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1. The scrapping of a wind turbine in this context means the scrapping of the entire structure and not just the turbine
component.
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ABSTRACT

The most common reason for scrapping a wind turbine in Denmark is to make
room for a newer turbine. The decision to scrap a wind turbine is then highly
dependent on an opportunity cost that comes from the interaction of scarce land
resources, technological change and changes in subsidy policy. Using a Cox re-
gression model I show that turbines that are located in areas with better wind
resources are at a higher risk of being scrapped. Policies put in place in order to
encourage the scrapping of older, poorly placed turbines actually have a larger
effect on well-placed turbines.
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1. INTRODUCTION

The cost of electricity that comes from wind turbines or other renewable energy sources
is to a large degree based on capital costs and associated financing costs. The expected lifetime of
the turbine is then an important factor in the investment decision. In turn, the decision to scrap a
wind turbine becomes particularly important in analyzing the economics of wind power. Yet few
empirical studies of wind power scrapping exist. In this article I use non-parametric and semi-
parametric survival models and a data set consisting of all wind turbines built in Denmark to analyze
the scrapping decision.

Wind turbines1 along with other forms of renewable energy production have several prop-
erties that make the scrapping decision for these goods different from most other types of productive
goods:

• Low marginal operating costs
• Importance of geographic placement and infrastructure
• High rate of technological change
• High level of government involvement in output price-setting and subsidies
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2. A more realistic calculation of the actual power produced by a wind turbine would need to take into consideration
the mechanical and engineering properties of a turbine such as minimum and maximum wind speeds it can operate with—
called the “power curve” in the engineering literature.

3. The illustration could be formalized as a simple dynamic programming or optimal control problem. However with
the simple set-up, as in the illustration, it would add little insight. A more complex model, taking into account not just
uncertainty of price but also of technological change and policy would quickly become unwieldy and, I think, a distraction
from the empirical and descriptive scope of this paper.

Though turbines do incur considerable costs for maintenance and repair, there are of course
no fuel costs. Once the turbine is built, the real operating margin—defined loosely as the flow of
revenue received less the real operating costs like repair and land rent—is likely to be positive.
Compared to coal or gas plants, a negative real operating margin is unlikely to be the direct cause
of scrapping.

In a study of Danish wind turbines by Jensen et al. (2002) it was found that of those
turbines that were scrapped the largest single reason given for scrapping (40 percent) was to make
room for newer turbines—often called repowering in the industry. Only 12 percent were reported
to be scrapped due to mechanical defect or due to wear. Jensen et al. suggest that repowering is
also the grounds for the scrapping of most of the remaining 47 percent where the reason was not
reported.

The study by Jensen et al. then strongly suggests that an important reason for scrapping a
wind turbine is the opportunity cost that results from a combination of scarce land resources and a
high rate of technological change. An older turbine operating on a wind-rich location means that
one cannot put in its place a newer, larger and more productive turbine.

Scarce land resources are an especially important consideration for wind turbines since the
total energy yield of wind turbines is highly dependent on average wind speeds. A simplified energy

conversion formula2 for wind power is where A is the sweeping area of the blades,
1

3E = UAtv
2

is a constant and v is the average wind velocity (MacKay 2008). Thus energy output from aU

wind turbine increases approximately cubically with average wind speed.
An important result from this article is to show that changes in subsidy policy can have a

strong effect on scrapping through an interaction with this opportunity cost. The scarcity of land
resources is not primarily about the amount of geographic land available—though this certainly
plays a role. Building out the appropriate grid infrastructure is expensive and the planning process
of zoning an area for wind turbines can be both contentious and lengthy. Policy can create strong
incentives to invest quickly, leading to artificially high land scarcity as there simply is not enough
time to go through the planning process of zoning and grid infrastructure.

The role of land scarcity and opportunity costs leads to some testable implications about
the pattern of wind power scrapping. In particular turbines located in better, windier locations will
tend to be at a higher risk of being scrapped and on average have a lower lifetime. The simplified
idea is illustrated in Figure 1.3

Consider first the top panel in the figure. The vertical height represents the instantaneous
cash flow from a turbine while the horizontal distance represents time. The dotted line represents
the instantaneous cash flow that could be obtained by investing in a newer turbine. Since in practice
technological change and manufacturing improvements have meant the ability to produce larger
turbines with higher rated capacity, I draw the line sloping upwards.

The turbine owner would choose to scrap the turbine at a point at which turbine technology
has advanced so that the total expected revenue from the new turbine less the cost of investing in
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Figure 1: Wind Resources and the Timing of Scrapping

a new turbine is greater than the revenue lost from scrapping the old turbine. In the figure this point
is shown by the insertion of a bold vertical line.

Now consider the effect of lower average wind speed, as illustrated in the lower panel.
Assume that lower average wind speed affects the cash flow of old and new turbines proportionally.
When replacing a turbine, the foregone revenue from the scrapped turbine is higher for the turbine
located in the windier area. However the benefits of installing the bigger turbine are in absolute
terms even greater. Assuming that the cost of investing in the new turbine is fixed then the invest-
ment in the new turbine, and corresponding scrapping of the old turbine, will take place later in
the poor location.

The figure, of course, represents an extreme simplification of the actual replacement de-
cision. Discounting and the effects of uncertainty are not considered. The role of technological
change is in itself complex. I use the term ‘technological change’ as an umbrella term for several
factors like improved engineering knowledge that has allowed for larger turbines over time and the
advantages of scaled manufacturing that has also developed over time. But when considering the
interaction of technological change, scarce land resources and variation in wind resources, the figure
shows the essential elements of the replacement decision.

To test the predictions I use a Cox regression model on data of Danish wind turbines.
Since I do not have data on the actual wind conditions of each location I create a proxy instead—
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4. Here I use hazard in the mathematical sense of a time-dependent probability of an event occurring. It is not meant to
imply that the scrapping of a wind turbine is an adverse event.

the average annual full-load hours of a turbine. I take the average yearly electricity produced from
each turbine and divide it by the rated power capacity of the turbine. This variable can be interpreted
as the number of hours per year a turbine producing at full rated capacity would need to operate
to equal the actual energy produced by that turbine. This variable, which can be seen as an indicator
for capacity utilization, likely reflects the wind resources of a turbine’s placement. The results show
that turbines with higher average annual full-load hours have a higher hazard4 of being scrapped.

I will also show that subsidies and changes in subsidies for wind power play a strong role
in the timing of the scrapping decision. The effect of wind resources and associated opportunity
costs interact strongly with the implementation and changing of such subsidies. In particular, the
announcement of a forthcoming reduction of subsidies creates an incentive to invest quickly. As
discussed, planning new wind turbine sites takes time, thus a rush to invest in effect creates its own
form of land scarcity. This in turn has a substantial effect on the scrapping decision.

Subsidies were also introduced to directly encourage the scrapping of older, poorly placed
turbines. However, I show that these policies actually have a greater effect on turbines in wind-rich
locations. A rigorous analysis of the optimality and efficiency of these subsidies is outside the scope
of this paper, but I do want to emphasize that even though the observed effects of the scrapping
policies seem to go against the stated goals of the policy, this does not necessarily mean that the
end result was suboptimal. In fact, it is likely that the scrapping of older turbines in good locations
first is economically optimal.

