind-set, one should choose the production that gives the maximum economic 

yield (MEY). This leads to optimal utilisation of the limited capital, labour and natural 



11  Taylor (1951), p. 314. 

12 Pindyck & Rubinfeld  (2013). 

13 Gordon (1954) discuss this, though never actually utilising the term maximum sustainable yield. Instead, he terms it the 

largest sustainable catch. 



 

resources. When one assumes that the cost per unit of fishing effort is constant, Figure 3.1 

illustrates how the economic optimum is typically located to the left of the MSY point. The 

MEY point is the point where the total cost curve is tangent to the total revenue curve. 

 

Figure 3.1 - The maximum economic yield (MEY), maximum sustainable 

yield (MSY) and open-access equilibrium as described through Gordon`s 

model.14 

The crucial takeaway from Gordon’s model is that we cannot realise the MEY allocation 

with an open-access management system. Private actors commit too much fishing effort due 

to differences in the individual and social unit costs. The open-access equilibrium leads to an 

excess build-up of capital and overfishing, often referred to as “too many vessels chasing too 

few fish” (Conrad, 2010, p. 84). These effects are self-reinforcing. 

This analysis shows that we cannot achieve the optimal market allocation in a pure open-

access fishery. The presence of negative externalities leads profit maximising actors to 

overexploit and deplete the resource. Gordon acknowledges this, though at the same time 

questioning the effectiveness of regulations. He argues that such systems are no better at 

obtaining the maximum economic yield than the open-access fishery. As we will see in the 

next section, the main elements of Gordon’s framework describe well economic failures also 

with regulatory measures. 



14 Note, however, that Gordon utilise a different diagram when describing his theory. We base our illustration on Figure 3.4 

open-access equilibrium of effort presented in Conrad (2010).  





3.2 Regulated open-access fisheries 

This section extends the analysis from section 3.1 through the introduction of regulatory 

measures. We show how the regulated open-access fishery yields biological protection, but 

fails to achieve an economically desirable outcome. We include a discussion on the setting 

of a quota rule and other regulatory measures. The section is important to understand the 

introduction of catch limits, prior to the establishment of pre-catch rights to the fish in 

section 3.3. A regulated open-access fishery treats the fish as a common property, like the 

open-access system, but sets a TAC for the fishery. To ensure achievement of the target 

TAC, the system entails a closing of the fishing season, gear restrictions or other regulatory 

measures. 

Figure 3.2 illustrates a regulated open-access system. Developed in Homans & Wilen 

(1997), it is today a standard framework for the evaluation of the regulated open-access 

fishery.15 Officials determine a biologically safe long-term boundary for the fish stock. 

Whenever the actual stock is below this boundary, lower total quotas are set allowing the 

stock to recover. Conversely, higher total quotas are set when the level of the stock is above 

this regulatory equilibrium level. This prediction is also important for an IVQ system, 

because the TAC determines the size of the individual quotas.  

There are still no pre-catch property rights in a regulated open-access fishery. Thus, 

individual actors have an incentive to fish as much as possible before the season closes. The 

industry therefore commits capacity each season until all rents are dissipated. Vessels fish 

until the individual marginal costs reach the marginal price in the market. The individual unit 

cost is still different from the actual social unit cost, explaining the persistent economic 

waste. 

 



15 We have also included much of the analysis from Conrad (2010). 



 

  

Figure 3.2 - The regulator quota rule, as presented at page 6 of Homans & Wilen 

(1997).  

The entire transitional path is part of the dynamic equilibrium. Starting from an arbitrary 

biomass level, this evolves according to the between season growth and total catch quota. 

Note that the rent dissipating capacity is not part of this transitional path. It is easy to see this 

from Figure 3.2. The determinant of the steady state equilibrium biomass is the intersection 

of the growth and regulator quota. Capacity is a determinant of the optimal season length. 

One could therefore say that the outcome of the entire fishery is a result of the joint 

“behaviour of both the industry and regulatory agency, coupled with biological dynamics” 

(Homans & Wilen, 1997, p. 10).  

Understanding the differences between the frameworks of Gordon (1954) and Homans & 

Wilen (1997) is crucial to understand the importance of the models described in this section. 

We have already established that the biomass should be higher in the regulated case, as the 

official quota protects the stock from overfishing when set according to biological measures. 

Furthermore, an aggregate TAC limit introduces an incentive for each individual fisher to 

maximise his share of the catch. This is the same as the competitive race for fish described 

by Gordon, but with a persistently higher biomass, capacity remains at higher levels. Thus, 

the persistent economic waste is in fact larger in the case of a regulated open-access 

management system. 

 





3.3 Individual vessel quotas 

The models presented in the previous two sections treated the right to fish as common 

property. In this section, we consider management systems where establishment of property 

rights happens prior to the catch. With correct implementation, these models can lead to 

economically efficient outcomes and biological protection. The methodology follows the 

approach of Arnason (1990), modelling an idealised ITQ system. We modify the approach to 

resemble the IVQ system in e.g. Eggert & Tveterås (2007).16 As suggested by the names, the 

primary difference between these two management systems is the lack of direct 

transferability of quotas in the latter. The reader should however also note that in the case of 

IVQs the quota holder is the vessel, while in the case of ITQs it is the firm. 

Describing the equilibrium of an IVQ system has been difficult. With transferability 

considered a good for both seller and buyer, much of the theoretical literature focuses on 

ITQs. Initial recipients of transferable quotas have in some cases profited significantly on the 

selling of quotas. Regulators in e.g. Norway have deemed this outcome unacceptable (see 

chapter 2). IVQ systems have therefore often been preferred in system implementation to 

limit a “privatisation of the oceans”. While there is an indirect transferability of quotas 

through structural policies and transferability of vessel ownership, most of the relevant 

Norwegian fisheries correspond to a model of IVQs. Understanding such a system 

theoretically is therefore of crucial importance in the modelling chapters. Note however that 

Norwegian quota systems operate with both vessel quotas and (vessel) maximum quotas. 

The difference between a vessel quota and a maximum quota is that the first is reliable in the 

period and guaranteed by the authorities, while the second is not.17 

In the following, we consider cost minimisation through output restriction and non-

transferability sufficient modifications to the model in Arnason (1990). If these 

modifications induce the least efficient actors to leave the industry at the point of rotation of 

capital (i.e., at the point where the old vessel is scrapped), our expected equilibrium capacity 

is the same as in an ITQ system. This holds true when vessels may be bought and sold and if 



16 In addition, Conrad (2010), Grafton (1996), and Buck (1995) also provide important background material to this section.   

17 Maximum quotas are introduced e.g. when IVQs do not result in the full TAC being caught. We discuss when this might 

happen in section 5.1. 



 

there exists an opportunity cost of capital, corresponding e.g. to the rent capitalists can 

obtain by investing in bonds of similar risk. Without transferability of quotas, less efficient 

actors might lack incentives to leave the industry in the short run. Thus, our system of IVQs 

has a longer transitional path than one including transferability. 

Our approach yields five fundamental factors characterising an idealised IVQ system. 

Factors 1 and 3-5 are from Arnason (1990), with the exception that we refer to individual 

vessels rather than firms.  

1) The individual catch quotas are shares in the total allowable rate of catch. These quotas are referred 

to as share quotas. 

2) The regulation of output yields an (absolute) upper boundary for the vessel, i.e. no quota trading is 

possible between vessels, equivalent to the utilisation of a cost minimising approach.   

3) The share quotas impose an upper limit on the vessel’s permitted rate of catch. 

4) The share quotas are permanent in the sense that they allow the holder the stated share in the total 

quota in perpetuity. 

5) The quota authority issues the initial shares and subsequently decides on the total quota at each point 

in time. 

Systems establishing pre-catch property rights have an important feature dealing with the 

inefficiency of the regulated open-access system. They break down the TAC into 

individually held rights of landing a specified portion of the catch of fish. With guaranteed 

landings, there is no need for overcapitalisation. Where a rush to the fishing grounds, 

catching as much as possible before the closure of the season, was important in the open-

access systems, IVQ systems eliminate the race for fish. Thus, rent generation is possible in 

such fisheries. One effect of guaranteed quotas is attempted improvements in the quality of 

fish extracted, typically leading to higher prices, longer fishing seasons and more fresh fish 

sold (Homans & Wilen, 2005). This is a potential challenge when using duality theory to 

minimise costs (see section 5.1). 

With many outstanding quotas, the individual vessel cannot affect the market price for fish 

and revenues are exogenously given. Fishermen then alter their perspective from varying 

output given a production function to a cost minimising approach holding output constant. 

For this to be true in equilibrium, ownership of vessels must not be too concentrated as this 

could lead to monopolistic behaviour. The alteration of perspective is a crucial assumption in 

our thesis, as we use the cost minimisation approach to estimate non-linear cost functions in 

chapter 5 (see section 5.1 for a discussion on the cost minimising vessel’s behaviour). Note 





that such an approach would be incorrect in an ITQ system, as output remains unconstrained 

(at least up to the species’ TAC) through the possibility of buying additional quotas 

(Bjørndal & Gordon, 2000). At the owner level, the possibility of buying and selling vessels 

make output variating behaviour possible to some extent also in an IVQ system. As we are 

estimating using predicted seasonal behaviour, this should not induce a problem. 

The assumption of the individual quota being an upper limit for the permitted rate of catch is 

crucial if the aggregate catch is to equal the TAC. Fulfilment of this assumption is costly, as 

it requires the implementation of monitoring and penalties set by the regulator. Otherwise, 

the lack of incentive to hold the quota would lead to overfishing, resulting in the open-access 

equilibrium. Quotas awarded indefinitely is, as we discussed in chapter 2, one of the most 

controversial parts of these systems. Indefinite quotas have led some to argue that regulators 

“forever” have privatised the profits from a common resource (Røed, 2016). Using the 

discussion from Arnason, we can show how a finite (or discrete) quota system leads to a lack 

of efficiency. In an infinite quota system, the transitional path always takes the most rapid 

approach. Thus, excluding natural stock variations, quotas are set according to the first path 

resulting in the long-term optimal stock level. With finite periods, several exploration paths 

satisfy the constraint that fish caught cannot exceed the quota. Not all these paths are 

optimal. Therefore, implementation of infinite lasting quotas is the only way to ensure 

achievement of the social equilibrium.18 

Discussions on how quota authorities set and distribute initial shares have been important. 

One of the main reasons is that firms normally obtain these initial quotas gratis. Arnason 

(1990) highlights the possibility of allocating initial shares through a quota market. Thus, 

with a perfectly functioning market there is nothing wrong with the public profiting on the 

setting up of an ITQ system. In fact, this should lead to an optimal set of actors entering the 

industry from the beginning. The IVQ nature of our model make such a quota market 

allocation impossible. However, an auction based initial allocation should yield a similar 

result. Other political goals, e.g. the protection of fishermen at the time of implementation, 

often make these approaches difficult. This explains the rare utilisation of such initial 

actions. For the purpose of this thesis, the important takeaway is that the initial distribution 



18 Our approach, omitting structural quota systems in the optimisation problem, is equivalent to fishing permits lasting 

indefinitely. While the law states that granting of permits happens on a year-to-year basis, history tells us that vessels 

fulfilling requirements get a permit to fish also in the following year. 



 

of quotas is inefficient, yielding incentives for regulators to reduce economic waste. 

Furthermore, redistribution of catches might be hard to achieve due to conflicting policy 

goals. 

Systems also introducing transferability have a second feature reducing economic waste. 

Transferability limits inefficiency as the most efficient quota owners can buy out less 

efficient actors, minimising the economic cost of catching a fish. In the very long run, the 

effect of such transfers vanishes as our assumptions ensure that only the most efficient actors 

reinvest the capital necessary to remain in the IVQ fishery.  

Another feature of an ITQ fishery may nevertheless give an improvement over IVQ systems. 

When quotas fall, some actors might want to leave the fishery because their discounted 

future stream of revenues is lower than what they could achieve by selling the quota today. 

