Norwegian School of Economics Bergen, Spring 2017

NHH

Consumer Ethnocentrism

A research synthesis and meta-analysis of its sociopsychological antecedents and outcomes

Lara Mellinger

Supervisor: Einar Breivik

Master Thesis, MSc in Economics and Business Administration, Marketing and Brand Management

NORWEGIAN SCHOOL OF ECONOMICS

This thesis was written as a part of the Master of Science in Economics and Business Administration at NHH. Please note that neither the institution nor the examiners are responsible – through the approval of this thesis – for the theories and methods used, or results and conclusions drawn in this work.

Preface

Writing a master thesis is a challenging project, which could not have been realized without the help of certain people.

I first want to thank my supervisor, Einar Breivik, for drawing my interest to conducting research syntheses and meta-analyses. And also showing how rewarding it is to achieve useful results from a sample that one put together with his own hands just by searching existing literature. His quick response to any questions I had was extremely helpful, and I highly appreciate his knowledgeable remarks, which guided me through the process of conducting my research.

I also want to express my gratitude to my friends and family, for supporting me with their thoughts and their helpful comments, or even just for providing a welcomed distraction from sometimes monotonous coding work. Special thanks goes out to Julia Peitzmeier, who always had the time to discuss critical points, give advice, or build me up, and Carolin Hölscher and Charlotte Durieux, for taking this journey together.

I want to conclude this preface with a remark from Bengt Holmström, which he recently made on a visit to NHH:

"If everything goes according to your expectations, you have not learned much."

Through the ups and downs of writing this thesis, there is one thing I can definitely say – that it did not go according to my initial expectations, but I am glad for the invaluable experience it has given me.

Abstract

The goal of this thesis is to identify the socio-psychological antecedents and main outcomes of consumer ethnocentrism, and to quantify the relationship of consumer ethnocentrism and these related constructs. For this, a research synthesis and meta-analysis were conducted, which allow for integration of the findings of a large amount of individual studies into one conceptual model and the determination of the size of the relationship. Consequently, more generalizable assertions can be made about the relationship of consumer ethnocentrism and its socio-psychological antecedents and outcomes. The results confirm previous research by showing that consumer ethnocentrism is positively influenced by the antecedents national values, animosity, collectivism, and materialism, and negatively influenced by international values. Conspicuous consumption, however, was identified as not influencing consumer ethnocentrism. Furthermore, the analysis confirmed that consumer ethnocentrism leads to more favorable domestic product judgements and higher willingness to buy domestic, while it leads to less favorable foreign product judgements and lower willingness to buy foreign products. This has important implications for managers and researchers alike, as they are able to more easily identify the magnitude of important relationships of consumer ethnocentrism and related constructs.

Content

Pr	eface	i
Ał	ostract .	ii
Lis	st of Ab	breviations vii
Lis	st of Fig	uresviii
Lis	st of Tal	blesx
1.	Intro	oduction1
2.	pretical Background4	
	2.1	Ethnocentrism
	2.2	Consumer Ethnocentrism
	2.3	Distinction from Country-of-Origin
	2.4	General Application of the CETSCALE7
	2.5	Unidimensionality of the CETSCALE
	2.6	Development of the Conceptual Model9
3.	Liter	ature Review
	3.1	Socio-psychological antecedents13
	3.1.1	Patriotism13
	3.1.2	Nationalism and National Identity14
	3.1.3	Conservatism15
	3.1.4	Animosity16
	3.1.5	Cultural Openness
	3.1.6	World-Mindedness
	3.1.7	Internationalism
	3.1.8	Cosmopolitanism
	3.1.9	Foreign Travel
	3.1.1	0 Collectivism21
	3.1.1	1 Materialism22
	3.1.1	2 Conspicuous Consumption23
	3.1.1	3 Other Less Frequently Investigated Constructs24
	3.2	Behavioral Outcomes

	3.2.1	Attitudes Towards Foreign Products	25
	3.2.2	2 Product Judgements of Domestic vs. Foreign Products	26
	3.2.3	3 Purchase Intention of Domestic vs. Foreign Products	26
	3.2.4	4 Willingness to Buy Domestic vs. Foreign Products	27
	3.2.5	5 Reluctance to buy foreign products	27
	3.2.6	5 Domestic vs. Foreign Purchase Behavior	27
	3.2.7	7 Importance of Buying Domestic Products	28
4.	Met	hodology	. 29
4	1.1	Problem Definiton	. 29
4	1.2	Search for literature	. 30
4	1.3	Selection of Relevant Studies	. 31
	4.3.1	l Inclusion Criteria	31
	4.3.2	2 Exclusion Criteria	31
	4.3.3	3 Missing Values	32
4	1.4	Data Abstraction	. 32
4	1.5	Validity Assessment	. 32
4	1.6	Final Dataset	. 33
4	1.7	Study Characteristics	. 33
4	1.8	Quantitative Data Synthesis	. 34
	4.8.1	1 Effect Measure	34
	4.8.2	2 Fixed Effect and Random Effects Models	35
	4.8.3	3 Statistical Heterogeneity	36
	4.8.4	Sensitivity Analysis	37
	4.8.5	5 Accounting for Missing Data	37
	4.8.6	5 Analysis of Moderators	38
	4.8.7	7 Software Used For Analysis	38
5.	Met	a Analysis	39
5	5.1	Combination of Constructs for Analysis	. 39
	5.1.1	l National Values	39
	5.1.2	2 International Values	40
	5.1.3	3 Animosity	40
	5.1.4	4 Purchase Intention and Willingness to Buy	40
5	5.2	Results	. 41
	5.2.1	1 National Values	41

	5.2.2	Animosity48			
	5.2.3	International Values5			
	5.2.4	Collectivism			
	5.2.5	Materialism64			
	5.2.6	Conspicuous Consumption6			
	5.2.7	Product Judgements Domestic69			
	5.2.8	Purchase Intention and Willingness to Buy Domestic72			
	5.2.9	Product Judgements Foreign			
	5.2.1	0 Purchase Intention and Willingness to Buy Foreign82			
	5.2.1	1 General Influence of Moderators88			
5	.3	Summary of Results90			
6.	Disc	ussion and Conclusion			
6	.1	Main Insights			
6	.2	Contribution to Current Literature			
6	.3	Implications for Research99			
6	.4	Implications for Practice99			
6	.5	Limitations9			
6	.6	Future Research			
Ref	erenc	es99			
٨٣	andiv	A			
Ahł	Jenuix	A			
Арр	pendix	B 113			
Арр	pendix	C 114			
Арр	pendix	D 118			
C)1 Nati	onal Values119			
C	D2 Animosity134				
C	D3 International Values148				
C	D4 Collectivism				
C	D5 Materialism				
C	D6 Product Judgements Domestic17				
C	D8 PIWTB Domestic1				
D9 Product Judgements Foreign1					
D	D10 PIWTB Foreign20				

List of Abbreviations

AGCC	Acculturation to Global Consumer Culture
CC	Conspicuous Consumption
CE	Consumer Ethnocentrism
CET	Consumer Ethnocentric Tendencies
CETSCALE	Consumer Ethnocentric Tendencies Scale, used as a tool to measure consumer ethnocentrism
CoO	Country-of-origin
COSMO-Scale	12-item scale developed by Riefler et al. (2013) to measure cosmopolitanism
PI	Purchase intention
PIWTB	Purchase intention and willingness to buy
PJ	Product judgements
WTB	Willingness to buy

List of Figures

- Figure 2.1: CET, its antecedents and outcomes, by Shankarmahesh (2006)
- Figure 2.2: Conceptual model
- Figure 4.1 Fixed Effect Model, adapted from Kovalchik (2013)
- Figure 4.2 Random Effects Model, adapted from Kovalchik (2013)
- Figure 5.1 Forest plot for national values
- Figure 5.2 Funnel plot for national values
- Figure 5.3 Filled funnel plot for national values
- Figure 5.4 Forest plot of single constructs encompassing national values
- Figure 5.5 Forest plot for animosity
- Figure 5.6 Funnel plot for animosity
- Figure 5.7 Filled funnel plot for animosity
- Figure 5.8 Forest plot for international values
- Figure 5.9 Funnel plot for international values
- Figure 5.10 Filled funnel plot for international values
- Figure 5.11 Forest plot for international values with moderator construct
- Figure 5.12 Forest plot of collectivism
- Figure 5.13 Forest plot of collectivism with excluded collectivism towards friends
- Figure 5.14 Funnel plot of collectivism
- Figure 5.15 Forest plot for materialism

Figure 5.16 Funnel plot for materialism

- Figure 5.17 Forest plot conspicuous consumption
- Figure 5.18 Funnel plot for conspicuous consumption
- Figure 5.19 Filled funnel plot for conspicuous consumption
- Figure 5.20 Forest plot of product judgements domestic
- Figure 5.21 Funnel plot of product judgement domestic
- Figure 5.22 Forest plot of PIWTB domestic
- Figure 5.23 Funnel plot of PIWTB domestic
- Figure 5.24 Filled funnel plot of PIWTB domestic
- Figure 5.25 Forest plot of PIWTB domestic with moderator construct
- Figure 5.26 Forest plot for product judgements foreign
- Figure 5.27 Funnel plot of product judgements foreign
- Figure 5.28 Filled funnel plot of product judgements foreign
- Figure 5.29 Forest plots for PIWTB foreign
- Figure 5.30 Funnel plot PIWTB foreign
- Figure 5.31 Forest plot of PIWTB foreign with moderator construct
- Figure 5.32 Funnel plot of purchase intention foreign
- Figure 5.33 Funnel plot for willingness to buy foreign
- Figure 6.1 Conceptual model with effect sizes of analyzed constructs and most important moderators

List of Tables

- Table 5.1 Weighted average effect sizes of national values
- Table 5.2 Analyzing heterogeneity of national values
- Table 5.3 Analysis of product national values for moderator construct
- Table 5.4 Analysis of national values for moderator year
- Table 5.5 Analysis of national values for moderator selection
- Table 5.6 Weighted average effect sizes of animosity
- Table 5.7 Analyzing heterogeneity of animosity
- Table 5.8 Analysis of animosity for moderator construct
- Table 5.9 Analysis of animosity for moderator year
- Table 5.10 Analysis of animosity for moderator selection
- Table 5.11 Analysis of animosity for moderator characteristics
- Table 5.12 Analysis of animosity for moderator CETtype
- Table 5.13 Weighted average effect sizes of international values
- Table 5.14 Analyzing heterogeneity of international value
- Table 5.15 Analysis of international values for moderator construct
- Table 5.16 Analysis of international values for moderator continent
- Table 5.17 Analysis of international values for moderator developed
- Table 5.18 Analysis of international values for moderator CETtype
- Table 5.19 Weighted average effect sizes of collectivism
- Table 5.20 Analyzing heterogeneity of collectivism

Table 5.21 Analysis of collectivism for moderator continent Table 5.22 Analysis of collectivism for moderator selection Table 5.23 Analysis of collectivism for moderator CETtype Table 5.24 Weighted average effect sizes of materialism Table 5.25 Analyzing heterogeneity of materialism Table 5.26 Analysis of materialism for moderator continent Table 5.27 Weighted average effect sizes of conspicuous consumption Table 5.28 Analyzing heterogeneity of conspicuous consumption Table 5.29 Weighted average effect sizes of product judgements domestic Table 5.30 Analyzing heterogeneity of product judgements domestic Table 5.31 Analysis of product judgement domestic for moderator continent Table 5.32 Analysis of product judgement domestic for moderator selection Table 5.33 Analysis of product judgement domestic for moderator characteristics Table 5.34 Analysis of product judgement domestic for moderator CETtype Table 5.36 Analysis of product judgement domestic for moderator CETcoded
 Table 5.37 Weighted average effect sizes of PIWTB domestic
 Table 5.38 Analyzing heterogeneity of PIWTB domestic Table 5.39 Analysis of PIWTB domestic for moderator construct Table 5.40 Analysis of PIWTB domestic for moderator year Table 5.41 Analysis of PIWTB domestic for moderator selection Table 5.42 Analysis of PIWTB domestic for moderator CETtype

Table 5.43 Weighted average effect sizes of PIWTB domestic

- Table 5.44 Analyzing heterogeneity of PIWTB domestic
- Table 5.45 Analysis of foreign product judgement foreign for moderator selection
- Table 5.46 Analysis of product judgement foreign for moderator CETtype
- Table 5.47 Analysis of product judgment foreign for moderator year
- Table 5.48 Analysis of foreign product judgement for moderator continent
- Table 5.49 Weighted average effect sizes of PIWTB foreign
- Table 5.50 Analyzing heterogeneity of PIWTB foreign
- Table 5.51 Analysis of PIWTB foreign for moderator construct
- Table 5.52 Analysis of PIWTB foreign for moderator year
- Table 5.53 Analysis of PIWTB foreign for moderator characteristics
- Table 5.54 Analysis of PIWTB foreign for moderator selection
- Table 5.55 Significance of moderators explaining between group variance in the different constructs
- Table 5.56 Overview of meta-analysis results for socio-psychological antecedents of CE
- Table 5.57 Overview of meta-analysis results for outcomes of CE

1. Introduction

Globalization affects and changes consumer behavior through the decrease of trade barriers, expansion of foreign trade, more unified markets, increased travel, multi-nationally operating firms, and technological advancements (Douglas & Craig, 1997). As a result, national consumer cultures collapse and companies find themselves in a more competitive environment, but with access to a larger, more nuanced customer base (Douglas & Craig, 1997). Therefore, more firms seek to sell their products in more countries as part of their expansion and horizontal diversification. Thus, it is important to understand consumer's perception of foreign products for nationally and internationally operating firms alike.

Research on consumer behavior in the international marketplace is not new. Much research has focused on the examination of how a product's country of origin affects consumers' perception of the product and their purchasing behavior (Fernández-Ferrín, Bande-Vilela, Klein, & del Río-Araújo, 2015), which dates back as early as 1965 (Peterson & Jolibert, 1995). In recent years, however, more researchers have tried to examine perceptions of foreign products not bound to one specific country of origin, which makes the findings more generalizable (Fernández-Ferrín et al., 2015). A factor influencing such general product perceptions is consumer ethnocentrism, whereby consumers assess whether it is appropriate or moral to purchase foreign products (Shimp & Sharma, 1987). Consumers with high consumer ethnocentric tendencies will prefer domestic products in order to support their own country (Netemeyer, Durvasula, & Lichtenstein, 1991). Consumer ethnocentrism is not only studied in isolation, but in context of a variety of antecedents and outcomes.

Even though a large amount of research has been added to the field since its first introduction by Shimp and Sharma in 1987, findings are scattered, and literature reviews on the topic are scarce and outdated (e.g. Shankarmahesh, 2006; Siamagka, 2010). A first attempt at synthesizing results has recently been done by Shoham, Gavish & Rose (2016), whose metaanalysis on consumer animosity and consumer ethnocentrism revealed negative effect sizes for the outcomes foreign product judgement and willingness to buy foreign. Still, a larger synthesis about consumer ethnocentrism is missing, especially regarding its antecedents. A quantifiable estimation of the relationship between consumer ethnocentrism and its antecedents has not been made yet. This thesis seeks to fill this gap and add to the understanding of the relationship between consumer ethnocentrism and its outcomes by 2

conducting a research synthesis and meta-analysis on the socio-psychological antecedents and general outcomes of consumer ethnocentrism.

The following research questions will therefore guide this thesis:

- 1. What are the main socio-psychological antecedents and the main outcomes of consumer ethnocentrism?
- 2. To what extent do the main socio-psychological antecedents influence consumer ethnocentrism, and to what extent does consumer ethnocentrism influence its outcomes?

The goal of the synthesis is to draw founded conclusions based on past research (Cooper, 2016). In comparison to a traditional theoretical review, a research synthesis goes beyond the narrative interpretation of results and produces much more reliable and replicable results (Cooper, 2016). This is due to four pitfalls of traditional literature reviews, as pointed out by Cooper (2016): firstly, they often do not follow a systematic search of the literature, secondly, they do not include reliability measures for the findings of the studies, thirdly, they only define clear search criteria after conducting the search, and fourthly and most importantly, they are not able to show how large a relationship between the observed constructs is. Systematic reviews aim to overcome these deficiencies. They are replicable, which means that other researches will come to the same results if they follow the same procedure (Cooper, 2016). For this, a synthesist needs to clearly define search criteria before conducting the search, document the information retrieval, and give an overall estimate of the size of relationship between the observed constructs (Cooper, 2016). As a result, research synthesis resembles the execution of primary research, where the studies revealed in the review can be viewed as a sample randomly drawn from a general population (Brown, Upchurch, & Acton, 2003).

Due to the large amount of research performed in this field, consumer ethnocentrism offers great possibilities for research synthesis. This, in turn, will help future researchers guide their further investigation of consumer ethnocentrism to the areas where further validation is needed. In addition, practitioners will be able to quickly obtain an overview of the topic and to guide their marketing practices accordingly.

This thesis is structured as follows: first, a general overview of consumer ethnocentrism and of its measurement is given, and a conceptual framework is derived. Next, a review of the literature explains the antecedents and outcomes that have frequently been studied with consumer ethnocentrism; how they have been defined and measured across different studies. Thereafter, the methodological approach of the research synthesis and subsequent metaanalysis is explained in depth, followed by the actual meta-analysis examining the size of the relationship between consumer ethnocentrism and its antecedents and outcomes. Finally, this thesis ends with a general discussion of the findings, its contribution to current research, the implications of the findings for research and for practice, as well as limitations of the study.

2. Theoretical Background

2.1 Ethnocentrism

Consumer ethnocentrism is, as the construct suggests, a specific form of ethnocentrism. Therefore, before explaining consumer ethnocentrism, first the term ethnocentrism needs to be understood. While consumer ethnocentrism was first formally introduced by Shimp & Sharma in 1987, ethnocentrism has already been described in the late 19th century, originating in the social sciences. As unveiled in a recent literature review performed by Bizumic (2014), Gumplowicz was the first to introduce ethnocentrism as early as 1879 and described it as a focus on one's ethnic group, in which this group is regarded as superior and better than any other group (Bizumic, 2014). But according to Bizumic (2014), in prominent ethnocentrism literature from the past decades (such as LeVine & Campbell, 1972; Adorno, Frenkel-Brunswik, Levinson, & Sanford, 1950) Sumner (1906) is most often regarded as the first to formally define ethnocentrism. Sharma, Shimp, and Shin (1995) also cite Sumner's (1906) definition as follows:

"the view of things in which one's own group is the center of everything, and all others are scaled and rated with reference to it. . . Each group nourishes its own pride and vanity, boasts itself superior, exalts its own divinities and looks with contempt on outsiders." (p. 27)

Nevertheless, both Gumplowicz and Sumner distinguish between groups the individual identifies with ("in-groups") and all other groups, which are often seen as direct opposites ("out-groups") (Shimp & Sharma, 1987; LeVine & Campbell, 1972). Even though first conceptualized to apply to nations and tribes, further research found ethnocentrism to be more than just a cultural construct; according to Sharma et al. (1995) Murdock (1931) highlights that it encompasses all kinds of possible groups, such as family pride, religious prejudices, or racial discrimination. Next to the central assumption of distinguishing between different groups, ethnocentrism is reflected in seeing one's own group's way of life as superior to that of other groups, and out-groups are frowned upon and seen as inferior (Shimp & Sharma, 1987; Levine & Campbell, 1972). Additionally, according to Gumplowicz, ethnocentrism even extends to the belief of one's own group being better than any group that has ever existed (Bizumic, 2014). It is a major concept influencing social psychology, and several theories have built on it, such as the social identity theory by Tajfel and Turner (1986) (Bizumic, 2014).

2.2 Consumer Ethnocentrism

As mentioned earlier, Shimp and Sharma (1987) were the first to formally conceptualize the construct of consumer ethnocentrism, a specific form of ethnocentrism relevant for marketing when applying it to consumers and their behavior in an international marketplace (Javalgi, Khare, Gross, & Scherer, 2005). The authors defined the concept as "the beliefs held by American consumers about the appropriateness, indeed morality, of purchasing foreign-made products" (Shimp & Sharma, 1987, p. 280). For ethnocentric consumers, buying products from their home country is a moral obligation, in order to support their country and to keep the local economy going. As seen from an in-group vs. out-group perspective, products from the home country are perceived as better and superior to those coming from other countries, which are looked upon in disdain and seen as inferior (Shimp & Sharma, 1987).

Put differently, ethnocentric consumers think that the purchase of foreign products is bad, as it is perceived as causing domestic job loss and economic downfall (Shimp & Sharma, 1987). According to Sharma et al. (1995), highly ethnocentric consumers may buy domestic products even when the quality of foreign goods is better, out of a sense of moral obligation towards the home country, and are also relatively price inelastic (Shankarmahesh, 2006). Consumers with low ethnocentrism, on the other hand, evaluate products simply upon their quality, their appearance or other product attributes. This can also include buying a product *because* it is from a certain country (Shimp & Sharma, 1987).

As described by Sharma et al. (1995), consumer ethnocentrism therefore has three key characteristics:

- High identification with and concern about the home country and a wish to not harm the local economy through increased imports
- (2) A reluctance to buy foreign products
- (3) A prejudice towards foreign products

Resulting from this, domestic products are favored over imported products, because of both moral reasons and the perception of domestic products being superior. Consumer ethnocentrism accordingly serves as a guideline for consumers in a world with an ever-increasing product offer to determine which purchasing behavior is appropriate for the in-

group (Shimp & Sharma, 1987). It helps the consumer to identify with certain products, and to give him a feeling of belongingness in his social and cultural environment (Shimp & Sharma, 1987). For multinational firms seeking to enter new markets, consumer ethnocentrism can be regarded as a kind of protectionism that takes place at the consumer level (Feurer, Baumbach, & Woodside, 2016; Verlegh, 2007).

To measure how ethnocentric consumers of a certain country are, Shimp and Sharma (1987) developed the Consumer Ethnocentric Tendencies Scale (in short: CETSCALE), which has now become a widely-applied construct to study consumer behavior. It is important to note that the construct measures a tendency, rather than specific attitudes. The authors argue this stems from the logic of an attribute being formed about a specific object, such as one specific product, while a tendency encompasses a general behavior towards a whole category, namely foreign products (Shimp & Sharma, 1987). It is therefore more like a personality trait, which influences consumer behavior and could be formed as early as in childhood (Sharma et al., 1995; Shimp & Sharma, 1987).

In order to develop the scale, the authors first gathered insights about foreign products from more than 800 consumers, resulting in several different dimensions influencing the behavior of consumers towards foreign products, such as price-value perceptions, rationalization-of-choice, and among those, consumer ethnocentrism. Through subsequent tests, the authors found that all other dimensions failed to meet statistical requirements, which resulted in concentration on developing a scale for consumer ethnocentric tendencies only. After further validity tests, Shimp and Sharma (1987) found the scale to consist of 17 items, usually measured on a seven-point Likert scale ranging from 1 – "strongly disagree" to 7 – "strongly agree", of which an exact list can be found in Appendix A. Along with this classic scale, they also tested a reduced 10-item version, which makes it more applicable to longer studies measuring multiple constructs. The higher the score on the CETSCALE, the more a consumer has tendencies towards preferring domestic over foreign products (Javalgi et al., 2005).

As highlighted by Shankarmahesh (2006), Shimp and Sharma (1987) were not the first or only researchers to measure negative attitudes towards foreign products by consumers. According to the author, a scale developed by Reierson (1966) has been used in earlier works. Others, such as Ettenson, Wagner, and Gaeth (1988) or Strutton, Pelton, and Lumpkin (1994), have conducted research related to ethnocentrism without specifically measuring it.

2.3 Distinction from Country-of-Origin

Due to its application to consumer behavior towards foreign products, consumer ethnocentrism could be confused with another prominent concept in the marketing literature, the country-of-origin effect (CoO). While both constructs describe consumer's bias towards imported products, they are distinct from another. Central in the CoO effect is the identification of the specific origin of a product, which is typically facilitated through a "made in" label (Peterson & Jolibert, 1995). A consumer can therefore hold negative attitudes towards Japanese cars, which results in him not buying them, while holding positive attitudes and willingness to buy towards French wine, because wine from France is perceived as having better quality than wine produced in the home country. Consumer ethnocentrism, on the other hand, measures negative tendencies towards foreign products in general, independent of their specific country of origin (Shankarmahesh, 2006). As put by Herche (1992), a consumer with high ethnocentrism still would not buy the French wine, or any foreign wine for that matter, out of a moral obligation towards the home country. This makes consumer ethnocentrism more generalizable across different countries and different products, and does not necessarily require the specification of the origin of the foreign product.

2.4 General Application of the CETSCALE

Since its development, the CETSCALE has been extensively validated in many studies and is now widely used to understand consumer behavior when foreign products are involved. Netemeyer et al. (1991) were among the first to replicate the original study and found it applicable not only to the US, but also to Japan, France, and West Germany. Showing high reliability even when applied in different countries, the CETSCALE has now become a standard measure for consumer ethnocentrism. While many studies (e.g. Yoo & Donthu, 2005; Parker, Haytko, & Hermans, 2011) still apply the original 17-item scale, many others (e.g. Nguyen, Nguyen, & Barrett, 2008; Ishii, 2009) focus on shorter versions of the scale, which range from 10 to as little as 4 items of the original scale, but still reaching high reliability (Klein, 2002). This is especially found in studies measuring consumer ethnocentrism and a larger number of other constructs, in order to reduce the complexity and time needed for the study. Interestingly, since its introduction, the CETSCALE has not been substantially redefined, even though some authors have found critical points. Among the first was Herche (1990), who pointed out that some items were worded in a way which could result in a statement polarity bias. This means that due to how the sentence is framed, it will make respondents react more strongly towards the statement and therefore they have a higher tendency to use the extreme points of the scale. Little attention has been given to this remark, which can be due to the facts that he only used a small sample, making it harder to generalize findings, and that it was only a conference proceeding and not published in a scientific journal. Another example of an attempt to re-conceptualize the CETSCALE was done by Mavondo and Tan (1999), but their approach to distinguish between the three dimensions morality, economic rationality, and economic animosity did not receive much attention. Still, minor adaptions of the original CETSCALE have been made, which are widely applied in the research field. As Jiménez-Guerrero, Gázquez-Abad, and del Carmen Linares-Agüera (2014) point out, notable adaptions have been done by Douglas and Nijssen (2003) and Altintas and Tokol (2007), although these are small and encompass the inclusion of a new item or the specification of foreign products as coming from Europe. Other adaptions usually only relate to reducing the numbers of items used and translating the scale in the language spoken in the country of the study.

2.5 Unidimensionality of the CETSCALE

As highlighted by Jiménez-Guerrero et al. (2014), unidimensionality is understood by many researchers as a requirement which needs to be met by a scale to arrive at reliable measurement outcomes. This is why the unidimensionality of the CETSCALE has been addressed in a large number of studies, in addition to measuring internal consistency. Especially in earlier works of consumer ethnocentrism using the CETSCALE, this assessment has been included, and studies most often found the CETSCALE to indeed be unidimensional, especially when using the full 17-item version (e.g. Netemeyer et al., 1991; Sharma et al., 1995; Caruana, 1996; Luque-Martínez, Ibanez-Zapata, & del Barrio-Garcia, 2000). But even with reduced items, unidimensionality was often given (e.g. Vida, Dmitrović, & Obadia, 2008; Balabanis & Diamantopoulos, 2001). However, other studies found the CETSCALE to contain multiple dimensions. Nijssen and Douglas (2003) for example discovered two dimensions for the CETSCALE in the Netherlands: core ethnocentrism and availability of domestic products. Lindquist, Vida, Plank, and Fairhurst (2001) even found the 10-item CETSCALE to contain four dimensions, namely product availability, patriotism, employment impact, and overall

economic impact concern. In their literature review of the unidimensionality of the CETSCALE, Jiménez-Guerrero et al. (2014) also find multiple other cases of multidimensional CETSCALE and argue for caution of its application across different countries. It is true that the application of a measurement construct across countries should always be done with caution, and that heterogeneity in results will arrive when using different samples and settings (Thelen, Ford, & Honeycutt, 2006; Jiménez-Guerrero et al. 2014). Nevertheless, the CETSCALE is agreed upon as a valid measure for gaining insights about consumer ethnocentrism throughout a great number of studies. Unless always applied in exactly the same context, measurements will produce slightly different results (Jiménez-Guerrero et al. 2014). In this light, I believe that the CETSCALE is still a highly valid and widely applicable measurement and assume the scale to be unidimensional in my further analysis.

2.6 Development of the Conceptual Model

Since the CETSCALE measures consumer behavior, consumer ethnocentrism is not a static concept, but rather must be seen in a larger context of consumer characteristics and consumer behavior. For consumer ethnocentrism, as measured by the CETSCALE, to be an important contributor to understanding consumer behavior, it needs to lead to consequences that provide meaningful implications for practitioners. In addition, practitioners should be able to understand the drivers of consumer ethnocentrism and how they could influence them. This motivates the research of outcomes (consequences) and antecedents (drivers) of consumer ethnocentrism, which has already been included in the initial study by Shimp and Sharma (1987). There, the authors examined the correlation between consumer ethnocentrism and attitudes towards foreign products, as well as purchase intention, and subsequent authors have added to this approach. Consumer ethnocentrism is thus often not studied in isolation but in context of its antecedents, moderators, and outcomes, but many studies only include few of these factors, and these factors, especially the antecedents, differ greatly across studies.

A broad overview of these factors has first been conducted by Shankarmahesh (2006) in his literature review about consumer ethnocentrism. He identified four different types of antecedents, namely socio-psychological, economic, political, and demographic antecedents. In addition, he included outcomes of consumer ethnocentrism, as well as mediators and

moderators that influence these outcomes. His conceptual framework can be seen in Figure 2.1.

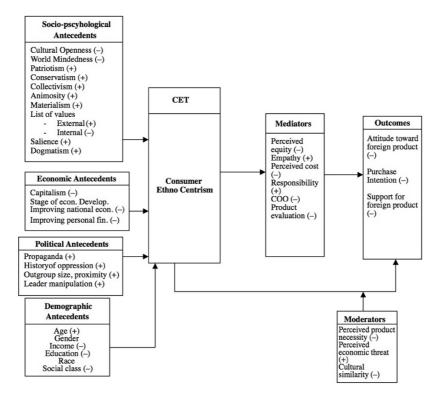


Figure 2.1 CET, its antecedents and outcomes, by Shankarmahesh (2006)

Since then, little has been done to further extend this model. A review by Alsughayir (2013) only added an interest in international travel. A more thorough analysis was made by Siamagka (2010) in her dissertation about consumer ethnocentrism. She rearranged the model of antecedents into the four building blocks socio-psychological, cultural, demographic, and economic antecedents. From the constructs originally clustered in the socio-psychological block by Shankarmahesh (2006), only animosity remained in this categroy in her adjusted model, whereas all other constructs moved to the new cultural cluster (if included). In addition, the author also identified other constructs such as foreign travel and global consumption orientation. Nevertheless, considering the vast amount of research available in the field of consumer ethnocentrism, little has been done to synthesize this knowledge. Most importantly, an overall estimation of the magnitude of the relationship between consumer ethnocentrism and its related constructs has not been made.

The aforementioned motivates the work of this thesis, whereby a systematic review and a subsequent meta-analysis aim at quantifying the relationship of consumer ethnocentrism and its related constructs. Consumer ethnocentrism imposes a great field for the application of

meta-analysis, for multiple reasons. Verlegh and Steenkamp (1999) highlighted these for conducting a meta-analysis about CoO effects, which can also be applied to the field of consumer ethnocentrism. The field of consumer ethnocentrism encompasses a large amount of studies that investigate the same construct in a variety of settings and countries. Still, these studies all aim at adding understanding to the same construct, by investigating how consumer ethnocentrism interplays with consumer characteristics and how it affects consumer behaviour. The research field therefore consists of imperfect replications of the same construct that measure the same effect, but are still different from each other (Verlegh & Steenkamp, 1999). Having this large set of imperfect replications in the field is important, as it allows for a wider understanding of the field than a single study or exact replication could provide (Verlegh & Steenkamp, 1999). Additionally, it is possible to identify and quantify moderating factors that influence the relationship between consumer ethnocentrism and related constructs (Verlegh & Steenkamp, 1999). This could be differences in the study participants, the data collection, or the country of where the study was undertaken.

For conducting a systematic review and a subsequent meta-analysis, the influence of sociopsychological antecedents on consumer ethnocentrism and the outcomes of consumer ethnocentrism proved most interesting. This stems from different reasons.

- 1. They are commonly used.
- 2. They are measured with relatively uniformed measures.
- 3. Their understanding is important for practitioners.

Explained in more detail, firstly, socio-psychological antecedents and outcomes of consumer ethnocentrism are often included in consumer ethnocentrism studies, allowing for a suitable amount of studies needed for a meta-analysis. Secondly, they are more clearly defined and measured than other antecedents, and more valid across countries (political antecedents for example are highly country specific). Even though regularly included in studies, especially demographic antecedents are hard to compare across studies in a systematic way due to their differences in measurement and the lack of availability of original data obtained in the studies. In addition, gaining further understanding about the socio-psychological antecedents and the outcomes of consumer ethnocentrism is highly relevant for the practical world as it allows for better understanding of consumers and influences of their purchasing behavior. According to this focus, the literature review, which will be presented in detail in the following chapter, revealed the main socio-psychological antecedents and outcomes of consumer ethnocentrism. From this, the conceptual model was developed:

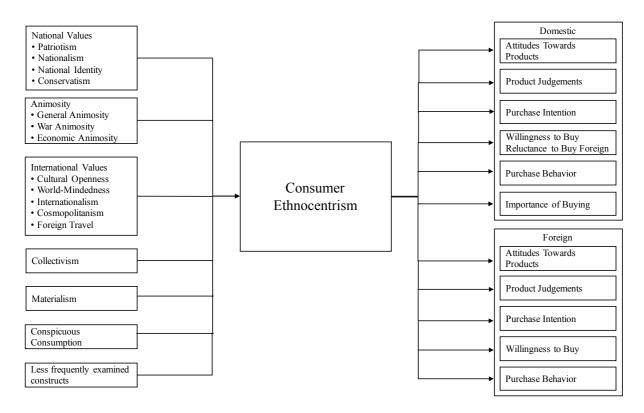


Figure 2.2 Conceptual model

Further explanation of these constructs will be given in the following chapter containing the literature review, while determining the size of the relationship between consumer ethnocentrism and its related constructs is the goal of the meta-analysis.

3. Literature Review

In order to understand the constructs related to consumer ethnocentrism, the literature was closely examined. Special attention was paid to how the constructs were measured. This review will first describe the socio-psychological antecedents of consumer ethnocentrism before examining the behavioral outcomes. Socio-psychological antecedents are regarded as attitudes, believes, or behaviors formed by consumers. Outcomes of consumer ethnocentrism encompass the beliefs held towards products and the consumption behaviors resulting from consumer ethnocentrism.

3.1 Socio-psychological antecedents

3.1.1 Patriotism

The Stanford Encyclopedia of Philosophy defines patriotism as "love of one's country, identification with it, and special concern for its well-being and that of compatriots" (ch. 1, 1.1 What is patriotism?). Sharma et al. (1995) have a very similar, shortened definition by describing patriotism as "love for or devotion to one's country" (p.28). According to the authors, other researchers such as Adorno et al. (1950) have found it to be closely linked to ethnocentrism, and Milhalyi (1984) found it to be a defensive mechanism to protect the ingroup. In addition, Sharma et al. (1995) remark that Moore (1989) describes patriotism to reflect non-tariff trade barriers better than for example protectionism. Earlier research of international marketing done by Han (1988) found a significant influence of patriotism on product choice. More precisely, patriotic consumers preferred domestic over foreign products when it came to product choice, but the influence of attitudes towards foreign products was limited. Additionally, his research showed that patriotic consumers evaluate domestic products more favorably in terms of quality and serviceability.

Due to its close link to ethnocentrism, the influence of patriotism on consumer ethnocentrism has been extensively examined in the field and was subject to many studies. The systematic review revealed that 31 out of 138 accepted studies included the research of patriotism as an antecedent to CET. Most authors used established scales from psychology research, and adapted them to their needs. Most frequently (adapted) scales were taken from the works of Adorno et al. (1950) and Kosterman and Feshbach (1989), and only eight studies used other measurements. Even though the number of items used to measure patriotism varies between

the studies, the type of scale measurement is highly consistent and therefore allows for a coherent overall capture of the concept.

In line with previous research, the majority of studies found a medium to strong link between patriotism and ethnocentrism. Still, several analyses found weak links or even a negative link. For example, Lee, Hong, and Lee (2003) conclude that the impact of patriotism and other antecedents might be country- or at least culture-specific. A similar conclusion is drawn by Balabanis, Diamantopoulos, Mueller, and Melewar (2001), who had partially greatly conflicting results in the comparison between Turkey and the Czech Republic. They assume the way patriotism and other constructs relate to consumer ethnocentrism differs greatly between different countries. Caution towards the influence of patriotism on consumer behavior has also been called for by Shankarmahesh (2006), who argues that consumers can both love their country and still be world-minded, which relativizes the link between patriotism and purchase behavior. Additionally, by understanding that international trade is beneficial to all countries involved, the opening of one's economy cannot be seen as an unpatriotic action by an informed consumer (Shankarmahesh, 2006). Therefore, the author argues, patriotism could be mistaken for "pseudo-patriotism", which is stronger the less educated a consumer is. For further quantification of the general influence of patriotism on consumer ethnocentrism, the examination of the effect of patriotism on consumer ethnocentrism is included in the metaanalysis part of this thesis.

3.1.2 Nationalism and National Identity

Closely linked to patriotism are two other constructs frequently used in consumer ethnocentrism literature: nationalism and national identity. Many researchers differentiate between nationalism and national identity with nationalism being exclusive, while national identity is inclusive (Vida et al., 2008). More precisely, nationalism, as defined by Kosterman and Feshbach (1989) according to Balabanis et al. (2001), is characterized by a hostility towards other countries. Lee et al. (2003) add to this understanding of nationalism by including commitment to one's own country and the desire of it being superior to and dominant of other countries, which is also a definition the authors took from Kosterman and Feshbach (1989). National identity, on the other hand, does not include a negative view on the out-group, but focuses rather just on a positive view of the in-group, which is expressed through pride of and identification with the culture and values of one's home country (Lee et al., 2003; Zeugner-Roth, Žabkar, & Diamantopoulos, 2015; Dmitrovic, Vida, & Reardon, 2009).

Nationalism was measured by eight studies, and national identity by 14 studies. For measuring nationalism, most authors, such as Lee et al. (2003) and Balabanis et al. (2001), borrowed Kosterman and Feshbach's (1989) nationalism scale and only one research paper developed an own scale. For national identity, a scale by Keillor, Hult, Erffmeyer, and Babakus (1996) was mostly used (Dmitrovic et al., 2009; Vida et al., 2008). The difficulty to clearly distinct between the constructs shows for example the study by Strizhakova, Coulter, and Price (2012), who called their construct nationalism, but in fact used the scale from Keillor et al. (1996) which measures national identity. Still, across all studies, both constructs showed similar positive influence on consumer ethnocentrism.

3.1.3 Conservatism

In the context of studying consumer ethnocentric tendencies, conservatism relates to the admiration and preservation of traditions and social institutions throughout time, and the reluctance to change or alter them (Sharma et al., 1995). A highly conservative person is fundamentally religious, orients himself on the establishment, keeps and insists on strict rules, sticks to conventions, and gives little value to hedonic activities (Sharma et al., 1995). Altintas and Tokol (2007) see conservatism as part of a set of values, which in turn shape a person's attitude. In this context, they list conservation as one of four values describes by Schwartz (1994), which consists of the three sub-factors tradition, conformity, and security. Due to these values, a conservative consumer is more reluctant to anything foreign, which in turn has a positive influence on his consumer ethnocentric tendencies and preference for products from the home country.

In total, 16 studies measured conservatism as an antecedent of consumer ethnocentrism. Measurement of conservatism is mostly taken from Ray (1983), while some studies use individually adapted versions from Adorno et al. (1950), Schwartz (1994), or McCullough et al. (1986).

In their research, Sharma et al. (1995) found a strong correlation between conservatism and patriotism, which resulted in the combination of the two constructs. Other studies on conservatism have found them to be distinct from one another (e.g. Javalgi et al., 2005; Jain & Jain, 2013). Shankarmahesh (2006) argues that the influence of conservatism on CET may also be limited for the same reasons as with patriotism. More specifically, this is the case due to conservative parties standing for open trade in many countries, the ability of consumers to

distinct between their conservative values and purchase behaviour, and the construct not being completely distinct from world-mindedness. For further quantification of the effect of conservatism on consumer ethnocentrism, this construct is also examined in the meta-analysis.

3.1.4 Animosity

A construct closely related to consumer ethnocentrism, but more specific in nature, is that of animosity. Klein, Ettenson and Morris (1998) define it as "the remnants of antipathy related to previous or on-going military, political, or economic events" (p.90). According to the authors, this feeling of strong dislike will lead consumers to avoid purchasing products from the specific country. As reflected in the definition, animosity towards a country can have different reasons. It might be due to military interactions, which can be recent as in the case of Serbia and the Kosovo region (Gligorov, 2008), or hundreds of years old, as for example the mutual dislike between China and Japan (Jacques, 2012). A political reason for animosity is that of French nuclear tests conducted in the South Pacific in the 1970s, of which Australia and New Zealand strongly opposed and which resulted in the boycott of French products (Ettenson & Klein, 2005). Animosity out of economic reasons can for example be found between countries competing for jobs. An example is animosity held towards China by the United States which was utilized and promoted by Donald Trump in his election campaign (Yoon, 2017). Due to the strong feelings generated by animosity, the reluctance to buy products from the country towards which animosity is felt is often independent of product judgements (Klein et al., 1998). An Australian might have preferred French wine and thought it to be of higher quality, but still would not buy it in the 1970s due to the ongoing political discrepancy between Australia and France.

Animosity is distinct from consumer ethnocentrism in a sense that it is held towards one specific country, while CET is a dislike towards imported products in general (Klein et al., 1998). The authors argue that this distinction is important for marketers, as they need to understand whether consumers of the target country just hold general dislike towards foreign products, or if the dislike is influenced animosity towards the country of origin of the product in question.

In their initial study, Klein et al. (1998) differentiated between three different types of animosity: general animosity, war animosity and economic animosity. As pointed out by Cai, Fang, Yang, and Song (2012), Klein et al. (1998) still measured an overall animosity that was

divided in the underlying sub-categories war animosity and economic animosity. However, the authors argue that these two constructs are distinct from each other and regard them as separate, since their manifestations have been formed differently. Whether the size of the relationship between animosity and consumer ethnocentrism varies between the different types of animosity measurements will therefore be examined in the meta-analysis.

Subsequent studies examining animosity after Klein et al. (1998) have mostly used their scale, even though often adapted and without the distinction between the different types of animosity. Out of 63 studies, only eight used a scale that was not somehow adapted from the works of Klein et al. (1998), Klein (2002), or Ettenson and Klein (2005). Items used to measure animosity ranged from 1 to 10, while the original study by Klein et al. (1998) used a total of eight items; one for measuring general animosity, three for war animosity, and four for economic animosity. Findings consistently show a positive correlation between animosity and ethnocentrism, which will be further analysed in the meta-analysis

3.1.5 Cultural Openness

Cultural openness is a construct subject to different definitions and understandings in the examined literature. It can be understood as the willingness to interact with people from different cultures, to open up to their values, views, and traditions, and thereby reducing prejudice towards other countries (Sharma et al., 1995; Shankarmahesh, 2006). As added by Jain and Jain (2013), cultural openness is increased through travelling to other countries and the general contact with people with different cultural backgrounds in the own country. Nguyen et al. (2008) use the reduction of prejudice through the exposure to foreign culture as the basis for cultural sensitivity, "a degree of awareness, understanding, and acceptance of the values of other cultures" (p. 91). Suh and Kwon (2002), on the other hand, use the term "global openness", which considers the influence of increased globalization, and the resulting sensitization for other countries and foreign cultures. Still, they do not measure a global mindset per se, but rather an increased interest in and association with other cultures, which is similar to the measurement of cultural openness. For examining cultural openness in central European countries, Vida and Fairhurst (1999) use brand familiarity as an indicator. The more familiar and experienced the consumers were with foreign brands, the higher their cultural openness. Vida et al. (2008) used selected items from the cosmopolitanism scale developed by Yoon, Cannon, and Yaprak (1996) to measure cultural openness, and therefore show that those two concepts might be conceptually close and related. Shankarmahesh (2006) argues for

an exaggeration of the negative influence of cultural openness on ethnocentric tendencies due to neglecting that with increased familiarity, people develop a liking for it.

A total of 19 studies included in the review measured cultural openness. While many authors use the scale developed by Sharma et al. (1995), half of the studies use own scales or scales borrowed from different sources, which makes the measurement prone to more heterogeneity in showing the relationship to consumer ethnocentrism.

3.1.6 World-Mindedness

Closely linked, but still conceptually different to cultural openness is world-mindedness. Rawwas et al. (1996) defined world-mindedness as the ability to see humankind as a whole and to understand the different issues affecting humanity. World-minded people highly value internationalism and a common mind-set across all cultures (Rawwas et al., 1996). According to Kwak, Jaju, and Larsen (2006), Rhinesmith (1993) described a person with a global mind-set as being able to "scan the world from a broad perspective" (p. 371). In their understanding, world-mindedness is understood as part of the globalization of consumers. In contrast to cultural openness, which results in indifference to other cultures, world-mindedness sees those differences but perceives all cultures as equal (Kwan et al., 2006). Shankarmahesh (2006) adds that a consumer can be world-minded without being exposed to foreign culture, which sets the construct apart from cultural openness.

The measurement of world-mindedness used in the twelve studies considered is not uniform. All authors used different scales, making the concept harder to compare across studies. Nijssen and Douglas (2011) for example used a scale developed by Nijssen and Douglas (2008), in which world-mindedness is measured among the two dimensions cultural openness and consumer adaptability. Dmitrovic et al. (2009) used the cosmopolitanism scale developed by Yoon et al. (1996) to measure world-mindedness. Since this is clearly measuring a different concept though, this study was classified under cosmopolitanism and not world-mindedness.

Due to the closeness of world-mindedness and cultural openness, and many different definitions used by researchers, it is hard to clearly distinguish between the constructs. Whether the relationship between world-mindedness and consumer ethnocentrism is actually different from that of other related constructs will be examined in the meta-analysis.

3.1.7 Internationalism

According to Balabanis et al. (2001), a person expressing internationalism is concerned about the welfare of other nations and shows empathy for the fate of people from other countries. Lee et al. (2003) add the simple definition by Kosterman and Feshbach (1989), which classified internationalism to consist of "attitudes towards other nations" (p. 492). Furthermore, Karasawa (2002) defined that internationalism is characterized by preferring international collaboration, as mentioned by Ishii (2009). The author also describes internationalism as opposite to patriotism, and being similar to the concepts of cultural openness and world-mindedness (Ishii, 2009; Balabanis et al., 2001). According to Balabanis et al. (2001), internationalism is a more active attitude than cultural openness, which implies that its effect of negating consumer ethnocentrism should be stronger.

In total, eight studies measured internationalism. All included studies except for Ishii (2009) used the (adapted) scale developed by Kosterman and Feshbach (1989), while Ishii (2009) developed two items in relation to the definition of internationalism by Karasawa (2002). Interestingly, Ishii (2009) and Lee et al. (2003) find medium effects for the negative influence of internationalism on consumer ethnocentrism, while Balabanis et al. (2001), Tsai et al. (2013), and Al Gadineh and Good (2015) only find insignificant results, even though they use the same scale as Lee et al. (2003). Further investigation to understand this construct is therefore needed.

3.1.8 Cosmopolitanism

In their extensive study about the influence of cosmopolitanism on consumer ethnocentrism, Cleveland, Laroche, and Papadopoulos (2009) use a definition from Hannerz (1990) for the construct. Accordingly, cosmopolitan people are characterized by frequent travelling and meeting of people from different cultures, as well as by representing the voice of other cultures and deciding how they are perceived in their home country. Another important characteristic is an understanding of and desire for experiencing cultural differences expressed by cosmopolitans. Instead of being spectators, they want to be part of another culture (Cleveland et al., 2009). The authors also argue that while cosmopolitanism has long been exclusive for the elite, it is now possible to be a cosmopolitan without even leaving one's home country, due to the influence of media and also the presence of multiple cultures in a country through migration. Parts and Vida (2013) added that cosmopolitans have a positive attitude towards

the out-group, which is directly opposite to the characteristics of ethnocentrism. Jin et al. (2015) added that cosmopolitanism results in greater homogeneity of purchasing behaviour of consumers across countries, whereas consumer ethnocentrism leads to greater heterogeneity. In their work of developing a new scale to measure consumer cosmopolitanism, Riefler, Diamantopoulos, and Siguaw (2012) added a more specific view on the consumer and consumption-specific characteristics. According to them, consumer cosmopolitanism consists of three dimensions: "the extent to which a consumer (1) exhibits an open-mindedness towards foreign countries and cultures, (2) appreciates the diversity brought about by the availability of products from different national and cultural origins, and (3) is positively disposed towards consuming products from foreign countries" (p. 287). Their cosmopolitanism scale therefore consists of twelve items, which can be divided into the three categories open-mindedness, diversity appreciations, and consumption transcending borders. This approach has also been used by Zeugner-Roth et al. in their recent study from 2015. Vida and Reardon (2008), on the other hand, conceptualized cosmopolitanism as an eagerness for travelling to other countries, which in turn represents the individual's willingness to get to know different cultures, and is a more limited construct than that of the other studies. Therefore, this study was not categorized under cosmopolitanism but under travel in the analysis.

Even though the definition implies that cosmopolitan consumers possess characteristics opposing consumer ethnocentrism, research has found only limited to medium negative effects of cosmopolitanism on CET. Interestingly, the effects were bigger for recent studies using the COSMO-Scale developed by Riefler et al. (2012) in comparison to other studies using different measurements. It could be argued that the three-dimensional scale by Riefler et al. (2012) is a more precise measurement, but this needs further validation through its application in future research about cosmopolitanism and consumer ethnocentrism.

3.1.9 Foreign Travel

Nik-Mat, Abd-Ghani, and Al-Ekam (2015) argued that consumers increase their knowledge about other countries and are more open towards purchasing foreign products through the direct experience of foreign cultures by travelling to other countries. Thereby, ethnocentrism caused simply because of lack of knowledge is reduced (De Mooij, 2013, as cited in Nik-Mat et al., 2015). Other authors measuring the construct follow the same argumentation. Nijssen and Douglas (2011) also assumed that consumers with international travel experience hold more positive attitudes towards foreign products. Cleveland, Rojas-Méndez, Laroche, and

Papadopoulos (2016) and Lysonski and Durvasula (2013) measured foreign travel as part of the construct "acculturation of global consumer culture" (AGCC), which was developed by Cleveland and Laroche (2007). This construct describes "how individuals acquire the knowledge, skills and behaviours that are characteristic of a nascent and deterritorialized global consumer culture" (p. 252). Vida and Reardon (2008) measured foreign travel as cosmopolitanism, but since other researchers use more defined scales for cosmopolitanism and the items are clearly related to foreign travel, their research is categorized as using the construct of foreign travel.

The measurement of foreign travel is rather simple and only encompasses three to four items. While no uniform scale exists, all questions are quite similar in nature and it can therefore be said that foreign travel is measured the same way across all seven included studies.

3.1.10 Collectivism

People with a collectivistic mind-set value group goals or goals of society as more important than individual goals, reflect their actions on their impact on the group or society as a whole, and highly identify with the group or society they belong to (Sharma et al., 1995). Individualistic people, on the other hand, put more emphasis on the pursuit on personal goals, and use society to achieve them (Sharma et al., 1995). Huang, Phau, Lin, Chung, & Lin (2008) point out that Triandis (1989) introduced the terms allocentrism and idiocentrism for referring to collectivism and individualism on the group-level, because the latter are used to reflect behaviour towards societies and cultures. For simplicity, it is assumed here that collectivism applies to groups, societies and cultures. Due to their increased feelings of responsibility towards society, collectivistic people show close resemblance to characteristics of ethnocentric people, who feel responsible about the products made in their own country (Yoo & Donthu, 2005). Therefore, they may buy imported products out of a moral obligation to act in a way that is best for their own society, and are more likely than individualistic consumers to sacrifice their own goals, for example of owning a status reflecting imported product, if it benefits the society (Sharma et al., 1995; Yoo & Donthu, 2005).

Most of the ten research papers on collectivism as an antecedent to consumer ethnocentrism used a scale adapted from Hui (1988), while Yoo and Donthu (2005) used their own scale, and two used adaptations from studies done by Triandis, Brislin and Hui (1988) and Triandis and Gelfand (1998) (Kamaruddin, Mokhlis, & Othman, 2002; Kumar, Fairhurst, & Kim, 2013).

The number of items used to measure the construct ranges from three to eleven. Three authors further distinguished between different subscales of collectivism, namely collectivism towards parents and towards friends (Huang et al., 2008; de Ruyter, van Birgelen, & Wetzels, 1998; although the latter pool the two constructs for the analysis), or towards parents and towards co-workers (Sharma et al., 1995). In total, the investigated studies have found medium effects of collectivism on CE.

3.1.11 Materialism

According to Cleveland et al. (2009), materialism has been defined by Richins (2004) as follows: "the importance ascribed to the ownership and acquisition of material goods in achieving major life goals or desired states" (p. 118). Sharma (2011) added to this definition by including "envy, non-generosity, and possessiveness" (p. 289), which were defined by Belk (1985) as three sub-traits of materialism. From a consumer perspective, materialism helps the consumer to be more successful and happier through the possession of goods, whose acquisition is of central importance to achieve this (Richins & Dawson, 1992, as described by Sharma, 2011). This is often linked to using products as a status symbol (Sharma, 2011), and Park, Rabolt, and Sook Jeon (2008) reported that Fournier and Richins (1991) describe materialistic consumers to find reassurance and confirmation of their status in owning expensive and publicly visible products. Materialism is often present in emerging markets, due to its close link to reflecting a social status, while consumers in western countries show less materialism (Sharma, 2011), as they put less emphasis on status but rather express themselves through the consumption of goods (Inglehart, 1990, as described in Alden, Steenkamp, & Batra, 2006).

In the studies, materialism has consistently been measured with scales from Richins and Dawson (1992) and Richins (2004), with items used ranging from adapted versions with four items to the full 18-item scale. Therefore, the measurement of the construct is highly consistent across all studies. Only the study conducted by Kamaruddin et al. (2002) used a scale borrowed from Belk (1985), but they found insignificant results and did not report on the exact numbers, and the study can therefore not be included in further analysis.

Interestingly, the studies in the systematic review show insignificant to very limited effects of materialism on consumer ethnocentrism. Only Alden et al. (2006) found a medium negative

correlation, but their sample consisted only of women, which reduces the comparability of their results to those of the other studies.

3.1.12 Conspicuous Consumption

A concept related to that of materialism, but studied separately, is that of conspicuous, or status, consumption (Sharma, 2011). As mentioned by Sharma (2011), Eastman, Fredenberger, Campbell, and Calvert (1997) described conspicuous consumption as being motivated by expressing and improving one's status through the possession of costly products. Wang and Cheng (2004) used a definition by Piron (2000), whereby conspicuous consumption "refers to consumers' desire to provide prominent visible evidence of their ability to afford luxury goods" (p. 393). Ranjbarian, Barari, and Zabihzade (2011) claim that status consumption is conceptually different from conspicuous consumption. Still, the definition of status consumption by Eastman, Goldsmith and Flynn (1999) used by Ranjbarian et al. (2011) includes the term conspicuous consumption. Therefore, conspicuous consumption and status consumption are seen as comparable concepts in this thesis. Alden et al. (2006) and Wang, He, and Li (2013) also use a slightly different measurement, which is still considered to belong to conspicuous consumption. According to Wang et al. (2013), susceptibility to normative influence (SNI) has been defined by Bearden, Netemeyer, and Teel (1989) and Batra, Homer, and Kahle (2001) as "the tendency to live up to the expectations of others" (p. 37). People with high tendencies of SNI are more easily influenced by others and will therefore seek to impress them through the purchase of certain possessions (Alden et al., 2006).

From the six studies included in this review that measure the influence of conspicuous consumption on consumer ethnocentrism, two use a scale by Bearden et al. (1989), two the scale by Eastman et al. (1999) and the others use different measurements. The studies find conflicting results on the correlations between the two constructs. Half of the studies report a small negative correlation of conspicuous consumption and CE (Wang & Cheng, 2004; Ranjbarian et al., 2011; Mai & Tambyah, 2011), while the other half see a small positive one (Bevan-Dye, Garnett, & De Klerk, 2012; Alden et al., 2006; Wang et al., 2013). No pattern in the characteristics of the studies can be found to explain these conflicting findings. Further validation of the correlation between conspicuous consumption and CE is therefore needed, although the current findings propose that the influence is very limited.

3.1.13 Other Less Frequently Investigated Constructs

While most studies covered the antecedents already described in detail, further constructs were less frequently measured. These will be shortly presented in the following paragraph, if they have been measured by more than one research paper.

Dogmatism. A construct which has already been mentioned as influencing consumer ethnocentrism in their first introduction of the CETSCALE by Shimp and Sharma (1987) is dogmatism. Caruana (1996) defines dogmatism as "a personality trait that views reality in black and white" (p. 39). The Merriam-Webster dictionary (2007) adds to this understanding that dogmatism includes the presentation of opinions or beliefs as facts, even though they are not proven or sufficiently considered. All three studies investigating dogmatism use different borrowed scales. Shimp and Sharma (1987) take a 20-item scale from Robinson and Shaver (1973), while Caruana (1996) use a 5-item scale from Bruning, Kovacic, and Oberdick (1985), and Al Gadineh (2010) measure dogmatism with a 5-item scale from Ray (1983). Their research shows a positive correlation between dogmatism and consumer ethnocentrism, even though Al Gadineh (2010) reports insignificant results for the construct in the regression analysis, while Shimp and Sharma (1987) and Caruana (1996) both found medium effects. This could be due to Al Gadineh's (2010) study being conducted in the middle eastern country Jordan, while the other two authors used a sample from western culture, namely the United States and Malta.

Salience. This construct was included in the literature review done by Shankarmahesh (2006), who mentioned Olsen, Granzin, and Biswas (1993) to examine salience. The authors define salience as an "exogenous construct that connotes the extent to which the need for help is recognized as important by the (potential) helper" (p. 308). In the context of studying consumer behaviour, salient people perceive the need to help the local economy through purchasing domestic products (Olsen et al. 1993). Jain and Jain (2013), who also included salience in their study, rather see it as a perceived threat to the local economy resulting from the import of foreign products. This in turn leads to the same increased purchase of domestic products, out of the will to support one's nation. Both studies found a strong positive correlation between salience and consumer ethnocentrism, but Olsen et al. (1993) only used two items for measuring the CETSCALE, which is why their study was not included in the final analysis.

Acculturation to Global Consumer Culture (AGCC). This construct was introduced by Cleveland and Laroche in 2007 as describing "how individuals acquire the knowledge, skills and behaviours that are characteristic of a nascent and deterritorialized global consumer culture" (p. 252). The construct is measured by 53 items categorized in six domains. A medium negative correlation between AGCC and consumer ethnocentrism is found by Cleveland, Laroche, and Hallab (2013) for Muslims in Lebanon, while small negative correlations were found for Christians in Lebanon and for consumers in Canada (Cleveland et al., 2013; Cleveland et al., 2016). A small positive correlation between the constructs was found in Chile (Cleveland et al., 2016). While Lysonski and Durvasula (2013) also measure AGCC, they do not compare the overall construct to CE. Further investigation to confirm the relationship is needed.

Global Citizenship. This is a fairly new construct that has been used in studies done by Strizhakova (Strizhakova et al., 2008; Strizhakova, Coulter, & Price, 2012). It relates to consumers expressing a belief in a global consumer culture by purchasing global brands (Strizhakova et al., 2012). The studies have found a medium to strong positive relationship between global citizenship and consumer ethnocentrism in former soviet countries such as Russia, Romania, and Ukraine, but almost no relationship in the U.S. and Brazil.

Need for Uniqueness. Consumers with this need want to differentiate themselves from others and increase their self-image through the acquisition of goods (Park et al., 2008; Ranjbarian et al., 2011). Both studies found small negative correlations with consumer ethnocentrism, although they were not significant in the study by Park et al. (2008).

3.2 Behavioral Outcomes

3.2.1 Attitudes Towards Foreign Products

What kind of attitudes consumers hold towards foreign products is quite a vague measurement. Consequently, it is not measured by many researchers, and often the more precise and expressive construct of product judgements is used. If the scale used for measuring attitudes included any inferences about the quality of the product, it was considered as a product judgement. Therefore, only three research papers were considered as measuring attitudes. Shimp and Sharma (1987) used a single question, while Carter (2009) used three item pairs; negative/positive, unfavorable/favorable, and bad/good. Kwak et al. (2006) adapted a scale by

Zaichkowsky (1985) consisting of 10 items. All 10 individual studies found a negative link between attitudes towards foreign products and consumer ethnocentrism.

3.2.2 Product Judgements of Domestic vs. Foreign Products

For this review, all constructs were considered as product judgements that contained questions relating to the quality perception of products. Sometimes, these constructs were called differently, with the deviating name most often used being product evaluations. Bawa (2004), called them product beliefs and Kumar et al. (2011) measured attitudes, but since they included quality perceptions, it is more accurate to count it as product judgements. In total, 46 studies included the relationship of product judgements of foreign products and consumer ethnocentrism, and 20 of domestic products. The measurement scales used are relatively consistent, with 2/3 of the studies using an (adapted) version of Klein et al.'s (1998) scale, who adapted their scale from Darling and Arnold (1988), Darling and Wood (1990) and Wood and Darling (1993). Hereby, products are evaluated according to their workmanship, their quality, their technological advancement, their colour and design, their reliability, and their value for money.

