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Profitable Robot Strategies in Pari-Mutuel Betting:
Petter Bjerksund and Gunnar Stensland:

Abstract: We have collected odds and results from 7 474 horse races in Norway and Sweden for a period of
approximately 1.5 years. Based on the odds from the win game, we construct a profitable betting strategy for the
corresponding triple game. Given a 30% track take, the existence of a profitable strategy is surprising. A robot is
typically needed to identify and exploit underrated bets. We argue that the existence of heterogeneous beliefs
between players in the market might form a basis for profitable betting strategies. We did expect that bigger pools
(more liquidity) would remove this anomaly. That is not the case. More players, and thereby bigger pools, increases
the profitability of the system.

1. Introduction

Economists have studied pari-mutuel betting markets for several years. It is a source of insight into the
formation of expectation, return for risk, and equilibrium in a market. The idea behind these studies is
often to learn something that might also be valid in the more important financial markets for securities.

From previous findings, we know that a favorite-longshot bias might exist, that is, the expectation of
always betting on the favorite exceeds the expectation of other simple strategies. This phenomenon is
referred to as the low odds bias (see Ali (1977), Ash and Quandt (1987), Thaler and Ziemba (1988),
Hurley and McDonugh (1995), and Weitzman (1965)).

For an overview of possible explanations of this anomaly, see Ottaviani and Sgrensen (2007). Given that
the explanation for the favorite-longshot bias should ideally explain the anomalies in this paper, the
most fruitful explanation investigated is heterogeneous beliefs. The investors (players) do not agree on
the win probabilities for the horses. Hence, they do not agree on the probability for a combination of
horses. When aggregating heterogeneous beliefs through a pari-mutuel betting pool, underrated
combinations might occur.

Based on the odds for each horse winning in a given race (i.e., the win game), we construct a profitable
strategy in a second game based on the same race. This second game, called the triple, involves betting
on a combination of first, second, and third horse in the same race in the correct order. Given a 30%
track take in the triple game, the existence of a profitable strategy is surprising. A similar idea is
exploited in the so-called Dr. Z system. For an overview of similar strategies, see Thaler and Ziemba
(1988).

The most profitable combinations (high expected value) very often consist of the favorite coming second
or third. In this study, we restrict our analysis to the 200 combinations with the lowest odds in each race.

1 This version: April 3, 2017. We thank @ystein Gjerde for helpful comments and suggestions.
2 Both: Department of Business and Management Science, Norwegian School of Economics (NHH).
E-mail: Petter.Bjerksund@nhh.no and Gunnar.Stensland@nhh.no
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The favorite will be involved in most of them. If we assume heterogeneous beliefs, it might be that all
players more or less agree on the ranking of horses, but assign different probabilities to the outcomes.
This leads to huge differences in subjective probabilities for the combinations. In this situation, it is easy
to construct examples in pari-mutuel betting where the average of subjective probabilities differs from
the mathematical probability given by observed odds.

Although it is interesting to develop a “money machine”, this is not the main purpose of the paper. We
want to show that more bettors and bigger pools do not alter this result. In fact, more investors being
involved in the game increases the profitability of the system. This is counter-intuitive since bigger pools
make the game interesting for professionals.

In order to make money on this observation you need a robot. Win odds change all the time and so do
the odds for the combinations. A computer can easily monitor both and calculate favorable bets in real
time. The challenge is to place all bets in the seconds before the race starts. This is a smaller problem for
large pools. For large pools, odds are more robust before the race starts.

2. The horse track and data
All the data are collected using the internet (www.rikstoto.no). Every day there are two or more events

on some tracks in Scandinavia. Each event consists of from 5 to 12 separate races. More than 90% of the
races are harness races, also called trotting. Here a horse that uses a gait that is not allowed more than
twice during the race might be disqualified. This influences the probability of the favorite ending second
or third. Some horses are viewed as fast but unstable. Most players therefore believe that they will
either win or be disqualified.

A typical race day on a track consists of some of following games:

The DD, V4, V5, V65, V75 game: Bet on the first horse in a combination of races (2 (DD) and 4-7 races).
The pool in these games might be huge and the winner can take anything from NOK 50 to NOK 20
million. Some of the games also distribute a part of the pool to five out of six correct horses, for example.
We will concentrate on the betting in each individual race.

The win (“vinner”) game: Bet on a horse to win the race. Let B = )i b; denote the before track take
pool in the game, where b; is total wagers on horse i and n is the number of horses. The total amount
available for the winners of the bet is 0.8 - B. That is, the totalizator takes 20% in this game.

The odds of horse k winning the race are given by 0, = 0.8 (B/b;). All these odds are calculated
continuously and published on the internet. Typically, new information will be available every 20-30
seconds. It is a problem, however, that a lot of the betting happens in the last minute before the race
starts.



The show (“plass”) game: Bet on a horse coming first, second or third. This game is utilized by the so-
called HZR-system, see Hausch et al. (1981). It is also investigated in Lo et al. (1995). Their idea is to find
underrated horses in the show game based on the probabilities in the win game. The empirical part of
our paper takes a similar approach. However, our show pool is small and suffers from several biases.
Odds are never below 1. Some agents take bets on behalf of the pool. They will earn a percentage of the
bets. This in turn leads them (or a friend) to bet heavily on a huge favorite to show. When this favorite
shows (first, second or third) the odds for all three horses are 1. This is important since the organizer
might lose money in some races.