An extensive literature exists on the optimal scrapping of a productive good and the eco-
nomics literature on renewable energy is growing. The literature on optimal abandonment is vast
and goes all the way back to Hotelling (1925). It has long been acknowledged that a capital good
or project can be abandoned well before it becomes unprofitable. The role of technological change
in early investment and abandonment is taken up by Gaumitz & Emery (1980).

More recently, a large and growing literature exists on the effects of uncertainty in the face
of irreversible investment or abandonment—so called real options. Chapter 7 of Dixit & Pindyck
(1994) focuses on output and input price uncertainty on the decision to scrap. A related analysis
on firm entry and exit with irreversible investments can be found in Dixit (1989). Subsequent work
has recognized that technological change is also ex-ante uncertain and can affect the timing of
investment decisions. See for example Murto (2007), Huisman & Kort (2000) and most recently
Meyer (2011).

Empirical work on investments in the energy sector under uncertainty have been done by
Bøckman et al., (2008) for investments in small hydropower plants and by Kellogg (2010) for oil
rigs in Texas. Empirical studies of vehicle scrapping are a particularly popular subject and tend to
focus on repair and replacement costs and issues of depreciation. See for example Walker (1968),
Parks (1977) or Manski & Goldin (1983).

This article is mainly descriptive in scope. I do not attempt to explicitly estimate or test
aspects of optimal abandonment or real options theory. But the results have important implications
for studies that do seek to take a real options approach to the investment and scrapping decision of
wind turbines, and possibly other renewable energy technologies. Uncertainty around technological
advances and government policy should be seen as at least as important a factor as uncertainty
around output prices.
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Table 1: Danish Wind Power Tariff Policy

Period Policy

Up to Jan. 1st, 2000 DKK 0.60/kWh price guarantee for 10 years
DKK 0.10/kWh guaranteed price for next 20 years

Jan. 1st, 2000–Dec. 31st, 2002 DKK 0.43/kWh guaranteed price for 22,000 full-load hours
Jan. 1st, 2003–Dec. 31st, 2004 Feed-in tariff of up to DKK 0.10/kWh above market price

Max payment of DKK 0.36/kWh

Jan. 1st, 2005–Feb. 20th, 2008 Feed-in tariff of DKK 0.10/kWh over market price
Feb. 21st, 2008– Feed-in tariff of DKK 0.25/kWh for 22,000 full-load hours

A growing literature on wind power investment and wind power subsidies also exists. In
particular, analysis of the Danish market includes Morthorst (1999) who looks at the driving forces
of wind power capacity development in Denmark. Munksgaard & Morthorst (2008) give a general
overview and analysis of Danish wind power policy and try to identify the causes for the “recession”
in Danish wind turbine investment between 2002 and 2008. Despite the growing literature in the
area of investment in renewable energy and in particular wind power, to my knowledge this is the
first empirical economic analysis of wind turbine scrapping.

While I assert that the scrapping decision of a wind turbine is a special case, it is an
important special case. In 2011 40.5 gigawatts of wind power was installed globally (Global Wind
Report Annual Market Update, 2011), the equivalent in rated capacity terms of roughly 40 large
nuclear power reactors. Solar power plants, which also share some of the same key features of wind
turbines, are also becoming a significant source of electricity generation. Moreover, while many
wind turbine markets are quite young and will not face a high number of scrappings for many
years, understanding the determinants of the scrapping decision is important in estimating expected
lifetime, and in turn the investment decision itself.

My main data set consists of all 6754 turbines constructed in Denmark between 1977 and
July 2012. 2279 of the turbines were scrapped before July of 2012. The data set includes variables
for turbine capacity, height, rotor diameter, coordinates and principality of installation. Date of
installation, and if applicable, date of scrapping are also noted, as is the yearly amount of energy
produced from each turbine. The full data set is publicly available on the website of the Danish
state energy directorate (http://www.ens.dk). A cleaned data set as well as code for the complete
analysis is available on my website (http://sites.google.com/site/johannesmauritzen/home/publica-
tions).

2. WIND POWER SUBSIDIES IN DENMARK AND THEIR EFFECTS ON SCRAPPING

Subsidy policy for wind power production has changed over time as wind energy invest-
ment has grown in scale. The policies are shown in Table 1.

The changes in policies led to sharp shifts in the tariff paid to wind power producers. This
is shown in Figure 2. Notable was the change in policy that was put into effect at the start of 2003.
In 2003 Denmark fully transitioned over to a market-based power system operated jointly with the
other Nordic countries (excluding Iceland). With this came a shift away from fixed tariffs to a feed-
in tariff above the going market price—set at a central exchange called Nord Pool. Importantly, the
wind power producers received not only a lower average price for the electricity that they produced,
but also faced uncertainty about the market price they would receive.
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Figure 2: Changes in Wind Power Tariff

Figure 3: Wind Turbine Scrappings per Month

The tariffs are set such that a turbine installed under a certain regime will receive that
tariff over a defined lifetime. The change in tariff then creates a sharp discontinuity in the oppor-
tunity cost. A decrease in the tariff at a certain date, for instance, means that turbines installed just
before and after this date can have sharply different expected lifetime asset values. This in turn
creates sharp jumps in the opportunity cost of operating an older wind turbine. The dramatic effect
on scrapping rates can be seen in Figure 3.

The dotted lines in the figure show the two times where the tariff was lowered. A small
jump in scrappings happened directly before tariffs were lowered at the beginning of 2000. But the
large jump came before the shift to market prices and a feed-in tariff in 2003. As mentioned, land
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Figure 4: Wind Turbine Installations and Scrappings per Month

scarcity and reductions in wind power subsidies likely interact in their effect on scrapping. Given
time, a wind power investor could go through the process of obtaining permits and building the
infrastructure for a new wind turbine site. However when wind turbine investors know that subsidies
will drop near in the future and rush to invest, they will be more land constrained and must, to a
greater extent, resort to scrapping older turbines. Figure 4 shows the relationship between scrappings
and new installations—especially directly before the beginning of 2003.

Two factors likely explain the magnitude of the jump in scrappings before the beginning
of 2003. The first was the effect of added price uncertainty that the turbine owners would face on
top of a lower average price for electricity. By scrapping and installing newer and larger turbines
in place of the old turbines, operators were able to lock in the fixed tariff of the pre-2003 policy
for several more years. As Figure 3 also shows the second reduction in wind power tariffs happened
while a scrapping subsidy was in place—indicated by the shaded regions in the figure—this likely
compounded the effect.

The Danish government introduced several such scrapping schemes in order to expand
wind power and “[decommission] older and less appropriately sited wind turbines” (Energy Policy
Agreement—21. February, 2008). The first scheme was introduced in April of 2001 and lasted
through January 1st, 2004. It was also made retroactive to cover turbines that had been scrapped
after 1999.