Transferability ensures that these can quit the fishery, leaving only the economically 

efficient actors. This is an improvement over IVQ systems, where information known at the 

time of reinvestment is the primary determinant of fishery capacity. Thus, an optimal fleet in 

an IVQ system might need a higher degree of diversity to be able to respond to the natural 

variations in biomass affecting the size of the seasonal quotas. 





4. Data and descriptive statistics 

In this chapter, we describe our dataset and show important descriptive statistics. The 

intention of the chapter is to give the reader a better initial understanding of the work 

conducted and the methods applied in our analysis. We comment on the collection of data, 

distribution of catch, variables, classification of cost items, distribution of costs, selected 

trends and structure of the data. 

4.1 Collection of data and the population 

The Norwegian Directorate of Fisheries (NDF) has collected information from profitability 

surveys conducted on the Norwegian fishing fleet since 1950 (Norwegian Directorate of 

Fisheries, 2015). These data enable researchers, bureaucrats, and other stakeholders to 

evaluate e.g. fishery regulations, strategies on profitable and sustainable fisheries, and the 

structure of the fishing fleet. Our dataset stems from such surveys. We look at annual cost 

and catch data at an individual vessel level for the 15-year period 2000-2014. The dataset 

consists of data from coastal vessels, purse seiners and pelagic trawlers. Due to similarities 

in technology and cost structures, we combine the latter two. Utilisation of vessel groups 

allows for within fleet differences. We come back to this grouping later in this chapter. 

 Several different species are included in the dataset we possess. These include Norwegian 

spring spawning herring (NSSH), North Sea herring (NSH), mackerel, blue whiting, capelin, 

sandeel, cod, haddock, pollock, Greenland halibut, shrimp and other species. Out of these, 

the first six are included as pelagic species. Note that this excludes certain pelagic catches 

from our later analysis, such as that of Norway pout, as these are included in the other 

species categories. The inclusion of two groups divides catches from several species. One 

group includes fish caught south of the 62nd latitude, the other catches north of the 62nd 

latitude.  

Over time, the population included in the surveys has changed. Until the 2009 survey, there 

were criteria regarding operating days and length of the vessel that had to be satisfied to be 

included as part of the population. However, from 2009 the population consists of vessels 

with catch revenue above a minimum level. The consequence of this selection process is that 

the survey consists of the vessels that are responsible for the dominant share of the catch 



 

revenue in the Norwegian fishing fleet (Norwegian Directorate of Fisheries, 2016). In 

addition to information about the vessel revenue, costs and balance sheet, key figures such as 

the operating days and man years are collected.19  

The division of vessels into vessel groups and the calculations of variables have also been 

subject to changes during the relevant period. In 2008, the profitability survey changed from 

an economic to an accounting perspective. In conjunction with the change of perspective, 

NDF created new time series based on the perspective of accounting. The change of 

perspective is not concern to us, as the dataset we use contains these new time series. 

The scheme of statistical sampling consists of three steps: stratification, methods for 

determining the number of vessels included in the population, and the actual drawing of the 

sample. It ensures a representative sample (Norwegian Directorate of Fisheries, 2016). The 

prevailing method for statistical sampling in the period of our dataset has not been subject to 

change. The reader should also note that from the 2009 survey and onwards, NDF decided to 

reduce the statistical sample. This is worrisome, because we want to estimate cost functions 

on the entire period. In chapter 5, we include year dummies to limit potential effects of for 

example the unequal distribution of the time series.  

Only a few vessels have their total catch caught in either pelagic or demersal species. To 

separate pelagic from demersal fisheries, we apply the same criterion as in the profitability 

survey: the fishery where the vessel has generated the largest share of catch revenue 

determines to which fishery the vessel belongs.  

Vessel grouping corresponds to the prevailing method as presented in the profitability 

survey. As we are concerned only with the Norwegian pelagic fisheries, our groups 

correspond roughly to groups 9-13 in the profitability surveys. The grouping of the vessels is 

not straightforward, as we do not have information on the corresponding vessel group of the 

vessels in the dataset. However, vessels have a corresponding operation code. An overview 

of the operation codes and their respective names also follows the dataset. The names are 

typically describing characteristics of the vessel. To exemplify, the corresponding name for 

operation code 12 in 2009 is “Purse seine”, while the corresponding name for operation code 

19 in 2007 is “Coastal vessels using seine. Vessels 11-21.35 meters quota length”. We use 



19 Man year is a variable expressing average employment of a vessel during a year. 





this overview to divide vessels into vessel groups. This division is important in the 

estimation process, because it allows us to correct for the utilisation of different gear within a 

fleet. In Table 4.1, we present an overview of the utilised operation codes from the 

profitability survey. The table also includes the number of observations in each vessel group.  

For the coastal vessels, there are 37 observations dropped due to not fulfilling the criteria of 

belonging to the pelagic fishery, and having an operation code and a respective name, that, to 

a reasonable degree, coincides with the vessel descriptions we use. We drop no observations 

from the data on the purse seiners, and 5 observations from the data on the pelagic trawlers. 

In total, we have 434 unique vessels in the dataset for the coastal vessels, 177 unique vessels 

in the fleet of purse seiners and 96 unique vessels in the fleet of pelagic trawlers.  

Table 4.1 – Vessel groups 

Vessel 

group 

Vessel description Operation 

code in 

profitability 

survey 

No. Observations 

      Coastal 

vessels 

Purse 

seiners 

Pelagic 

trawlers 

9 Coastal vessels using seine. 

Vessels below 11 meters 

quota length 

9, 18, 41 56     

10 Coastal vessels using seine. 

Vessels 11-21.35 meters 

quota length 

10, 19, 20, 21, 

22, 23a, 25 

639    

11 Coastal vessels using seine 

included purse seine vessels 

without license (SUK-group) 

11, 23a, 26 310     

12 Purse seiners 12, 24, 27, 28, 

29 

 1 013   

13 Pelagic trawlers 13, 23     266 

Total 

number of 

observations     

1005 1013 266 

a Operation code 23 in 2000 is included in vessel group 13, in 2003 in vessel group 10, and in vessel 

group 11 in 2004. For all other years: vessel group 10. 



 

Table 4.2 provides basic descriptive statistics on the distribution of quantity caught for the 

vessel groups in the fleet of coastal vessels. We see that several species have only small 

catch volumes. In chapter 5, we set as a criterion that a species should constitute at least 5% 

of the total catch to be included in the estimation. This applies to both of the fleets we look 

at. NSSH counts for the largest share of quantity caught for each vessel group as well as for 

the fleet of coastal vessels as a whole. Total catch volume is largest for vessel group 10, 

followed by vessel group 11. Vessel group 9 has the lowest total catch volume. This is what 

we would expect considering the number of observations from each group (see Table 5.1). 

Table 4.2 – Catch in tonnes for vessel groups and species for the coastal vessel fleet 

Species/vessel group 9 10 11 Total Share 

NSSH 4 593 721 220 562 640 1 288 453 59 % 

NSH 497 48 648 38 225 87 371 4 % 

Mackerel 2 752 103 127 97 649 203 528 9 % 

Blue whiting 0 1915 2 615 4 530 0 % 

Capelin 0 20 097 91 222 111 319 5 % 

Sandeel 0 520 3 731 4 251 0 % 

Cod N62 540 60 019 52 646 113 205 5 % 

Haddock N62 34 8 408 8 642 17 084 1 % 

Pollock N62 398 162 406 117 898 280 702 13 % 

Greenland halibut N62 10 779  315 1 103 0 % 

Shrimp N62 0 183 650 833 0 % 

Pollock S62 600 15 313 8 936 24 849 1 % 

Shrimp S62 2 156 0 157 0 % 

Other 851 24 046 10 547 35 445 2 % 

Total 10 277 1 166 838 995 716 2 172 832 

  

Table 4.3 provides basic descriptive statistics on the distribution of quantity caught for the 

purse seiners and pelagic trawlers. Blue whiting have low catch volumes in the coastal vessel 

fleet. As a comparison, the species constitutes the largest catch share for both purse seiners 

and pelagic trawlers. NSSH again constitutes a relatively large share of total quantity caught. 

The other important species in terms of quantity caught for the purse seiners are mackerel 

and capelin. For the pelagic trawlers, sandeel is the most important species in addition to 

blue whiting and NSSH herring. However, for the combined fleet sandeel constitutes only 

4% of the total catch. 

 





Table 4.3 – Catch in tonnes for each vessel group and species for the purse seiners and 

pelagic trawlers 

Species/vessel group 12 13 Total Share 

NSSH 3 788 558 453 780 4 242 338 26 % 

NSH 961 205 54 211 1 015 415 6 % 

Mackerel 1 454 139 45 274 1 499 413 9 % 

Blue whiting 4 928 819 698 687 5 627 507 35 % 

Capelin 2 168 180 125 970 2 294 150 14 % 

Sandeel 192 614 479 648 672 262 4 % 

Cod N62 4 740 137 4 877 0 % 

Haddock N62 940 615 1 555 0 % 

Pollock N62 28 717 4 246 32 964 0 % 

Greenland Halibut N62 0 0 0 0 % 

Shrimp N62 1 111 0 1 112 0 % 

Pollock S62 927 34 695 35 622 0 % 

Shrimp S62 0 1 362 1 362 0 % 

Other 410 443 186 996 597 440 4 % 

Total 13 940 394 2 085 622 16 026 016 

  

4.2 Variables 

The dataset contains information concerning costs and revenues as well as information about 

vessel size, age, man years and catch quantities and values of the fish species included in the 

survey. All costs and revenues are in Norwegian kroners (NOK), and catch quantities in 

kilogrammes. We have inflated all monetary values to 2014 NOK utilising the consumer 

price index (CPI). While the price increases may have been lower or higher in the sector than 

for the generalised consumer, we consider this the best possible approximation. Collected 

CPI values stems from national statistics (Statistics Norway, 2016). 

Operational revenues are the total revenues from fishing and all other activities. Incidental 

revenues and minor compensations are also included in operational revenues. Operational 

costs are costs generated through operational activities. Depreciation on vessels and fishing 

licenses and permits, items such as fuel, miscellaneous fees, labour remunerations of crew, 

maintenance on vessels and gear as well as other operating and administrative expenses, are 



 

also included in operational costs.20 The operating profit is the difference between operating 

revenues and operating expenses. 

4.3 Classification of cost items and distribution of costs 

To investigate the relationship between output and variable unit costs, we first need to define 

variable costs. The table below shows a classification of the different cost items in our 

dataset. We also provide a brief description of the different cost items. Our division between 

operating costs, quasi-fixed costs and fixed costs is similar to Sandberg (2005).  

The definition of operating cost items includes items necessary to operate the vessel in the 

short term. Quasi-fixed cost items include items necessary within a year. The fixed cost 

items relate to long-term vessel costs. When output from vessels is constrained by seasonal 

IVQs, it seems reasonable to assume that firms will minimise operating costs and costs of 

quasi-fixed input factors. These two types of cost items are therefore included as variable 

costs when estimating cost functions for the pelagic fisheries. 

Table 4.4 – Cost items and classification 

Item Classification Comment 

Product fee Variable   

Structural fee Variable Came into force in July 2003, 

ceased in July 2008 

Control fee Variable Came into force January 

2005 

Labour remuneration Variable   

Food Variable   

Social costs Variable   

Pension costs Variable   

Depreciation on vessel Fixed   

Depreciation on fishing licenses and 

permits 

Fixed Various depreciation methods 



20 Note that total value of the catch determines wages paid to workers in the fisheries.  





Fuel Variable Extra fee on NOx emission 

came into force in 2007 

Bait, ice, salt and packing Variable   

Maintenance vessel Quasi-fixed   

Maintenance gear Quasi-fixed   

Insurance of vessel Quasi-fixed   

Other insurances Quasi-fixed   

Unspecified expenses Quasi-fixed  

 

The product fee is a fee intended to cover part of the fishermen’s obligations to the National 

Insurance Scheme. This fee is in essence a tax collected on sales revenue. The structural fee 

goes into a fund, intended for capacity adjustment in the fleet. Another tax on sales revenues 

is the control fee. This fee covers costs regarding control activities. The cost items food, fuel 

and bait, ice, salt and packing are self-explaining.  