3.2.3 Purchase Intention of Domestic vs. Foreign Products

Purchase intention is measured differently across the included studies. Some simply ask if consumers intent to purchase a foreign or domestic product (e.g. Park et al., 2008; Shimp & Sharma, 1987; Funk, Arthurs, Treviño, & Joireman, 2010), while others use a scale (Akdogan & Ozgener, 2012; Fakharmanesh & Miyandehi, 2013). In these two cases, the authors do not specify of which items the scale consisted. Parts and Vida (2013) use a scale from Balabanis and Diamantopoulos (2004), where consumers indicate their intention to purchase either domestic or foreign products from a list of suggested products. Sharma (2011) measure behavioral intention with product trial, purchase, and positive word-of-mouth.

Originally, more studies were considered as measuring purchase intention. A closer examination of the scales used to measure the construct though showed that the distinction between purchase intention and willingness to buy is not definitely clear, and some authors say they measure purchase intention when in fact they are using the willingness to buy scale developed by Klein et al. (1998). These studies were then counted towards WTB.

3.2.4 Willingness to Buy Domestic vs. Foreign Products

Next to product judgements, willingness to buy domestic or foreign products is the most frequently used construct to measure behavioural outcomes of consumer ethnocentrism. Most studies use a (sometimes adapted) scale developed by Klein et al. (1998), who adapted the scale from Darling and Arnold (1988), Darling and Wood (1990) and Wood and Darling (1993). This scale includes direct as well as inverted items. Zeugner-Roth et al. (2015), on the other hand, use a scale adapted from Putrevu and Lord (1994), which includes items linked to likeliness to buy and product trial, and is said to be closely linked to actually owning these products. Suh and Kwon (2002) include preference for foreign products and the liking of the idea of owning foreign products.

He and Wang (2015) take a different approach by asking participants to recall how many domestic and foreign products they had bought in the previous year, and derived preference for domestic and foreign brands from this. Since this can still be regarded as a willingness to buy, their study is also categorized as such.

3.2.5 Reluctance to buy foreign products

This concept was first introduced by Suh and Kwon (2002), who argue that while it is closely linked to willingness to buy, it is still distinct from it when examining foreign products in general. Other authors have also adapted this idea, such as Douglas and Nijssen (2003) and Nijssen and Douglas (2004). Huang et al. (2010) say they measure willingness to purchase, but in a further explanation specify that they actually mean a reluctance to buy foreign. The scales used are closely linked to the scale developed by Klein et al. (1998) to measure willingness to buy, just that certain items are not inverted.

3.2.6 Domestic vs. Foreign Purchase Behavior

Three research papers have also measured purchasing behaviour. Hereby, domestic purchasing behaviour is characterized by mostly buying domestic products, making an effort to buy domestic, and buying at stores that mostly offer domestic products (Kreckova, Odehnalova, & Reardon, 2012). Foreign purchase behaviour, on the other hand, is characterized by the liking of owning foreign products, the wish for availability of foreign products, and the desire for foreign products (Rybina, Reardon, & Humphrey, 2010).

3.2.7 Importance of Buying Domestic Products

Bawa (2004) also included measuring the importance consumers felt to buy domestic products. He found a medium correlation between this construct and consumer ethnocentrism among the three different participant groups in India. Since no other study included this measurement, further validation of this relationship is needed in future research.

4. Methodology

This thesis conducts a research synthesis, also referred to as systematic review, in order to examine the main findings in consumer ethnocentrism research. It uses the guideline of Cooper (2016), which includes the following steps:

- 1. Formulating the problem
- 2. Searching the literature
- 3. Gathering information from studies
- 4. Evaluating the quality of studies
- 5. Analyzing and integrating the outcomes of studies
- 6. Interpreting the evidence
- 7. Presenting the results

Therefore, I first defined the problem to be examined in this study, and then conducted a systematic literature search. Information was gathered from studies in a systematic way by using a coding scheme, and the resulting studies were assessed for quality. Studies were then reviewed and analyzed to find out how major constructs were measured and to categorize them correctly, which encompasses the literature review section of this thesis. From this, a meta-analysis was conducted on the most prominent constructs to arrive at quantitative effect size measures for the different relationships. Finally, the results are interpreted and set in context to existing findings and managerial implications.

4.1 Problem Definiton

The problem under investigation in this study is to determine the size of the relationship between consumer ethnocentrism and its socio-psychological antecedents and outcomes. Following from the conceptual model, two questions guide this thesis:

- 1. What are the main socio-psychological antecedents and the main outcomes of consumer ethnocentrism?
- 2. To what extent do the main socio-psychological antecedents influence consumer ethnocentrism, and to what extent does consumer ethnocentrism influence its outcomes?

Through the literature search and literature review the first question has already been answered and the main socio-psychological antecedents and the main outcomes of consumer ethnocentrism have been identified.

The following meta-analysis seeks to answer the second question, by quantifying the size of the relationship of consumer ethnocentrism and its main socio-psychological antecedents and its main outcomes.

4.2 Search for literature

To get an overview of the topic, first a broad google scholar search was conducted. Key articles were identified, such as the works of main empirical authors in the field (e.g. Shimp & Sharma, 1987; Sharma et al., 1995; Klein et al., 1998) and the literature review done by Shankarmahesh (2006). From this, the need for a meta-analysis of socio-psychological antecedents and outcomes of consumer ethnocentrism was derived.

Next, a more systematic search of the literature was conducted with the help of electronic database search. The database used was EBSCO Business Source Complete, which seemed most suitable for this topic since it is not restricted to a certain area of research and covers many fields. In order to retrieve all relevant articles, different combinations of search terms were used. A list of these terms can be found in Appendix B. It was not specified where in the article the search term should appear, to prevent excluding articles that do not mention the relevant constructs in the title, abstract, or keywords, but still examine it. There was also no limitation on the year of publication, although no studies were included prior to 1987, since this marks the year when Shimp and Sharma (1987) first introduced the CETSCALE.

Additionally, references of the papers found with the help of the database as well as other main works were screened in order to identify articles that were missed by the database search and also included in the analysis if they met the inclusion criteria.

4.3 Selection of Relevant Studies

4.3.1 Inclusion Criteria

Following the suggestions by Cooper (2016), clear criteria for including studies in the review were defined before conducting the literature search.

Most importantly, a study had to measure consumer ethnocentrism with the CETSCALE, since it is an extensively studied, reliable and valid measurement that allows for the comparison of consumer ethnocentrism across different countries and settings. Whether the original CETSCALE or an adapted or shortened version was used did not matter for inclusion. Next, it needed to look at the relationship between consumer ethnocentrism and a sociopsychological antecedent. This is a crucial inclusion criteria, since it excluded other studies that only looked at the outcomes of CET, but not at socio-psychological antecedents. This criterion was necessary, however, to achieve a clearly defined review that did not exceed the scope of this thesis. By including outcomes in the search, the resulting amount of possible studies that could be included would have been far too large, since many studies also contain consumer ethnocentrism and its outcomes even though they are not primarily concerned with ethnocentrism. The socio-psychological antecedents did not need to be named antecedents or regarded as antecedents in the studies. As long as the study measured the relationship of consumer ethnocentrism and a construct related to socio-psychological antecedents, it was included. In addition, the study also needed to report the numbers necessary for calculating the correlation coefficient in order to arrive at an overall effect size. For example, Sohail and Opoku (2016) examined consumer ethnocentrism and animosity, but did not report their correlation or any numbers that could be used to arrive at the correlation, and was therefore not included. Lastly, a study needed to apply to a broader population and should not be too specific, of which examples will be given in the exclusion criteria.

4.3.2 Exclusion Criteria

As consequence of the inclusion criteria, studies were excluded if they only measured the CETSCALE, outcomes of consumer ethnocentrism, or only looked at other antecedents such as demographics. An example for this is the study by Josiassen, Assaf, and Karpen (2011), which only examines consumer income, gender, and age as antecedents. A study was also excluded if other variables were too specific and not easy to generalize. An example is the

research of Oullet (2007), who includes consumer ethnocentrism and animosity, but looks at consumer racism of ethnic majorities and how this affects the purchase of goods from ethnic minorities, which makes it hard to compare to less specific purchasing behavior. Another example is that of Carpenter, Moore, Alexander and Doherty (2013), who measure the special constructs food and retail ethnocentrism.

4.3.3 Missing Values

Even though I used access to research provided by the Norwegian School of Economics as well as by the University of Mannheim, some potentially interesting articles still could not be retrieved. In total, missing values account for eight research papers that could not be accessed.

4.4 Data Abstraction

In order to make the identified articles comparable, a coding scheme was used to systematically extract information from the studies. The scheme was developed following recommendations from Cooper (2016) and Brown et al. (2003). First, report characteristics were mentioned, followed by the study design. Next, the setting of the study and the participant and sample characteristics were coded. Additionally, the constructs used in the studies and the way they were measured were included. Finally, the antecedents and outcomes of consumer ethnocentrism were coded, which means the correlation between consumer ethnocentrism and the dependent variable. The coding scheme left room for additional comments. A blank version of the coding scheme, containing all questions, can be found in Appendix C.

In a second step, the information retrieved from the articles was categorized and coded to simple numbers, which is needed to make the data analyzable with the software. Before categorization, the CETSCALE scores were transformed to a ten-point scale to make them comparable across studies.

4.5 Validity Assessment

The first version of the coding scheme was extended to include more precise information and allow for further analysis. Most importantly, assessment of the measurements used for all constructs were included, which allows for the comparison of measurement scales used across studies. After coding all relevant articles, articles whose coding had not been clear in the first round were coded again, as well as articles with conflicting comments.

4.6 Final Dataset

After coding all studies, the dataset comprised of 83 articles with a total of 139 individual studies. A second screening of the studies eliminated two articles. One (Klein & Ettenson, 1999) only used one item each as proxy for measuring consumer ethnocentrism and patriotism, and was therefore found not to be comparable enough to the other studies. The other one used a sample only consisting of females, which makes it harder to compare to other studies that use the general population (Alden et al., 2006). Finally, a total of 137 studies from 81 research papers were included in the meta-analysis. The number of studies is higher than the number of research papers, since many authors examined two or more countries or participant groups in their research. Therefore, if different samples were used in a research article, each sample was treated as an individual study. Since no article measured the relationship of consumer ethnocentrism and all included constructs, the number of studies examined for each construct varies between five for conspicuous consumption and 69 for both national values and international values.

Effect size calculations and further analyses were performed on all constructs measured by at least four different authors, as constructs with fewer authors could be biased and need further investigation before their findings can be meaningfully quantified.

4.7 Study Characteristics

All studies included in the analysis came from either a journal article or dissertation, and range from the year 1987, when the CETSCALE was first introduced, until spring 2017, when the search was conducted. Furthermore, all studies conducted a survey to assess consumer ethnocentrism and its antecedents and outcomes. These surveys were typically administered with a questionnaire that was either filled in during an interview or handed out. Authors mostly used the general population or students as participants in their study. The studies were conducted in a wide range of different countries, with the majority being either in Asia (51), Europe (51), or Northern America (24), but also research coming from the other continents

(three in Southern America, two in Africa, and four in Australia, and two from a mix of continents).

These characteristics will be analyzed as moderators possibly influencing the relationship between consumer ethnocentrism and its socio-psychological antecedents and outcomes.

4.8 Quantitative Data Synthesis

4.8.1 Effect Measure

In order to quantify the size of the relationship between consumer ethnocentrism and its sociopsychological antecedents and outcomes, the effect size was calculated. Borenstein (2009) consider the computation of the effect size as the main part of a meta-analysis study, since it extracts the core findings, as described by Brendel (2011). For measuring the effect size, the r-index metric was used, which uses the correlation coefficient of two variables. According to Cooper (2016), the r-index is best used for calculating the effect size of studies examining the relationship between continuous variables. Since consumer ethnocentrism and its related constructs are certain attitudes, beliefs, or value systems that the consumer adheres to, the variables can be seen as continuous and their relationships are therefore best measured with the r-index.

Many researchers provide the correlation coefficient in their studies. Although it should be regarded as a normal practice, a great number of researchers still does not include the correlation. This makes it hard for synthesists to draw generalizable conclusions from a study. To include studies only reporting beta coefficients from regression analysis or structural equation modelling (SEM), a conversion of beta coefficients into the correlation coefficient r was undertaken, which was first introduced by Peterson and Brown (2005). They found that beta coefficients can be used in meta-analyses with the following convenience formula:

$$r = \beta + 0.05\lambda$$
, where $\lambda = 1$ when $\beta \ge 0$ and $\lambda = 0$ when $\beta \le 0$

Interestingly, this formula adjusts only positive betas, but not negative ones. Especially for relationships where studies have found positive as well as negative correlations, this distorts the picture and creates more heterogeneity compared to if they were not included in the analysis. For relationships which tend to be negative, as for example between consumer ethnocentrism and cultural openness, the formula even decreases the strength of the

relationship. Therefore, an adapted version of the formula was used, which included similar recalculation for positive and negative beta coefficients. A similar approach was done by Shoham et al. (2016), who used a version of the formula which also accounts for these differences. The final formula for calculating beta coefficients into correlation coefficients applied in this thesis is thus:

$$r = \beta + 0.05\lambda$$
, where $\lambda = 1$ when $\beta \ge 0$ and $\lambda = -1$ when $\beta \le 0$.

Four of the included studies only reported t-values and no correlation coefficient. The following formula, proposed by Rosenthal and DiMatteo (2001) and also Cooper (2016), was used to calculate the correlation coefficient from t-values:

$$r = \sqrt{\frac{t^2}{t^2 + df}}$$

Finally, the effect sizes of individual studies measuring the same construct were combined in order to assess the overall magnitude of the relationship between consumer ethnocentrism and one of its related constructs (Cooper, 2016). Hereby, the individual effect sizes shown by the r-index are weighted based on the sample size of the study (Cooper, 2016). Therefore, greater weight is put on studies with a larger sample size, since these give a more precise estimate of its underlying population than small sample sizes (Cooper, 2016). Therefore, the overall estimation of a relationship is the weighted average effect size.

4.8.2 Fixed Effect and Random Effects Models

There are two approaches to interpret the effect of a relationship as calculated by the metaanalysis. The first one is the fixed effect model. Hereby, it is assumed that a true effect size value exists, and all differences in observed effect sizes are due to sampling differences (Cooper, 2016). Therefore, more weight is put on studies with larger sample sizes, and less weight on studies with small sample sizes, since the effect size is assumed to be the same in all studies, and larger studies give a better representation about the population (Borenstein, Hedges, Higgins, & Rothstein, 2009).

Figure 4.1 Fixed Effect Model, adapted from Kovalchik (2013)

In many cases however, other variables than sampling differences may account for variation in the effect sizes. This is likely the case in this analysis, since the studies have for example been conducted in many different countries, used different measurements, and were conducted across three decades. Random effects models account for these differences. According to Borenstein et al. (2009), random effects models "assume that the true effect size varies from one study to the next, and that the studies in [the] analysis represent a random sample of effect sizes that could have been observed" (Ch. 13, p. 77-78). Since all effect sizes are different, large samples cannot be weighted too heavily, and small samples cannot be weighted too little. The weights used in a random effects model are therefore slightly less divergent than in the fixed effect model.

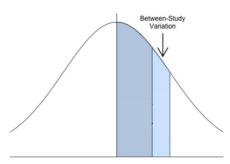


Figure 4.2 Random Effects Model, adapted from Kovalchik (2013)

Researchers argue that random effects models better portray the real world and give a more conservative estimate of the effect size than fixed models (Cooper, 2016). Hence, a random effect model seems more appropriate to be used here, however both models are examined.

4.8.3 Statistical Heterogeneity

In order to assess the consistency of the studies, heterogeneity of the results needs to be addressed (Higgins and Green, 2011). According to Brendel (2011), Petticrew and Roberts

(2006) defined heterogeneity as "the degree to which effect sizes differ from one another" (p. 53). As pointed out by Higgins, Thompson, Deeks, and Altman (2003), heterogeneity is expected in meta-analyses, since it combines different studies in different settings, using different methodologies. Still, it is important to understand whether all studies actually evaluate the same effect (Higgins et al., 2003). Tests for heterogeneity assess whether the variance in the effect sizes is simply due to chance or sampling error (Brendel, 2011). Heterogeneity is given if the deviations are great enough to exclude this possibility (Brendel, 2011). In this thesis, Cochran's Q statistic is used for addressing heterogeneity. Since this statistic is said to over-evaluate heterogeneity in large studies, an additional assessment in form of I² is also analyzed, which is independent of the number of studies included in the analysis.

4.8.4 Sensitivity Analysis

Assessing the reliability of the effect sizes is also a vital part of a meta-analysis. A sensitivity analysis helps to determine if the results of the analysis would differ if a different statistical procedure was used or if the data was interpreted differently (Cooper, 2016). For assessing sensitivity of the results both the fixed effect and the random effects models were reported in the analysis. In addition, funnel plots are included, which graphically depict the correlations and their standard error. Hereby, Fisher's z-transformation is used, which normalizes the distribution of the correlation coefficients (Cooper, 2016). The r-index is restricted to values between -1 and +1, which causes large values to lie on the end of these ranges (Cooper, 2016). The z-transformation extends these limits and allows for a more stabilized variance distribution along a bell shape (Cooper, 2016). If no other factors in terms of moderators influence the results, the correlations will be distributed symmetrically along the funnel plot.

4.8.5 Accounting for Missing Data

As described in 4.3.3, not all possibly fitting research papers could be retrieved. In addition, other relevant findings could be left unpublished, which Rosenthal (1979) called the file drawer problem, according to Cooper (2016). In order to account for missing data and assess a possible publication bias, Cooper (2016) propose the use of the Trim-and-Fill Method, which was introduced by Duval and Tweedie (2000). Hereby, the funnel plot will be extended to show where missing studies could lie.

4.8.6 Analysis of Moderators

For explaining the heterogeneity among studies, an analysis of moderators is included. The guiding question hereby is: are there differences in the studies that could explain the heterogeneity in effect sizes? Possible moderators examined are the year of the study, the continent of the study, whether it is set in a developed or developing country, if the participants come from urban regions, how the participants were selected, whether the participants belong to the general population or a narrower group, the type of CETSCALE used, and the average score on the CETSCALE. If more than one construct was combined in the analysis, differences between these constructs were also assessed.

4.8.7 Software Used For Analysis

The software "R" from the R Project was used to calculate effect sizes and analyze the results. This software offers special packages for the meta-analysis, and allows for great analysis adaptation, which is often not given in other statistical programs. In addition, it plots the data in a way that makes it easy to interpret the results. For the analysis, the packages "meta" and "metacor" were used.

5. Meta Analysis

5.1 Combination of Constructs for Analysis

For the analysis, several constructs were combined for the estimation of the effect size. This stems from the observation that even though the combined constructs all have distinct definitions and do technically measure different factors, in practice, measurements used have not been completely uniform and therefore do not allow for such a clear distinction. This is an observation made commonly in meta-analysis, whose challenge it is to combine heterogeneous studies into measuring one construct, resulting in a meaningful effect size for the construct Borenstein et al., 2009). Great care was therefore made in categorizing and combining the different studies. The logic in the specific cases will be discussed in the following.

5.1.1 National Values

Patriotism, nationalism, national identity, and conservatism were combined into one overall construct measuring national values. When comparing the definitions of those constructs, it already becomes clear that they are conceptually related. Nevertheless, the reasoning behind combining these constructs stems from a close look at the included studies. Several authors have pointed out that patriotism, nationalism, and national identity are closely related (e.g. Lee et al., 2003; Vida and Reardon, 2008). Lee et al. (2003) point out that initially, patriotism and nationalism were not used as distinct from each other, but as interchangeably. Balabanis et al. (2001) argue that Adorno et al.'s (1950) scale, which has been used in many studies about patriotism, is more related to nationalism, as defined by Kosterman and Feshbach (1989). They also found evidence for a combination of the constructs in their analysis, whereby consumer ethnocentrism was significantly influenced only by patriotism in one country, and only by nationalism in the other. Sharma et al. (1995) found such a high correlation between their measurements for patriotism and conservatism that they combined it into one scale, labelled PATCON.

Therefore, a clear distinction between the constructs cannot be made, and an overall effect size is calculated. Nevertheless, the analysis will include whether differences can be found between the constructs.

5.1.2 International Values

International values encompass the five constructs cultural openness, world-mindedness, internationalism, cosmopolitanism, and foreign travel. These constructs are also all conceptually related, and have not always been clearly distinguished in the included studies. Al Gandineh (2010), for example, argues that internationalism belongs to world-mindedness, and Parts and Vida (2008) suggest that world-mindedness and cosmopolitanism are the same. Items used in the scales for cultural openness and world-mindedness also overlap (e.g. "I like immersing myself in different cultural environments" and "I like to have contacts with people from different cultures" were items on the worldliness scale used by Dmitrovic et al., 2009, but were also used to measure cultural openness by Vida et al., 2008. In addition, foreign travel was labelled as cosmopolitanism by Vida and Reardon (2008). This resulted in the combination of the constructs into international values.

5.1.3 Animosity

While animosity is often divided into the three categories general animosity, war animosity, and economic animosity, this concept has already been combined in the first study done by Klein et al. (1998). Still, Cai et al. (2012) argue that war animosity and economic animosity are distinct from each other. Therefore, the analysis includes an examination of whether differences in effect sizes among the three constructs will be found.

5.1.4 Purchase Intention and Willingness to Buy

While purchase intention and willingness to buy are not necessarily the same, an examination of the measures used in the studies revealed that the distinction is vague or almost non-existent among the authors. In many studies measuring purchase intention it was found that they in fact employed scales frequently used to measure willingness to buy, and were therefore categorized as such. Some of the remaining research papers measuring purchase intention did not specify scale items, while others only used one item directly related to "I intend to purchase" (e.g. Park et al., 2008). Due to the infrequent categorization and since both constructs measure whether a consumer plans to buy a foreign or domestic product, they are pooled as one construct in the analysis.

5.2 Results

A detailed analysis of the particular constructs is presented in the following. Thereby only the most important findings are reported and discussed directly. Tables of all analyzed moderators including both fixed effect and random effects models as well as forest plots for significant moderators can be found in Appendix D in the corresponding subsections.

5.2.1 National Values

For analyzing the weighted average effect size of the relationship between national values and consumer ethnocentrism, 69 studies were combined in the meta-analysis. Overall, the results showed a weighted average effect size of r=0.3649 for the random effects model, which is significant at the p<0.0001 level.

In order to assess whether all studies evaluate the same effect, tests of heterogeneity were conducted (Higgins et al., 2003). The Cochran's Q statistic revealed high heterogeneity (Q value 1183.49, df = 68), which is significant at the p<0.0001 level. This shows that the differences among the studies are not due to chance (Higgins and Green, 2011). However, Higgins et al. (2003) argue that this statistic over-evaluates heterogeneity in large studies, which could be the case here as the analysis includes a total of 22,157 participants. They advise to use additional assessments of heterogeneity, and suggest I² as an analysis independent of the number of studies included in the meta-analysis. I² shows "the percentage of total variation across studies due to heterogeneity" (Higgins et al., 2003, p. 559). According to the authors, an I² above 75% signals high heterogeneity, which is the case for national values with an I² of 94.3%.

Table 5.1 Weighted average effect sizes of national values						
	COR	95%-CI	Z	p-value		
Fixed effect model	0.3607	[0.3491; 0.3722]	55.96	< 0.0001		
Random effects model	0.3649	[0.3156; 0.4122]	13.45	< 0.0001		

Table :	5.2 Analyzing heterogeneity of nation	onal values
(Quantifying heterogeneity	
I^2	94.3% [93.3%; 95.1%]	
	Test of heterogeneity	
Q	<u>d.f.</u>	<u>p-value</u>
1183.49	68	< 0.0001

The forest plot depicts all studies and their respective weighted effect sizes, as well as their weights. Almost all studies find a positive correlation between national values and consumer ethnocentrism, with the highest correlation of 0.67 found by Vida and Reardon (2008). Four studies found negative correlations, with the lowest value of -0.20 found by Tsai et al. (2013).

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
Shimp & Sharma 1987	293	i	0.65	[0.58; 0.71]	1.3%	1.5%
Shimp & Sharma 1987	297		÷ 0.66	[0.59; 0.72]	1.3%	1.5%
Shimp & Sharma 1987	286		- 0.66	[0.59; 0.72]	1.3%	1.5%
Shimp & Sharma 1987	536		0.57	[0.51; 0.62]	2.4%	1.5%
Shimp & Sharma 1987	390		0.55	[0.48; 0.62]	1.8%	1.5%
Shimp & Sharma 1987 Sharma et al. 1995	137 667		0.39	[0.24; 0.52]	0.6% 3.0%	1.4% 1.5%
Javalgi et al. 2005	106		0.53	[0.47; 0.58] [0.23; 0.55]	0.5%	1.3%
Ishii 2009	300		0.40	[0.32; 0.51]	1.4%	1.5%
Ishii 2009	300		0.43	[0.34; 0.52]	1.4%	1.5%
Lee et al. 2003	336		-0.11	[-0.21; 0.00]	1.5%	1.5%
Vida & Reardon 2008	714		0.67	[0.63; 0.71]	3.2%	1.5%
Balabanis et al. 2001	303		0.24	[0.14; 0.35]	1.4%	1.5%
Balabanis et al. 2001	480	+ -	0.08	[-0.01; 0.17]	2.2%	1.5%
Bawa 2004	54		0.44	[0.20; 0.64]	0.2%	1.1%
Bawa 2004	103		0.42	[0.25; 0.57]	0.5%	1.3%
Bawa 2004	160		0.57	[0.45; 0.66]	0.7%	1.4%
Jain & Jain 2013 Fernandez–Ferrin et al. 2015	304 249		0.34 0.26	[0.24; 0.44]	1.4% 1.1%	1.5% 1.4%
de Ruyter et al. 1998	175		0.26	[0.15; 0.38] [0.34; 0.57]	0.8%	1.4%
Kottasz & Bennett 2006	253		0.40	[0.32; 0.53]	1.1%	1.5%
Kottasz & Bennett 2006	252		0.45	[0.35; 0.54]	1.1%	1.5%
Mavondo & Tan 1999	186		0.49	[0.37; 0.59]	0.8%	1.4%
Nik-Mat et al. 2015	425		0.23	[0.14; 0.32]	1.9%	1.5%
Douglas & Nijssen 2003	127		0.25	[0.08; 0.41]	0.6%	1.4%
Marinkovic 2017	221		0.51	[0.40; 0.60]	1.0%	1.4%
Tsai et al. 2013	506			[-0.02; 0.16]	2.3%	1.5%
Tsai et al. 2013	564			[-0.28; -0.12]	2.6%	1.5%
Rybina et al. 2010	372		0.27	[0.17; 0.36]	1.7%	1.5%
van Birgelen et al. 2015	175	_	0.46	[0.33; 0.57]	0.8%	1.4%
Al Gadineh & Good 2015	196		-0.07	[-0.21; 0.07]	0.9%	1.4%
Lee et al. 2003 Vida et al. 2008	336 580		0.40	[0.31; 0.49] [0.09; 0.25]	1.5% 2.6%	1.5% 1.5%
Balabanis et al. 2001	303		0.17	[0.03; 0.25]	1.4%	1.5%
Balabanis et al. 2001	480		0.35	[0.27; 0.43]	2.2%	1.5%
Tsai et al. 2013	506	1.	0.43	[0.36; 0.50]	2.3%	1.5%
Tsai et al. 2013	564	-	0.49	[0.43; 0.55]	2.6%	1.5%
Cheah & Phau 2015	204		0.55	[0.44; 0.64]	0.9%	1.4%
Al Gadineh & Good 2015	196	+	0.45	[0.33; 0.55]	0.9%	1.4%
Vida et al. 2008	580		0.56	[0.51; 0.62]	2.6%	1.5%
Dmitrovic et al. 2009	454		0.27	[0.18; 0.35]	2.1%	1.5%
Dmitrovic et al. 2009	600		0.22	[0.15; 0.30]	2.7%	1.5%
Dmitrovic et al. 2009 Dmitrovic et al. 2009	600 300		0.27 -0.01	[0.20; 0.34]	2.7% 1.4%	1.5% 1.5%
Zeugner–Roth et al. 2015	411		0.31	[-0.13; 0.10] [0.22; 0.39]	1.4%	1.5%
Zeugner-Roth et al. 2015	405		0.26	[0.17; 0.35]	1.8%	1.5%
Verlegh 2007	103		0.40	[0.22; 0.55]	0.5%	1.3%
Strizhakova et al. 2012	250		0.31	[0.19; 0.42]	1.1%	1.4%
Strizhakova et al. 2012	308		0.26	[0.15; 0.36]	1.4%	1.5%
Strizhakova et al. 2012	186		0.14	[0.00; 0.28]	0.8%	1.4%
Cleveland et al. 2016	241		0.17	[0.05; 0.29]	1.1%	1.4%
Cleveland et al. 2016	192		0.44	[0.32; 0.55]	0.9%	1.4%
Kreckova et al. 2012	199		0.30	[0.17; 0.42]	0.9%	1.4%
Shimp & Sharma 1987	295		0.59	[0.51; 0.66]	1.3%	1.5%
Shimp & Sharma 1987	296		0.53	[0.44; 0.61]	1.3%	1.5%
Shimp & Sharma 1987	288		0.44	[0.34; 0.53]	1.3%	1.5%
Shimp & Sharma 1987 Shimp & Sharma 1987	535 390		0.52	[0.46; 0.58]	2.4% 1.8%	1.5% 1.5%
Shimp & Sharma 1987	138		0.40	[0.43; 0.58] [0.25; 0.53]	0.6%	1.4%
Javalgi et al. 2005	106		0.40	[0.09; 0.44]	0.5%	1.3%
Altintas & Tokol 2007	540		0.22	[0.14; 0.30]	2.4%	1.5%
Jain & Jain 2013	304		0.23	[0.12; 0.33]	1.4%	1.5%
Al Gadineh 2010	272		0.37	[0.26; 0.47]	1.2%	1.5%
Kamaruddin et al. 2002	248		0.26	[0.14; 0.37]	1.1%	1.4%
de Ruyter et al. 1998	175	<u> </u>	0.39	[0.26; 0.51]	0.8%	1.4%
Kottasz & Bennett 2006	253		0.27	[0.15; 0.38]	1.1%	1.5%
Kottasz & Bennett 2006	252		0.45	[0.35; 0.54]	1.1%	1.5%
Nik-Mat et al. 2015	425	+ -	0.08	[-0.02; 0.17]	1.9%	1.5%
van Birgelen et al. 2015	175		0.39	[0.26; 0.51]	0.8%	1.4%
Fixed effect model Random effects model	22157	*	0.36	[0.35; 0.37] [0.32; 0.41]	100.0%	100.0%
Heterogeneity: $l^2 = 94\%$, $\tau^2 = 0.0$	0517. p<0		0.00	[0.02, 0.41]		100.070
	-0.		6			

Figure 5.1 Forest plot for national values

Next, a funnel plot depicting the distribution of the correlations was created to test the robustness of the findings. As can be seen in Figure 5.2, the z-transformed correlations vary greatly among the mean and do not follow the triangle shaped distribution, which means that other factors in form of moderators could influence the distribution.

Further analysis using the Trim-and-Fill-Method of filling the funnel plot with missing values accounted for the publication bias and showed where missing studies could lie. Due to the few studies currently having found negative correlations, the missing values all lie in the lower end of the spectrum. Most of the studies reporting low or negative correlations come from recent years, so it could happen that future studies find more negative findings.

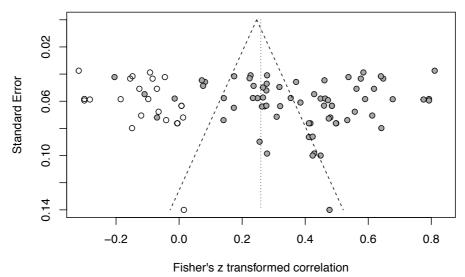


Figure 5.3 Filled funnel plot for national values

In order to explain some of the heterogeneity of the findings, additional analyses were run by including moderating factors. Since the national values construct consists of four different measures, I first examined whether the effect size differed according to the type of construct used – patriotism, nationalism, national identity, and conservatism. This did not explain a significant amount of variance, although differences could be found in the average weighted effect sizes, as shown in Table 5.3. As can be seen in the forest plot, effect sizes are lowest for the construct national identity. This could be due to its definition of not including a negative view on the out-group. Nevertheless, these differences are small and the constructs can still be analyzed as a whole under the national values construct.

Table 5.5 Analysis of p	nouuei nuiione	ii values jor mot	ieraior construct		
Test for subgroups (rat	ndom effects m	nodel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Construct = 0	31	0.3900	[0.2958; 0.4767]	817.33	96.3%
Construct = 1	8	0.3785	[0.2769; 0.4718]	72.04	90.3%
Construct = 2	14	0.2844	[0.2031; 0.3619]	116.48	88.8%
Construct = 3	16	0.3780	[0.2984; 0.4524]	142.44	89.5%
Test for subgroup diffe	erences (randor	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	4.26	3	0.2347		

Table 5.3 Analysis of product national values for moderator construct

Notes: construct=0: patriotism, construct=1: nationalism, construct=2: national identity, construct=4: conservatism

Study	Total	Corre	lation	COR	95%-CI	Weight (fixed)	
construct = 0			1				
Shimp & Sharma 1987	293		÷	0.65	[0.58; 0.71]	1.3%	1.5
Shimp & Sharma 1987	297		;	0.66	[0.59; 0.72]	1.3%	1.5
Shimp & Sharma 1987	286		÷ -	0.66	[0.59; 0.72]	1.3%	1.5
Shimp & Sharma 1987	536		-	0.57	[0.51; 0.62]	2.4%	1.5
Shimp & Sharma 1987	390		-	0.55	[0.48; 0.62]	1.8%	1.5
Shimp & Sharma 1987	137		<u> </u>	0.39	[0.24; 0.52]	0.6%	1.4
Sharma et al. 1995	667			0.53	[0.47; 0.58]	3.0%	1.5
Javalgi et al. 2005	106			0.40	[0.23; 0.55]	0.5%	1.3
shii 2009	300		- <u>-</u>	0.42	[0.32; 0.51]	1.4%	1.5
shii 2009	300		÷	0.43	[0.34; 0.52]	1.4%	1.5
_ee et al. 2003	336		-	-0.11	[-0.21; 0.00]	1.5%	1.5
/ida & Reardon 2008	714	_		0.67	[0.63; 0.71]	3.2%	1.5
Balabanis et al. 2001	303			0.24	[0.14; 0.35]	1.4%	1.5
Balabanis et al. 2001	480				[-0.01; 0.17]	2.2%	1.5
Bawa 2004	54		<u> </u>	0.00	[0.20; 0.64]	0.2%	1.1
Bawa 2004	103			0.44	[0.25; 0.57]	0.2%	1.3
Bawa 2004	160		· · · · ·	0.57	[0.45; 0.66]	0.7%	1.4
lain & Jain 2013	304			0.34	[0.24; 0.44]	1.4%	1.5
Fernandez-Ferrin et al. 2015	249			0.34			1.0
					[0.15; 0.38]	1.1%	
de Ruyter et al. 1998	175			0.46	[0.34; 0.57]	0.8%	1.4
Kottasz & Bennett 2006	253			0.43	[0.32; 0.53]	1.1%	1.5
Kottasz & Bennett 2006	252		<u>.</u>	0.45	[0.35; 0.54]	1.1%	1.5
Mavondo & Tan 1999	186			0.49	[0.37; 0.59]	0.8%	1.4
Nik-Mat et al. 2015	425			0.23	[0.14; 0.32]	1.9%	1.5
Douglas & Nijssen 2003	127			0.25	[0.08; 0.41]	0.6%	1.4
Marinkovic 2017	221			0.51	[0.40; 0.60]	1.0%	1.4
Tsai et al. 2013	506		•		[-0.02; 0.16]	2.3%	1.5
lsai et al. 2013	564		1	-0.20	[-0.28; -0.12]	2.6%	1.5
Rybina et al. 2010	372			0.27	[0.17; 0.36]	1.7%	1.5
/an Birgelen et al. 2015	175		÷	0.46	[0.33; 0.57]	0.8%	1.4
Al Gadineh & Good 2015	196		- 1	-0.07	[-0.21; 0.07]	0.9%	1.4
Fixed effect model	9467		jø.	0.38	[0.37; 0.40]	42.7%	-
Random effects model			\$	0.39	[0.30; 0.48]		44.6
Heterogeneity: $I^2 = 96\%$, $\tau^2 = 0.0$	876, <i>p</i> < 0.01						
construct = 1			Ì				
Lee et al. 2003	336		<u> </u>	0.40	[0.31; 0.49]	1.5%	1.5
Vida et al. 2008	580		- F	0.17	[0.09; 0.25]	2.6%	1.5
Balabanis et al. 2001	303			0.17	[0.03; 0.25]	1.4%	1.5
Balabanis et al. 2001	480				[0.03, 0.23]	2.2%	1.5
Fsai et al. 2013	480 506		¢.	0.35 0.43		2.2%	
					[0.36; 0.50]		1.5
Fsai et al. 2013	564			0.49	[0.43; 0.55]	2.6%	1.5
Cheah & Phau 2015	204			0.55	[0.44; 0.64]	0.9%	1.4
Al Gadineh & Good 2015	196		1-	0.45	[0.33; 0.55]	0.9%	1.4
Fixed effect model	3169		ę	0.37	[0.34; 0.40]	14.3%	
Random effects model Heterogeneity: $I^2 = 90\%$, $\tau^2 = 0.0$	241. <i>p</i> < 0.01		\sim	0.38	[0.28; 0.47]		11.8
			î t				
construct = 2							
Vida et al. 2008	580			0.56	[0.51; 0.62]	2.6%	1.5
Dmitrovic et al. 2009	454			0.27	[0.18; 0.35]	2.1%	1.5
Omitrovic et al. 2009	600			0.22	[0.15; 0.30]	2.7%	1.5
Omitrovic et al. 2009	600			0.27	[0.20; 0.34]	2.7%	1.5
Dmitrovic et al. 2009	300		⊢ ;	-0.01	[-0.13; 0.10]	1.4%	1.5
Zeugner-Roth et al. 2015	411			0.31	[0.22; 0.39]	1.9%	1.5
Zeugner-Roth et al. 2015	405			0.26	[0.17; 0.35]	1.8%	1.5
Verlegh 2007	103			0.40	[0.22; 0.55]	0.5%	1.3
Strizhakova et al. 2012	250		<u>i</u>	0.31	[0.19; 0.42]	1.1%	1.4
Strizhakova et al. 2012	308			0.26	[0.15; 0.36]	1.4%	1.5
Strizhakova et al. 2012	186			0.14	[0.00; 0.28]	0.8%	1.4
Cleveland et al. 2016	241			0.17	[0.05; 0.29]	1.1%	1.4
Cleveland et al. 2016	192				[0.05, 0.29]	0.9%	1.4
							1.4
Kreckova et al. 2012 Fixed effect model	199 4829				[0.17; 0.42]	0.9% 21.8%	1.4
Random effects model	7023		à		[0.27; 0.32] [0.20; 0.36]	∠1.07⁄0	20.4
Heterogeneity: $I^2 = 89\%$, $\tau^2 = 0.0$	237. p < 0.01		\sim	0.20	[0.20; 0.30]		20.4
			t t				
construct = 3	005			o	1054 555		
Shimp & Sharma 1987	295		; — — —	0.59	[0.51; 0.66]	1.3%	1.5
Shimp & Sharma 1987	296			0.53	[0.44; 0.61]	1.3%	1.5
Shimp & Sharma 1987	288		; -	0.44	[0.34; 0.53]	1.3%	1.5
Shimp & Sharma 1987	535		; 	0.52	[0.46; 0.58]	2.4%	1.5
Shimp & Sharma 1987	390		÷ —	0.51	[0.43; 0.58]	1.8%	1.5
Shimp & Sharma 1987	138			0.40	[0.25; 0.53]	0.6%	1.4
avalgi et al. 2005	106			0.27	[0.09; 0.44]	0.5%	1.3
Itintas & Tokol 2007	540			0.22	[0.14; 0.30]	2.4%	1.5
ain & Jain 2013	304		 i	0.23	[0.12; 0.33]	1.4%	1.5
I Gadineh 2010	272		<u> </u>	0.37	[0.26; 0.47]	1.2%	1.5
amaruddin et al. 2002	248			0.26	[0.14; 0.37]	1.1%	1.4
le Ruyter et al. 1998	175			0.20	[0.14, 0.37]	0.8%	1.4
					[0.26, 0.51]		
Kottasz & Bennett 2006	253			0.27		1.1%	1.5
Kottasz & Bennett 2006	252			0.45	[0.35; 0.54]	1.1%	1.5
Nik-Mat et al. 2015	425	-	- E		[-0.02; 0.17]	1.9%	1.5
an Birgelen et al. 2015	175			0.39	[0.26; 0.51]	0.8%	1.4
Fixed effect model	4692		4		[0.35; 0.40]	21.2%	-
Random effects model Heterogeneity: $J^2 = 89\% = \tau^2 = 0.0$	296 0 < 0.01		\$	0.38	[0.30; 0.45]		23.2
Heterogeneity: $I^2 = 89\%$, $\tau^2 = 0.0$	∠əb, p < 0.01		Ì				
Fixed effect model	22157		ó		[0.35; 0.37]	100.0%	-
Random effects model					[0.32; 0.41]		100.0

 $Notes: \ construct = 0: \ patriotism, \ construct = 1: \ national \ ism, \ construct = 2: \ national \ identity, \ construct = 3: \ conservatism$

Figure 5.4 Forest plot of single constructs encompassing national values

Next, additional moderators were analyzed. Due to the large amount of studies included and the high heterogeneity among them, all other examined moderators except for the CETSCALE score were able to explain significant between group variance. Participants being set in an urban area were only significant at p<0.10, while all others were significant at p<0.01. The moderators explaining the highest amount of between group variance were the year of the study and the selection of the participants, which will be discussed in more detail.

Moderator analysis for the year of the studies showed that studies conducted in the years between 1987 and 1999 have the highest effect sizes, and they are decreasing in the subsequent decades with the lowest correlation between national values and consumer ethnocentrism found in the studies conducted between 2010 and 2017.

Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Yearcoded = 0	16	0.5333	[0.4929; 0.5715]	56.26	73.3%
Yearcoded = 1	28	0.3285	[0.2511; 0.4017]	441.41	93.9%
Yearcoded = 2	25	0.2881	[0.2106; 0.3621]	326.78	92.7%
Test for subgroup diff	erences (randon	n effects model)	1		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	45.62	2	< 0.0001		

Table 5.4 Analysis of national values for moderator year

Notes: Yearcoded=0: study from 1987-1999; Yearcoded=1: study from 2000-2010; Yearcoded=2: study from 2010-2017

Most of the effect sizes in the years 1987-1999 come from the original CETSCALE study conducted by Shimp and Sharma (1987). This could explain why the correlations are so high in this year range, because the initial study developing a new concept needed to show high correlations in order to be published (Cooper, 2016). Lower effect sizes for the relationship between national values and consumer ethnocentrism in recent years could indicate declining national values or the ability of consumers to distinguish between their love for their country and their purchasing behavior, which was already proposed by Shankarmahesh (2006).

The selection of participants also was an important moderator of national values, which is in part due to the high amount of different selection criteria. Interestingly, quota sampling and samples retrieved from panels showed the lowest correlations (see exact values in Table 5.5). These selection criteria are often employed to achieve high representativeness of the underlying population, and could therefore depict a more accurate finding than studies with different sample selections. Convenience samples, which are often used with student samples,

also have a relatively low weighted average effect size. This shows that students generally hold lower correlations between national values and consumer ethnocentrism, which is also confirmed when looking at the moderator analysis of the characteristics of the participants, which can be found in Appendix D1.7. Random sampling lies quite close to the weighted average effect size of the whole sample, and semi-random sampling and samples with participants recruited from mail lists show the highest effect sizes. The latter can be explained by having been used by Shimp and Sharma (1987) in their initial study.

Table 5.5 Analysis of	nunonui vuines	jor moderator s	election		
Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
Selection $= 2$	11	0.5659	[0.5262; 0.6032]	34.47	71.0%
Selection $= 1$	13	0.3156	[0.2305; 0.3959]	64.50	81.4%
Selection $= 4$	7	0.3940	[0.2959; 0.4838]	25.56	76.5%
Selection $= 0$	23	0.3416	[0.2523; 0.4252]	415.42	94.7%
Selection $= 5$	8	0.2401	[0.1756; 0.3026]	27.22	74.3%
Selection $= 3$	5	0.2234	[-0.0586; 0.4724]	198.65	98.0%
Selection = 9	2	0.3903	[0.1159; 0.6093]	7.21	86.1%
Test for subgroup diff	erences (randon	n effects model)		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	91.45	6	< 0.0001		

Table 5.5 Analysis of national values for moderator selection

Notes: Selection=0: Random sampling, Selection=1: Convenience sampling, Selection=2: Mail list, Selection=3: Panel, Selection=4: Semi-random sampling, Selection=5: Quota-sampling; Selection=9: N/a

Details of the other moderators showing slightly less significant results can be found in Appendix D1. In short, the analysis showed that the relationship between national values and consumer ethnocentrism was higher in developed (Western) countries than in developing countries. Interestingly, consumers living in urban areas also had higher correlations, but this is most likely due to the samples by Shimp and Sharma (1987) coming from urban areas. Students showed the lowest weighted average effect size, and high school students and managers the highest. The latter two were only conducted in one study though, so further confirmation would be needed to validate this tendency. The number of items used on the CETSCALE showed that the full 17-item scale and scales with only three to five items had the highest effect sizes. The former can again be explained by being used in the study by Shimp and Sharma (1987). Effect sizes were relatively uniform of studies using a CETSCALE items varying between six to 16 items.

5.2.2 Animosity

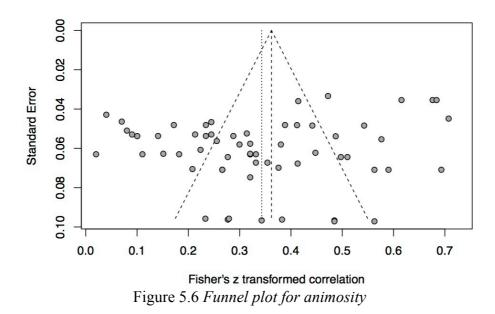
The animosity construct encompassed 63 individual studies included in the meta-analysis, resulting in the weighted average effect size of r=0.3293 for the random effects model.

The Cochran's Q statistic to test heterogeneity revealed high heterogeneity (Q value 719.27, df = 62), excluding random as a reason for differences among the studies. The I² of 91.4% also signals high heterogeneity.

 Table 5.6 Weighted average effect sizes of animosity

	COR	95%-CI	Z	p-value
Fixed effect model	0.3463	[0.3341; 0.3583]	51.44	< 0.0001
Random effects model	0.3293	[0.2863; 0.3710]	14.10	< 0.0001

Table 5.7 Analyzing heterogeneity of animosity


Quantifying	g heterogeneity	,	
I^2	91.4% [89.	7%; 92.8%]	
Test of hete	erogeneity		
<u>Q</u>	<u>d.f.</u>	<u>p-value</u>	
719.27	62	< 0.0001	

As can be seen in the forest plot, all studies found a positive correlation between animosity and consumer ethnocentrism, but varied between 0.02 (Ma et al., 2012) and 0.61 (Tabassi et al., 2012).

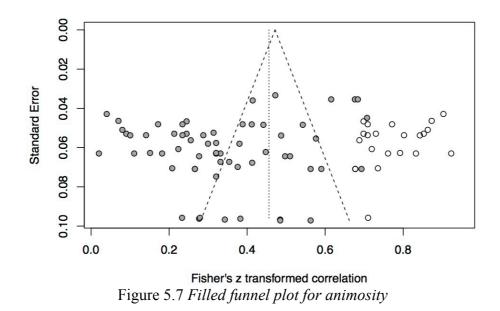

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
Ishii 2009	300		0.29	[0.18; 0.39]	1.5%	1.6%
Ishii 2009	300	- <u>i</u>	0.36	[0.26; 0.46]	1.5%	1.6%
Jain & Jain 2013	304		0.31	[0.20; 0.41]	1.5%	1.6%
Huang et al. 2010	434			[0.31; 0.47]	2.1%	1.7%
Klein et al. 1998	244			[0.35; 0.55]	1.2%	1.6%
Jimenez Torres & San Martin Gutierrez 2007	202			[0.13; 0.38]	1.0%	1.6%
Carter 2009	800			[0.54; 0.63]	4.0%	1.7%
Carter 2009	800			[0.55; 0.64]	4.0%	1.7%
Carter 2009	800			[0.50; 0.59]	4.0%	1.7%
Jimenez & San Martin 2010	202			[0.13; 0.38]	1.0%	1.6%
Rose et al. 2009	111			[0.09; 0.43]	0.5%	1.4%
Rose et al. 2009	111			[0.19; 0.52]	0.5%	1.4%
Rose et al. 2009	112			[0.09; 0.44]	0.5%	1.4%
Rose et al. 2009	112			[0.05; 0.40]	0.5%	1.4%
Klein 2002	202			[0.42; 0.62]	1.0%	1.6%
Akdogan & Ozgener 2012	208			[0.23; 0.47]	1.0%	1.6%
Ettenson & Klein 2005	261			[0.31; 0.52]	1.3%	1.6%
Ettenson & Klein 2005	329			[0.44; 0.59]	1.6%	1.7%
Parker et al. 2011	367			[0.21; 0.39]	1.8%	1.7%
Nakos & Hajidimitriou 2007	430			[0.33; 0.49]	2.1%	1.7%
Hoffmann et al. 2011	360				1.8%	1.7%
Hoffmann et al. 2011	360			[0.14; 0.34]	1.8%	1.7%
	360			[-0.01; 0.19]		1.7%
Hoffmann et al. 2011 Hoffmann et al. 2011	350			[0.11; 0.31]	1.8%	1.7%
				[0.13; 0.33]	1.7%	
Hoffmann et al. 2011 Hoffmann et al. 2011	350			[0.18; 0.37]	1.7%	1.7%
	350			[0.04; 0.24]	1.7%	1.7%
Tabassi et al. 2012	500	- *		[0.55; 0.66]	2.5%	1.7%
Sharma 2011	349			[-0.01; 0.20]	1.7%	1.7%
Sharma 2011	388	<u></u>		[-0.02; 0.18]	1.9%	1.7%
Sharma 2011	468	<u>t</u>		[-0.02; 0.16]	2.3%	1.7%
Sharma 2011	547			[-0.04; 0.12]	2.7%	1.7%
Marinkovic 2017	221			[0.27; 0.50]	1.1%	1.6%
Lee & Mazodier 2015	903	_ ; =		[0.39; 0.49]	4.5%	1.7%
Fakharmanesh & Miyandehi 2013	463			[0.15; 0.32]	2.3%	1.7%
Cheah et al. 2016	435			[0.29; 0.45]	2.2%	1.7%
Funk et al. 2010	319			[0.14; 0.35]	1.6%	1.6%
Richardson & Harris 2014	348			[0.36; 0.53]	1.7%	1.7%
Mostafa 2010	776	<u> </u>		[0.33; 0.45]	3.9%	1.7%
Klein et al. 1998	244			[0.37; 0.56]	1.2%	1.6%
Nijssen & Douglas 2004	110			[0.15; 0.49]	0.5%	1.4%
Nijssen & Douglas 2004	109			[0.36; 0.64]	0.5%	1.4%
Klein 2002	202	- -	0.51	[0.40; 0.61]	1.0%	1.6%
Cai et al. 2012	224		0.32	[0.20; 0.43]	1.1%	1.6%
Wang et al. 2013	257	- <u>m</u> -	0.15	[0.03; 0.27]	1.3%	1.6%
Cheah et al. 2016	435		0.23	[0.14; 0.32]	2.2%	1.7%
Ma et al. 2012	255		0.31	[0.19; 0.42]	1.3%	1.6%
Ma et al. 2012	255		0.31	[0.19; 0.42]	1.3%	1.6%
Ma et al. 2012	255		0.32	[0.21; 0.43]	1.3%	1.6%
Klein et al. 1998	244	- <u></u>	0.27	[0.15; 0.38]	1.2%	1.6%
Nijssen & Douglas 2004	110		0.45	[0.29; 0.59]	0.5%	1.4%
Nijssen & Douglas 2004	109		0.45	[0.29; 0.59]	0.5%	1.4%
Klein 2002	202			[0.50; 0.68]	1.0%	1.6%
Nakos & Hajidimitriou 2007	430	÷		[0.42; 0.56]	2.1%	1.7%
Cheah & Phau 2015	204			[0.07; 0.33]	1.0%	1.6%
Cai et al. 2012	224	<u> </u>		[0.22; 0.45]	1.1%	1.6%
De Nisco et al. 2016	274			[0.10; 0.33]	1.4%	1.6%
De Nisco et al. 2016	182			[0.17; 0.44]	0.9%	1.5%
Wang et al. 2013	257			[0.20; 0.42]	1.3%	1.6%
Cheah et al. 2016	435			[0.08; 0.26]	2.2%	1.7%
Ma et al. 2012	255			[0.06; 0.20]	1.3%	1.6%
Ma et al. 2012 Ma et al. 2012	255			[-0.10; 0.14]	1.3%	1.6%
Ma et al. 2012 Ma et al. 2012	255			[-0.01; 0.14]	1.3%	1.6%
	200		0.11	0.01, 0.20]	1.0 /6	1.0 /0
Fixed effect model	20258			[0.33; 0.36]	100.0%	
Random effects model			0.33	[0.29; 0.37]		100.0%
Heterogeneity: $l^2 = 92\%$, $\tau^2 = 0.0334$, $p < 0.01$						
		-0.6-0.4-0.2 0 0.2 0.4 0.6				
		1 0 .				

Figure 5.5 Forest plot for animosity

The funnel plot shows the distribution of the z-transformed correlations and their robustness. As can be seen in Figure 5.6, they vary greatly among the mean and do not follow the triangle shaped distribution, which means that other factors in form of moderators could influence the distribution.

Further analysis of filling the funnel plot with missing values accounted for the publication bias and showed where studies could lie. As can be seen in Figure 5.7, unpublished studies would need to report large effect sizes ranging from 0.7 to more than 0.9. Since studies with large effects are more likely to be published than studies with smaller effect sizes, it is not very likely that unpublished studies have found those missing effect sizes.

In order to explain some of the heterogeneity, additional analyses were run by including moderating factors. First, I examined whether the effect size differed according to the type of animosity measurement – general animosity, war animosity, or economic animosity. This explained almost none of the variance and showed that the three animosity measurements can be combined into one, as shown in Table 5.8.

Table 5.8 Analysis of a	animosity jor m	ioderator constru	uct		
Test for subgroups (rat	ndom effects n	nodel)			
	<u>k</u>	COR	<u>95%-CI</u>	<u>Q</u>	<u>I</u> ²
Construct = 0	39	0.3343	[0.2772; 0.3891]	557.06	93.2%
Construct = 1	10	0.3450	[0.2695; 0.4162]	36.22	75.2%
Construct = 2	14	0.3004	[0.2091; 0.3865]	106.83	87.8%
Test for subgroup diff	erences (randor	m effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	0.62	2	0.7352		

Table 5.8 Analysis of animosity for moderator construct

Notes: construct=0: general animosity, construct=1: war animosity, construct=2: economic animosity

Next, other moderators were examined. Similar to the analysis of moderators of national values, the year of when the study was conducted, the selection of the participants, and additionally the characteristics of the participants as well as the number of items used on the CETSCALE were able to explain the most between group variance.

When the study was conducted showed significant differences between the three groups. While the effect size was over 0.4 in the 1980s until early 2000s, it was below 0.3 in the studies conducted since the year 2010, which could imply a trend to lower correlations between animosity and consumer ethnocentrism.

Test for subgroup diff	erences (fixed e	ffect model)			
	<u>Q</u>	<u>d.f.</u>	<u>p-value</u>		
Between groups	274.72	2	< 0.0001		
Within groups	444.55	60	< 0.0001		
Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	<u>Q</u>	$\underline{I^2}$
Years 2000-2009	21	0.4447	[0.3912; 0.4952]	119.99	83.3%
Years 2010-2017	39	0.2622	[0.2158; 0.3074]	316.28	88.0%
Years 1987-1999	3	0.4037	[0.2726; 0.5201]	8.29	75.9%
Test for subgroup diff	erences (randon	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	26.62	2	< 0.0001		

Table 5.9 Analysis of animosity for moderator year

Notes: Yearcoded=0: study from 1987-1999; Yearcoded=1: study from 2000-2010; Yearcoded=2: study from 2010-2017

A large amount of variance was explained by looking at the selection criteria of the participants. The link between animosity and consumer ethnocentrism was highest for studies that used random sampling or panels, and lowest for convenience samples. This brings into

question whether social desirability bias plays a role in the response patterns for these convenience samples, and causes the participants to show lower levels of animosity.

Test for subgroup diff	ferences (fixed e	ffect model)			
	<u>Q</u>	<u>d.f.</u>	<u>p-value</u>		
Between groups	413.34	5	< 0.0001		
Within groups	305.93	57	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	<u>Q</u>	$\underline{I^2}$
Selection $= 4$	9	0.1918	[0.1055; 0.2753]	58.51	86.3%
Selection $= 5$	9	0.2644	[0.1783; 0.3465]	62.03	87.1%
Selection $= 0$	22	0.3950	[0.3432; 0.4444]	101.19	79.2%
Selection = 9	4	0.2863	[0.2173; 0.3524]	4.36	31.3%
Selection = 3	3	0.5261	[0.4476; 0.5965]	49.47	87.9%
Selection = 1	12	0.2473	[0.1902; 0.3027]	30.36	63.8%
Test for subgroup diff	ferences (randon	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	49.65	5	< 0.0001		

Table 5.10 Analysis of animosity for moderator selection

Note: Selection=0: random sampling, Selection=1: convenience sampling, Selection=2: mail list, Selection=3: panel, Selection=4: semi-random sampling, Selection=5: quota sampling, Selection=9: n/a

Characteristics of participants were also able to minimize variance, and exact values can be found in Table 5.11. Most of the studies included participants from the general population. Although the student effect size was lower compared to the one for the general population, the biggest difference was found with managers and employees from a multinational company, whose animosity was close to zero and therefore differed significantly from the other two groups. These all came from the same study though, and were quite homogeneous.

Test for subgroups (ran	dom effects m	odel)			
	<u>K</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Characteristics $= 0$	53	0.3532	[0.3096; 0.3953]	536.88	90.3%
Characteristics = 1	6	0.2841	[0.2362; 0.3306]	4.21	0.0%
Characteristics = 3	4	0.0688	[0.0220; 0.1154]	0.85	0.0%
Test for subgroup differ	rences (randor	n effects model)			
	Q	<u>d.f.</u>	p-value		
Between groups	81.45	2	< 0.0001		

Table 5.11 Analysis of animosity for moderator characteristics

Notes: Characteristics=0: General population; Characteristics=1: Students: Characteristics=3 managers/ employees from a firm A highly significant amount of variance was also explained by examining the moderator of items used on the CETSCALE. As can be seen in Table 5.12, more items used led to higher correlations of animosity with consumer ethnocentrism. This draws to attention that CETSCALEs with more items could show different results, even though Cronbach's alphas have been high even for CETSCALEs with only a few items.

2 2	20				
Test for subgroups (rando	om effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETtype = 4	19	0.3015	[0.2421; 0.3587]	110.13	83.7%
CETtype = 3	29	0.2806	[0.2233; 0.3360]	220.42	87.3%
CETtype = 2	1	0.3900	[0.3071; 0.4670]	0.00	
CETtype = 1	5	0.4330	[0.3489; 0.5102]	13.37	70.1%
CETtype = 0	8	0.4551	[0.3495; 0.5492]	105.28	93.4%
CETtype = 9	1	0.4520	[0.3642; 0.5319]	0.00	
Test for subgroup differe	nces (randor	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		

Table 5.12 Analysis of animosity for moderator CETtype

	Q	<u>d.f.</u>	<u>p-value</u>	
Between groups	22.42	5	0.0004	

Notes: CETtype=0: 17 *items, CETtype=1:* 10 *items, CETtype=2:* 11-16 *items, CETtype=3:* 6-9 *items, CETtype=4:* 2-5 *items, CETtype=9: N/a*

In addition, different continents could explain variance with a significance of p<0.10, with Northern America having the largest effect size and Asia the lowest, as well as whether the country was a developed (Western) country or a developing country, with developed countries having a higher effect size. Detailed results can be found in Appendix D2.

5.2.3 International Values

A total number of 69 studies encompass the international values construct. The analysis shows a weighted average effect size of r=-0.1908 for the random effects model, indicating a negative relationship between international values and consumer ethnocentrism.

The Cochran's Q statistic to test heterogeneity revealed high heterogeneity (Q value 628.58, df = 68), which is significant at the p<0.0001 level, excluding random as a reason for differences among the studies. The I² of 91.4% also signals high heterogeneity.