Under this scheme, wind power producers that scrapped a turbine with a rated power
capacity of less than 150 kW would receive a certificate. This certificate entitled the producer to a
subsidy of DKK 0.17 per kWh in addition to the regular tariff and subsidy for a newly built turbine,
though the new turbine did not necessarily need to be built in the same location. For scrapped
turbines rated less than 100 kW the extra subsidy was provided for up to three times the scrapped
capacity. For turbines between 100 and 150 kW the subsidy could be applied to twice the scrapped
capacity. For example a producer who scrapped a 150 kW turbine would receive DKK 0.17 extra
subsidy per kWh for up to 300 kW of a new turbine.

A new, expanded scrapping scheme was put into place beginning December 15th, 2004.
This scheme applied to turbines rated less than 450 kW. A scrapped turbine entitled the owner to
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Figure 5: Kaplan-Meier Estimate of the Turbine Survivor Function

a price supplement of DKK 0.12 per kWh for twice the scrapped capacity. This subsidy was limited
to 12,000 full load hours and the total tariff with all subsidies included could not exceed DKK 0.48
per kWh. The 2005 scrapping policy was amended from February 21, 2008. An extra supplement
of DKK 0.08/kWh was provided in scrap incentives for up to twice the scrapped certificate.

An analysis of the scrapping policy, which is the subject of the next section, indicates that
the scrapping policies had a large and statistically significant effect on scrapping.

3. THE EFFECT OF SCRAPPING POLICY

To see the effects of the scrapping policies I compare Kaplan-Meier estimates of the
survivor functions of turbines that are rated just above and below the policies turbine capacity cut-
off point. The identifying assumption is that the relatively small differences in capacities will not
in themselves have a significant effect on scrapping and significant differences observed in the
survival function will be due to the policy.

A Kaplan-Meier estimate is a completely non-parametric approach to estimating a survivor
function. A survival function can be estimated by calculating the fraction of survivors at each failure
time as in equation 1.

n –dj jŜ(t) = ∏ (1)� �n( j t ≤ t) j⎪ j

Here represents the estimated survival function over time, t. represents the numberŜ(t) dj

of scrappings or “deaths” at each scrapping time, j. is the total number of turbines still operatingnj

up until time j.
A plot of a Kaplan-Meier estimate of the survivor function of the full set of Danish wind

turbines is presented in Figure 5.
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Figure 6: Survivor Function for Turbines Close to 150 kW

From this estimate we get a survivor shape that appears reasonable. The risk of scrapping
is low early in the turbines life, gradually increasing up to the 10-year mark with acceleration
thereafter.

For the first scrapping policy, the incentives differed depending on whether turbines were
rated lower than or equal to 100 kW, or lower than or equal to 150 kW. Figure 6 shows the Kaplan-
Meier survivor functions for turbines with rated capacity between 125 and 175 kW, split into
subgroups of turbines rated less than or equal to and higher than 150 kW. While both sub-groups
experience a fairly substantial rate of scrapping, the survival rate appears to become steeper for the
under-150 turbines at around the 12-year mark. A substantial percentage of turbines between 150
and 175 kW are also scrapped, and it is important to note that they come under the later scrapping
scheme for under-450 turbines. Consistent with this, the survival function stays flatter longer, drop-
ping off steeply only after a several year delay.

Figure 7 shows survivor curves for turbines rated just over and under 100 kW. Both these
groups of turbines came under the same scrapping scheme, but the turbines that were rated at or
lower than 100 kW received a higher scrapping subsidy (see the description of the scrapping
schemes in the previous section). Here it appears that turbines just above 100 kW begin to be
scrapped earlier in their lives but eventually the rate of scrapping becomes much steeper for the
turbines just under 100 kW. The reason for this pattern is likely that the turbines rated just under
100 kW were more likely to be installed earlier and thus were older at the time of the introduction
of the scrapping scheme. On average the turbines rated just under 100 kW were installed four years
before those rated just above 100 kW.

Figure 8 shows the Kaplan-Meier survival functions for turbines rated between 300 and
500 kW, with the split at the policy cut-off of 450 kW. The wider capacity band was necessary in
order to gain a large enough sample for inference. Here we see the survivor rate for turbines rated
under 450 kW dropping off sharply after approximately 17 years. Meanwhile, more than 90 percent
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Figure 7: Survivor Function for Turbines Rated Close to 100 kW

Figure 8: Survivor Function for Turbines Close to 450 kW

of the turbines rated just over 450 kW were still operating at the time of data collection (July,
2012).

As a robustness check, I compare turbines with rated capacity between 200 and 300 kW—
split into subgroups of under and over 250. All these turbines come under the same scrapping policy
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Figure 9: Survivor Function for Turbines Rated Close to 200 kW

Table 2: Log-Rank Test of the Equality of Survival Curves

100kW 150kW 450kW 200kW

# observations, over 901 105 140 1080
# scrappings, over 568 66 10 587
# observations, under 1287 834 270 606
# scrapping, under 1198 509 83 261
Log-Rank, Chisq 148 28.6 3 0.7
P-value 0.00 0.00 0.08 0.42

and should therefore display a similar survival function given that my assumption that the difference
in capacities does not play a significant role is correct. The survival curves appear similar throughout
their lifetimes.

For all of the survival curves presented above, I also formally test the null-hypothesis of
equal survival curves using a log-rank test (Cleves et al., 2008, p 123). The results are displayed
in Table 2 along with the number of observations from each subgroup. The equality of turbines
rated just over and under 100 kW and 150 kW is strongly rejected with low p-values. The low
number of observations of scrapped turbines over 450 kW made for a low-powered test of survival
equality, but the null of equal survival functions was still rejected at the 10% level. On the other
hand, the survival curves of turbines rated just over and under 200kW—which came under the
same policy—could not reject the null hypothesis of equal survival curves.

4. THE COX REGRESSION MODEL

I choose to use a semi-parametric Cox regression model to analyze the scrapping event.
See Singer & Willett (2003) for an accessible overview or Kalbfleisch & Prentice (2002) for a more
thorough treatment. I prefer this type of model to more commonly used linear probability, logit or
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probit models due to two main considerations. First I want to control for the age of the turbine.
The effect that age has on the hazard of scrapping is highly non-linear and not well approximated
by a linear or quadratic form.

The other main factor is censoring. As of July 2012 approximately two-thirds of all the
turbines in my data set were still operating. In the terminology of survival analysis these turbines
are right-censored, meaning that we do not observe when they are scrapped. A severe selection bias
would result if I were simply to ignore the turbines that are still operating—it would be like only
considering the patients that died in a drug-effectiveness study. Yet including the operating turbines
in a logit or probit regression model is also not possible since it is impossible to know how long
they will survive, or equivalently when they will be scrapped.

A Cox regression model effectively deals with both of these issues. The model can be
written as in equation 1.

βX + �H(t X) = H (t)e (2)⎪ 0

represents the hazard function for turbine scrappings. This is a function of turbineH(t X)⎪
lifetime, , conditional on , which represents the vector of variables, discussed below, that shiftt X
the baseline hazard up or down proportionally. represents a baseline hazard over turbine lifetime.H0

represents a vector of parameters on . These are estimated by a semi-maximum likelihoodβ X
method that is detailed in Kalbfleisch & Prentice (2002, p. 95).