The exacta box / quinella (“tvilling”) game: Bet on the two first horses. The order does not matter.

The triple (“trippel”) game: Bet on the three first horses in the correct order. The odds are calculated in
the same way as in the win game except that the totalizator take is 30% in this game. The odds are
published on the internet and some important rules are set out. The maximum number of horses in a
race is 15. With 15 horses, there are 15*14*13 = 2 730 combinations in the triple game. For each race,
the odds for the 200 most likely combinations are published on a single web page. It is possible to
download odds for other combinations, but in such case you must ask for these combinations separately.
For instance, you can ask for every combination where 1 is the first horse. This is a challenge for players
but not for a computer program. More important is that the odds that are published before the race
starts are capped at 3 000. The realized odds after the race might be all the money placed minus a 30%
totalizator take divided by 2 (the minimum bet is 2). The total amount placed on all combinations is also
published continuously. The games differ enormously with respect to the total amount. The variation is
between NOK 10 000 and NOK 500 000. For a single race, the pool before the track take in the triple
game is usually close to that of the win game.

In the empirical analysis in Section 3, we use the odds from the win game to identify underrated
combinations in the triple game. The period considered is from December 2015 to March 2017. Every
day we have downloaded the odds for the 200 most likely triple combinations in every game, as well as
the winner odds, total wagers, and the results.

For practical reasons, not all games in this period are included. We constructed the database such that it
allows a maximum of 20 races each day. Whenever there is a choice between two tracks, we include the
race track with the biggest pools. Therefore, most of the races are from Sweden. Nonetheless there
should be no bias in the sample. Since we have a Norwegian account, some Swedish games are blocked.
The idea behind this is that “Norsk Rikstoto” (the Norwegian part of this corporation) tries to lead bets to
Norwegian tracks when possible. The total number of races is 7 474.

3. The profitable robot strategy

In financial economics, an arbitrage might involve exploiting two markets for the same outcome. A true
arbitrage is where your portfolio gives a positive return whatever happens. This is close to impossible at
the horse track, since such a strategy must include shorting of at least one asset (bet). If we were



allowed to give odds (sell bets), this might be possible. Another alternative would be a case where we
know that a certain horse will fail. However, this case must involve fraud.

As illustrated in the previous section, a given race gives rise to different games. The approach taken in
this paper is to exploit the odds in one game (the win) to identify a favorable bet in a second game (the
triple) on the same race. The first step is to transform the win odds into probabilities. Let O, denote the
odds for horse k in the win game. The probability p;, for horse k winning is given by

px = 0.8/0y (1)

where the track take is 20%. Here, we immediately see a problem with low odds. Odds of 1 gives a
probability of 0.8. This might be too low. In addition, we have the low odds bias that suggests a different
function. In the absence of alternatives, we will use (1) above to translate odds into probabilities.

The next step is to use the probabilities from the win game to compute probabilities in the triple game.
Following the Harville-rule, the probability of the combination (k, [, m) in the triple game is

P _ Pr " D1 Pm (2)
fobm A-p)A—pr—p)

(Harville, 1973). The formula is based on independence of outcomes. It is like drawing from a distribution
without replacement. There is extensive literature on alternatives to the Harville-rule. See Henery
(1991), Stern (1980), and Lo et al. (1995). These studies suggest that the Harville-rule overestimates the
probability of the favorite finishing second and third. Against this background, a generalization of the
Harville-rule is

Az A3

D . b . DPm
klm — Pk P 2 3
Yk P DszkiDs. 3

where A, and A5 are positive exponents, see Lo et al. (1995). Observe that with 1, = A; = 1, Equation
(3) translates back to the Harville-rule.

In our empirical analysis, we use Eq. (3) with exponents A, = 0.88 and A3 = 0.81, which can be
motivated empirically by data from Japan (Lo and Bacon-Shone (1992) and Lo (1994).

In the Appendix, we show similar results using the Harville-rule, (2). We also investigate the results of
using Eqg. (3) with the combination of exponents A1, = 0.76 and A; = 0.62 that can be motivated by the
Henery model and empirically by data from Medowlands and Hong Kong.

The third step is to combine the market odds Oy, ,, for each combination (k, [, m) in the triple game
with the corresponding probability py ; ,,, inferred from the win game by Egs. (1)-(3). Given this
information, we compute the expected pay-off Ey ; ,, from a one-dollar bet on combination (k, l,m) as
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Eyim = Prim " Okim (4)

A high expected pay-off score indicates a profitable combination in the triple game, whereas an expected
pay-off score of less than 1 indicates a non-profitable combination.

We investigate all 7 474 games in the following way. For each game, we sort the bets according to
expected pay-off score computed from Eq. (4). We pretend to bet in the triple game on all combinations
for which the expected pay-off score is within a given interval (we use an interval size of 0.1). The money
placed is such that: (i) It should not influence the odds by more than 1%, which we do not adjust for; and
(i) Given success, the money gain is equal for all combinations. So, given that we bet on the
combination (k, 1, m) in a game, we will put

0.01-0.7-B (5)
Betk_l_m -
Ok,l,m

on this combination, where the total amount invested in the pool is B and the track take in the triple
game is 30%.