Table 5.13 Weighted average effect sizes of international values								
	COR	95%-CI	Z	p-value				
Fixed effect model	-0.1743	[-0.1865; -0.1621]	-27.41	< 0.0001				
Random effects model	-0.1908	[-0.2282; -0.1528]	-9.67	< 0.0001				

Table 5.13 Weighted average effect sizes of international values

Table 5.14 Analyzing heterogeneity of international value

Quantifying	, heterogeneit	у	
I ²	89.2% [87	.0%; 91.0%]	
Test of hete	rogeneity		
<u>Q</u>	<u>d.f.</u>	<u>p-value</u>	
628.58	68	< 0.0001	

The forest plot shows all effect sizes of the included study, with most effect sizes being negative. The lowest correlation was found by Nijssen and Douglas (2011) with a value of - 0.55, and highest correlation was found by Nik-Mat et al. (2015), with a value of 0.19 for the construct foreign travel.

Study	Total	Correlation	COR	95%–Cl	Weight (fixed)	Weight (random)
Sharma et al. 1995	667			[-0.28; -0.13]	2.7%	1.6%
Javalgi et al. 2005	106			[-0.24; 0.15]	0.4%	1.2%
Vida et al. 2008	580	· · · · · · · · · · · · · · · · · · ·		[-0.01; 0.15]	2.4%	1.6%
Suh & Kwon 2002	120			[-0.60; -0.32]	0.5%	1.2%
Suh & Kwon 2002 Nguyen et al. 2008	128 549			[-0.26; 0.08]	0.5%	1.3% 1.6%
Jain & Jain 2013	304			[-0.18; -0.02] [-0.30; -0.08]	2.3% 1.2%	1.5%
Kumar et al. 2011	800			[-0.27; -0.14]	3.3%	1.6%
Kamaruddin et al. 2002	248			[-0.46; -0.24]	1.0%	1.4%
de Ruyter et al. 1998	175			[-0.63; -0.42]	0.7%	1.4%
Kottasz & Bennett 2006	253			[-0.49; -0.28]	1.0%	1.4%
Kottasz & Bennett 2006	252			[-0.45; -0.24]	1.0%	1.4%
Vida & Fairhurst 1999	558			[-0.20; -0.04]	2.3%	1.6%
Nik-Mat et al. 2015	425			[-0.39; -0.22]	1.7%	1.5%
Strizhakova et al. 2008 Strizhakova et al. 2008	218 287		-0.52	[-0.61; -0.42]	0.9% 1.2%	1.4% 1.5%
Strizhakova et al. 2008	207 464			[-0.11; 0.13] [-0.13; 0.05]	1.2%	1.5%
Strizhakova et al. 2008	292			[-0.06; 0.17]	1.2%	1.5%
van Birgelen et al. 2015	175			[-0.63; -0.41]	0.7%	1.4%
Jain & Jain 2013	304			[-0.17; 0.05]	1.2%	1.5%
Al Gadineh 2010	272			[-0.37; -0.15]	1.1%	1.5%
Dmitrovic et al. 2009	454	-		[-0.19; -0.01]	1.9%	1.5%
Dmitrovic et al. 2009	600			[-0.34; -0.19]	2.5%	1.6%
Dmitrovic et al. 2009	600			[-0.16; 0.00]	2.5%	1.6%
Dmitrovic et al. 2009	300			[-0.23; 0.00]	1.2%	1.5%
Kwak et al. 2006	611			[-0.32; -0.17]	2.5%	1.6%
Kwak et al. 2006 Kwak et al. 2006	221 271			[-0.28; -0.02]	0.9% 1.1%	1.4% 1.5%
Nijssen & Douglas 2011	90			[-0.33; -0.10] [-0.68; -0.39]	0.4%	1.1%
Nijssen & Douglas 2011	100			[-0.43; -0.07]	0.4%	1.2%
Cheah & Phau 2015	204			[-0.28; -0.01]	0.8%	1.4%
Ishii 2009	300			[-0.37; -0.16]	1.2%	1.5%
Ishii 2009	300		-0.28	[-0.38; -0.17]	1.2%	1.5%
Lee et al. 2003	336	- <u>-</u>		[-0.41; -0.22]	1.4%	1.5%
Balabanis et al. 2001	303		-0.07	[-0.18; 0.04]	1.2%	1.5%
Balabanis et al. 2001	480		-0.08	[-0.17; 0.01]	2.0%	1.5%
Tsai et al. 2013	506		0.15	[0.06; 0.23]	2.1%	1.6%
Tsai et al. 2013 Al Gadineh & Good 2015	564 196		0.08 -0.09	[-0.01; 0.16] [-0.22; 0.05]	2.3% 0.8%	1.6% 1.4%
Cleveland et al. 2009	241			[-0.38; -0.14]	1.0%	1.4%
Cleveland et al. 2009	231			[-0.26; 0.00]	0.9%	1.4%
Cleveland et al. 2009	317			[-0.25; -0.04]	1.3%	1.5%
Cleveland et al. 2009	137			[-0.40; -0.09]	0.6%	1.3%
Cleveland et al. 2009	332		-0.23	[-0.33; -0.12]	1.4%	1.5%
Cleveland et al. 2009	236			[-0.38; -0.15]	1.0%	1.4%
Cleveland et al. 2009	192			[-0.08; 0.20]	0.8%	1.4%
Cleveland et al. 2009	329			[-0.43; -0.24]	1.3%	1.5%
Zeugner-Roth et al. 2015 Zeugner-Roth et al. 2015	411 405			[-0.46; -0.29]	1.7% 1.7%	1.5% 1.5%
Parts & Vida 2013	261			[-0.46; -0.30] [-0.26; -0.02]	1.1%	1.5%
Parts & Vida 2013	271			[-0.31; -0.08]	1.1%	1.5%
Riefler et al. 2012	222			[-0.56; -0.35]	0.9%	1.4%
Jin et al. 2015	772			[-0.21; -0.07]	3.2%	1.6%
Jin et al. 2015	1883			[-0.12; -0.03]	7.8%	1.6%
Rybina et al. 2010	372		-0.35	[-0.44; -0.26]	1.5%	1.5%
Lee & Mazodier 2015	903	+		[-0.42; -0.31]	3.7%	1.6%
Cleveland et al. 2016	241			[-0.30; -0.05]	1.0%	1.4%
Cleveland et al. 2016	192		0.00	[-0.14; 0.14]	0.8%	1.4%
Kreckova et al. 2012	199		-0.09	[-0.23; 0.05]	0.8%	1.4% 1.3%
Lysonski & Durvasula 2013 Prince et al. 2016	165 269		0.06	[-0.09; 0.21]	0.7%	
Prince et al. 2016 Prince et al. 2016	269 273	<u> </u>		[-0.33; -0.10] [-0.33; -0.10]	1.1% 1.1%	1.5% 1.5%
Vida & Reardon 2008	714			[-0.30; -0.16]	2.9%	1.6%
Nik-Mat et al. 2015	425		0.19		1.7%	1.5%
Douglas & Nijssen 2003	127			[-0.23; 0.12]	0.5%	1.3%
Nijssen & Douglas 2011	100			[-0.23; 0.16]	0.4%	1.2%
Cleveland et al. 2016	241		-0.09	[-0.22; 0.03]	1.0%	1.4%
Cleveland et al. 2016	192	3		[-0.22; 0.07]	0.8%	1.4%
Lysonski & Durvasula 2013	165		-0.22	[-0.36; -0.07]	0.7%	1.3%
Fixed effect model Random effects model	24431	•		[–0.19; –0.16] [–0.23; –0.15]	100.0%	 100.0%
Heterogeneity: $I^2 = 89\%$, $\tau^2 = 0$.0237, p		0.10	_ 0.10]		100.070
	-	-0.6-0.4-0.2 0 0.2 0.4 0.6				

Figure 5.8 Forest plot for international values

The funnel plot depicts a picture similar to that of previous examined constructs, although more studies lie within the proposed distribution.

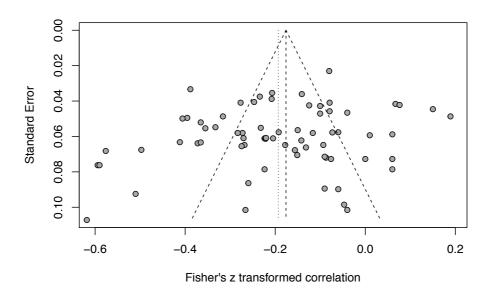


Figure 5.9 Funnel plot for international values

Missing values can be found on the positive side of the spectrum, since only few studies have depicted this so far. It could be that studies with such correlations have not been published, because these findings are opposite of expected negative relationship.

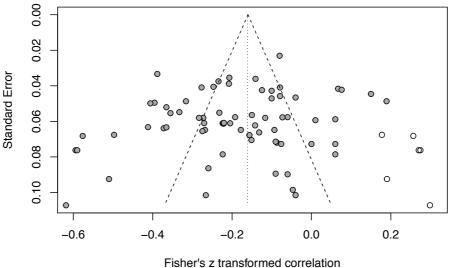


Figure 5.10 Filled funnel plot for international values

Since international values encompasses five different constructs, an analysis of these different constructs was performed next, of which the results are shown in Table 5.15. While cultural openness, world-mindedness, and cosmopolitanism all show similar weighted average effect sizes, internationalism and foreign travel show a less negative effect. Conceptually, only the large difference between foreign travel and the other concepts could be explained, since foreign travel is quite different from the others in its definition and measurement. Just from

comparing the different definitions of the constructs, one would have expected to see more similar results between the three constructs cultural openness, world-mindedness, and internationalism, and the two constructs cosmopolitanism and foreign travel. This is not the case, and since between groups comparison in the random effects model did not show significant differences, the five constructs remain analyzed as one in the following.

J		5			
Test for subgroups (rand	dom effects n	nodel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Construct = 0	19	-0.2338	[-0.3144; -0.1499]	222.97	91.9%
Construct = 1	12	-0.1951	[-0.2560; -0.1328]	43.13	74.5%
Construct = 2	8	-0.1101	[-0.2330; 0.0163]	84.90	91.8%
Construct = 3	23	-0.2123	[-0.2694; -0.1536]	170.37	87.1%
Construct = 4	7	-0.0765	[-0.2116; 0.0615]	50.96	88.2%
Test for subgroup differ	ences (rando	m effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	5.91	4	0.2058		

Table 5.15 Analysis of international values for moderator construct

Notes: construct=0: cultural openness, construct=1: world-mindedness, construct=2: internationalism, construct=3: cosmopolitanism, construct=4: foreign travel

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weigh (random
construct = 0		3				
Sharma et al. 1995 Javalgi et al. 2005	667 106			.28; -0.13]).24; 0.15]	2.7% 0.4%	1.6% 1.2%
Vida et al. 2008	580	-		0.01; 0.15]	2.4%	1.69
Suh & Kwon 2002	120	-	-0.47 [-0	.60; -0.32]	0.5%	1.2%
Suh & Kwon 2002	128			0.26; 0.08]	0.5%	1.3%
Nguyen et al. 2008 Jain & Jain 2013	549 304			.18; -0.02] .30; -0.08]	2.3% 1.2%	1.6% 1.5%
Kumar et al. 2011	800			.27; -0.14]	3.3%	1.6%
Kamaruddin et al. 2002	248 -			.46; -0.24]	1.0%	1.49
de Ruyter et al. 1998	175			.63; -0.42]	0.7%	1.4%
Kottasz & Bennett 2006	253 -			.49; -0.28]	1.0%	1.49
Kottasz & Bennett 2006 Vida & Fairhurst 1999	252 - 558	*		.45; -0.24]	1.0% 2.3%	1.49 1.69
Nik-Mat et al. 2015	425			.39; -0.22]	1.7%	1.59
Strizhakova et al. 2008	218	 	-0.52 [-0	.61; -0.42]	0.9%	1.49
Strizhakova et al. 2008 Strizhakova et al. 2008	287 464	-		0.11; 0.13]	1.2% 1.9%	1.5% 1.5%
Strizhakova et al. 2008	292			0.13; 0.05] 0.06; 0.17]	1.2%	1.5%
van Birgelen et al. 2015	175	3		.63; -0.41]	0.7%	1.49
Fixed effect model	6601	4	-0.19 [-0	.21; -0.17]	27.0%	
Random effects model Heterogeneity: $I^2 = 92\%$, $\tau^2 = 0$	0227 p < 0.01	\diamond	-0.23 [-0	.31; –0.15]		27.5%
	.0337, p < 0.01					
construct = 1 Jain & Jain 2013	304		-0.06 [-0	0.17; 0.05]	1.2%	1.5%
Al Gadineh 2010	272		-0.26 [-0	.37; -0.15]	1.1%	1.5%
Dmitrovic et al. 2009	454			.19; -0.01]	1.9%	1.5%
Omitrovic et al. 2009 Omitrovic et al. 2009	600 600	-		.34; -0.19] 0.16; 0.00]	2.5% 2.5%	1.6% 1.6%
Dimitrovic et al. 2009 Dimitrovic et al. 2009	300			0.23; 0.00]	1.2%	1.5%
Kwak et al. 2006	611	-=		.32; -0.17]	2.5%	1.6%
Kwak et al. 2006	221		-0.16 [-0	.28; -0.02]	0.9%	1.4%
Kwak et al. 2006 Nijssen & Douglas 2011	271 90			.33; -0.10]	1.1% 0.4%	1.5% 1.1%
Nijssen & Douglas 2011	100 -		-0.26 [-0	.68; –0.39] .43; –0.07]	0.4%	1.19
Cheah & Phau 2015	204			.28; -0.01]	0.8%	1.49
Fixed effect model	4027	<u>\$</u>		.21; -0.15]	16.5%	
Random effects model deterogeneity: $I^2 = 74\%$, $\tau^2 = 0$.009 , <i>p</i> < 0.01	•	-0.20 [-0	.26; –0.13]		17.2%
construct = 2						
shii 2009	300			.37; –0.16]	1.2%	1.5%
shii 2009	300			.38; -0.17]	1.2%	1.5%
.ee et al. 2003 3alabanis et al. 2001	336 - 303			.41; -0.22] 0.18; 0.04]	1.4% 1.2%	1.5% 1.5%
Balabanis et al. 2001	480			0.17; 0.01]	2.0%	1.5%
Tsai et al. 2013	506		0.15 [(0.06; 0.23]	2.1%	1.6%
Tsai et al. 2013	564	-		0.01; 0.16]	2.3%	1.6%
Al Gadineh & Good 2015 Fixed effect model	196 2985	*		0.22; 0.05] .11; -0.04]	0.8% 12.2%	1.49
Random effects model Heterogeneity: $I^2 = 92\%$, $\tau^2 = 0$	0005 - 0001			0.23; 0.02]		12.0%
	.0303, p < 0.01					
construct = 3 Cleveland et al. 2009	241		-0.26 [-0	.38; -0.14]	1.0%	1.49
Cleveland et al. 2009	231		-0.13 [-0	0.26; 0.00]	0.9%	1.4%
Cleveland et al. 2009	317			.25; -0.04]	1.3%	1.5%
Cleveland et al. 2009 Cleveland et al. 2009	137 332			.40; -0.09] .33; -0.12]	0.6% 1.4%	1.3% 1.5%
Cleveland et al. 2009	236			.38; -0.15]	1.4%	1.49
Cleveland et al. 2009	192			0.08; 0.20]	0.8%	1.49
Cleveland et al. 2009	329 -	-		.43; -0.24]	1.3%	1.5%
Zeugner–Roth et al. 2015 Zeugner–Roth et al. 2015	411 - 405 -			.46; -0.29]	1.7%	1.59
Parts & Vida 2013	405 - 261			.46; –0.30] .26; –0.02]	1.7% 1.1%	1.5% 1.4%
Parts & Vida 2013	271	<u></u>		.31; -0.08]	1.1%	1.5%
Riefler et al. 2012	222	- []	-0.46 [-0	.56; –0.35]	0.9%	1.49
lin et al. 2015	772			.21; -0.07]	3.2%	1.69
lin et al. 2015 Rybina et al. 2010	1883 372 -	*		.12; -0.03]	7.8% 1.5%	1.6% 1.5%
ee & Mazodier 2015	903 +	+		.44, -0.26]	3.7%	1.6%
Cleveland et al. 2016	241			.30; -0.05]	1.0%	1.49
Cleveland et al. 2016	192			0.14; 0.14]	0.8%	1.49
Kreckova et al. 2012	199 165	· · · ·		0.23; 0.05]	0.8%	1.49 1.39
ysonski & Durvasula 2013 Prince et al. 2016	269			0.09; 0.21] .33; -0.10]	0.7% 1.1%	1.5%
Prince et al. 2016	273			.33; -0.10]	1.1%	1.59
ixed effect model	8854	•	-0.21 [-0	.23; -0.19]	36.3%	-
Random effects model leterogeneity: $I^2 = 87\%$, $\tau^2 = 0$.0184, <i>p</i> < 0.01		-0.21 [-0	.27; –0.15]		33.6%
construct = 4		* +				
/ida & Reardon 2008	714	-		.30; -0.16]	2.9%	1.6%
Nik-Mat et al. 2015	425		0.19 [(0.09; 0.28]	1.7%	1.5%
Douglas & Nijssen 2003	127			0.23; 0.12]	0.5%	1.39
Nijssen & Douglas 2011 Cleveland et al. 2016	100 241			0.23; 0.16] 0.22; 0.03]	0.4% 1.0%	1.29 1.49
Cleveland et al. 2016	192			0.22; 0.03]	0.8%	1.49
ysonski & Durvasula 2013	165		-0.22 [-0	.36; -0.07]	0.7%	1.39
Fixed effect model Random effects model	1964	*		.13; -0.04]	8.0%	9.7%
Heterogeneity: $I^2 = 88\%$, $\tau^2 = 0$.0296, <i>p</i> < 0.01	*	I v	,		/
Fixed effect model Random effects model	24431			.19; –0.16] .23; –0.15]	100.0%	
						100.0%

Notes: construct=0: cultural openness, construct=1: world-mindedness, construct=2: internationalism, construct=3: cosmopolitanism, construct=4: foreign travel

Figure 5.11 Forest plot for international values with moderator construct

In comparison to the two previously analyzed constructs of national values and animosity, moderators were able to explain less between group variance. Only the continent of the study, whether the country was developed or developing, and the number of items used on the CETSCALE showed significant between group differences.

For the continent of the study, the lowest correlation between international values and consumer ethnocentrism was found in Southern America, followed by Africa. The highest correlation was found in Australia, and Northern America, Europe, and Asia show relatively similar levels, as can be seen in Table 5.16. An explanation for this could be that Australians have higher international values, which negatively influences their consumer ethnocentric tendencies. Consumers from Southern America, on the other hand, might not have much contact to other countries and cultures, which results in lower international values and less negative influence on their consumer ethnocentrism. It needs to be kept in mind though that the meta-analysis results do not allow for drawing conclusions on such underlying constructs; and those possible explanations are therefore only assumptions.

Test for subgroups (ra	ndom effects m	nodel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
Continent = 2	19	-0.1796	[-0.2462; -0.1113]	146.27	87.7%
Continent = 1	31	-0.2059	[-0.2631; -0.1473]	290.43	89.7%
Continent = 0	10	-0.2322	[-0.3518; -0.1050]	115.65	92.2%
Continent = 5	2	-0.3139	[-0.5811; 0.0144	12.56	92.0%
Continent = 3	3	-0.0054	[-0.0874; 0.0768]	1.76	0.0%
Continent = 9	2	-0.1038	[-0.1610; -0.0460]	2.01	50.4%
Continent = 4	2	-0.0816	[-0.3451; 0.1938]	6.52	84.7%
Test for subgroup diff	erences (randor	n effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	21.42	6	0.0015		

Table 5.16 Analysis of international values for moderator continent

Notes: Continent=0: Northern America, Continent=1: Europe, Continent=2: Asia, Continent=3: Southern America, Continent=4: Africa, Continent=5: Australia, Continent=9: Mix of continents

A similar conclusion can be made when looking at the differences between developed (Western) countries and developing countries, where the relationship between international values and consumer ethnocentrism is more negative in developed countries than in developing, whose exact values are depicted in Table 5.17. This could be due to consumers from developed countries being more exposed to international values due to their higher possibilities to travel and to experience other cultures, while consumers from developing

countries have less opportunities to do so due to the costs involved, and therefore show less international values. This in turn reduces the negative relationship to consumer ethnocentrism.

Table 5.17 Analysis of international values for moderator developed								
Test for subgroups (random effects model)								
	<u>k</u>	COR	<u>95%-CI</u>	Q	$\underline{I^2}$			
Developed = 1	45	-0.1433	[-0.1822; -0.1039]	300.88	85.4%			
Developed $= 0$	24	-0.2824	[-0.3528; -0.2089]	240.71	90.4%			
Test for subgroup diffe	Test for subgroup differences (random effects model)							
	Q	<u>d.f.</u>	<u>p-value</u>					
Between groups	10.60	1	0.0011					

Table 5.17 Analysis of international values for moderator developed

Notes: Developed=0: developed (*Western*) *countries, Developed=1: developing countries*

In addition, the number of items on the CETSCALE were also able to explain a significant amount of between group variance. Clear conclusion can however not be drawn from the differences. As portrayed in Table 5.18, scales with the full 17-items as well as scales using only three to five items had the least negative correlations, while CETSCALEs with items ranging between six to 16 showed more negative correlations.

Test for subgroups (random effects model)								
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²			
CETtype = 0	16	-0.1563	[-0.2439; -0.0662]	196.91	92.4%			
CETtype = 4	34	-0.1792	[-0.2212; -0.1365]	186.79	82.3%			
CETtype = 3	11	-0.1995	[-0.3161; -0.0770]	136.40	92.7%			
CETtype = 2	2	-0.2190	[-0.4841; 0.0830]	8.03	87.5%			
CETtype = 9	2	-0.3702	[-0.4434; -0.2922]	0.27	0.00%			
CETtype = 1	4	-0.2963	[-0.5088; -0.0499]	56.19	94.7%			
Test for subgroup differences (random effects model)								
	Q	<u>d.f.</u>	<u>p-value</u>					
Between groups	19.38	5	0.0016					

Table 5.18 Analysis of international values for moderator CETtype

1 66 4

T (1

Notes: CETtype=0: 17 items, CETtype=1: 10 items, CETtype=2: 11-16 items, CETtype=3: 6-9 items, CETtype=4: 2-5 items, CETtype=9: N/a

Interestingly, whether participants were recruited from an urban area or not did not explain significant between group variance, although it would be expected that an urban population is more exposed to foreign cultures and therefore shows more negative correlations between international values and consumer ethnocentrism. However, this assumption was not confirmed in the analysis.

5.2.4 Collectivism

Collectivism was measured in 14 studies revealed by the systematic review, and the weighted average effect size of its relationship with consumer ethnocentrism is positive with r=0.2038 in the random effects model. Heterogeneity is high in both the I² value as well as the Q value, where the results are significant at the p< 0.0001 level.

Table 5.19 Weighted average effect sizes of collectivism

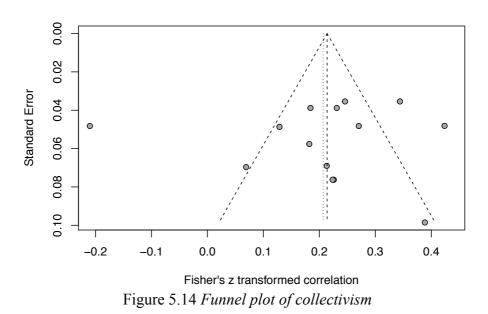
	COR	95%-CI	Z	p-value
Fixed effect model	0.2106	[0.1858; 0.2350]	16.28	< 0.0001
Random effects model	0.2038	[0.1244; 0.2807]	4.96	< 0.0001

Quantifyin	g heterogeneity	7	
I^2	89.5% [84.	1%; 93.0%]	
Test of het	erogeneity		
Q	<u>d.f.</u>	<u>p-value</u>	
123.56	13	< 0.0001	

Study	Total	Corre	lation	COR	95%–Cl	Weight (fixed)	Weight (random)
Sharma et al. 1995	667			0.18	[0.11; 0.25]	11.5%	7.7%
Sharma et al. 1995	667			0.23	[0.15; 0.30]	11.5%	7.7%
Javalgi et al. 2005	106			0.37	[0.19; 0.52]	1.8%	5.7%
Huang et al. 2008	433		- 1	0.26	[0.17; 0.35]	7.4%	7.4%
Huang et al. 2008	433		3	-0.21	[-0.30; -0.12]	7.4%	7.4%
Yoo & Donthu 2005	213			0.21	[0.08; 0.33]	3.6%	6.7%
Jain & Jain 2013	304			0.18	[0.07; 0.29]	5.2%	7.1%
Kumar et al. 2011	800			0.24	[0.17; 0.31]	13.7%	7.8%
Huang et al. 2010	434		· · · ·	0.40	[0.32; 0.48]	7.4%	7.4%
de Ruyter et al. 1998	175			0.22	[0.08; 0.36]	3.0%	6.5%
Nik–Mat et al. 2015	425			0.13	[0.03; 0.22]	7.3%	7.4%
Kumar et al. 2013	800		3	0.33	[0.27; 0.39]	13.7%	7.8%
van Birgelen et al. 2015	175			0.22	[0.07; 0.36]	3.0%	6.5%
Selli & Kurniawan 2014	209	_	• · · · · · · · · · · · · · · · · · · ·	0.07	[-0.07; 0.20]	3.6%	6.7%
Fixed effect model	5841		•	0.21	[0.19; 0.24]	100.0%	
Random effects model			\diamond	0.20	[0.12; 0.28]		100.0%
Heterogeneity: $I^2 = 89\%$, τ	² = 0.021	I, p ^I < 0.01					
		-0.4 -0.2 (0 0.2 0.4				

Figure 5.12 Forest plot of collectivism

The forest plot shows that all studies except from one find positive correlations between collectivism and consumer ethnocentrism. The one outlier is the from the study of Huang et al. (2008), who distinguished between collectivism towards parents and towards friends, with the negative correlation depicting collectivism towards friends. De Ruyter et al. (1998) also were the only others who also measured collectivism towards friends, but pooled the measure with collectivism towards parents. Their effect size however is very close to the weighted average effect size. The difference could lie in the countries of where the two studies were


conducted, with de Ruyter et al. (1998) being set in the Netherlands, a traditionally not very collectivist country, and Huang et al. (2008) conducting their study in Taiwan, a traditionally much more collectivist country (Hofstede, Hofstede and Minkov, 2010). It could be that due to collectivism being valued higher in society, participants feel more obligated to hold up to these expectations in front of their parents, but act more freely towards their friends. Another reason also pointed out by the authors is that higher collectivism towards parents could impose a higher national identity, which in turn leads to higher consumer ethnocentrism.

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
Sharma et al. 1995	667		÷ 0.18	[0.11; 0.25]	12.4%	9.4%
Sharma et al. 1995	667		0.23	[0.15; 0.30]	12.4%	9.4%
Javalgi et al. 2005	106		 0.37	[0.19; 0.52]	1.9%	4.4%
Huang et al. 2008	433		0.26	[0.17; 0.35]	8.0%	8.4%
Yoo & Donthu 2005	213		0.21	[0.08; 0.33]	3.9%	6.5%
Jain & Jain 2013	304		0.18	[0.07; 0.29]	5.6%	7.5%
Kumar et al. 2011	800		0.24	[0.17; 0.31]	14.8%	9.7%
Huang et al. 2010	434		0.40	[0.32; 0.48]	8.0%	8.4%
de Ruyter et al. 1998	175		0.22	[0.08; 0.36]	3.2%	5.9%
Nik-Mat et al. 2015	425		- 0.13	[0.03; 0.22]	7.9%	8.4%
Kumar et al. 2013	800		0.33	[0.27; 0.39]	14.8%	9.7%
van Birgelen et al. 2015	175		0.22	[0.07; 0.36]	3.2%	5.9%
Selli & Kurniawan 2014	209		0.07	[-0.07; 0.20]	3.8%	6.4%
Fixed effect model	5408		♦ 0.24	[0.22; 0.27]	100.0%	
Random effects model			0.24	[0.19; 0.28]		100.0%
Heterogeneity: $I^2 = 70\%$, τ	$^{2} = 0.0058,$	0 < 0.01		- / -		
	-C	.4 -0.2 0 0.	2 0.4			

Figure 5.13 Forest plot of collectivism with excluded collectivism towards friends

An analysis without the collectivism towards friends measure by Huang et al. (2008) shows that the weighted average effect size increases from 0.20 to 0.24 in the random effects model. Still, the study by Huang et al. (2008) can be seen as an outlier and will still be considered in the subsequent analyses of this construct, resulting in the full 14 studies being included. This approach was confirmed when looking at the funnel plot and applying the Trim-and-Fill Method.

As can be seen in Figure 5.14, the effect sizes are relatively equally distributed and mostly found within the expected triangle. The Trim-and-Fill Method did not add any missing values, which indicated that outliers have already been identified with the existing studies.

The analysis of moderators showed a couple of interesting results. Firstly, no significant between group results were found when comparing the continent of the studies, even though Asian cultures are more collectivist than Western cultures (Hofstede et al., 2010).

Test for subgroups (random effects model)								
	<u>k</u>	COR	<u>95%-CI</u>	<u>Q</u>	$\underline{I^2}$			
Continent = 2	10	0.1867	[0.0875; 0.2823]	120.28	92.5%			
Continent = 1	3	0.2573	[0.1659; 0.3443]	2.12	5.9%			
Continent = 0	1	0.2100	[0.0778; 0.3350]	0.00				
Test for subgroup differences (random effects model)								
	<u>Q</u>	<u>d.f.</u>	p-value					
Between groups	1.13	2	0.5685					

Table 5.21 Analysis of collectivism for moderator continent

Notes: Continent=0: Northern America, Continent=1: Europe, Continent=2: Asia

Due to the negative correlation of consumer ethnocentrism and collectivism towards friends found in the study by Huang et al. (2008), which was conducted in Asia, an additional analysis was run without their study. This increased the weighted average effect size for Asia, making it almost the same as Europe. Nevertheless, Asia still did not score higher, and differences between the continents were not found (see Appendix D4.3 for detailed results).

Differences between the groups were however found in the selection of the participants and the type of CETSCALE used. In the former, between group differences were significant at the p<0.05 level in the random effects model, as can be seen in Table 5.22. This is also due to the few studies analyzed, resulting in some selection criteria only being used once. Making

inferences about why the effect sizes differ across the selection methods used is therefore rather prone to speculation and a larger number of studies would be needed to confirm the findings.

Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	<u>Q</u>	<u>I</u> ²
Selection $= 2$	2	0.2046	[0.1526; 0.2555]	0.73	0.0%
Selection $= 4$	1	0.3700	[0.1929; 0.5238]	0.00	
Selection $= 0$	7	0.1535	[0.0175; 0.2840]	72.24	91.7%
Selection $= 5$	3	0.3105	[0.1979; 0.4150]	10.50	80.9%
Selection = 9	1	0.0690	[-0.0673; 0.2028]	0.00	
Test for subgroup diff	ferences (randor	n effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	11.25	4	0.0239		

Table 5.22 Analysis of collectivism for moderator selection

Notes: Selection=0: Random sampling, Selection=1: Convenience sampling, Selection=2: Mail list, Selection=4: Semi-random sampling, Selection=5: Quota-sampling, Selection=9: N/a

The different CETSCALEs used were able to explain the most variance, with the results being significant at the p<0.01 level in the random effects model. This again is also due to the small number of studies, with two CETSCALE types only being used once. Nevertheless, studies using the full 17-item CETSCALE were quite consistent, and have a relatively small confidence interval even in the random effects model.

Test for subgroups (ra	ndom effects m	odel)				
	<u>K</u>	COR	<u>95%-CI</u>	Q	$\underline{I^2}$	
CETtype = 0	9	0.2197	[0.1645; 0.2736]	24.24	67.0%	
CETtype = 3	3	0.0801	[-0.2190; 0.3655]	54.76	96.3%	
CETtype = 2	1	0.4000	[0.3178; 0.4762]	0.00		
CETtype = 1	1	0.2200	[0.0741; 0.3567]	0.00		
Test for subgroup differences (random effects model)						
	Q	<u>d.f.</u>	<u>p-value</u>			
Between groups	14.58	3	0.0022			

Table 5.23 Analysis of collectivism for moderator CETtype

Notes: CETtype=0: 17 items, CETtype=1: 10 items, CETtype=2: 11-16 items, CETtype=3: 6-9 items, CETtype=4: 2-5 items, CETtype=9: N/a

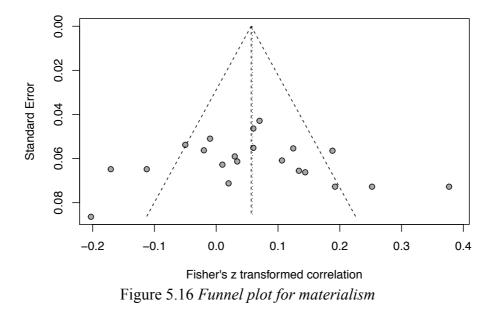
5.2.5 Materialism

Consumers with high materialism seek happiness through consumption. The relationship of this construct with consumer ethnocentrism was measured in 21 studies included in the meta-

analysis. These studies showed a weighted average effect size of r=0.0586, but the correlation of consumer ethnocentrism and materialism is only significant at the p<0.05 level in the random effects model. This shows that materialism has only a limited effect on consumer ethnocentrism, although slightly positive. This could imply that consumers show somewhat higher consumer ethnocentric tendencies if they are materialistic.

	COR	95%-CI	Z	p-value			
Fixed effect model	0.0565	[0.0311; 0.0818]	4.36	< 0.0001			
Random effects model	0.0586	[0.0079; 0.1090]	2.26	0.0235			

Table 5.24 Weighted average effect sizes of materialism


Table 5.25 Analyzing heterogeneity of materialism							
Quantifying heterogeneity							
I^2	74.3% [60	74.3% [60.5%; 83.2%]					
Test of he	terogeneity						
<u>Q</u>	<u>d.f.</u>	<u>p-value</u>					
77.71	20	< 0.0001					

The forest plot reveals that some studies find quite differing results, especially in the study conducted by Cleveland et al. (2009), which encompassed many different countries. In their research, both the lowest and highest values are found, with the lowest value being -0.20, and the highest value being 0.36.

Study	Total	Correlation	COR	95%–Cl	Weight (fixed)	Weight (random)
Cleveland et al. 2009	241	i	-0 17	[-0.29; -0.04]	4.0%	4.6%
Cleveland et al. 2009	231			[0.01; 0.27]	3.8%	4.6%
Cleveland et al. 2009	317	· · · · ·	0.19	[0.08; 0.29]	5.3%	5.0%
Cleveland et al. 2009	137			[-0.36; -0.03]	2.3%	3.8%
Cleveland et al. 2009	332			[-0.05; 0.17]	5.5%	5.0%
Cleveland et al. 2009	236		0.13	[0.01; 0.26]	3.9%	4.6%
Cleveland et al. 2009	192	i	0.36	[0.23; 0.48]	3.2%	4.3%
Cleveland et al. 2009	329		0.12	[0.02; 0.23]	5.5%	5.0%
Bevan-Dye et al. 2012	290		0.03	[-0.09; 0.14]	4.8%	4.9%
Park et al. 2008	319		-0.02	[-0.13; 0.09]	5.3%	5.0%
Sharma 2011	349		-0.05	[-0.15; 0.06]	5.8%	5.1%
Sharma 2011	388		-0.01	[-0.11; 0.09]	6.5%	5.2%
Sharma 2011	468	++	0.06	[-0.03; 0.15]	7.8%	5.4%
Sharma 2011	547	+ • • •	0.07	[-0.01; 0.15]	9.2%	5.5%
Cleveland et al. 2016	241		-0.11	[-0.24; 0.01]	4.0%	4.6%
Cleveland et al. 2016	192		- 0.25	[0.11; 0.38]	3.2%	4.3%
Wang et al. 2013	257		0.01	[-0.11; 0.13]	4.3%	4.7%
Prince et al. 2016	269		0.03	[-0.09; 0.15]	4.5%	4.8%
Prince et al. 2016	273	+ :	0.11	[-0.01; 0.22]	4.5%	4.8%
Cleveland et al. 2013	200		0.02	[-0.12; 0.16]	3.3%	4.4%
Cleveland et al. 2013	192		0.19	[0.05; 0.32]	3.2%	4.3%
Fixed effect model	6000	\$	0.06	[0.03; 0.08]	100.0%	
Random effects mode	_		0.06	[0.01; 0.11]		100.0%
Heterogeneity: $I^2 = 74\%$,			I			
	-(0.4 -0.2 0 0.2	0.4			

Figure 5.15 Forest plot for materialism

The funnel plot shows that most studies lie within the triangle shaped distribution, and the Trim-and-Fill Method did not add any missing values.

Next, the moderator analysis was run. The only significant moderator was the continent of the study, with the highest correlation of consumer ethnocentrism and materialism found in Southern America, and the lowest in Northern America, where materialism essentially plays no role on consumer ethnocentrism.

Test for subgroups (ra	undom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Continent = 0	5	-0.0045	[-0.1123; 0.1034]	17.54	77.2%
Continent = 1	5	0.1030	[-0.0558; 0.1497]	3.90	0.0%
Continent = 2	8	0.0112	[-0.0585; 0.0808]	17.62	60.3%
Continent = 3	2	0.3046	[0.1900; 0.4109]	1.47	31.9%
Continent = 4	1	0.0300	[-0.0855; 0.1447]	0.00	
Test for subgroup diff	erences (randor	n effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	21.88	4	0.0002		

Table 5.26 Analysis of materialism for moderator continent

Notes: Continent=0: Northern America, Continent=1: Europe, Continent=2: Asia, Continent=3: Southern America, Continent=4: Africa

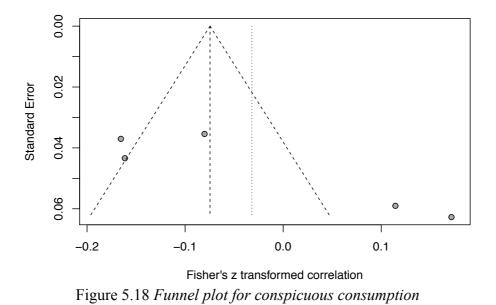
5.2.6 Conspicuous Consumption

The relationship of conspicuous consumption and consumer ethnocentrism was examined in five studies, and therefore just met the inclusion criteria for being analyzed in the metaanalysis. Due to the high variations among the studies, the overall weighted average effect size of r=-0.0319 shows a non-significant relationship of conspicuous consumption and consumer ethnocentrism, at least in the random effects model. Still, the heterogeneity analysis shows satisfying results with both the I² and the Q value, excluding chance as cause for the result. This means that conspicuous consumption does not influence consumer ethnocentric tendencies. Considering that consumers with conspicuous consumption buy goods in order to enhance their status, these findings are not completely surprising, since they put more emphasis on the image of the product than where it comes from. It could be that consumers hold ethnocentric tendencies, but do not apply these when purchasing goods that serve for enhancing their status.

Table 5.27 Weighted average effect sizes of conspicuous consumption

	COR	95%-CI	Z	p-value
Fixed effect model	-0.0744	[-0.1126; -0.0361]	-3.80	0.0001
Random effects model	-0.0319	[-0.1494; 0.0865]	-0.53	0.5978

Table 5.28 Analyzing heterogeneity of conspicuous consumption


Quantifying heterogeneity							
I ²	88.8% [76	88.8% [76.5%; 94.7%]					
Test of het	erogeneity						
<u>Q</u>	<u>d.f.</u>	<u>p-value</u>					
35.71	4	< 0.0001					

The forest plot graphically shows that the effect sizes vary greatly from study to study.

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
Wang & Cheng 2004	800		-0.08	[-0.15; -0.01]	30.7%	21.2%
Bevan-Dye et al. 2012	290		0.11	[0.00; 0.23]	11.0%	18.8%
Ranjbarian et al. 2011	732		-0.16	[-0.23; -0.09]	28.1%	21.1%
Mai & Tambyah 2011	534		-0.16	[-0.24; -0.08]	20.4%	20.5%
Wang et al. 2013	257		- 0.17	[0.05; 0.29]	9.8%	18.4%
Fixed effect model	2613	-	0.07	[-0.11; -0.04]	100 0%	
					100.0%	
Random effects mode			-0.03	[-0.15; 0.09]		100.0%
Heterogeneity: $I^2 = 89\%$, 1	² = 0.016	, <i>p</i> < 0.01				
-		-0.2 -0.1 0 0.1 0.2				

Figure 5.17 Forest plot conspicuous consumption

As can be seen in the funnel plot, the correlations hardly fit in the triangle shaped distribution, and the two positive values are further away from it.

Using the Trim-and-Fill Method, a missing value is assumed at the lower end of the spectrum. This is not likely a result left unpublished, as it would show a stronger correlation than results previously published. Further examination of the relationship between consumer ethnocentrism and conspicuous consumption could reveal such a finding, but overall it appears that these two constructs are distinct from each other.

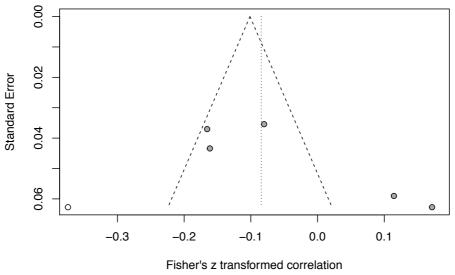


Figure 5.19 Filled funnel plot for conspicuous consumption

Due to the low amount of studies found measuring conspicuous consumption, as well as the insignificant relationship, moderator analysis was not performed on this construct.

5.2.7 Product Judgements Domestic

Assessment of the quality perception and overall evaluation of domestic products and correlating these to consumer ethnocentrism was included in 20 studies, with an overall weighted average effect size of r=0.2838 in the random effects model. As in all previously examined constructs, heterogeneity is also given with both the I² value as well as the Q value.

 Table 5.29 Weighted average effect sizes of product judgements domestic

	COR	95%-CI	Z	p-value
Fixed effect model	0.2647	[0.2468; 0.2825]	27.74	< 0.0001
Random effects model	0.2838	[0.2193; 0.3458]	8.30	< 0.0001

Table 5.30 Analyzing heterogeneity of product judgements domestic

Quantifying heterogeneity						
I^2	91.5% [88	.2%; 93.8%]				
Test of het	erogeneity					
<u>Q</u>	<u>d.f.</u>	<u>p-value</u>				
222.92	19	< 0.0001				

The forest plot shows positive correlations in all studies, with the lowest value being 0.09 (Bawa, 2004), and the highest value 0.66 (Douglas and Nijssen, 2003).

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
Bawa 2004	58		0.09	[-0.17; 0.34]	0.5%	3.1%
Bawa 2004	103		0.20	[0.00; 0.38]	1.0%	4.0%
Bawa 2004	174		0.31	[0.17; 0.44]	1.6%	4.6%
Wang & Cheng 2004	800		0.44	[0.38; 0.49]	7.6%	5.5%
Kumar et al. 2011	800	1 <u>1</u> +	0.32	[0.26; 0.38]	7.6%	5.5%
Kumar et al. 2011	800	<u>+</u>	0.28	[0.21; 0.34]	7.6%	5.5%
Dmitrovic et al. 2009	454		0.24	[0.15; 0.33]	4.3%	5.3%
Dmitrovic et al. 2009	600		0.28	[0.20; 0.35]	5.7%	5.4%
Dmitrovic et al. 2009	600		0.17	[0.09; 0.25]	5.7%	5.4%
Dmitrovic et al. 2009	300		0.39	[0.29; 0.49]	2.8%	5.0%
Zeugner-Roth et al. 2015	411	- <u></u>	0.24	[0.14; 0.33]	3.9%	5.2%
Zeugner-Roth et al. 2015	405		0.14	[0.05; 0.24]	3.8%	5.2%
Parts & Vida 2013	261		0.21	[0.09; 0.32]	2.5%	4.9%
Parts & Vida 2013	271		0.19	[0.08; 0.31]	2.6%	5.0%
Douglas & Nijssen 2003	127		- 0.66	[0.55; 0.75]	1.2%	4.2%
Kumar et al. 2013	800		0.41	[0.35; 0.47]	7.6%	5.5%
Kumar et al. 2013	800		0.43	[0.38; 0.49]	7.6%	5.5%
Verlegh 2007	103		0.32	[0.14; 0.49]	1.0%	4.0%
Jin et al. 2015	772		0.10	[0.03; 0.17]	7.4%	5.5%
Jin et al. 2015	1883		0.10	[0.06; 0.14]	18.0%	5.7%
Fixed effect model	10522	A	0.26	[0.25; 0.28]	100.0%	
Random effects model				[0.22; 0.35]		100.0%
Heterogeneity: $I^2 = 91\%$, $\tau^2 =$	= 0.0212	$p \leq 0.01$				/•
		-0.6 -0.2 0 0.2 0.4 0.6				

Figure 5.20 Forest plot of product judgements domestic

The funnel plot shows more graphically that the highest value is an outlier in comparison with what has been found in other studies. The Trim-and-Fill Method did not reveal any missing values, implying that the studies included give a very representative picture of the relationship between product judgements of domestic products and consumer ethnocentrism.

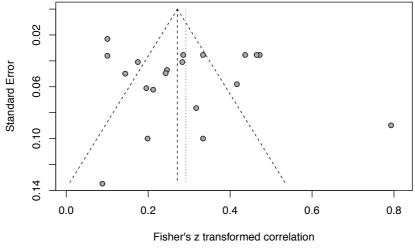


Figure 5.21 Funnel plot of product judgement domestic

Moderator analysis showed that actually many different moderators were well able to explain the heterogeneity found between the studies. First, there were significant differences between studies in different continents, with interestingly the highest correlation of domestic product judgements and CE found in Asia, and lowest in Europe.

Test for subgroups (random effects model)								
	<u>k</u>	COR	<u>95%-CI</u>	<u>Q</u>	<u>I</u> 2			
Continent = 2	8	0.3448	[0.2812; 0.4053]	32.34	78.4%			
Continent = 1	9	0.2799	[0.1955; 0.3602]	54.42	85.3%			
Continent = 0	1	0.3220	[0.1955; 0.3602]	0.00	-			
Continent = 9	2	0.1000	[0.0622; 0.1375]	0.00	0.0%			
Test for subgroup diff	Test for subgroup differences (random effects model)							
	Q	<u>d.f.</u>	<u>p-value</u>					
Between groups	49.62	3	< 0.0001					

Table 5.31 Analysis of product judgement domestic for moderator continent

Notes: Continent=0: Northern America, Continent=1: Europe, Continent=2: Asia, Continent=9: Mix of continents

As found often, selection of participants also explained a significant amount of between group variance. This is also due to the higher number of different selection criteria used, resulting in smaller studies combined under one criteria. Nevertheless, effect sizes are relatively uniform

for random and quota sampling, while they are lowest for convenience samples (see Table 5.32).

Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	<u>Q</u>	<u>I</u> ²
Selection = 1	4	0.1209	[0.0566; 0.1843]	5.28	43.2%
Selection $= 0$	3	0.2938	[0.2480; 0.3382]	2.09	4.5%
Selection $= 4$	2	0.3881	[0.2547; 0.5070]	3.38	70.4%
Selection $= 5$	10	0.2769	[0.2033; 0.3473]	67.33	86.6%
Selection $= 9$	1	0.6600	[0.5489; 0.7482]	0.00	-
Test for subgroup diff	erences (randon	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	59.12	4	< 0.0001		

Table 5.32 Analysis of product judgement domestic for moderator selection

Notes: Selection=0: Random sampling, Selection=1: Convenience sampling, Selection=4: Semi-random sampling, Selection=5: Quota-sampling; Selection=9: N/a

In addition, characteristics of participants also played an important role as moderators. The general population and high school students showed the highest effect sizes, whereas the effect sizes of university student samples and employees in a multinational company were significantly lower. An explanation for this could be that the latter two groups are more oriented towards and exposed to internationalism and show therefore less appreciation for domestic products.

Test for subgroups (ran	dom effects m	nodel)			
	<u>K</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
Characteristics = 3	1	0.0880	[-0.1743; 0.3386]	0.00	-
Characteristics = 2	4	0.1327	[0.0650; 0.1992]	6.03	50.3%
Characteristics = 1	1	0.3070	[0.1658; 0.4359]	0.00	-
Characteristics $= 0$	14	0.3183	[0.2549; 0.3790]	114.35	88.6%
Test for subgroup diffe	rences (randor	n effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	18.02	3	0.0004		

Table 5.33 Analysis of product judgement domestic for moderator characteristics

Notes: Characteristics=0: General population; Characteristics=1: Students, Characteristics=2: High-school students, Characteristics=3 managers/ employees from a firm

As commonly found, the type of CETSCALE was also able to explain between group variance. As can be seen in Table 5.34, the standard 17-item CETSCALE showed higher correlation with domestic product judgements than CETSCALEs with only two to five items.

Table 5.34 Analysis of product judgement domestic for moderator CETtype						
Test for subgroups (rar	ndom effects m	odel)				
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2	
CETtype = 0	8	0.3448	[0.2812; 0.4053]	32.34	78.4%	
CETtype = 4	11	0.2097	[0.1531; 0.2648]	46.57	78.5%	
CETtype = 2	1	0.6600	[0.5489; 0.7482]	0.00	-	
Test for subgroup differences (random effects model)						
	Q	<u>d.f.</u>	<u>p-value</u>			
Between groups	41.34	2	< 0.0001			

Notes: CETtype=0: 17 items, CETtype=2: 11-16 items, CETtype=4: 2-5 items

Lastly, the CET scores obtained were also relevant for examining differences between groups. Expectedly, lower CET scores resulted in lower effect sizes, whereas higher CET scores showed led higher to effect sizes. Still, most of the studies included in domestic product judgements did not report the CET score, so cannot be analyzed, which again relativizes the findings.

Test for subgroups (ra	undom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
CETcoded = 1	3	0.1136	[0.0581; 0.1685]	0.54	0.00%
CETcoded = 0	1	0.1960	[0.0026; 0.3753]	0.00	-
CETcoded = 3	1	0.3070	[0.1658; 0.4359]	0.00	-
CETcoded = 4	3	0.2646	[0.0270; 0.4739]	77.77	97.4%
CETcoded = 9	12	0.3272	[0.2613; 0.3901]	81.21	86.5%
Test for subgroup diff	erences (randon	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	25.88	4	< 0.0001		

Table 5.35 Analysis of product judgement domestic for moderator CET coded

Notes: CETcoded=0: Low (3-4), CETcoded=1: Medium (5), CETcoded=2: Medium-high (6), CETcoded=3: High (7-8), CETcoded=9: N/a

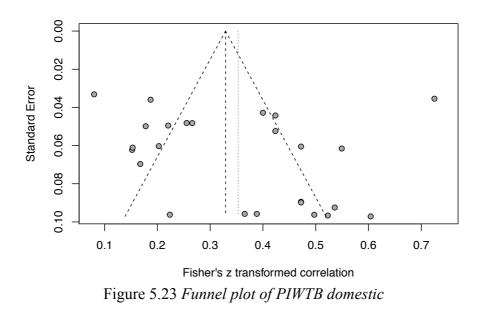
5.2.8 Purchase Intention and Willingness to Buy Domestic

For analyzing whether consumer ethnocentrism is related to consumers preferring to buy domestic products, 25 studies were included. The overall weighted average effect size is very positive, with the random effects models producing an r of 0.3319. Both tests conducted for assessing heterogeneity show high heterogeneity, with the Q value being significant at the p<0.0001 level.

Table 5.50 weighted uverage effect sizes of TWTD domestic							
	COR	95%-CI	Z	p-value			
Fixed effect model	0.3178	[0.2981; 0.3372]	29.67	< 0.0001			
Random effects model	0.3391	[0.2675; 0.4069]	8.78	< 0.0001			

Table 5.36 Weighted average effect sizes of PIWTB domestic

Table 5.37 Analyzing heterogeneity of PIWTB domestic


Quantifyin	g heterogeneit	у	
I^2	91.9% [89	0.3%; 93.9%]	
Test of hete	erogeneity		
<u>Q</u>	<u>d.f.</u>	<u>p-value</u>	
296.92	24	< 0.0001	

Graphical depiction of the findings in the forest plot reveals that all effect sizes are positive, although they do vary across studies, with the lowest effect size found by He and Wang (2015) with 0.08 and the highest effect size found by Wang and Cheng (2004) with 0.62.

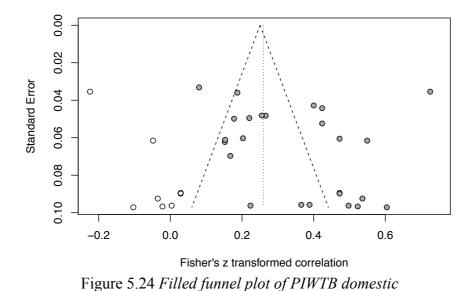

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
Shimp & Sharma 1987	278		0.20	[0.08; 0.31]	3.4%	4.1%
Shimp & Sharma 1987	276		0.44	[0.34; 0.53]	3.4%	4.1%
Shimp & Sharma 1987	267		0.50	[0.40; 0.58]	3.2%	4.1%
Shimp & Sharma 1987	514		0.40	[0.32; 0.47]	6.3%	4.3%
Parts & Vida 2013	261		0.15	[0.03; 0.27]	3.2%	4.1%
Parts & Vida 2013	271		0.15	[0.03; 0.27]	3.3%	4.1%
Huang et al. 2008	433		0.26	[0.17; 0.35]	5.3%	4.3%
Nguyen et al. 2008	549		0.38	[0.31; 0.45]	6.7%	4.3%
Wang & Cheng 2004	800		+ 0.62	[0.58; 0.66]	9.8%	4.4%
Zeugner-Roth et al. 2015	411		0.22	[0.12; 0.31]	5.0%	4.2%
Zeugner-Roth et al. 2015	405		0.18	[0.08; 0.27]	4.9%	4.2%
He & Wang 2015	912		0.08	[0.02; 0.14]	11.2%	4.4%
Suh & Kwon 2002	120			[0.34; 0.62]	1.4%	3.7%
Suh & Kwon 2002	128			[0.29; 0.57]		3.7%
Huang et al. 2010	434			[0.16; 0.34]	5.3%	4.3%
Nijssen & Douglas 2004	110			[0.32; 0.61]	1.3%	3.6%
Nijssen & Douglas 2004	109	:		[0.39; 0.66]	1.3%	3.6%
Rose et al. 2009	111			[0.04; 0.39]	1.3%	3.6%
Rose et al. 2009	111	+ m		[0.30; 0.60]		3.6%
Rose et al. 2009	112			[0.20; 0.52]	1.3%	3.6%
Rose et al. 2009	112			[0.18; 0.50]	1.3%	3.6%
Douglas & Nijssen 2003	127			[0.29; 0.57]	1.5%	3.7%
Selli & Kurniawan 2014	209			[0.03; 0.30]		4.0%
Parker et al. 2011	367			[0.31; 0.48]		4.2%
Mostafa 2010	776		0.19	[0.12; 0.25]	9.5%	4.4%
Fixed effect model	8203	\$	0.32	[0.30; 0.34]	100.0%	
Random effects model		│	0.34	[0.27; 0.41]		100.0%
Heterogeneity: $I^2 = 92\%$, τ^2	= 0.0357	r, <i>p</i> < 0.01		-		
-	-	0.6-0.4-0.2 0 0.2 0.4 0	6			

Figure 5.22 Forest plot of PIWTB domestic

Distribution of the z transformed correlations in the funnel plots further depicts the scattered correlations and shows that there are quite a few studies with very low standard errors.

The Trim-and-Fill Method reveals that missing studies lie on the lower spectrum of the observed correlations. These studies could be left unpublished, as low results are less likely to be published. If missing values were retrieved, the overall weighted average effect size would therefore be lower.

Since the PIWTB domestic construct consists of the three measures purchase intention domestic, willingness to buy domestic, and reluctance to buy foreign, moderator analysis on the type of construct was performed next. Overall, reluctance to buy foreign produced higher effect sizes than the other two constructs, which were relatively the same. This can be explained due to the definition of the construct, which may evoke stronger sentiments than the

other two constructs simply asking for preference. Nevertheless, between group differences in

the random effects model were not significant, and the constructs will therefore continue to be analyzed as a whole in the following.

Test for subgroups (ra	ndom effects n	nodel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
Construct = 0	6	0.3155	[0.1884; 0.4322]	43.55	88.5%
Construct = 1	6	0.3024	[0.0995; 0.4812]	199.71	97.5%
Construct = 2	13	0.3647	[0.2897; 0.4352]	53.42	77.5%
Test for subgroup diff	erences (randoi	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	0.69	2	0.7069		

Table 5.38 Analysis of PIWTB domestic for moderator construct

Notes: construct=0: purchase intention domestic, construct=1: willingness to buy domestic, construct=2: reluctance to buy foreign

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
construct = 0 Shimp & Sharma 1987 Shimp & Sharma 1987 Shimp & Sharma 1987 Shimp & Sharma 1987 Parts & Vida 2013 Parts & Vida 2013	278 276 267 514 261 271		0.44 0.50 0.40 0.15	[0.08; 0.31] [0.34; 0.53] [0.40; 0.58] [0.32; 0.47] [0.03; 0.27] [0.03; 0.27]	3.4% 3.4% 3.2% 6.3% 3.2% 3.3%	4.1% 4.1% 4.3% 4.3% 4.1% 4.1%
Random effects model Heterogeneity: $l^2 = 89\%$, $\tau^2 =$	1867 : 0.0255, <i>p</i> < 0.01			[0.29; 0.37] [0.19; 0.43]	22.7% 	 24.8%
construct = 1 Huang et al. 2008 Nguyen et al. 2008	433 549			[0.17; 0.35] [0.31; 0.45]	5.3% 6.7%	4.3% 4.3%
Wang & Cheng 2004	800			[0.58; 0.66]	9.8%	4.4%
Zeugner-Roth et al. 2015	411			[0.12; 0.31]	5.0%	4.2%
Zeugner-Roth et al. 2015	405			[0.08; 0.27]	4.9%	4.2%
He & Wang 2015 Fixed effect model	912 3510			[0.02; 0.14]	11.2% 43.0%	4.4%
Random effects model	3310			[0.29, 0.35]	43.0%	25.8%
Heterogeneity: $I^2 = 97\%$, $\tau^2 =$ construct = 2	: 0.0685, <i>p</i> < 0.01			L		
Suh & Kwon 2002	120			[0.34; 0.62]	1.4%	3.7%
Suh & Kwon 2002	128			[0.29; 0.57]	1.5%	3.7%
Huang et al. 2010 Nijssen & Douglas 2004	434 110			[0.16; 0.34]	5.3% 1.3%	4.3% 3.6%
Nijssen & Douglas 2004 Nijssen & Douglas 2004	109			[0.32; 0.66]	1.3%	3.6%
Rose et al. 2009	111			[0.04; 0.39]	1.3%	3.6%
Rose et al. 2009	111		0.46	[0.30; 0.60]	1.3%	3.6%
Rose et al. 2009	112			[0.20; 0.52]	1.3%	3.6%
Rose et al. 2009	112 127			[0.18; 0.50]	1.3% 1.5%	3.6% 3.7%
Douglas & Nijssen 2003 Selli & Kurniawan 2014	209			[0.29; 0.57] [0.03; 0.30]	1.5% 2.5%	3.7% 4.0%
Parker et al. 2011	367			[0.31; 0.48]	4.5%	4.0%
Mostafa 2010	776			[0.12; 0.25]	9.5%	4.4%
	2826	A		[0.28; 0.35]	34.3%	
Random effects model Heterogeneity: $I^2 = 78\%$, $\tau^2 =$: 0.0172, <i>p</i> < 0.01		0.36	[0.29; 0.44]		49.4%
Random effects model	8203	 Image: A start of the start of		[0.30; 0.34] [0.27; 0.41]	100.0% 	 100.0%
Heterogeneity: $I^2 = 92\%$, $\tau^2 =$	0.0357, <i>p</i> < 0.01 - 0.6 - 0.4					

Notes: construct=0: purchase intention domestic, construct=1: willingness to buy domestic, construct=2: reluctance to buy foreign

Figure 5.25 Forest plot of PIWTB domestic with moderator construct

When analyzing the moderators, the year the study was conducted was able to account for significant between group differences. Especially recent studies have shown relatively uniform effect sizes and effect sizes lower than what has previously been found. This could indicate a trend to lower levels of ethnocentric consumers' preference for domestic products, and could to be further examined in future research.

Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
Yearcoded = 0	4	0.3901	[0.2702; 0.4982]	18.08	83.4%
Yearcoded = 2	9	0.1984	[0.1344; 0.2607]	33.95	76.4%
Yearcoded = 1	12	0.4280	[0.3348; 0.5129]	82.28	86.6%
Test for subgroup diff	erences (randon	n effects model))		
	<u>Q</u>	<u>d.f.</u>	<u>p-value</u>		
Between groups	19.19	2	< 0.0001		

Table 5.39 Analysis of PIWTB domestic for moderator year

Notes: Yearcoded=0: study from 1987-1999; Yearcoded=1: study from 2000-2010; Yearcoded=2: study from 2010-2017

As in other studies, the selection method used was also a significant between group moderator. In the case of selection, this is in part due to the relatively high number of different methods used. Quota samples, which are often chosen to reflect the total population (Zeugner-Roth et al. 2015), report the lowest weighted average effect size, followed by random sampling. Other sampling methods employed showed higher results, but were also less frequently employed, and founded assumptions about a systematic difference can therefore not be made.