Though much of the economics literature has tended to use purely parametric survival
models where the general shape of the baseline hazard is assumed, there does not appear to be a
good justification for this. Parametric models give estimates that are only slightly more efficient
than estimates from a Cox model when the baseline hazard is correctly specified but much less
efficient estimates when it is not (Singer and Willett 2003).

My main variable of interest is a turbine’s average annual full-load hours, which I claim
can be used as a proxy for the wind resources of a turbine’s location. I create the variable as in
equation 2.

T–1 eY∑ itt = 2fullLoad = (3)i (T–2)∗ Ki

I take the average yearly energy yield, , for every full year of operation, , fromeY T–2it

each turbine and divide by its rated power capacity, . In other words, the variable says how manyKi

hours the turbine would need to operate in a year if it was producing at 100 % of its rated capacity
to match the actual average annual production of that turbine. In this way, the variable full-load
hours is a measure of the capacity utilization of a given turbine.

Several factors likely play a role in determining the average annual full-load hours of a
given turbine such as manufacturer and build quality. Yet it is the wind resources of a turbine’s
location that likely plays the dominant role. The histogram of both onshore and offshore turbines’
full-load hours as in Figure 10 shows some evidence of this. Offshore turbines are known to benefit
from steadier and on average higher wind speeds. This is reflected in above average annual full-
load hours.

Looking at some of the geographic information in the data also provides evidence for the
connection between good wind resources and high average annual full-load hours. In Figure 11 the
ten municipalities where turbines obtain the highest average annual full-load hours are filled in with
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Figure 10: Annual Average Full-load Hours of Land and Sea Turbines

stripes. Comparing this map to the wind resource map created by Risø National Lab and the
consultancy EMD (http://emd.dk/files/windres/images/RES_DK99_50pct.jpg) shows a clear rela-
tionship.

In addition to a turbine´s average annual full-load hours, I include several other turbine-
specific variables in the regression. I include the rated power capacity of the turbine as well as a
squared term to capture any potential quadratic relationship. To capture potential geographic dif-
ferences I include either a dummy variable indicating whether the turbine is located in western
Denmark or the municipality the turbine was located in.

As shown earlier, changes in wind power subsidies have had a large effect on scrapping
and I attempt to control for this in the regression. I do not control for the changes in tariff policy
directly through indicator dummies because such a variable would be time varying in the context
of the Cox regression. Turbines are affected by the policy at different points in their lifetime
depending on when they were installed. The inclusion of such time-varying variables in the re-
gression can lead to identification problems and spurious inference (Singer & Willett, 2003, p. 577).

Instead I attempt to partially control for changes in the wind power tariff by including
year-of-installation dummies representing years 1977 through 1999. The inclusion of these dummy
variables should not be taken to represent the age of the turbine. The age of the turbine is already
controlled for in the model by way of the baseline hazard. Instead it can be read as a latent variable
for turbine-specific factors that changed over calendar time and are not otherwise accounted for,
such as the effect of tariff policy.

To control for the effects of the scrapping policies I include a dummy variable representing
turbines that have a capacity under both 100 kW and 150 kW and were in operation at the time of
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Figure 11: Municipalities with Highest Average Annual Full-load Hour Turbines

the scrapping policy. These then will capture jumps in the hazard that are not accounted for by the
inclusion of the rated capacity variable and which can then be explained by the effect of the policy.
I also run regressions where I include interaction terms of the scrapping policy dummy with the
full-load hours variable to show how the effects of this policy varied with the wind resources of a
turbines location. Unfortunately, because nearly no turbines rated more than 450 kW were scrapped,
including a dummy for turbines rated less than 450 kW leads to severe numerical problems in the
estimation.

5. RESULTS FROM THE COX REGRESSION MODEL

In Table 3 I report the results of the Cox regression model in terms of hazard ratios—the
exponent of the estimated ’s. represents the main variable of interest—averageβ fullload.1000
annual full load hours of a turbine in 1000-hour units that likely captures the wind resources of a
turbines location. and represent the dummy variables for turbines with ratedunder100 under150
power capacity less than 100 kW and 150 kW and that were operational at the start of the first
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Table 3: Cox Model, Hazard of Turbine Scrapping

1 2 3 4 5

fullload.1000 1.346 1.052 1.097 0.504 1.495
(0.000) (0.208) (0.056) (0.000) (0.000)

under100 2.367 3.625 3.851 0.716 1.028a

(0.000) (0.000) (0.000) (0.174) (0.000)
under150 1.459 1.320 1.296 0.280 1.010a

(0.000) (0.000) (0.001) (0.000) (0.132)
capacity.100KW 0.847 0.828 0.829 0.808 0.860

(0.000) (0.000) (0.000) (0.000) (0.000)
capacity.100KW_sq 1.008 1.009 1.008 1.009 N/A

(0.000) (0.000) (0.000) (0.000)
west 1.386 1.424 N/A N/A N/A

(0.000) (0.000)
fullLoad.1000�under100 N/A N/A N/A 2.483 N/A

(0.000)
fullLoad.1000�under150 N/A N/A N/A 2.315 N/A

(0.000)
AIC 36367 35888 35582 35525 36350

Results are displayed in the form of hazard ratios.
P-values are shown in parenthesis below the hazard-ratio estimates.
6810 turbines
2433 scrapping events
a Indicates estimated hazard ratio of variable interacted with time in year-units

scrapping policy. represents the rated power capacity of a turbine in 100 kW unitscapacity.100KW
and represents the squared term. west is a dummy with the value of one if thecapacity.100KW_sq
turbine is located in the western Denmark price area and zero otherwise.

The estimated hazard ratios can be interpreted as the effect that a one-unit change in the
variable has on the baseline hazard function. The null-hypothesis for the estimated hazard ratios is
that they are equal to one. An estimated hazard ratio of 2 for example would indicate that a one-
unit increase in the variable would double the hazard of scrapping.

The columns of the tables represent variations of the Cox regression model, explained as
follows. In the first column, both install-year dummy variables as well as municipality are left out.
The second column shows results from where the install-year dummy variables are included while
the third through fifth columns include both the install-year dummies as well as the municipality
dummies. The estimated coefficients on the install-year dummies and on the municipalities can be
found in the appendix. Since the municipality variable implicitly also indicates whether a turbine
is in east or west Denmark, I drop the west dummy from these regressions. In the fourth column I
show results from the regression that includes interaction effects between the full-load hours variable
and the policy dummy for turbines rated under 100 kW and 150 kW. In the fifth column, I loosen
the proportional hazards constraint by interacting the policy dummies with time.

In the first column, where install-year dummies are left out, the coefficient on full-load
hours indicates that a 1000-hour increase in the average annual full-load hours of a turbine leads
to a 34% increase in the hazard of scrapping (hazard ratio of 1.34). However controlling for install-
years as in column two reduces the magnitude of the estimated effect of full-load hours. A 1000-
hour increase is now estimated to lead to a roughly 5% increase in the hazard of scrapping, though
this is no longer statistically significant.