For each expected pay-off score interval, we add up all bets and all wins. Our win is our bet times the
track odds. We understand that track odds will change when we put our money on. On the other hand,
so will the total pool. Our bet is such that this effect is less than 1%. Next, we compute the realized win-
to-bet ratio. The results for each expected pay-off score interval are reported in Table 1 below. The
second and third columns show the total money placed and the realized win, respectively. Column 4
shows the profit and loss, i.e., the difference between money placed and won. Column 5 shows the
realized win-to-bet ratio.

Table 1 includes the 200 combinations with the lowest odds in each game. The bottom line in the table
shows that betting on all 200 combinations in every triple game gives a return of 71.07%. Given that the
track take is 30%, this is as expected.

Table 1 shows that we have some profitable strategies. The return measured as a percentage will
increase with the cut-off fraction we choose. Now, suppose that we only include bets with an expected
pay-off score of 1.5 or higher (indicated by the dotted line in Table 1). The total money placed is then
NOK 172 383 and the total monetary gain is NOK 187 818. Consequently, the net profit is NOK 15 436,
which translates into a return of 8.95%.3

There are 7 474 races and of these we win 319 times. Hence the probability of winning is 4.27%. We
obtain similar results for the two alternative models (see Tables Al and A2 in the Appendix).

3 In the first draft of this working paper, we used a sample of 3 000 races. That sample gave us the cut-off rate of
1.5 and an expectation of 11.3%. In order to rule out randomness, we increased the sample in this paper to 7 474.



Table 1: Betting results versus expected pay-off score

The expected pay-off score is based on probabilities computed from

Eq. (3) using 1, = 0.88 and A; = 0.81.*

Expected Money Realized Profit Realized
pay-off placed win and loss win-to-bet
score (NOK) (NOK) (NOK) ratio
0.0-0.1 23412 6 691 -16 720 0.29
0.1-0.2 121929 67 251 -54 678 0.55
0.2-0.3 282 819 156 791 -126 029 0.55
0.3-04 452 127 282 887 -169 241 0.63
0.4-0.5 580 826 424999 -155 828 0.73
0.5-0.6 624 846 396 480 -228 366 0.63
0.6-0.7 590990 415 829 -175 161 0.70
0.7-0.8 507 556 372203 -135 352 0.73
0.8-0.9 402 774 298 832 -103 943 0.74
09-1.0 310108 230 806 -79 302 0.74
1.0-1.1 228 833 184 639 -44 194 0.81
1.1-1.2 168 192 120708 -47 485 0.72
1.2-13 118 901 99 391 -19510 0.84
13-14 86 068 70 467 -15 601 0.82
14-15 61442 47901 13540 078
1.5-1.6 44 138 54 157 10019 1.23
1.6-1.7 32003 34932 2929 1.09
1.7-1.8 23948 24 567 619 1.03
1.8-1.9 18 151 11933 -6218 0.66
19-2.0 12 837 20357 7 520 1.59
20-21 9421 9 669 248 1.03
21-22 7 449 5112 -2 337 0.69
22-23 5258 4830 -428 0.92
23-24 4416 8474 4058 1.92
24-25 3109 2475 -634 0.80
25-26 2477 1249 -1228 0.50
2.6-27 1861 1598 -262 0.86
2.7-2.8 1536 1448 -87 0.94
2.8-29 1093 1132 39 1.04
29-3.0 863 356 -507 0.41
33-31 669 850 181 1.27
3.1-3.2 502 432 -70 0.86
3.2-33 442 0 -442 0.00
33-34 370 1995 1625 5.40
3.4-35 314 1636 1321 5.20
3.5-3.6 225 0 -225 0.00
3.6 1301 618 -683 0.48
Total 4733207 3 363 692 -1369514 0.7107

* Sample: The 200 bets with lowest odds in each game.



The total wagers on a race vary enormously (NOK 10 000 - 500 000). For a race with many horses and a
small pool, the expectation from playing a low probability combination is low. The minimum bet is NOK
2. Hence, all combinations with a probability lower than 2/(0.7 - B) will have a negative expectation,
where B denotes the gross pool. Gamblers know this and will therefore probably restrict their betting to
the most probable outcomes. If no one has a bet on the winning combination, the pool is carried over to
the next race. This boosts the wagers for this race. However, this only happened twice in our sample.

Table 2 shows the result after excluding bets in games where the net pool (0.7 - B) is below some
threshold. The second and third columns show the total money placed and the realized win, respectively.
Column 4 shows the profit, i.e., the difference between money won and placed. Column 5 shows the
realized win-to-bet ratio.

Table 2: Betting results versus minimum net pool
Computed from Eq. (3) using 1, = 0.88 and 1; = 0.81.*

(a) (b) () (d) (e) (f) () (h) (i) (i)

Min. net Money Realized Win-to- # # Winning # Winning
pool placed win Profit bet winning races bets per bets bets per
(NOK) (NOK) (NOK)  (NOK) ratio bets included race placed bet

0 172383 187818 15436 1.0895 319 7474 427% 81509 0.39%
20000 170088 186343 16254 1.0956 310 7245 428% 78619 0.39%
40000 137424 154888 17464 1.1271 208 5120 406% 53281 0.39%
60000 85050 104338 19288 1.2268 104 2643 393% 25637 041%
80000 52457 70832 18376 1.3503 55 1436 383% 12677 043 %

100000 35124 52115 16991 1.4838 34 882 3.85% 7132 0.48%

* Sample: The 200 bets with the lowest odds in each triple game with an expected pay-off score > 1.5
Column (d) = (c) — (b); Column (e) = (c)/(b) ; Column (h) = (f)/(g) ; Column (j) = (f)/(i).