Test for subgroups (rar	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	<u>Q</u>	<u>I</u> 2
Selection $= 2$	4	0.3901	[0.2702; 0.4982]	18.08	83.4%
Selection $= 5$	6	0.2275	[0.1486; 0.3035]	19.71	74.6%
Selection $= 0$	9	0.3202	[0.2156; 0.4174]	58.68	86.4%
Selection = 4	1	0.6200	[0.5754; 0.6609]	0.00	-
Selection = 1	3	0.4263	[0.3590; 0.4892]	1.16	0.0%
Selection = 9	2	0.3046	[0.0162; 0.5463]	7.19	86.1%
Test for subgroup diffe	erences (randon	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	92.09	5	< 0.0001		

Table 5.40 Analysis of PIWTB domestic for moderator selection

Notes: Selection=0: Random sampling, Selection=1: Convenience sampling, Selection=2: Mail list, Selection=3: Panel, Selection=4: Semi-random sampling, Selection=5: Quota-sampling; Selection=9: N/a

Interestingly, when looking at the CETSCALE score, the effect size was highest for studies with lower scores, and lowest for the highest scores, although only one study fell in this cluster. High effect sizes were also reported for studies with medium-high CET scores, which falls into what is expected.

5 0		v	21		
Test for subgroups (rat	ndom effects me	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETtype = 0	7	0.4027	[0.2676; 0.5223]	92.98	93.5%
CETtype = 4	6	0.1955	[0.0947; 0.2923]	36.23	86.2%
CETtype = 3	10	0.3755	[0.2856; 0.4588]	41.32	78.2%
CETtype = 2	2	0.3369	[0.1388; 0.5091]	4.53	77.9%
Test for subgroup diffe	erences (random	effects model)			
	Q	<u>d.f.</u>	p-value		
Between groups	9.43	3	0.0241		
		2 11 14 1	GET 1 (0)	a ra	

Table 5.41 Analysis of PIWTB domestic for moderator CETtype

Notes: CETtype=0: 17 items, CETtype=2: 11-16 items, CETtype=3: 6-9 items, CETtype=4: 2-5 items, CETtype=9: N/a

In addition, characteristics of participants and the number of items used in the CETSCALE also explained between group variance, at a lightly wider significance level of p<0.05. Hereby, students showed higher weighted average effect sizes than the general population, and the full 17-item scale also produced the highest weighted average effect sizes. Since high positive correlations of consumer ethnocentrism and willingness to buy foreign are expected as per definition of consumer ethnocentrism, these findings undermine the reliability of CETSCALEs with fewer items. Exact results of these moderator analyses can be found in Appendix D8.

5.2.9 Product Judgements Foreign

Judgements, or also called evaluations, about foreign products was the most frequently measured construct across all studies, and a total of 46 studies were included. The resulting weighted average effect size is negative, with an exact value of r=-0.1985 in the random effects model. Analysis of heterogeneity in terms of I² and Q value showed high heterogeneity, but considering the large amount of studies included, the Q value is still quite low.

Table 5.42 Weighted average effect sizes of PIWIB domestic							
	COR	95%-CI	Z	p-value			
Fixed effect model	-0.2129	[-0.2265; -0.1993]	-29.84	< 0.0001			
Random effects model	-0.1985	[-0.2427; -0.1534]	-8.48	< 0.0001			

T-11. 5 40 HZ . 1 / 1 m · · CDUUTD 1

Table 5.43 Analyzing heterogeneity of PIWTB domestic

Quantifying	g heterogeneit	у		
I^2	90.1% [87.6%; 92.0%]			
Test of hete	rogeneity			
<u>Q</u>	<u>d.f.</u>	<u>p-value</u>		
453.22	45	< 0.0001		

The forest plot shows that the studies are relatively equally distributed, but still have a number extreme outliers. The most negative effect size was found by the study conducted by Fernández-Ferrín et al. (2015). This case is quite special, since their sample was collected in Yugoslavia in the year 2000, only 9 months after the war. Strong negative feelings towards foreign products could therefore to some extent be explained by the war and subsequent embargo. The two most positive effect sizes come from studies conducted in either China or Taiwan with the foreign country being Japan (Ishii, 2009; Huang et al., 2010). Whether these judgements are generalizable remains questionable, especially since more studies using the same countries (China or Taiwan as sample and Japan as foreign product origin) found negative correlations for the relationship between consumer ethnocentrism and foreign product judgements (Klein et al., 1998; Cai et al., 2012; Cheah et al., 2016; Ma et al., 2012).

Study	Total	Correlation	COR	95%–Cl	Weight (fixed)	Weight (random)
Ishii 2009	300	j	0.20	[0.08; 0.30]	1.6%	2.2%
Ishii 2009	300			-0.24; -0.01]	1.6%	2.2%
Bawa 2004	58			-0.49; -0.01]	0.3%	1.4%
Bawa 2004	103			-0.45; -0.09]	0.5%	1.7%
Bawa 2004	174			-0.40; -0.13]	0.9%	2.0%
Suh & Kwon 2002	120	C		[-0.26; 0.09]	0.6%	1.8%
Suh & Kwon 2002	128			-0.36; -0.03]	0.7%	1.9%
Yoo & Donthu 2005	213	<u></u> _		-0.46; -0.23]	1.1%	2.1%
Nguyen et al. 2008	549		-	-0.21; -0.05]	2.9%	2.3%
Kumar et al. 2011	800			-0.37; -0.25]	4.2%	2.4%
Kumar et al. 2011	800			-0.34; -0.21]	4.2%	2.4%
Huang et al. 2010	434	6 —		[0.11; 0.29]	2.3%	2.3%
Klein et al. 1998	244	§		-0.50; -0.29]	1.3%	2.1%
Nijssen & Douglas 2004	110	÷ —	0.14	[-0.05; 0.32]	0.6%	1.8%
Nijssen & Douglas 2004	109		-0.03	[-0.22; 0.16]	0.6%	1.8%
Zeugner-Roth et al. 2015	411		-0.15 [-0.24; -0.05]	2.1%	2.3%
Zeugner-Roth et al. 2015	405		-0.08	[-0.18; 0.01]	2.1%	2.3%
Fernandez-Ferrin et al. 2015	249	- ŭ ŭ		-0.70; -0.55]	1.3%	2.1%
Carter 2009	800		-0.36 [-0.42; -0.30]	4.2%	2.4%
Carter 2009	800			-0.37; -0.25]	4.2%	2.4%
Carter 2009	800		-0.21 [-0.27; -0.14]	4.2%	2.4%
Klein 2002	202			-0.45; -0.20]	1.0%	2.1%
Ettenson & Klein 2005	261			-0.39; -0.16]	1.4%	2.2%
Ettenson & Klein 2005	329			-0.34; -0.14]	1.7%	2.2%
Parker et al. 2011	367			[-0.17; 0.03]	1.9%	2.3%
Nakos & Hajidimitriou 2007	430			-0.25; -0.07]	2.2%	2.3%
Kumar et al. 2013	800			-0.41; -0.29]	4.2%	2.4%
Kumar et al. 2013	800			-0.42; -0.30]	4.2%	2.4%
Verlegh 2007	103			-0.48; -0.12]	0.5%	1.7%
Sharma 2011	349			[-0.19; 0.02]	1.8%	2.2% 2.3%
Sharma 2011 Sharma 2011	388 468	6		-0.23; -0.03]	2.0% 2.4%	2.3%
Sharma 2011	400 547		-	-0.24; -0.00]	2.4%	2.3%
Jin et al. 2015	772	£	-	-0.17; -0.03]	4.0%	2.3%
Jin et al. 2015	1883	:		-0.21; -0.13]	4.0 % 9.9%	2.4%
Cai et al. 2012	224	<u>i</u>		[-0.22; 0.04]	1.2%	2.1%
De Nisco et al. 2016	274			-0.27; -0.04]	1.4%	2.2%
De Nisco et al. 2016	182	6 6 		[-0.06; 0.23]	0.9%	2.0%
Wang et al. 2013	257	<u> </u>		-0.46; -0.25]	1.3%	2.2%
Cheah et al. 2016	435	ê 💷	-	[-0.16; 0.02]	2.3%	2.3%
Ma et al. 2012	255	<u> </u>		[-0.23; 0.01]	1.3%	2.2%
Ma et al. 2012	255			[-0.20; 0.04]	1.3%	2.2%
Ma et al. 2012	255	<u> </u>		[-0.21; 0.03]	1.3%	2.2%
Funk et al. 2010	319		-0.41 [-0.50; -0.31]	1.7%	2.2%
Richardson & Harris 2014	348		-0.30 [-0.40; -0.21]	1.8%	2.2%
Mostafa 2010	776	-	-0.35 [-0.41; -0.29]	4.1%	2.4%
Fixed effect model	19186	¢.	-	-0.23; -0.20]	100.0%	
Random effects model	-		-0.20 [-0.24; -0.15]		100.0%
Heterogeneity: $I^2 = 90\%$, $\tau^2 = 0.0$			-			
	-0.	6-0.4-0.2 0 0.2 0.4 0	.6			

Figure 5.26 Forest plot for product judgements foreign

The funnel plot further shows that many studies lie in the range of 0 to -0.4, with a few outliers at the upper and lower end.

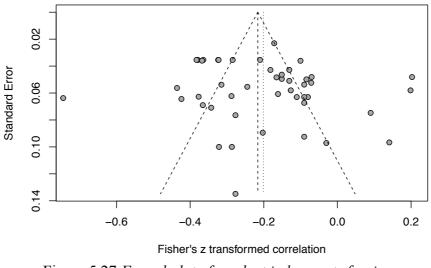


Figure 5.27 Funnel plot of product judgements foreign

Using the Trim-and-Fill Method, missing values are identified. These lie on the lower end of the spectrum. Since these studies would show a strong negative correlation, it is rather unlikely that they are unpublished. They could most likely be found when comparing products from countries with high animosity, and where domestic products are of higher quality than foreign products.

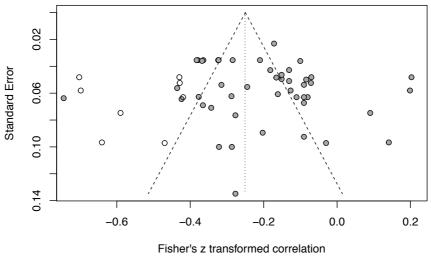


Figure 5.28 Filled funnel plot of product judgements foreign

Next, a moderator analysis showed that many moderators were able to explain a significant amount of between group variance. As found with other constructs, the moderators selection of participants and the CETSCALE items used were able to explain most heterogeneity.

For selection of participants, the highest effect sizes were found in random selection and participants from a panel. This again points in a direction of these samples having the lowest response bias.

Test for subgroups (ra	ndom effects m	nodel)							
	<u>k</u>	COR	<u>95%-CI</u>	Q	$\underline{I^2}$				
Selection $= 4$	8	-0.1017	[-0.1849; -0.0171]	37.63	81.4%				
Selection $= 1$	13	-0.1173	[-0.1600; -0.0742]	21.33	43.7%				
Selection $= 0$	13	-0.2663	[-0.3212; -0.2095]	47.49	74.7%				
Selection $= 5$	6	-0.1522	[-0.3141; -0.0183]	126.99	96.1%				
Selection $= 3$	6	-0.3803	[-0.4805; -0.2703]	57.49	91.3%				
Test for subgroup diff	Test for subgroup differences (random effects model)								
	Q	<u>d.f.</u>	p-value						
Between groups	32.51	4	< 0.0001						

 Table 5.44 Analysis of foreign product judgement for moderator selection

Notes: Selection=0: Random sampling, Selection=1: Convenience sampling, Selection=3: Panel, Selection=4: Semi-random sampling, Selection=5: Quota-sampling

The number of items used in the CETSCALE showed that higher numbers of items used had generally higher effect sizes, which could point out to the higher reliability of the construct consumer ethnocentrism measured with more items.

Test for subgroups (ra	ndom effects m	odel)							
	<u>k</u>	COR	<u>95%-CI</u>	<u>Q</u>	<u>I</u> ²				
CETtype = 4	13	-0.1349	[-0.2057; -0.0626]	89.34	86.6%				
CETtype = 0	12	-0.2911	[-0.3366; -0.2444]	40.85	73.1%				
CETtype = 3	15	-0.1438	[-0.2056; -0.0809]	63.18	77.8%				
CETtype = 2	1	0.2000	[0.1079; 0.2887]	0.00	-				
CETtype = 1	4	-0.4005	[-0.5680; -0.2011]	40.37	92.6%				
CETtype = 9	1	-0.3050	[-0.3974; -0.2065]	0.00	-				
Test for subgroup diff	Test for subgroup differences (random effects model)								
	<u>Q</u>	<u>d.f.</u>	<u>p-value</u>						
Between groups	98.38	5	< 0.0001						

Table 5.45 Analysis of product judgement for moderator CETtype

Notes: CETtype=0: 17 items, CETtype=1: 10 items, CETtype=2: 11-16 items, CETtype=3: 6-9 items, CETtype=4: 2-5 items, CETtype=9: N/a

In addition, the year of when the study was conducted and the continent of where the study was conducted were also able to explain between group variance significant at the p<0.01 level. Looking at the subgroups of the year of the study, it becomes evident that this is due to only one study being conducted in the years from 1987-1999, having a relatively high effect size. Nevertheless, it is interesting to see that the effect sizes have overall been stable since 2000 until now.

Table 5.46 Analysis of	f product judgm	ent foreign for 1	noderator year		
Test for subgroups (rat	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Yearcoded = 1	19	-0.1956	[-0.2620; -0.1274]	119.72	85.0%
Yearcoded $= 2$	26	-0.1927	[-0.2526; -0.1313]	322.42	92.2%
Yearcoded = 0	1	-0.4000	[-0.5004; -0.2889]	0.00	-
Test for subgroup diffe	erences (randor	n effects model))		
	<u>Q</u>	<u>d.f.</u>	<u>p-value</u>		
Between groups	10.93	2	0.0042		

Notes: Yearcoded=0: study from 1987-1999; Yearcoded=1: study from 2000-2010; Yearcoded=2: study from 2010-2017

Analysis of the continent of the study shows that negative correlations between consumer ethnocentrism and foreign product judgements are higher in Northern America and Australia.

	81				
Test for subgroups (ran	dom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	$\underline{I^2}$
Continent = 2	23	-0.1776	[-0.2475; -0.1059]	261.23	91.6%
Continent = 0	10	-0.2913	[-0.3458; -0.2348]	31.78	71.7%
Continent = 1	9	-0.1437	[-0.2818; 0.0002]	109.08	92.7%
Continent = 5	2	-0.2578	[-0.3318; -0.1806]	0.27	0.0%
Continent = 9	2	-0.1405	[-0.2074; -0.0722]	2.78	64.0%
Test for subgroup diffe	rences (randor	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	14.96	4	0.0048		

Table 5.47 Analysis of foreign product judgement for moderator continent

Notes: Continent=0: Northern America, Continent=1: Europe, Continent=2: Asia, Continent=5: Australia, Continent=9: Mix of continents

5.2.10 Purchase Intention and Willingness to Buy Foreign

Finally, the combination of the constructs purchase intention foreign and willingness to buy foreign into one overall WTB foreign construct produced 33 included studies and a weighted average effect size of r=-0.3783 in the random effects model. Analysis of heterogeneity showed that both the I² and Q value indicate high heterogeneity, eliminating the possibility of random chance for the results.

Table 5.48 Weighted average effect sizes of PIWTB foreign

	COR	95%-CI	Z	p-value
Fixed effect model	-0.3778	[-0.3928; -0.3627]	-44.41	< 0.0001
Random effects model	-0.3783	[-0.4525; -0.2989]	8.69	< 0.0001

Table 5.49 Analyzing heterogeneity of PIWTB foreign							
Quantifying heterogeneity							
I^2	96.1% [95.3%; 96.8%]						
Test of hete	rogeneity						
<u>Q</u>	<u>d.f.</u>	<u>p-value</u>					
823.75	32	< 0.0001					

As portrayed in the forest plot, the weighted effect sizes vary from -0.86 (Fernández-Ferrín et al., 2015) to 0.09 (Suh and Kwon, 2002). As discussed in the previous chapter about foreign product judgements, Fernández-Ferrín et al. (2015) use a very specific case of data collection in Yugoslavia shortly after the end of the war, which explains the participants' strong negative feelings towards foreign products.

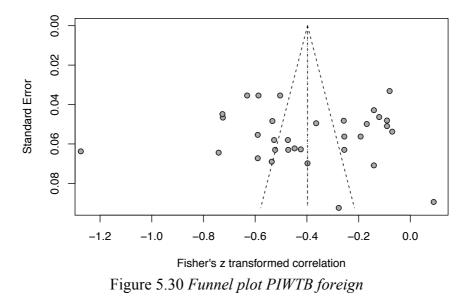

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
olddy	iotai		0011		(inxed)	(rundoni)
Akdogan & Ozgener 2012	208	-+	-0.38	[-0.49; -0.26]	1.6%	3.0%
Park et al. 2008	319		-0.19	[-0.29; -0.08]	2.5%	3.0%
Sharma 2011	349		-0.07	[-0.17; 0.04]	2.8%	3.0%
Sharma 2011	388		-0.09	[-0.19; 0.01]	3.1%	3.1%
Sharma 2011	468		-0.12	[-0.21; -0.03]	3.7%	3.1%
Sharma 2011	547		-0.14	[-0.22; -0.06]	4.4%	3.1%
Fakharmanesh & Miyandehi 2013	463	-	-0.62	[-0.67; -0.56]	3.7%	3.1%
Funk et al. 2010	319		-0.25	[-0.35; -0.14]	2.5%	3.0%
Ishii 2009	300		-0.48	[-0.57; -0.39]	2.4%	3.0%
Ishii 2009	300		-0.44	[-0.53; -0.34]	2.4%	3.0%
Huang et al. 2008	433		-0.25	[-0.34; -0.16]	3.4%	3.1%
Suh & Kwon 2002	120		-0.27	[-0.43; -0.10]	0.9%	2.8%
Suh & Kwon 2002	128		0.09	[-0.08; 0.26]	1.0%	2.8%
Yoo & Donthu 2005	213		-0.49	[-0.59; -0.38]	1.7%	3.0%
Klein et al. 1998	244	-	-0.63	[-0.70; -0.55]	1.9%	3.0%
Jimenez Torres & San Martin Gutierrez 2007	202		-0.14	[-0.27; 0.00]	1.6%	3.0%
Zeugner-Roth et al. 2015	411		-0.35	[-0.43; -0.26]	3.3%	3.1%
Zeugner-Roth et al. 2015	405		-0.17	[-0.26; -0.07]	3.2%	3.1%
Fernandez-Ferrin et al. 2015	249 =		-0.86	[-0.89; -0.82]	2.0%	3.0%
Carter 2009	800	I	-0.56	[-0.60; -0.51]	6.4%	3.1%
Carter 2009	800		-0.53	[-0.58; -0.48]	6.4%	3.1%
Carter 2009	800		-0.46	[-0.52; -0.41]	6.4%	3.1%
He & Wang 2015	912		-0.08	[-0.14; -0.02]	7.3%	3.1%
Ettenson & Klein 2005	261		-0.42	[-0.52; -0.31]	2.1%	3.0%
Ettenson & Klein 2005	329	-	-0.53	[-0.60; -0.45]	2.6%	3.0%
Nakos & Hajidimitriou 2007	430	-	-0.49	[-0.56; -0.41]	3.4%	3.1%
Tabassi et al. 2012	500		-0.62	[-0.67; -0.56]	4.0%	3.1%
Cai et al. 2012	224			[-0.62; -0.43]	1.8%	3.0%
Wang et al. 2013	257	- <u>+</u> -	-0.40	[-0.50; -0.29]	2.0%	3.0%
Cheah et al. 2016	435		-0.09	[-0.18; 0.00]	3.5%	3.1%
Ma et al. 2012	255		-0.48	[-0.57; -0.38]	2.0%	3.0%
Ma et al. 2012	255		-0.25	[-0.36; -0.13]	2.0%	3.0%
Ma et al. 2012	255		-0.44	[-0.53; -0.34]	2.0%	3.0%
Fixed effect model	12579	6	-0.38	[-0.39; -0.36]	100.0%	
Random effects model				[-0.45; -0.30]		100.0%
Heterogeneity: $I^2 = 96\%$, $\tau^2 = 0.066$, $p < 0.01$						
		-0.5 0 0.5				

Figure 5.29 Forest plots for PIWTB foreign

The funnel plot shows more graphically that the study by Fernández-Ferrín et al. (2015) is an extreme outlier, and the other correlations are closer together, but do still not quite follow the triangle distribution. This is due to their high heterogeneity, which was already portrayed with

Weight Weight

the I² and Q value. Using the Trim-and-Fill Method to detect missing studies did not add any values, showing that no studies are missing that could significantly change the result.

Next, moderator analysis was performed on the two constructs combined, namely purchase intention and willingness to buy. The analysis showed that the two constructs were indeed different from each other and explained between group variance at the p<0.05 level. As can be seen in Table 5.50 and the following forest plot, willingness to buy has a significantly higher weighted average effect size than purchase intention. This could be due to willingness to buy being a stronger construct than purchase intention, and often being measured with more items than simple purchase intention.

Test for subgroups (random effects model)									
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²				
Construct = 0	8	-0.2436	[-0.3896; -0.0857]	0.0523	95.2%				
Construct = 1	25	-0.4189	[-0.4986; -0.3322]	0.063	95.9%				
Test for subgroup diffe	erences (rando	m effects model))						
	Q	<u>d.f.</u>	<u>p-value</u>						
Between groups	4.09	1	0.0431						

Table 5.50 Analysis of PIWTB foreign for moderator construct

Notes: Construct=0: purchase intention foreign, Construct=1: willingness to buy foreign

Study	Total	Correlation	COR	W 95%–CI (/eight fixed)	Weight (random)
construct = 0 Akdogan & Ozgener 2012 Park et al. 2008 Sharma 2011 Sharma 2011 Sharma 2011 Sharma 2011 Fakharmanesh & Miyandehi 2013 Funk et al. 2010 Fixed effect model Random effects model Heterogeneity: $l^2 = 95\%$, $\tau^2 = 0.0523$, $p < 0.01$	208 319 349 388 468 547 463 319 3061	* * *	-0.19 -0.07 -0.09 -0.12 -0.14 -0.62 -0.25 -0.24	$\begin{bmatrix} -0.49; -0.26 \\ [-0.29; -0.08] \\ [-0.17; 0.04] \\ [-0.19; 0.01] \\ [-0.21; -0.03] \\ [-0.22; -0.06] \\ [-0.67; -0.56] \\ [-0.35; -0.14] \\ [-0.27; -0.21] \end{bmatrix}$	1.6% 2.5% 2.8% 3.1% 3.7% 4.4% 3.7% 2.5% 24.3%	3.0% 3.0% 3.1% 3.1% 3.1% 3.1% 3.0% 24.4%
construct = 1 Ishii 2009 Ishii 2009 Huang et al. 2008 Suh & Kwon 2002 Suh & Kwon 2002 Yoo & Donthu 2005 Klein et al. 1998 Jimenez Torres & San Martin Gutierrez 2007 Zeugner-Roth et al. 2015 Zeugner-Roth et al. 2015 Fernandez-Ferrin et al. 2015 Carter 2009 Carter 2009 Carter 2009 He & Wang 2015 Ettenson & Klein 2005 Ettenson & Klein 2005 Nakos & Hajidimitriou 2007 Tabassi et al. 2012 Cai et al. 2012 Cai et al. 2012 Wang et al. 2012 Wang et al. 2012 Ma et al. 2012 Ma et al. 2012 Fixed effect model Random effects model Heterogeneity: $f^2 = 90\%$, $r^2 = 0.063$, $p < 0.01$	300 300 433 120 128 213 244 202 411 405 249 # 800 800 800 800 800 912 261 329 430 500 224 257 435 255 255 255 255 9518		$\begin{array}{c} -0.44\\ -0.25\\ -0.27\\ 0.09\\ -0.49\\ -0.63\\ -0.14\\ -0.35\\ -0.17\\ -0.86\\ -0.56\\ -0.53\\ -0.46\\ -0.68\\ -0.62\\ -0.53\\ -0.49\\ -0.62\\ -0.53\\ -0.49\\ -0.62\\ -0.53\\ -0.40\\ -0.09\\ -0.48\\ -0.22\\ -0.53\\ -0.44\\ -0.42\\ \end{array}$	$ \begin{bmatrix} -0.57; -0.39 \\ [-0.53; -0.34] \\ [-0.34; -0.16] \\ [-0.43; -0.10] \\ [-0.59; -0.38] \\ [-0.70; -0.55] \\ [-0.27; 0.00] \\ [-0.26; -0.07] \\ [-0.26; -0.07] \\ [-0.89; -0.82] \\ [-0.60; -0.51] \\ [-0.58; -0.48] \\ [-0.52; -0.41] \\ [-0.52; -0.41] \\ [-0.52; -0.31] \\ [-0.56; -0.43] \\ [-0.56; -0.43] \\ [-0.56; -0.43] \\ [-0.50; -0.29] \\ [-0.18; 0.00] \\ [-0.57; -0.38] \\ [-0.53; -0.34] \\ [-0.54; -0.40] \\ [-0.56; -0.33] \\ \end{bmatrix} $	2.4% 2.4% 3.4% 0.9% 1.0% 1.7% 1.9% 3.3% 2.0% 6.4% 6.4% 6.4% 6.4% 2.1% 2.6% 3.4% 2.0% 3.4% 2.0% 2.0% 2.0% 2.0% 2.0% 2.0%	3.0% 3.0% 3.1% 2.8% 3.0% 3.0% 3.1% 3.1% 3.1% 3.1% 3.1% 3.1% 3.1% 3.1
Fixed effect model Random effects model Heterogeneity: I^2 = 96%, τ^2 = 0.066, p < 0.01	12579	-0.5 0 0.5		[–0.39; –0.36] 10 [–0.45; –0.30]	00.0% 	 100.0%

Notes: Construct=0: purchase intention foreign, Construct=1: willingness to buy foreign Figure 5.31 *Forest plot of PIWTB foreign with moderator construct*

Subsequent analysis of examining the two constructs separately showed that while purchase intention has a less negative effect sizes than willingness to buy, both constructs are still very heterogeneous. This can be seen in the following funnel plots as well as in comparing the I^2 values, which are almost the same with 95.2% for PI and 95.9% for WTB, and the resulting funnel plots, where the correlations are scattered in both constructs. For analyzing other moderators, the two constructs were therefore still left combined.

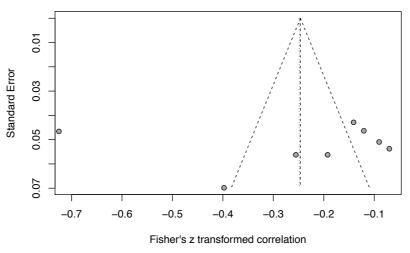


Figure 5.32 Funnel plot of purchase intention foreign

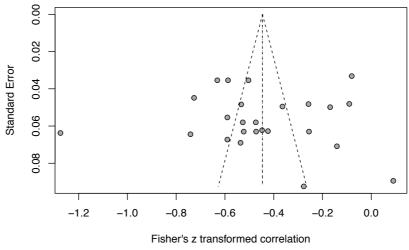


Figure 5.33 Funnel plot for willingness to buy foreign

Three moderators were able to explain significant between group variance at the p<0.0001 level. These were the year when the study was conducted, the characteristics of the participants, and the number of items used for the CETSCALE. For the year of the study, this is a result of only one study falling into the range of 1987-1999, and with this study having a high effect size, as can be seen in Table 5.55.

Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
Yearcoded $= 2$	18	-0.358	[-0.4734; -0.2306]	582.98	97.1%
Yearcoded = 1	14	-0.388	[-0.4643; -0.3061]	149.99	91.3%
Yearcoded = 0	1	-0.630	[-0.7002; -0.5478]	0.00	-
Test for subgroup diff	erences (randor	n effects model)		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	20.71	2	< 0.0001		

Table 5.51 Analysis of PIWTB foreign for moderator year

Notes: Yearcoded=0: study from 1987-1999; Yearcoded=1: study from 2000-2010; Yearcoded=2: study from 2010-2017

For the characteristics of the participants, the general population had the most negative weighted average effect size, while it was less negative for student samples, and even less negative for employees of a multinational firm. This could be due to students and employees of a multinational firm being more oriented towards and exposed to internationalism and therefore showing less negative preferences for foreign products.

Test for subgroups (random effects model)										
	<u>K</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²					
Characteristics $= 0$	25	-0.4372	[-0.5132; -0.3543]	590.07	95.9%					
Characteristics = 1	4	-0.2406	[-0.4724; 0.0223]	40.78	92.6%					
Characteristics = 3	4	-0.1098	[-0.1559; -0.0631]	1.27	-					
Test for subgroup differ	Test for subgroup differences (random effects model)									
	Q	<u>d.f.</u>	<u>p-value</u>							
Between groups	41.83	2	< 0.0001							

Table 5.52 Analysis of PIWTB foreign for moderator characteristics

Notes: Characteristics=0: General population; Characteristics=1: Students: Characteristics=3 managers/ employees from a firm

Analysis of selection of participants shows is able to explain a significant amount of between group variance due to its many subgroups. Similar to results found in other constructs, random sampling and samples from panels show the strongest expected relationship, namely a high negative correlation between consumer ethnocentrism and purchase intention and willingness to buy foreign. Semi-random, convenience sampling and quota sampling, however, have less negative effect sizes, pointing towards a possible response bias.

Table 5.53 Analysis of PIWTB foreign for moderator selection

Test for subgroups (random effects model)									
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²				
Selection $= 0$	10	-0.4399	[-0.5568; -0.3059]	205.93	95.6%				

Selection = 1	7	-0.3111	[-0.4467; -0.1615]	58.95	89.8%
Selection $= 4$	7	-0.2105	[-0.3323; -0.0818]	74.23	91.9%
Selection = 9	2	-0.4098	[-0.7648; 0.1361]	47.39	97.9%
Selection $= 3$	5	-0.5701	[-0.7065; -0.3928]	157.72	97.5%
Selection $= 5$	2	-0.2604	[-0.4287; -0.0746]	7.76	87.1%
Test for subgroup diff	ferences (randor	n effects model)		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	13.69	5	< 0.0001		

Notes: Selection=0: Random sampling, Selection=1: Convenience sampling, Selection=3: Panel, Selection=4: Semi-random sampling, Selection=5: Quota-sampling; Selection=9: N/a

5.2.11 General Influence of Moderators

A general trend can be seen when examining the influence of moderators for between group variance, of which an overview is given in Table 5.54.

Table 5.54 Significance of moderators explaining between group variance in the different constructs

0 2	0		0	0 1		55		
	Year	Continent	Developed	Urban	Selection	Characteristics	Items	Score
National Values	< 0.0001	0.0043	0.0089	0.0840	< 0.0001	0.0086	0.0048	n.s.
Animosity	< 0.0001	0.0699	0.0986	n.s.	< 0.0001	< 0.0001	0.0004	n.s.
Int. Values	n.s.	0.0015	0.0011	n.s.	n.s.	n.s.	0.0016	n.s.
Collectivism	n.s.	n.s.	n.s.	n.s.	0.0239	*	0.0022	n.s.
Materialism	n.s.	0.0002	n.s.	n.s.	n.s.	n.s.	n.s.	n.s.
PJ Domestic	n.s.	< 0.0001	n.s.	n.s.	< 0.0001	0.0004	< 0.0001	< 0.0001
WTB Domestic	< 0.0001	n.s.	0.0821	n.s.	< 0.0001	0.0481	0.0241	0.0010
PJ Foreign	0.0042	0.0048	n.s.	n.s.	< 0.0001	0.0532	< 0.0001	0.0216
WTB Foreign	< 0.0001	n.s.	n.s.	n.s.	0.0177	< 0.0001	< 0.0001	n.s.

Notes: moderator analysis was not performed for conspicuous consumption, n.s. = not significant, *all participants from the general population

The most powerful moderator is found in number of items used in the CETSCALE, which was able to explain a significant part of between group variance in all constructs for which moderator analysis was conducted except for one. It was often found that less CETSCALE items showed less correlations in the proposed direction, and more CETSCALE items showed stronger correlations in the proposed direction. Meaning that, for example, the influence of consumer ethnocentrism for willingness to buy foreign products was more negative for studies using CETSCALEs consisting of only 2-9 items. While this trend was also shown for animosity, domestic product judgements, domestic willingness to buy, and foreign product judgements, other constructs such as national values or international values did not confirm it. Therefore, these findings cannot be completely generalized. Another factor influencing this

trend could also be that more studies in recent years used shortened CETSCALEs, and relationships were less strong in recent years, which will also be discussed.

Next, the selection of the participants also played an important part for determining the relationship between consumer ethnocentrism and a related construct. Random samples, samples from panels, and quota samples often showed different results than convenience samples, semi-random samples or samples from a mail list. This could indicate that response bias exists, where respondents do not answer completely truthfully when they are recruited through convenience samples or semi-random samples. It needs to be kept in mind though that the high amount of significant between group differences in this moderator is also due to the larger amount of different approaches used through which participants were recruited. This results in more sub-categories with fewer number of studies, explaining more variance.

Furthermore, participant characteristics were also frequently found to be significant moderators. Student samples only differed slightly from samples drawn from the general population, confirming assumptions that have been made in previous research for being able to use student samples indifferently from a general population (Wong, Polonsky, & Garma, 2008). Differences were most commonly found between the latter two sample characteristics and high-school students or managers. While high-school students showed stronger relationships between consumer ethnocentrism and its related constructs, managers showed smaller relationships. These groups were less frequently used though, so caution needs to be taken when considering their influence.

In addition, the year of the study was also a significant moderator for five of the examined constructs. In four of these, studies in recent years (2010-2017) showed less strong relationships between consumer ethnocentrism and another construct, and only for foreign product judgements this trend was not found.

Lastly, the continent of the study explained significant between group variance for six constructs. However, findings are less generalizable here, and the high amount of studies finding significant explanatory power by this moderator was also due to the relatively large amount of categories in this moderator.

Interestingly, the CET score did only explain between group variance for three outcomes of consumer ethnocentrism, and not for antecedents. This could imply that the CET score does

not play a role when determining the influence of socio-psychological antecedents on consumer ethnocentrism.

5.3 Summary of Results

Overall, the results of the meta-analysis confirm findings of previous research and strengthen the understanding of the relationship between consumer ethnocentrism and its related constructs. For the socio-psychological antecedents, national values, animosity and collectivism positively influence consumer ethnocentrism, meaning that consumers tend to be more ethnocentric if they hold national values, animosity, or are more collectivistic. International values, on the other hand, negatively influence consumer ethnocentrism, meaning that a person who holds international values tends to be less ethnocentric. Findings for materialism and collectivism are less clear-cut. While still significant, materialism only has very limited influence on consumer ethnocentrism, with materialism influencing consumer ethnocentrism slightly positively. The relationship between conspicuous consumption and consumer ethnocentrism proved not to be significant, indicating that the two constructs are independent from each other. This stems from research having found conflicting results, some pointing towards a positive influence, while others point towards a negative influence.

Antecedents	k	Ν	Min	Max	r	Sig.	95%-CI	Q	I^2
National Values	69	22,157	-0.20	0.67	0.3649	0.000	[0.3156; 0.4122]	1183.49	94.3%
Animosity	63	20,467	0.02	0.61	0.3293	0.000	[0.2863; 0.3710]	719.27	91.4%
International Values	69	24.431	-0.55	0.19	-0.1908	0.000	[-0.2282; -0.1528]	628.58	89.2%
Collectivism	14	5,841	-0.21	0.40	0.2038	0.000	[0.1244; 0.2807]	123.56	89.5%
Materialism	21*	6,000	-0.20	0.36	0.0586	0.024	[0.0079; 0.1090]	77.71	74.3%
CC	5*	2,613	-0.16	017	-0.0319	0.598	[-0.1494; 0.0865]	35.71	88.8%

Table 5.55 Overview of meta-analysis results for socio-psychological antecedents of CE

Notes: *the study by Alden et al. (2006) was excluded, N=number of participants, Min and Max=minimum and maximum of weighted effect sizes; r=weighted average effect size, CC=Conspicuous Consumption

For the outcomes of consumer ethnocentrism, the meta-analysis revealed effect sizes in the expected direction, with domestic product judgements and willingness to buy for domestic products being positively influenced by consumer ethnocentrism, while foreign product judgements and willingness to buy foreign products were negatively influenced. Interestingly, WTB foreign is more negative than foreign product judgements, indicating that even though

foreign products might be perceived as having good quality, they are still not bought, which is exactly in line with how Shimp and Sharma initially defined consumer ethnocentrism.

		-		•					
Outcomes	k	Ν	Min	Max	r	Sig.	95%-CI	Q	I ²
PJ Domestic	20	10,522	0.09	0.66	0.2838	0.000	[0.2193; 0.3458]	222.92	91.5%
PIWTB Domestic	25	8,203	0.08	0.62	0.3391	0.000	[0.2675; 0.4069]	296.92	91.9%
PJ Foreign	46	19,186	-0.63	0.20	-0.1985	0.000	[-0.2427; -0.1534]	452.22	90.1%
PIWTB Foreign	33	12,579	-0.86	0.09	-0.3783	0.000	[-0.4525; -0.2989]	823.75	96.1%

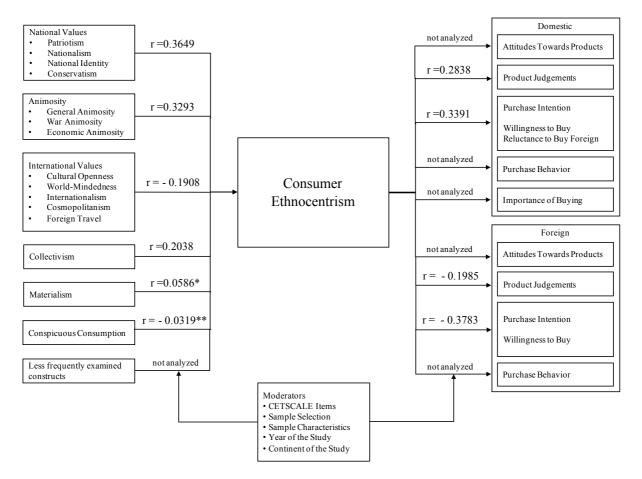
Table 5.56 Overview of meta-analysis results for outcomes of CE

Notes: N=number of participants; Min and Max=minimum and maximum of weighted effect sizes; r=weighted average effect size; PJ: product judgement; PIWTB domestic: purchase intention domestic, willingness to buy domestic, and reluctance to buy foreign; PIWTB foreign: purchase intention and willingness to buy foreign

6. Discussion and Conclusion

6.1 Main Insights

The goal of this thesis was to synthesize the current literature on the relationship between consumer ethnocentrism and its socio-psychological antecedents and outcomes, and to estimate the size of these relationships.


The following research questions had been defined:

- 3. What are the main socio-psychological antecedents and the main outcomes of consumer ethnocentrism?
- 4. To what extent do the main socio-psychological antecedents influence consumer ethnocentrism, and to what extent does consumer ethnocentrism influence its outcomes?

The first research question is answered by the research synthesis. National values (patriotism, nationalism, national identity, conservatism), animosity (general animosity, war animosity, economic animosity), international values (cultural openness, world-mindedness, internationalism, cosmopolitanism, foreign travel), collectivism, materialism, and conspicuous consumption were identified as main socio-psychological antecedents of consumer ethnocentrism. Other less frequently examined constructs were also examined briefly. Consumer ethnocentrism influences the perception and purchase behavior of domestic and foreign products. Outcomes identified for domestic products were attitudes towards products, product judgements, purchase intention, willingness to buy, reluctance to buy foreign products were attitudes towards products were attitudes towards products were attitudes towards products, purchase behavior, and importance of buying domestic. Outcomes identified for foreign products were attitudes towards products, purchase behavior, and importance of buying domestic. Outcomes identified for foreign products were attitudes towards products, purchase behavior, and importance of buying domestic. Outcomes identified for foreign products were attitudes towards products, purchase behavior.

The second research question is answered by the meta-analysis. Hereby, the size of the relationship between consumer ethnocentrism and its main socio-psychological antecedents and outcomes was determined. An analysis was only performed on constructs which had been examined by more than three separate research papers, in order to reveal significant and unbiased findings. Therefore, several outcomes were not analyzed further.

A graphical overview of the answers to the research questions, and therefore the results of this thesis, is given in the following conceptual model (Figure 6.1). the magnitude of the relationship between consumer ethnocentrism and its socio-psychological antecedents and outcomes can now be identified with the results of the meta-analysis. In addition, important moderators influencing these findings were identified, and the model was therefore extended to show these.

Notes: *significant at p < 0.05, **not significant, all other relationships: significant at p < 0.0001Figure 6.1 Conceptual model with effect sizes of analyzed constructs and most important moderators

The findings are also comparable to the recent meta-analysis of Shoham et al. (2016), which identified the effect sizes for the relationship between consumer ethnocentrism and animosity, foreign product judgement, and willingness to buy foreign. The average weighted correlations for animosity and willingness to buy foreign found in their analysis, however, are a bit higher for animosity (0.39) to considerably higher for WTB foreign (-45). For foreign product judgements, on the other hand, the results are exactly the same (-0.20) as in this thesis. An explanation for the more negative relationship between consumer ethnocentrism and willingness to buy could lie in their sample, which only included studies of consumer

animosity. The countries for which willingness to buy was measured were mostly likely selected due to strong animosity, which causes strong negative feelings towards this specific foreign country, and therefore the relationship between consumer ethnocentrism and WTB could be more negative for these countries than for less biased foreign countries. The findings of this thesis are therefore more generalizable, as they encompass the assessment of outcomes of more diversified studies.

6.2 Contribution to Current Literature

Overviews of the socio-psychological antecedents of consumer ethnocentrism and the outcomes of consumer ethnocentrism have been outdated, and the size of the relationship between consumer ethnocentrism and its related constructs has never been estimated. Therefore, this thesis contributes to the current literature by updating the socio-psychological antecedents and outcomes of consumer ethnocentrism, and by quantifying these relationships. It is the first meta-analysis performed on the antecedents of consumer ethnocentrism, while outcomes have recently been examined by Shoham et al. (2016). Nevertheless, this study is much larger in scope and also less restricted. Shoham et al. (2016) only searched for the related construct animosity to reveal articles included in their analysis, and this thesis searched for all socio-psychological antecedents.

The research synthesis revealed several shortcomings of the frequently cited literature review by Shankarmahesh (2006). Firstly, it misses several important socio-psychological antecedents, such as nationalism, national identity, or cosmopolitanism. And secondly, it includes research that has been conducted prior to the introduction of the consumer ethnocentrism and its uniform measurement with the CETSCALE by Shimp and Sharma (1987). This makes some implications much vaguer, as for example his assessment of collectivism, in which three of the four articles do not even mention consumer ethnocentrism. The research synthesis conducted in this thesis therefore gives a much more precise picture of the current ethnocentrism literature, as it has clearly defined criteria, and only includes articles that use the CETSCALE as a well-established measurement of consumer ethnocentrism, and quantify the relationship between consumer ethnocentrism and its related constructs.

The most important contribution of this thesis to the current literature is the answer of the question "how much?" – how much do socio-psychological antecedents influence consumer ethnocentrism, and how much does consumer ethnocentrism influence product judgements

and willingness to buy? With the results of the meta-analysis, researchers looking for a quick introduction into the field can now easily identify the most important socio-psychological antecedents and outcomes of consumer ethnocentrism, and how large the average correlations between consumer ethnocentrism and these related constructs are. From this, they can plan more targeted marketing plans, which will be further discussed in the implications for practice.

6.3 Implications for Research

Through the quantification of the relationship between consumer ethnocentrism and its main socio-psychological antecedents and outcomes, this thesis quickly shows researchers overall findings of previous studies, as well as where additional examinations should be made. The latter lie especially in less frequently studied constructs, which could not be included in the meta-analysis.

The research synthesis also brought to attention the problem of inconsistent measurements used to assess the different constructs. This makes it harder to compare findings across different studies. For example, Vida and Reardon (2008) said they measured cosmopolitanism, when in fact they measured foreign travel. Balabanis et al. (2001) point out that the way patriotism is frequently measured, it is more closely related to nationalism. Purchase intention and willingness to buy are also not clearly distinguished in the literature. Many researchers use the terms interchangeably. This made it necessary to combine similar constructs which are conceptually different from each other, but could not clearly be distinguished from each other in the analysis because the measurements used were not uniform. Therefore, this synthesis has emphasized the need for consistent measures. The CETSCALE is already a well-established measurement, and a myriad of studies have proven its reliability, internal consistency, and application across countries. This allows for a comparable assessment of consumer ethnocentrism across different countries. Other attempts at establishing well-founded scales are the COSMO-Scale by Riefler et al. (2012) and the AGCC construct introduced by Cleveland and Laroche (2007).

6.4 Implications for Practice

It is important for managers of multi-nationally as well as nationally operating firms to understand consumer ethnocentrism and its antecedents and outcomes in order to adjust their management and marketing activities accordingly. This has already been pointed out by existing consumer ethnocentrism literature (e.g. Shimp and Sharma, 1987; Feurer et al., 2016), however this meta-analysis eases identification of key relationships between consumer ethnocentrism and its socio-psychological antecedents and outcomes for practitioners.

The results of the meta-analysis confirmed that consumer ethnocentrism positively influences domestic product judgements and willingness to buy, and negatively influences foreign product judgements and willingness to buy. A local company should therefore appeal to consumers' ethnocentric tendencies in order to increase their judgements of the product and their willingness to buy it.

As Feurer et al. (2016) pointed out, it is also important to be able to identify ethnocentric consumers, since they can then be segmented and individually targeted. Marketing programs could then be adjusted to specially appeal to these consumers (Shimp and Sharma, 1987). This is where the understanding of the influence of socio-psychological antecedents on consumer ethnocentrism plays a crucial role. All consumers hold certain value systems that influence their purchasing behavior (Sharma et al., 1995). Such values are identified with the sociopsychological antecedents, which in turn influence a consumer's ethnocentric tendencies. As shown by the meta-analysis, strong patriotism, for example, positively influences a consumer's ethnocentric tendencies. This finding becomes more relevant in today's world with technological advancements making it easier to target specific consumer groups. Especially through the use of Big Data, companies can identify consumers' value systems and adjust their marketing activities accordingly. It is for example possible to make quite accurate inferences about a person's personality through his activities on Facebook (Grassegger, & Krogerus, 2016), which is said to even have influenced the presidential election in the USA. If companies can access this information through the help of Big Data, they can for example detect whether a consumer holds national values or international values, whether he is collectivistic or places importance on material possessions. This knowledge can then be used to customize targeting for certain consumers. An example is presented in the following. As the meta-analysis revealed, international values negatively influence consumer ethnocentrism. International firms can then target consumers holding international values, such as frequent travelling or interest in foreign cultures, as they will most likely be less ethnocentric. In addition, by appealing to international values in their advertisements, international firms could suppress or at least reduce a consumer's ethnocentric tendencies in the given situation and therefore positively influence his willingness to buy a foreign product.

6.5 Limitations

Several limitations need to be considered, of which several are commonly found in metaanalysis. Firstly, many different studies from different countries measuring slightly different constructs were combined to show an overall effect size. Critics say this is like "mixing apples and oranges" (Borenstein et al., 2009, p. 379). Great care has been applied when dividing the studies into the construct categories, but nevertheless, they still come from different studies which often apply different measures. Thus, heterogeneity is given, but it needs to be kept in mind that a meta-analysis only aims at quantifying a general direction for the relationship between two constructs. Secondly, some possibly relevant articles were not retrievable, while other unpublished studies have not been found at all. These studies could influence the findings, but the analysis of the constructs showed where missing values could lie and how likely they were to be found. Thirdly, not all studies reported the values needed for conducting a meta-analysis, and were therefore excluded. In addition, regression results were re-calculated to correlations using a simplified formula, which only represents an approximation of the exact correlation coefficient. With more time, researches would have been contacted in order to retrieve such missing values and to increase the accuracy of the analysis. Fourth, only outcomes of consumer ethnocentrism from studies that examined socio-psychological antecedents were included in the meta-analysis, which does not represent the whole amount of research available on outcomes of consumer ethnocentrism. Results could therefore differ if more studies were included. Nevertheless, the large amount of studies used allows for relative robustness of the findings as they were found in this analysis, which is also represented in the high significance levels. Fifth, moderators could have been more nuanced. The moderator developed vs. developing countries, for example, was rather poorly defined by characterizing Western countries (such as the U.S., Western Europe, and Australia) as developed and all others as developing (such as Eastern European countries, Asian countries or countries is Southern America), although some countries might have changed their status depending on the time when the study was conducted. In addition, other moderators, such as the quality of the study, would have been interesting to include. Finally, the analysis of the moderators was restricted to simple comparisons, while a regression analysis could have shown the influence and interplay of more than one moderator.

6.6 Future Research

Future research should continue quantifying the magnitude of the relationship between consumer ethnocentrism and related constructs. Research synthesis and meta-analyses could focus on demographic antecedents, or moderators, which encompass for example product necessity and perceived economic threat.

More research is also needed for less frequently examined constructs, such as the relatively new AGCC construct, purchase behavior, or actual ownership. Even though conspicuous consumption was included in the meta-analysis, its findings were mixed, and revealed that effects found in studies vary greatly. Through increased research in these areas, it will be possible to draw generalizable conclusions in future meta-analyses.

Longitudinal studies or more exact replication of previous studies could also be an interesting area for future research. Moderator analysis has shown that the magnitude of the relationship between consumer ethnocentrism and the examined related constructs has decreased in recent years. Such studies could add to the understanding of these findings.

In addition, it could be interesting for future research to examine the influence of consumer ethnocentrism on willingness to pay, which is generally a stronger construct than willingness to buy. If willingness to pay were significantly higher for domestic products than for foreign products, this could influence a company's location decisions.

Finally, as pointed out earlier, future research should focus on using standardized scales in order to measure constructs and pay great attention to the definition of those constructs. This allows for clearer distinction between the examined constructs.

References

Note: Articles marked with * were included in the meta-analysis.

- Adorno, T. W., Frenkel-Brunswik, E., Levinson, D. J., & Sanford, R. N. (1950). *The authoritarian personality*. New York, NY: Harper.
- *Akdogan, M. S., Ozgener, S., Kaplan, M., & Coskun, A. (2012). The effects of consumer ethnocentrism and consumer animosity on the re-purchase intent: The moderating role of consumer loyalty. *EMAJ: Emerging Markets Journal*, 2(1), 1-12.
- *Al Ganideh, S. F. (2010). Consumer ethnocentrism in the Jordanian market: The impact of socio-psychological variables on consumer ethnocentric tendencies. *Journal of Business and Retail Management Research*, 5(1).
- *Al Ganideh, S. F., & Good, L. K. (2015). Nothing Tastes as Local: Jordanians' Perceptions of Buying Domestic Olive Oil. *Journal of Food Products Marketing*, 22(2), 168-190.
- *Alden, D. L., Steenkamp, J. B. E., & Batra, R. (2006). Consumer attitudes toward marketplace globalization: Structure, antecedents and consequences. *International Journal of Research in Marketing*, 23(3), 227-239.
- Alsughayir, A. (2013). Consumer ethnocentrism: A literature review. *International Journal of Business and Management Invention*, 2(5), 50-54.
- *Altintas, M. H., & Tokol, T. (2007). Cultural openness and consumer ethnocentrism: An empirical analysis of Turkish consumers. *Marketing Intelligence & Planning*, 25(4), 308.
- Appadurai, A. (1990). Disjuncture and difference in the global cultural economy. Theory, culture & society, 7(2), 295-310.
- *Balabanis, G., Diamantopoulos, A., Mueller, R. D., & Melewar, T. C. (2001). The impact of nationalism, patriotism and internationalism on consumer ethnocentric tendencies. *Journal of international business studies*, 157-175.
- Balabanis, G., & A. Diamantopoulos. (2004). Domestic country bias, country of origin effects, and consumer ethnocentrism: A multidimensional unfolding approach. *Journal of the Academy of Marketing Science 32 (1)*, 80–95.
- Batra, R., Homer, P.M., & Kahle, L.R. (2001). Values, susceptibility to normative influence, and attribute importance weights: a nomological analysis. *Journal of consumer psychology*, *11* (2), 115 128.
- *Bawa, A. (2004). Consumer ethnocentrism: CETSCALE validation and measurement of extent. *Vikalpa*, 29(3), 43-58.
- Bearden, W.O., Netemeyer, R.G., & Teel, J.E., (1989). Measurement of consumer susceptibility to interpersonal influence. *Journal of consumer research*, 15 (4), 473– 481.

- Belk, R. W. (1985). Materialism: Trait aspects of living in the material world. *Journal of Consumer research*, 12(3), 265-280.
- *Bevan-Dye, A. L., Garnett, A., & De Klerk, N. (2012). Materialism, status consumption and consumer ethnocentrism amongst black generation Y students in South Africa. *African Journal of Business Management*, *6*(16), 5578.
- Bizumic, B. (2014). Who coined the concept of ethnocentrism? A brief report. *Journal of Social and Political Psychology*, *2*(*1*), 3-10.
- Borenstein, M. (2009). Effect sizes for continuous data. In H. Cooper, L. V. Hedges, & J. C. Valentine (Eds.), *The handbook of research synthesis and meta-analysis* (pp. 221-236). New York: Russell Sage.
- Borenstein, M., Hedges, L. V., Higgins, J. P. T., & Rothstein, H. R. (2009). Introduction to meta-analysis. Chichester, UK: John Wiley & Sons, Ltd.
- Brendel, K., (2011). A Systematic Review and Meta-Analysis of the Effectiveness of Child-Parent Interventions for Children and Adolescents with Anxiety Disorders. *Dissertations*. Paper 249.
- Brown, S. A., Upchurch, S. L., & Acton, G. J. (2003). A framework for developing a coding scheme for meta-analysis. *Western Journal of Nursing Research*, 25(2), 205-222.
- Bruning, E. R., Kovacic, M. L., & Oberdick, L. E. (1985). Segmentation analysis of domestic airline passengers markets. *Journal of the Academy of Marketing Sciences*, 13, Winter, 76-81.
- *Cai, H., Fang, X., Yang, Z., & Song, H. (2012). Implicit Consumer Animosity: A Primary Validation1. *Journal of Applied Social Psychology*, 42(7), 1651-1674.
- Carpenter, J. M., Moore, M., Alexander, N., & Doherty, A. M. (2013). Consumer demographics, ethnocentrism, cultural values, and acculturation to the global consumer culture: A retail perspective. *Journal of Marketing Management*, 29(3-4), 271-291.
- *Carter Jr, L. L. (2009). Consumer receptivity of foreign products: The roles of country-oforigin image, consumer ethnocentrism and animosity. Old Dominion University.
- *Caruana, A. (1996). The effects of dogmatism and social class variables on consumer ethnocentrism in Malta. *Marketing Intelligence & Planning*, 14(4), 39-44.
- *Cheah, I., & Phau, I. (2015). Conceptualising consumer economic nationalistic tendencies: scale development and validation. *The International Review of Retail, Distribution and Consumer Research*, *25*(3), 313-331.
- *Cheah, I., Phau, I., Kea, G., & Huang, Y. A. (2016). Modelling effects of consumer animosity: Consumers' willingness to buy foreign and hybrid products. *Journal of Retailing and Consumer Services*, 30, 184-192.
- Cleveland, M., & Laroche, M. (2007). Acculturaton to the global consumer culture: Scale development and research paradigm. *Journal of business research*, 60(3), 249-259.

- *Cleveland, M., Laroche, M., & Hallab, R. (2013). Globalization, culture, religion, and values: Comparing consumption patterns of Lebanese Muslims and Christians. *Journal of Business Research*, 66(8), 958-967.
- *Cleveland, M., Laroche, M., & Papadopoulos, N. (2009). Cosmopolitanism, consumer ethnocentrism, and materialism: An eight-country study of antecedents and outcomes. *Journal of International Marketing*, *17*(1), 116-146.
- *Cleveland, M., Rojas-Méndez, J. I., Laroche, M., & Papadopoulos, N. (2016). Identity, culture, dispositions and behavior: A cross-national examination of globalization and culture change. *Journal of Business Research*, 69(3), 1090-1102.
- Cooper, H. (2016). *Research synthesis and meta-analysis: A step-by-step approach (Vol. 2)*. Sage publications.
- Darling, J.R. & Arnold, D.R. (1988). The competitive position abroad of products and marketing practices of the United States, Japan, and selected European countries. *The Journal of Consumer Marketing*, *5*, 61-8.
- Darling, J. R., & Wood, V. R. (1990). A longitudinal study comparing perceptions of US and Japanese consumer products in a third/neutral country: Finland 1975 to 1985. *Journal of International Business Studies*, *21(3)*, 427-450.
- De Mooij, M. (2013). *Global marketing and advertising: Understanding cultural paradoxes*. Sage Publications.
- *De Nisco, A., Mainolfi, G., Marino, V., & Napolitano, M. R. (2016). Effect of economic animosity on consumer ethnocentrism and product-country images. A binational study on the perception of Germany during the Euro crisis. European Management Journal, 34(1), 59-68.
- *De Ruyter, K., Van Birgelen, M., & Wetzels, M. (1998). Consumer ethnocentrism in international services marketing. *International Business Review*, 7(2), 185-202.
- *Dmitrovic, T., Vida, I., & Reardon, J. (2009). Purchase behavior in favor of domestic products in the West Balkans. *International Business Review*, 18(5), 523-535.
- Dogmatism. 2017. In Merriam-Webster.com. Retrieved June 5, 2017, from https://www.merriam-webster.com/dictionary/dogmatism
- Douglas, S. P., & Craig, C. S. (1997). The changing dynamic of consumer behavior: implications for cross-cultural research. *International journal of research in marketing*, 14(4), 379-395.
- *Douglas, S. P., & Nijssen, E. J. (2003). On the use of "borrowed" scales in cross-national research: A cautionary note. *International Marketing Review*, 20(6), 621-642.
- Duval, S., & Tweedie, R. (2000). Trim and fill: a simple funnel-plot-based method of testing and adjusting for publication bias in meta-analysis. *Biometrics* 56(2), 455-463.

- Eastman, J. K., Fredenberger, B., Campbell, D., & Calvert, S. (1997). The relationship between status materialism: A cross-cultural comparison of Chinese, Mexican, and American students. *Journal of Marketing Theory and Practice, 5(Winter)*, 52-65.
- Eastman, J. K., Goldsmith, R. E., & Flynn, L. R. (1999). Status consumption in consumer behavior: scale development and validation. *Journal of Marketing Theory and Practice*, *7* (*3*), 41–52.
- *Ettenson, R., & Gabrielle Klein, J. (2005). The fallout from French nuclear testing in the South Pacific: A longitudinal study of consumer boycotts. *International Marketing Review*, 22(2), 199-224.
- Ettenson, R., Wagner, J. & Gaeth, G. (1988), Evaluating the effect of country of origin and the 'Made in the USA' campaign: a conjoint approach. *Journal of Retailing, 64 (1)*, pp. 85-100.
- *Fakharmanesh, S., & Miyandehi, R. G. (2013). The purchase of foreign products: The role of brand image, ethnocentrism and animosity: Iran market evidence. *Iranian Journal of Management Studies*, *6*(1), 147.
- *Fernández-Ferrín, P., Bande-Vilela, B., Klein, J. G., & del Río-Araújo, M. L. (2015). Consumer ethnocentrism and consumer animosity: antecedents and consequences. *International Journal of Emerging Markets*, *10*(1), 73-88.
- Feurer, S., Baumbach, E., Woodside, A. G., (2016). Applying configurational theory to build a typology of ethnocentric consumers. *International Marketing Review*, 33(3), 351-375.
- Fournier, S., & Richins, M. L. (1991). Some theoretical and popular notions concerning materialism. *Journal of Social Behavior and Personality*, 6(6), 403-414.
- *Funk, C. A., Arthurs, J. D., Treviño, L. J., & Joireman, J. (2010). Consumer animosity in the global value chain: The effect of international production shifts on willingness to purchase hybrid products. *Journal of International Business Studies*, *41*(4), 639-651.
- Gligorov, V. (2008). The Balkan Geography of Animosity and Cooperation. In *Regional Cooperation in South East Europe and Beyond* (pp. 71-87). Nomos Verlagsgesellschaft mbH & Co. KG.
- Grassegger, H., & Krogerus, M. (2016, December 08). Ich habe nur gezeigt, dass es die Bombe gibt. Retrieved June 16, 2017, from https://www.dasmagazin.ch/2016/12/03/ich-habe-nur-gezeigt-dass-es-die-bombegibt/
- Han, C. M. (1988). The Role of Consumer Patriotism in the Choice of Domestic versus Foreign Products. *Journal of Advertising Research (June/July)*, 25-32.
- Hannerz, U. (1990). Cosmopolitans and locals in world culture. *Theory, Culture & Society,* 7(2), 237-251.