Total labour remuneration to crew on board the vessel, or “lott”, is also a share of the total 

value of the catch. Social security and other personnel costs are included in social costs. 

Collection of the variable pension costs uses a tax on sales revenue. This intends to finance 

expenditure on pension insurance for fishermen. Depreciation on vessel is depreciations 

collected from the vessel’s accounting. Depreciations on permits, unit quotas and structural 

quotas are included in depreciation on fishing licenses and permits.  

The quasi-fixed cost items maintenance vessel and maintenance gear are self-explaining. 

Hull insurance of the vessel is included in the cost item insurance of vessel. Other insurances 

consist of all other types of insurances related to the vessel. The cost item unspecified 

expenses includes, amongst other things, costs regarding contract labour, port charge, other 

administration fees and costs related to the purchase of quotas. As we do not know the 

relative size of the purchases of quotas as compared to the others unspecified costs, we 

decided to include these as quasi-fixed. This should not have large effects on the estimated 

results given the share of unspecified costs to total variable and quasi-fixed costs (see the 

cost distribution in Table 4.5). 

 



 

Table 4.5 – Distribution of costs amongst coastal vessels, purse seiners and pelagic 

trawlers. NOK in 1000. 

  Coastal vessels Purse Seiners Pelagic Trawlers 

Cost item 

Total 

costs 

Share of 

total costs 

Total 

costs 

Share of 

total costs 

Total 

costs 

Share of 

total costs 

Variable costs 4 961 400 56 % 19 602 307 55 % 2 318 181 59 % 

Fixed costs 1 324 594 15 % 5 801 974 16 % 537 534 14 % 

Quasi-fixed costs 2 565 461 29 % 10 138 671 29 % 1 060 068 27 % 

              

Parameter 

Total 

costs 

Share of 

total costs 

Total 

costs 

Share of 

total costs 

Total 

costs 

Share of 

total costs 

Variable cost items             

Product fee 295 804 6 % 1 390 240 7 % 135 447 6 % 

Structural fee 8 895 0 % 31 490 0 % 3 453 0 % 

Control fee 13 161 0 % 50 330 0 % 4 807 0 % 

Labour 

remuneration 3 766 358 76 % 12 489 177 64 % 1 296 247 56 % 

Food 102 325 2 % 384 911 2 % 44 219 2 % 

Social costs 42 568 1 % 261 399 1 % 20 181 1 % 

Pension costs 24 517 0 % 112 166 1 % 10 822 0 % 

Fuel 692 726 14 % 4 729 953 24 % 772 369 33 % 

Bait, ice, salt and 

packing 15 046 0 % 152 641 1 % 30 636 1 % 

              

Fixed cost items             

Depreciation on 

vessel 1 100 157 83 % 4 931 948 85 % 436 962 81 % 

Depreciation on 

fishing licenses and 

permits 224 437 17 % 870 026 15 % 100 572 19 % 

              

Quasi-fixed cost 

items             

Maintenance vessel 854 674 33 % 3 659 920 36 % 454 331 43 % 

Maintenance gear 480 939 19 % 2 100 625 21 % 224 828 21 % 

Insurance of vessel 219 796 9 % 632 170 6 % 101 811 10 % 

Other insurances 107 154 4 % 374 996 4 % 41 856 4 % 

Unspecified 

expenses 902 898 35 % 3 370 960 33 % 237 242 22 % 

 

Table 4.5 presents the distribution of costs for the coastal vessels, purse seiners and pelagic 

trawlers. We have separated purse seiners and pelagic trawlers to highlight similarities and 

differences in the cost structure. In addition, the cost distributions are summarised for each 





fleet in the same table for illustrative purposes, while reminding the reader that we estimate 

cost functions for coastal vessels and the combined group of purse seiners and pelagic 

trawlers independently from one another. The upper segment of the table summarises the 

total variable costs, fixed costs and quasi-fixed costs. Percentage values presented are 

associated with these total costs numbers. The lower segment of the table looks isolated at 

cost items classified as variable, fixed and quasi-fixed. Shares of total costs calculated are 

the shares the different cost items constitute of the total cost within each of the three cost 

categories.  

When summing over all coastal vessels, costs defined as variable total almost NOK 5 billion. 

With a share of total costs of 56%, it is clearly the most important cost category. Quasi-fixed 

costs account for 29% of total costs, while the fixed costs accounts for 15%. Variable costs 

and quasi-fixed costs combined accounts for 85% of total costs for the coastal vessels. This 

share is more or less the same for purse seiners and pelagic trawlers.  

Within the group of variable costs, labour remuneration accounts for the largest share. Costs 

regarding fuel and the product fee also accounts for high shares. The other cost items 

constitute the last 4% of the total variable costs. The picture is similar for all vessels, though 

the share to labour remuneration is higher for the coastal vessels. This indicates a higher 

labour intensity in the production function. 

For the quasi-fixed cost items, there do not exist large differences in which cost items that 

accounts for the largest share of total quasi-fixed costs: maintenance vessel, maintenance 

gear and unspecified expenses constitute almost 90% of total quasi-fixed. Including e.g. 

unspecified expenses in variable costs when regressing is in particular important in years 

where the use of contract labour has been high.  

4.4 Selected trends in the dataset 

In this section, we focus on the time series dimension of the dataset. The intention is to 

identify whether clear trends exist in the data that need special treatment when conducting 

econometric analysis. We comment also on the possible complications related to estimating 

on time series data. Again, we separate purse seiners and pelagic trawlers to highlight 

different developments between these. 



 

Figures 4.1-4.3 illustrate the average of man years and the average length of vessels amongst 

coastal vessels, purse seiners and pelagic trawlers included in the profitability surveys. 

Sampling methods implicate that trends in these variables not necessarily yield good proxies 

for the total employment and cost structure of the Norwegian fishing industry as a whole. 

 

 

Figure 4.1 – The average of man years and length for the coastal vessels (2000-2014). 

 

Figure 4.2 – The average of man years and length for the purse seiners (2000-2014). 





 

Figure 4.3 – The average of man years and length for the pelagic trawlers (2000-2014). 

We study the time series of these variables to get an indication of whether there is reason to 

believe that major technological shifts have occurred in the period. A technological shift in 

the fishery industry could result in reduced demand for workers, and thus a reduction in the 

number of people employed over time. As is clearly illustrated in the next section, where we 

look in more detail at the structure of the data, there is great variation in the number of 

observations from year to year. Hence, we use the average of the variables when studying 

the time series. 

Looking at the time series for average man years isolated does not yield information on 

whether technological shifts have taken place. The number of people employed at a vessel 

relates also to the size of the vessel – larger vessels would typically employ more people. A 

reduction in the number of small vessels and an increase in the number of large vessels 

would then result in an increase in the number of people employed at the average vessel. As 

Figure 4.3 illustrates, there is clear evidence of covariance in the time series of pelagic 

trawlers. For the coastal vessels, there is also evidence of a high degree of covariance 

between average man year and average length. We note that the relative variations in the two 

variables throughout the time series is smaller for this fleet. It is however difficult to 

conclude whether these plots indicate changes in technology. While we could examine the 

production per man years, quota variations might explain more of the variations of this 

measure than improving technology. 



 

For the purse seiners, the degree of covariance is less clear. During the period 2000-2014, 

the average man years has decreased while the average length has increased. However, the 

relative changes are small. Hence, we cannot conclude from these plots that a major 

technological shift has occurred. 

Comparing the time series of average man years and length across the fleets, one could argue 

that the pelagic trawlers are more technological advanced than the coastal vessels. The 

pelagic trawlers have consistently higher average length throughout the period as compared 

to the coastal vessels. Average man years amongst the pelagic trawlers are also lower than 

for the coastal vessels. In such an analysis, one should also look at possible underlying 

causes such as differences in the species targeted by different vessels etc.  

Figures 4.4-4.6 show the development in average variable costs and average quantity caught. 

Note that all species are included in the measurement of average catch, and both variable 

costs and quasi-fixed costs are included in the measurement of average variable costs. 

Appendix A also contains a breakdown of catches of the species included in the estimation 

in different years to illustrate quota variations. 

 

Figure 4.4 – Average variable cost (VC) and catch for coastal vessels (2000-2014). 





 

Figure 4.5 – Average variable cost (VC) and catch for purse seiners (2000-2014). 

 

Figure 4.6 – Average variable cost (VC) and catch for pelagic trawlers (2000-2014). 

Average catch is a proxy for the scope of the operation of the vessels included in the 

profitability survey from year to year. The development of average catch and average 

variable costs is a proxy for the development in the degree of cost efficiency. This 

development is of interest to us as cost efficiency relates to technological change. An overall 

decrease in variable costs and an increase in catch could imply technological improvement. 

As variable and quasi-fixed costs constitute the clear majority of total costs for all fleets and 

vessel groups (see section 5.3.1), it is reasonable to draw a conclusion based on the study of 

this proxy for the development in the degree of cost efficiency.  



 

In Figure 4.4, we observe that there is great variation in both time series for the coastal 

vessels. Except for the periods 2000-2002 and 2008-2010, the fluctuations in average 

variable costs seem to coincide with fluctuations in average quantity caught. In the first 

period mentioned above, we observe an increase in average variable costs and a slight 

decrease in average quantity caught. We observe the opposite for the latter period. Thus, we 

ascribe changes in biomass conditions and total quotas to these findings. The rationale for 

this is that it is unlikely that technological shifts have appeared only in these two periods 

isolated. For both time series, there is an overall slightly increasing trend, implying no 

increasing degree of cost efficiency, and thus no technological change. 

For the purse seiners, the relative fluctuations in the two time series are smaller as compared 

to the coastal vessels. With smaller relative fluctuations, it is harder to conclude that 

fluctuations in average catch explain fluctuations in the average variable costs. While the 

slope of the trend line of average catch is slightly negative, the slope of the trend line of 

average variable costs is positive. This would indicate that the purse seiners have efficiency 

decreasing in time. 

Figure 4.5 illustrates the time series for average variable costs and average catch for the 

pelagic trawlers. Clearly, there is positive correlation between the two time series. Following 

the discussion so far, we find it reasonable to explain changes in the average variable cost 

with changes in the average quantity caught. The slope of the trend line for the average 

variable costs is steeper than the slope of the trend line for the average catch. This leads to 

the same indication as for the purse seiners –less cost efficiency over time. 

These trends seem strange. A potential explanation could be the inclusion of investments in 

quotas as a quasi-fixed cost. Another possibility is a change in the catch of species that has 

led to disproportionate changes in costs. Quotas of different species are to a varying degree 

volatile between years.  

As a final trend relationship, we have graphed the development in operating days in Figures 

4.7 and 4.8. Operating days include includes the time spent on preparation, at quay, days at 

sea, and finalising the fishing (Norwegian Directorate of Fisheries, 2016, p. 94). It is also an 

indicator of capacity utilization (Steinshamn, 2005). For the three largest vessel groups in 

terms of catch (10, 12 and 13) the measure has decreased relatively steadily throughout the 

period. Since we know that catches have not been subject to clear downward trends, this 





could indicate that these groups are able to catch the same volumes at a shorter time as 

compared to earlier. If the variable operating days is a proxy for effort, these findings 

indicate higher efficiency in these groups because we can interpret effort as a driver of 

variable costs (see section 5.1). These findings seem to be more consistent with the high 

levels of investments in several vessel groups in later years, see for example Larsen & 

Dreyer (2013). This implies utilisation of year dummies in the cost estimations to correct for 

time trends such as investments in more advanced gear. Year dummies correct also for 

biomass variations, policy changes and differences in the number of observations between 

years.  



Figure 4.7 – Average of operating days, coastal vessels (2000-2014). Groups 9 and 11 do not report 

landings in all years. 



 



Figure 4.8 – Average of operating days, purse seiners and pelagic trawlers (2000-2014). 