The first line in Table 2 corresponds to the results discussed above (where all bets with an expected pay-
off score of 1.5 or higher are included). It should come as no surprise that the nominal amounts decrease
with the minimum pool size, since more bets are excluded. However, it is interesting to observe that the
total effect is that the realized win-to-bet ratio increases.

Table 2 indicates that, if we restrict ourselves to bets with an expected pay-off score higher than 1.5, we
can increase the realized win-to-bet ratio by excluding games with small gross pool sizes. This is
somewhat surprising. In games with low liquidity (a small pool), it is not unlikely that some profitable
combinations are forgotten by the investors. We would expect a bigger pool to remove some of these
possibilities. On the other hand, a bigger pool will attract more “noise players”. Many of the unlikely
combinations are interesting because the maximum pay-off increases with the pool size. We obtain
similar results for the two alternative models (see Tables A3 and A4 in the Appendix).

Note, from column (h) in Table 2, that the percentage of winning bets is 3.85% if we exclude all games
with a net pool of less than NOK 100 000, as compared to 4.27% in the full sample. Since the number of
bets per game differs, we have included the total number of bets. On average, there are more than 10
bets per race. However, the win per bet increases when we exclude small pools, see column (j) in Table
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2. It increases from 0.39% for the full sample to 0.48% if we include pools larger than 100 000 only. This
indicates that large pools give a more accurate win probability.

4. The system

Our findings above suggests a betting strategy that is made conditional on the size of the net pool. Now,
suppose that we split the sample in two conditional on the size of the net pool. The results, using NOK
50 000 as the treshold, are reported in Table 3. Observe that the number of races in the two sub-samples
are approximately the same.

Table 3: Betting results for small and large net pools
Computed from Eq. (3) using 1, = 0.88 and 1; = 0.81.*

(a) (b) () (d) (e) (f) () (h) (i) (i)

Net Money Realized Win-to- # # Winning # Winning

pool placed win Profit bet winning races bets per bets bets per
(KNOK) (NOK) (NOK)  (NOK) ratio bets included race placed bet

0-50 62938 57520 -5418 0.9139 167 3764 444% 45936 0.36%
50 - 109445 130298 20853 1.1905 152 3710 410% 35573 043%

Total 172383 187818 15436 1.0895 319 7474 427% 81509 0.39%
* Sample: The 200 bets with the lowest odds in each triple game with an expected pay-off score > 1.5
Column (d) = (c) — (b); Column (e) = (c)/(b) ; Column (h) = (f)/(g) ; Column (j) = (f)/(i).

The results for the large net pool bets are as follows: Money placed is NOK 109 445 and total gain is NOK
130 294. The return is 19.05%. In some races, we will bet nothing, while in others, we will bet on several
combinations. In total, we will place 35 573 bets. The total number of wins is 152. The win-per-bet ratio
is 0.43%. We obtain similar results for the two alternative models (see Tables A5 and A6 in the
Appendix).

This brings us to the question of significance. In order to shed some light on this issue, assume that the
result is generated by a series of identical and independent draws from a binomial distribution. We want
to test the null hypothesis that the win-to-bet ratio is (less or equal to) 1, i.e., that the binomial win
probability p reflects that expected win equals money placed.

Suppose that we consider each bet as a binomial trial, i.e., n = 35 573 trials. The average win from each
winning bet is NOK 130 298/152 = NOK 857.22. The average money placed in each bet is NOK

109 445/35 573 = NOK 3.0766. Consequently, the bet win probability is p = 3.0766/857.22 =
0.3589%. Now, let the stochastic variable x represent the number of wins and assume that it is normally
distributed with expectation E(x) = np and standard deviation a(x) = /np(1 — p). It follows that
given the null hypothesis, the probability of observing 152 or more wins is

152 —np

Jnp(1—p)

(6)

P(x2152)=1—N( >=1.55%



where N( ) is the standard normal cumulative probability function.

Clearly, the outcome of bets that are placed in the same game are not independent. Suppose that we
instead consider each race as a binomial trial, i.e., n = 3 710 trials. The average win is still NOK 857.22,
whereas the money placed in each race is NOK 109 445/3 710 = NOK 29.50. Consequently, the race win
probability is p = 29.50/857.22 = 3.4413%. By inserting into Eq. (6) above, we now find that the
probability of observing 152 or more wins is 1.42%.

We conclude that the null hypothesis that the expectation is (less or equal to) 1 is rejected. Since most of
this information is available before the race starts, it is possible to implement this strategy. Computer
skills are necessary to automate the process of placing many bets in the final seconds. In addition, more
than 10% of the total amount played in a game will often not be available information before the race
starts.

5. Characteristics of the profitable bets

We have now identified many profitable strategies. Common to all the profitable cases we have
investigated is that our winning bets are on the favorite coming second approximately 50% of the time.
Only a small number of winning bets do not involve the favorite. The favorite comes first approximately
20% and third close to 30% of the time. So the question now is: Why are combinations where the
favorite comes second underrated?

a) The bettors do not understand the probabilities for combinations.
This explanation is not likely. Some of the players calculate odds in the triple game on the fly.
They have no problem with math.

b) The bettors do not like to put the favorites second. They watch the race and want to have a horse
to cheer for during the race. They focus on finding the winner. If they bet on a combination with
another winner, they go for high odds and exclude the favorite from the triple. In addition, there
is a certain element of bragging. | want to impress others with my skill. Winning a complicated
high odds triple gives status. A big bet on the favorite first also gives status. Betting on the
favorite coming second is not skill. No one can predict that outcome.