That the estimated coefficient on full-load hours is sensitive to the inclusion of the install-
year dummies indicates that the two variables are correlated. The install-year dummies partially
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capture the effects of changes in the wind power tariff that created jumps in the opportunity cost
of operating an old wind turbine. We can then interpret their interaction as follows: investors rushed
to replace older turbines with newer ones before the wind power tariff was lowered in 2000 and
2003. At these times, they chose to replace turbines situated in locations with better wind resources
over more marginally situated turbines. This explains the larger coefficient on full-load hours when
the install-year dummies are not included.

A plausible alternative explanation for the positive coefficient on full-load hours exists.
Turbines with higher average annual full-load hours may wear-out sooner and therefore be at a
higher hazard of scrapping. Yet this explanation is less convincing. In the previous section, I pre-
sented evidence that the average annual full-load hours of a turbine at least in part reflects wind
resources. In addition, as Jensen et al. showed, most turbines are scrapped well before the end of
their physical lifetimes. Finally, the correlation between full-load hours and the effects of policy
further suggests that wind resources are the major determinant of this variable.

The use of average annual full-load hours as a proxy for wind resources may also introduce
a bias in the estimation if there is differences in technology between turbines that have the same
rated capacity. For example two turbines rated at 100 kW but from different producers may have
different efficiencies. This however would, if anything, bias the hazard ratios towards one, as all
other things equal, a turbine owner would be less likely to scrap a more efficient turbine.

The estimated hazard ratios for the other included variables are also fairly intuitive. Look-
ing at the second and third columns, the estimated coefficient on rated capacity indicates that each

100 kW increase in capacity leads to a 20% reduction in the hazard of scrap-
1

∗100�20%�� � �.83
ping. A larger capacity turbine produces more energy and therefore the cost of scrapping in the
form of forgone revenues is then higher. Another likely reason for this result is that larger turbines
are more likely to be state-of-the-art. In turn the potential benefit from replacing the turbine is
smaller. The positive and significant coefficient on the squared capacity term indicates that the effect
of rated capacity on scrapping hazard is decreasing with scale. The difference in the hazard of
scrapping between 500 and 600 kW turbines is less than the difference between 100 and 200 kW
turbines.

The estimated hazard ratios on the dummy variables that represent turbines rated less than
100 kW and 150 kW are, as expected, large and significant. Turbines rated less than 100 kW and
that were operating at the start of the first scrapping incentive policy had an increased hazard of
scrapping of between 260 and 280% compared to turbines over 100 kW. Turbines rated less than
150 kW (but more than 100 kW) had an increased hazard of scrapping of approximately 30%.

Finally the regression indicates that a turbine built in the western part of the country runs
an approximately 40% higher chance of being scrapped than a turbine built in the eastern part of
the country. This could reflect several factors including better wind resources and land more suitable
for wind power generation—western Denmark is geographically larger with much lower population
density.

The table of hazard ratios for the municipalities found in the appendix also shows signifi-
cant and sometimes large-in-magnitude estimated hazard ratios. As discussed earlier, this could
partially reflect the wind resources of a municipality. However, other factors can also be at play.
For example, Copenhagen municipality, which is almost entirely urban, has only 11 small turbines
that have not been scrapped. We can speculate that there would likely be strong local opposition
to the replacement of these with larger turbines, potentially explaining why none of them have been
scrapped. Less extreme examples might include municipal-level regulations or incentives. A de-
tailed analysis of municipal policy, though interesting, is however outside the scope of this paper.
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The estimated hazard ratios for the interaction variables are both large-in-magnitude and
statistically significant. The main point to be taken from the estimates from the fourth column is
that there is a strong and positive interaction effect between average annual full-load hours and the
scrapping incentives. The story that is most consistent with these results is that the introduction of
the scrapping subsidy led many producers to replace their old turbines and that this had a dispro-
portionally large effect on producers who had old turbines located in prime, wind rich areas.

In the regressions with interaction effects, it is difficult to give much economic interpre-
tation to the main effects of the full-load hours variable and the scrapping incentive dummy variables
(under100 and under150). The reason is that almost all of the scrapping of turbines rated less than
150 kW were done while the scrapping policy was in effect. Since the semi-maximum likelihood
procedure that is used to calculate parameter estimates is based on individual scrapping events and
not the overall number of turbines, if we control for turbines scrapped under the policy, there is
very little information left in the data to make estimates of the main effects.

To evaluate the goodness-of-fit of the models I compare both Akaike Information Criterion
(AIC) as well as Cox-Snell residuals (Cox and Snell 1968). The AIC provides information on the
tradeoff of adding additional variables—between the added fit and reduced residual variance they
provide and the potential bias introduced by over-fitting a model. In Table 3, below the estimated
hazard ratios, I show each model’s AIC value, where a lower value indicates a better relative fit.
Even though adding install-year dummies and municipality dummies adds 24 and 83 extra variables
to the data respectively, the inclusion of these variables is still shown to provide a better overall fit.

Cox-Snell residuals provide a visual method of checking for goodness-of-fit. The Cox-
Snell residuals are defined as in equation 3.

ˆXβˆCS = H (t )e (4)j 0 j

represents the residual on the jth observation. represents the semi-maximumˆCS H (t )j 0 j

likelihood estimate of the baseline cumulative hazard function and represents the vector of esti-β̂
mated coefficients on the explanatory variables. Figure 12 shows the estimated cumulative hazard
(Nelson-Aalen estimator) of the Cox-Snell residuals for the first four regression models plotted
against the values of the residuals for the regression. If the estimated Cox model has a good fit,
then the Cox-Snell residuals should have an exponential distribution with a hazard function of
approximately 1 (Cleves et al., 2008). This in turn implies that the cumulative hazard function of
the Cox-Snell residuals in Figure 12 should roughly follow a 45-degree line.

Comparing the Cox-Snell residuals from the different models indicates that the inclusion
of the install-year dummies in model 2 leads to a worse overall fit. However the inclusion of
municipality dummies in models three and four tended to significantly improve fit. I nonetheless
choose to include the install-year dummies since it is important to control for the effect of changes
in tariff policy that strongly affects the pattern of scrappings. The Cox-Snell residuals suggest,
however, that using a model that includes installation-year dummies to predict out-of-sample scrap-
ping times or hazard rates may lead to a bias.

It is likely that the proportional hazards assumption is not fully satisfied for all the covar-
iates. A simple way to check the proportional hazards assumption for each explanatory variable is
to run the Cox regression with an added interaction term of the variable of interest and time, as in
equation 4.

∗βX + β x + ϕx t + �1 1 i iH(t ) = H (t)e (5)i 0
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Figure 12: Cox-Snell Residuals

If the proportional hazards model is satisfied, then the effect of the covariates should not vary with
time in ways that are not already parameterized (Cleves et al. 2008).

Running such regressions for the various covariates shows that the proportional hazards
assumption is likely satisfied for the full-load hours variable as well as the west dummy variable.
Not surprisingly, the terms involving rated capacity do not fully satisfy the assumption. This is
likely because turbines were at different ages at the start of the scrapping policy for smaller turbines.

As a robustness check I can slacken the proportional hazards requirement by interacting
the under100 and under150 variables with a function of analysis time, allowing their effect to
increase (decrease) proportionally through the lifetime of the turbines. The function I choose is the
age of the turbine at the time of the introduction of the scrapping subsidy. Turbines installed after
the start of the turbine subsidy are restricted to a value of zero, restricting the estimation to turbines
built before the subsidy. The results are shown in the fifth column of Table 3.