4.5 Structure of the data 

In Table 4.6, we show the frequency of reports and the number of unique vessels that appear 

in the profitability survey in the relevant period. As can be seen from the table, the data takes 

a heavily unbalanced form. Ideally, we would have a set where the same vessels participated 

in the profitability survey every year. We could then have applied panel data techniques, 

giving superior estimations with respect to the time dimension. In fact, data close to being 

panel data could through various techniques enable this type of analysis. None of these 

situations hold true for our data. We have therefore corrected for the time dimension and 

applied ordinary least squares (OLS) methods in our estimations. 

The structure of the data imposes challenges in finding suitable econometric techniques for 

our cost function analysis. We need to take into account that we have a time dimension as 

well as, to a varying degree, two or more observations from the same vessel. In Table 4.7, 

we describe the distribution of observations over time for the different vessel groups. 

 

 

 





Table 4.6 - Unbalanced panel dataset for vessels in the Norwegian pelagic fishery 

Frequency 

Coastal 

vessels 

Purse 

seiners 

Pelagic 

trawlers 

1 202 42 37 

2 87 17 25 

3 49 22 8 

4 32 14 6 

5 20 11 5 

6 12 5 3 

7 6 6 4 

8 5 6 1 

9 5 6 1 

10 3 7 3 

11 2 14 0 

12 0 8 0 

13 0 5 0 

14 0 9 0 

15 0 5 0 

        

Number 

of vessels 434 177 96 

 

 

Table 4.7 - Unbalanced panel dataset for vessels in the Norwegian pelagic fishery 

Year Coastal vessels Purse seiners Pelagic trawlers 

2000 46 79 29 

2001 56 76 28 

2002 64 81 28 

2003 71 74 26 

2004 102 66 27 

2005 125 72 21 

2006 99 63 23 

2007 70 61 21 

2008 77 70 16 

2009 57 65 9 

2010 51 66 9 

2011 52 65 8 

2012 59 58 5 

2013 45 57 8 

2014 31 60 8 

 

 



 

Looking at the distribution of observations over time in conjunction with the frequency 

report in Table 4.6, one can clearly see that the data is not suitable for panel data analysis. 

Ignoring the time dimension, and treating every observation as individual from one another, 

the data would take the form of cross sectional. This would allow for utilisation of 

econometric techniques thereafter.  

One suitable approach is to treat the data as pooled cross section. Woolridge (2014) defines 

pooled cross section as “data configuration where independent cross sections, usually 

collected at different points in time, are combined to produce a single data set” (p. 578). 

With the right techniques, one can then analyse data that have both cross-sectional and time 

series features. The cross-sectional and time series features are both clearly present in our 

data, hence pooled cross-sectional analysis seems to be the most suitable. 

For the data to be suitable for analysis with such a technique, we must also have 

independently pooled cross sections. Sampling randomly from a large population at different 

points in time ensures this. The independency is a key feature. It yields no correlation in the 

error terms across different observations. As NDF gathers data on a random sample of 

vessels annually, we pool annual data and treat the data as independent cross sections.  

Our motivation behind using independently pooled cross sections is to increase the sample 

size to achieve more precise estimators and test statistics with higher power. To reflect that 

the population may have different distributions in different years we allow the intercept to 

differ. As mentioned in the last section, the introduction of dummy variables for all but one 

year accounts for possible differences in the distribution. With a pooled cross sectional 

model, OLS is the leading method of estimation (Wooldridge, 2014). We describe the OLS 

approach in section 5.2. 





5. Estimating cost functions in the pelagic fisheries 

This chapter contains the estimation of cost functions for vessels in the pelagic fisheries. The 

first section of the chapter contains microeconomic fundamentals of the cost minimising 

vessel. We discuss both the seasonal and long run adaptions as we attempt to model vessel 

specific behaviour. The initial discussion in section 5.1 is thus an extension of the framework 

presented in section 3.3. 

In section 5.2, we discuss the choice of functional form and earlier work. We discuss 

advantages and limitations related to different approaches, including ours. The section also 

contains a discussion on when we expect a linear relationship between variable costs and 

output in the OLS estimation. In section 5.3, we estimate cost functions for the coastal 

vessels and the combined fleet of purse seiners and pelagic trawlers. We discuss findings and 

graph the predicted underlying relationships. Due to potential error of extrapolation, we only 

plot the estimated costs against the observed range of output. The chapter includes various 

discussions on the robustness of the chosen approach. 

5.1 The cost minimising vessel – microeconomic fundamentals 

In this section of the chapter, we discuss the microeconomic fundamentals of the cost 

minimising vessel. These fundamentals predict the shape of the variable cost function, and 

relate directly to the time perspective of the economic actors. With fishing seasons lasting 

one year, variable profits determine seasonal decisions. The rational seasonal behaviour of a 

vessel is therefore to optimise variable profits 

 

where output, Y, is fixed and the output price, p, is exogenously given.21 Any vessel 

minimising variable costs, VC, also maximises seasonal variable profits. This suggests 

utilisation of duality theory to find realised profits during a season.22 The intertemporal 



21 In reality, vessels obtain different prices based e.g. on the quality of the output delivered. These quality differences result 

also in differences in the variable unit costs, because maintaining high quality of the output is costly. With an exogenous 

price, we do not control for such effects from differences in quality. 

See e.g. Cowell (2005) for a general introduction to duality theory.



 

investment decision maximises profits over several seasons. Rational actors therefore only 

remain in the fishery over time if also fixed costs are covered.23 

The time perspective has different implications for the short and long-term decisions of the 

economic actors. It is a standard assumption in economic theory that capital is fixed in the 

short run. The vessel therefore has fixed capacity levels during a season. We control for 

between season effects in the estimation in section 5.3. This implies a need for predictions 

on the seasonal behaviour of a vessel. We also correct for vessel specific differences such as 

gear through a grouping within the fleets (see Table 4.1). The predicted unit cost curves 

should therefore resemble the long-run cost curve of a stylised vessel within a group when 

capital is variable.  

Fixed capacity poses a restriction on the maximum output a vessel could technically produce 

during a season.24 We may therefore have seasonal scale effects as vessels can gain by 

adjusting effort to the given capacity. To exemplify, vessels might have a high vessel quota 

combined with low levels of effort. With abundant capacity, an increase in effort could then 

give better utilisation of the vessel’s economic capacity. The average variable unit costs then 

decrease when the capacity restriction is non-binding. When a vessel pushes the capacity 

constraint, i.e., effort relative to the quota is high, average variable unit costs increase. This 

implies a u-shaped unit cost curve with respect to effort. If output correlates with effort, u-

shaped unit costs are expected. We illustrate such a relationship in Figure 5.1. 



23 Reference to intertemporal investment perspective. See chapter 2 for a brief discussion on economic capacity. 

24 The IVQ on the other hand functions as a legal boundary for output. 





 

Figure 5.1 – The expected shape of the unit cost curve with respect to output of a species. 

The effort on a species is unknown in our dataset. This complicates the estimation. We 

would thus prefer predictions explaining vessel behaviour on all species. A prediction on 

total effort and output of all species is included in Figure 5.2. This is a stylised example of 

the relationship between a vessel’s effort and variable profit with an IVQ system. 

Understanding this predicted relationship is important, because it excludes the need for 

allocating effort pre-estimation. Both vessels in this example have quotas of the same size 

for species A, B and C. We note that species A yields the highest variable profit, and species 

C the lowest. Initially, we assume no differences in vessel or crew characteristics.  

When output and prices are exogenous, the u-shaped unit cost curve explains the shape of 

the variable profit function. This shape relates to the variable set-up costs necessary to 

prepare the actual harvest process when fishing a species. Resource economics tells us that 

the fishing of a species is equivalent to an optimal rotation problem (Gordon, 2010). With 

output regulation, optimisation of this rotation occurs when costs are at a minimum. Holding 

biomass constant, an increase in the IVQ should increase the number of trips to and from the 

fishing grounds. If this increase is proportional to the quota increase, functional form 

linearity is a good approximation of fishing costs. An increase in the quota could however 

also lead to vessels staying longer on the fishing grounds. This is equivalent to an increase in 

the length of each trip. Such an adaption is possible if the vessel has available capacity in 

e.g. gross tonnage in the current optimal rotation, and leads to non-linearity in the cost curve. 



 

The only variation in the stylised example is that the vessels differ in their cut-off point. 

Vessel 2 will thus participate in the fishery at a lower marginal variable profit than vessel 1. 

Two vessels only differing in the cut-off point supply different levels of effort. In the stylised 

example, vessel 1 expects a higher marginal return on the capital invested in the fishery. 

Thus, the vessel does not catch any part of the quota on species C. Willingness to take on 

risk may be one explanation for investors’ differences in compensation expectancy. 

Differences in ownership might also have an effect. To exemplify, when the processing 

industry owns a vessel optimal seasonal effort is the result of a maximisation of variable 

profits from both the vessel and the industry’s operations. This level of effort does not need 

to correspond with the optimisation of vessel profits alone. The presence of individual vessel 

effects, resulting in catches below the vessel quota, is well known and the main reason for 

overregulation through maximum quotas (see section 3.3). Our discussion implies that we 

should prefer methods of estimation not aggregating away vessel specific behaviour and 

preferences. The long-run cost curve fitted on the seasonal adaptations would then reveal the 

sum of individual decisions within a group. Note that the cut-off points could be non-

horizontal if investors’ expected marginal compensation increase/decrease with effort. 

 

Figure 5.2 – Optimal effort given quotas and the variable profit cut-off point. 

In the case of intertemporal profit maximisation, economic capacity varies along the 

transitional path. Yearly investment is a prerequisite to maintain this capacity if depreciation 

is present. When investment exceeds depreciation, the economic capacity increases. Utilising 

the stylised example in Figure 5.2, such a development indicates that the effort needed to 





catch the quota of a species decreases. If the two vessels install gear increasing the efficiency 

with respect to output of species A, quota A’s total effect on effort shifts to the left. When 

effort drives costs, this implies that the unit cost of catching A falls. Such a trend was 

indicated using the development of operating days in section 4.4. 

In Figure 5.3, we illustrate a stylised example of the theory on short and long run average 

cost curves in a fishery. Curves A, B and C represent the seasonal cost curves of an 

individual vessel at different levels of capacity. During a season, a vessel utilising capacity 

inefficiently can increase profits by taking advantage of the seasonal scale effects. As we 

explained above, the only way to take advantage of these effects is to adjust the level of 

effort to the exogenous output and fixed capacity. To exemplify, when the short run cost 

curve equals A, the vessel minimises average unit costs when effort equals EA. Between 

seasons, the underlying cost structure follows curve D because capital is no longer fixed. 

Optimal investment in economic capacity implies short-term curve B. The optimal short-run 

level of effort EB thus corresponds to the intersection between the optimal short-run average 

cost curve and the long-run average cost curve. 

 

Figure 5.3 - The shape of the unit cost curve with respect to effort. 

To what degree will the transitional path of investments lead to the short-run cost curve 

illustrated in curve B in Figure 5.3? This depends on the degree of information. With perfect 

information, economic actors know the size of all future quotas and thus also the required 

level of investments in each period. However, the implemented management system is likely 



 

one of the most important determinants of deviations from the transitional path. A regulator 

sets yearly quotas and vessels cannot freely adjust output to demand as in other industries. 

This further emphasises that vessels likely invest to minimise the quota-restricted effort. If 

quotas are of similar size each year, vessels might be able to solve this investment problem. 

However, quotas often vary substantially from year to year (see the distribution of seasonal 

catches for vessel groups in Appendix A).  Situations of perfect information are thus far from 

applicable for actual outcomes in the fishery described in section 3.3. Predicted long-run cost 

curves would then be highly sensitive to the quotas distributed in the period utilised in the 

estimation. The above theories nevertheless give us a framework for the estimation of cost 

functions conducted in the next section. 

5.2 Pre-estimation: Choice of functional form and earlier work 

In this section, we estimate non-linear cost functions for the fleets of coastal vessels and 

purse seiners and pelagic trawlers. We incorporate the microeconomic fundamentals 

discussed in section 5.1. In the second half of the chapter, we discuss earlier work. This 

discussion takes Sandberg (2005) and Steinshamn (2005) as a point of departure. We again 

emphasise that we inflate all costs to 2014 NOK and regress on variable costs defined as the 

sum of variable and quasi-fixed costs. 