This explanation is more likely. It lacks something, however. Today some of the gamblers use the
internet. They only care about monetary gains.

c) The bettors have heterogeneous beliefs.
All bettors maximize their expected value given their own subjective probabilities. Sometimes
this results in some underrated combinations. Our robot strategy identifies these combinations
together with many other combinations with fair or below fair odds. When we restrict our
strategies to reasonably high probability bets (among the 200 with the highest track probability)



and combine that with a high “expected return” (1.5), we mostly capture profitable bets. Since
we increase the “expected return” factor to far above 1, we exclude the very most probable
bets. Therefore, the favorite coming first is underrepresented.

The reason for this is that there is too much work involved in implementing the strategy described
above. In addition, the uncertainty is significant. Remember that the winning probability in a single race
is less than 5% on average. There are many examples of such anomalies in the world of finance. The
explanation given by Pedersen (2015) is “Efficiently Inefficient”. The market is efficient to the degree that
it takes too much effort to correct prices.

In addition, the totalizator does not like so-called robot play. The organizer of the pool can refuse to pay
out if they somehow classify a bettor as a robot player. This has happened in Sweden in connection with
the games where bettors bet on the winner in 4 to 7 races, ATG (2015). The idea behind the robot play
described in ATG (2015) is the same as we use in the triple here, i.e., finding combinations where the
probability of success is greater than the probability implied by the odds.

At first glance, we would expect robot players to increase the pool, remove inefficiencies, and be positive
for the pool. In Scandinavia, the monopoly at the track is used to finance the horse owners and everyone
involved in the business. No one is allowed to set up their own races.

In order to understand why robot play is banned, we need to investigate what makes a pool. In the last
incident of robot play (the pool did not pay the bettor), the organizer used the following argument (AGT,
2015):

The given outcome (four horses in four different games) gave relatively low odds. One account
(South African internet account) had many winning bets. This player obviously bet more on low
odds combinations than on high odds; hence it is a system. The combinations played were such
that the probability of winning exceeded the probability indicated by the odds for these
combinations. (Original statement in Swedish)

Note that this is exactly what we are doing in the strategy above. We also put more money on low odds
combinations. For a given game, we win the same amount of money regardless of the combination.

6. Heterogeneous beliefs

So why do people play? First, we have the noise trader. He will put money on the game for the
excitement and for the opportunity to win a large premium. The rest of the players (the majority) believe
that they have skill. They will combine subjective probabilities and odds. This is best illustrated by looking
at the expert industry around the races. There are newspapers, TV shows, experts on the internet, tips
on the internet in return for money, and so on. If you listen to the experts before the race, they will often
say something like: “Number 4 looks attractive compared to the odds.” Gamblers are constantly looking
for underrated horses, and they form subjective probabilities for each race. Differences in subjective

10



probabilities are enough to feed the pool. Assume that subjective probabilities are robust. That is, final
odds do not alter subjective views. In this case, it is easy to construct an example where all players
expect a positive return.

Subjective probabilities and pari-mutuel pools are investigated in the literature. Eisenberg and Gale
(1959) show that a unique equilibrium exists in a pari-mutuel game with m individuals and n outcomes.
Of the many explanations for the “Favorite—Longshot Bias”, Ottaviani and Sgrensen (2007) mention
heterogeneous beliefs. They follow the model given in Ali (1977).

If we accept subjective probabilities for the win game, we should accept the same assumption in the
derivative. In this case, the derivative is the triple. In addition, some investors believe in the Harville-rule,
while others do not. This adds up to an inefficient market. To remove some of the inefficiency, a robot is
required.

The analytical model for heterogeneous beliefs developed by Ali (1977) is a many bettors, two horses
model. In Ottaviani and Sgrensen (2015), a model with heterogeneous beliefs is used to explain
momentum and reversal in the market for securities. Blough (2008) also discusses a betting model with
risk-neutral bettors and heterogeneous beliefs.

The insight from these theoretical models that is relevant to this study is the following: Heterogeneous
beliefs in a market might result in an equilibrium where the probability of an event indicated by prices
differs from the “true” probability of the event. This holds even if all the market participants are risk-
neutral. In the following simple example, we try to illustrate this point.

Consider a pari-mutuel win game with three outcomes (horses) and three investors. The investors
maximize the expected present value and have subjective probabilities as shown in Table 3. The

rightmost column shows the average subjective probability (equal weights).

Table 3: Subjective probabilities in the win game

Subjective probability

Winner Player 1 Player 2 Player 3 Average
Horse 1 0.6 0.5 0.4 1/2
Horse 2 0.25 0.4 0.35 1/3
Horse 3 0.15 0.1 0.25 1/6
SUM 1 1 1 1

Observe from Table 3 that each player ranks horse 1 first. Still, they will play differently. Suppose that
they place their bets as shown in Table 4.
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Table 4: Bets placed in the win game

Bet (amount)

Winner Player 1 Player 2 Player 3 Sum
Horse 1 90 90
Horse 2 60 60
Horse 3 37.5 37.5
Sum 90 60 37.5 187.5

The total pool is the sum of the bets placed, i.e., 187.5. Let the track take equal 20%. This gives a net pool
of 150. First, calculate the odds. Odds for horse 1: 150/90=1.666. Odds for horse 2: 150/60=2.5. Odds for
horse 3: 150/37.5=4.