The coefficients for the time-interacted under100 and under150 dummy variables now
represent effects proportional to both the baseline hazard and the age in years of the turbines. The
estimated hazard ratio of 1.028 on the under100 dummy variable can be interpreted as meaning
that turbines rated under 100 kW having approximately a 30% higher hazard of being scrapped if
it were 10 years old at the time of scrapping policy 1.02810�1.30) and 70% higher if it were 20
years old (1.02820�1.70). Similarly the hazard ratio on the under150 dummy variable can be
interpreted as meaning turbines rated under 150 kW but over 100 kW as having 10% higher hazard
of being scrapped if the turbine was 10 years old and approximately 20% increased chance of being
scrapped if it were 20 years old at the time of the scrapping policy.

As discussed earlier, a standard logistic or a linear probability model is not appropriate
because of the censored data and the non-linear effect of time. However, as a check on the main
results of the Cox regression model, I can reframe the question in terms of the probability of
scrapping at a particular point in calendar time. While this still leaves the issue of a non-linear
effect of turbine lifetime, the censoring problem is no longer an issue, and a logistic or linear
probability model could be expected to give reasonable results.
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Table 4: Simple Logistic and Linear Probability Models, Probability of Scrapping,
July–Dec 2002

Logistic Linear Probability

1 2 3 4 5

intercept –11.12 –19.00 –0.09 –1.12 –0.62
(0.00) (0.00) (0.00) (0.00) (0.00)

fullLoad.1000 0.26 0.02 0.08 0.05 N/A
(0.00) (0.00) (0.00) (0.00) (0.00)

fullLoadXyears N/A N/A N/A N/A 0.01
(0.00)

capacity.100KW –1.05 1.60 –0.03 0.04 N/A
(0.01) (0.00) (0.00) (0.00)

capacity.100KW_sq –0.16 –0.27 0.00 –0.00 N/A
(0.26) (0.00) (0.00) (0.00)

under100 N/A 3.99 N/A 0.50 0.41
(0.00) (0.00) (0.00)

under150 N/A 1.93 N/A 0.15 0.10
(0.00) (0.00) (0.00)

west 0.81 0.88 0.08 0.06 0.06
(0.00) (0.00) (0.00) (0.00) (0.00)

years 1.36 0.90 –0.01 0.04 0.00
(0.00) (0.00) (0.03) (0.00) (0.62)

years_sq –0.04 –0.03 N/A N/A N/A
(0.00) (0.00)

P-values in parenthesis
6612 Observations

A natural point in time to analyze is the period immediately preceding the change in
subsidies on January 1st, 2003. A large number of turbines—nearly16% of the total—were scrapped
in the last six months of 2002, and the event itself is of interest since it involved both a change in
the wind power tariff as well as the effect of the scrapping subsidy.

The first two columns of Table 4 show the results of the logistic regression. Most of the
variables are the same as were used in the Cox regression model with the exception of years and
years_sq. These variables represent the lifetime of a turbine and its square. Recall that the baseline
hazard controlled for the effects of turbine lifetime in the Cox regression model. A dummy variable
for turbines in the western price area is included, though dummies representing counties are not
since they had little significant effect on the regression results.

In the first column the coefficient on the main variable of interest—the average annual
full-load hours of a turbine—is positive and statistically significant. An important part of the ar-
gument that I present is that the tendency of turbine owners to scrap turbines in good locations first
is strongly connected to changes in policy that created an incentive to install new turbines quickly.
The positive coefficient on the average annual full-load hours variables in this model provides
further evidence for this.

More so I have also argued that the policies put in place to encourage scrapping of older,
smaller turbines have also been effective and also likely interacted with the role of wind turbine
location. In the second column I show the results when the policy dummies for turbines rated less
than 100 and 150 kW are added. These are shown to have a large and significant effect on scrappings
immediately prior to 2003. It is also important to note that the standard error on the full-load hours
variable increases substantially and the point estimate moves towards zero. The reason for this is
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that almost all of the turbines that were scrapped immediately prior to 2003 were below 150 kWh
and so the addition of these dummy variables absorbs a large part of the variation in the data.

The estimated coefficient on the rated capacity term, capacity.100KW, is highly sensitive
to the specification. This is likely the result of the non-linear effect of age and the inadequacy of
the linear representation to control for turbine lifetime in this model. The rated capacities of turbines
grew over time and thus are correlated with the age of a turbine at the beginning of 2003. The
inability to sufficiently control for the effects of turbine age then biases the coefficient on the rated
capacity term.

As an added check I include results for regressions using a simple linear probability model
in the last three columns. The logistic regression can impose some strong assumptions on the
distribution and functional form of the model and in cases where these assumptions are in doubt,
using a linear probability model can be advantageous (Angrist and Pischke, 2008.) The estimated
coefficient on annual full-load hours is again found to be positive and significant in both regressions
where the under150 and under100 are excluded (third column) and included (fourth column). In
the fifth column I interact the full-load hours variable with the age of the turbines in years. The
estimated effect of full-load hours on scrapping is then allowed to increase proportionally with the
age of the turbines—a reasonable assumption given what we know about the general shape of wind
turbines´ survival function. The estimated coefficient is again positive and statistically significant.

6. THE DECISION TO SCRAP A WIND TURBINE

This article shows that the decision to scrap a wind turbine is complex. Technological
change, scarce land resources and changes in subsidy policy are shown to interact strongly. An-
nounced reductions in the feed-in tariff for wind power lead to a rush to install turbines before the
new policies are put into place. Because it takes time to plan, zone and install infrastructure on new
land for wind turbines, the rush creates an extra incentive to scrap older turbines standing on prime
land. In turn, it is often the turbines standing in the best locations that get scrapped first since that
is also where it is most valuable to place a new turbine.

Economists have generally focused on factors such as operating costs and the uncertainty
of output prices when modeling the shutdown or scrapping decision for a plant or productive good.
For wind turbines and presumably other forms of renewable energy generation the effect of the
interaction of technological change, scarce land resources and changes in subsidy policy should
also be considered.

The expected lifetime of a wind turbine or other renewable energy investment is an im-
portant factor in the investment decision. This article shows that expected lifetime is dependent on
the location of a wind turbine as well as on changes in policy and technological change, which
must both be considered ex-ante uncertain.

Finally, the results in this paper have implications for implementing policy measures meant
to encourage adoption of renewable energies. Among the Nordic countries, Sweden was early in
introducing a green certificates system rather than the traditional feed-in tariffs that are used in
Denmark. In the face of technological change, such a green-certificates system may be advantageous
since no fixed subsidy is set. Rather, a requirement for producing a certain amount of renewable
energy is established and the certificates for this production are traded on a market. This means that
as technology and manufacturing advances and renewable energy generation becomes cheaper, the
certificates will automatically lose value, avoiding the need for government to monitor and change
subsidies. In turn this would avoid the type of sharp subsidy drops seen in Denmark that led to the
premature scrapping of turbines.
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Bøckman, Thor, Stein-Erik Fleten, Erik Juliussen, Håvard J. Langhammer, and Ingemar Revdal. (2008). “Investment Timing
and Optimal Capacity Choice for Small Hydropower Projects.” European Journal of Operational Research 190 (1)
(October): 255–267. http://dx.doi.org/10.1016/j.ejor.2007.05.044.