5.2.1 Estimating a polynomial equation incorporating effort in output 

Duality theory is applicable when output in a fishery is constrained. This implies that the 

profit maximising firm takes a cost minimisation approach (see sections 3.3 and 5.1). 

Generally, we are therefore looking for the total variable fishing costs of a firm 

 

where 

 Variable costs 

 Prices of input factors 

 Output 





 Biomass 

 Skill of owner/skipper/crew and physical characteristics of vessel 

Selection of an appropriate functional form depends on the predictions we want to estimate. 

In section 4.5, we find that the structure of the data is best suited for pooled cross sectional 

analysis. Treating the data as pooled cross sectional implies disregarding the intertemporal 

investment perspective of an individual vessel, and looking only at predictions of individual 

seasonal behaviour. It also suggests utilisation of OLS techniques. Taking into account the 

optimal rotation problem with respect to a species, a feasible approach could then be to 

estimate the polynomial form 



where 

 Variable costs for vessel i = 1, 2, 3, …, N 

 Output of species j for vessel i = 1, 2, 3, …, N 

 Interaction term of species j and group gr = 9 and 11 or 13 

 Dummy for year yr = 2001, 2002, …, 2014 

Output of a species is included with a first, second and third order term in the regression as 

we utilise total variable costs as the dependent variable. Such a functional form is 

sufficiently flexible to estimate/fit a u-shaped unit cost function. This specification therefore 

models the prediction of non-linearity with respect to the optimal rotation problem of each 

species as explained through Figure 5.2. 

First-order interaction terms are included to allow for relative advantages between the vessel 

groups. As will become evident in section 5.3, this leads to a scaling of the groups’ predicted 

cost functions. The shape of the underlying function remains the same for groups within a 

fleet. Including interaction terms for the higher order terms of output would allow for also a 



 

changing shape. Regressions including such terms do however become highly complex to 

solve. The main goal of this chapter is to estimate non-linear cost functions to reveal relative 

advantages between vessel groups. We also need an approach that we can use in an 

optimisation. A simplified approach with only first-order interaction terms should therefore 

be sufficient to highlight relative differences in the unit costs of different groups. 

It is important to note the indirect link made between output and effort of a species. The 

above equation treats costs of species as additively separable. Output of each species 

therefore affects effort independently. This is not necessarily a good approximation. The 

seasons of different species overlap (Iversen et al., 2016, p. 146). Higher effort on one 

species therefore often results in a corresponding lower effort on another species. We do not 

know when a vessel targets different species. Furthermore, the optimal rotation problem 

differs according to the level of effort. Thus, the marginal effect on the overall effort remains 

unknown with our cost function specification.  

As illustrated in section 4.4, the number of average operating days has fallen throughout the 

period 2000-2014. This indicates that the optimal rotation within a season occurs at 

relatively low level of efforts. Thus, it is likely that the fleet could increase average catches 

substantially before the costs increase at a faster rate than modelled through the third order 

terms on output. We should thus be able to utilise the framework of short and long run cost 

functions in Figure 5.3 on each of the included species. This implies that vessels adjust effort 

to a fixed capacity of a species within a season. Thus, the estimated variable cost function is 

the result of the optimal rotation problem with respect to each species for all vessels in a 

fleet. Note however that at sufficiently higher catches the trade-off between species would 

become increasingly important. We fail to model these effects with our specification. 

Nøstbakken (2006) uses the generalised translog functional form in an examination of the 

cost structures amongst vessels participating in the Norwegian pelagic fisheries. This 

function enables estimation of the cross-price elasticities between species. Catches of 

different species are then included with a non-linear relationship in the total cost function. 

Choosing this function would yield a higher flexibility in the estimation process. While lack 

of cross-price elasticities is a limitation with the chosen functional form, we choose to accept 

it to simplify the estimation and optimisation processes.  





In the practical estimation, we make two important simplifications. First, only species 

constituting at least 5% of the fleet’s total catch are included. This eases the estimation 

process. From robustness analyses including species of small catch volumes, we find that 

these have little effect on the estimated results. These findings are consistent with the 

predictions in section 5.1. We believe changes in output of a species to correlate with 

changes in overall effort. Small volumes of catch should therefore not be significant drivers 

of effort and costs. Second, we pool catches of NSSH and NSH into a species group termed 

herring. These species likely have very similar cost structures and require similar levels of 

effort. Earlier work has utilised the same pooling (Nøstbakken, 2006). We also group cod 

and pollock caught north of the 62nd parallel. Catches of these two species happen in the 

same areas, and again likely have similar cost structures. 

Modelling on a fleet with many vessels catching different levels of output of a species, the 

chosen OLS approach should be able to identify the predicted underlying cost structure. 

However, there are at least a few cases where the OLS approach might be unable to identify 

the possible u-shaped unit cost function. When the interval of the observations of catch 

volumes is small, predicted costs are likely to resemble a linear cost specification. This could 

for example be the case if most vessels have low or high overall effort. The steep slope of 

the u-shaped curve over these intervals would then lead OLS to fit a linear cost function.  

Similarly, if the vast majority of observations centres around the bottom point of the unit 

cost function, OLS fits a horizontal line through this point. This second case is of particular 

interest. When quotas are relatively stable between seasons, vessels are likely able to adjust 

capacity to output. If most vessels choose this adjustment to a species, observations in the 

fleet likely centres around the part of the u-shaped unit cost function where costs are lowest. 

Oppositely, volatile quotas complicate adjustment of capacity over time. This case increases 

the chance of finding a u-shaped predicted unit cost curve due to inefficient levels of 

capacity measured against the long-run cost curve.  

In a case where we only have a few unevenly distributed observations, the least squares 

could result in a linear cost specification. This should not be a particular issue in our 

estimation, as we have a high number of observations for all included species. Finally, if 

most observations are zero for a given species, we likely fail to estimate the cost structure of 

vessels catching the species. Including interaction terms for vessels with positive catch of the 

species could solve this problem. Robustness analyses utilising this approach did however 



 

add little insight to the modelling. None of the above cases imply that the actual cost 

function of a vessel could not be u-shaped, but rather that the structure of the data combined 

with the chosen econometric technique fail to identify such a relationship.  

As we want to utilise pooled cross sectional analysis, we need to correct for possible time 

effects in the dataset. In the above equation, we have included year dummies to exclude 

effects related to time trends such as variations in biomass, real input prices, policy changes 

and technology. In addition, these dummies correct for pure differences in the number of 

observations between years. This correction is important as we regress on total variable 

costs. 

We also correct for other differences within a fleet through the correction of group effects. 

For the coastal vessels, we include group 10 as the base case, and interaction terms for group 

9 and 10. Group 12 is the base case in the estimation on purse seiners and pelagic trawlers. 

We include interactions terms for group 13. Vessels within a group e.g. utilise similar gear. 

Group corrections are therefore important if we are to graph the relative differences in the 

long-run underlying cost curve when capital is flexible. 

5.2.2 Earlier work 

Earlier work has taken different approaches to the selection of functional form. The simplest, 

using a linear relationship, defines the variable unit costs 

 

where  is a time/catch relation for species i and group j, and  the variable costs for 

species i and group j.25 The time/catch relation corresponds to the vessel specific effort on a 

species discussed in section 5.1. This measure is unknown in our dataset. Thus, utilising this 

approach necessitates allocating variable cost to the output of different species pre-

estimation. There are several techniques for doing this. One approach would e.g. be to utilise 

the share of catch quantity of a species to total quantity (Steinshamn, 2005). This reduces the 



25 See e.g. Steinshamn (2005) and Grimsrud et al. (2015). 





flexibility of the estimation technique. Furthermore, the above equation does not allow for 

non-linearity with respect to output of a species. 

We argued in the last part of the previous section that the translog function yields a flexible 

functional form. However, to simplify the estimation and optimisation processes we would 

like to explore other possible candidates for a non-linear cost function. Sandberg (2005) 

approximates the unit costs in a pelagic fishery using a multiplicative non-linear cost 

function. This function allows for non-linear effects in output and biomass. As we want to 

allow for non-linearity in accordance with the discussion in section 5.1, this makes such a 

functional form more appealing than the above linear specification. Sandberg assumes that 

fishermen are price takers in the input market and that real prices in these input markets are 

constant. The specification yields the variable cost function 

 

where  

 = Variable costs for vessel i in year y.  

 = Catch for vessel i in year y.  

 = Biomass in year y. 

 = Skill of owner/skipper/crew and physical characteristics of the vessel. 

 = Lognormally distributed error term 

Sandberg divides the function by  to find the unit cost of a fishery, yielding 

 

Which we can rewrite 

 



 

The coefficients  and  yield the elasticity of cost with respect to output, biomass 

and skill respectively. The use of a dummy technique removes the unobserved (fixed) effect 

of the S parameter. 

Compared to the approach described in section 5.2.1, this functional form specification has 

at least two advantages. First, the above approach models the effects of biomass explicitly. 

Sandberg (2005) utilises the results in Bjørndal (1987, 1988) that there is no, or only a weak, 

relationship between stock size and catch per unit effort (CPUE). When a species 

concentrates in schools, it is not uniformly distributed over the fishing grounds. Thus, the 

total stock size need not affect vessel costs when targeting a school of fish, as long as the 

vessel is able to locate the school. This is important when modelling pelagic species, as we 

might have a biomass effect if stock size affects the target time. 

Year dummies remove all biomass effects in our estimation. These dummies do however 

also correct for other between season effects. Thus, we are unable to correct explicitly for 

possible biomass effects. However, there are two reasons why we should be able to accept 

this limitation. If the findings in Bjørndal (1987, 1988) hold true for our dataset, changes in 

stock size should not affect catch per unit effort much. Thus, correcting for stock level 

variations between seasons using a dummy technique should be a sufficient approach. 

The second advantage relates to the utilisation of a (fixed) effect approach to remove the 

unobserved S parameter. Through this approach, Sandberg removes vessel specific 

characteristics and effects such as skill of the owner/skipper/crew. As argued in section 4.5, 

we do not deem our dataset fit for panel data techniques. While we include corrective 

measures with respect to the physical characteristics of a vessel, our approach leaves the 

unobserved skill effect in the residual.  

When attempting to estimate the above function, we discovered one drawback making us 

discard this approach as feasible for our study. Sandberg (2005) estimates cost functions of a 

single species. As we have data of total variable costs per vessel, and all vessels catch 

several species, we would have to allocate variable costs pre-estimation to be able to conduct 

single species estimations. This necessitates techniques such as a time/catch parameter, 

described in relation to the linear modelling approach above. Such an initial allocation would 

be an important determinant of any underlying relationship.  





In the discussion in section 5.2.1, we highlighted that we would like to analyse a cost 

function including different species as additively separable to incorporate effects of overall 

effort. An advantage of this approach is therefore that we do not need to allocate variable 

costs to the output of a species pre-estimation. In addition, we can explicitly examine the 

structure of the underlying relationship between variable costs and output. We do not impose 

non-linearity, which could happen with a multiplicative approach. The discussion in this 

section indicates that our approach fits well to the predictions of seasonal behaviour that we 

want to study, while at the same time simplifying the estimation as compared to the 

utilisation of a translog function.  

5.3 Estimation of cost functions 

In this section, we present the results of the cost function estimation for the two fleets. We 

conduct estimations based on the functional form specification presented in section 5.2.1. 

This is a polynomial form, allowing us to explore the relationship of variable costs and 

output. For each of the two fleet, we provide tables of regression outputs and graphs of 

underlying relationships. 

5.3.1 Cost function and structures: Coastal vessels 

The fleet of coastal vessels consists of 1 005 observations, and has vessels from vessel 

groups 9-11. Our selection criteria results in the inclusion of four species in the regression. 