- *He, J., & Wang, C. L. (2015). Cultural identity and consumer ethnocentrism impacts on preference and purchase of domestic versus import brands: An empirical study in China. *Journal of Business Research*, 68(6), 1225-1233.
- Herche, J. (1990). The measurement of consumer ethnocentrism: revisiting the CETSCALE. In *Proceedings of the 1990 Academy of Marketing Science (AMS) Annual Conference* (pp. 371-375).
- Herche, J. (1992). A note on the predictive validity of the CETSCALE. Journal of the Academy of Marketing Science, 20(3), 261-264.
- Higgins, J., Green, S. (2011). Cochrane Handbook for Systematic Reviews of Interventions. Version 5.1.0. Retrieved June 15, 2017, from http://handbook.cochrane.org/front_page.htm
- Higgins, J., Thompson, S. G., Deeks, J. J., & Altman, D. G. (2003). Measuring inconsistency in meta-analyses [journal article as teaching resource, deposited by John Flynn]. *British medical journal*, 327, 557-560.
- *Hoffmann, S., Mai, R., & Smirnova, M. (2011). Development and validation of a crossnationally stable scale of consumer animosity. *Journal of Marketing Theory and Practice*, 19(2), 235-252.
- Hofstede, G., Hofstede, G. J., & Minkov, M. (2010). *Cultures and organizations: Software of the mind. Revised and expanded*. McGraw-Hill, New York.
- *Huang, Y. A., Phau, I., Lin, C., Chung, H. J., & Lin, K. H. C. (2008). Allocentrism and consumer ethnocentrism: The effects of social identity on purchase intention. *Social Behavior and Personality: an international journal*, 36(8), 1097-1110.
- *Huang, Y. A., Phau, I., & Lin, C. (2010). Effects of animosity and allocentrism on consumer ethnocentrism: Social identity on consumer willingness to purchase. *Asia Pacific Management Review*, 15(3), 359-376.
- Inglehart, R. (1990). Culture shift in advanced industrial society. Princeton University Press.
- *Ishii, K. (2009). Nationalistic sentiments of Chinese consumers: The effects and determinants of animosity and consumer ethnocentrism. *Journal of International Consumer Marketing*, 21(4), 299-308.
- Jacques, M. (2012, August 20). China and Japan: two nations locked in mutual loathing. Retrieved June 14, 2017, from http://www.telegraph.co.uk/news/worldnews/asia/japan/9487658/China-and-Japantwo-nations-locked-in-mutual-loathing.html
- *Jain, S. K., & Jain, R. (2013). Consumer Ethnocentrism and Its Antecedents: An Exploratory Study of Consumers in India. *Asian Journal of Business Research*, *3*(1), 1-18.
- *Javalgi, R. G., Khare, V. P., Gross, A. C., & Scherer, R. F. (2005). An application of the consumer ethnocentrism model to French consumers. *International Business Review*, 14(3), 325-344.

- Jiménez-Guerrero, J. F., Gázquez-Abad, J. C., & del Carmen Linares-Agüera, E. (2014). Using standard CETSCALE and other adapted versions of the scale for measuring consumers' ethnocentric tendencies: An analysis of dimensionality. *BRQ Business Research Quarterly*, 17(3), 174-190.
- *Jiménez Torres, N. H., & San Martín Gutiérrez, S. (2007). The purchase of foreign products: The role of firm's country-of-origin reputation, consumer ethnocentrism, animosity and trust.
- *Jiménez, N. H., & San Martín, S. (2010). The role of country-of-origin, ethnocentrism and animosity in promoting consumer trust. The moderating role of familiarity. *International Business Review*, 19(1), 34-45.
- *Jin, Z., Lynch, R., Attia, S., Chansarkar, B., Gülsoy, T., Lapoule, P., ... & Purani, K. (2015). The relationship between consumer ethnocentrism, cosmopolitanism and product country image among younger generation consumers: The moderating role of country development status. *International Business Review*, 24(3), 380-393.
- Josiassen, A., Assaf, A. G., & Karpen, I. O. (2011). Consumer ethnocentrism and willingness to buy: Analyzing the role of three demographic consumer characteristics. *International Marketing Review, 28(6)*, 627-646.
- *Kamaruddin, A. R., Mokhlis, S., & Othman, M. N. (2002). Ethnocentrism orientation and choice decisions of Malaysian consumers: the effects of socio-cultural and demographic factors. *Asia Pacific Management Review*, 7(4), 555-573.
- Karasawa, M. (2002). Patriotism, nationalism, and internationalism among Japanese citizens: An epidemic approach. *Political Psychology* 23(4), 645–666.
- Keillor, B. D., Hult, G. T. M., Erffmeyer, R. C., & Babakus, E. (1996). NATID: The development and application of a national identity measure for use in international marketing. *Journal of International Marketing*, 57-73.
- *Klein, J. G. (2002). Us versus them, or us versus everyone? Delineating consumer aversion to foreign goods. *Journal of International Business Studies*, *33*(2), 345-363.
- Klein, J. G., & Ettensoe, R. (1999). Consumer animosity and consumer ethnocentrism: An analysis of unique antecedents. *Journal of International Consumer Marketing*, 11(4), 5-24.
- *Klein, J. G., Ettenson, R., & Morris, M. D. (1998). The animosity model of foreign product purchase: An empirical test in the People's Republic of China. *The Journal of Marketing*, 89-100.
- Kosterman, R., & Feshbach, S. (1989). Toward a measure of patriotic and nationalistic attitudes. *Political psychology*, 257-274.
- *Kottasz, R., & Bennett, R. (2006). Ethnocentric tendencies amongst arts audiences. *International Journal of Nonprofit and Voluntary Sector Marketing*, 11(4), 303-317.
- Kovalchik, S. (2013). Tutorial On Meta-Analysis In R. R use R! Conference.

- *Kreckova, Z., Odehnalova, J., & Reardon, J. (2012). Consumer Ethnocentricity within the Environment of Economic Crisis. *Engineering Economics*, 23(3), 271-281.
- *Kumar, A., Fairhurst, A., & Kim, Y. K. (2011). Ethnocentric tendencies of Indian consumers: impact on preference for domestic versus foreign products. *The International Review of Retail, Distribution and Consumer Research*, 21(4), 323-341.
- *Kumar, A., Fairhurst, A., & Kim, Y. K. (2013). The role of personal cultural orientation in consumer ethnocentrism among Indian consumers. *Journal of Indian business research*, *5*(4), 235-250.
- *Kwak, H., Jaju, A., & Larsen, T. (2006). Consumer ethnocentrism offline and online: the mediating role of marketing efforts and personality traits in the United States, South Korea, and India. *Journal of the Academy of Marketing Science*, *34*(3), 367-385.
- *Lee, W. N., Hong, J. Y., & Lee, S. J. (2003). Communicating with American consumers in the post 9/11 climate: An empirical investigation of consumer ethnocentrism in the United States. *International Journal of Advertising*, 22(4), 487-510.
- *Lee, R., & Mazodier, M. (2015). The roles of consumer ethnocentrism, animosity, and cosmopolitanism in sponsorship effects. *European Journal of Marketing*, *49*(5/6), 919-942.
- LeVine, R. A., & Campbell, D. T. (1972). *Ethnocentrism: Theories of conflict, ethnic attitudes, and group behavior*. New York, NY: Wiley.
- Lindquist, J.D., Vida, I., Plank, R.E., & Fairhurst, A. (2001). The modified CETSCALE: validity tests in the Czech Republic. Hungary and Poland. *International Business Review 10*, 505-516.
- Luque-Martinez, T., Ibanez-Zapata, J. A., & del Barrio-Garcia, S. (2000). Consumer ethnocentrism measurement-An assessment of the reliability and validity of the CETSCALE in Spain. *European Journal of Marketing*, *34*(*11/12*), 1353-1374.
- *Lysonski, S., & Durvasula, S. (2013). Nigeria in transition: acculturation to global consumer culture. *Journal of consumer marketing*, *30*(6), 493-508.
- *Ma, J., Wang, S., & Hao, W. (2012). Does cultural similarity matter? Extending the animosity model from a new perspective. *Journal of Consumer Marketing*, 29(5), 319-332.
- *Mai, N. T. T., & Tambyah, S. K. (2011). Antecedents and consequences of status consumption among urban vietnamese consumers. *Organizations and markets in emerging economies*, 2(1 (3)), 75-98.
- *Marinković, V. (2017). Effects of the Republic of Serbia's citizens' patriotism and animosity towards the European Union on consumer ethnocentrism. *Ekonomski horizonti*, 19(1), 3-15.
- *Mavondo, F. T., & Tan, A. S. K. (1999). Reconceptualizing the CETSCALE (Consumer Ethnocentric Tendency Scale). In: Proceedings of Australia New Zealand Marketing Academy Conference 1999: Marketing in The Third Millennium. University of New South Wales, Sidney, Australia.

- McCullough, J., Tan, C. T., & Wong, J. (1986). Effects of stereotyping in cross-cultural research: Are the Chinese really Chinese? In *Advances of Consumer Research*, volume 13.
- Mihalyi, L. J. (1984). Ethnocentrism vs. Nationalism: Origin and Fundamental Aspects of a Major Problem for the Future. *Homboldt Journal of Social Relations 12 (1)*, 95-113.
- Moore, D. E. (1989). Creating a Global Constituency for Free Trade. Vital Speeches 56 (December), 108-110.
- *Mostafa, M. M. (2010). A structural equation analysis of the animosity model of foreign product purchase in Egypt. *Global business review*, *11*(3), 347-363.
- Murdock, George P. (1931). "Ethnocentrism." In *Encyclopaedia of the Social Sciences 9thEd*. Edwin R. A. Seligman. New York: Macmillan, 613-614.
- *Nakos, G. E., & Hajidimitriou, Y. A. (2007). The impact of national animosity on consumer purchases: The modifying factor of personal characteristics. *Journal of International Consumer Marketing*, *19*(3), 53-72.
- Netemeyer, R. G., Durvasula, S., & Lichtenstein, D. R. (1991). A cross-national assessment of the reliability and validity of the CETSCALE. *Journal of Marketing Research*, 320-327.
- *Nguyen, T. D., Nguyen, T., & Barrett, N. J. (2008). Consumer ethnocentrism, cultural sensitivity, and intention to purchase local products—evidence from Vietnam. *Journal of Consumer Behaviour*, 7(1), 88-100.
- *Nijssen, E. J., & Douglas, S. P. (2004). Examining the animosity model in a country with a high level of foreign trade. *International Journal of Research in Marketing*, 21(1), 23-38.
- *Nijssen, E. J., & Douglas, S. P. (2011). Consumer world-mindedness and attitudes toward product positioning in advertising: An examination of global versus foreign versus local positioning. *Journal of International Marketing*, 19(3), 113-133.
- *Nik-Mat, N. K., Abd-Ghani, N. H., & Al-Ekam, J. M. E. (2015). The Direct Drivers of Ethnocentric Consumer, Intention and Actual Purchasing Behavior in Malaysia. World Academy of Science, Engineering and Technology, International Journal of Social, Behavioral, Educational, Economic, Business and Industrial Engineering, 9(4), 1125-1130.
- Olsen, J. E., Granzin, K. L., & Biswas, A. (1993). Influencing consumers' selection of domestic versus imported products: implications for marketing based on a model of helping behavior. *Journal of the Academy of Marketing Science*, 21(4), 307-21.
- Ouellet, J. F. (2007). Consumer racism and its effects on domestic cross-ethnic product purchase: An empirical test in the United States, Canada, and France. *Journal of Marketing*, *71(1)*, 113-128.

- *Park, H. J., Rabolt, N. J., & Sook Jeon, K. (2008). Purchasing global luxury brands among young Korean consumers. *Journal of Fashion Marketing and Management: An International Journal*, 12(2), 244-259.
- *Parker, R. S., Haytko, D. L., & Hermans, C. M. (2011). Ethnocentrism and its effect on the Chinese consumer: A threat to foreign goods?. *Journal of Global Marketing*, 24(1), 4-17.
- *Parts, O., & Vida, I. (2013). The effects of cosmopolitanism on consumer ethnocentrism, product quality, purchase intentions and foreign product purchase behavior. *American International Journal of Contemporary Research*, 3(11), 144-155.
- Peterson, R. A., & Brown, S. P. (2005). On the use of beta coefficients in meta-analysis. *Journal of Applied Psychology*, 90(1), 175.
- Peterson, R. A., & Jolibert, A. J. (1995). A meta-analysis of country-of-origin effects. *Journal* of International business studies, 26(4), 883-900.
- Petticrew, M., & Roberts, H. (2006). *Systematic reviews in the social sciences: A practical guide*. Malden, MA: Blackwell.
- Piron, F. (2000). Consumers' perceptions of the country-of-origin effect on purchasing intentions of (in) conspicuous products. *Journal of Consumer Marketing*, 17(4), 308-321.
- Primoratz, I. "Patriotism", The Stanford Encyclopedia of Philosophy (Summer 2017 Edition), Edward N. Zalta (ed.), forthcoming URL = <https://plato.stanford.edu/archives/sum2017/entries/patriotism/>.
- *Prince, M., Prince, M., Davies, M. A., Davies, M. A., Cleveland, M., Cleveland, M., ... & Palihawadana, D. (2016). Here, there and everywhere: a study of consumer centrism. *International Marketing Review*, *33*(5), 715-754.
- Putrevu, S., & Lord, K. R. (1994). Comparative and Noncomparative Advertising: Attitudinal Effects Under Cognitive and Affective Involvement Conditions. *Journal* of Advertising, 23 (2), 77–90.
- *Ranjbarian, B., Barari, M., & Zabihzade, K. (2011). Ethnocentrism among Iranian Consumer with Different Consumption Habits. *International Journal of Marketing Studies*, 3(3).
- Rawwas, M. Y., Rajendran, K. N., & Wuehrer, G. A. (1996). The influence of worldmindedness and nationalism on consumer evaluation of domestic and foreign products. *International Marketing Review*, 13(2), 20-38.
- Ray, J. J. (1983). A scale to measure conservatism of American public opinion. Journal of Social Psychology, 119(2), 293-294.
- Reierson, C. (1966). Are foreign products seen as national stereotypes-survey of attitudes in college students. *Journal of Retailing*, *42(3)*, 33-40.
- Rhinesmith, S. H. (1993). A Managerial Guide to Globalization: Six Keys to Success in a Changing World. Burr Ridge, IL: Irwin.

- *Richardson Jr, C. W., & Harris, K. (2014). Love Them or Hate Them: Contrasting Emotions in Foreign Product Purchase Are More Similar Than Not. *Journal of International Business Research*, 13(2), 66.
- Richins, M. L. (2004). The material values scale: Measurement properties and development of a short form. *Journal of consumer research*, *31(1)*, 209-219.
- Richins, M. L., & Dawson, S. (1992). A consumer values orientation for materialism and its measurement: Scale development and validation. *Journal of consumer research*, 19(3), 303-316.
- *Riefler, P., Diamantopoulos, A., & Siguaw, J. A. (2012). Cosmopolitan consumers as a target group for segmentation. *Journal of International Business Studies*, *43*(3), 285-305.
- Robinson, J. B., & Shaver, P. R., (1973). *Measures of Social Psychological Attitudes*. Ann Arbor, MI: Survey Research Center, Institute for Social Research.
- *Rose, M., Rose, G. M., & Shoham, A. (2009). The impact of consumer animosity on attitudes towards foreign goods: a study of Jewish and Arab Israelis. *Journal of Consumer Marketing*, *26*(5), 330-339.
- Rosenthal, R. (1979). The file drawer problem and tolerance for null results. *Psychological bulletin, 86(3),* 638-641.
- Rosenthal, R., & DiMatteo, M. R. (2001). Meta-analysis: Recent developments in quantitative methods for literature reviews. *Annual review of psychology*, *52(1)*, 59-82.
- *Rybina, L., Reardon, J., & Humphrey, J. (2010). Patriotism, cosmopolitanism, consumer ethnocentrism and purchase behavior in Kazakhstan. *Organizations and markets in emerging economies*, (1 (2)), 92-107.
- Schwartz, S. H. (1994). Are there universal aspects in the structure and content of human values. *Journal of Social Issues, 50 (4),* 19-45.
- *Selli, M., & Kurniawan, H. (2014). Effects of Animosity and Allocentrism toward Consumer Ethnocentrism in Shaping Consumers' Willingness to Purchase: A Case Study on Consumers in Greater Jakarta (Jabodetabek Area) in Purchasing Malaysian Products. *ASEAN Marketing Journal*, 6(1).
- Shankarmahesh, M. N. (2006). Consumer ethnocentrism: an integrative review of its antecedents and consequences. *International Marketing Review*, 23(2), 146-172.
- *Sharma, P. (2011). Country of origin effects in developed and emerging markets: Exploring the contrasting roles of materialism and value consciousness. *Journal of International Business Studies*, *42*(2), 285-306.
- *Sharma, S., Shimp, T. A., & Shin, J. (1995). Consumer ethnocentrism: A test of antecedents and moderators. *Journal of the academy of marketing science*, 23(1), 26-37.
- *Shimp, T. A., & Sharma, S. (1987). Consumer ethnocentrism: construction and validation of the CETSCALE. *Journal of marketing research*, 280-289.

- Shoham, A. & Gavish, Y. (2016). Antecedents and Buying Behavior Consequences of Consumer Racism, National Identification, Consumer Animosity, and Consumer Ethnocentrism, *Journal of International Consumer Marketing*, 28(5), 296-308.
- Siamagka, N. T. (2010). *Extending consumer ethnocentrism: development and validation of the CEESCALE* (Doctoral dissertation, University of Birmingham).
- Sohail, M. S., & Opoku, R. A. (2016). Applying the Animosity Model in Foreign Product Purchases: Evidence from an Emerging Nation. *Journal of International Consumer Marketing*, 28(2), 121-134.
- *Strizhakova, Y., Coulter, R. A., & Price, L. L. (2008). Branded products as a passport to global citizenship: Perspectives from developed and developing countries. *Journal of International Marketing*, *16*(4), 57-85.
- *Strizhakova, Y., Coulter, R. A., & Price, L. L. (2012). The young adult cohort in emerging markets: Assessing their glocal cultural identity in a global marketplace. *International Journal of Research in Marketing*, 29(1), 43-54.
- Strutton, D., Pelton, L. LE. & Lumpkin, J. R. (1994). Internal and external country of origin stereotypes in the global marketplace: effects and implications for the domestic promotion of US automobiles. *Journal of Global Marketing*, 7(3), pp. 61-77.
- *Suh, T., & Kwon, I. W. G. (2002). Globalization and reluctant buyers. *International Marketing Review*, 19(6), 663-680.
- Sumner, W. G. (1906). *Folkways: A study of the sociological importance of usages, manners, customs, mores, and morals.* Boston, MA: Ginn and Company.
- *Tabassi, S., Esmaeilzadeh, P., & Sambasivan, M. (2012). The role of animosity, religiosity and ethnocentrism on consumer purchase intention: A study in Malaysia toward European brands. *African Journal of Business Management*, 6(23), 6890.
- Tajfel, H., & Turner, J. C. (1986). The social identity theory of intergroup behavior. In S. Worchel & W. G. Austin (Eds.), *Psychology of intergroup relations* (2nd ed., pp. 7–24). Chicago, IL: Nelson Hall.
- Thelen, S., Ford, J.B., & Honeycutt, E.D. (2006). The impact of regional affiliation on consumer perceptions of relationships among behavioral constructs. *Journal of Business Research* 59, 965-973.
- Triandis, H. C. (1989). The self and social behavior in differing cultural contexts. *Psychological Review*, *96*(*3*), 506-520.
- Triandis, H. C., Brislin, R., & Hui, H. (1988). Cross-cultural training across the individualism-collectivism divide. *International Journal of Intercultural Relations*, 12, 269-289.
- Triandis, H. C. & Gelfand, M. J. (1998). Converging measurement of horizontal and vertical individualism and collectivism. *Journal of Personality and Social Psychology*, 74 (1), 118-125.

- *Tsai, W. H., Lee, W. N., & Song, Y. A. (2013). A cross-cultural study of consumer ethnocentrism between China and the US. *Journal of International Consumer Marketing*, 25(2), 80-93.
- *van Birgelen, M., de Ruyter, K., & Wetzels, M. (2005). The role of socially desirable responding in international services research. In *Research on International Service Marketing: A state of the Art* (pp. 75-91). Emerald Group Publishing Limited.
- *Verlegh, P. W. (2007). Home country bias in product evaluation: the complementary roles of economic and socio-psychological motives. *Journal of International Business Studies*, *38*(3), 361-373.
- Verlegh, P. W., & Steenkamp, J. B. E. (1999). A review and meta-analysis of country-oforigin research. *Journal of economic psychology*, 20(5), 521-546.
- *Vida, I., Dmitrović, T., & Obadia, C. (2008). The role of ethnic affiliation in consumer ethnocentrism. *European Journal of Marketing*, *42*(3/4), 327-343.
- *Vida, I., & Fairhurst, A. (1999). Factors underlying the phenomenon of consumer ethnocentricity: evidence from four central European countries. *The International Review of Retail, Distribution and Consumer Research*, 9(4), 321-337.
- *Vida, I., & Reardon, J. (2008). Domestic consumption: rational, affective or normative choice?. *Journal of Consumer Marketing*, 25(1), 34-44.
- *Wang, C. L., & Chen, Z. X. (2004). Consumer ethnocentrism and willingness to buy domestic products in a developing country setting: testing moderating effects. *Journal of Consumer Marketing*, 21(6), 391-400.
- *Wang, W., He, H., & Li, Y. (2013). Animosity and willingness to buy foreign products: Moderating factors in decision-making of Chinese consumers. *Asia Pacific Business Review*, 19(1), 32-52.
- Wong, C. Y., Polonsky, M. J., & Garma, R. (2008). The impact of consumer ethnocentrism and country of origin sub-components for high involvement products on young Chinese consumers' product assessments. Asia Pacific Journal of Marketing and Logistics, 20(4), 455-478.
- Wood, V. R., & Darling, J. R. (1993). The marketing challenges of the newly independent republics: product competitiveness in global markets. Journal of International Marketing, 77-102.
- *Yoo, B., & Donthu, N. (2005). The effect of personal cultural orientation on consumer ethnocentrism: Evaluations and behaviors of US consumers toward Japanese products. *Journal of International Consumer Marketing*, 18(1-2), 7-44.
- Yoon, E. (2017, April 05). Trump rails against China stealing US jobs, but China has concerns about the reverse. Retrieved June 04, 2017, from http://www.cnbc.com/2017/04/05/trump-rails-against-china-stealing-us-jobs-butchina-has-concerns-about-the-reverse.html

- Yoon, S.-J., Cannon, H. M., & Yaprak, A. (1996). Evaluating the CYMYC cosmopolitanism scale on Korean consumers. *Advances in International Marketing*, 7, 211-32.
- Zaichkowsky, J. L. (1985). Measuring Involvement Construct. Journal of Consumer Research 12 (December), 341-352.
- *Zeugner-Roth, K. P., Žabkar, V., & Diamantopoulos, A. (2015). Consumer ethnocentrism, national identity, and consumer cosmopolitanism as drivers of consumer behavior: A social identity theory perspective. *Journal of international marketing*, *23*(2), 25-54.

Appendix A

CETSCALE Items (Shimp & Sharma, 1987)

- 1. American people should always buy American-made products instead of imports.
- 2. Only those products that are unavailable in the U.S. should be imported.
- 3. Buy American-made products. Keep America working.
- 4. American products, first, last, and foremost.
- 5. Purchasing foreign-made products is un-American.
- 6. It is not right to purchase foreign products, because it puts Americans out of jobs.
- 7. A real American should always buy American-made products.
- 8. We should purchase products manufactured in America instead of letting other countries get rich off us.
- 9. It is always best to purchase American products.
- 10. There should be very little trading or purchasing of goods from other countries unless out of necessity.
- 11. Americans should not buy foreign products, because this hurts American business and causes unemployment.
- 12. Curbs should be put on all products.
- 13. It may cost me in the long-run but I prefer to support American products.
- 14. Foreigners should not be allowed to put their products on our markets.
- 15. Foreign products should be taxed heavily to reduce their entry into the U.S.
- 16. We should buy from foreign countries only those products that we cannot obtain within our own country.
- 17. American consumers who purchase products made in other countries are responsible for putting their fellow Americans out of work.

Appendix B

Search Terms

Search Term 1	Search Term 2	Restriction
consumer ethnocentrism	CETSCALE	English
consumer ethnocentrism	antecedents	English
consumer ethnocentrism	patriotism	English
consumer ethnocentrism	nationalism	English
consumer ethnocentrism	national identity	English
consumer ethnocentrism	conservatism	English
consumer ethnocentrism	collectivism	English
consumer ethnocentrism	animosity	English
consumer ethnocentrism	cultural openness	English
consumer ethnocentrism	world-mindedness	English
consumer ethnocentrism	mindedness	English
consumer ethnocentrism	internationalism	English
consumer ethnocentrism	materialism	English
consumer ethnocentrism	cosmopolitanism	English
consumer ethnocentrism	conspicuous consumption	English
consumer ethnocentrism	dogmatism	English
consumer ethnocentrism	salience	English
consumer ethnocentrism	ethnic pride	English
consumer ethnocentrism	xenophobia	English

Appendix C

Coding Scheme

	Report Characteristics	
RC1	Report ID number	
	Name of the author(s)	
	Year of publication	
	Type of report	
	Name of journal (if applicable)	
	Was the journal peer-reviewed? (if applicable)	
	What kind of organization produced this report?	
	Was the research conducted using funds from a grant or another	
spons	01?	
	Experimental Conditions	
	udy ID number	
	hat type of study was conducted? (Experiment, survey, etc.)	
	ow was it conducted? (online, in person,)	
	oduct type	
E5 Co	ountry of product origin	
	Setting	
S1 Co	ontinent of the participants	
S2 Co	ountry of the participants	
S3 W	as the study collected in an urban area?	
	Participant and Sample Characteristics	
P1 Sa	mple ID number	
P2 W	hen was the data collected?	
P3 Nu	umber of participants	
	ow were the participants selected?	
	naracteristics of participants (students, general population,)	
P6 Re	epresentative of target population	
	Measurement	
M1	CETSCALE?	
M2	Type of CETSCALE	
M3	Likert Scale	
M4	Number of participants reflected in CETSCALE	
M5	CETSCALE score mean	
M6	CETSCALE score standard deviation	
M7	CETSCALE Cronbach's Alpha	
M8	General Animosity Measurement	
M9	Animosity Cronbach's Alpha	
M10	War Animosity Measurement	

M11	War Animosity Cronbach's Alpha	
M12	Economic Animosity Measurement	
M12	Economic Animosity Cronbach's Alpha	
M14	Patriotism Measurement	
M14	Patriotism Cronbach's Alpha	
M15 M16	Conservatism Measurement	
M10 M17	Conservatism Cronbach's Alpha	
M18	Dogmatism Measurement	
M18	Dogmatism Cronbach's Alpha	
M19 M20	Cultural Openness Measurement	
M20	Cultural Openness Cronbach's Alpha	
	World-mindedness Measurement	
M22		
M23	World-mindedness Cronbach's Alpha Collectivism Measurement	
M24		
M25	Collectivism Cronbach's Alpha	
M26	Nationalism Measurement	
M27	Nationalism Cronbach's Alpha	
M28	Internationalism Measurement	
M29	Internationalism Cronbach's Alpha	. <u> </u>
M30	Cosmopolitanism Measurement	
M31	Cosmopolitanism Cronbach's Alpha	
M32	Materialism Measurement	
M33	Materialism Cronbach's Alpha	
M34	Conspicuous Consumption Measurement	
M35	Conspicuous Consumption Cronbach's Alpha	
M36	National identity Measurement	
M37	National Identity Cronbach's Alpha	
M38	Salience Measurement	
M39	Salience Cronbach's Alpha	
M40	Global Citizenship Measurement	
M41	Global Citizenship Cronbach's Alpha	
M42	Travel Measurement	
M43	Travel Cronbach's Alpha	
M44	Purchase Intention Foreign Measurement	
M45	Purchase Intention Foreign Cronbach's Alpha	
M46	Purchase Intention Domestic Measurement	
M47	Purchase Intention Domestic Cronbach's Alpha	
M48	WTB Foreign Measurement	
M49	WTB Foreign Cronbach's Alpha	
M50	WTB Domestic Measurement	
M51	WTB Domestic Cronbach's Alpha	
M52	Reluctance to buy foreign Measurement	

M53	Reluctance to buy foreign Cronbach's Alpha
M54	Purchase Behavior Measurement
M55	Purchase Behavior Cronbach's Alpha
M56	Attitudes towards foreign products measurement
M57	Attitudes towards foreign products Cronbach's Alpha
M58	Attitudes towards domestic products measurement
M59	Attitudes towards domestic products Cronbach's Alpha
M60	Product Judgements Foreign Measurement
M61	Product Judgements Foreign Cronbach's Alpha
M62	Quality Perception Domestic Measurement
M63	Quality Perception Domestic Cronbach's Alpha
M64	Ownership of Foreign Products Measurement
M65	Ownership of Foreign Products Cronbach's Alpha
M66	Attitudes towards home country Measurement
M67	Attitudes towards home country Cronbach's Alpha
M68	Importance of buying domestic Measurement
M69	Importance of buying domestic Cronbach's Alpha

Results

	incourts		
R1	Correlation Coefficient Patriotism - CET	n	r
R2	Correlation Coefficient Cultural Openness - CET	n	r
R3	Correlation Coefficient World Mindedness - CET	n	r
R4	Correlation Coefficient Collectivism - CET	n	r
R5	Correlation Coefficient Conservatism - CET	n	r
R6	Correlation Coefficient Nationalism - CET	n	r
R7	Correlation Coefficient National Identity - CET	n	r
R8	Correlation Coefficient Inter-nationalism - CET	n	r
R9	Correlation Coefficient Cosmopolitanism - CET	n	r
R10	Correlation Coefficient Materialism - CET	n	r
R11	Correlation Coefficient Conspicuous Consumption - CET	n	r
R12	Correlation Coefficient Dogmatism - CET	n	r
R13	Correlation Coefficient Travel - CET	n	r
R14	Correlation Coefficient Global Citizenship - CET	n	r
R15	Correlation Coefficient Animosity - CET	n	r
R16	Correlation Coefficient War Animosity - CET	n	r
R17	Correlation Coefficient Economic Animosity - CET	n	r
R18	Correlation Coefficient CET - Ownership of foreign product	n	r
R19	Correlation Coefficient CET - Attitudes towards foreign products	n	r
	Correlation Coefficient CET - Attitudes towards domestic		
R20	products	n	r
R21	Correlation Coefficient CET - Importance of buying domestic	n	r
R21	products Correlation Coefficient CET - Product Judgements forgein	<u>n</u>	-
KZZ	Correlation Coefficient CE1 - 1 router sudgements forgent	n	r

R23	Correlation Coefficient CET - Product Judgements domestic	n	r
R24	Correlation Coefficient CET - Purchase Behavior foreign	n	r
R25	Correlation Coefficient CET - Purchase Behavior domestic	n	r
R26	Correlation Coefficient CET - Purchase Intention foreign	n	r
R27	Correlation Coefficient CET - Purchase Intention domestic	n	r
R28	Correlation Coefficient CET - Willingness to buy foreign	n	r
R29	Correlation Coefficient CET - Willingness to buy domestic	n	r
R30	Correlation Coefficient CET - Reluctance to buy foreign	n	r

Appendix D

Detailed Meta-Analysis Results

General explanations for Appendix D:

Year	Year=0 Year=1 Year=2	1987-1999 2000-2009 2010-2017
Continent	Continent=1 Continent=2 Continent=3 Continent=4 Continent=5	Southern America Africa
Developed	-	Developed (Western) countries Developing countries
Urban	Urban=0 Urban=1	Not urban or not specified Urban area
Selection	Selection=0 Selection=1 Selection=2 Selection=3 Selection=4 Selection=5 Selection=9	Random sampling Convenience sampling Mail list Panel Semi-random sampling Quota-sampling N/a
Characteristics	Characteristic Characteristic Characteristic Characteristic Characteristic	s=1 Students s=2 High-school students s=3 managers/ employees from a firm
CETtype	CETtype=0 CETtype=1 CETtype=2 CETtype=3 CETtype=4 CETtype=9	11-16 items 6-9 items 2-5 items
CETcoded	CETcoded=0	Low (3-4)

CETcoded=1 Medium (5) CETcoded=2 Medium-high (6) CETcoded=3 High (7-8) CETcoded=9 N/a

D1 National Values

Results of subgroups	(fixed effect me	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Construct = 0	31	31 0.3836 [0.		817.33	96.3%
Construct = 1	8	0.3674	[0.3368; 0.3973]	72.04	90.3%
Construct = 2	14	0.2939	[0.2678; 0.3196]	116.48	88.8%
Construct = 3	16	0.3765	[0.3515; 0.4009]	142.44	89.5%
Test for subgroup dif	ferences (fixed	effect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	35.21	3	< 0.0001		
Within groups	1148.29	65	< 0.0001		
Test for subgroups (r	andom effects n	nodel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Construct = 0	31	0.3900	[0.2958; 0.4767]	817.33	96.3%
Construct = 1	8	0.3785	[0.2769; 0.4718]	72.04	90.3%
Construct = 2	14	0.2844	[0.2031; 0.3619]	116.48	88.8%
Construct = 3	16	0.3780	[0.2984; 0.4524]	142.44	89.5%
Test for subgroup dif	ferences (rando	m effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	4.26	3	0.2347		

D1.1 Analysis of national values for moderator construct

Notes: construct=0: patriotism, construct=1: nationalism, construct=2: national identity, construct=4: conservatism

Results of subgroups	(fixed effect m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Yearcoded = 0	16	0.5413	[0.5215; 0.5606]	56.26	73.3%
Yearcoded = 1	28	0.3275	[0.3091; 0.3457]	441.41	93.9%
Yearcoded = 2	25	0.2674	[0.2467; 0.2879]	326.78	92.7%
Test for subgroup differences (fixed effect model)					
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	359.04	2 < 0.0001			
Within groups	824.45	66	< 0.0001		
Test for subgroups (ra	andom effects r	nodel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Yearcoded = 0	16	0.5333	[0.4929; 0.5715]	56.26	73.3%
Yearcoded = 1	28	0.3285	[0.2511; 0.4017]	441.41	93.9%
Yearcoded = 2	25	0.2881	[0.2106; 0.3621]	326.78	92.7%
Test for subgroup diff	ferences (rando	m effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	45.62	2	< 0.0001		

D1.2 Analysis of national values for moderator year

Study	Total	Correla	ation	COR	95%–Cl	Weight (fixed)	Weight (random)
Yearcoded = 0 Shimp & Sharma 1987 Shimp & Sharma 1987 Shimp & Sharma 1987 Shimp & Sharma 1987 Shimp & Sharma 1987 Sharma et al. 1995 de Ruyter et al. 1998 Mavondo & Tan 1999 Shimp & Sharma 1987 Shimp & Sharma	293 297 286 536 390 137 667 175 186 295 296 288 535 390 138 175 5084				$\begin{bmatrix} 0.58; \ 0.71 \\ 0.59; \ 0.72 \\ 0.59; \ 0.72 \\ 0.51; \ 0.62 \\ 0.48; \ 0.62 \\ 0.44; \ 0.62 \\ 0.47; \ 0.58 \\ 0.34; \ 0.57 \\ 0.51; \ 0.66 \\ 0.44; \ 0.61 \\ 0.34; \ 0.53 \\ 0.34; \ 0.53 \\ 0.46; \ 0.58 \\ 0.43; \ 0.58 \\ 0.43; \ 0.58 \\ 0.45; \ 0.53 \\ 0.25; \ 0.51 \\ 0.55; \ 0.56 \\ 0.49; \ 0.57 \end{bmatrix}$	1.3% 1.3% 2.4% 1.8% 0.6% 3.0% 0.8% 1.3% 1.3% 1.3% 2.4% 0.6% 0.8% 22.9%	$\begin{array}{c} 1.5\% \\ 1.5\% \\ 1.5\% \\ 1.5\% \\ 1.5\% \\ 1.4\% \\ 1.4\% \\ 1.4\% \\ 1.4\% \\ 1.5\% \\ 1.5\% \\ 1.5\% \\ 1.5\% \\ 1.5\% \\ 1.4\% \\ 1.4\% \\ 1.4\% \\ 23.3\% \end{array}$
Yearcoded = 1 Javalgi et al. 2005 Ishii 2009 Lee et al. 2003 Vida & Reardon 2008 Balabanis et al. 2001 Bawa 2004 Bawa 2004 Bawa 2004 Kottasz & Bennett 2006 Kottasz & Bennett 2006 Kottasz & Bennett 2006 Kottasz & Bennett 2006 Kottasz & Bennett 2006 Douglas & Nijssen 2003 Lee et al. 2003 Vida et al. 2008 Balabanis et al. 2001 Balabanis et al. 2001 Vida et al. 2008 Dmitrovic et al. 2009 Dmitrovic et al. 2009 Verlegh 2007 Javalgi et al. 2005 Attintas & Tokol 2007 Kamaruddin et al. 2002 Kottasz & Bennett 2006 Fixed effect model Random effects model	106 300 336 714 303 480 54 103 160 253 252 127 336 580 303 480 580 454 600 600 300 103 106 580 454 600 600 300 103 106 540 248 253 252 9223 8000000000000000000000000000000000000		·····································	-0.11 0.67 0.24 0.08 0.44 0.42 0.57 0.43 0.45 0.25 0.40 0.47 0.43 0.45 0.40 0.41 0.45 0.22 0.20 0.27 -0.01 0.42 0.22 0.22 0.22 0.22 0.22 0.22 0.23 0.22 0.23 0.22 0.23 0.23		$\begin{array}{c} 0.5\%\\ 1.4\%\\ 1.5\%\\ 3.2\%\\ 1.5\%\\ 3.2\%\\ 0.2\%\\ 0.2\%\\ 0.5\%\\ 1.1\%\\ 2.6\%\\ 1.5\%\\ 2.6\%\\ 1.4\%\\ 2.6\%\\ 2.7\%\\ 2.7\%\\ 0.5\%\\ 2.7\%\\ 1.1\%\\ 1.4\%\\ 1.1\%$	$\begin{array}{c} 1.3\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.1\%\\ 1.4\%\\ 1.5\%\\ 1.4\%\\ 1.5\%$
Yearcoded = 2 Jain & Jain 2013 Fernandez-Ferrin et al. 20 Nik-Mat et al. 2015 Marinkovic 2017 Tsai et al. 2013 Rybina et al. 2013 Rybina et al. 2013 Al Gadineh & Good 2015 Tsai et al. 2013 Cheah & Phau 2015 Al Gadineh & Good 2015 Zeugner-Roth et al. 2015 Strizhakova et al. 2012 Strizhakova et al. 2012 Strizhakova et al. 2012 Cleveland et al. 2016 Cleveland et al. 2016 Cleveland et al. 2016 Cleveland et al. 2016 Streakova et al. 2012 Strizhakova et al. 2015 Strizbakova et al. 2016 Cleveland et al. 2016 Strizbakova et al. 2015 Strizbakova et al. 2015 Str	425 221 506 564 372 175 196 566 204 196 411 405 250 308 186 241 192 199 304 272 425 175 7850	-*		-0.20 0.27 0.46 -0.07 0.43 0.49 0.55 0.45 0.31 0.26 0.31 0.26 0.31 0.26 0.31 0.26 0.14 0.17 0.44 0.30 0.23 0.37 0.39 0.27	$ \begin{bmatrix} 0.24; & 0.44 \\ 0.15; & 0.38 \\ 0.14; & 0.32 \\ 0.40; & 0.60 \\ -0.28; & -0.12 \\ 0.17; & 0.36 \\ 0.33; & 0.57 \\ -0.21; & 0.07 \\ 0.36; & 0.50 \\ 0.44; & 0.64 \\ 0.33; & 0.55 \\ 0.44; & 0.64 \\ 0.33; & 0.55 \\ 0.22; & 0.39 \\ 0.17; & 0.35 \\ 0.17; & 0.35 \\ 0.00; & 0.28 \\ 0.05; & 0.29 \\ 0.32; & 0.55 \\ 0.17; & 0.42 \\ 0.15; & 0.38 \\ 0.00; & 0.28 \\ 0.05; & 0.29 \\ 0.32; & 0.55 \\ 0.17; & 0.42 \\ 0.12; & 0.33 \\ 0.26; & 0.47 \\ 0.26; & 0.51 \\ 0.26; & 0.29 \\ 0.21; & 0.36 \\ \end{bmatrix} $	$\begin{array}{c} 1.4\% \\ 1.1\% \\ 1.9\% \\ 1.0\% \\ 2.3\% \\ 2.6\% \\ 1.7\% \\ 0.8\% \\ 0.9\% \\ 2.6\% \\ 0.9\% \\ 1.9\% \\ 1.4\% \\ 0.9\% \\ 1.1\% \\ 1.4\% \\ 0.9\% \\ 0.9\% \\ 0.9\% \\ 0.9\% \\ 35.4\% \end{array}$	$\begin{array}{c} 1.5\%\\ 1.4\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.4\%\\ 1.5\%\\ 1.4\%\\ 1.5\%\\ 1.4\%\\ 1.5\%\\ 1.4\%\\ 1.5\%\\ 1.4\%\\ 1.5\%\\ 1.4\%\\ 1.5\%\\ 1.4\%\\ 1.5\%\\ 1.4\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.4\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.4\%\\ 1.5\%$
Fixed effect model Random effects model Heterogeneity: $I^2 = 94\%$, $\tau^2 =$	22157 : 0.0517, <i>p</i> < 0.01 -0.6	-0.2 0	0.2 0.4 0.6		[0.35; 0.37] [0.32; 0.41]	100.0% 	 100.0%

D1.2.1 Forest plot of national values for moderator year

Results of subgroups	(fixed effect mod	lel)			
	<u>k</u>	<u>COR</u>	<u>95%-CI</u>	Q	<u>I</u> 2
Continent = 0	18	0.4540	[0.4334; 0.4741]	350.27	95.1%
Continent = 2	18	0.3069	[0.2830; 0.3305]	333.56	94.9%
Continent = 1	30	0.3306	[0.3130; 0.3480]	371.03	92.2%
Continent = 5	1	0.5460	[0.4418; 0.6357]	0.00	-
Continent = 3	2	0.3009	[0.2059; 0.3903]	10.36	90.3%
Test for subgroup dif	ferences (fixed et	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	118.28	4	< 0.0001		
Within groups	1065.22	64	< 0.0001		
Test for subgroups (r	andom effects mo	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Continent = 0	18	0.4535	[0.3554; 0.5416]	350.27	95.1%
Continent = 2	18	0.3269	[0.2176; 0.4281]	333.56	94.9%
Continent = 1	30	0.3287	[0.2636; 0.3908]	371.03	92.2%
Continent = 5	1	0.5460	[0.4418; 0.6357]	0.00	-
Continent = 3	2	0.2987	[-0.0190; 0.5616]	10.36	90.3%
Test for subgroup dif	ferences (random	effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	15.20	4	0.0043		

D1.3 Analysis of national values for moderator continent

					Weight	Weight
Study	Total	Correlation	COR	95%-CI	(fixed)	(random)
Continent = 0	000		0.05	10.50 0.71	4.00/	4 50/
Shimp & Sharma 1987 Shimp & Sharma 1987	293 297		0.65 0.66	[0.58; 0.71] [0.59; 0.72]	1.3% 1.3%	1.5% 1.5%
Shimp & Sharma 1987	286	-	0.66	[0.59; 0.72]	1.3%	1.5%
Shimp & Sharma 1987	536		0.57	[0.51; 0.62]	2.4%	1.5%
Shimp & Sharma 1987	390		0.55	[0.48; 0.62]	1.8%	1.5%
Shimp & Sharma 1987 Lee et al. 2003	137 336		0.39	[0.24; 0.52] [-0.21; 0.00]	0.6% 1.5%	1.4% 1.5%
Tsai et al. 2003	506			[-0.02; 0.16]	2.3%	1.5%
Lee et al. 2003	336	- F	0.40	[0.31; 0.49]	1.5%	1.5%
Tsai et al. 2013	506		0.43	[0.36; 0.50]	2.3%	1.5%
Verlegh 2007 Cleveland et al. 2016	103 241		0.40 0.17	[0.22; 0.55] [0.05; 0.29]	0.5% 1.1%	1.3% 1.4%
Shimp & Sharma 1987	295		0.59	[0.51; 0.66]	1.3%	1.5%
Shimp & Sharma 1987	296		0.53	[0.44; 0.61]	1.3%	1.5%
Shimp & Sharma 1987	288	1 m	0.44	[0.34; 0.53]	1.3%	1.5%
Shimp & Sharma 1987	535		0.52	[0.46; 0.58]	2.4%	1.5%
Shimp & Sharma 1987 Shimp & Sharma 1987	390 138		0.51 0.40	[0.43; 0.58] [0.25; 0.53]	1.8% 0.6%	1.5% 1.4%
Fixed effect model	5909	•	0.45	[0.43; 0.47]	26.7%	
Random effects model			0.45	[0.36; 0.54]		26.2%
Heterogeneity: $I^2 = 95\%$, $\tau^2 = 0$.	0608, <i>p</i> < 0.01					
Continent = 2						
Sharma et al. 1995	667		0.53	[0.47; 0.58]	3.0%	1.5%
Ishii 2009	300		0.42	[0.32; 0.51]	1.4%	1.5%
Ishii 2009 Bawa 2004	300 54	-	0.43	[0.34; 0.52]	1.4%	1.5%
Bawa 2004 Bawa 2004	54 103		0.44 0.42	[0.20; 0.64] [0.25; 0.57]	0.2% 0.5%	1.1% 1.3%
Bawa 2004	160		0.57	[0.45; 0.66]	0.7%	1.4%
Jain & Jain 2013	304		0.34	[0.24; 0.44]	1.4%	1.5%
Mavondo & Tan 1999 Nik–Mat et al. 2015	186		0.49	[0.37; 0.59]	0.8%	1.4% 1.5%
Nik–Mat et al. 2015 Tsai et al. 2013	425 564	+		[0.14; 0.32]	1.9% 2.6%	1.5% 1.5%
Rybina et al. 2010	372	-		[0.17; 0.36]	1.7%	1.5%
Al Gadineh & Good 2015	196		-0.07	[-0.21; 0.07]	0.9%	1.4%
Tsai et al. 2013	564			[0.43; 0.55]	2.6%	1.5%
Al Gadineh & Good 2015 Jain & Jain 2013	196 304		0.45 0.23	[0.33; 0.55] [0.12; 0.33]	0.9% 1.4%	1.4% 1.5%
Al Gadineh 2010	272		0.37	[0.26; 0.47]	1.2%	1.5%
Kamaruddin et al. 2002	248			[0.14; 0.37]	1.1%	1.4%
Nik-Mat et al. 2015	425	<u> </u> ■		[-0.02; 0.17]	1.9%	1.5%
Fixed effect model Random effects model	5640			[0.28; 0.33] [0.22; 0.43]	25.4%	25.9%
Heterogeneity: $I^2 = 95\%$, $\tau^2 = 0.1$	061, <i>p</i> < 0.01		0.00	[0.22, 0.40]		20.070
Continent = 1	106		0.40	10.00:0.551	0 50/	1 20/
Javalgi et al. 2005 Vida & Reardon 2008	106 714		0.40 0.67	[0.23; 0.55] [0.63; 0.71]	0.5% 3.2%	1.3% 1.5%
Balabanis et al. 2001	303			[0.14; 0.35]	1.4%	1.5%
Balabanis et al. 2001	480	-	0.08	[-0.01; 0.17]	2.2%	1.5%
Fernandez-Ferrin et al. 2015	249			[0.15; 0.38]	1.1%	1.4%
de Ruyter et al. 1998 Kottasz & Bennett 2006	175 253		0.46 0.43	[0.34; 0.57] [0.32; 0.53]	0.8% 1.1%	1.4% 1.5%
Kottasz & Bennett 2006	252	-	0.45	[0.35; 0.54]	1.1%	1.5%
Douglas & Nijssen 2003	127		0.25	[0.08; 0.41]	0.6%	1.4%
Marinkovic 2017	221		0.51	[0.40; 0.60]	1.0%	1.4%
van Birgelen et al. 2015 Vida et al. 2008	175 580	-	0.46 0.17	[0.33; 0.57] [0.09; 0.25]	0.8% 2.6%	1.4% 1.5%
Balabanis et al. 2001	303		0.14	[0.03; 0.25]	1.4%	1.5%
Balabanis et al. 2001	480		0.35	[0.27; 0.43]	2.2%	1.5%
Vida et al. 2008	580	=	0.56	[0.51; 0.62]	2.6%	1.5%
Dmitrovic et al. 2009 Dmitrovic et al. 2009	454 600		0.27 0.22	[0.18; 0.35] [0.15; 0.30]	2.1% 2.7%	1.5% 1.5%
Dmitrovic et al. 2009	600		0.22	[0.13, 0.30]	2.7%	1.5%
Dmitrovic et al. 2009	300	+		[-0.13; 0.10]	1.4%	1.5%
Zeugner-Roth et al. 2015 Zeugner-Roth et al. 2015	411		0.31	[0.22; 0.39]	1.9%	1.5%
Zeugner–Roth et al. 2015 Strizhakova et al. 2012	405 250		0.26 0.31	[0.17; 0.35] [0.19; 0.42]	1.8% 1.1%	1.5% 1.4%
Strizhakova et al. 2012	308		0.26	[0.15; 0.36]	1.4%	1.5%
Kreckova et al. 2012	199		0.30	[0.17; 0.42]	0.9%	1.4%
Javalgi et al. 2005 Altintas & Tokol 2007	106 540		0.27	[0.09; 0.44] [0.14; 0.30]	0.5% 2.4%	1.3%
de Ruyter et al. 1998	540 175			[0.14; 0.30]	2.4%	1.5% 1.4%
Kottasz & Bennett 2006	253			[0.15; 0.38]	1.1%	1.5%
Kottasz & Bennett 2006	252		0.45	[0.35; 0.54]	1.1%	1.5%
van Birgelen et al. 2015	175	*		[0.26; 0.51]	0.8%	1.4%
Fixed effect model Random effects model	10026	×		[0.31; 0.35] [0.26; 0.39]	45.3%	43.6%
Heterogeneity: $I^2 = 92\%$, $\tau^2 = 0.1$	0359, <i>p</i> < 0.01		0.00	L 0120, 0100]		
Continent = 5 Cheab & Phau 2015	204	_	0 ==	1044-064	0.0%	1 40/
Cheah & Phau 2015 Fixed effect model	204 204	+		[0.44; 0.64] [0.44; 0.64]	0.9% 0.9%	1.4%
Random effects model	207			[0.44; 0.64]	0.070	1.4%
Heterogeneity: not applicable						
Operationant C						
Continent = 3 Strizhakova et al. 2012	186		0 14	[0.00; 0.28]	0.8%	1.4%
Cleveland et al. 2012	192	- <u>-</u>	0.44	[0.32; 0.55]	0.8%	1.4%
Fixed effect model	378	\diamond	0.30	[0.21; 0.39]	1.7%	
Random effects model	0500 . 0 .		0.30	[-0.02; 0.56]		2.8%
Heterogeneity: $I^2 = 90\%$, $\tau^2 = 0$.	usu3, <i>p</i> < 0.01					
Fixed effect model	22157		0.36	[0.35; 0.37]	100.0%	
Random effects model				[0.32; 0.41]		100.0%
Heterogeneity: $I^2 = 94\%$, $\tau^2 = 0.1$	U517, <i>p</i> < 0.01					

Random effects mouel Heterogeneity: $l^2 = 94\%$, $\tau^2 = 0.0517$, p < 0.01-0.6 -0.2 0 0.2 0.4 0.6

Results of subgroups	(fixed effect mod	lel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Developed = 0	29	0.4411	[0.4233; 0.4586]	377.00	92.6%
Developed = 1	40	0.3121	[0.2971; 0.3270]	691.06	94.4%
Test for subgroup diff	ferences (fixed ef	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	115.43	1	< 0.0001		
Within groups	1068.06	67	< 0.0001		
Test for subgroups (ra	andom effects mo	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
Developed = 0	29	0.4354	[0.3670; 0.4991]	377.00	92.6%
Developed = 1	40	0.3118	[0.2468; 0.3741]	691.06	94.4%
Test for subgroup diff	ferences (random	effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	6.84	1	0.0089		

D1.3.1 Forest plot of national values for moderator continent D1.4 Analysis of national values for moderator developed

Study	Total	Correlation	COR	95%_CI	Weight	Weight
Study	IOIAI	Correlation	CON	95%-01	(lixeu)	(random)
Study Developed = 0 Shimp & Sharma 1987 Shimp & Sharma 1987 Javalgi et al. 2005 Lee et al. 2003 de Ruyter et al. 1998 Kottasz & Bennett 2006 Douglas & Nijssen 2003 Tsai et al. 2013 Cheah & Phau 2015 Lee et al. 2003 Tsai et al. 2013 Cheah & Phau 2015 Zeugner-Roth et al. 2015 Verlegh 2007 Cleveland et al. 2016 Shimp & Sharma 1987 Shimp & Sharma 198	Total 293 296 536 390 137 106 336 175 252 127 506 175 336 506 204 411 103 241 103 241 103 241 103 241 295 296 288 535 390 138 106 175	Correlation	COR 0.66 0.66 0.57 0.57 0.57 0.39 0.46 0.45 0.46 0.45 0.46 0.45 0.46 0.45 0.46 0.45 0.46 0.45 0.46 0.45 0.57 0.46 0.46 0.45 0.57 0.46 0.46 0.45 0.57 0.46 0.46 0.45 0.46 0.46 0.45 0.46 0.45 0.46 0.46 0.45 0.46 0.45 0.46 0.45 0.46 0.46 0.45 0.46 0.45 0.46 0.45 0.46 0.45 0.46 0.45 0.46 0.45 0.46 0.45 0.46 0.45 0.45 0.46 0.45 0.45 0.46 0.45 0.46 0.45 0.45 0.46 0.46 0.45 0.46 0.45 0.57 0.46 0.46 0.45 0.57 0.46 0.45 0.46 0.45 0.55 0.35 0.46 0.46 0.45 0.55 0.35 0.55 0.35 0.46 0.46 0.45 0.55 0.35 0.55 0	$ \begin{bmatrix} 0.58; & 0.71 \\ 0.59; & 0.72 \\ 0.59; & 0.72 \\ 0.51; & 0.62 \\ 0.48; & 0.62 \\ 0.24; & 0.52 \\ 0.23; & 0.55 \\ 0.33; & 0.54 \\ 0.34; & 0.57 \\ 0.35; & 0.54 \\ 0.34; & 0.57 \\ 0.31; & 0.49 \\ 0.36; & 0.50 \\ 0.44; & 0.64 \\ 0.22; & 0.39 \\ 0.22; & 0.39 \\ 0.51; & 0.66 \\ 0.44; & 0.64 \\ 0.44; & 0.64 \\ 0.44; & 0.61 \\ 0.34; & 0.58 \\ 0.43; & 0.58 \\ 0.43; & 0.58 \\ 0.25; & 0.53 \\ 0.09; & 0.44 \\ 0.00; & 0.44 \\ 0.00; & 0.44 \\ 0.00; & 0.44 \\ 0.00; & 0.44 \\ 0.00; & 0.44 \\ 0$	(fixed) 1.3% 1.3% 1.3% 2.4% 1.8% 0.6% 0.5% 0.8% 1.5% 0.8% 1.5% 0.8% 1.5% 1.1% 1.3% 1.3% 1.3% 1.3% 1.3% 1.3% 0.6% 0.5	(random) 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.4% 1.5% 1.
de Ruyter et al. 1998 Kottasz & Bennett 2006	175 252		0.39 0.45	[0.26; 0.51] [0.35; 0.54]	0.8% 1.1%	1.4% 1.5%
van Birgelen et al. 2015 Fixed effect model Random effects model Heterogeneity: $l^2 = 93\%$, $\tau^2 = 0$	175 8067	* *	0.39 0.44 0.44	[0.26; 0.51] [0.42; 0.46] [0.37; 0.50]	0.8% 36.4% 	1.4% 41.7%
Developed = 1	007	_	0.50	10.17.0.501	0.00/	4 500
Sharma et al. 1995 Ishii 2009	667 300		0.53 0.42	[0.47; 0.58] [0.32; 0.51]	3.0% 1.4%	1.5% 1.5%
Ishii 2009 Vida & Reardon 2008	300 714		0.43	[0.34; 0.52] [0.63; 0.71]	1.4% 3.2%	1.5% 1.5%
Balabanis et al. 2001	303		0.24	[0.14; 0.35]	1.4%	1.5%
Balabanis et al. 2001 Bawa 2004	480	· · · ·	0.08	[-0.01; 0.17]	2.2% 0.2%	1.5%
Bawa 2004 Bawa 2004	54 103		- 0.44 0.42	[0.20; 0.64] [0.25; 0.57]	0.2%	1.1% 1.3%
Bawa 2004	160		- 0.57	[0.45; 0.66]	0.7%	1.4%
Jain & Jain 2013 Fernandez-Ferrin et al. 201	304 5 249		0.34 0.26	[0.24; 0.44] [0.15; 0.38]	1.4% 1.1%	1.5% 1.4%
Kottasz & Bennett 2006	253		0.43	[0.32; 0.53]	1.1%	1.5%
Mavondo & Tan 1999 Nik–Mat et al. 2015	186 425		0.49 0.23	[0.37; 0.59] [0.14; 0.32]	0.8% 1.9%	1.4% 1.5%
Marinkovic 2017	221		0.51	[0.40; 0.60]	1.0%	1.4%
Tsai et al. 2013 Rybina et al. 2010	564 372	-	-0.20	[-0.28; -0.12] [0.17; 0.36]	2.6% 1.7%	1.5% 1.5%
Al Gadineh & Good 2015	196		-0.07	[-0.21; 0.07]	0.9%	1.4%
Vida et al. 2008 Balabanis et al. 2001	580 303		0.17 0.14	[0.09; 0.25] [0.03; 0.25]	2.6% 1.4%	1.5% 1.5%
Balabanis et al. 2001	480	<u>+</u>	0.35	[0.27; 0.43]	2.2%	1.5%
Tsai et al. 2013 Al Gadineh & Good 2015	564 196		0.49 0.45	[0.43; 0.55] [0.33; 0.55]	2.6% 0.9%	1.5% 1.4%
Vida et al. 2008	580	_ =	0.56	[0.51; 0.62]	2.6%	1.5%
Dmitrovic et al. 2009 Dmitrovic et al. 2009	454 600		0.27 0.22	[0.18; 0.35] [0.15; 0.30]	2.1% 2.7%	1.5% 1.5%
Dmitrovic et al. 2009	600		0.27	[0.20; 0.34]	2.7%	1.5%
Dmitrovic et al. 2009 Zeugner-Roth et al. 2015	300 405	1 -	-0.01 0.26	[-0.13; 0.10] [0.17; 0.35]	1.4% 1.8%	1.5% 1.5%
Strizhakova et al. 2012	250		0.31	[0.19; 0.42]	1.1%	1.4%
Strizhakova et al. 2012 Strizhakova et al. 2012	308 186		0.26 0.14	[0.15; 0.36] [0.00; 0.28]	1.4% 0.8%	1.5% 1.4%
Cleveland et al. 2016	192		0.44	[0.32; 0.55]	0.9%	1.4%
Kreckova et al. 2012 Altintas & Tokol 2007	199 540		0.30 0.22	[0.17; 0.42] [0.14; 0.30]	0.9% 2.4%	1.4% 1.5%
Jain & Jain 2013	304		0.23	[0.12; 0.33]	1.4%	1.5%
Al Gadineh 2010 Kamaruddin et al. 2002	272 248		0.37 0.26	[0.26; 0.47] [0.14; 0.37]	1.2% 1.1%	1.5% 1.4%
Kottasz & Bennett 2006	253	_	0.27	[0.15; 0.38]	1.1%	1.5%
Nik–Mat et al. 2015 Fixed effect model	425 14090	· ·		[-0.02; 0.17] [0.30; 0.33]	1.9% 63.6%	1.5%
Random effects model Heterogeneity: $I^2 = 94\%$, $\tau^2 = 0$		•		[0.25; 0.37]		58.3%
					100.00	
Fixed effect model Random effects model Heterogeneity: $I^2 = 94\%$, $\tau^2 = 0$			0.36	[0.35; 0.37] [0.32; 0.41]	100.0%	100.0%
	-0.6	-0.2 0 0.2 0.4 0	6			

D1.4.1 Forest plot of national values for moderator developed

Results of subgroups	(fixed effect mod	lel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Developed = 1	31	0.3933	[0.3747; 0.4116]	0.0355	90.2%
Developed = 0	38	0.3414	[0.3266; 0.3560]	859.29	95.7%
Test for subgroup diff	ferences (fixed et	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	18.40	1	< 0.0001		
Within groups	1165.09	67	< 0.0001		
Test for subgroups (ra	andom effects mo	odel)			
	<u>k</u>	<u>COR</u>	<u>95%-CI</u>	Q	<u>I</u> ²
Developed = 1	31	0.4093	[0.3490; 0.4663]	0.0355	90.2%
Developed = 0	38	0.3277	[0.2536; 0.3979]	859.29	95.7%
Test for subgroup diff	ferences (random	effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	2.99	1	0.0840		

D1.5 Analysis of national values for moderator urban

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
Selection $= 2$	11	0.5602	[0.5392; 0.5805]	34.47	71.0%
Selection = 1	13	0.3017	[0.2660; 0.3365]	64.50	81.4%
Selection = 4	7	0.3935	[0.3481; 0.4371]	25.56	76.5%
Selection = 0	23	0.3395	[0.3196; 0.3591]	415.42	94.7%
Selection = 5	8	0.2445	[0.2125; 0.2761]	27.22	74.3%
Selection $= 3$	5	0.2162	[0.1776; 0.2542]	198.65	98.0%
Selection = 9	2	0.4201	[0.3292; 0.5034]	7.21	86.1%
Test for subgroup diff	ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	410.48	6	< 0.0001		
Within groups	773.01	62	< 0.0001		
Test for subgroups (ra	andom effects me	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Selection $= 2$	11	0.5659	[0.5262; 0.6032]	34.47	71.0%
Selection = 1	13	0.3156	[0.2305; 0.3959]	64.50	81.4%
Selection $= 4$	7	0.3940	[0.2959; 0.4838]	25.56	76.5%
Selection = 0	23	0.3416	[0.2523; 0.4252]	415.42	94.7%
Selection $= 5$	8	0.2401	[0.1756; 0.3026]	27.22	74.3%
Selection $= 3$	5	0.2234	[-0.0586; 0.4724]	198.65	98.0%
Selection = 9	2	0.3903	[0.1159; 0.6093]	7.21	86.1%
Test for subgroup diff	ferences (random	effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	91.45	6	< 0.0001		