Second, consider the expected pay-off for each player. The expectation for player 1 (subjective prob.)
equals 0.6*1.6666*90=90. The expectation for player 2 (subjective prob.) equals 0.4*2.5*60=60. The
expectation for player 3 (subjective prob.) equals 0.25*4*37.5= 37.5. The expected pay-off equals the
bet for each player. Hence, they all have an expected return equal to 1.

Third, use the odds to create the win probabilities, and compare them with the average subjective
probabilities from Table 3 (rightmost column). Horse 1: 0.8/1.66666=0.48 (average 1/2). Horse 2:
0.8/2.5=0.32 (average 1/3). Horse 3: 0.8/4=0.2 (average 1/6). Observe that the win probabilities
computed from the odds are different than the average subjective probabilities.

Now, assume that a similar game is repeated over and over again. In exactly 1/3 of the games, player 1
holds the correct probability distribution, while in 1/3 of the games, player 2 holds the correct
distribution, and so on. The expectation of NOK 1 placed on horse 1is (1/3) - (0.6 + 0.5 + 0.4) = 0.5.
The probability suggested by the odds is 0.48. Hence, we have a low odds bias. In addition, there is a
longshot bias.

Why do the players not learn? First of all, it is not the same game that is repeated. It is a similar game.
Suppose you are player number 1. Your subjective probability is 0.6 in 1/3 of the games, 0.5 in 1/3 of the
games, and 0.4 in 1/3 of the games. As expected, horse number 1 will win 1/2 of the times on average.

Then use the subjective probabilities in the win game (c.f. Table 3) to compute the subjective
probabilities for each combination in the triple game, using the Harville-rule. The subjective probabilities
are shown in Table 5. The rightmost column shows the average subjective probability for each
combination (using equal weights).
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Table 5: Subjective probabilities computed from the win game (Harville-rule)

Subjective probability

Combination Player 1 Player 2 Player 3 Average
123 0.375 0.4 0.2333 0.3361
132 0.225 0.1 0.1667 0.1639
213 0.2 0.3333 0.2154 0.2496
231 0.05 0.0667 0.1346 0.0838
312 0.1059 0.0556 0.1333 0.0983
321 0.0441 0.0444 0.1167 0.0684
SUM 1 1 1 1

Next, inspect the following betting behavior as shown in Table 6.

Table 6: Bets placed in the triple game

Bet (amount)

Combination Player 1 Player 2 Player 3 Sum

123 0 74.4602 0 74.4602
132 41.8838 0 0 41.8838
213 0 62.0501 0 62.0501
231 0 0 25.0587 25.0587
312 0 0 24.8201 24.8201
321 0 0 21.7175 21.7175
Sum 41.8838 136.5103 71.5963 249.9905

In the example, we assume a track take of 20%. We can now compute the odds for each combination by
dividing the net pool (249.9905 - 0.8) with the bet placed on that combination. Track probabilities are
0.8 divided by the track odds. The results are reported in Table 7 below and compared with the average
subjective probability computed above (rightmost column in Table 5).

Table 7: Odds and probabilities in the triple game

Track Track odds Average subjective

Combination odds probability probability
123 2.6859 0.2979 0.3361

132 4.7749 0.1675 0.1639

213 3.2231 0.2482 0.2496

231 7.9810 0.1002 0.0838

312 8.0577 0.0993 0.0983

321 9.2088 0.0869 0.0684

Sum 1 1
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The expected pay-off score for a given bet as seen from each player’s perspective is found by multiplying
the track odds with the subjective probability (c.f. Table 5 above). The results are reported in Table 8.

Table 8: Expected pay-off score for each player (using subjective probabilities)

Combination Track odds Player 1 Player 2 Player 3
123 2.6859 1.0072 1.0744 0.6267
132 4.7749 1.0744 0.4775 0.7958
213 3.2231 0.6446 1.0744 0.6942
231 7.9810 0.3990 0.5321 1.0744
312 8.0577 0.8532 0.4476 1.0744
321 9.2088 0.4063 0.4093 1.0744

Table 8 shows that all placed bets (humbers in bold face) are profitable given the player’s subjective
probabilities, i.e., the subjective pay-off score is greater than one. The return is equal to 7.44% for all
placed bets in this example. This indicates why the track take might be higher in the triple game than the
win game, which is the case on tracks in Scandinavia.

Next, we want to investigate the expected pay-off score given the probabilities that follow from the win
game probabilities (see the discussion following Table 5) and the Harville-rule (c.f. Eqg. (2)).

Table 9: Expected pay-off score (probabilities from win game and Harville-rule)

Track Computed prob. Expected pay-

Combination odds from win game off score
123 2.6859 0.2954 0.7934
132 4.7749 0.1846 0.8815
213 3.2231 0.2259 0.7280
231 7.9810 0.0941 0.7511
312 8.0577 0.12 0.9669
321 9.2088 0.08 0.7367
Sum 1

We observe from Table 9 that the expected pay-off score differs from combination to combination.

This might explain why we predict so many profitable games. Some of the assumed profitable bets
predicted simply follow from the fact that we are not able, based on the odds in the win game, to
compute correct probabilities for these combinations. If we return to Table 7, we see that the average
probability, (average of the subjective probabilities) is different from the probability computed from the
mathematical odds in the win game using the Harville-rule.