These species are herring (NSSH and NSH, 63% of the fleet’s catch), cod and pollock 

caught north of the 62nd parallel (N62, 18% of the catch), mackerel (9% of the catch) and 

capelin (5% of the catch). These four species total 95% of the fleet’s catches. Group 10 

constitutes the base case as the majority of vessels belongs to this group. Year 2000 is the 

omitted year dummy. We present in Table 5.1 the regression output on the equation. 

 

 

 

 



 

Table 5.1 – Parameter estimates of output (in kilos), dummies and interaction terms for 

the coastal vessels. Variable costs defined as operating and quasi-fixed costs (NOK). 

Variable cost driver Coefficient Std. Err. T-value P>t 95% Conf. Interval 

Herring 4.256023 .2540059 16.76 0.000 3.75756 4.754485 

Herring^2 -5.69e-07 1.11e-07 -5.11 0.000 -7.87e-07 -3.50e-07 

Herring^3 2.97e-14 1.30e-14 2.28 0.023 4.11e-15 5.53e-14 

Mackerel 3.177423 .3504863 9.07 0.000 2.489627 3.865219 

Capelin .8413203 .7258351 1.16 0.247 -.5830621 2.265703 

Capelin^2 -9.88e-07 7.68e-07 -1.29 0.199 -2.49e-06 5.20e-07 

Capelin^3 3.13e-13 1.69e-13 1.85 0.065 -1.89e-14 6.45e-13 

Cod and pollock N62 3.960232 .3542128 11.18 0.000 3.265123 4.655341 

Cod and pollock 

N62^2 

-8.77e-07 2.46e-07 -3.56 0.000 -1.36e-06 -3.94e-07 

Cod and pollock 

N62^3 

9.15e-14 3.91e-14 2.34 0.019 1.48e-14 1.68e-13 

Group 9 herring -1.91956 1.889789 -1.02 0.310 -5.628091 1.788971 

Group 9 mackerel 4.223031 4.69755 0.90 0.369 -4.995465 13.44153 

Group 9 capelin 0 (omitted)     

Group 9 cod and 

pollock N62 

-4.231981 7.030338 -0.60 0.547 -18.02835 9.564389 

Group 11 herring -.2468805 .1109787 -2.22 0.026 -.4646656 -.0290953 

Group 11 mackerel 1.875277 .4451545 4.21 0.000 1.001703 2.74885 

Group 11 capelin 1.546586 .7607654 2.03 0.042 .0536558 3.039515 

Group 11 cod and 

pollock N62 

.1204922 .2258229 0.53 0.594 -.3226637 .5636482 

Dummy 2001 2307397 302942.7 7.62 0.000 1712901 2901893 

Dummy 2002 2378701 299268 7.95 0.000 1791416 2965986 

Dummy 2003 1644389 303612.4 5.42 0.000 1048578 2240199 





Dummy 2004 1984395 276837.8 7.17 0.000 1441127 2527663 

Dummy 2005 2977448 273994.1 10.87 0.000 2439760 3515135 

Dummy 2006 2325923 289785.5 8.03 0.000 1757247 2894600 

Dummy 2007 1914125 320906.1 5.96 0.000 1284377 2543873 

Dummy 2008 2191220 321328.3 6.82 0.000 1560644 2821797 

Dummy 2009 882090.7 342428.2 2.58 0.010 210107.8 1554074 

Dummy 2010 836512.7 325304.7 2.57 0.010 198133.1 1474892 

Dummy 2011 3780737 313348.5 12.07 0.000 3165820 4395653 

Dummy 2012 4497079 305428.5 14.72 0.000 3897704 5096453 

Dummy 2013 3437399 324400.7 10.60 0.000 2800794 4074005 

Dummy 2014 3181208 369519.1 8.61 0.000 2456061 3906354 

Alpha (constant) -2118181 271395.9 -7.80 0.000 -2650770 -1585593 

Number of observations: 1 005  SS model: 6.3447e+14  

Adjusted R-squared: 0.8951  SS residual: 2.2877e+12  

 

The explanatory power of this estimation, measured as the adjusted R-squared, is 0.8951. 

Thus, the final estimated equation explains almost 90% of variations in variable costs for the 

coastal vessels. Plots of predicted variable unit costs with respect to output, illustrated in 

Figures 5.5-5.8, indicate that we are able to identify the possible u-shaped unit cost structure 

discussed in section 5.1 for several of the included species.26 All base case first order terms 

are significant, with the exception of capelin. Testing a regression with variable costs 

defined only as operating costs does not give large variations in coefficients or significance, 

but a slightly higher R-squared. This is not surprising as vessels probably treat a portion of 

the quasi-fixed costs as fixed during a season. The regression omits the interaction term for 

group 9 catching capelin, as the group reports no catches for this species in the period. 



26 In Appendix B, we include the predicted structure of the variable cost curve for species where we include higher order 

terms. 



 

We argued in section 5.1 that plots of the individual vessels’ cost curves could resemble the 

long-run cost curve of the vessel group when capacity is variable. This implies that each 

vessel minimises the optimal rotation with respect to a species within a season. In the case of 

herring, Figure 5.5 indicates that we are able to identify the possibly u-shaped long-run unit 

cost curve. With exogenous prices and a sufficiently increased quota, these results suggest 

that a vessel maximising variable profit could invest along the transitional path to obtain the 

lowest possible unit cost within its group.  

There are several reasons why this adjustment will not necessarily maximise the profit of the 

individual vessel. Different vessels land herring used for different purposes. Catches of 

herring sold to plants producing for the consumer market typically achieve higher prices than 

herring sold to plants producing fish meal and oil. It is likely that this also results in an 

expectancy of higher quality in catches going to human consumption. While we do not 

model price effects, the estimation treats cost effects endogenously because quality is costly 

to achieve. Thus, the plot of herring does not enable us to determine whether vessels actually 

want to invest according to the indicated transitional path of the long-run unit cost curves.  

We could likely make similar arguments regarding the output of mackerel and cod and 

pollock (N62). However, there are indications that in the main season the processing 

industry differentiates little on price with respect to quality (Sogn-Grundvåg & Henriksen, 

2011). The processing industry is an important recipient of cod and pollock. With the coastal 

vessels landing over 80% of all cod between January and April, increasing the quality of the 

output to increase the obtained price should not be a major determinant of fleet behaviour. 

Other effects should therefore better explain potential deviations from the transitional path 

for species such as cod and pollock. We argued in section 5.1 that the implemented IVQ 

system explains why vessels cannot adjust freely according to the transitional path. A 

stability requirement disallows the cod quota to vary more than 10% from year to year. This 

could potentially ease the investment decision.  

However, the quotas can be and have changed over time. As illustrated in Appendix A, 

observations on landings from the groups belonging to the coastal vessels have varied 

substantially between years. Furthermore, these show no clear trends. In section 5.1, we 

argued that varying quotas might make it difficult to invest in the capacity minimising the 

variable costs required to catch the quota. Thus, while the estimated cost functions could be 

correct for the period of which we are concerned, it is not certain that these provide good 





guidance going forward. With different quotas during the period, re-estimated long-term cost 

curves would likely differ. This argument is also important with respect to relative 

advantages between groups. 

Several interaction terms are significant, and give clear differences within the fleet. Group 

10 e.g. catch both mackerel and capelin at the lowest unit costs of the three groups. The cost 

of conducting fishing on herring and cod and pollock is almost identical between groups 10 

and 11. Landings of these two species are of similar size as a relative share of the vessel 

groups catches. 

There are in particular differences between group 9 and groups 10 and 11. This is not 

surprising. We expect unit costs to vary between e.g. small coastal vessels using seine and 

purse seiners without concession. Group 9 have for example the highest unit costs with 

respect to mackerel. This seems consistent if there is non-linearity with respect to output. 

The group only have 1% of the fleet’s catches of mackerel, and should therefore use less 

efficient gear than the other two groups. 

Certain results do however indicate that we have effects that are not properly corrected for in 

the model. If group 9 catch sufficiently high volumes of herring, the unit cost shifts sign and 

becomes negative. Catches of such volumes are unrealistic, even if the group is given time to 

invest in additional capacity. The group catch 0.4% of the fleet’s total herring catch, and 

have an average actual length of only 10.4 meters. Thus, it seems unlikely that these vessels 

should be much more efficient than the other groups of coastal vessels. The optimisation 

conducted by Grimsrud et al. (2015) did not allocate any herring catches to this group. We 

thus consider it a sufficient modification to restrict the group’s herring catch in the 

optimisation conducted in chapter 6. 

A similar argument can be made with respect to the results of cod and pollock (N62) for 

group 9. The unit cost is negative for all levels of output, but the group’s catch of cod and 

pollock constitutes only 0.2% of the fleet’s total catches. Again, we argue that it is 

unrealistic to redistribute large catch shares to this group. In the optimisation, we disallow 

any catches of cod and pollock for group 9. 

Output of mackerel is included only with a linear specifiation in the final model. This group 

only constitutes small volumes of catch for the coastal vessels. Thus, the OLS estimation 



 

likely fits this relationship as a result of the interval being small. The small catch levels make 

us accept this modification, as it should have little effect on the insights of the optimisation. 

 

Figure 5.5 – The predicted variable unit cost of herring for the three groups, coastal vessels (2000-

2014). 

 

Figure 5.6 – The predicted variable unit cost of mackerel for the three groups, coastal vessels (2000-

2014). 





 

Figure 5.7 – The predicted variable unit cost of capelin for the three groups, coastal vessels (2000-

2014). 

 

Figure 5.8 – The predicted variable unit cost of cod and pollock (N62) for the three groups, coastal 

vessels (2000-2014). 

5.3.2 Cost function and structures: Purse seiners and pelagic trawlers 

The combined fleet of purse seiners and pelagic trawlers consists of 1 279 observations. 

These correspond to vessel group 12 and 13 respectively. Our selection criteria results in the 

inclusion of four species in the regression. These species are herring (NSSH and NSH, 33% 

of the catch), blue whiting (35% of the catch), capelin (14% of the catch) and mackerel (9% 

of the catch). These four species total 92% of the fleet’s catches. A majority of vessels 



 

belongs to the purse seiners (1 013). We thus selected a year 2000 purse seine vessel as a 

base case. Presented in Table 5.2 is the final regression output. 

Table 5.2 – Parameter estimates of output (in kilos), dummies and interaction terms for 

the purse seiners and pelagic trawlers. Variable costs defined as operating and quasi-

fixed costs (NOK). 

Variable cost driver Coefficient Std. Err. T-value P>t 95% Conf. Interval 

Herring 2.333356 .1582596 14.74 0.000 2.022873 2.643839 

Mackerel 4.271245 .4162642 10.26 0.000 3.454593 5.087898 

Blue whiting 1.538926 .1621306 9.49 0.000 1.220848 1.857003 

Blue whiting^2 -1.26e-07 2.00e-08 -6.31 0.000 -1.65e-07 -8.69e-08 

Blue whiting^3 3.47e-15 6.22e-16 5.58 0.000 2.25e-15 4.69e-15 

Capelin .9242172 .5940761 1.56 0.120 -.2412773 2.089712 

Capelin^2 -1.93e-07 1.96e-07 -0.99 0.325 -5.77e-07 1.91e-07 

Capelin^3 2.05e-14 1.87e-14 1.09 0.274 -1.63e-14 5.73e-14 

Group 13 herring -.3382932 .2257046 -1.50 0.134 -.7810942 .1045078 

Group 13 mackerel .8985898 2.150403 0.42 0.676 -3.3202 5.11738 

Group 13 capelin .1755783 .6119619 0.29 0.774 -1.025006 1.376162 

Group 13 blue 

whiting 

-.1420015 .1428625 -0.99 0.320 -.4222777 .1382748 

Dummy 2001 5973666 702832.4 8.50 0.000 4594807 7352525 

Dummy 2002 6084311 701691.9 8.67 0.000 4707689 7460933 

Dummy 2003 2963194 695989.9 4.26 0.000 1597759 4328629 

Dummy 2004 4819190 805711.1 5.98 0.000 3238497 6399883 

Dummy 2005 6353647 782180.9 8.12 0.000 4819117 7888177 

Dummy 2006 4929808 891275.9 5.53 0.000 3181249 6678367 

Dummy 2007 3597611 910370.4 3.95 0.000 1811591 5383631 

Dummy 2008 3926333 992636.4 3.96 0.000 1978919 5873747 





Dummy 2009 3838896 885763.5 4.33 0.000 2101151 5576640 

Dummy 2010 5997542 811831.3 7.39 0.000 4404842 7590241 

Dummy 2011 1.60e+07 792442.7 20.21 0.000 1.45e+07 1.76e+07 

Dummy 2012 1.16e+07 786806.9 14.80 0.000 1.01e+07 1.32e+07 

Dummy 2013 1.06e+07 815645.6 13.01 0.000 9009841 1.22e+07 

Dummy 2014 8202994 1146551 7.15 0.000 5953621 1.05e+07 

Alpha (constant) -1611055 682527.6 -2.36 0.018 -2950079 -272031 

Number of observations: 1 279  SS model: 4.5057e+15  

Adjusted R-squared: 0.8065  SS residual: 2.1890e+13   



The explanatory power of the estimation, measured as the adjusted R-squared, is 0.8065. 