D1.6 Analysis of national values for moderator selection

Study	Total	Correlation	COR	95%-CI	Weight (fixed) (Weight (random)
Selection = 2 Shimp & Sharma 1987 Shimp & Sharma 1987 Harma 1987 Shimp & Sharma 1987	293 297 286 536 390 667 295 296 288 535 390 4273 0.0064, <i>p</i> < 0.01			$\begin{bmatrix} 0.58; \ 0.71 \\ 0.59; \ 0.72 \\ 0.59; \ 0.72 \\ 0.51; \ 0.62 \\ 0.48; \ 0.62 \\ 0.47; \ 0.58 \\ 0.51; \ 0.66 \\ 0.44; \ 0.61 \\ 0.34; \ 0.53 \\ 0.46; \ 0.58 \\ 0.43; \ 0.58 \\ 0.54; \ 0.58 \\ 0.53; \ 0.60 \end{bmatrix}$	1.3% 1.3% 2.4% 1.8% 3.0% 1.3% 1.3% 1.3% 2.4% 1.8% 1.8%	1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5%
Selection = 1 Shimp & Sharma 1987 Bawa 2004 Rybina et al. 2010 Al Gadineh & Good 2015 Cheah & Phau 2015 Al Gadineh & Good 2015 Verlegh 2007 Strizhakova et al. 2012 Strizhakova et al. 2012 Strizhakova et al. 2012 Shimp & Sharma 1987 Kamarudoin et al. 2002 Fixed effect model Random effects model Ratomatic P = 81%, t ² = 1	137 54 372 196 204 196 103 250 308 186 199 138 248 2591		→ 0.55 0.45 0.40 0.31 0.26 0.14 0.30 0.40 0.26 0.26 0.30	$\begin{bmatrix} 0.24; & 0.52 \\ 0.20; & 0.64 \\ 0.17; & 0.36 \\ -0.21; & 0.07 \\ 0.44; & 0.64 \\ 0.33; & 0.55 \\ 0.19; & 0.42 \\ 0.15; & 0.36 \\ 0.00; & 0.28 \\ 0.17; & 0.42 \\ 0.25; & 0.53 \\ 0.14; & 0.37 \\ 0.27; & 0.34 \\ 0.23; & 0.40 \end{bmatrix}$	0.6% 0.2% 1.7% 0.9% 0.9% 0.9% 1.1% 1.4% 0.8% 0.9% 0.6% 1.1% 1.16%	1.4% 1.1% 1.5% 1.4% 1.4% 1.4% 1.4% 1.4% 1.4% 1.4% 1.4
Selection = 4 Javalgi et al. 2005 Ishii 2009 Baiva 2004 Cleveland et al. 2016 Cleveland et al. 2016 Javalgi et al. 2005 Fixed effect model Random effects model Heterogeneity: f^2 = 77%, t^2 = 1	106 300 160 241 192 106 1405	+++ ⁺ ++++++++++++++++++++++++++++++++	0.40 0.42 0.43 0.57 0.17 0.44 0.27 0.39 0.39	$\begin{bmatrix} 0.23; \ 0.55 \\ 0.32; \ 0.51 \\ 0.34; \ 0.52 \\ 0.45; \ 0.66 \\ 0.5; \ 0.29 \\ 0.32; \ 0.55 \\ 0.09; \ 0.44 \\ 0.36; \ 0.48 \end{bmatrix}$	0.5% 1.4% 1.4% 0.7% 1.1% 0.9% 0.5% 6.3%	1.3% 1.5% 1.4% 1.4% 1.4% 1.3% 9.8%
Selection = 0 Lee et al. 2003 Vida & Reardon 2008 Balabanis et al. 2001 Balabanis et al. 2001 Balabanis et al. 2001 de Ruyter et al. 1998 Kottasz & Bennett 2006 Kottasz & Bennett 2006 Mavondo & Tan 1999 NikMat et al. 2015 Lee et al. 2003 Vida et al. 2008 Balabanis et al. 2001 Balabanis et al. 2001 Balabanis et al. 2001 Balabanis et al. 2001 Gadineh 2010 de Ruyter et al. 1998 Kottasz & Bennett 2006 NikMat et al. 2015 Fixed effect model Random effects model Retorgenety. <i>P</i> = 95%, <i>P</i> = 1	336 714 303 480 103 175 253 252 186 425 175 336 580 303 480 580 540 272 175 253 252 425 175 7773	┿ ┿╪ [┿] ╪╪ [┿] ╪╪ _╋ ╪╪ [┿] ┿ [┿] ┿ [┿] ┿ [┿] ┿ ┿	 0.67 0.24 0.08 0.42 0.46 0.46 0.43 0.43 0.43 0.43 0.43 0.44 0.40 0.40 0.40 0.41 0.56 0.22 0.37 0.36 0.27 0.39 0.34 	$\begin{bmatrix} -0.21; & 0.00] \\ 0.63; & 0.71] \\ \begin{bmatrix} 0.14; & 0.35] \\ -0.01; & 0.17] \\ \begin{bmatrix} 0.25; & 0.57] \\ 0.34; & 0.57] \\ \begin{bmatrix} 0.32; & 0.53] \\ 0.35; & 0.54] \\ \begin{bmatrix} 0.37; & 0.59] \\ 0.37; & 0.59] \\ \begin{bmatrix} 0.31; & 0.49] \\ 0.09; & 0.25] \\ \begin{bmatrix} 0.27; & 0.43] \\ 0.51; & 0.62] \\ \begin{bmatrix} 0.51; & 0.82] \\ 0.51; & 0.54] \\ \begin{bmatrix} 0.14; & 0.30] \\ 0.51; & 0.62] \\ \begin{bmatrix} 0.51; & 0.82] \\ 0.51; & 0.54] \\ \begin{bmatrix} 0.35; & 0.54] \\ \begin{bmatrix} 0.35; & 0.54] \\ \begin{bmatrix} 0.26; & 0.51] \\ \begin{bmatrix} 0.26; & 0.36] \\ \begin{bmatrix} 0.225; & 0.43] \end{bmatrix} \end{bmatrix}$	1.5% 3.2% 0.8% 1.1% 1.9% 0.8% 1.5% 2.6% 2.6% 2.4% 1.2% 0.8% 2.6% 2.4% 1.2% 0.8% 35.1%	$\begin{array}{c} 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.4\%\\ 1.4\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.4\%\\ 1.5\%$
Selection = 5 Jain & Jain 2013 Dmitrovic et al. 2009 Dmitrovic et al. 2009 Dmitrovic et al. 2009 Zeugner-Roth et al. 2015 Zeugner-Roth et al. 2015 Jain & Jain 2013 Fixed effect model Random effects model Heterogeneity, <i>F</i> = 74%, <i>c</i> ² = 1	304 454 600 600 300 411 405 304 3378	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	0.27 0.22 0.27 -0.01 0.31 0.26 0.23 0.24	[0.24; 0.44] [0.18; 0.35] [0.15; 0.30] [0.20; 0.34] [-0.13; 0.10] [0.22; 0.39] [0.17; 0.35] [0.12; 0.33] [0.21; 0.28] [0.18; 0.30]	2.7% 2.7% 1.4% 1.9% 1.8% 1.4%	1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5%
Selection = 3 Fernandez-Ferrin et al. 201 Tsai et al. 2013 Tsai et al. 2013 Tsai et al. 2013 Tsai et al. 2013 Fixed etfact model Random effects model Heterogeneity: $l^2 = 98\%$, $l^2 = l$	5 249 506 564 506 564 2389	*	0.07 -0.20 0.43 0.49 0.22	[0.15; 0.38] [-0.22; 0.16] [-0.28; -0.12] [0.36; 0.50] [0.43; 0.55] [0.18; 0.25] [-0.06; 0.47]	2.6% 2.3% 2.6%	1.4% 1.5% 1.5% 1.5% 7.5%
Selection = 9 Douglas & Nijssen 2003 Marinkovic 2017 Fixed effect model Random effects model Heterogeneity: /² = 68%, <² = 1	127 221 348		- 0.51 0.42	[0.08; 0.41] [0.40; 0.60] [0.33; 0.50] [0.12; 0.61]	0.6% 1.0% 1.6% 	1.4% 1.4% 2.8%
Fixed effect model Random effects model Heterogeneity: $l^2 = 94\%$, $\tau^2 = 1$	22157	-0.2 0 0.2 0.4 (0.36	[0.35; 0.37] [0.32; 0.41]	100.0% 	 100.0%

D1.6.1 Forest plot of national values for moderator selection

Results of subgroups (fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Characteristics = 0	56	0.3631	[0.3509; 0.3752]	1136.89	95.2%
Characteristics = 1	11	0.3206	[0.2828; 0.3575]	30.46	67.2%
Characteristics = 3	1	0.4440	[0.2000; 0.6361]	0.00	-
Characteristics = 2	1	0.5660	[0.4504; 0.6629]	0.00	-
Test for subgroup diffe	erences (fixed e	ffect model)			
	Q	<u>d.f.</u>	p-value		
Between groups	16.15	3	0.0011		
Within groups	1167.35	65	< 0.0001		
Test for subgroups (rai	ndom effects m	odel)			
	<u>K</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Characteristics = 0	56	0.3650	[0.3080; 0.4193]	1136.89	95.2%
Characteristics = 1	11	0.3332	[0.2655; 0.3977]	30.46	67.2%
Characteristics = 3	1	0.4440	[0.2000; 0.6361]	0.00	-
Characteristics = 2	1	0.5660	[0.4504; 0.6629]	0.00	-
Test for subgroup diffe	erences (random	n effects model)			
	Q	<u>d.f.</u>	p-value		
Between groups	11.67	3	0.0086		

D1.7 Analysis of national values for moderator characteristics

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
Characteristics = 0	000	_	0.05	1050 07:	4.00	4 50/
Shimp & Sharma 1987 Shimp & Sharma 1987	293 297		0.65 0.66	[0.58; 0.71] [0.59; 0.72]	1.3% 1.3%	1.5% 1.5%
Shimp & Sharma 1987	286		0.66	[0.59; 0.72]	1.3%	1.5%
Shimp & Sharma 1987	536		0.57	[0.51; 0.62]	2.4%	1.5%
Shimp & Sharma 1987	390		0.55	[0.48; 0.62]	1.8%	1.5%
Sharma et al. 1995	667		0.53	[0.47; 0.58]	3.0%	1.5%
Javalgi et al. 2005	106		0.40	[0.23; 0.55]	0.5%	1.3%
Ishii 2009 Ishii 2009	300 300		0.42	[0.32; 0.51]	1.4%	1.5%
Lee et al. 2003	336		0.43 -0.11	[0.34; 0.52] [-0.21; 0.00]	1.4% 1.5%	1.5% 1.5%
Vida & Reardon 2008	714		0.67	[0.63; 0.71]	3.2%	1.5%
Balabanis et al. 2001	303		0.24	[0.14; 0.35]	1.4%	1.5%
Balabanis et al. 2001	480		0.08	[-0.01; 0.17]	2.2%	1.5%
Jain & Jain 2013	304	-	0.34	[0.24; 0.44]	1.4%	1.5%
Fernandez-Ferrin et al. 201			0.26	[0.15; 0.38]	1.1%	1.4%
de Ruyter et al. 1998 Kottasz & Bennett 2006	175 253		0.46 0.43	[0.34; 0.57] [0.32; 0.53]	0.8% 1.1%	1.4% 1.5%
Kottasz & Bennett 2006	252		0.45	[0.35; 0.54]	1.1%	1.5%
Mavondo & Tan 1999	186	-	0.49	[0.37; 0.59]	0.8%	1.4%
Nik-Mat et al. 2015	425		0.23	[0.14; 0.32]	1.9%	1.5%
Douglas & Nijssen 2003	127		0.25	[0.08; 0.41]	0.6%	1.4%
Marinkovic 2017	221		0.51	[0.40; 0.60]	1.0%	1.4%
Tsai et al. 2013	506	_ 1 1		[-0.02; 0.16]	2.3%	1.5%
Tsai et al. 2013	564 175	*	-0.20 0.46	[-0.28; -0.12] [0.33; 0.57]	2.6% 0.8%	1.5% 1.4%
van Birgelen et al. 2015 Al Gadineh & Good 2015	175			[-0.21; 0.07]	0.8%	1.4% 1.4%
Lee et al. 2003	336		0.40	[0.31; 0.49]	1.5%	1.4%
Vida et al. 2008	580	_ €	0.17	[0.09; 0.25]	2.6%	1.5%
Balabanis et al. 2001	303	-	0.14	[0.03; 0.25]	1.4%	1.5%
Balabanis et al. 2001	480	+	0.35	[0.27; 0.43]	2.2%	1.5%
Tsai et al. 2013	506		0.43	[0.36; 0.50]	2.3%	1.5%
Tsai et al. 2013	564		0.49	[0.43; 0.55]	2.6%	1.5%
Al Gadineh & Good 2015	196		0.45	[0.33; 0.55]	0.9%	1.4%
Vida et al. 2008 Dmitrovic et al. 2009	580 454		0.56 0.27	[0.51; 0.62] [0.18; 0.35]	2.6%	1.5% 1.5%
Dmitrovic et al. 2009	600	-	0.22	[0.15; 0.30]	2.7%	1.5%
Dmitrovic et al. 2009	600		0.27	[0.20; 0.34]	2.7%	1.5%
Dmitrovic et al. 2009	300	-	-0.01	[-0.13; 0.10]	1.4%	1.5%
Zeugner-Roth et al. 2015	411	- 	0.31	[0.22; 0.39]	1.9%	1.5%
Zeugner-Roth et al. 2015	405		0.26	[0.17; 0.35]	1.8%	1.5%
Cleveland et al. 2016	241		0.17	[0.05; 0.29]	1.1%	1.4%
Cleveland et al. 2016	192		0.44	[0.32; 0.55]	0.9%	1.4%
Shimp & Sharma 1987 Shimp & Sharma 1987	295		0.59 0.53	[0.51; 0.66]	1.3% 1.3%	1.5%
Shimp & Sharma 1987	296 288		0.55	[0.44; 0.61] [0.34; 0.53]	1.3%	1.5% 1.5%
Shimp & Sharma 1987	535		0.52	[0.46; 0.58]	2.4%	1.5%
Shimp & Sharma 1987	390		0.51	[0.43; 0.58]	1.8%	1.5%
Javalgi et al. 2005	106		0.27	[0.09; 0.44]	0.5%	1.3%
Altintas & Tokol 2007	540	-	0.22	[0.14; 0.30]	2.4%	1.5%
Jain & Jain 2013	304		0.23	[0.12; 0.33]	1.4%	1.5%
Al Gadineh 2010	272 175	-	0.37	[0.26; 0.47]	1.2%	1.5%
de Ruyter et al. 1998 Kottasz & Bennett 2006	253		0.39 0.27	[0.26; 0.51] [0.15; 0.38]	0.8% 1.1%	1.4% 1.5%
Kottasz & Bennett 2006	252		0.45	[0.35; 0.54]	1.1%	1.5%
Nik-Mat et al. 2015	425			[-0.02; 0.17]	1.9%	1.5%
van Birgelen et al. 2015	175		0.39	[0.26; 0.51]	0.8%	1.4%
Fixed effect model	19695	0	0.36	[0.35; 0.38]	89.0%	
Random effects model		•	0.36	[0.31; 0.42]		82.0%
Heterogeneity: $I^2 = 95\%$, $\tau^2 =$	0.0566, <i>p</i> < 0.01					
Characteristics - 1						
Characteristics = 1 Shimp & Sharma 1987	137		0.39	[0.24; 0.52]	0.6%	1.4%
Bawa 2004	103		0.39	[0.24, 0.52]	0.6%	1.4%
Rybina et al. 2010	372		0.27	[0.17; 0.36]	1.7%	1.5%
Cheah & Phau 2015	204		0.55	[0.44; 0.64]	0.9%	1.4%
Verlegh 2007	103		0.40	[0.22; 0.55]	0.5%	1.3%
Strizhakova et al. 2012	250		0.31	[0.19; 0.42]	1.1%	1.4%
Strizhakova et al. 2012	308		0.26	[0.15; 0.36]	1.4%	1.5%
Strizhakova et al. 2012	186		0.14	[0.00; 0.28]	0.8% 0.9%	1.4%
Kreckova et al. 2012 Shimp & Sharma 1987	199 138		0.30	[0.17; 0.42]		1.4% 1.4%
Kamaruddin et al. 2002	248		0.26	[0.25; 0.53] [0.14; 0.37]	1.1%	1.4%
Fixed effect model	2248	•	0.32	[0.28; 0.36]	10.1%	
Random effects model		•		[0.27; 0.40]		15.5%
Heterogeneity: $I^2 = 67\%$, $\tau^2 =$	0.0103, <i>p</i> < 0.01					
Observatoriation 0						
Characteristics = 3 Bawa 2004	54		0.44	[0.20; 0.64]	0.2%	1.1%
Fixed effect model	54			[0.20; 0.64]		1.178
Random effects model	U T		0.44	[0.20; 0.64]	0.2 /0	1.1%
Heterogeneity: not applicable				[, ·]		
Characteristics = 2					-	
Bawa 2004	160		0.57	[0.45; 0.66]	0.7%	1.4%
Fixed effect model Random effects model	160		0.57	[0.45; 0.66] [0.45; 0.66]	0.7%	1.4%
Heterogeneity: not applicable			0.07	L 0.40; 0.00]		1.49.70
notorogeneity. not applicable						
Fixed effect model	22157	6	0.36	[0.35; 0.37]	100.0%	
Random effects model		· · · · · ·	0.36	[0.32; 0.41]		100.0%
Heterogeneity: $I^2 = 94\%$, $\tau^2 =$						
	-0.6	-0.2 0 0.2 0.4 0.6				

D1.7.1 Forest plot of national values for moderator characteristics

D1.8 Analysis o	of national values	for moderator	CETtype
	J	J	

Results of subgroups	(fixed effect mod	lel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETtype = 0	33	0.4032	[0.3867; 0.4195]	740.84	95.7%
CETtype = 4	18	0.3518	[0.3306; 0.3726]	309.53	94.5%
CETtype = 1	7	0.2540	[0.2140; 0.2931]	38.87	84.6%
CETtype = 3	5	0.2636	[0.2189; 0.3072]	3.99	0.00%
CETtype = 9	4	0.4023	[0.3491; 0.4530]	7.56	60.3%
CETtype = 2	2	0.2547	[0.1570; 0.3473]	0.00	0.00%
Test for subgroup dif	ferences (fixed et	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	82.69	5	< 0.0001		
Within groups	1100.80	63	< 0.0001		
Test for subgroups (r	andom effects mo	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETtype = 0	33	0.4142	[0.3323; 0.4899]	740.84	95.7%
CETtype = 4	18	0.3341	[0.2392; 0.4228]	309.53	94.5%
CETtype = 1	7	0.2760	[0.1716; 0.3742]	38.87	84.6%
CETtype = 3	5	0.2636	[0.2189; 0.3072]	3.99	0.00%
CETtype = 9	4	0.4024	[0.3167; 0.4816]	7.56	60.3%
CETtype = 2	2	0.2547	[0.1570; 0.3473]	0.00	0.00%
Test for subgroup dif	ferences (random	effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	16.86	5	0.0048		

Study	Total	Correlation	COR	95%–Cl	Weight (fixed)	Weight (random)
CETtype = 0 Shimp & Sharma 1987 Shimp & Sharma 1987 Sharma et al. 1995 Javalgi et al. 2005 Lee et al. 2003 Bawa 2004 Bawa 2005 Shara 1998 Shimp & Sharma 1987 Shimp &	293 297 286 536 390 137 106 336 54 103 160 175 186 425 506 564 206 564 204 196 295 296 288 535 390 138 106 272 272 175 425 10143		-0.20 -0.07 -0.40 -0.43 -0.43 -0.45 -0.45 -0.45 -0.45 -0.55 -0.44 -0.53 -0.44 -0.52 -0.53 -0.53 -0.53 -0.53 -0.53 -0.53 -0.55 -0.60 -0.67 -0.60 -0.60 -0.60 -0.60 -0.60 -0.60 -0.60 -0.60 -0.55 -0.60 -0.55	$\begin{bmatrix} 0.58; 0.71 \\ 0.59; 0.72 \\ 0.59; 0.72 \\ 0.51; 0.62 \\ 0.24; 0.52 \\ 0.47; 0.52 \\ 0.43; 0.55 \\ 0.23; 0.55 \\ 0.23; 0.55 \\ 0.23; 0.55 \\ 0.25; 0.57 \\ 0.45; 0.66 \\ 0.34; 0.57 \\ 0.37; 0.59 \\ 0.14; 0.32 \\ 0.34; 0.57 \\ 0.37; 0.59 \\ 0.14; 0.32 \\ 0.34; 0.57 \\ 0.31; 0.49 \\ 0.36; 0.50 \\ 0.44; 0.64 \\ 0.33; 0.55 \\ 0.44; 0.64 \\ 0.33; 0.55 \\ 0.44; 0.64 \\ 0.33; 0.55 \\ 0.44; 0.64 \\ 0.33; 0.55 \\ 0.44; 0.64 \\ 0.58 \\ 0.42; 0.51 \\ 0.44; 0.61 \\ 0.34; 0.53 \\ 0.46; 0.55 \\ 0.44; 0.64 \\ 0.58 \\ 0.42; 0.53 \\ 0.46; 0.55 \\ 0.44; 0.64 \\ 0.25; 0.53 \\ 0.46; 0.55 \\ 0.46; 0.55 \\ 0.46; 0.55 \\ 0.46; 0.55 \\ 0.46; 0.55 \\ 0.46; 0.55 \\ 0.46; 0.55 \\ 0.46; 0.55 \\ 0.46; 0.55 \\ 0.46; 0.55 \\ 0.46; 0.55 \\ 0.46; 0.55 \\ 0.46; 0.55 \\ 0.46; 0.51 \\ 0.26; 0.47 \\ $	$\begin{array}{c} 1.3\%\\ 1.3\%\\ 2.4\%\\ 0.6\%\\ 0.5\%\\ 0.5\%\\ 0.5\%\\ 0.8\%\\ 0.8\%\\ 0.8\%\\ 0.9\%\\ 1.9\%\\ 2.3\%\\ 2.6\%\\ 0.9\%\\ 1.3\%\\ 1.3\%\\ 1.3\%\\ 0.6\%\\ 0.9\%\\ 1.3\%$	$\begin{array}{c} 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.5\%\\ 1.4\%\\ 1.5\%\\ 1.3\%\\ 1.3\%\\ 1.3\%\\ 1.4\%\\ 1.4\%\\ 1.5\%$
CETtype = 4 Ishii 2009 Ishii 2009 Vida & Reardon 2008 Marinkovic 2017 Vida et al. 2008 Dmitrovic et al. 2009 Dmitrovic et al. 2009 Dmitrovic et al. 2009 Dmitrovic et al. 2009 Dmitrovic et al. 2009 Zeugner–Roth et al. 2015 Zeugner–Roth et al. 2015 Verlegh 2007 Strizhakova et al. 2012 Strizhakova et al. 2012 Strizhakova et al. 2012 Strizhakova et al. 2016 Cleveland et al. 2016 Fixed effect model Random effects model Heterogeneity: I^2 = 95%, r^2 =	300 300 714 221 580 580 454 600 600 300 411 405 103 250 308 186 241 192 6745	A+++++++ +	- 0.42 - 0.43 - 0.51 0.67 - 0.56 0.27 0.22 0.27 - 0.01 0.31 0.26 - 0.44 0.44 0.35 0.33	$\begin{bmatrix} 0.32; \ 0.51 \\ 0.34; \ 0.52 \\ 0.63; \ 0.71 \\ 0.40; \ 0.60 \\ 0.09; \ 0.25 \\ 0.15; \ 0.30 \\ 0.20; \ 0.34 \\ [-0.13; \ 0.10 \\ 0.22; \ 0.55 \\ 0.12; \ 0.36 \\ 0.15; \ 0.36 \\ 0.17; \ 0.35 \\ 0.22; \ 0.55 \\ 0.32; \ 0.55 \\ 0.32; \ 0.55 \\ 0.33; \ 0.37 \\ 0.24; \ 0.42 \end{bmatrix}$	1.4% 1.4% 3.2% 1.0% 2.6% 2.7% 1.4% 1.9% 1.4% 0.5% 1.1% 0.8% 0.8% 1.1% 0.9%	1.5% 1.5% 1.4% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.4% 1.4% 1.4% 1.4%
$\label{eq:certain} \begin{array}{l} {\sf CETtype=1}\\ {\sf Balabanis et al. 2001}\\ {\sf Balabanis et al. 2001}\\ {\sf Fernandez-Ferrin et al. 2011}\\ {\sf Fanandez-Ferrin et al. 2015}\\ {\sf Balabanis et al. 2001}\\ {\sf Balabanis et al. 2001}\\ {\sf van Birgelen et al. 2015}\\ {\sf Fixed effect model}\\ {\sf Random effects model}\\ {\sf Heterogeneity:} \ I^2 = 85\%, \tau^2 = \end{array}$	175 303 480 175 2165	*****	0.26 0.46 0.14 0.35 0.39 0.25	[0.14; 0.35] [-0.01; 0.17] [0.15; 0.38] [0.33; 0.57] [0.03; 0.25] [0.27; 0.43] [0.26; 0.51] [0.21; 0.29] [0.17; 0.37]	1.4% 2.2% 1.1% 0.8% 1.4% 2.2% 0.8% 9.8%	1.5% 1.5% 1.4% 1.5% 1.5% 1.4% 1.4%
CETtype = 3 Jain & Jain 2013 Rybina et al. 2010 Kreckova et al. 2012 Altintas & Tokol 2007 Jain & Jain 2013 Fixed effect model Random effects model Heterogeneity: $f^2 = 0\%$, $\tau^2 = 0$	304 372 199 540 304 1719	* * * * * * *	0.27 0.30 0.22 0.23 0.26	[0.24; 0.44] [0.17; 0.36] [0.17; 0.42] [0.14; 0.30] [0.12; 0.33] [0.22; 0.31] [0.22; 0.31]	1.4% 1.7% 0.9% 2.4% 1.4% 7.8%	1.5% 1.5% 1.4% 1.5% 1.5%
$\label{eq:certain} \begin{array}{l} {\sf CETtype=9} \\ {\sf Kottasz \& Bennett 2006} \\ {\sf Fixed effect model} \\ {\sf Random effects model} \\ {\sf Heterogeneity:} \ {\it I}^2 = 60\%, {\it s}^2 = \\ \end{array}$	253 252 253 252 1010 0.0061, <i>p</i> = 0.06	-	0.27 0.45 0.40	[0.32; 0.53] [0.35; 0.54] [0.15; 0.38] [0.35; 0.54] [0.35; 0.45] [0.32; 0.48]	1.1% 1.1% 1.1% 1.1% 4.5%	1.5% 1.5% 1.5% 1.5% 5.8%
CETtype = 2 Douglas & Nijssen 2003 Kamaruddin et al. 2002 Fixed effect model Random effects model Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$	127 248 375	+ + & &	0.25	[0.08; 0.41] [0.14; 0.37] [0.16; 0.35] [0.16; 0.35]	0.6% 1.1% 1.7%	1.4% 1.4% 2.8%
Fixed effect model Random effects model Heterogeneity: $l^2 = 94\%$, $\tau^2 =$	22157 0.0517, <i>p</i> < 0.01 -0.6	-0.2 0 0.2 (0.36	[0.35; 0.37] [0.32; 0.41]	100.0% 	 100.0%

 $\tau^2 = 0.0517, p < 0.01$ -0.2 0 0.2 0.4 0.6

Results of subgroups	(fixed effect mod	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETcoded = 2	14	0.3320	[0.3072; 0.3563]	195.30	93.3%
CETcoded = 1	28	0.3650	[0.3466; 0.3832]	587.16	95.4%
CETcoded = 0	5	0.3015	[0.2393; 0.3612]	9.85	59.4%
CETcoded = 3	5	0.4099	[0.3662; 0.4518]	78.45	94.9%
CETcoded = 9	17	0.3745	[0.3525; 0.3961]	296.98	94.6%
Test for subgroup dif	ferences (fixed et	ffect model)			
	Q	<u>d.f.</u>	p-value		
Between groups	15.76	4	0.0034		
Within groups	1167.73	64	< 0.0001		
Test for subgroups (r	andom effects me	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
CETcoded = 2	14	0.3585	[0.2616; 0.4482]	195.30	93.3%
CETcoded = 1	28	0.3740	[0.2853; 0.4564]	587.16	95.4%
CETcoded = 0	5	0.3201	[0.2202; 0.4133]	9.85	59.4%
CETcoded = 3	5	0.3633	[0.1380; 0.5528]	78.45	94.9%
CETcoded = 9	17	0.3654	[0.2655; 0.4575]	296.98	94.6%
Test for subgroup dif	ferences (random	n effects model))		
	Q	<u>d.f.</u>	p-value		
Between groups	0.75	4	0.9446		

D1.8.1 Forest plot of national values for moderator CETtype	
D1.9 Analysis of national values for moderator CETcoded	

D2 Animosity

2 0	•••				
Results of subgroups (fixed effect m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	<u>Q</u>	$\underline{I^2}$
Construct = 0	39	0.3620	[0.3478; 0.3760]	557.06	93.2%
Construct = 1	10	0.3282	[0.2914; 0.3640]	36.22	75.2%
Construct = 2	14	0.2896	[0.2585; 0.3201]	106.83	87.8%
Test for subgroup diff	erences (fixed	effect model)			
	<u>Q</u>	<u>d.f.</u>	p-value		
Between groups	19.15	2	< 0.0001		
Within groups	700.11	60	< 0.0001		
Test for subgroups (ra	ndom effects 1	nodel)			
	<u>k</u>	COR	<u>95%-CI</u>	<u>Q</u>	$\underline{I^2}$
Construct = 0	39	0.3343	[0.2772; 0.3891]	557.06	93.2%
Construct = 1	10	0.3450	[0.2695; 0.4162]	36.22	75.2%
Construct = 2	14	0.3004	[0.2091; 0.3865]	106.83	87.8%
Test for subgroup diff	erences (rando	m effects model)			
	Q	<u>d.f.</u>	p-value		
Between groups	0.62	2	0.7352		

D2.1 Analysis of animosity for moderator construct

Study	Total	Correlation	COR	95%–CI	Weight (fixed)	Weight (random)
construct = 0						
Ishii 2009	300			[0.18; 0.39]	1.5%	1.6%
Ishii 2009	300		0.36	[0.26; 0.46]	1.5%	1.6%
Jain & Jain 2013	304			[0.20; 0.41]	1.5%	1.6%
Huang et al. 2010	434			[0.31; 0.47]	2.1%	1.7%
Klein et al. 1998	244			[0.35; 0.55]	1.2%	1.6%
Jimenez Torres & San Martin Gutierrez 2007				[0.13; 0.38]	1.0%	1.5%
Carter 2009	800			[0.54; 0.63]	3.9%	1.7%
Carter 2009	800			[0.55; 0.64]	3.9%	1.7%
Carter 2009	800			[0.50; 0.59]	3.9%	1.7%
Jimenez & San Martin 2010	202			[0.13; 0.38]	1.0%	1.5%
Rose et al. 2009	111			[0.09; 0.43]	0.5%	1.4%
Rose et al. 2009	111			[0.19; 0.52]	0.5%	1.4%
Rose et al. 2009	112			[0.09; 0.44]	0.5%	1.4%
Rose et al. 2009	112			[0.05; 0.40]	0.5%	1.4%
Klein 2002	202			[0.42; 0.62]	1.0%	1.5%
Akdogan & Ozgener 2012	208			[0.23; 0.47]	1.0%	1.5%
Ettenson & Klein 2005	261			[0.31; 0.52]	1.3%	1.6%
Ettenson & Klein 2005	329			[0.44; 0.59]	1.6%	1.6%
Parker et al. 2011	367			[0.21; 0.39]	1.8%	1.6%
Nakos & Hajidimitriou 2007	430		0.42	[0.33; 0.49]	2.1%	1.7%
Hoffmann et al. 2011	360			[0.14; 0.34]	1.8%	1.6%
Hoffmann et al. 2011	360		0.09	[-0.01; 0.19]	1.8%	1.6%
Hoffmann et al. 2011	360	- -	0.21	[0.11; 0.31]	1.8%	1.6%
Hoffmann et al. 2011	350			[0.13; 0.33]	1.7%	1.6%
Hoffmann et al. 2011	350			[0.18; 0.37]	1.7%	1.6%
Hoffmann et al. 2011	350		0.14	[0.04; 0.24]	1.7%	1.6%
Tabassi et al. 2012	500		0.61	[0.55; 0.66]	2.5%	1.7%
Sharma 2011	349		0.10	[-0.01; 0.20]	1.7%	1.6%
Sharma 2011	388	+ • · · · · · · · · · · · · · · · · · ·	0.08	[-0.02; 0.18]	1.9%	1.6%
Sharma 2011	468	+		[-0.02; 0.16]	2.3%	1.7%
Sharma 2011	547			[-0.04; 0.12]	2.7%	1.7%
Marinkovic 2017	221	<u></u>		[0.27; 0.50]	1.1%	1.6%
Lee & Mazodier 2015	903			[0.39; 0.49]	4.4%	1.7%
Selli & Kurniawan 2014	209			[0.14; 0.40]	1.0%	1.6%
Fakharmanesh & Miyandehi 2013	463			[0.15; 0.32]	2.3%	1.7%
Cheah et al. 2016	435			[0.29; 0.45]	2.1%	1.7%
Funk et al. 2010	319			[0.14; 0.35]	1.6%	1.6%
Richardson & Harris 2014	348			[0.36; 0.53]	1.7%	1.6%
Mostafa 2010	776	-		[0.33; 0.45]	3.8%	1.7%
Fixed effect model	14685	•		[0.35; 0.38]	71.8%	
Random effects model Heterogeneity: $l^2 = 93\%$, $\tau^2 = 0.0368$, $p < 0.01$				[0.28; 0.39]		62.7%
construct = 1						
Klein et al. 1998	244		0.47	[0.37; 0.56]	1.2%	1.6%
Nijssen & Douglas 2004	110			[0.15; 0.49]	0.5%	1.4%
Nijssen & Douglas 2004	109			[0.36; 0.64]	0.5%	1.4%
Klein 2002	202	3 <u></u>		[0.40; 0.61]	1.0%	1.5%
Cai et al. 2012	224			[0.20; 0.43]	1.1%	1.6%
Wang et al. 2013	257			[0.03; 0.27]	1.3%	1.6%
Cheah et al. 2016	435			[0.14; 0.32]	2.1%	1.7%
Ma et al. 2012	255			[0.19; 0.42]	1.2%	1.6%
Ma et al. 2012	255			[0.19; 0.42]	1.2%	1.6%
Ma et al. 2012	255			[0.21; 0.43]	1.2%	1.6%
Fixed effect model	2346	— — — — — — — — — — — — — — — — — — —			11.4%	1.0 /0
Random effects model	2040			[0.29; 0.36] [0.27; 0.42]	1 1.12 /0	15.5%
Heterogeneity: $l^2 = 75\%$, $\tau^2 = 0.0133$, $p < 0.01$			0.04	[0.27, 0.92]		13.370
construct = 2						
Klein et al. 1998	244		0.27	[0.15; 0.38]	1.2%	1.6%
Nijssen & Douglas 2004	110			[0.29; 0.59]	0.5%	1.4%
Nijssen & Douglas 2004	109			[0.29; 0.59]	0.5%	1.4%
Klein 2002	202			[0.50; 0.68]	1.0%	1.5%
Nakos & Hajidimitriou 2007	430	-		[0.42; 0.56]	2.1%	1.7%
Cheah & Phau 2015	204			[0.07; 0.33]	1.0%	1.5%
Cai et al. 2012	224			[0.22; 0.45]	1.1%	1.6%
De Nisco et al. 2016	274			[0.10; 0.33]	1.3%	1.6%
De Nisco et al. 2016	182			[0.17; 0.44]	0.9%	1.5%
Wang et al. 2013	257			[0.20; 0.42]	1.3%	1.6%
Cheah et al. 2016	435			[0.08; 0.26]	2.1%	1.7%
Ma et al. 2012	255			[0.06; 0.30]	1.2%	1.6%
Ma et al. 2012	255	_ <u>k</u> i		[-0.10; 0.14]	1.2%	1.6%
Ma et al. 2012	255	¹		[-0.01; 0.23]	1.2%	1.6%
Fixed effect model	3436	•		[0.26; 0.32]	16.7%	
Random effects model	0.100			[0.20; 0.32]	/0	21.8%
			0.00	L 0.2.1, 0.00]		L 1.0 /0
Heterogeneity: $I^2 = 88\%$, $\tau^2 = 0.0301$, $p < 0.01$						
Heterogeneity: $l^2 = 88\%$, $\tau^2 = 0.0301$, $p < 0.01$ Fixed effect model	20467		0.35	[0.33: 0.361	100.0%	
	20467			[0.33; 0.36] [0.29; 0.37]	100.0%	 100.0%

D2.1.1 Forest plot of animosity for moderator construct

D2.2 Analysis of anin	iosity for moder	ator year			
Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	<u>Q</u>	$\underline{I^2}$
Yearcoded = 1	21	0.4885	[0.4692; 0.5074]	119.99	83.3%
Yearcoded = 2	39	0.2726	[0.2569; 0.2881]	316.28	88.0%
Yearcoded = 0	3	0.4037	[0.3410; 0.4629]	8.29	75.9%
Test for subgroup diff	ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	274.72	2	< 0.0001		
Within groups	444.55	60	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	<u>Q</u>	<u>I</u> ²
Yearcoded = 1	21	0.4447	[0.3912; 0.4952]	119.99	83.3%
Yearcoded = 2	39	0.2622	[0.2158; 0.3074]	316.28	88.0%
Yearcoded = 0	3	0.4037	[0.2726; 0.5201]	8.29	75.9%
Test for subgroup diff	ferences (randon	n effects model)			
	Q	<u>d.f.</u>	p-value		
Between groups	26.62	2	< 0.0001		

136

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
Yearcoded = 1		1				
Ishii 2009	300			[0.18; 0.39]	1.5%	1.6%
Ishii 2009	300			[0.26; 0.46]	1.5%	1.6%
Jimenez Torres & San Martin Gutierrez 2007			0.26	[0.13; 0.38]	1.0%	1.5%
Carter 2009	800	3	0.59	[0.54; 0.63]	3.9%	1.7%
Carter 2009	800		0.59		3.9%	1.7%
Carter 2009	800			[0.50; 0.59]	3.9%	1.7%
Rose et al. 2009	111		0.27	[0.09; 0.43]	0.5%	1.4%
Rose et al. 2009	111		0.36	[0.19; 0.52]	0.5%	1.4%
Rose et al. 2009 Rose et al. 2009	112 112		0.27	[0.09; 0.44]	0.5%	1.4% 1.4%
Klein 2002	202			[0.05; 0.40]	0.5% 1.0%	1.4%
Ettenson & Klein 2005	202		0.55	[0.42; 0.62]	1.3%	1.5%
Ettenson & Klein 2005	329				1.6%	1.6%
Nakos & Hajidimitriou 2007	430			[0.44; 0.59] [0.33; 0.49]	2.1%	1.7%
Nijssen & Douglas 2004	110		0.42		0.5%	1.4%
Nijssen & Douglas 2004	109	3 <u> </u>		[0.36; 0.64]	0.5%	1.4%
Klein 2002	202		0.51	[0.40; 0.61]	1.0%	1.5%
Nijssen & Douglas 2004	110	<u> </u>		[0.29; 0.59]	0.5%	1.4%
	109	3				1.4%
Nijssen & Douglas 2004				[0.29; 0.59]	0.5%	
Klein 2002	202		0.60	. , .	1.0%	1.5%
Nakos & Hajidimitriou 2007	430			[0.42; 0.56]	2.1%	1.7%
Fixed effect model Random effects model	6142	^		[0.47; 0.51]	30.0%	
Heterogeneity: $l^2 = 83\%$, $\tau^2 = 0.0178$, $p < 0.01$		\$	0.44	[0.39; 0.50]		32.2%
Yearcoded = 2						
Jain & Jain 2013	304		0.31	[0.20; 0.41]	1.5%	1.6%
Huang et al. 2010	434	<u></u>		[0.31; 0.47]	2.1%	1.7%
Jimenez & San Martin 2010	202	<u> </u>		[0.13; 0.38]	1.0%	1.5%
Akdogan & Ozgener 2012	208			[0.23; 0.47]	1.0%	1.5%
Parker et al. 2011	367			[0.21; 0.39]	1.8%	1.6%
Hoffmann et al. 2011	360			[0.14; 0.34]	1.8%	1.6%
Hoffmann et al. 2011	360			[-0.01; 0.19]	1.8%	1.6%
Hoffmann et al. 2011	360			[0.11; 0.31]	1.8%	1.6%
Hoffmann et al. 2011	350			[0.13; 0.33]	1.7%	1.6%
Hoffmann et al. 2011	350			[0.18; 0.37]	1.7%	1.6%
Hoffmann et al. 2011	350			[0.04; 0.24]	1.7%	1.6%
Tabassi et al. 2012	500			[0.55; 0.66]	2.5%	1.7%
Sharma 2011	349			[-0.01; 0.20]	1.7%	1.6%
Sharma 2011	388			[-0.02; 0.18]	1.9%	1.6%
Sharma 2011	468	+ -		[-0.02; 0.16]	2.3%	1.7%
Sharma 2011	547			[-0.04; 0.12]	2.7%	1.7%
Marinkovic 2017	221			[0.27; 0.50]	1.1%	1.6%
Lee & Mazodier 2015	903			[0.39; 0.49]	4.4%	1.7%
Selli & Kurniawan 2014	209			[0.14; 0.40]	1.0%	1.6%
Fakharmanesh & Miyandehi 2013	463			[0.15; 0.32]	2.3%	1.7%
Cheah et al. 2016	435			[0.29; 0.45]	2.1%	1.7%
Funk et al. 2010	319			[0.14; 0.35]	1.6%	1.6%
Richardson & Harris 2014	348		0.45	[0.36; 0.53]	1.7%	1.6%
Mostafa 2010	776		0.39	[0.33; 0.45]	3.8%	1.7%
Cai et al. 2012	224			[0.20; 0.43]	1.1%	1.6%
Wang et al. 2013	257	·		[0.03; 0.27]	1.3%	1.6%
Cheah et al. 2016	435			[0.14; 0.32]	2.1%	1.7%
Ma et al. 2012	255		0.20	[0.19; 0.42]	1.2%	1.6%
Ma et al. 2012						1.6%
Ma et al. 2012 Ma et al. 2012	255 255		0.31	[0.19; 0.42] [0.21; 0.43]	1.2% 1.2%	1.6%
Cheah & Phau 2015	204			[0.21, 0.43]	1.2%	1.5%
Cai et al. 2012	204				1.1%	1.5%
				[0.22; 0.45]	1.1%	
De Nisco et al. 2016 De Nisco et al. 2016	274 182					1.6%
De Nisco et al. 2016	182			[0.17; 0.44]	0.9%	1.5%
Wang et al. 2013 Choah at al. 2016	257			[0.20; 0.42]	1.3%	1.6%
Cheah et al. 2016	435			[0.08; 0.26]	2.1%	1.7%
Ma et al. 2012 Ma et al. 2012	255			[0.06; 0.30]	1.2%	1.6%
Ma et al. 2012 Ma et al. 2012	255			[-0.10; 0.14]	1.2%	1.6%
Ma et al. 2012	255			[-0.01; 0.23]	1.2%	1.6%
Fixed effect model Random effects model	13593	\$		[0.26; 0.29] [0.22; 0.31]	66.5% 	63.1%
Heterogeneity: $I^2 = 88\%$, $\tau^2 = 0.0213$, $p < 0.01$		0 0 0				
Yearcoded = 0						
Klein et al. 1998	244	<u></u>	0.46	[0.35; 0.55]	1.2%	1.6%
Klein et al. 1998	244			[0.37; 0.56]	1.2%	1.6%
Klein et al. 1998	244	·		[0.15; 0.38]	1.2%	1.6%
Fixed effect model	732			[0.34; 0.46]	3.6%	1.0 /0
Random effects model				[0.27; 0.52]	0.070	4.7%
			0.40	L J.L.I , U.J.Z.]		7.1 /0
Heterogeneity: $l^2 = 76\%$, $\tau^2 = 0.013$, $p = 0.02$	20467		0.35	[0.33; 0.36]	100.0%	
Heterogeneity: $I^2 = 76\%$, $\tau^2 = 0.013$, $p = 0.02$ Fixed effect model Random effects model	20467	•		[0.33; 0.36] [0.29; 0.37]	100.0%	 100.0%

D2.2.1 Forest plot of animosity for moderator year

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Continent = 2	31	0.3003	[0.2817; 0.3187]	206.23	85.5%
Continent = 1	20	0.3043	[0.2812; 0.3270]	134.44	85.9%
Continent = 0	9	0.4836	[0.4600; 0.5064]	202.97	96.1%
Continent = 5	3	0.4134	0.3538; 0.4697]	16.90	88.2%
Test for subgroup diff	erences (fixed e	ffect model)			
	Q	<u>d.f.</u>	p-value		
Between groups	158.73	3	< 0.0001		
Within groups	560.54	59	< 0.0001		
Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Continent = 2	31	0.2906	[0.2402; 0.3394]	206.23	85.5%
Continent = 1	20	0.3076	[0.2438; 0.3688]	134.44	85.9%
Continent = 0	9	0.4707	[0.3404; 0.5832]	202.97	96.1%
Continent = 5	3	0.3921	[0.2058; 0.5509]	16.90	88.2%
Test for subgroup diff	erences (randon	n effects model)			
	<u>Q</u>	<u>d.f.</u>	<u>p-value</u>		
Between groups	7.06	3	0.0699		

D2.3 Analysis of animosity for moderator continent

Study	Total	Correlation	COR	95%–CI	Weight (fixed)	Weight (random)
Continent = 2						
Ishii 2009	300		0.29	[0.18; 0.39]	1.5%	1.6%
Ishii 2009	300			[0.26; 0.46]	1.5%	1.6%
Jain & Jain 2013	304			[0.20; 0.41]	1.5%	1.6%
Huang et al. 2010	434			[0.31; 0.47]	2.1%	1.7%
Klein et al. 1998	244			[0.35; 0.55]	1.2%	1.6%
Rose et al. 2009	111			[0.09; 0.43]	0.5%	1.4%
Rose et al. 2009	111			[0.19; 0.52]	0.5%	1.4%
Rose et al. 2009	112			[0.09; 0.44]	0.5%	1.4%
Rose et al. 2009	112			[0.05; 0.40]	0.5%	1.4%
Parker et al. 2011	367			[0.21; 0.39]	1.8%	1.6%
Tabassi et al. 2012	500			[0.55; 0.66]	2.5%	1.7%
Sharma 2011	349		0.10	[-0.01; 0.20]	1.7%	1.6%
Sharma 2011	388	+	0.08	[-0.02; 0.18]	1.9%	1.6%
Selli & Kurniawan 2014	209		0.27	[0.14; 0.40]	1.0%	1.6%
Fakharmanesh & Miyandehi 2013	463		0.24	[0.15; 0.32]	2.3%	1.7%
Cheah et al. 2016	435		0.37	[0.29; 0.45]	2.1%	1.7%
Mostafa 2010	776		0.39	[0.33; 0.45]	3.8%	1.7%
Klein et al. 1998	244	j <u></u>	0.47	[0.37; 0.56]	1.2%	1.6%
Cai et al. 2012	224		0.32	[0.20; 0.43]	1.1%	1.6%
Wang et al. 2013	257			[0.03; 0.27]	1.3%	1.6%
Chean et al. 2016	435			[0.14; 0.32]	2.1%	1.7%
Ma et al. 2012	255			[0.19; 0.42]	1.2%	1.6%
Ma et al. 2012	255			[0.19; 0.42]	1.2%	1.6%
Ma et al. 2012	255			[0.13, 0.42]	1.2%	1.6%
Klein et al. 1998	255			[0.21, 0.43]	1.2%	1.6%
Cai et al. 2012	244 224					1.6%
				[0.22; 0.45]	1.1%	
Wang et al. 2013	257			[0.20; 0.42]	1.3%	1.6%
Cheah et al. 2016	435			[0.08; 0.26]	2.1%	1.7%
Ma et al. 2012	255			[0.06; 0.30]	1.2%	1.6%
Ma et al. 2012	255			[-0.10; 0.14]	1.2%	1.6%
Ma et al. 2012	255		0.11	[-0.01; 0.23]	1.2%	1.6%
Fixed effect model	9365	•		[0.28; 0.32]	45.7%	
Random effects model		A 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0.29	[0.24; 0.34]		49.1%
Heterogeneity: $I^2 = 85\%$, $\tau^2 = 0.0198$, $p < 0.01$						
		i i i i i i i i i i i i i i i i i i i				
Continent = 1						
Jimenez Torres & San Martin Gutierrez 2007	202		0.26	[0.13; 0.38]	1.0%	1.5%
Jimenez & San Martin 2010	202		0.26	[0.13; 0.38]	1.0%	1.5%
Akdogan & Ozgener 2012	208		0.36	[0.23; 0.47]	1.0%	1.5%
Nakos & Hajidimitriou 2007	430			[0.33; 0.49]	2.1%	1.7%
Hoffmann et al. 2011	360		0.24	[0.14; 0.34]	1.8%	1.6%
Hoffmann et al. 2011	360			[-0.01; 0.19]	1.8%	1.6%
Hoffmann et al. 2011	360	¹		[0.11; 0.31]	1.8%	1.6%
Hoffmann et al. 2011	350			[0.13; 0.33]	1.7%	1.6%
Hoffmann et al. 2011	350			[0.18; 0.37]	1.7%	1.6%
Hoffmann et al. 2011	350			[0.04; 0.24]	1.7%	1.6%
Sharma 2011	468			[-0.02; 0.16]	2.3%	1.7%
Marinkovic 2017	221			[0.27; 0.50]	1.1%	1.6%
Lee & Mazodier 2015	903			[0.39; 0.49]	4.4%	1.7%
Nijssen & Douglas 2004	110			[0.15; 0.49]	0.5%	1.4%
Nijssen & Douglas 2004	109			[0.36; 0.64]	0.5%	1.4%
Nijssen & Douglas 2004	110			[0.29; 0.59]	0.5%	1.4%
Nijssen & Douglas 2004	109			[0.29; 0.59]	0.5%	1.4%
Nakos & Hajidimitriou 2007	430			[0.42; 0.56]	2.1%	1.7%
De Nisco et al. 2016	274		0.22	[0.10; 0.33]	1.3%	1.6%
De Nisco et al. 2016	182		0.31	[0.17; 0.44]	0.9%	1.5%
Fixed effect model	6088	•	0.30	[0.28; 0.33]	29.7%	
Random effects model		\diamond	0.31	[0.24; 0.37]		31.4%
Heterogeneity: $I^2 = 86\%$, $\tau^2 = 0.0205$, $p < 0.01$		3				
Continent = 0		8				
Carter 2009	800	=	0.59	[0.54; 0.63]	3.9%	1.7%
Carter 2009	800		0.59	[0.55; 0.64]	3.9%	1.7%
Carter 2009	800			[0.50; 0.59]	3.9%	1.7%
Klein 2002	202			[0.42; 0.62]	1.0%	1.5%
Sharma 2011	547			[-0.04; 0.12]	2.7%	1.7%
	319			[0.14; 0.35]	1.6%	1.6%
Funk et al. 2010	348				1.0%	1.6%
				[0.36; 0.53] [0.40; 0.61]	1.7%	1.6%
Funk et al. 2010 Richardson & Harris 2014 Klein 2002	202	1 2 2		[0.40; 0.01]	1.0%	1.5%
Richardson & Harris 2014 Klein 2002	202 202			L 0.00, 0.00]		1.5 /6
Richardson & Harris 2014 Klein 2002 Klein 2002	202			[046.051]	20 7%	
Richardson & Harris 2014 Klein 2002 Klein 2002 Fixed effect model		*	0.48	[0.46; 0.51]	20.7%	1/1 70/
Richardson & Harris 2014 Klein 2002 Klein 2002 Fixed effect model Random effects model	202	*	0.48	[0.46; 0.51] [0.34; 0.58]	20.7%	14.7%
Richardson & Harris 2014 Klein 2002 Klein 2002 Fixed effect model Random effects model	202	*	0.48		20.7%	14.7%
Richardson & Harris 2014 Klein 2002 Klein 2002 Fixed effect model Random effects model Heterogeneity: $I^2 = 96\%$, $\tau^2 = 0.0543$, $p < 0.01$	202	*	0.48		20.7%	14.7%
Richardson & Harris 2014 Klein 2002 Klein 2002 Fixed effect model Random effects model Heterogeneity: $f^2 = 96\%$, $\tau^2 = 0.0543$, $p < 0.01$ Continent = 5	202 4220	*	0.48 0.47	[0.34; 0.58]		
Richardson & Harris 2014 Klein 2002 Klein 2002 Fixed effect model Random effects model Heterogeneity: $l^2 = 96\%, r^2 = 0.0543, p < 0.01$ Continent = 5 Ettenson & Klein 2005	202 4220 261	*	0.48 0.47 0.42	[0.34; 0.58]		1.6%
Richardson & Harris 2014 Klein 2002 Klein 2002 Fixed effect model Random effects model Heterogeneity: $I^2 = 96\%$, $\tau^2 = 0.0543$, $p < 0.01$ Continent = 5 Ettenson & Klein 2005 Ettenson & Klein 2005	202 4220 261 329	*	0.48 0.47 0.42 0.52	[0.34; 0.58] [0.31; 0.52] [0.44; 0.59]	 1.3% 1.6%	1.6% 1.6%
Richardson & Harris 2014 Klein 2002 Fixed effect model Random effects model Heterogeneity: $l^2 = 96\%$, $t^2 = 0.0543$, $p < 0.01$ Continent = 5 Ettenson & Klein 2005 Ettenson & Klein 2005 Cheah & Phau 2015	202 4220 261 329 204	*	0.48 0.47 0.42 0.52 0.20	[0.34; 0.58] [0.31; 0.52] [0.44; 0.59] [0.07; 0.33]	1.3% 1.6% 1.0%	1.6% 1.6% 1.5%
Richardson & Harris 2014 Klein 2002 Klein 2002 Fixed effect model Random effects model Heterogeneity: $l^2 = 96\%$, $t^2 = 0.0543$, $p < 0.01$ Continent = 5 Ettenson & Klein 2005 Ettenson & Klein 2005 Ettenson & Klein 2005 Fixed effect model	202 4220 261 329	***	0.48 0.47 0.42 0.52 0.20 0.41	[0.34; 0.58] [0.31; 0.52] [0.44; 0.59] [0.07; 0.33] [0.35; 0.47]	 1.3% 1.6%	1.6% 1.6% 1.5%
Richardson & Harris 2014 Klein 2002 Fixed effect model Random effects model Heterogeneity: $l^2 = 96\%, \tau^2 = 0.0543, p < 0.01$ Continent = 5 Ettenson & Klein 2005 Ettenson & Klein 2005 Cheah & Phau 2015 Fixed effect model Random effects model	202 4220 261 329 204	* * * * *	0.48 0.47 0.42 0.52 0.20 0.41	[0.34; 0.58] [0.31; 0.52] [0.44; 0.59] [0.07; 0.33]	1.3% 1.6% 1.0%	1.6% 1.6% 1.5%
Richardson & Harris 2014 Klein 2002 Klein 2002	202 4220 261 329 204	* * * * * *	0.48 0.47 0.42 0.52 0.20 0.41	[0.34; 0.58] [0.31; 0.52] [0.44; 0.59] [0.07; 0.33] [0.35; 0.47]	1.3% 1.6% 1.0%	1.6% 1.6% 1.5%
Richardson & Harris 2014 Klein 2002 Klein 2002 Fixed effect model Random effects model Heterogeneity: $l^2 = 96\%$, $t^2 = 0.0543$, $p < 0.01$ Continent = 5 Ettenson & Klein 2005 Ettenson & Klein 2005 Cheah & Phau 2015 Fixed effect model Random effects model Heterogeneity: $l^2 = 88\%$, $t^2 = 0.029$, $p < 0.01$	202 4220 261 329 204 794	* * * * * * *	0.48 0.47 0.42 0.52 0.20 0.41 0.39	[0.34; 0.58] [0.31; 0.52] [0.44; 0.59] [0.07; 0.33] [0.35; 0.47] [0.21; 0.55]	1.3% 1.6% 1.0% 3.9% 	1.6% 1.6% 1.5%
Richardson & Harris 2014 Klein 2002 Klein 2002 Fixed effect model Random effects model Heterogeneity: $l^2 = 96\%$, $t^2 = 0.0543$, $p < 0.01$ Continent = 5 Ettenson & Klein 2005 Ettenson & Klein 2005 Cheah & Phau 2015 Fixed effect model Random effects model Heterogeneity: $l^2 = 88\%$, $t^2 = 0.029$, $p < 0.01$ Fixed effect model 2	202 4220 261 329 204		0.48 0.47 0.42 0.52 0.20 0.41 0.39 0.35	[0.34; 0.58] [0.31; 0.52] [0.44; 0.59] [0.07; 0.33] [0.35; 0.47] [0.21; 0.55] [0.33; 0.36]	1.3% 1.6% 1.0% 3.9% 	1.6% 1.6% 1.5% 4.8%
Richardson & Harris 2014 Klein 2002 Klein 2002 Fixed effect model Random effects model Heterogeneity: $l^2 = 96\%$, $t^2 = 0.0543$, $p < 0.01$ Continent = 5 Ettenson & Klein 2005 Ettenson & Klein 2005 Cheah & Phau 2015 Fixed effect model Random effects model Heterogeneity: $l^2 = 88\%$, $t^2 = 0.029$, $p < 0.01$	202 4220 261 329 204 794	* * * * * * * * * * * * * * * * * * *	0.48 0.47 0.42 0.52 0.20 0.41 0.39 0.35	[0.34; 0.58] [0.31; 0.52] [0.44; 0.59] [0.07; 0.33] [0.35; 0.47] [0.21; 0.55]	1.3% 1.6% 1.0% 3.9% 	1.6% 1.6% 1.5%

D2.3.1 Forest plot of animosity for moderator continent

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Developed = 1	38	0.3081	[0.2915; 0.3245]	251.21	85.3%
Developed = 0	25	0.3955	[0.3776; 0.4131]	418.50	94.3%
Test for subgroup diff	ferences (fixed e	effect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	49.56	1	0.0385		
Within groups	669.71	61	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	<u>Q</u>	<u>I</u> ²
Developed = 1	38	0.2991	[0.2547; 0.3422]	251.21	85.3%
Developed = 0	25	0.3750	[0.2955; 0.4494]	418.50	94.3%
Test for subgroup diff	ferences (randon	n effects model)			
	Q	<u>d.f.</u>	p-value		
Between groups	2.73	1	0.0986		

D2.4 Analysis of animosity for moderator developed

140

D2.5 Analysis of animosity for moderator urban

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	<u>COR</u>	<u>95%-CI</u>	Q	<u>I</u> ²
Developed = 1	12	0.3015	[0.2717; 0.3308]	39.90	72.4%
Developed = 0	51	0.3558	[0.3425; 0.3690]	668.31	92.5%
Test for subgroup diff	erences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	11.06	1	0.0009		
Within groups	708.21	61	< 0.0001		
Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	<u>Q</u>	$\underline{I^2}$
Developed = 1	12	0.3072	[0.2495; 0.3626]	39.90	72.4%
Developed = 0	51	0.3342	[0.2832; 0.3834]	668.31	92.5%
Test for subgroup diff	erences (randon	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	0.49	1	0.4827		

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Selection $= 4$	9	0.1812	[0.1495; 0.2125]	58.51	86.3%
Selection $= 5$	9	0.2917	[0.2621; 0.3207]	62.03	87.1%
Selection = 0	22	0.4149	[0.3929; 0.4364]	101.19	79.2%
Selection = 9	4	0.2818	[0.2261; 0.3357]	4.36	31.3%
Selection $= 3$	7	0.5456	[0.5212; 0.5691]	49.47	87.9%
Selection $= 1$	12	0.2472	[0.2131; 0.2807]	30.36	63.8%
Test for subgroup diff	ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	p-value		
Between groups	413.34	5	< 0.0001		
Within groups	305.93	57	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	$\underline{I^2}$
Selection $= 4$	9	0.1918	[0.1055; 0.2753]	58.51	86.3%
Selection $= 5$	9	0.2644	[0.1783; 0.3465]	62.03	87.1%
Selection $= 0$	22	0.3950	[0.3432; 0.4444]	101.19	79.2%
Selection $= 9$	4	0.2863	[0.2173; 0.3524]	4.36	31.3%
Selection $= 3$	7	0.5261	[0.4476; 0.5965]	49.47	87.9%
Selection $= 1$	12	0.2473	[0.1902; 0.3027]	30.36	63.8%
Test for subgroup diff	ferences (random	n effects model)			
	<u>Q</u>	<u>d.f.</u>	p-value		
Between groups	49.65	5	< 0.0001		