Cleves, Mario, William Gould, Roberto Gutierrez, and Yulia Marchenko (2008). An Introduction to Survival Analysis Using
Stata, Second Edition. 2nd ed. Stata Press.

Cox, D. R., and E. J. Snell (1968). “A General Definition of Residuals.” Journal of the Royal Statistical Society. Series B
(Methodological) 30 (2) (January): 248–275.

Danish Energy Agency (2008). Energy Policy Agreement—21. February, 2008. http://www.ens.dk.
Dixit, A. (1989). “Entry and Exit Decisions Under Uncertainty.” Journal of Political Economy 97 (3): 620–638. http://

dx.doi.org/10.1086/261619.
Dixit, Avinash K., and Robert S. Pindyck (1994). Investment Under Uncertainty. Princeton University Press.
Gaumitz, Jack, and Douglas Emery (1980). “Asset Growth, Abandonment Value and the Replacement Decision of Like-

for-like Capital Assets.” The Journal of Financial and Quantitative Analysis 15 (2). http://dx.doi.org/10.2307/2330354.
Global Wind Energy Council (2011). Global Wind Report Annual Market Update 2011. http://gwec.net/wp-content/uploads/

2012/06/Annual_report_2011_lowres.pdf.
Hotelling, Harold (1925). “A General Mathematical Theory of Depreciation.” Journal of the American Statistical Association

20 (151): 340–353. http://dx.doi.org/10.1080/01621459.1925.10503499.
Huisman, Kuno, and Peter Kort (2000). “Strategic Technology Adoption Taking Into Account Future Technological Im-

provements: A Real Options Approach.” SSRN Electronic Journal. http://www.ssrn.com/abstract = 246980.
Jensen, Peter, Poul Morthorst, Strange Skriver, Mikkel Rasmussen, Helge Larsen, Lars Henrik Hansen, Per Nielsen, and

Jørgen Lemming (2002). Økonomi for Vindmøller i Danmark. Vol. 1247. Roskilde. http://www.risoe.dtu.dk/knowl-
edge_base/publications/reports/ris-r-

Kalbfleisch, John D., and Ross L. Prentice (2002). The Statistical Analysis of Failure Time Data. 2nd ed. Wiley-Interscience.
http://dx.doi.org/10.1002/9781118032985.

Kellogg, Ryan (2010). “The Effect of Uncertainty on Investment: Evidence From Texas Oil Drilling” NBER Working Papers
16541. http://www.nber.org/papers/w16541

MacKay, David JC. (2008). Sustainable Energy—Without The Hot Air. Cambridge, UK: UIT. http://www.withouthotair.com.
Manski, Charles F., and Ephraim Goldin (1983). “An Econometric Analysis of Automobile Scrappage.” TRANSPORTATION

SCIENCE 17 (4) (November): 365–375. http://dx.doi.org/10.1287/trsc.17.4.365.
Meyer, Robert (2011). “Equipment Replacement Under Uncertainty.” Management Science 17 (11): 750–758. http://

dx.doi.org/10.1287/mnsc.17.11.750.
Morthorst, P. E. (1999). “Capacity Development and Profitability of Wind Turbines.” Energy Policy 27 (13) (November):

779–787. http://dx.doi.org/10.1016/S0301-4215(99)00067-1.
Munksgaard, Jesper, and Poul Erik Morthorst (2008). “Wind Power in the Danish Liberalised Power market–Policy Mea-

sures, Price Impact and Investor Incentives.” Energy Policy 36 (10) (October): 3940–3947. http://dx.doi.org/10.1016/
j.enpol.2008.07.024.

Murto, Pauli. (2007). “Timing of Investment Under Technological and Revenue-related Uncertainties.” Journal of Economic
Dynamics and Control 31 (5) (May): 1473–1497. http://dx.doi.org/10.1016/j.jedc.2006.05.010.

Parks, RW. (1977). “Determinants of Scrapping Rates for Postwar Vintage Automobiles.” Econometrica: Journal of the
Econometric Society 45 (5): 1099–1115. http://dx.doi.org/10.2307/1914061.

Singer, Judith D., and John B. Willett (2003). Applied Longitudinal Data Analysis: Modeling Change and Event Occurrence.
Oxford University Press US. http://dx.doi.org/10.1093/acprof:oso/9780195152968.001.0001.

Walker, Franklin V. (1968). “Determinants of Auto Scrappage.” The Review of Economics and Statistics 50 (4) (November):
503–506. http://dx.doi.org/10.2307/1926820.



178 / The Energy Journal

Copyright � 2014 by the IAEE. All rights reserved.

APPENDIX

Table 5: Estimated Hazard Ratios on Install Year Dummy
Variables

2 3 4 5

1978 0.933 1.234 1.513 1.905
(0.931) (0.797) (0.612) (0.431)

1979 0.590 0.628 0.729 1.109
(0.528) (0.581) (0.708) (0.902)

1980 0.858 1.059 1.224 1.578
(0.835) (0.939) (0.786) (0.543)

1981 1.160 1.366 1.514 1.205
(0.837) (0.669) (0.570) (0.798)

1982 1.296 1.546 1.766 2.051
(0.718) (0.549) (0.434) (0.324)

1983 1.533 1.846 1.988 2.455
(0.553) (0.402) (0.348) (0.220)

1984 2.273 2.906 3.084 2.903
(0.252) (0.142) (0.121) (0.143)

1985 3.510 4.927 5.139 5.851
(0.077) (0.027) (0.023) (0.014)

1986 4.299 6.590 6.921 10.534
(0.040) (0.009) (0.007) (0.001)

1987 7.141 11.173 11.397 13.280
(0.006) (0.001) (0.001) (0.000)

1988 6.659 9.143 9.444 7.285
(0.008) (0.002) (0.002) (0.006)

1989 4.519 6.467 6.689 4.619
(0.035) (0.010) (0.009) (0.035)

1990 5.711 7.834 8.562 8.707
(0.015) (0.004) (0.003) (0.003)

1991 4.371 6.187 6.854 4.650
(0.039) (0.012) (0.008) (0.035)

1992 6.293 8.000 9.240 5.626
(0.010) (0.004) (0.002) (0.018)

1993 4.050 6.582 7.570 4.305
(0.056) (0.011) (0.006) (0.050)

1994 2.947 4.441 5.142 3.623
(0.148) (0.049) (0.031) (0.091)

1995 2.850 5.601 7.240 4.870
(0.171) (0.026) (0.011) (0.040)

1996 2.806 4.310 5.309 3.657
(0.167) (0.053) (0.027) (0.085)

1997 3.133 4.653 5.752 3.202
(0.129) (0.043) (0.021) (0.125)

1998 4.213 6.848 8.598 4.328
(0.064) (0.014) (0.006) (0.061)

1999 7.237 12.591 15.230 5.129
(0.010) (0.001) (0.000) (0.035)
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Table 6: Estimated Hazard Ratios on Municipality Dummy
Variables