Thus, the final estimated equation explains more than 80% of variations in variable costs for 

the combined fleet of purse seiners and pelagic trawlers. However, our model specification 

explains about 10% less of the variations in variable costs as compared to the estimated cost 

function for the coastal vessels. Plots of predicted variable costs with respect to output, 

illustrated in Figures 5.9-5.12, indicate that we are able to identify the possible u-shaped unit 

cost structure discussed in section 5.1 for two of the four incldued species. These two are 

blue whiting and capelin. Of these, only blue whiting has significant ouput terms. 

We find no significant interaction terms for pelagic trawlers in the initial regression 

equation. This is not particularly surprising as we expect the two fleets to utilise the same 

type of gear and technology. The initial regression gave inconsistent results with respect to 

the predicted relationship between variable costs and output of herring and mackerel. 

Regressions with only a linear specification of variable costs in these species yield 

significant coefficients without large variations in the explanatory power of the model. This 

indicates that this might be a feasible way to modify the initial equation. 

Cases where OLS fails to identify the u-shaped unit cost structure due to small volumes or 

few observations seem not to explain a linear specification with respect to herring or 

mackerel. The fleet have well distributed volumes of the herring catch and the species 

constitutes a large share of the fleet’s total catches. While the share of the total catch is lower 



 

for mackerel, catches are again well distributed. Theory on the optimal rotation problem 

during a season indicates that a linear specification could exist when an increase in IVQs 

only leads to an increased number of trips. A possible explanation for these findings could be 

that vessels already utilise their maximum catch capacity for such species during a trip. The 

decline in operating days, discussed in section 4.4, might indicate that vessels have become 

better at exploiting the full capacity of each trip.  

We are modelling over the period 2000-2014. The long-term investment perspective 

discussed in section 5.1 might help explain the linear variable cost specification if quotas 

have remained relatively stable throughout the period. We have illustrated landings of all 

species included in the estimation in Appendix A. These landings vary substantially between 

years. However, group 12 seems to have relatively stable landings of herring and mackerel. 

Nofima (2013) confirms this in a plot of purse seiners’ landings in the period 2005-2011. 

Thus, it is possible that investors can easier adjust capacity over time to minimise effort and 

utilise the full per trip capacity of these species. As a comparison, purse seiners’ landings of 

blue whiting have experienced large seasonal variations in the period. This prediction 

therefore seems consistent with the expectance of linearity in an OLS estimation, discussed 

in section 5.2. 

The above findings are worrisome with respect to group 13. This group does not show the 

same stability in landings of any species. Thus, the possibility exists that we have imposed a 

linear specification on this group even when we should not. Robustness analysis including 

higher order interaction terms for group 13 does however not give consistent results. This 

leads us to accept the linear specification for both groups in the fleet. 

 







Figure 5.9 – The predicted variable unit cost of herring for the two groups, purse seiners and pelagic 

trawlers (2000-2014). 

 

Figure 5.10 – The predicted variable unit cost of mackerel for the two groups, purse seiners and 

pelagic trawlers (2000-2014). 



 

 

Figure 5.11 – The predicted variable unit cost of capelin for the two groups, purse seiners and 

pelagic trawlers (2000-2014). 

 

Figure 5.12 – The predicted variable unit cost of blue whiting for the two groups, purse seiners and 

pelagic trawlers (2000-2014). 

 

 





5.4 Sub-conclusion: estimation 

In this chapter, we estimate cost functions for the coastal vessels and the combined fleet of 

purse seiners and pelagic trawlers. We estimate on a polynomial function, through the 

utilisation of OLS techniques. Predicted underlying relationships between output and 

variable costs are included in Figures 5.5-5.12.  

We argue in section 5.1 that the predicted plots of individual vessels form a long-run cost 

curve, i.e., a description of costs when capital is flexible. During a season, capital is fixed. 

Rational actors therefore minimise costs by adjusting effort. This is equivalent to an optimal 

rotation problem. It explains non-linearity in the cost function when an increase in the IVQ 

leads to a less than proportional increase in the number of trips. Over time, the economic 

actors adjust capacity to the expected level of the quota. We illustrate this relationship of 

short and long run cost curves in Figure 5.3. 

The econometric approach reveals the predicted long-run cost curve for several of the 

species included in the estimation. For the coastal vessels, these are herring, mackerel, 

capelin and cod and pollock (N62). In the combined fleet of purse seiners and pelagic 

trawlers, we find a non-linear specification of costs for blue whiting and capelin. 

The predicted shape of the cost function for mackerel caught by coastal vessels end up being 

included with a linear specification. This species constitute only small volumes of output for 

the fleet. OLS could therefore fit this relationship due to the small interval of observations. 

The case indicates that mackerel is of small importance for the coastal vessels, and thus 

makes it unlikely that the fleet has any major cost advantages. We should therefore not miss 

important information in the optimisation when using a linear term. 

For purse seiners and pelagic trawlers, we identify a linear specification of the cost function 

for the species herring and mackerel. In contrast with the coastal vessels, the fleet has well 

distributed volumes of catch for both of these species. If most vessels have adjusted 

economic capacity and effort around the bottom of the unit cost curve, OLS could fit a 

constant relationship of output and variable unit costs. The stability of the quotas over time 

possibly indicates that the economic actors have been able to adjust effectively the economic 

capacity along the transitional path. Keeping the linear specification should then not affect 

the fundamental insights from the optimisation, because unit costs in the fleet should be 



 

close to the lowest achievable in the period. As a comparison, blue whiting has experienced 

substantial variations in landings over time. Subsequently, this species shows the predicted 

u-shaped unit cost curve. 

We have simplified the relative advantages between fleets by only including first order 

interaction terms. While this scale vessel groups’ differences in the unit costs, we are unable 

to identify possible differences in the location of the bottom point with respect to output. 

While this approach should be sufficient to enable optimisation of catches between groups, 

further work could develop the framework through the inclusion of higher order interaction 

terms. 

  





6. Optimisation 

In this chapter, we utilise the estimated cost functions in a non-linear optimisation problem. 

We try to identify whether redistribution of catches could result in gains in terms of reduced 

variable costs among the vessels. Section 6.1 presents a variable cost minimising problem 

using the linear programming model introduced by Steinshamn (2005) as a point of 

departure. We then present the results from the optimisation. The analyses in this chapter are 

an extension to the discussion on cost structures in the Norwegian pelagic fisheries.  

6.1 The model 

The purpose of running the optimisation problem is to identify potential reductions in total 

variable costs in the pelagic fisheries (2000-2014). We constrain the individual vessel’s 

allowed catch levels of the included species and impose that the aggregate total catch of the 

species must equal the actual total catch of the species in the period. Not imposing such a 

constraint would result in the vessels catching as little as possible in a pure cost minimisation 

problem. In Table 6.1, we show the total quantities caught of the species in the period. We 

allow for the number of vessels to differ from the true number of vessels in the period, both 

in aggregate terms and within each vessel group. 

We optimise based on the generalised vessel behaviour and characteristics for each of the 

vessel groups. This implies that we assume that the modelled vessels in a vessel group have 

the exact same cost structure. The estimation of the variable cost functions in chapter 5 

utilise all variation in the data to predict the costs of each of the vessel groups. 

The period from 2000-2014 is treated as one season (see section 4.5). The consequence of 

optimising for the period as a whole is that all numbers reported in this chapter regarding 

total variable costs accumulates over the entire period. The inclusion of year dummies in the 

estimated cost equations remove for between season effects such as changes in biomass. In 

the optimisation problem, we ignore politically determined catch distributions in the period. 

We introduce the decision variable N in the optimisation problem, defined as the number of 

vessels. Due to the treatment of the data, this measure coincides with the number of 

observations. 



 

The model minimises total variable costs, TVC, given the aggregate total catch for each 

species i for the period as a whole, . We also include catch capacity per vessel in group 

j, in terms of total allowable catch for each species i, . The problem then solves for the 

optimal number of vessels in each vessel group , and the total catch of species i for each 

vessel in vessel group j, . We specify the model as 

 

subject to 

 for all i and j 

for all i.  

 

 is the estimated variable cost function for vessel group j when the interaction terms are 

utilised.27  

Generally, one should be careful about predicting how total variable costs will behave 

outside the observed range of quantities caught of the different species. Extrapolation 

beyond the range of the data might lead to erroneous outcomes and dubious results. This 

motivates the first constraint in the model above.  equals the maximum quantity caught 

of species i of a vessel in the dataset, unless otherwise specified. In Table 6.1, we show these 

quantities together with the aggregate total catch of the different species. Our optimisation 

problems do not allow for the quantity caught of a species i by a vessel in vessel group j to 

exceed the values presented here. The aggregate total catch of the different species must also 



27 We ignore the constant term and year dummies from the regression output in chapter 5 as we consider the period as a 

whole in the optimisation problem. 





always equal the values presented in the rightmost column in the table below. N/A in the 

table means that the vessel group does not catch this species in our model.28 

Table 6.1 – Maximum quantity caught of a species i and aggregate total catch. Catches 

in tonnes. 

Species/Vessel group 9 10 11 12 13 Total catch 

Herring 529 7 700 6 955 12 587 6 818 6 633 577 

Mackerel 176 1 188 1 630 6 526 1 022 1 702 941 

Capelin 0 740 3 821 8 754 2 208 2 405 469 

Cod and pollock N62 213 5 871 3 619 N/A N/A 393 907 

Blue whiting N/A N/A N/A 27 311 12 715 5 627 507 

 

The cost structure for vessel group 9 of the species cod and pollock (N62) requires special 

treatment in the optimisation problem. As discussed in section 5.3, the estimated coefficients 

indicate that total variable costs are decreasing and negative if the vessels in this group 

increase catch of the above species within a certain interval. We treat this misspecification of 

the cost structure of cod and pollock for vessel group 9 by excluding this as a decision 

variable in the optimisation problem. We constrain the quantity caught to equal zero. The 

species group constitutes only a small share of these vessels catches. This constraint should 

therefore not be of any major concern.  

6.2 Optimisation Results 

In this section, we first establish a base case using predetermined decision variables in the 

total variable costs model. This is utilised to compare predicted total variable costs and 

actual total variable costs. We comment on the robustness of the model before we solve the 

cost minimisation problem as described in the previous section. 

6.2.1 Base Case 

For the base case, we use predetermined decision variables.  and . Values of  are 

set to the average catch quantities of the species for the different vessel groups, while values 



28 See section 5.2 for a discussion on the selection criterion for species.  



 

of  are set to equal the actual number of vessels in the period. We expect a deviation 

between the actual and predicted total variable costs. Actual total variable costs cover the 

sum of all variable costs generated by vessels in the dataset, while our model only predicts 

total variable costs generated by catching the most important species. Thus, the predicted 

total variable costs from the model should be less than actual total variable costs. 