D2.6 Analysis of animosity for moderator selection

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
Selection = 4 Ishii 2009 Ishii 2009 Sharma 2011 Sharma 2011 Sharma 2011 Sharma 2011 Cheah et al. 2016 Cheah et al. 2016 Cheah et al. 2016 Fixed effect model Random effects model Heterogenety: $P_{a} = 80\%, \tau^{2} = 0.0157, p < 0.01$	300 309 388 468 547 435 435 435 3657	** ***** ****	0.36 0.10 0.08 0.07 0.04 0.37 0.23 0.17 0.18	[0.18; 0.39] [0.26; 0.46] [-0.01; 0.20] [-0.02; 0.18] [-0.04; 0.12] [0.29; 0.45] [0.14; 0.32] [0.14; 0.32] [0.15; 0.21] [0.11; 0.28]	1.5% 1.5% 1.7% 2.3% 2.7% 2.1% 2.1% 2.1% 7.9%	1.6% 1.6% 1.6% 1.7% 1.7% 1.7% 1.7% 1.7% 1.7%
Selection = 5 Jain & Jain 2013 Huang et al. 2010 Hoffmann et al. 2011 Hoffmann et al. 2011	304 434 360 360 350 350 350 350 903 3771	۵. ******	0.39 0.24 0.09 0.21 0.23 0.28 0.14 0.44 0.29	[0.20; 0.41] [0.31; 0.47] [0.14; 0.34] [-0.01; 0.19] [0.11; 0.31] [0.13; 0.33] [0.18; 0.37] [0.04; 0.24] [0.39; 0.49] [0.26; 0.32] [0.18; 0.35]	1.5% 2.1% 1.8% 1.8% 1.7% 1.7% 4.4% 18.5%	1.6% 1.7% 1.6% 1.6% 1.6% 1.6% 1.6% 1.6% 1.7%
Selection = 0 Klein et al. 1998 Jimenez & San Martin 2010 Rose et al. 2009 Rose et al. 2009 Klein 2005 Ettenson & Klein 2005 Ettenson & Klein 2005 Ettenson & Klein 2005 Rokos & Hajidimitriou 2007 Tabassi et al. 2012 Richardson & Harris 2014 Mostafa 2010 Klein et al. 1998 Nijssen & Douglas 2004 Wang et al. 2013 Klein et al. 1998 Nijssen & Douglas 2004 Nijssen & Douglas 2	244 202 1111 112 112 208 261 329 430 500 348 776 244 110 257 244 110 257 244 110 9 257 244 109 430 257 5614		0.26 0.27 0.23 0.27 0.23 0.36 0.42 0.52 0.42 0.45 0.45 0.47 0.33 0.51 0.15 0.27 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	[0.29; 0.59] [0.29; 0.59] [0.42; 0.56] [0.20; 0.42] [0.39; 0.44]	$\begin{array}{c} 1.2\%\\ 1.0\%\\ 0.5\%\\ 0.5\%\\ 0.5\%\\ 1.0\%\\ 1.3\%\\ 1.6\%\\ 2.5\%\\ 1.7\%\\ 3.8\%\\ 0.5\%\\ 0.5\%\\ 0.5\%\\ 1.2\%\\ 0.5\%\\ 2.1\%\\ 1.2\%\\ 0.5\%\\ 2.1\%\\ 2.1\%\\ 1.4\%\\ 0.5\%\\ 2.1\%\\ 1.4\%\\ 0.5\%\\ 2.1\%\\ 1.4\%\\ 0.5\%\\ 0.5\%\\ 2.1\%\\ 1.4\%\\ 0.5\%$	1.6% 1.4% 1.4% 1.4% 1.4% 1.6% 1.6% 1.6% 1.7% 1.6% 1.7% 1.6% 1.4% 1.4% 1.4% 1.4% 1.6% 1.6% 1.6%
Random effects model Heterogeneity: $l^2 = 79\%, \tau^2 = 0.0154, p < 0.01$ Selection = 9 Jimenez Torres & San Martin Gutierrez 2007 Marinkovic 2017 Selli & Kurniawan 2014 Fakharamaensh & Miyandehi 2013 Fixed effect model Random effects model Heterogeneity: $l^2 = 31\%, \tau^2 = 0.0018, p = 0.22$	202 221 209 463 1095	\$ \$ \$ \$	0.26 0.39 0.27 0.24 0.28	[0.34; 0.44] [0.13; 0.38] [0.27; 0.50] [0.14; 0.40] [0.15; 0.32] [0.23; 0.34] [0.22; 0.35]	1.0% 1.1% 1.0% 2.3% 5.3%	33.7% 1.5% 1.6% 1.6% 1.7%
$\label{eq:selection} = 3 \\ \mbox{Carter 2009} \\ \mbox{Carter 2009} \\ \mbox{Carter 2009} \\ \mbox{Kein 2002} \\ \mbox{Funk et al. 2010} \\ \mbox{Kein 2002} \\ \mbox{Fixed effect model} \\ \mbox{Random effects model} \\ \m$	800 800 202 319 202 202 3325	* + * * *	0.59 0.55 0.53 0.25 0.51 - 0.60 0.55	[0.54; 0.63] [0.55; 0.64] [0.50; 0.59] [0.42; 0.62] [0.14; 0.35] [0.40; 0.61] [0.50; 0.68] [0.52; 0.57] [0.45; 0.60]	3.9% 3.9% 3.9% 1.0% 1.6% 1.0% 1.0% 16.3%	1.7% 1.7% 1.5% 1.6% 1.5% 1.5%
Selection = 1 Parker et al. 2011 Cai et al. 2012 Ma et al. 2012 Ma et al. 2012 Ma et al. 2012 Cheah & Phau 2015 Cai et al. 2012 De Nisco et al. 2016 De Nisco et al. 2016 De Nisco et al. 2016 Ma et al. 2012 Ma et al. 2012 Ma et al. 2012 Ma et al. 2012 Ma et al. 2012 Fixed effect model Random effects model Reterogenetis: $f^{a} = 64\%$, $f^{a} = 0.0071$, $p < 0.01$	367 224 255 255 204 224 274 182 255 255 255 3005	****	0.32 0.31 0.32 0.20 0.34 0.22 0.31 0.18 0.02 0.11 0.25	[0.21; 0.39] [0.20; 0.43] [0.19; 0.42] [0.21; 0.43] [0.07; 0.33] [0.22; 0.45] [0.10; 0.33] [0.17; 0.44] [0.06; 0.30] [-0.10; 0.14] [-0.01; 0.23] [0.21; 0.28] [0.21; 0.28] [0.19; 0.30]	1.8% 1.1% 1.2% 1.2% 1.0% 1.1% 1.3% 0.9% 1.2% 1.2% 1.2% 1.2%	1.6% 1.6% 1.6% 1.6% 1.6% 1.6% 1.6% 1.6%
Heterogeneity: $r = 64\%$, $\tau = 0.0071$, $p < 0.01$ Fixed effect model Random effects model Heterogeneity: $l^2 = 91\%$, $\tau^2 = 0.0331$, $p < 0.01$	20467	0.6-0.4-0.2 0 0.2 0.4 0.	0.33	[0.33; 0.36] [0.29; 0.37]	100.0% 	 100.0%

D2.6.1 Forest plot of animosity for moderator selection

Results of subgroups (f	fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	$\underline{I^2}$
Characteristics $= 0$	53	0.3773	[0.3643; 0.3901]	536.88	90.3%
Characteristics = 1	6	0.2841	[0.2362; 0.3306]	4.21	0.0%
Characteristics = 3	4	0.0688	[0.0220; 0.1154]	0.85	0.0%
Test for subgroup diffe	rences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	177.33	2	< 0.0001		
Within groups	541.93	60	< 0.0001		
Test for subgroups (ran	ndom effects m	odel)			
	<u>K</u>	COR	<u>95%-CI</u>	Q	$\underline{I^2}$
Characteristics $= 0$	53	0.3532	[0.3096; 0.3953]	536.88	90.3%
Characteristics = 1	6	0.2841	[0.2362; 0.3306]	4.21	0.0%
Characteristics = 3	4	0.0688	[0.0220; 0.1154]	0.85	0.0%
Test for subgroup diffe	rences (random	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	81.45	2	< 0.0001		

D2.7 Analysis of animosity for moderator characteristics

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
Characteristics = 0						
Ishii 2009	300			[0.18; 0.39]	1.5%	1.6%
Ishii 2009 Jain & Jain 2013	300 304			[0.26; 0.46] [0.20; 0.41]	1.5% 1.5%	1.6% 1.6%
Huang et al. 2010	434	3		[0.20; 0.47]	2.1%	1.7%
Klein et al. 1998	244			[0.35; 0.55]	1.2%	1.6%
Jimenez Torres & San Martin Gutierrez 2007 Carter 2009	202			[0.13; 0.38]	1.0% 3.9%	1.5% 1.7%
Carter 2009 Carter 2009	800 800			[0.54; 0.63] [0.55; 0.64]	3.9%	1.7%
Carter 2009	800			[0.50; 0.59]	3.9%	1.7%
Jimenez & San Martin 2010	202			[0.13; 0.38]	1.0%	1.5%
Rose et al. 2009 Rose et al. 2009	111			[0.09; 0.43]	0.5%	1.4% 1.4%
Rose et al. 2009	111 112			[0.19; 0.52] [0.09; 0.44]	0.5% 0.5%	1.4%
Rose et al. 2009	112			[0.05; 0.40]	0.5%	1.4%
Klein 2002	202			[0.42; 0.62]	1.0%	1.5%
Akdogan & Ozgener 2012	208			[0.23; 0.47]	1.0%	1.5%
Ettenson & Klein 2005 Ettenson & Klein 2005	261 329			[0.31; 0.52] [0.44; 0.59]	1.3% 1.6%	1.6% 1.6%
Nakos & Hajidimitriou 2007	430			[0.33; 0.49]	2.1%	1.7%
Hoffmann et al. 2011	360	-	0.24	[0.14; 0.34]	1.8%	1.6%
Hoffmann et al. 2011	360	<u> </u>		[-0.01; 0.19]	1.8%	1.6%
Hoffmann et al. 2011 Hoffmann et al. 2011	360 350			[0.11; 0.31] [0.13; 0.33]	1.8% 1.7%	1.6% 1.6%
Hoffmann et al. 2011	350			[0.18; 0.37]	1.7%	1.6%
Hoffmann et al. 2011	350			[0.04; 0.24]	1.7%	1.6%
Tabassi et al. 2012	500			[0.55; 0.66]	2.5%	1.7%
Marinkovic 2017	221			[0.27; 0.50]	1.1% 4.4%	1.6%
Lee & Mazodier 2015 Selli & Kurniawan 2014	903 209	<u>s</u> =		[0.39; 0.49] [0.14; 0.40]	4.4%	1.7% 1.6%
Fakharmanesh & Miyandehi 2013	463			[0.15; 0.32]	2.3%	1.7%
Cheah et al. 2016	435			[0.29; 0.45]	2.1%	1.7%
Funk et al. 2010	319			[0.14; 0.35]	1.6%	1.6%
Richardson & Harris 2014 Mostafa 2010	348 776			[0.36; 0.53]	1.7% 3.8%	1.6% 1.7%
Klein et al. 1998	244			[0.33; 0.45] [0.37; 0.56]	1.2%	1.6%
Nijssen & Douglas 2004	110			[0.15; 0.49]	0.5%	1.4%
Nijssen & Douglas 2004	109			[0.36; 0.64]	0.5%	1.4%
Klein 2002	202 257			[0.40; 0.61]	1.0%	1.5%
Wang et al. 2013 Cheah et al. 2016	435			[0.03; 0.27]	1.3% 2.1%	1.6% 1.7%
Ma et al. 2012	255			[0.19; 0.42]	1.2%	1.6%
Ma et al. 2012	255		0.31	[0.19; 0.42]	1.2%	1.6%
Ma et al. 2012	255			[0.21; 0.43]	1.2%	1.6%
Klein et al. 1998 Nijssen & Douglas 2004	244 110			[0.15; 0.38] [0.29; 0.59]	1.2% 0.5%	1.6% 1.4%
Nijssen & Douglas 2004	109			[0.29; 0.59]	0.5%	1.4%
Klein 2002	202		- 0.60	[0.50; 0.68]	1.0%	1.5%
Nakos & Hajidimitriou 2007	430	-		[0.42; 0.56]	2.1%	1.7%
Wang et al. 2013 Cheah et al. 2016	257 435			[0.20; 0.42] [0.08; 0.26]	1.3% 2.1%	1.6% 1.7%
Ma et al. 2012	255			[0.06; 0.20]	1.2%	1.6%
Ma et al. 2012	255			[-0.10; 0.14]	1.2%	1.6%
Ma et al. 2012	255			[-0.01; 0.23]	1.2%	1.6%
Fixed effect model Random effects model	17240			[0.36; 0.39] [0.31; 0.40]	84.2%	83.9%
Heterogeneity: $I^2 = 90\%$, $\tau^2 = 0.0291$, $p < 0.01$		•	0.00	[0.51, 0.40]		00.070
Characteristics = 1 Parker et al. 2011	007		0.00	10.01.0.00	1.00/	1.00/
Cai et al. 2012	367 224			[0.21; 0.39] [0.20; 0.43]	1.8% 1.1%	1.6% 1.6%
Cheah & Phau 2015	204			[0.07; 0.33]	1.0%	1.5%
Cai et al. 2012	224			[0.22; 0.45]	1.1%	1.6%
De Nisco et al. 2016	274			[0.10; 0.33]	1.3%	1.6%
De Nisco et al. 2016	182		0.00	[0.17; 0.44]	0.9%	1.5%
Random effects model	1475	à		[0.24; 0.33]	1.2%	9.4%
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 0.52$				L		
Characteristics = 3 Sharma 2011	349		0 10	[-0.01; 0.20]	1.7%	1.6%
Sharma 2011	388			[-0.02; 0.18]	1.9%	1.6%
Sharma 2011	468	 	0.07	[-0.02; 0.16]	2.3%	1.7%
Sharma 2011	547	-		[-0.04; 0.12]	2.7%	1.7%
Fixed effect model Bandom effects model	1752			[0.02; 0.12] [0.02; 0.12]	8.6%	6.6%
Heterogeneity: $l^2 = 0\%$, $\tau^2 = 0$, $p = 0.84$		l i	0.07	[0.02, 0.12]		0.0 /0
		× ×				
Fixed effect model	20467			[0.33; 0.36]	100.0%	100 00/
Random effects model Heterogeneity: $I^2 = 91\%$, $\tau^2 = 0.0331$, $p < 0.01$			0.33	[0.29; 0.37]		100.0%
100001, p < 0.01	-0	0.6-0.4-0.2 0 0.2 0.4 0.6				

D2.7.1 Forest plot of animosity for moderator characteristics

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETtype = 4	19	0.2826	[0.2587; 0.3062]	110.13	83.7%
CETtype = 3	29	0.2811	[0.2614; 0.3005]	220.42	87.3%
CETtype = 2	1	0.3900	[0.3071; 0.4670]	0.00	-
CETtype = 1	5	0.4373	[0.3925; 0.4801]	13.37	70.1%
CETtype = 0	8	0.5182	[0.4947; 0.5408]	105.28	93.4%
CETtype = 9	1	0.4520	[0.3642; 0.5319]	0.00	-
Test for subgroup dif	ferences (fixed e	ffect model)			
	<u>Q</u>	<u>d.f.</u>	p-value		
Between groups	270.07	5	< 0.0001		
Within groups	449.19	57	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	$\underline{I^2}$
CETtype = 4	19	0.3015	[0.2421; 0.3587]	110.13	83.7%
CETtype = 3	29	0.2806	[0.2233; 0.3360]	220.42	87.3%
CETtype = 2	1	0.3900	[0.3071; 0.4670]	0.00	-
CETtype = 1	5	0.4330	[0.3489; 0.5102]	13.37	70.1%
CETtype = 0	8	0.4551	[0.3495; 0.5492]	105.28	93.4%
CETtype = 9	1	0.4520	[0.3642; 0.5319]	0.00	-
Test for subgroup dif	ferences (random	n effects model)			
	<u>Q</u>	<u>d.f.</u>	p-value		
Between groups	22.42	5	0.0004		

D2.8 Analysis of animosity for moderator CETtype

CETtype = 4 Ishii 2009 30 Jimenez & San Martin 2010 20 Hoffmann et al. 2011 36 Hoffmann et al. 2011 35 Hoffmann et al. 2011 35 Marinkovic 2017 22 Cheah et al. 2016 43 Funk et al. 2016 43 Kein 2002 20 Cheah et al. 2016 43 Kein 2002 20 De Nisco et al. 2016 72 De Nisco et al. 2016 72 Markow effects model 53 Random effects model 53 Markow S Hajidimitriou 2007 43 Sharma 2011 34 Sos et al. 2009 11 Nakos & Hajidimitriou 2007 43 Sharma 2011 54 Sharma 2011 54 Mostafa 2010 77 Nijssen & Douglas 2004 10 Cai et al. 2012 25 Ma et al. 2012 25 Ma	0 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	╶╶┵┿╶╴ ┑ ┥	0.36 0.26 0.23 0.24 0.09 0.21 0.23 0.28 0.14 0.37 0.25 0.51 0.23 0.24 0.37 0.25 0.31 0.22 0.31 0.26 0.27 0.36 0.27 0.26 0.27 0.28 0.30 0.22 0.31 0.22 0.31 0.26 0.27 0.24 0.30 0.24 0.37 0.25 0.24 0.37 0.25 0.24 0.37 0.25 0.25 0.28 0.37 0.25 0.25 0.28 0.37 0.25 0.25 0.28 0.37 0.25 0.25 0.25 0.28 0.37 0.25 0.25 0.37 0.25 0.22 0.31 0.25 0.30 0.25 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.25 0.36 0.27 0.27 0.36 0.27 0.25 0.36 0.27 0.25 0.36 0.27 0.25 0.36 0.27 0.25 0.27 0.25 0.27 0.25 0.27 0.27 0.26 0.27 0.27 0.26 0.27 0.27 0.26 0.27 0.27 0.28 0.27 0.27 0.28 0.27 0.27 0.28 0.27 0.27 0.28 0.27 0.28 0.27 0.28 0.27 0.28 0.27 0.28 0.27 0.28 0.28 0.27 0.28 0.28 0.27 0.28	[0.18; 0.39] [0.26; 0.46] [0.26; 0.46] [0.42; 0.62] [0.14; 0.34] [0.14; 0.34] [0.11; 0.31] [0.13; 0.37] [0.04; 0.24] [0.29; 0.45] [0.29; 0.45] [0.40; 0.61] [0.40; 0.61] [0.40; 0.61] [0.40; 0.61] [0.40; 0.61] [0.40; 0.61] [0.40; 0.61] [0.40; 0.61] [0.40; 0.61] [0.26; 0.31] [0.26; 0.41] [0.13; 0.38] [0.09; 0.43] [0.19; 0.52] [0.09; 0.43]	1.5% 1.6% 1.0% 1.8% 1.8% 1.7% 1.7% 1.7% 1.7% 1.0% 2.1% 2.1% 2.1% 2.1% 1.0% 2.1% 0.9% 2.1% 0.5% 0.5%	1.6% 1.6% 1.5% 1.6% 1.6% 1.6% 1.6% 1.6% 1.6% 1.7% 1.6% 1.7% 1.5% 1.7% 1.5% 1.5% 1.5% 1.5% 1.5%
Ishii 2009 30 Nienez & San Martin 2010 20 Klein 2002 20 Hoffmann et al. 2011 36 Hoffmann et al. 2011 36 Hoffmann et al. 2011 36 Hoffmann et al. 2011 35 Hoffmann et al. 2011 35 Hoffmann et al. 2011 35 Marinkovic 2017 22 Cheah et al. 2016 43 Klein 2002 20 De Nisco et al. 2016 43 Klein 2002 20 De Nisco et al. 2016 43 Fixed effect model 53 Random effects model 53 Random effects model 53 Pose et al. 2009 11 Rose at al. 2009	0 2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	╪┿┽╹ ╪┿┽╶ _╋ ┥┽╪╪╵╴┽╵╸╵╸╸╸╸╸╸╴	0.36 0.26 0.23 0.24 0.09 0.21 0.23 0.28 0.14 0.37 0.25 0.51 0.23 0.24 0.37 0.25 0.31 0.22 0.31 0.26 0.27 0.36 0.27 0.26 0.27 0.28 0.30 0.22 0.31 0.22 0.31 0.26 0.27 0.24 0.30 0.24 0.37 0.25 0.24 0.37 0.25 0.24 0.37 0.25 0.25 0.28 0.37 0.25 0.25 0.28 0.37 0.25 0.25 0.28 0.37 0.25 0.25 0.25 0.28 0.37 0.25 0.25 0.37 0.25 0.22 0.31 0.25 0.30 0.25 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.25 0.36 0.27 0.27 0.36 0.27 0.25 0.36 0.27 0.25 0.36 0.27 0.25 0.36 0.27 0.25 0.27 0.25 0.27 0.25 0.27 0.27 0.26 0.27 0.27 0.26 0.27 0.27 0.26 0.27 0.27 0.28 0.27 0.27 0.28 0.27 0.27 0.28 0.27 0.27 0.28 0.27 0.28 0.27 0.28 0.27 0.28 0.27 0.28 0.27 0.28 0.28 0.27 0.28 0.28 0.27 0.28	$ \begin{bmatrix} 0.26; 0.46] \\ (0.3; 0.38] \\ (0.42; 0.62] \\ (0.13; 0.38] \\ (0.42; 0.62] \\ (0.13; 0.38] \\ (0.42; 0.62] \\ (0.13; 0.33] \\ (0.13; 0.33] \\ (0.14; 0.337] \\ (0.44; 0.24] \\ (0$	1.5% 1.0% 1.8% 1.8% 1.7% 1.7% 1.7% 1.7% 1.6% 1.7% 1.6% 1.0% 2.1% 2.1% 2.1% 2.1% 2.1% 2.1% 2.1% 2.1	1.6% 1.5% 1.5% 1.6% 1.6% 1.6% 1.6% 1.6% 1.6% 1.7% 1.6% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5
Jimenez & San Martin 2010 20 Klein 2002 20 Hoffmann et al. 2011 36 Hoffmann et al. 2011 35 Marinkovic 2017 22 Cheah et al. 2016 43 Funk et al. 2016 43 Kein 2002 20 Cheah et al. 2016 43 Kein 2002 20 De Nisco et al. 2016 72 De Nisco et al. 2016 18 Random effects model 53 Heterogeneity: l^2 = 84%, t^2 = 0.0169, $p < 0.01$	2 2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.26 0.53 0.24 0.09 0.21 0.23 0.28 0.14 0.39 0.37 0.25 0.23 0.25 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.24 0.39 0.37 0.25 0.23 0.24 0.39 0.37 0.25 0.23 0.24 0.39 0.37 0.25 0.23 0.24 0.39 0.37 0.25 0.23 0.25 0.23 0.24 0.39 0.37 0.25 0.23 0.25 0.23 0.25 0.23 0.25 0.23 0.25 0.23 0.25 0.23 0.25 0.23 0.25 0.23 0.25 0.23 0.25 0.23 0.23 0.25 0.23 0.23 0.25 0.23 0.23 0.25 0.23 0.25 0.23 0.25 0.23 0.25 0.23 0.25 0.23 0.26 0.23 0.25 0.23 0.26 0.26 0.23 0.26 0.26 0.23 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.28 0.30 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.26 0.27 0.28 0.30 0.26 0.27 0.26 0.27 0.26 0.27 0.26 0.27 0.26 0.27 0.26 0.27 0.26 0.27 0.26 0.27 0.26 0.27 0.26 0.27 0.26 0.27 0.26 0.27 0.26 0.27 0.26 0.27 0.26 0.27 0.27 0.26 0.27 0.27 0.26 0.27 0.27 0.26 0.27	$ \begin{bmatrix} 0.13; 0.38 \\ 0.42; 0.62 \\ 0.14; 0.34 \\ -0.01; 0.19 \\ 0.11; 0.31 \\ 0.13; 0.33 \\ 0.16; 0.37 \\ 0.04; 0.24 \\ 0.27; 0.50 \\ 0.29; 0.45 \\ 0.40; 0.61 \\ 0.40; 0.4$	1.0% 1.0% 1.8% 1.8% 1.7% 1.7% 1.7% 1.7% 1.7% 1.7% 1.0% 2.1% 2.1% 2.1% 2.1% 2.1% 2.1% 1.0% 0.5% 0.5%	1.5% 1.5% 1.6% 1.6% 1.6% 1.6% 1.6% 1.6% 1.7% 1.5% 1.7% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5%
Klein 2002 20 Hoffmann et al. 2011 36 Hoffmann et al. 2011 36 Hoffmann et al. 2011 36 Hoffmann et al. 2011 35 Hoffmann et al. 2011 35 Hoffmann et al. 2011 35 Marinkovic 2017 22 Cheah et al. 2016 43 Funk et al. 2016 43 Klein 2002 20 De Nisco et al. 2016 72 De Nisco et al. 2016 73 Fixed effect model 583 Random effects model 583 Heterogeneity: $P = 64\%, r^2 = 0.0169, p < 0.01$	2 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	╴ ┿ ╪ ╪ ╪ ┿ ╪ ┿ ╪ ┿ ╪ ┿ ╪ ┿ ╪ ┿ ┿	 - 0.53 0.24 0.09 0.21 0.23 0.28 0.14 0.39 0.37 0.251 - 0.51 0.60 0.22 0.31 0.17 0.28 0.30 0.31 0.26 0.27 0.36 0.23 0.23 	[0.42, 0.62] [0.14; 0.34] [-0.01; 0.19] [0.11; 0.31] [0.13; 0.33] [0.18; 0.37] [0.44; 0.24] [0.44; 0.24] [0.44; 0.25] [0.44; 0.25] [0.44; 0.35] [0.44; 0.35] [0.44; 0.35] [0.44; 0.36] [0.26; 0.48] [0.26; 0.43] [0.26; 0.41] [0.26; 0.43] [0.26; 0.43] [0.13; 0.38] [0.09; 0.43] [0.09; 0.43] [0.09; 0.42]	1.0% 1.8% 1.8% 1.7% 1.7% 1.7% 1.7% 1.7% 1.6% 2.1% 1.0% 0.9% 2.1% 2.1% 1.3% 0.9% 2.1% 2.1% 1.5% 1.0% 0.5%	1.5% 1.6% 1.6% 1.6% 1.6% 1.6% 1.6% 1.5% 1.7% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5
Hoffmann et al. 2011 36 Hoffmann et al. 2011 35 Hoffmann et al. 2011 35 Hoffmann et al. 2011 35 Hoffmann et al. 2016 43 Funk et al. 2016 43 Funk et al. 2016 43 Kein 2002 20 De Nisco et al. 2016 18 Cheah et al. 2016 43 Fixed effect model 53 Jain & Jain 2013 30 Jain & Jain 2013 30 Jaines Zoog 200 Rose et al. 2009 11 Rose at al. 2009	0 0 0 0 0 0 1 5 5 9 2 2 2 2 4 4 2 2 5 9 9 4 2 2 5 9 9 4 2 2 5 9 9 4 2 2 5 9 9 2 2 5 9 9 2 5 9 9 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0		0.24 0.09 0.21 0.23 0.28 0.14 0.39 0.37 0.25 - 0.51 0.23 0.23 0.23 0.23 0.23 0.23 0.23 0.23	$ \begin{bmatrix} 0.14; 0.34 \\ -0.01; 0.19 \\ 0.11; 0.31 \\ 0.13; 0.33 \\ 0.18; 0.37 \\ 0.04; 0.24 \\ 0.27; 0.50 \\ 0.29; 0.45 \\ 0.47; 0.40 \\ 0.40; 0.61 \\ 0.40; 0.61 \\ 0.40; 0.61 \\ 0.40; 0.61 \\ 0.40; 0.61 \\ 0.40; 0.61 \\ 0.40; 0.61 \\ 0.40; 0.61 \\ 0.40; 0.61 \\ 0.40; 0.61 \\ 0.40; 0.61 \\ 0.40; 0.61 \\ 0.40; 0.61 \\ 0.40; 0.61 \\ 0.40; 0.40; 0.41 \\ 0.40; 0.4$	1.8% 1.8% 1.7% 1.7% 1.7% 1.7% 2.1% 1.0% 2.1% 1.0% 2.1% 2.1% 2.1% 2.1% 1.3% 2.1% 1.0% 0.5% 0.5%	1.6% 1.6% 1.6% 1.6% 1.6% 1.6% 1.7% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5
Hoffmann et al. 2011 36 Hoffmann et al. 2011 36 Hoffmann et al. 2011 35 Hoffmann et al. 2011 35 Hoffmann et al. 2011 35 Marinkovic 2017 22 Cheah et al. 2016 43 Funk et al. 2016 43 Klein 2002 20 Cheah et al. 2016 43 Klein 2002 20 De Nisco et al. 2016 43 Fixed effect model 583 Random effects model 583 Jain & Jain 2013 30 Jimenez Torres & San Martin Gutierrez 2007 20 Rose et al. 2009 11 Barma 2011 36 Sharma 2011 36 Sharma 2011 36 Sharma 2010	0 0 0 1 5 5 2 2 2 2 2 2 2 5 5 2 2 4 2 2 5 5 2 2 4 2 2 5 5 2 2 4 2 2 5 5 3 3 3		0.09 0.21 0.23 0.28 0.14 0.39 0.37 0.25 - 0.51 0.23 - 0.61 0.22 0.31 0.17 0.28 0.30 0.31 0.26 0.27 0.36 0.27 0.23	[-0.01; 0.19] (0.11; 0.31] (0.13; 0.33] (0.16; 0.37] (0.04; 0.24] (0.27; 0.50] (0.29; 0.45] (0.14; 0.35] (0.40; 0.61] (0.14; 0.32] (0.14; 0.32] (0.14; 0.33] (0.17; 0.44] (0.08; 0.26] (0.26; 0.31] (0.26; 0.41] (0.26; 0.41] (0.26; 0.43] (0.13; 0.38] (0.09; 0.43] (0.19; 0.52] (0.09; 0.52]	1.8% 1.7% 1.7% 1.7% 1.7% 1.6% 2.1% 1.0% 2.1% 2.1% 2.1% 2.1% 2.1% 2.5% 	1.6% 1.6% 1.6% 1.6% 1.6% 1.6% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5
Hoffmann et al. 2011 96 Hoffmann et al. 2011 35 Marinkovic 2017 22 Cheah et al. 2016 43 Funk et al. 2010 31 Klein 2002 20 De Nisco et al. 2016 16 Cheah et al. 2016 43 Fixed effect model 583 Fixed effect model 583 Pose et al. 2009 11 Rose at al. 2009 11 Nijssen & Douglas 2004 10 Cai et al. 2012 22 Wang et al. 2013 25 Matal. 2012	0 0 0 1 5 5 2 2 5 5 2 4 4 2 2 5 9 9 4 2 2 5 9 9 1 1 2 2 9 9 9 9 9 9 9 9 9 9 9 9 9 9	++++++++++++++++++++++++++++++++++++++	0.21 0.23 0.28 0.14 0.39 0.37 0.25 - 0.51 0.23 - 0.60 0.22 0.31 0.17 0.28 0.30 0.31 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.30 0.28 0.30 0.28 0.31 0.28 0.30 0.28 0.28 0.51 0.28 0.28 0.31 0.28 0.30 0.28 0.31 0.28 0.30 0.28 0.31 0.28 0.30 0.28 0.31 0.28 0.30 0.28 0.31 0.28 0.31 0.28 0.30 0.28 0.31 0.28 0.30 0.30 0.28 0.30 0.28 0.30 0.28 0.30 0.28 0.30 0.28 0.30 0.28 0.30 0.30 0.28 0.30 0.28 0.30 0.28 0.30 0.28 0.30 0.30 0.28 0.30 0.30 0.28 0.30 0.28 0.30 0.28 0.30 0.30 0.28 0.30 0.28 0.30 0.31 0.27 0.28 0.30 0.27 0.28 0.31 0.27 0.28 0.31 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.36 0.27 0.38 0.37 0.28 0.37 0.28 0.37 0.28 0.37 0.28 0.37 0.28 0.37 0.28 0.37 0.28 0.27 0.36 0.27 0.28 0.27 0.28 0.27 0.28 0.27 0.28 0.27 0.28 0.27 0.28 0.27 0.28 0.27 0.28 0.27 0.28 0.27 0.28 0.27 0.28 0.27 0.28 0.27 0.28 0.27 0.28 0.27 0.28 0.88 00 0.88 00 0.88 00 0.88 00 0.88 00 0.88 00 0.88 00	$ \begin{bmatrix} 0.11; 0.31 \\ 0.13; 0.33 \\ 0.13; 0.33 \\ 0.04; 0.24 \\ 0.27; 0.50 \\ 0.27; 0.50 \\ 0.29; 0.45 \\ 0.14; 0.36 \\ 0.40; 0.61 \\ 0.40; 0.4$	1.8% 1.7% 1.7% 1.7% 1.1% 2.1% 1.6% 1.0% 1.0% 2.1% 2.1% 2.1% 1.0% 2.1% 2.5% 2.5%	1.6% 1.6% 1.6% 1.6% 1.6% 1.7% 1.5% 1.7% 1.5% 1.7% 1.5% 1.5% 1.5% 1.5% 1.5% 1.5% 1.4%
Hoffmann et al. 2011 35 Hoffmann et al. 2016 43 Funk et al. 2016 43 Kein 2002 20 Cheah et al. 2016 43 Kein 2002 20 De Nisco et al. 2016 27 De Nisco et al. 2016 43 Fixed effect model 583 Bandom effects model 583 Heterogeneilty: $l^2 = 84\%, r^2 = 0.0169, p < 0.01$	0 0 0 1 5 9 2 2 2 2 2 2 2 2 2 2 2 2 2 3 9 9 9 9 9	**************************************	0.23 0.28 0.14 0.39 0.25 - 0.51 0.23 • 0.60 0.22 0.31 0.28 0.30 0.31 0.26 0.30	$ \begin{array}{c} 0.13; \ 0.33\\ (0.18; \ 0.37]\\ (0.04; \ 0.24)\\ (0.27; \ 0.50)\\ (0.29; \ 0.45)\\ (0.29; \ 0.45)\\ (0.29; \ 0.45)\\ (0.29; \ 0.45)\\ (0.49; \ 0.61)\\ (0.49; \$	1.7% 1.7% 1.7% 1.1% 2.1% 1.0% 2.1% 2.1% 2.1% 2.1% 2.1% 2.1% 2.1% 2.1	1.6% 1.6% 1.7% 1.6% 1.5% 1.7% 1.5% 1.6% 1.5% 1.5% 1.5% 1.5% 1.4%
Hoffmann et al. 2011 35 Marinkovic 2017 22 Cheah et al. 2016 43 Funk et al. 2010 31 Kein 2002 20 Cheah et al. 2016 43 Kein 2002 20 De Nisco et al. 2016 78 De Nisco et al. 2016 78 De Nisco et al. 2016 78 Bandom effects model 53 Bandom effects model 53 Jain & Jain 2013 30 Jimenez Torres & San Martin Gutierrez 2007 20 Rose et al. 2009 11 Natra 2011 54 Lee & Mazodier 2015 90 Fakharmanesh & Miyandehi 2013 46 Mostafa 2010 77 Nijssen	0 1 5 9 2 2 2 2 4 4 2 5 9 9 4 2 2 9 9 9 4 2 2 9 9 9 9 9 9 9 9 9	+++++++++++++++++++++++++++++++++++++	0.28 0.14 0.39 0.37 0.25 - 0.51 0.23 - 0.51 0.23 0.31 0.17 0.28 0.30 0.31 0.27 0.30 0.31 0.27 0.30	$ \begin{bmatrix} 0.18; 0.37] \\ (0.4; 0.24] \\ (0.27; 0.50] \\ (0.29; 0.45] \\ (0.14; 0.35] \\ (0.40; 0.61] \\ (0.14; 0.32] \\ (0.50; 0.68] \\ (0.10; 0.33] \\ (0.17; 0.44] \\ (0.08; 0.26] \\ (0.22; 0.31] \\ (0.24; 0.36] \\ (0.24; 0.36] \\ (0.13; 0.38] \\ (0.09; 0.43] \\ (0.19; 0.52] \\ (0.09; 0.44) \\ (0.09; 0.43) \\ (0.19; 0.52] \\ (0.09; 0.44) \\ (0.09; 0.44) \\ (0.9; 0.44) \\ $	1.7% 1.7% 1.1% 2.1% 1.6% 1.0% 2.1% 2.1% 2.1% 2.1% 2.1% 2.1% 2.5% 0.5%	1.6% 1.6% 1.7% 1.6% 1.5% 1.5% 1.6% 1.5% 1.6% 1.5% 1.6% 1.5% 1.4%
Marinkovic 2017 22 Klein 2002 20 Cheah et al. 2016 43 Funk et al. 2016 43 Klein 2002 20 De Nisco et al. 2016 73 Fixed effect model 583 Fixed effect model 583 Fixed effect model 583 Jain & Jain 2013 30 Jimenez Torres & San Martin Gutierrez 2007 20 Rose et al. 2009 11 Branz 2011 34 Sharma 2011 36 Sharma 2011 46 Sharma 2013 26 Mostafa 2010 77 Nijssen & Douglas 2004 10 Cai et al. 2012 25	1 5 5 2 2 4 4 2 2 5 5 5 2 4 4 2 2 5 5 5 2 4 4 2 2 5 5 2 4 4 2 2 5 5 2 2 5 2 2 5 2 2 5 2 2 5 2 2 5 5 2 2 5 5 2 2 5 5 2 2 5 5 2 2 5 5 2 2 5 5 2 2 5 5 2 2 5 5 2 5 5 2 5 5 2 5 5 2 5	+ + + + + + + + + + + + + + + + + + +	0.39 0.25 - 0.51 0.23 - 0.60 0.22 0.31 0.28 0.30 0.28 0.30 0.31 0.26 0.27 0.36 0.27 0.36 0.27 0.23	$\begin{bmatrix} 0.27; 0.50 \\ 0.29; 0.45 \\ 0.14; 0.35 \\ 0.40; 0.61 \\ 0.50; 0.68 \\ 0.10; 0.33 \\ 0.50; 0.68 \\ 0.10; 0.33 \\ 0.17; 0.44 \\ 0.08; 0.26 \\ 0.26; 0.31 \\ 0$	1.1% 2.1% 1.6% 1.0% 2.1% 1.3% 2.1% 28.5% 1.5% 1.0% 0.5% 0.5%	1.6% 1.7% 1.6% 1.5% 1.7% 1.5% 1.5% 1.5% 1.5% 1.6% 1.5% 1.4%
Cheah et al. 2016 43 Funk et al. 2010 31 Klein 2002 20 Cheah et al. 2016 20 De Nisco et al. 2016 21 De Nisco et al. 2016 43 Fixed effect model 583 Fixed effect model 583 Pandom effects model 583 Pandom effects model 583 Jain & Jain 2013 30 Jimenez Torres & San Martin Gutierrez 2007 20 Rose et al. 2009 11 Sharma 2011 54 Sharma 2011 54 Sharma 2011 54 Sharma 2011 54 Mostafa 2010 77 Nijssen & Douglas 2004 10 Cai et al. 2012 25 Ma et al. 2012 25 <t< td=""><td>5 9 2 5 2 2 4 4 2 5 9 9 4 2 2 9 9 1 1 2 2 0 9 9 3 3 3</td><td>**************************************</td><td>0.37 0.25 - 0.51 0.23 - 0.60 0.22 0.31 0.17 0.28 0.30 0.31 0.26 0.27 0.36 0.27 0.36 0.27 0.36</td><td>[0.29; 0.45] [0.29; 0.45] [0.40; 0.61] [0.14; 0.32] [0.50; 0.68] [0.10; 0.33] [0.17; 0.44] [0.08; 0.26] [0.26; 0.31] [0.24; 0.36] [0.22; 0.41] [0.13; 0.38] [0.09; 0.43] [0.09; 0.44]</td><td>2.1% 1.6% 1.0% 2.1% 1.0% 1.3% 2.1% 2.1% 2.1% 2.1% 2.1% 0.5% 0.5%</td><td>1.7% 1.6% 1.7% 1.5% 1.6% 1.5% 1.7% 30.5% 1.6% 1.5% 1.4%</td></t<>	5 9 2 5 2 2 4 4 2 5 9 9 4 2 2 9 9 1 1 2 2 0 9 9 3 3 3	**************************************	0.37 0.25 - 0.51 0.23 - 0.60 0.22 0.31 0.17 0.28 0.30 0.31 0.26 0.27 0.36 0.27 0.36 0.27 0.36	[0.29; 0.45] [0.29; 0.45] [0.40; 0.61] [0.14; 0.32] [0.50; 0.68] [0.10; 0.33] [0.17; 0.44] [0.08; 0.26] [0.26; 0.31] [0.24; 0.36] [0.22; 0.41] [0.13; 0.38] [0.09; 0.43] [0.09; 0.44]	2.1% 1.6% 1.0% 2.1% 1.0% 1.3% 2.1% 2.1% 2.1% 2.1% 2.1% 0.5% 0.5%	1.7% 1.6% 1.7% 1.5% 1.6% 1.5% 1.7% 30.5% 1.6% 1.5% 1.4%
Funk et al. 2010 31 Klein 2002 20 Cheah et al. 2016 43 Klein 2002 20 De Nisco et al. 2016 18 De Nisco et al. 2016 18 Cheah et al. 2016 18 Cheah et al. 2016 18 Cheah et al. 2016 43 Fixed effect model 583 Random effects model 583 Jain & Jain 2013 30 Jimenez Torres & San Martin Gutierrez 2007 20 Rose et al. 2009 11 Barma 2011 54 Sharma 2011 54 Sharma 2011 54 Sharma 2011 54 Mostala 2012 25 Wang et al. 2012 25 Wang et al. 2012 25 Missen & Douglas 2004 10 <td< td=""><td>9 2 2 2 2 4 2 2 5 5 9 9 4 2 2 1 1 2 2 2 9 9 3 3 3</td><td>*+ + + + + + + + + + + + + + + + + + +</td><td>- 0.25 0.51 0.23 0.60 0.22 0.31 0.17 0.28 0.30 0.30 0.31 0.26 0.27 0.36 0.27 0.23</td><td>[0.14; 0.35] [0.40; 0.61] [0.14; 0.32] [0.50; 0.68] [0.10; 0.33] [0.17; 0.44] [0.08; 0.26] [0.26; 0.31] [0.24; 0.36] [0.20; 0.41] [0.13; 0.38] [0.09; 0.43] [0.09; 0.44]</td><td>1.6% 1.0% 2.1% 1.3% 0.9% 2.1% 28.5% </td><td>1.6% 1.5% 1.5% 1.6% 1.5% 1.6% 30.5%</td></td<>	9 2 2 2 2 4 2 2 5 5 9 9 4 2 2 1 1 2 2 2 9 9 3 3 3	*+ + + + + + + + + + + + + + + + + + +	- 0.25 0.51 0.23 0.60 0.22 0.31 0.17 0.28 0.30 0.30 0.31 0.26 0.27 0.36 0.27 0.23	[0.14; 0.35] [0.40; 0.61] [0.14; 0.32] [0.50; 0.68] [0.10; 0.33] [0.17; 0.44] [0.08; 0.26] [0.26; 0.31] [0.24; 0.36] [0.20; 0.41] [0.13; 0.38] [0.09; 0.43] [0.09; 0.44]	1.6% 1.0% 2.1% 1.3% 0.9% 2.1% 28.5% 	1.6% 1.5% 1.5% 1.6% 1.5% 1.6% 30.5%
Klein 2002 20 Cheah et al. 2016 43 Klein 2002 20 De Nisco et al. 2016 27 De Nisco et al. 2016 18 Cheah et al. 2016 18 Cheah et al. 2016 18 Cheah et al. 2016 18 Fixed effect model 533 Random effects model 533 Jim & Jain 2013 30 Jim Rose et al. 2009 11 Rose et al. 2001 34 Sharma 2011 54 Lee & Mazodier 2015 90 Fakharmanesh & Miyandehi 2013 46 Mostafa 2010 77 Nijssen & Douglas 2004	2 5 5 7 7 8 7 8 7 7 7 7 7 7 7 7 7 7 7 7 7	* * ' * * * * * * * * * * * * * * * * *	- 0.51 0.23 0.22 0.31 0.17 0.28 0.30 0.31 0.26 0.27 0.36 0.27 0.23	[0.40; 0.61] [0.40; 0.61] [0.50; 0.68] [0.10; 0.33] [0.17; 0.44] [0.26; 0.31] [0.24; 0.36] [0.20; 0.41] [0.13; 0.38] [0.09; 0.43] [0.09; 0.44]	1.0% 2.1% 1.0% 1.3% 0.9% 2.1% 2.1% 2.1% 	1.5% 1.7% 1.6% 1.5% 1.7%
Cheah et al. 2016 43 Klein 2002 20 De Nisco et al. 2016 18 De Nisco et al. 2016 43 Fixed effect model 533 Bandom effects model 433 Heterogeneilty: $l^2 = 84\%, r^2 = 0.0169, p < 0.01$	5 2 2 4 2 5 5 9 9 4 2 2 1 1 2 2 0 9 9 3 3 3	* - * * * *	0.23 0.60 0.22 0.31 0.17 0.28 0.30 0.31 0.26 0.27 0.36 0.27 0.23	[0.14; 0.32] [0.50; 0.68] [0.10; 0.33] [0.17; 0.44] [0.08; 0.26] [0.26; 0.31] [0.24; 0.36] [0.20; 0.41] [0.13; 0.38] [0.09; 0.43] [0.19; 0.52] [0.09; 0.44]	2.1% 1.0% 1.3% 0.9% 2.1% 28.5% 1.5% 1.0% 0.5% 0.5%	1.7% 1.5% 1.6% 1.7% 30.5% 1.6% 1.5% 1.4%
Klein 2002 20 De Nisco et al. 2016 27 De Nisco et al. 2016 18 Cheah et al. 2016 18 Cheah et al. 2016 18 Cheah et al. 2016 18 Fixed effect model 533 Random effects model 533 Heterogeneity: f^2 = 84%, f^2 = 0.0169, $p < 0.01$ CETtype = 3 30 Jaine & Jain 2013 30 Jimenez Torres & San Martin Gutierrez 2007 20 Rose et al. 2009 11 Sharma 2011 54 Sharma 2011 54 Sharma 2011 54 Mostafa 2010 77 Nijssen & Douglas 2004 11 Nijssen & Douglas 2004 10 Nakos & Hajidimitriou 2007 43	2 4 2 5 9 9 1 1 1 2 2 2 9 9 8 3		 0.60 0.22 0.31 0.17 0.28 0.30 0.31 0.26 0.27 0.23 	[0.50; 0.68] [0.10; 0.33] [0.17; 0.44] [0.08; 0.26] [0.26; 0.31] [0.24; 0.36] [0.20; 0.41] [0.13; 0.38] [0.09; 0.43] [0.09; 0.44]	1.0% 1.3% 0.9% 2.1% 28.5% 1.5% 1.0% 0.5% 0.5%	1.5% 1.6% 1.5% 1.7% 30.5% 1.6% 1.5% 1.4% 1.4%
De Nisco et al. 2016 27 De Nisco et al. 2016 18 Cheah et al. 2016 43 Fixed effect model 533 Random effects model 533 Heterogeneity: $f^2 = 84\%, r^2 = 0.0169, p < 0.01$	4 2 5 9 9 1 1 2 2 0 9 3 3 3	* * * * * * *	0.22 0.31 0.17 0.28 0.30 0.31 0.26 0.27 0.36 0.27 0.23	[0.10; 0.33] [0.17; 0.44] [0.08; 0.26] [0.26; 0.31] [0.24; 0.36] [0.24; 0.36] [0.24; 0.36] [0.20; 0.41] [0.19; 0.52] [0.09; 0.44]	1.3% 0.9% 2.1% 28.5% 1.5% 1.0% 0.5% 0.5% 0.5%	1.6% 1.5% 1.7%
De Nisso et al. 2016 18 De Nisso et al. 2016 43 Fixed effect model 563 Random effects model 563 Heterogeneity: $f^2 = 0.0169, p < 0.01$ 563 CETtype 3 30 Jain & Jain 2013 30 Jinenez. Torres & San Martin Gutierrez 2007 20 Rose et al. 2009 11 Sharma 2011 36 Sharma 2011 46 Sharma 2011 46 Mostata 2010 77 Nijssen & Douglas 2004 10 Cai et al. 2012 25 Ma et al. 2012 25 Nijssen & Douglas 2004 10 Nakos & Hajidimitriou 2007 43 A at al. 2012 25 Ma et al. 2012 25 Ma et al. 2012 <	2 5 9 1 1 2 2 9 9 3 3 3	*****	0.31 0.17 0.28 0.30 0.31 0.26 0.27 0.36 0.27 0.23	[0.17; 0.44] [0.08; 0.26] [0.26; 0.31] [0.24; 0.36] [0.22; 0.41] [0.13; 0.38] [0.09; 0.43] [0.19; 0.52] [0.09; 0.44]	0.9% 2.1% 28.5% 1.5% 1.0% 0.5% 0.5%	1.5% 1.7%
Cheah et al. 2016 43 Fixed effect model 583 Random effects model 583 Random effects model 583 Random effects model 583 Jim & Jain & Jain 2013 30 Jima Radian 2013 30 Jima & Jain 2013 30 Jima & Jain 2013 30 Jima & Jain 2013 30 Rose et al. 2009 11 Rose et al. 2009 11 Rose et al. 2009 11 Nakos & Hajidimitriou 2007 43 Sharma 2011 34 Sharma 2011 46 Mostafa 2010 77 Pakharmanesh & Miyandehi 2013 46 Mostafa 2010 77 Nijssen & Douglas 2004 10 Cai et al. 2012 25 Ma et al. 2012 25	5 9 1 1 2 2 9 9 8 8	+**	0.17 0.28 0.30 0.31 0.26 0.27 0.36 0.27 0.23	[0.08; 0.26] [0.26; 0.31] [0.24; 0.36] [0.20; 0.41] [0.13; 0.38] [0.09; 0.43] [0.19; 0.52] [0.09; 0.44]	2.1% 28.5% 1.5% 1.0% 0.5% 0.5%	1.7%
Random effects model Heterogeneity: $l^2 = 84\%$, $l^2 = 0.0169$, $p < 0.01$ CETtype = 3 Jain & Jain 2013 30 Jimenez Torres & San Martin Gutierrez 2007 20 Rose et al. 2009 11 Nakos & Hajidimitriou 2007 43 Sharma 2011 34 Sharma 2011 54 Sharma 2011 54 Sharma 2011 54 Mostafa 2010 77 Rakharmanesh & Miyandehi 2013 46 Mostafa 2010 77 Vijssen & Douglas 2004 11 Nijssen & Douglas 2004 10 Rait al. 2012 25 Ma et al. 201	4 1 2 2 2 2 2 3 3 3	***	0.30 0.31 0.26 0.27 0.36 0.27 0.23	[0.24; 0.36] [0.20; 0.41] [0.13; 0.38] [0.09; 0.43] [0.19; 0.52] [0.09; 0.44]	1.5% 1.0% 0.5% 0.5%	1.6% 1.5% 1.4% 1.4%
Heterogeneity: $l^2 = 84\%$, $l^2 = 0.0169$, $p < 0.01$ CETtype = 3 Jain & Jain 2013 30 Jimenez Torres & San Martin Gutierrez 2007 20 Rose et al. 2009 11 Rose et al. 2009 11 Rose et al. 2009 11 Nakos & Hajidimitriou 2007 43 Sharma 2011 34 Sharma 2011 34 Sharma 2011 46 Sharma 2012 22 Vang et al. 2012 22 Ma et al. 2012 22 Ma et al. 2012 25 Ma et al. 2014 25 Ma et al. 2014 Ma et al. 2014 25 Ma et al. 2014 25 Ma et al. 20	2 1 2 2 2 0 9 3 3 3	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	0.31 0.26 0.27 0.36 0.27 0.23	[0.20; 0.41] [0.13; 0.38] [0.09; 0.43] [0.19; 0.52] [0.09; 0.44]	1.0% 0.5% 0.5% 0.5%	1.6% 1.5% 1.4% 1.4%
CETtype = 3 Jain & Jain 2013 30 Jimenez Torres & San Martin Gutierrez 2007 20 Rose et al. 2009 11 Matos & Hajidimitriou 2007 43 Sharma 2011 54 Sharma 2011 54 Mostata 2010 77 Nijssen & Douglas 2004 11 Nijssen & Douglas 2004 11 Nijssen & Douglas 2004 10 Nakos & Hajidimitriou 2007 43 Ag et al. 2012 25 Ma et al. 2012 25	2 1 2 2 2 0 9 3 3 3		0.26 0.27 0.36 0.27 0.23	[0.13; 0.38] [0.09; 0.43] [0.19; 0.52] [0.09; 0.44]	1.0% 0.5% 0.5% 0.5%	1.5% 1.4% 1.4%
Jain & Jain 2013 30 Jain & Jain 2013 20 Rose et al. 2009 11 Rose et al. 2009 13 Sharma 2011 34 Sharma 2011 54 Mostafa 2010 77 Nijssen & Douglas 2004 10 Cai et al. 2012 22 Wang et al. 2013 25 Ma et al. 2012 25 Nijssen & Douglas 2004 10 Nakos & Hajidimitriou 2007 43 Cai et al. 2012 25 Ma et al. 2012 25 <tr< td=""><td>2 1 2 2 2 0 9 3 3 3</td><td></td><td>0.26 0.27 0.36 0.27 0.23</td><td>[0.13; 0.38] [0.09; 0.43] [0.19; 0.52] [0.09; 0.44]</td><td>1.0% 0.5% 0.5% 0.5%</td><td>1.5% 1.4% 1.4%</td></tr<>	2 1 2 2 2 0 9 3 3 3		0.26 0.27 0.36 0.27 0.23	[0.13; 0.38] [0.09; 0.43] [0.19; 0.52] [0.09; 0.44]	1.0% 0.5% 0.5% 0.5%	1.5% 1.4% 1.4%
Jimenez Torres & San Martin Gutierrez 2007 20 Rose et al. 2009 11 Nakos & Hajidimitiou 2007 43 Sharma 2011 34 Sharma 2011 36 Sharma 2011 46 Sharma 2011 54 Lee & Mazodier 2015 90 Fakharmanesh & Miyandehi 2013 46 Mostafa 2010 77 Nijssen & Douglas 2004 10 Cai et al. 2012 25 Ma et a	2 1 2 2 2 0 9 3 3 3		0.26 0.27 0.36 0.27 0.23	[0.13; 0.38] [0.09; 0.43] [0.19; 0.52] [0.09; 0.44]	1.0% 0.5% 0.5% 0.5%	1.5% 1.4% 1.4%
Rose et al. 2009 11 Rose et al. 2010 33 Sharma 2011 46 Sharma 2011 54 Lee & Mazodier 2015 90 Fakharmanesh & Myandehi 2013 46 Mostafa 2010 77 Nijssen & Douglas 2004 11 Nijssen & Douglas 2004 10 Cai et al. 2012 25 Ma et al. 2012 25 Nijssen & Douglas 2004 10 Nakos & Hajidimitriou 2007 43 A et al. 2012 25 Ma et al. 2012 25 <td>1 1 2 2 2 0 9 3 3 3</td> <td></td> <td>0.26 0.27 0.36 0.27 0.23</td> <td>[0.13; 0.38] [0.09; 0.43] [0.19; 0.52] [0.09; 0.44]</td> <td>0.5% 0.5% 0.5%</td> <td>1.4% 1.4%</td>	1 1 2 2 2 0 9 3 3 3		0.26 0.27 0.36 0.27 0.23	[0.13; 0.38] [0.09; 0.43] [0.19; 0.52] [0.09; 0.44]	0.5% 0.5% 0.5%	1.4% 1.4%
Rose et al. 2009 11 Rose et al. 2010 33 Sharma 2011 46 Sharma 2011 54 Lee & Mazodier 2015 90 Fakharmanesh & Myandehi 2013 46 Mostafa 2010 77 Nijssen & Douglas 2004 11 Nijssen & Douglas 2004 10 Cai et al. 2012 25 Ma et al. 2012 25 Nijssen & Douglas 2004 10 Nakos & Hajidimitriou 2007 43 A et al. 2012 25 Ma et al. 2012 25 <td>1 2 2 3 3 3</td> <td></td> <td>0.27 0.36 0.27 0.23</td> <td>[0.09; 0.43] [0.19; 0.52] [0.09; 0.44]</td> <td>0.5% 0.5%</td> <td>1.4%</td>	1 2 2 3 3 3		0.27 0.36 0.27 0.23	[0.09; 0.43] [0.19; 0.52] [0.09; 0.44]	0.5% 0.5%	1.4%
Rose et al. 2009 11 Nacs & Haljdimitriou 2007 43 Sharma 2011 34 Sharma 2011 34 Sharma 2011 34 Sharma 2011 36 Sharma 2011 36 Sharma 2011 54 Sharma 2011 54 Sharma 2011 54 Lee & Mazodier 2015 90 Fakharmanesh & Miyandehi 2013 46 Mostafa 2010 77 Nijssen & Douglas 2004 10 Cai et al. 2012 22 Wang et al. 2012 25 Ma et al. 2012 25 Nijssen & Douglas 2004 10 Nakos & Hajidimitriou 2007 43 Cai et al. 2012 25 Ma et al. 2012 25	2 2 0 9 8 3		0.27 0.23	[0.09; 0.44]	0.5%	
Rose et al. 2009 11 Nakos & Hajidimitriou 2007 43 Sharma 2011 34 Sharma 2011 34 Sharma 2011 46 Mactala 2010 77 Mostafa 2010 77 Missen & Douglas 2004 11 Nijssen & Douglas 2004 10 Cai et al. 2012 25 Ma et al. 2012 25 Ma et al. 2012 25 Ma et al. 2012 25 Masos & Hajidimitriou 2007 43 Cai et al. 2012 25 Masos & Hajidimitriou 2007 43 Cai et al. 2012 25 Ma et al. 2012 25 Ma et al. 2012 25 Ma et al. 2012 25 Fixed effect model 863 Random effects model 863 Random effects model 863 Heterogeneity: $r^5 = 70\%, $	2) 9 3 3		0.23			1 4%
Nakos & Hajidimitriou 2007 43 Sharma 2011 34 Sharma 2011 46 Sharma 2011 46 Sharma 2011 46 Sharma 2011 46 Lee & Mazodier 2015 90 Fakharmanesh & Myandehi 2013 46 Mostafa 2010 77 Nijssen & Douglas 2004 11 Nijssen & Douglas 2004 10 Cai et al. 2012 22 Ma et al. 2012 25 Ma) 9 3 3					
Sharma 2011 34 Sharma 2011 36 Sharma 2011 46 Sharma 2011 54 Lee & Mazcolier 2015 90 Fakharmanesh & Miyandehi 2013 46 Mostata 2010 77 Nijssen & Douglas 2004 11 Gai et al. 2012 22 Wang et al. 2013 25 Ma et al. 2012 25 Nijssen & Douglas 2004 10 Nijssen & Douglas 2004 10 Nijssen & Douglas 2004 10 Nakos & Hajidimitriou 2007 43 Cai et al. 2012 25 Wang et al. 2013 25 Ma et al. 2012 25 Fixed effect model 43 Random eff	9 3 3	1 200		[0.05; 0.40]	0.5%	1.4%
Sharma 2011 38 Sharma 2011 46 Sharma 2011 54 Lee & Mazodier 2015 90 Fakharmanesh & Myandehi 2013 46 Mostafa 2010 77 Nijssen & Douglas 2004 10 Nijssen & Douglas 2004 11 Nijssen & Douglas 2004 10 Cai et al. 2012 22 Wang et al. 2013 25 Ma et al. 2012 25 Fixed effect model 43	3 3			[0.33; 0.49]	2.1%	1.7%
Sharma 2011 46 Sharma 2011 54 Lee & Mazodier 2015 90 Fakharmanesh & Myandehi 2013 46 Mostafa 2010 77 Nijssen & Douglas 2004 11 Gai et al. 2012 22 Wang et al. 2013 25 Mijssen & Douglas 2004 10 Cai et al. 2012 25 Nijssen & Douglas 2004 11 Nijssen & Douglas 2004 10 Nijssen & Douglas 2004 10 Nijssen & Douglas 2004 10 Nakos & Hajidimitriou 2007 43 Cai et al. 2012 25 Wang et al. 2012 25 Ma et al. 2012 26 Random effects model 43 <t< td=""><td>3</td><td></td><td></td><td>[-0.01; 0.20]</td><td>1.7%</td><td>1.6%</td></t<>	3			[-0.01; 0.20]	1.7%	1.6%
Sharma 2011 54 Lee & Mazodier 2015 90 Fakharmanesh & Miyandehi 2013 46 Mostafa 2010 77 Nijssen & Douglas 2004 10 Nijssen & Douglas 2004 10 Cai et al. 2012 22 Wang et al. 2013 25 Ma et al. 2012 25 Fixed effect model 863 Random effects model 863 Random effects model 863 Heterogenetity: not applicable 26 CETtype = 1 Klein et al. 1998 24 Klein et al. 1998 24 24 Klein et al. 1998 24 24 Klein et al. 1998 24 24 <				[-0.02; 0.18]	1.9%	1.6%
Lee & Mazodier 2015 90 Lee & Mazodier 2015 90 Fakharmanesh & Miyandehi 2013 46 Mostafa 2010 77 Nijssen & Douglas 2004 11 Gai et al. 2012 22 Wang et al. 2013 255 Ma et al. 2012 25 Ma et al. 2012 25 Ma et al. 2012 25 Nijssen & Douglas 2004 11 Nijssen & Douglas 2004 10 Nakos & Hajidimitriou 2007 43 Cai et al. 2012 25 Ma et al. 2012 25		LE I		[-0.02; 0.16] [-0.04; 0.12]	2.3% 2.7%	1.7% 1.7%
Fakharmanesh & Miyandehi 2013 46 Koostata 2010 77 Nijssen & Douglas 2004 10 Nijssen & Douglas 2004 10 Cai et al. 2012 22 Wang et al. 2013 25 Ma et al. 2012 25 Wang et al. 2013 25 Wang et al. 2013 25 Ma et al. 2012 25 Ma et al. 2012 25 Ma et al. 2012 25 Fixed effect model 863 Random effects model 863 Heterogeneity: $r^2 = 87%, r^2 = 0.0237, p < 0.01$		Ē		[0.39; 0.49]	4.4%	1.7%
Mostafa 2010 77 Mostafa 2010 77 Nijssen & Douglas 2004 11 Nijssen & Douglas 2004 10 Cai et al. 2013 25 Ma et al. 2012 22 Wang et al. 2013 25 Ma et al. 2012 25 Heterogeneity: /* 67%, 7 = 0.0237, p < 0.01				[0.15; 0.32]	2.3%	1.7%
Nijssen & Douglas 2004 11 Nijssen & Douglas 2004 10 Cai et al. 2012 22 Wang et al. 2013 25 Ma et al. 2012 25 Nijssen & Douglas 2004 11 Nijssen & Douglas 2004 10 Nakos & Hajidimitriou 2007 43 Cai et al. 2012 25 Wang et al. 2013 25 Ma et al. 2012 26 Pixed effect model 43 Random effects model 43 Heterogeneity: not applicable 24				[0.33; 0.45]	3.8%	1.7%
Nijssen & Douglas 2004 10 Cai et al. 2012 22 Wang et al. 2013 25 Ma et al. 2012 22 Wang et al. 2012 25 Ma et al. 2012 25 Heterogeneity: $r^2 = 7^{-9} = 0.0237, p < 0.01$ CETtype = 2 1 Huang et al. 2010 43 Fixed effect model 43 Heterogeneity: not applicable 24 Ettenson & Klein 2005 26 Ettenson & Klein 2005 26 Ettenson & Klein 2005 26 Ett				[0.15; 0.49]	0.5%	1.4%
Cai et al. 2012 22 Wang et al. 2013 25 Ma et al. 2012 25 Ma et al. 2012 25 Nijssen & Douglas 2004 11 Nijssen & Douglas 2004 10 Nakos & Hajidimitriou 2007 43 Cai et al. 2012 25 Wang et al. 2013 25 Ma et al. 2012 22 Wang et al. 2012 25 Ma et al. 2012 25 Heterogeneity: t^2 = 87%, t^2 = 0.0237, $p < 0.01$	e			[0.36; 0.64]	0.5%	1.4%
Ma et al. 2012 25 Ma et al. 2012 25 Ma et al. 2012 25 Nijssen & Douglas 2004 11 Nijssen & Douglas 2004 10 Nakos & Hajidimitriou 2007 43 Cai et al. 2012 22 Wang et al. 2013 25 Ma et al. 2012 25 Heterogeneity: <i>P</i> = 87%, <i>r</i> ² = 0.0237, <i>p</i> < 0.01	4			[0.20; 0.43]	1.1%	1.6%
Ma et al. 2012 25 Nijssen & Douglas 2004 11 Nijssen & Douglas 2004 11 Nijssen & Douglas 2004 10 Nakos & Hajdimitriou 2007 43 Cai et al. 2012 25 Ma et al. 2012 25 Ma et al. 2012 25 Fixed effect model 863 Random effects model 43 Random effects model 43 Random effects model 43 Random effects model 43 Reind et al. 2010 43 Random effects model 43 Reind et al. 1998 24 Klein et al. 1998 24 Klein et al. 1998 24 Random effects model <t< td=""><td>7</td><td></td><td></td><td>[0.03; 0.27]</td><td>1.3%</td><td>1.6%</td></t<>	7			[0.03; 0.27]	1.3%	1.6%
Ma et al. 2012 25 Missen & Douglas 2004 111 Nijssen & Douglas 2004 100 Nakos & Hajidimitriou 2007 43 Cai et al. 2012 22 Wang et al. 2012 25 Ma et al. 2012 25 Pixed effect model 863 Random effects model 43 Heterogeneity: $r^2 = 70^{\circ}, r^2 = 0.0237, p < 0.01$ CETtype = 1 Klein et al. 1998 24 Etenson & Klein 2005 26 Random effects model 132 Random effects model 132 <td>5</td> <td></td> <td></td> <td>[0.19; 0.42]</td> <td>1.2%</td> <td>1.6%</td>	5			[0.19; 0.42]	1.2%	1.6%
Nijssen & Douglas 2004 11 Nijssen & Douglas 2004 10 Nakos & Hajidimitriou 2007 43 Cai et al. 2012 22 Wang et al. 2013 25 Ma et al. 2012 25 Ma et al. 2012 25 Fixed effect model 863 Random effects model 43 Heterogeneity: $i^{2} = 87\%, t^{2} = 0.0237, p < 0.01$	5		0.31	[0.19; 0.42]	1.2%	1.6%
Nijsen & Doujdas 2004 10 Nakos & Hajidimitriou 2007 43 Cai et al. 2012 22 Wang et al. 2013 25 Ma et al. 2012 25 Ma et al. 2012 25 Ma et al. 2012 25 Fixed effect model 863 Random effects model 43 Heterogeneity: $l^2 = 0.0237, p < 0.01$ 25 CETtype = 2 1 Huang et al. 2010 43 Fixed effect model 43 Random effects model 43 Heterogeneity: not applicable 26 CETtype = 1 1 Klein et al. 1998 24 Ettenson & Klein 2005 26 Ettenson & Klein 2005 26 Etherson & Klein 2005 28 Random effects model 132				[0.21; 0.43]	1.2%	1.6%
Nákos & Hajidimítirou 2007 43 Cai et al. 2012 22 Wang et al. 2013 25 Ma et al. 2012 25 Fixed effect model 863 Random effects model 43 Heterogeneity: $l^2 = 87\%, l^2 = 0.0237, p < 0.01$ CETtype = 2 Huang et al. 2010 43 Fixed effect model 43 Random effects model 43 Heterogeneity: not applicable 26 CETtype = 1 Klein et al. 1998 24 Fixed effect model 13 Random effects model 14 Heterogeneity: $l^2 = 70\%, t^2 = 0.009, p < 0.01$ CETtype = 0 Carter 2009 80 Carter 2009 80 Carter 2009 80 Carter 2009 80 Carter 2009 80 Carter 200				[0.29; 0.59]	0.5%	1.4%
Cai et al. 2012 22 Wang et al. 2013 25 Ma et al. 2012 25 Ma et al. 2012 25 Ma et al. 2012 25 Fixed effect model 863 Random effects model 863 Heterogeneity: $l^2 = 87\%, t^2 = 0.0237, p < 0.01$ 25 CETtype = 2 Huang et al. 2010 43 Fixed effect model 43 Random effects model 43 Random effects model 43 Reindom effects model 43 Kein et al. 1998 24 Ettenson & Klein 2005 26 Ettenson & Klein 2005 26 Klein et al. 1998 24 Random effects model 132				[0.29; 0.59]	0.5%	1.4%
Wang et al. 2013 25 Ma et al. 2012 25 Pixed effect model 863 Heterogeneity: / e 87%, r ² = 0.0237, p < 0.01				[0.42; 0.56]	2.1%	1.7%
Ma et al. 2012 25 Ma et al. 2012 25 Ma et al. 2012 25 Fixed effect model 853 Random effects model 853 Heterogeneity: $l^2 = 87\%$, $t^2 = 0.0237$, $p < 0.01$				[0.22; 0.45]	1.1%	1.6%
Ma et al. 2012 25 Ma et al. 2012 25 Fixed effect model 863 Random effects model 863 Heterogeneity: $l^2 = 87\%, t^2 = 0.0237, p < 0.01$ 2 CETtype = 2 43 Huang et al. 2010 43 Fixed effect model 43 Random effects model 43 Heterogeneity: not applicable 2 CETtype = 1 1 Klein et al. 1998 24 Ettenson & Klein 2005 26 Ettenson & Klein 2005 26 Ettenson & Klein 2005 28 Random effects model 132 Cartier 2009 80 Carter 2009 80 Carter 2009 80 Akdogan & Ozgener 2012 20 Parker et al. 2011 36 Tabasist et al. 2012 50				[0.20; 0.42]	1.3% 1.2%	1.6% 1.6%
Ma et al. 2012 25 Fixed effect model 863 Random effects model 863 Heterogeneity: $j^2 = 67%$, $t^2 = 0.0237$, $p < 0.01$				[0.06; 0.30] [-0.10; 0.14]	1.2%	1.6%
Fixed effect model 863 Random effects model 863 Random effects model 863 Huang et al. 2010 43 Fixed effect model 43 Random effects model 43 Random effects model 43 Retrogeneity: not applicable 24 CETtype = 1 Klein et al. 1998 24 Carter 2009 80 Carter 2009 80 Carter 2009 80 Carter 2009 80 Akdogan & Ozgener 2012 20 Parker et al. 2011 36 50		f and the second		[-0.01; 0.23]	1.2%	1.6%
Random effects model Heterogeneily: $l^2 = 87\%, t^2 = 0.0237, p < 0.01$ CETtype = 2 Huang et al. 2010 43 Fixed effect model 43 Random effects model 43 Heterogeneily: not applicable 26 CETtype = 1 Klein et al. 1998 24 Klein et al. 1998 24 132 Klein et al. 1998 24 Klein et al. 1998 24 Klein et al. 1998 24 132 132 Klein et al. 1998 24 132 133 Klein et al. 1998 24 132 132 CETtype = 0 Carter 2009 80 24 Carter 2009 80 24 24 Audogan effects model 132 32 34 Heterogeneity: $l^2 = 70\%, t^2 = 0.009, p < 0.01$ 25 26 Carter 2009 80 24 32 Audogan & Ozgener 2012 20 20 24 Parker et al. 2011 36 36 34		•		[0.26; 0.30]	42.2%	1.070
Heterogeneity: $l^2 = 87\%, t^2 = 0.0237, p < 0.01$ CETtype = 2 Huang et al. 2010 43 Random effects model 43 Random effects model 43 Reterogeneity: not applicable CETtype = 1 Klein et al. 1998 24 Ettenson & Klein 2005 26 Ettenson & Klein 2005 26 Klein et al. 1998 24 Klein et al. 1998 24 CETtype = 0 CETtype = 0 CETtype = 0 Carter 2009 80 Carter 2009 80 Carter 2009 80 Akdogan & Ozgener 2012 20 Parker et al. 2011 36				[0.22; 0.34]		45.1%
Huang et al. 2010 43 Fixed effect model 43 Random effects model 43 Readom effects model 43 Keine tal. 1998 24 Ettenson & Klein 2005 26 Ettenson & Klein 2005 26 Klein et al. 1998 24 Carlor 2009 80 Carter 2009 80 Carter 2009 80 Carter 2009 80 Akdogan & Ozgener 2012 20 Parker et al. 2011 36						
Huang et al. 2010 43 Fixed effect model 43 Random effects model 43 Readom effects model 43 Keine tal. 1998 24 Ettenson & Klein 2005 26 Ettenson & Klein 2005 26 Klein et al. 1998 24 Carlor 2009 80 Carter 2009 80 Carter 2009 80 Carter 2009 80 Akdogan & Ozgener 2012 20 Parker et al. 2011 36						
Fixed Effect model 43 Random effects model 43 Random effects model 43 Random effects model 43 CETtype = 1 Klein et al. 1998 24 Ettenson & Klein 2005 26 Ettenson & Klein 2005 32 Klein et al. 1998 24 Fixed effect model 132 Random effects model 132 Heterogeneity: l^2 = 70%, l^2 = 0.009, $p < 0.01$ CETtype = 0 Carter 2009 80 Carter 2009 80 Akdogan & Ozgener 2012 20 Parker et al. 2011 36 50	1		0.39	[0.31; 0.47]	2.1%	1.7%
Bandom effects model Heterogeneilty: not applicable CETtype = 1 Klein et al. 1998 24 Ettenson & Klein 2005 26 Ettenson & Klein 2005 32 Klein et al. 1998 24 Klein et al. 1998 24 Klein et al. 1998 24 Fixed effect model 132 Random effects model 142 Heterogeneity: $t^2 = 70\%, t^2 = 0.009$, $p < 0.01$ CETtype = 0 Carter 2009 80 Carter 2009 80 Akdogan & Ozgener 2012 20 Parker et al. 2011 36		-		[0.31; 0.47]	2.1%	
Heterogeneity: not applicable CETtype = 1 Klein et al. 1998 24 Ettenson & Klein 2005 26 Ettenson & Klein 2005 28 Klein et al. 1998 24 Klein et al. 1998 24 Klein et al. 1998 24 Random effects model 132 Random effects model 132 Carter 2009 80 Carter 2012 20 Parker et al. 2011 36 Tabassi et al. 2012 50		-		[0.31; 0.47]		1.7%
Klein et al. 1998 24 Ettenson & Klein 2005 26 Ettenson & Klein 2005 32 Klein et al. 1998 24 Fixed effect model 132 Random effects model 132 Heterogeneity: l^2 = 0.009, $p < 0.01$ Carter 2009 Carter 2009 80 Carter 2009 80 Akdogan & Ozgener 2012 20 Parker et al. 2011 36 Tabassi et al. 2012 50				6 · · · · · · · · · · · · · · · · · · ·		
Klein et al. 1998 24 Ettenson & Klein 2005 26 Ettenson & Klein 2005 32 Klein et al. 1998 24 Fixed effect model 132 Random effects model 132 Heterogeneity: l^2 = 0.009, $p < 0.01$ Carter 2009 Carter 2009 80 Carter 2009 80 Akdogan & Ozgener 2012 20 Parker et al. 2011 36 Tabassi et al. 2012 50						
Ettenson & Klein 2005 26 Ettenson & Klein 2005 32 Klein et al. 1998 24 Klein et al. 1998 24 Fixed effect model 132 Random effects model 132 Heterogeneity: $t^2 = 70\%, t^2 = 0.009$, $p < 0.01$ CETtype = 0 Carter 2009 80 Carter 2009 80 Carter 2009 80 Akdogan & Ozgener 2012 20 Parker et al. 2011 36 Tabassi et al. 2012 50			0.46	[0.35; 0.55]	1.2%	1.6%
Ettenson & Klein 2005 32 Klein et al. 1998 24 Klein et al. 1998 24 Fixed effect model 132 Random effects model 132 Heterogeneity: <i>P</i> ² = 70%, <i>t</i> ² = 0.009, <i>p</i> < 0.01	1			[0.31; 0.52]	1.3%	1.6%
Klein et al. 1998 24 Klein et al. 1998 24 Klein et al. 1998 24 Klein et al. 1998 132 Random effects model 132 Random effects model 132 Cettype = 0 Carter 2009 80 Carter 2009 80 Carter 2009 80 Carter 2009 80 Akdogan & Ozgener 2012 20 Parker et al. 2011 36 Tabassi et al. 2012 50			0.42			
Klein et al. 1998 24 Fixed effect model 132 Random effects model 132 Regeneity: $j^2 = 70\%, t^2 = 0.009, p < 0.01$ 20 Cartler 2009 80 Cartler 2009 80 Cartler 2009 80 Axdogan & Ozgener 2012 20 Parker et al. 2011 36 Tabassi et al. 2012 50	1			[0.44: 0.591	1.6%	1.6%
Fixed effect model 132 Random effects model 132 Heterogeneity: /² = 70%, t² = 0.009, p < 0.01	1 9	*	- 0.52	[0.44; 0.59] [0.37; 0.56]	1.6% 1.2%	1.6% 1.6%
Heterogeneily: <i>I</i> ² = 70%, τ ² = 0.009 , <i>p</i> < 0.01 CETiype = 0 Carter 2009 80 Carter 2009 80 Carter 2009 80 Akdogan & Ozgener 2012 20 Parker et al. 2011 36 Tabassi et al. 2012 50	1 9 4		- 0.52 0.47	[0.44; 0.59] [0.37; 0.56] [0.15; 0.38]		
CETtype = 0 80 Carter 2009 80 Carter 2009 80 Carter 2009 80 Akdogan & Ozgener 2012 20 Parker et al. 2011 36 Tabassi et al. 2012 50	1 9 4 4	*	- 0.52 0.47 0.27 0.44	[0.37; 0.56] [0.15; 0.38] [0.39; 0.48]	1.2%	1.6%
Carter 2009 80 Carter 2009 80 Carter 2009 80 Akdogan & Ozgener 2012 20 Parker et al. 2011 36 Tabassi et al. 2012 50	1 9 4 4	****	- 0.52 0.47 0.27 0.44	[0.37; 0.56] [0.15; 0.38]	1.2% 1.2%	1.6%
Carter 2009 80 Carter 2009 80 Carter 2009 80 Akdogan & Ozgener 2012 20 Parker et al. 2011 36 Tabassi et al. 2012 50	1 9 4 4	* * * * *	- 0.52 0.47 0.27 0.44	[0.37; 0.56] [0.15; 0.38] [0.39; 0.48]	1.2% 1.2%	1.6% 1.6%
Carter 2009 80 Carter 2009 80 Akdogan & Ozgener 2012 20 Parker et al. 2011 36 Tabassi et al. 2012 50	1 9 4 4	* * * * *	- 0.52 0.47 0.27 0.44	[0.37; 0.56] [0.15; 0.38] [0.39; 0.48]	1.2% 1.2%	1.6% 1.6%
Carter 2009 80 Akdogan & Ozgener 2012 20 Parker et al. 2011 36 Tabassi et al. 2012 50	1 9 4 4 2	* * *	- 0.52 0.47 0.27 0.44 0.43	[0.37; 0.56] [0.15; 0.38] [0.39; 0.48] [0.35; 0.51]	1.2% 1.2%	1.6% 1.6% 8.0%
Akdogan & Ozgener 2012 20 Parker et al. 2011 36 Tabassi et al. 2012 50	1 9 4 4 2 2	* * * * *	- 0.52 0.47 0.27 0.44 0.43 + 0.59 + 0.59	[0.37; 0.56] [0.15; 0.38] [0.39; 0.48] [0.35; 0.51] [0.54; 0.63] [0.55; 0.64]	1.2% 1.2% 6.4%	1.6% 1.6%
Parker et al. 2011 36 Tabassi et al. 2012 50	1 9 4 4 2 2 0 0	* + * + * * \$	- 0.52 0.47 0.27 0.44 0.43 - 0.59 - 0.59 0.55	[0.37; 0.56] [0.15; 0.38] [0.39; 0.48] [0.35; 0.51] [0.54; 0.63] [0.55; 0.64] [0.50; 0.59]	1.2% 1.2% 6.4% 3.9%	1.6% 1.6%
	1 9 4 2 2 0 0 0	****	- 0.52 0.47 0.27 0.44 0.43 + 0.59 0.55 0.36	[0.37; 0.56] [0.15; 0.38] [0.39; 0.48] [0.35; 0.51] [0.54; 0.63] [0.55; 0.64] [0.50; 0.59] [0.23; 0.47]	1.2% 1.2% 6.4% 3.9% 3.9%	1.6% 1.6% 8.0% 1.7% 1.7%
	1 9 4 2 2 0 0 0 0 0	**	- 0.52 0.47 0.27 0.44 0.43 + 0.59 0.55 0.36 0.30	[0.37; 0.56] [0.15; 0.38] [0.39; 0.48] [0.35; 0.51] [0.55; 0.64] [0.55; 0.64] [0.23; 0.47] [0.21; 0.39]	1.2% 1.2% 6.4% 3.9% 3.9% 3.9%	1.6% 1.6% 8.0% 1.7% 1.7%
Selli & Kurniawan 2014 20	1 9 4 2 2 0 0 0 0 3 3 7	****	- 0.52 0.47 0.27 0.44 0.43 + 0.59 - 0.59 0.55 0.55 0.36 0.30 - 0.61	[0.37; 0.56] [0.15; 0.38] [0.39; 0.48] [0.35; 0.51] [0.55; 0.64] [0.50; 0.59] [0.23; 0.47] [0.21; 0.39] [0.55; 0.66]	1.2% 1.2% 6.4% 3.9% 3.9% 3.9% 1.0%	1.6% 1.6%
Cheah & Phau 2015 20	1 9 4 4 2 2 0 0 0 3 7 7 0 9	+++	- 0.52 0.47 0.27 0.44 0.43 + 0.59 + 0.59 - 0.55 0.36 0.36 0.61 0.27	[0.37; 0.56] [0.15; 0.38] [0.39; 0.48] [0.35; 0.51] [0.55; 0.64] [0.50; 0.59] [0.23; 0.47] [0.21; 0.39] [0.55; 0.66] [0.14; 0.40]	1.2% 1.2% 6.4% 3.9% 3.9% 3.9% 1.0% 1.8% 2.5% 1.0%	1.6% 1.6%
Fixed effect model 388	1 9 4 4 2 2 0 0 0 0 3 7 0 9 4		- 0.52 0.47 0.27 0.44 0.43 • 0.59 • 0.59 • 0.59 • 0.55 0.36 0.30 • 0.61 0.20	$\begin{bmatrix} 0.37; 0.56 \\ 0.15; 0.38 \\ 0.39; 0.48 \\ 0.35; 0.51 \\ \end{bmatrix}$ $\begin{bmatrix} 0.54; 0.63 \\ 0.55; 0.54 \\ 0.50; 0.59 \\ 0.23; 0.47 \\ 0.21; 0.39 \\ 0.55; 0.66 \\ 0.14; 0.40 \\ 0.07; 0.33 \end{bmatrix}$	1.2% 1.2% 6.4% 3.9% 3.9% 3.9% 1.0% 1.8% 2.5% 1.0%	1.6% 1.6%
Random effects model Heterogeneity: $l^2 = 93\%$, $\tau^2 = 0.0303$, $p < 0.01$	1 9 4 4 2 2 0 0 0 0 3 7 0 9 4		 0.52 0.47 0.27 0.44 0.43 0.59 0.59 0.55 0.36 0.30 0.61 0.27 0.20 0.52 	$\begin{bmatrix} 0.37; 0.56 \\ 0.15; 0.38 \\ 0.39; 0.48 \\ 0.35; 0.51 \\ \end{bmatrix}$ $\begin{bmatrix} 0.54; 0.63 \\ 0.55; 0.64 \\ 0.50; 0.59 \\ 0.23; 0.47 \\ 0.21; 0.39 \\ 0.25; 0.66 \\ 0.14; 0.40 \\ 0.07; 0.33 \\ 0.49; 0.54 \end{bmatrix}$	1.2% 1.2% 6.4% 3.9% 3.9% 3.9% 1.0% 1.8% 2.5% 1.0%	1.6% 1.6%
r = 0.0000, p < 0.01	1 9 4 4 2 2 0 0 0 0 3 7 0 9 4		 0.52 0.47 0.27 0.44 0.43 0.59 0.59 0.55 0.36 0.30 0.61 0.27 0.20 0.52 	$\begin{bmatrix} 0.37; 0.56 \\ 0.15; 0.38 \\ 0.39; 0.48 \\ 0.35; 0.51 \\ \end{bmatrix}$ $\begin{bmatrix} 0.54; 0.63 \\ 0.55; 0.54 \\ 0.50; 0.59 \\ 0.23; 0.47 \\ 0.21; 0.39 \\ 0.55; 0.66 \\ 0.14; 0.40 \\ 0.07; 0.33 \end{bmatrix}$	1.2% 1.2% 6.4% 3.9% 3.9% 3.9% 1.0% 1.8% 2.5% 1.0%	1.6% 1.6%
CETtype = 9	1 9 4 4 2 2 0 0 0 0 3 7 0 9 4		 0.52 0.47 0.27 0.44 0.43 0.59 0.59 0.55 0.36 0.30 0.61 0.27 0.20 0.52 	$\begin{bmatrix} 0.37; 0.56 \\ 0.15; 0.38 \\ 0.39; 0.48 \\ 0.35; 0.51 \\ \end{bmatrix}$ $\begin{bmatrix} 0.54; 0.63 \\ 0.55; 0.64 \\ 0.50; 0.59 \\ 0.23; 0.47 \\ 0.21; 0.39 \\ 0.25; 0.66 \\ 0.14; 0.40 \\ 0.07; 0.33 \\ 0.49; 0.54 \end{bmatrix}$	1.2% 1.2% 6.4% 3.9% 3.9% 3.9% 1.0% 1.8% 2.5% 1.0%	1.6% 1.6%
Richardson & Harris 2014 34	1 9 4 4 2 2 2 0 0 0 0 0 3 8 7 0 9 4 4 8		- 0.52 0.47 0.27 0.44 0.43 0.59 0.59 0.59 0.59 0.59 0.59 0.59 0.61 0.27 0.20 0.52 0.46	[0.37; 0.56] [0.15; 0.38] [0.39; 0.48] [0.39; 0.48] [0.35; 0.51] [0.55; 0.64] [0.23; 0.47] [0.21; 0.39] [0.23; 0.47] [0.21; 0.39] [0.45; 0.66] [0.14; 0.40] [0.44; 0.54] [0.35; 0.55]	1.2% 1.2% 6.4% 3.9% 3.9% 3.9% 1.0% 1.0% 1.0% 1.0% 1.0%	1.6% 1.6% 8.0% 1.7% 1.7% 1.5% 1.6% 1.6% 1.6% 1.5% 1.3.1%
Fixed effect model 34	1 9 4 4 2 2 2 2 2 3 7 7 0 9 4 8 8	*	- 0.52 0.47 0.27 0.44 0.43 0.59 0.55 0.36 0.55 0.36 0.55 0.36 0.30 - 0.52 0.20 0.52 0.46	[0.37; 0.56] [0.15; 0.38] [0.35; 0.48] [0.35; 0.48] [0.55; 0.64] [0.50; 0.59] [0.23; 0.47] [0.55; 0.66] [0.44; 0.39] [0.55; 0.66] [0.44; 0.39] [0.55; 0.66] [0.45; 0.55] [0.36; 0.55]	1.2% 1.2% 6.4% 3.9% 3.9% 3.9% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.7%	1.6% 1.6%
Random effects model Heterogeneity: not applicable	1 9 4 4 2 2 2 2 2 3 7 7 0 9 4 8 8	\$+ \$	- 0.52 0.47 0.27 0.44 0.43 0.59 0.55 0.59 0.55 0.36 0.30 0.61 0.27 0.20 0.52 0.46 0.45 0.45	$ \begin{bmatrix} 0.37, 0.56 \\ 0.15, 0.38 \\ 0.39, 0.48 \\ 0.35, 0.51 \\ \end{bmatrix} \\ \begin{bmatrix} 0.54, 0.63 \\ 0.55, 0.64 \\ 0.55, 0.64 \\ 0.55, 0.66 \\ 0.21, 0.39 \\ 0.45, 0.65 \\ 0.21, 0.39 \\ 0.49, 0.54 \\ 0.07, 0.33 \\ 0.49, 0.54 \\ 0.35, 0.55 \\ \end{bmatrix} $	1.2% 1.2% 6.4% 3.9% 3.9% 3.9% 1.0% 1.0% 1.0% 1.0% 1.0%	1.6% 1.6% 8.0% 1.7% 1.7% 1.7% 1.5% 1.6% 1.5% 1.6% 1.3.1%
neterogeneity, not applicable	1 9 4 4 2 2 2 2 2 3 7 7 0 9 4 8 8	*	- 0.52 0.47 0.27 0.44 0.43 0.59 0.55 0.59 0.55 0.36 0.30 0.61 0.27 0.20 0.52 0.46 0.45 0.45	[0.37; 0.56] [0.15; 0.38] [0.35; 0.48] [0.35; 0.48] [0.55; 0.64] [0.50; 0.59] [0.23; 0.47] [0.55; 0.66] [0.44; 0.39] [0.55; 0.66] [0.44; 0.39] [0.55; 0.66] [0.45; 0.55] [0.36; 0.55]	1.2% 1.2% 6.4% 3.9% 3.9% 3.9% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.7%	1.6% 1.6% 8.0% 1.7% 1.7% 1.5% 1.6% 1.6% 1.6% 1.5% 1.3.1%
Fixed effect model 2046	1 9 4 4 2 2 2 2 2 3 7 7 0 9 4 8 8	\$\$ \$ \$ \$ \$ \$	- 0.52 0.47 0.27 0.44 0.43 0.59 0.55 0.59 0.55 0.36 0.30 0.61 0.27 0.20 0.52 0.46 0.45 0.45	$ \begin{bmatrix} 0.37, 0.56 \\ 0.15, 0.38 \\ 0.39, 0.48 \\ 0.35, 0.51 \\ \end{bmatrix} \\ \begin{bmatrix} 0.54, 0.63 \\ 0.55, 0.64 \\ 0.55, 0.64 \\ 0.55, 0.66 \\ 0.21, 0.39 \\ 0.45, 0.65 \\ 0.21, 0.39 \\ 0.49, 0.54 \\ 0.07, 0.33 \\ 0.49, 0.54 \\ 0.35, 0.55 \\ \end{bmatrix} $	1.2% 1.2% 6.4% 3.9% 3.9% 3.9% 1.0% 1.0% 1.0% 1.0% 1.0% 1.0% 1.7%	1.6% 1.6% 8.0% 1.7% 1.7% 1.7% 1.5% 1.6% 1.5% 1.6% 1.3.1%
Random effects model	1 9 4 4 2 2 2 2 0 0 0 0 0 3 8 7 0 0 9 4 4 8 8 3 8	\$+ \$	- 0.52 0.47 0.27 0.44 0.43 0.59 0.55 0.36 0.36 0.27 0.20 0.55 0.36 0.44 0.43 0.45	[0.37; 0.56] [0.15; 0.38] [0.39; 0.48] [0.35; 0.51] [0.55; 0.64] [0.55; 0.64] [0.55; 0.64] [0.21; 0.39] [0.42; 0.47] [0.42; 0.46] [0.42; 0.46] [0.42; 0.46] [0.42; 0.46] [0.42; 0.46] [0.42; 0.46] [0.35; 0.55] [0.36; 0.53] [0.36; 0.53]	1.2% 1.2% 6.4% 3.9% 3.9% 1.0% 1.8% 2.5% 1.0% 1.0% 1.0% 1.0% 1.7% 1.7%	1.6% 1.6% 8.0% 1.7% 1.7% 1.7% 1.6% 1.7% 1.6% 1.3.1%
Heterogeneity: $I^2 = 91\%$, $\tau^2 = 0.0331$, $p < 0.01$	1 9 4 4 2 2 2 2 0 0 0 0 0 3 8 7 0 0 9 4 4 8 8 3 8	\$\$ \$ \$ \$ \$ \$	- 0.52 0.47 0.27 0.44 0.43 0.59 0.55 0.36 0.36 0.27 0.20 0.55 0.36 0.44 0.43 0.45	$ \begin{bmatrix} 0.37; 0.56 \\ 0.15; 0.38 \\ 0.39; 0.48 \\ 0.35; 0.51 \\ \end{bmatrix} \\ \begin{bmatrix} 0.54; 0.63 \\ 0.55; 0.64 \\ 0.50; 0.59 \\ 0.23; 0.47 \\ 0.21; 0.39 \\ 0.25; 0.66 \\ 0.14; 0.49 \\ 0.35; 0.55 \\ \end{bmatrix} \\ \begin{bmatrix} 0.36; 0.53 \\ 0.36; 0.53 \\ 0.36; 0.53 \\ 0.36; 0.53 \\ \end{bmatrix} $	1.2% 1.2% 6.4% 3.9% 3.9% 1.0% 1.8% 2.5% 1.0% 1.0% 1.0% 1.0% 1.7% 1.7%	1.6% 1.6% 8.0% 1.7% 1.7% 1.7% 1.5% 1.6% 1.5% 1.6% 1.3.1%