If, in addition, we introduce more horses and a noise trader in this model, we might find many
“profitable” combinations. We assume that the noise trader will bet on high odds with low expected
value combinations. This explains the fact that large pool games are more profitable (given our robot)
than small pool games in this sample. In a large pool, there is more disagreement or more noise players.
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When introducing a robot, we pick some combinations and lower the odds for these. Sometimes these
combinations materialize. In these cases, it might happen that all the skilled players will have a lower
predicted probability of the outcome than the probability implicitly given by the odds. They complain,
and the organizer finds a single internet player with a lot of money on this peculiar combination. The
skilled players, who are the backbone of the market, demand action. The action taken by the Swedish
pool is to ban so-called robot bets. Inefficiency survives.

7. Conclusion

We have collected odds and results from 7 474 horse races in Norway and Sweden for a period of
approximately 1.5 years. Based on the odds from the win game, we construct a profitable betting
strategy for the corresponding triple game. Given a 30% track take, the existence of a profitable strategy
is surprising. We did expect that bigger pools (more liquidity) would remove this anomaly. This is not the
case. More players, which leads to bigger pools, increases the profitability of the system.

In this paper, we have restricted our attention to the 200 combinations in the triple game with the
lowest odds. For each race, this information is readily available from a single web page. However, we
have conducted a simple test that indicates that it might be profitable to include combinations with
higher odds. It is tedious work to obtain information on higher odds combinations from the web. In
addition, the reported odds is capped at 3 000. Just before the race starts, the odds for the more unlikely
combinations change a lot. It is a question if it is possible to exploit profitable high odds combinations in
practice.
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Appendix. Betting results for alternative models

In the empirical analysis in Section 3, the expected pay-off score is based on probabilities computed from
the Harville-rule. Table 1 shows the betting results if the expected pay-off score is based on probabilities
computed from Eq. (3) using 1, = 0.88 and 1; = 0.81. Table A1l shows the betting results following from
the Harville-rule.

Table Al: Betting results versus expected pay-off score*
Harville rule (Eq. (2))

Expected Money Realized Profit Realized
pay-off placed win / loss win-to-bet
score (NOK) (NOK) (NOK) ratio
0.0-0.1 76 863 31201 -45 661 0.41
0.1-0.2 242 981 146 301 -96 680 0.60
0.2-0.3 367 633 219 406 -148 226 0.60
0.3-04 449 251 295 940 -153 311 0.66
0.4-0.5 490 709 373 836 -116 873 0.76
0.5-0.6 491 699 344 258 -147 441 0.70
0.6-0.7 459 749 327 152 -132 597 0.71
0.7-0.8 416 699 295111 -121 588 0.71
0.8-0.9 358 054 232 457 -125 597 0.65
09-1.0 297 129 213728 -83 402 0.72
1.0-11 237 589 181 436 -56 153 0.76
1.1-1.2 190 116 144 919 -45 197 0.76
1.2-13 145 813 108 979 -36 834 0.75
1.3-1.4 114 938 101 543 -13395 0.88
1.4-1.5 88512 61 508 -27 004 0.69
15-16 66 159 45 267 -20 892 0.68
1.6-1.7 51156 46 682 -4 475 0.91
L17-18 39454 35786 3668 091
1.8-1.9 30648 31081 434 1.01
1.9-2.0 24134 26 627 2494 1.10
20-21 17 959 17 461 -498 0.97
21-2.2 15048 17 296 2248 1.15
22-23 11593 16 001 4 407 1.38
23-24 9274 10 067 793 1.09
24-25 7 637 6 638 -999 0.87
25-26 5924 3869 -2 054 0.65
26-2.7 4561 7 434 2873 1.63
2.7-2.8 3984 2 166 -1 818 0.54
2.8-29 2 986 3299 313 1.10
29-3.0 2514 2745 230 1.09
33-31 2204 2075 -129 0.94
3.1-3.2 1784 869 -915 0.49
3.2-33 1280 466 -814 0.36
33-34 1162 2376 1213 2.04
3.4-35 1071 228 -843 0.21
35-3.6 735 3014 2279 4.10
3.6- 4214 4470 256 1.06
Total 4733216 3363693 -1369 523 0.7107

* Sample: The 200 bets with lowest odds in each game.

17



Table A2 shows the betting results if the expected pay-off score is based on probabilities computed from
Eq. (3) using 4, = 0.76 and A3 = 0.62 (Henery model).

Table A2: Betting results versus expected pay-off score*
Henery model (Eq. (3) using A, = 0.76 and A3 = 0.62)