Furthermore, approximating vessel’s costs through any functional form will lead to 

deviations.  In addition, there is a great degree of variations between vessels in the quantities 

caught of different species. In the table below, we show the values of the predetermined 

decision variables utilised to calculate the total variable costs in the base case. 

Table 6.2 – Predetermined decision variables in the base case. Catches in tonnes. 

Species/Vessel group 9 10 11 12 13 

Herring 91 1 205 1 938 4 689 1 910 

Mackerel 49 161 315 1 435 170 

Capelin 0 31 294 2 140 474 

Cod and pollock N62 17 348 550 N/A N/A 

Blue whiting N/A N/A N/A 4 866 2 627 

Actual number of vessels 56 639 310 1013 266 

  

Table 6.3 – Actual and predicted total variable costs for the vessel groups. NOK in 

millions.  

Vessel group 9 10 11 12 13 

Actual total variable 

costs 
56 4 185 3 286 29 741 3 378 

Predicted total 

variable costs 
32 3 941 3 119 23 574 2 137 

 

The model predicts total variable costs of NOK 32.8 billion. The actual total variable costs in 

the period sum up to NOK 40.6 billion. With reference to the discussion above, the negative 

deviation is not surprising. Table 6.3 presents actual total variable costs and the predicted 

total variable costs from the base case for the vessel groups. 

Predicted total variable costs are lower for each vessel group compared to the actual 

numbers. For the coastal vessels, we see that the deviations are relatively small for vessel 

group 10 and 11 as compared to vessel group 9. The species included in the model for the 





coastal vessels constitute about 96% of total catch for vessel group 10 and 11, and 85% for 

vessel group 9. Thus, these seem to be logical deviations between the actual and predicted 

total variable costs. The deviations for the purse seiners and the pelagic trawlers also seem 

logical. The species included in the model for the purse seiners and pelagic trawlers 

constitute 95% and 66%, respectively. The deviation between actual and predicted total 

variable costs in relative terms is higher for pelagic trawlers than for the purse seiners.  

We can assess the robustness of the model through a comparison of the explanatory power of 

the two cost function estimations with the ratio of predicted total variable costs in the base 

case to the actual total variable costs. The estimated fleet cost function with the highest 

explanatory power should also result in the highest value of the cost ratio. We expect such a 

relationship due to this function being able to explain more of the variations in costs. The 

explanatory power of the estimated cost function for the coastal vessel fleet is about 0.90. 

The corresponding number for the purse seiners and the pelagic trawlers is 0.81. The ratio of 

predicted total variable costs to the actual total variable costs is 0.94 for the coastal vessels. 

For the purse seiners and pelagic trawlers this number is 0.78. The explanatory power and 

cost ratio in each fleet show only small deviations. These findings indicates a robust model. 

6.2.2 Variable cost minimisation  

Running the variable cost minimisation problem as specified in section 6.1, yields the 

following optimal solution29 

Table 6.4 – Optimal solution to variable cost minimisation problem 1. Catches in 

tonnes. 

Species/Vessel group 9 10 11 12 13 

Herring 0 0 6 955 0 0 

Mackerel 0 0 0 4 810 0 

Capelin 0 0 0 6 795 0 

Cod and pollock N62 0 0 413 0 0 

Blue whiting 0 0 0 15 896 0 

Number of vessels 0 0 954 354 0 

 



29 We use the GRG Nonlinear Solving method in Excel to solve the optimisation problem.  



 

We find that the total variable costs in the period could have been reduced from NOK 32.8 

billion (the base case) to NOK 22.3 billion if catches were redistributed among the vessels. 

Vessel group 11 catches all herring and cod and pollock, while vessel group 12 catches the 

remainder of the species included in the model. The number of vessels in vessel group 11 

increases from 310 to 954, while the number of vessels in vessel group 12 decreases from 

1013 to 354. No vessels from the other vessel groups participate in the fishery in the optimal 

solution.  

In the cost function estimation, we find that vessel group 13 has a constant variable unit cost 

of NOK 2 per kg. herring. The coefficient of the first order term of herring equals 4 for 

vessel group 11. However, vessels in vessel group 11 have a u-shaped unit cost function for 

output of herring. When vessels in vessel group 11 increase the volumes caught, they 

achieve a lower variable unit cost. Thus, in the optimal solution, the variable unit cost for 

vessels in vessel group 11 when fishing herring is lower than for vessel group 13.  

The total number of vessels in the pelagic fishery is reduced from 2 284 to 1 308. A 

reduction in the number of vessels of this magnitude would obviously have major 

repercussions. Even though the result indicates a potential reduction in total variable costs if 

fewer vessels caught higher volumes, this does not imply that this is the desired structure of 

the fleet. Regulators must always compare results such as these against other policy 

considerations and sectors. Furthermore, the considerable variations in landings of species 

between years might indicate that a diversified fleet is preferable. If economic efficiency 

implies utilisation of different gear, this would also point in the direction of maintaining a 

fleet consisting of several types of vessels. See for example (NOU 2016:26, 2016). The 

modelling results naturally build upon the assumption that all vessels could invest to achieve 

the unit costs of the most efficient vessel within the group.  

We solve two additional cost minimisation problems, where we change the constraints to 

identify how these alterations affect the solution. In the first problem, we impose constraints 

on the minimum and maximum allowable number of vessels in each vessel group. The 

motivation for including such constraints is policy goals of maintaining different vessel 

types. We allow for a decrease/increase of 20% of the actual number of vessels in the vessel 

groups, and constrain the total number of vessels to be equal or less than the actual total 

number of vessels. 





In the second problem, we alter the constraint on the decision variable . Rather than 

allowing  to equal the maximum quantity caught of species i of a vessel in the dataset, 

 cannot exceed two times the average quantity caught of a species. We report the optimal 

solutions to the problems in Appendix C. 

Both optimisation problems yield higher total variable costs than the original cost 

minimisation problem. The total variable costs are reduced with about NOK 1 billion from 

the base case. The optimal solutions also find a reduction of vessels. Clearly, altering the 

constraints in such a manner removes a degree of freedom for the decision variables, 

resulting in a reduction in potential gains from redistributing catch. This highlights the costs 

of implementing policy constraints to achieve goals of e.g. social sustainability. 

6.3 Sub-conclusion: discussion of methods and results 

In this chapter, we optimise based on the estimated cost functions from chapter 5. We ignore 

both time and geographical dimensions in this analysis. The optimisation conducted is on the 

period as a whole and impose no constraints on the geographical location of the vessels. The 

analysis allows us to get an indication of the potential gains of a redistribution of the 

quantities caught of the most important species. We also find suggested reductions in the 

number of vessels, assuming that vessels within a group can achieve the unit costs of the 

group’s most cost efficient vessel. Findings in section 6.2.1 indicate that the model is robust.  

In the total variable cost minimisation problem, we use only estimated variable cost 

functions at the vessel group level. This approach disallows for between-vessel variations 

within vessel groups. Vessels in a vessel group thus have the exact same cost structure. 

While removing information on individual preferences, we are nevertheless able to utilise 

these functions to indicate the potential for increased efficiency in the fleet.  

Our findings suggest an increase in efficiency with redistribution of catches. In the base case 

scenario, we find that group 11 (consisting of coastal vessels) should catch the entire quotas 

of herring and cod and pollock. Group 12, the purse seiners, catch the entire quotas of 

mackerel and capelin. The inclusion of higher order interaction terms in the estimation, as 

suggested in chapter 5, would likely nuance this picture. 



 

7. Conclusion 

In this thesis, we have studied cost structures in the Norwegian pelagic fisheries. The 

objective was to estimate non-linear cost functions for different vessel groups participating 

in an IVQ system, and to utilise these functions in an optimisation problem. This approach 

revealed the potential for redistributing the catch between fleets to achieve higher economic 

efficiency. We have used data from the profitability surveys conducted by the Norwegian 

Directorate of Fisheries in the period 2000-2014. 

Vessels have a predicted non-linear shape due to the presence of set-up costs and scale 

effects. A vessel takes capacity as fixed during a season. The rational actor then minimises 

the effort required to catch the quota. This is an optimal rotation problem, inducing non-

linearity between variable costs and output when an increasing IVQ leads to a less than 

proportional increase in the number of trips. Between seasons, the transitional path enables 

alteration of capacity. If there exists scale effects, this could incentivise actors to invest to 

reach the bottom point of the long-run unit cost curve. 

Using an OLS approach, we estimated cost functions for the coastal vessels, purse seiners 

and pelagic trawlers. The inclusion of interaction terms enabled explicit modelling of 

differences between vessel groups. Plotting the sum of the predicted variable costs with 

respect to output, revealed the long-run cost curves for different vessel groups. We were able 

to reveal the predicted u-shaped unit cost function for output of several of the included 

species. However, the estimation technique lead to output of some species being included 

with a constant unit cost. Both estimations resulted in a linear specification of costs and 

output of mackerel. For the purse seiners and pelagic trawlers, this also included herring. We 

explained these findings using the structure of the data, and argued why acceptance of these 

should not result in loss of insights from the optimisation.  

The conducted cost minimisation problem revealed a potential for reducing the number of 

vessels and redistributing the catch. We discussed the robustness of the estimated cost 

functions through establishing a base case, and concluded that the model yielded consistent 

results. Including additional constraints, such as a limitation on the change in the number of 

vessel within a group, gave reduced potential gains. The optimal case yielded variable costs 

of NOK 22.3 billion. This was a reduction of NOK 10.5 billion as compared to the base case. 





Cases including additional constraints reduced the potential gains from redistributing catches 

substantially. 

The solutions to the optimisation problem highlight the costs of implemented policies 

preserving non-economic considerations. As discussed in chapter 2, Norwegian fishery 

management rests upon three pillars of sustainability: economic, environmental and social. 

Thus, one must see our findings in conjunction with environmental and social 

considerations. We have highlighted the improvement of biomass in fisheries through 

management regimes limiting the access to participate. The current discussion is on the 

relative priorities between policies emphasizing the social and economic sustainability. 

In our opinion, successful policies must enhance both these sustainability criteria if 

Norwegian fishery management is to succeed in the future. Norway is a high-cost country, 

and a large net exporter of fish. This implies strong requirements on productivity and 

efficiency to maintain the position as a leading fishing nation. If the fisheries are to provide 

attractive opportunities for investors and fishermen also in the future, continuous 

improvements must be made. A crucial part of this is to adjust the economic capacity of the 

fleet. At the same time, the chosen approach should emphasise fish as a common property 

providing benefits to all Norwegians. It will be interesting to follow the possible 

implementation of measures suggested, such as systems collecting the resource rent, in the 

latest government white paper, a provident quota system (NOU 2016:26, 2016).   
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Appendix A - Data 

A.1 Distribution of catches (2000-2014)  

A.1.1 Coastal vessels 

Group 9 

 

Group 10 
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A.1.2 Purse seiners and pelagic trawlers 
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Appendix B - Estimation 

B.1 The estimated variable cost structure  

B.1.1 Coastal vessels 
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Capelin 



 





Cod and pollock N62 



B.1.2 Purse seiners and pelagic trawlers 
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Blue whiting 
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Appendix C - Optimisation 

C.1 Solutions to the sensitivity analyses 

Solution 1 

Species/vessel group 9 10 11 12 13 

Herring 91 1 270 2 020 6 242 1 977 

Mackerel 49 165 321 1 851 172 

Capelin 0 32 298 2 731 481 

CodN62 and pollock N62 0 446 669 0 0 

Blue whiting 0 0 0 6 227 2 731 

Number of vessels 45 511 248 810 213 

    Total variable costs: 31 761 406 821 

    Number of vessels: 1827 

 

Solution 2 

Species/vessel group 9 10 11 12 13 

Herring 91 1 212 1 973 5 445 1 966 

Mackerel 49 162 317 1 605 171 

Capelin 0 31 295 2 249 476 

CodN62 and pollock N62 0 696 1 100 0 0 

Blue whiting 0 0 0 4 866 2 627 

Number of vessels 10 151 262 954 376 

    Total variable: 31 844 586 676 

    Number of vessels: 1753 

 