3 4 5

Ærø 1.175 1.132 0.971
(0.610) (0.695) (0.927)

Allerød 0.909 0.873 1.518
(0.880) (0.830) (0.507)

Assens 1.002 1.015 1.645
(0.996) (0.966) (0.148)

Billund 1.519 1.458 2.022
(0.274) (0.326) (0.066)

Bornholm 1.949 1.984 2.089
(0.014) (0.012) (0.007)

Brønderslev 1.182 1.194 1.388
(0.538) (0.513) (0.227)

Dragør 3.823 4.135 5.740
(0.002) (0.001) (0.000)

Egedal 0.394 0.419 1.557
(0.093) (0.117) (0.425)

Esbjerg 1.268 1.288 1.343
(0.393) (0.364) (0.291)

Faaborg-Midtfyn 0.707 0.745 0.748
(0.362) (0.440) (0.448)

Fanø 1.883 1.857 1.113
(0.086) (0.094) (0.770)

Favrskov 1.210 1.215 1.415
(0.530) (0.521) (0.256)

Faxe 1.180 1.215 1.523
(0.641) (0.583) (0.238)

Fredericia 1.396 1.247 1.196
(0.512) (0.665) (0.737)

Frederikshavn 0.725 0.720 1.010
(0.261) (0.249) (0.972)

Frederikssund 0.835 0.653 0.537
(0.555) (0.165) (0.041)

Furesø 1.612 1.498 1.555
(0.645) (0.696) (0.670)

Greve 0.540 0.454 0.412
(0.409) (0.290) (0.235)

Gribskov 1.735 1.669 1.082
(0.378) (0.413) (0.899)

Guldborgsund 0.423 0.427 0.852
(0.004) (0.004) (0.590)

Haderslev 0.680 0.664 0.689
(0.298) (0.268) (0.318)

Hedensted 0.604 0.623 0.998
(0.187) (0.214) (0.995)

Helsingør 0.562 0.617 1.416
(0.575) (0.639) (0.735)

Herning 1.716 1.520 1.272
(0.071) (0.164) (0.426)

Hillerød 1.181 1.233 2.088
(0.743) (0.680) (0.146)

Hjørring 0.562 0.569 0.748
(0.049) (0.053) (0.321)

Holbæk 0.635 0.579 0.772
(0.191) (0.116) (0.456)

(continued)
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Table 6: Estimated Hazard Ratios on Municipality Dummy
Variables (continued)

3 4 5

Holstebro 0.745 0.770 1.226
(0.276) (0.333) (0.453)

Horsens 0.518 0.522 0.926
(0.054) (0.057) (0.823)

Hvidovre 7.221 7.850 27.266
(0.000) (0.000) (0.000)

Høje-Taastrup 6.295 3.933 5.264
(0.003) (0.029) (0.008)

Ikast-Brande 1.171 1.175 1.377
(0.606) (0.599) (0.298)

Ishøj NA NA 0.000
( NA) ( NA) (0.999)

Jammerbugt 1.063 1.018 1.134
(0.825) (0.948) (0.649)

Kalundborg 0.478 0.469 0.727
(0.024) (0.020) (0.330)

Kerteminde 2.414 1.914 2.532
(0.010) (0.061) (0.008)

Kolding 0.743 0.731 1.208
(0.451) (0.426) (0.632)

København 0.000 0.000 0.000
(0.975) (0.976) (0.981)

Køge 2.353 2.382 2.608
(0.038) (0.035) (0.020)

Læsø 0.477 0.455 0.329
(0.471) (0.443) (0.279)

Langeland 1.761 1.738 2.177
(0.040) (0.047) (0.005)

Lejre 0.549 0.545 1.505
(0.142) (0.137) (0.318)

Lemvig 2.152 2.620 2.062
(0.003) (0.000) (0.005)

Lolland 0.430 0.480 1.116
(0.004) (0.013) (0.712)

Mariagerfjord 0.697 0.613 0.988
(0.317) (0.177) (0.974)

Middelfart 0.373 0.381 1.037
(0.074) (0.081) (0.948)

Morsø 0.966 1.009 1.132
(0.897) (0.972) (0.642)

Næstved 0.620 0.614 0.727
(0.110) (0.103) (0.288)

Norddjurs 2.696 2.785 2.145
(0.000) (0.000) (0.004)

Nordfyns 0.545 0.542 0.390
(0.273) (0.269) (0.088)

Nyborg 1.422 1.487 1.901
(0.357) (0.300) (0.094)

Odder 2.058 2.113 2.477
(0.013) (0.010) (0.002)

Odense 0.574 0.625 0.568
(0.377) (0.453) (0.368)

Odsherred 0.394 0.417 0.600
(0.018) (0.027) (0.195)

(continued)
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Table 6: Estimated Hazard Ratios on Municipality Dummy
Variables (continued)

3 4 5

Randers 2.031 1.961 1.361
(0.020) (0.027) (0.312)

Rebild 1.408 1.321 1.148
(0.231) (0.330) (0.630)

Ringkøbing-Skjern 0.742 0.732 1.274
(0.216) (0.197) (0.315)

Ringsted 0.924 0.801 0.842
(0.851) (0.601) (0.686)

Roskilde 1.045 1.024 1.841
(0.896) (0.943) (0.069)

Samsø 0.430 0.408 0.508
(0.176) (0.151) (0.279)

Silkeborg 1.614 1.700 1.767
(0.107) (0.074) (0.057)

Skanderborg 1.570 1.649 2.001
(0.123) (0.087) (0.018)

Skive 1.209 1.253 1.306
(0.448) (0.367) (0.287)

Slagelse 0.196 0.189 0.240
(0.000) (0.000) (0.000)

Solrød 1.018 1.015 0.697
(0.986) (0.988) (0.726)

Sorø 1.232 1.155 2.000
(0.562) (0.690) (0.059)

Stevns 1.179 1.173 1.463
(0.642) (0.653) (0.286)

Struer 0.705 0.700 1.128
(0.190) (0.181) (0.653)

Svendborg 1.235 1.299 1.812
(0.498) (0.401) (0.058)

Syddjurs 1.325 1.284 1.139
(0.308) (0.365) (0.638)

Sønderborg 0.515 0.506 1.044
(0.157) (0.147) (0.928)

Thisted 0.827 0.935 0.975
(0.441) (0.786) (0.919)

Tønder 0.641 0.629 0.914
(0.113) (0.099) (0.748)

Varde 0.600 0.609 0.949
(0.071) (0.080) (0.855)

Vejen 1.623 1.669 1.014
(0.098) (0.080) (0.964)

Vejle 0.961 0.929 1.273
(0.891) (0.797) (0.399)

Vesthimmerland 1.336 1.357 1.547
(0.237) (0.213) (0.076)

Viborg 1.026 0.968 1.298
(0.932) (0.913) (0.385)

Vordingborg 0.642 0.625 0.984
(0.119) (0.099) (0.954)

Ålborg 1.281 1.153 2.378
(0.323) (0.572) (0.001)

Århus 1.184 1.182 1.071
(0.592) (0.595) (0.829)