Expected Money Realized Profit Realized
pay-off placed win / loss win-to-bet
score (NOK) (NOK) (NOK) ratio
0.0-0.1 8 487 840 -7 648 0.10
0.1-0.2 52 068 19770 -32 298 0.38
0.2-0.3 202 545 102 193 -100 353 0.50
0.3-0.4 465 570 331 696 -133 875 0.71
0.4-0.5 706 071 428 734 -277 337 0.61
0.5-0.6 778 042 525230 -252 812 0.68
0.6-0.7 694 661 475 739 -218 922 0.68
0.7-0.8 548 478 394 679 -153 799 0.72
0.8-0.9 401 203 326 232 -74 971 0.81
09-1.0 282 107 223 809 -58 298 0.79
1.0-11 189 708 155618 -34 090 0.82
1.1-1.2 127931 114 978 -12953 0.90
1.2-13 86 586 84 456 -2 130 0.98
13-1.4 58 844 50768 -8 076 0.86
14-15 39917 38184 -1732 0.96
15-1.6 26 842 26 143 -699 0.97
1.6-1.7 18416 16 915 -1501 0.92
17-18 13052 10914 2139 084
1.8-19 8954 11 899 2945 1.33
1.9-2.0 6294 6 859 565 1.09
20-21 4659 4473 -186 0.96
21-2.2 3284 3446 162 1.05
22-23 2336 1711 -625 0.73
23-24 1625 2081 456 1.28
24-25 1306 850 -456 0.65
25-26 950 1210 260 1.27
26-27 648 2024 1377 3.13
2.7-2.8 565 694 129 1.23
2.8-2.9 418 0 -418 0.00
29-3.0 304 326 22 1.07
33-31 237 0 -237 0.00
3.1-3.2 250 0 -250 0.00
3.2-33 143 603 459 4.20
33-34 154 0 -154 0.00
34-35 124 0 -124 0.00
3.5-3.6 95 0 -95 0.00
3.6- 358 618 260 1.73
Total 4733233 3363693 -1 369 540 0.7101

* Sample: The 200 bets with lowest odds in each game.
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Table 2 above shows the betting results if the expected pay-off score is based on probabilities computed
from Eq. (3) using A, = 0.88 and A3 = 0.81 for bets with an expected pay-off score greater or equal to
1.5 for various levels of minimum net pool. Tables A3 and A4 show the results for the two alternative
models. Table A3 shows the betting results following from the Harville-rule and only including bets with
an expected pay-off score greater or equal to 1.8 for various levels of minimum net pool.

Table A3: Betting results versus minimum net pool*
Harville rule (Eq. (2))

(a) (b) (c) (d) (e)

Min. net Money Realized
pool placed win Profit Win-to-bet
(NOK) (NOK) (NOK) (NOK) ratio
0 148 711 158 182 9471 1.06
20000 146884 157 528 10644 1.07
40000 120142 131968 11 826 1.10
60 000 76 071 87 568 11 497 1.15
80 000 47 432 60724 13292 1.28
100 000 31753 44719 12 965 1.41

* Sample: The 200 bets with lowest odds in each triple game with an expected
pay-off score > 1.8.
Column (d) = (c) — (b); Column (e) = (c)/(b).

We observe that the realized win-to-bet ratio increases as bets with small pools are excluded.

Table A4 show the betting results if the expected pay-off score is based on probabilities computed from
Eq. (3) using 4, = 0.76 and A3 = 0.62 (Henery model) and only including bets with an expected pay-off
score greater or equal to 1.8 for various levels of minimum net pool.

Table A4: Betting results versus minimum net pool*
Henery model (Eq. (3) using 4, = 0.76 and A3 = 0.62)
(a) (b) (c) (d) (e)

Min. net Money Realized
pool placed win Profit Win-to-bet
(NOK) (NOK) (NOK) (NOK) ratio
0 32703 36 795 4 092 1.13
20 000 32088 36 489 4401 1.14
40 000 24 454 27 847 3393 1.14
60 000 13412 16 403 2992 1.22
80000 7 884 8110 226 1.03
100 000 5044 6 356 1312 1.26

* Sample: The 200 bets with lowest odds in each triple game with an expected
pay-off score > 1.8.
Column (d) = (c) — (b); Column (e) = (c)/(b).

We observe that the realized win-to-bet ratio increases as bets with small pools are excluded.
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Table 3 above shows the betting results if the expected pay-off score is based on probabilities computed
from Eq. (3) using A, = 0.88 and A3 = 0.81 for bets with an expected pay-off score greater or equal to
1.5 for small and large net pools (using NOK 50 000 as treshold). Tables A5 and A6 show the results for
the two alternative models. Table A5 shows the betting results following from the Harville-rule and only
including bets with an expected pay-off score greater or equal to 1.8 for small and large net pools.

Table A5: Betting results for small and large net pools*
Harville rule (Eq. (2))

(a) (b) (c) (d) (e)

Net Money Realized
pool placed win Profit Win-to-bet
(KNOK) (NOK) (NOK) (NOK) ratio
0-50 51 800 46 560 -5240 0.8988
50 - 96914 111 623 14 709 1.1518
Total 148 714 158 183 9 469 1.0637

* Sample: The 200 bets with lowest odds in each triple game with an expected
pay-off score > 1.8.

Column (d) = (c) — (b); Column (e) = (c)/(b).

Table A6 show the betting results if the expected pay-off score is based on probabilities computed from
Eq. (3) using 1, = 0.76 and A3 = 0.62 (Henery model) and only including bets with an expected pay-off
score greater or equal to 1.8 for small and large net pools.

Table A6: Betting results for small and large net pools *
Henery model (Eq. (3) using 4, = 0.76 and A3 = 0.62)

(a)

(b)

() (d) (e)

Net Money Realized
pool placed win Profit Win-to-bet
(KNOK) (NOK) (NOK) (NOK) ratio
0-50 14 321 14789 469 1.0327
50 - 18 382 22 005 3623 1.1971
Total 32703 36 795 4 092 1.1251

* Sample: The 200 bets with lowest odds in each triple game with an expected
pay-off score > 1.8.
Column (d) = (c) — (b); Column (e) = (c)/(b).
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