D2.8.1 Forest plot of animosity for moderator CETtype

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	$\underline{I^2}$
CETcoded = 2	13	0.3651	[0.3392; 0.3904]	113.64	89.4%
CETcoded = 1	9	0.4400	[0.4155; 0.4638]	227.73	96.5%
CETcoded = 0	15	0.3070	[0.2748; 0.3386]	67.65	79.3%
CETcoded = 9	21	0.3112	[0.2888; 0.3333]	170.97	88.3%
CETcoded = 3	5	0.2701	0.2306; 0.3087]	53.53	92.5%
Test for subgroup dif	ferences (fixed e	ffect model)			
	<u>Q</u>	<u>d.f.</u>	<u>p-value</u>		
Between groups	85.74	4	< 0.0001		
Within groups	633.52	58	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	<u>Q</u>	<u>I</u> ²
CETcoded = 2	13	0.3808	[0.2987; 0.4572]	113.64	89.4%
CETcoded = 1	9	0.3648	[0.2156; 0.4973]	227.73	96.5%
CETcoded = 0	15	0.3229	[0.2511; 0.3912]	67.65	79.3%
CETcoded = 9	21	0.2964	[0.2283; 0.3617]	170.97	88.3%
CETcoded = 3	5	0.2686	[0.1156; 0.4091]	53.53	92.5%
Test for subgroup dif	ferences (randon	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	3.40	4	0.4927		

D2.9 Analysis of animosity for moderator CETcoded

D3 International Values

J J I		5			
Results of subgroups (fixed effect m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Construct = 0	19	-0.1911	[-0.2144; -0.1677]	222.97	91.9%
Construct = 1	12	-0.1827	[-0.2125; -0.1525]	43.13	74.5%
Construct = 2	8	-0.0789	[-0.1146; -0.0431]	84.90	91.8%
Construct = 3	23	-0.2084	[-0.2283; -0.1883]	170.37	87.1%
Construct = 4	7	-0.0877	[-0.1316; -0.0434]	50.96	88.2%
Test for subgroup diff	erences (fixed	effect model)			
	<u>Q</u>	<u>d.f.</u>	<u>p-value</u>		
Between groups	56.25	4	< 0.0001		
Within groups	572.33	64	< 0.0001		
Test for subgroups (ra	ndom effects r	nodel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
Construct = 0	19	-0.2338	[-0.3144; -0.1499]	222.97	91.9%
Construct = 1	12	-0.1951	[-0.2560; -0.1328]	43.13	74.5%
Construct = 2	8	-0.1101	[-0.2330; 0.0163]	84.90	91.8%
Construct = 3	23	-0.2123	[-0.2694; -0.1536]	170.37	87.1%
Construct = 4	7	-0.0765	[-0.2116; 0.0615]	50.96	88.2%
Test for subgroup diff	erences (rando	m effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	5.91	4	0.2058		

D3.1 Analysis of product international values for moderator construct

Results of subgroups	(fixed effect me	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Yearcoded = 0	3	-0.2189	[-0.2683; -0.1683]	29.24	93.2%
Yearcoded = 1	34	-0.1764	[-0.1944; -0.1583]	227.13	85.5%
Yearcoded = 2	32	-0.1671	[-0.1846; -0.1495]	368.52	91.6%
Test for subgroup dif	ferences (fixed	effect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	3.79	2	0.1573		
Within groups	624.88	66	< 0.0001		
Test for subgroups (ra	andom effects n	nodel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Yearcoded = 0	3	-0.2899	[-0.4717; -0.0845]	29.24	93.2%
Yearcoded = 1	34	-0.1880	[-0.2356; -0.1394]	227.13	85.5%
Yearcoded = 2	32	-0.1843	[-0.2455; -0.1216]	368.52	91.6%
Test for subgroup dif	ferences (rando	m effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	0.99	2	0.6108		

D3.2 Analysis of international values for moderator year

Results of subgroups		0			
	<u>k</u>	COR	95%-CI	Q	<u>I</u> ²
Continent = 2	 19	-0.1679	[-0.1912; -0.1445]	146.27	87.7%
Continent = 1	31	-0.1973	[-0.2155; -0.1790]	290.43	89.7%
Continent = 0	10	-0.1940	[-0.2283; -0.1593]	115.65	92.2%
Continent = 5	2	-0.3200	[-0.4030; -0.2317]	12.56	92.0%
Continent = 3	3	-0.0054	[-0.0874; 0.0768]	1.76	0.0%
Continent = 9	2	-0.0975	[-0.1351; -0.0597]	2.01	50.4%
Continent = 4	2	-0.0816	[-0.1884; 0.0271]	6.52	84.7%
Test for subgroup diff	ferences (fixed e	effect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	53.37	6	< 0.0001		
Within groups	575.21	62	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Continent = 2	19	-0.1796	[-0.2462; -0.1113]	146.27	87.7%
Continent = 1	31	-0.2059	[-0.2631; -0.1473]	290.43	89.7%
Continent = 0	10	-0.2322	[-0.3518; -0.1050]	115.65	92.2%
Continent = 5	2	-0.3139	[-0.5811; 0.0144	12.56	92.0%
Continent = 3	3	-0.0054	[-0.0874; 0.0768]	1.76	0.0%
Continent = 9	2	-0.1038	[-0.1610; -0.0460]	2.01	50.4%
Continent = 4	2	-0.0816	[-0.3451; 0.1938]	6.52	84.7%
Test for subgroup diff	ferences (randor	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	21.42	6	0.0015		

D3.4 Analysis of international values for moderator continent

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weigl (randon
Continent = 2	o					
Sharma et al. 1995	667			0.28; -0.13]	2.7%	1.6
Suh & Kwon 2002 Nguyen et al. 2008	128 549			-0.26; 0.08]	0.5% 2.3%	1.3 1.6
Jain & Jain 2013	549 304			0.18; -0.02] 0.30; -0.08]	2.3%	1.6
Kumar et al. 2011	800			0.27; -0.14]	3.3%	1.6
Kamaruddin et al. 2002	248			0.46; -0.24]	1.0%	1.4
Nik–Mat et al. 2015	425		-0.31 [0.39; -0.22]	1.7%	1.5
Jain & Jain 2013	304			0.17; 0.05]	1.2%	1.5
Al Gadineh 2010	272			0.37; –0.15]	1.1%	1.5
Kwak et al. 2006	221		-0.16 [-	0.28; -0.02]	0.9% 1.1%	1.4
Kwak et al. 2006 Ishii 2009	271 300			0.33; -0.10]	1.1%	1.5 1.5
Ishii 2009	300		-0.27 [-	0.37; –0.16] 0.38; –0.17]	1.2%	1.5
Tsai et al. 2013	564	-		-0.01; 0.16]	2.3%	1.6
Al Gadineh & Good 2015	196			-0.22; 0.05]	0.8%	1.4
Cleveland et al. 2009	137			0.40; -0.09]	0.6%	1.3
Cleveland et al. 2009	236			0.38; –0.15]	1.0%	1.4
Rybina et al. 2010	372			0.44; -0.26]	1.5%	1.5
Nik-Mat et al. 2015 Fixed effect model	425 6719			0.09; 0.28]	1.7% 27.5%	1.5
Random effects model).25; -0.11]	21.570	27.9
Heterogeneity: $I^2 = 88\%$, $\tau^2 = 0$	0.0206, <i>p</i> < 0	0.01				
Continent = 1 Javalgi et al. 2005	106		-0.05 [-	-0.24; 0.15]	0.4%	1.2
Vida et al. 2008	580	-	0.07 [-	-0.01; 0.15]	2.4%	1.6
de Ruyter et al. 1998	175 —			0.63; -0.42]	0.7%	1.4
Kottasz & Bennett 2006	253			0.49; -0.28]	1.0%	1.4
Kottasz & Bennett 2006	252			0.45; -0.24]	1.0%	1.4
Vida & Fairhurst 1999 Strizhakova et al. 2008	558 287			0.20; -0.04] -0.11; 0.13]	2.3% 1.2%	1.6 1.5
Strizhakova et al. 2008 Strizhakova et al. 2008	287 464			-0.13; 0.05]	1.2%	1.5
Strizhakova et al. 2008	292			-0.06; 0.17]	1.2%	1.5
van Birgelen et al. 2015	175 -	-	-0.53 [-	0.63; -0.41]	0.7%	1.4
Dmitrovic et al. 2009	454		-0.10 [-	0.19; -0.01]	1.9%	1.5
Dmitrovic et al. 2009	600	-	-0.27 [-	0.34; -0.19]	2.5%	1.6
Dmitrovic et al. 2009	600 300		-0.08 [-	0.16; 0.00]	2.5%	1.6
Dmitrovic et al. 2009 Nijssen & Douglas 2011	300 90		-0.12 [-	-0.23; 0.00] 0.68; -0.39]	1.2% 0.4%	1.5 1.1
Nijssen & Douglas 2011 Nijssen & Douglas 2011	100	I	-0.26 [-1	0.68; -0.39]	0.4%	1.1
Balabanis et al. 2001	303		-0.07 [-	-0.18; 0.04]	1.2%	1.5
Balabanis et al. 2001	480	-		0.17; 0.01]	2.0%	1.5
Cleveland et al. 2009	317			0.25; -0.04]	1.3%	1.5
Cleveland et al. 2009	332			0.33; -0.12]	1.4%	1.5
Cleveland et al. 2009	329			0.43; -0.24]	1.3%	1.5
Zeugner–Roth et al. 2015 Zeugner–Roth et al. 2015	411 405			0.46; -0.29]	1.7% 1.7%	1.5 1.5
Zeugner-Roth et al. 2015 Parts & Vida 2013	405 261			0.46; -0.30] 0.26; -0.02]	1.7%	1.5 1.4
Parts & Vida 2013	201	I		0.20, -0.02]	1.1%	1.4
Lee & Mazodier 2015	903	+		0.42; -0.31]	3.7%	1.6
Kreckova et al. 2012	199	;	-0.09 [-	-0.23; 0.05]	0.8%	1.4
Prince et al. 2016	273	<u>+</u>		0.33; -0.10]	1.1%	1.5
Vida & Reardon 2008	714	-		0.30; -0.16]	2.9%	1.6
Douglas & Nijssen 2003	127 100			0.23; 0.12]	0.5% 0.4%	1.3 1.2
Nijssen & Douglas 2011 Fixed effect model	10711	4		-0.23; 0.16] 0.22; -0.18]	43.8%	1.2
Random effects model Heterogeneity: $I^2 = 90\%$, $\tau^2 = 0$	0256 n < 0	۵		0.26; -0.15]		44.8
Continent = 0						
Suh & Kwon 2002	120 -	•		0.60; -0.32]	0.5%	1.2
Strizhakova et al. 2008	218 —			0.61; -0.42]	0.9%	1.4
Kwak et al. 2006	611	- 		0.32; -0.17]	2.5%	1.6
Lee et al. 2003	336			0.41; -0.22]	1.4%	1.5
Tsai et al. 2013 Cleveland et al. 2009	506 241			0.06; 0.23] 0.38; -0.14]	2.1% 1.0%	1.6 1.4
Cleveland et al. 2009	231			-0.26; 0.00]	0.9%	1.4
Cleveland et al. 2016	241		-0.18 [-	0.30; -0.05]	1.0%	1.4
Prince et al. 2016	269		-0.22 [-	0.33; -0.10]	1.1%	1.5
Cleveland et al. 2016	241		-0.09 [-	0.22; 0.03]	1.0%	1.4
Fixed effect model	3014	•	-0.19 [-0	0.23; -0.16]	12.3%	
Random effects model Heterogeneity: $I^2 = 92\%$, $\tau^2 = 0$	0.0407, <i>p</i> < 0	0.01	-0.23 [-0	0.35; -0.11]		14.4
Continent = 5						
Cheah & Phau 2015 Riefler et al. 2012	204 222 -	_ =		0.28; -0.01]	0.8% 0.9%	1.4 1.4
Fixed effect model	426	· ~		0.56; -0.35] 0.40; -0.23]	0.9% 1.7%	1.4
Random effects model	-			0.58; 0.01]		2.8
Heterogeneity: $I^2 = 92\%$, $\tau^2 = 0$	0.0551, <i>p</i> < 0	0.01				
Continent = 3 Cleveland et al. 2009	192	4	0.06 [-	-0.08; 0.20]	0.8%	1.4
Cleveland et al. 2016	192	j	0.00 [-	0.14; 0.14]	0.8%	1.4
Cleveland et al. 2016	192	+++	-0.08 [-	0.22; 0.07]	0.8%	1.4
Fixed effect model	576	1	-0.01 [-	0.09; 0.08]	2.3%	
Random effects model Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$,	p = 0.41	\uparrow	-0.01 [-	0.09; 0.08]		4.1
Continent = 9						
Jin et al. 2015 Jin et al. 2015	772 1883		-0.14 [-0.09 / 0	0.21; -0.07]	3.2%	1.6
Jin et al. 2015 Fixed effect model	1883	♦		0.12; -0.03]	7.8% 10.9%	1.6
Random effects model		\diamond).16; –0.05]	-0.3%	3.2
Heterogeneity: $I^2 = 50\%$, $\tau^2 = 0$	0.0009, <i>p</i> = 0	0.16				
Continent = 4 Lysonski & Durvasula 2013	165	_	0.06 [-	-0.09; 0.21]	0.7%	1.3
Lysonski & Durvasula 2013	165	<u> </u>	-0.22 [-	0.36; -0.07]	0.7%	1.3
Fixed effect model	330	\diamond	-0.08 [-	0.19; 0.03]	1.3%	-
Random effects model Heterogeneity: $I^2 = 85\%$, $\tau^2 = 0$	0.0341, <i>p</i> = 0	0.01	-0.08 [-	0.35; 0.19]		2.7
	24431	4	-0.17 [-0	0.19; -0.16]	100.0%	-
Fixed effect model Random effects model	24401	\$		0.23; -0.15]		100.0

D3.4.1 Forest plot of international values for moderator continent

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Developed = 1	45	-0.1372	[-0.1518; -0.1226]	300.88	85.4%
Developed = 0	24	-0.2642	[-0.2859; -0.2422]	240.71	90.4%
Test for subgroup diff	erences (fixed e	effect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	87.00	1	< 0.0001		
Within groups	541.59	67	< 0.0001		
Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
Developed = 1	45	-0.1433	[-0.1822; -0.1039]	300.88	85.4%
Developed = 0	24	-0.2824	[-0.3528; -0.2089]	240.71	90.4%
Test for subgroup diff	erences (randor	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	10.60	1	0.0011		

D3.5 Analysis of international values for moderator developed

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
Developed = 1		9				
Sharma et al. 1995	667	-	-0.20	[-0.28; -0.13]	2.7%	1.6%
Vida et al. 2008	580	-	0.07	[-0.01; 0.15]	2.4%	1.6%
Suh & Kwon 2002	128 549			[-0.26; 0.08]	0.5%	1.3%
Nguyen et al. 2008 Jain & Jain 2013	304			[-0.18; -0.02] [-0.30; -0.08]	2.3% 1.2%	1.6% 1.5%
Kumar et al. 2011	800	÷	-0.20	[-0.27; -0.14]	3.3%	1.6%
Kamaruddin et al. 2002	248			[-0.46; -0.24]	1.0%	1.4%
Kottasz & Bennett 2006 Vida & Fairhurst 1999	253 558			[-0.49; -0.28] [-0.20; -0.04]	1.0% 2.3%	1.4% 1.6%
Nik-Mat et al. 2015	425			[-0.39; -0.22]	1.7%	1.5%
Strizhakova et al. 2008	287		0.01	[-0.11; 0.13]	1.2%	1.5%
Strizhakova et al. 2008 Strizhakova et al. 2008	464 292		-0.04 0.06	[-0.13; 0.05] [-0.06; 0.17]	1.9% 1.2%	1.5% 1.5%
Jain & Jain 2013	304			[-0.17; 0.05]	1.2%	1.5%
Al Gadineh 2010	272		-0.26	[-0.37; -0.15]	1.1%	1.5%
Dmitrovic et al. 2009 Dmitrovic et al. 2009	454 600			[-0.19; -0.01]	1.9% 2.5%	1.5% 1.6%
Dmitrovic et al. 2009	600	-		[-0.34; -0.19] [-0.16; 0.00]	2.5%	1.6%
Dmitrovic et al. 2009	300			[-0.23; 0.00]	1.2%	1.5%
Kwak et al. 2006	221			[-0.28; -0.02]	0.9%	1.4%
Kwak et al. 2006 Ishii 2009	271 300			[-0.33; -0.10] [-0.37; -0.16]	1.1% 1.2%	1.5% 1.5%
Ishii 2009	300			[-0.38; -0.17]	1.2%	1.5%
Balabanis et al. 2001	303		-0.07	[-0.18; 0.04]	1.2%	1.5%
Balabanis et al. 2001 Tsai et al. 2013	480 564		-0.08 0.08	[-0.17; 0.01] [-0.01; 0.16]	2.0% 2.3%	1.5% 1.6%
Al Gadineh & Good 2015	196		-0.09	[-0.22; 0.05]	0.8%	1.4%
Cleveland et al. 2009	231			[-0.26; 0.00]	0.9%	1.4%
Cleveland et al. 2009 Cleveland et al. 2009	317 137			[-0.25; -0.04] [-0.40; -0.09]	1.3% 0.6%	1.5% 1.3%
Cleveland et al. 2009	332			[-0.33; -0.12]	1.4%	1.5%
Cleveland et al. 2009	236		-0.27	[-0.38; -0.15]	1.0%	1.4%
Cleveland et al. 2009	192	_ +		[-0.08; 0.20]	0.8%	1.4%
Zeugner–Roth et al. 2015 Parts & Vida 2013	405 261			[-0.46; -0.30] [-0.26; -0.02]	1.7% 1.1%	1.5% 1.4%
Parts & Vida 2013	271		-0.20	[-0.31; -0.08]	1.1%	1.5%
Jin et al. 2015	1883		-0.08	[-0.12; -0.03]	7.8%	1.6%
Rybina et al. 2010 Cleveland et al. 2016	372 192	-	-0.35 0.00	[-0.44; -0.26] [-0.14; 0.14]	1.5% 0.8%	1.5% 1.4%
Kreckova et al. 2012	192	÷.	-0.09	[-0.23; 0.05]	0.8%	1.4%
Lysonski & Durvasula 2013				[-0.09; 0.21]	0.7%	1.3%
Vida & Reardon 2008 Nik-Mat et al. 2015	714 425			[-0.30; -0.16]	2.9% 1.7%	1.6% 1.5%
Cleveland et al. 2015	425		0.19	[0.09; 0.28] [-0.22; 0.07]	0.8%	1.5%
Lysonski & Durvasula 2013	165			[-0.36; -0.07]	0.7%	1.3%
Fixed effect model	17409	¢		[-0.15; -0.12]	71.3%	
Random effects model Heterogeneity: $I^2 = 85\%$, $\tau^2 =$	0.0154. p	< 0.01	-0.14	[-0.18; -0.10]		66.4%
Hotorogonoldy: 7 = 0078, 7 =	0.0101, p	< 0.01				
Developed = 0						
Javalgi et al. 2005 Suh & Kwon 2002	106 120			[-0.24; 0.15] [-0.60; -0.32]	0.4% 0.5%	1.2% 1.2%
de Ruyter et al. 1998	175	 		[-0.63; -0.42]	0.7%	1.4%
Kottasz & Bennett 2006	252		-0.35	[-0.45; -0.24]	1.0%	1.4%
Strizhakova et al. 2008 van Birgelen et al. 2015	218 175			[-0.61; -0.42]	0.9% 0.7%	1.4% 1.4%
Kwak et al. 2006	611			[-0.63; -0.41] [-0.32; -0.17]	2.5%	1.4%
Nijssen & Douglas 2011	90 -			[-0.68; -0.39]	0.4%	1.1%
Nijssen & Douglas 2011	100			[-0.43; -0.07]	0.4%	1.2%
Cheah & Phau 2015 Lee et al. 2003	204 336			[-0.28; -0.01] [-0.41; -0.22]	0.8% 1.4%	1.4% 1.5%
Tsai et al. 2013	506		0.15	[0.06; 0.23]	2.1%	1.6%
Cleveland et al. 2009	241			[-0.38; -0.14]	1.0%	1.4%
Cleveland et al. 2009 Zeugner-Roth et al. 2015	329 411			[-0.43; -0.24] [-0.46; -0.29]	1.3% 1.7%	1.5% 1.5%
Riefler et al. 2012	222			[-0.56; -0.35]	0.9%	1.4%
Jin et al. 2015	772	-		[-0.21; -0.07] [-0.42; -0.31]	3.2%	1.6%
Lee & Mazodier 2015	903	-	-0.37	[-0.42; -0.31]	3.7%	1.6%
Cleveland et al. 2016 Prince et al. 2016	241 269			[-0.30; -0.05] [-0.33; -0.10]	1.0% 1.1%	1.4% 1.5%
Prince et al. 2016	273		-0.22	[-0.33; -0.10]	1.1%	1.5%
Douglas & Nijssen 2003	127		-0.06	[-0.23; 0.12]	0.5%	1.3%
Nijssen & Douglas 2011 Cleveland et al. 2016	100 241			[-0.23; 0.16] [-0.22; 0.03]	0.4% 1.0%	1.2% 1.4%
Fixed effect model	7022	•		[-0.22; 0.03]	28.7%	1.470
Random effects model		♦		[-0.35; -0.21]		33.6%
Heterogeneity: $I^2 = 90\%$, $\tau^2 =$	0.0334, <i>p</i>	< 0.01				
Fixed effect model	24431	0	-0.17	[-0.19; -0.16]	100.0%	
Random effects model				[-0.23; -0.15]		100.0%
Heterogeneity: $I^2 = 89\%$, $\tau^2 =$						
	-	0.6-0.4-0.2 0 0.2 0.4 0.6				

D3.5.1 Forest plot of international values for moderator developed

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Urban = 0	42	-0.1672	[-0.1822; -0.1521]	511.10	92.0%
Urban = 1	27	-0.1884	[-0.2092; -0.1673]	114.90	77.4%
Test for subgroup diff	erences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	2.58	1	0.1083		
Within groups	626.00	67	< 0.0001		
Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Urban = 0	42	-0.1882	[-0.2417; -0.1336]	511.10	92.0%
Urban = 1	27	-0.1949	[-0.2391; -0.1499]	114.90	77.4%
Test for subgroup diff	erences (randon	n effects model)	1		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	0.03	1	0.8524		

D3.6 Analysis of international values for moderator urban

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Selection $= 2$	1	-0.2050	[-0.2766; -0.1311]	0.00	-
Selection = 4	17	-0.1781	[-0.2085; -0.1474]	54.54	70.7%
Selection = 0	18	-0.2063	[-0.2305; -0.1818]	238.71	92.9%
Selection = 1	17	-0.1499	[-0.1728; -0.1269]	127.74	87.5%
Selection $= 5$	12	-0.2196	[-0.2450; -0.1939]	92.71	88.1%
Selection $= 3$	3	0.0446	[-0.0092; 0.0980]	25.00	92.0%
Selection = 9	1	-0.0600	[-0.2318; 0.1154]	0.00	-
Test for subgroup diff	ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	89.88	6	< 0.0001		
Within groups	538.70	62	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Selection $= 2$	1	-0.2050	[-0.2766; -0.1311]	0.00	-
Selection $= 4$	17	-0.1648	[-0.2214; -0.1070]	54.54	70.7%
Selection $= 0$	18	-0.2584	[-0.3472; -0.1651]	238.71	92.9%
Selection = 1	17	-0.1808	[-0.2477; -0.1122]	127.74	87.5%
Selection $= 5$	12	-0.2041	[-0.2785; -0.1272]	92.71	88.1%
Selection $= 3$	3	0.0061	[-0.1862; 0.1980]	25.00	92.0%
Selection = 9	1	-0.0600	[-0.2318; 0.1154]	0.00	-
Test for subgroup diff	ferences (randon	n effects model))		
	<u>Q</u>	<u>d.f.</u>	<u>p-value</u>		
Between groups	9.21	6	0.1621		

D3.7 Analysis of international values for moderator selection

Results of subgroups (f	fixed effect mo	del)			
	<u>k</u>	COR	95%-CI	Q	<u>I</u> ²
Characteristics = 0	53	-0.1831	[-0.1974; -0.1687]	496.54	89.5%
Characteristics = 1	16	-0.1517	[-0.1748; -0.1284]	126.93	88.2%
Test for subgroup diffe	erences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	5.11	1	0.0238		
Within groups	623.47	67	< 0.0001		
Test for subgroups (ran	ndom effects m	odel)			
	<u>K</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Characteristics = 0	53	-0.1920	[-0.2365; -0.1466]	496.54	89.5%
Characteristics = 1	16	-0.1863	[-0.2560; -0.1148]	126.93	88.2%
Test for subgroup diffe	erences (randon	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	0.02	1	0.8949		

D3.8 Analysis of international values for moderator characteristics

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETtype = 0	16	-0.1405	[-0.1646; -0.1162]	196.91	92.4%
CETtype = 4	34	-0.1641	[-0.1812; -0.1468]	186.79	82.3%
CETtype = 3	11	-0.2134	[-0.2446; -0.1819]	136.40	92.7%
CETtype = 2	2	-0.2612	[-0.3535; -0.1639]	8.03	87.5%
CETtype = 9	2	-0.3702	[-0.4434; -0.2922]	0.27	0.00%
CETtype = 1	4	-0.2272	[-0.2809; -0.1722]	56.19	94.7%
Test for subgroup diff	ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	43.99	5	< 0.0001		
Within groups	584.59	63	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETtype = 0	16	-0.1563	[-0.2439; -0.0662]	196.91	92.4%
CETtype = 4	34	-0.1792	[-0.2212; -0.1365]	186.79	82.3%
CETtype = 3	11	-0.1995	[-0.3161; -0.0770]	136.40	92.7%
CETtype = 2	2	-0.2190	[-0.4841; 0.0830]	8.03	87.5%
CETtype = 9	2	-0.3702	[-0.4434; -0.2922]	0.27	0.00%
CETtype = 1	4	-0.2963	[-0.5088; -0.0499]	56.19	94.7%
Test for subgroup diff	ferences (randon	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	19.38	5	0.0016		

D3.9 Analysis of international values for moderator CETtype

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
CEThype = 0 Sharma et al. 1995 Javalgi et al. 2005 Kumar et al. 2011 de Ruyter et al. 1998 Vida & Fairhurst 1999 Nik-Mat et al. 2015 Al Gadinen 2010 Kwak et al. 2006 Kwak et al. 2006 Kwak et al. 2006 Cheah & Phau 2015 Lee et al. 2013 Tsai et al. 2013 Al Gadineh & Good 2015 Nik-Mat et al. 2015 Fixed effect model Random effects model Heterogenetty: l^2 = 92%, r^2 =	667 106 800 175 558 425 272 611 221 271 204 336 506 564 196 425 6337		-0.05 [-4 -0.20 [-0 -0.53 [-0 -0.12 [-0 -0.12 [-0 -0.26 [-0 -0.26 [-0 -0.24 [-0 -0.26 [-0 -0.15 [-0 -0.15 [-0 -0.15 [-0 -0.15 [-0 -0.15 [-0 -0.09 [-4 -0.09 [-4 -0.09 [-4] -0.19 [-4]	.28; -0.13] 0.24; 0.15] .27; -0.14] (63; -0.42] .20; -0.04] .39; -0.22] .32; -0.17] .32; -0.17] .28; -0.02] .33; -0.10] .28; -0.01] .28; -0.01] .28; -0.01] .29; -0.01] .29; -0.01] .29; -0.01] .29; -0.02] .006; 0.23] .006; 0.28] .16; -0.02] .24; -0.07]	2.7% 0.4% 3.3% 0.7% 2.3% 1.7% 2.5% 0.9% 1.1% 2.5% 0.8% 1.4% 2.1% 2.3% 0.8% 1.7% 26.0%	$\begin{array}{c} 1.6\% \\ 1.2\% \\ 1.6\% \\ 1.4\% \\ 1.6\% \\ 1.5\% \\ 1.5\% \\ 1.6\% \\ 1.5\% \\ 1.4\% \\ 1.5\% \\ 1.4\% \\ 1.5\% \\ 1.4\% \\ 1.5\% \\ 2.7\% \end{array}$
CETtype = 4 Vida et al. 2008 Nguyen et al. 2009 Dmitrovic et al. 2009 Cleveland et al. 2019 Cleveland et al. 2015 Jin et al. 2015 Jin et al. 2016 Cleveland et al. 2016 Clevelan	269 273 714 100 241 192 3 165 12443		$\begin{array}{c} -0.10 \begin{bmatrix} -0\\ -0.10 \end{bmatrix} \begin{bmatrix} -0\\ -0.27 \end{bmatrix} \begin{bmatrix} -0\\ -0.28 \end{bmatrix} \begin{bmatrix} -1\\ -0.55 \end{bmatrix} \begin{bmatrix} -0\\ -0.26 \end{bmatrix} \begin{bmatrix} -0\\ -0.28 \end{bmatrix} \begin{bmatrix} -0\\ -0.23 \end{bmatrix} \begin{bmatrix} -0\\ -0.23 \end{bmatrix} \begin{bmatrix} -0\\ -0.23 \end{bmatrix} \begin{bmatrix} -0\\ -0.28 \end{bmatrix} \begin{bmatrix} -$	0.01; 0.15; 1.18; -0.02; 1.19; -0.01; 3.4; -0.19; 0.16; 0.00; 0.23; 0.00; 6.8; -0.39; 3.3; -0.17; 3.38; -0.17; 3.38; -0.17; 3.38; -0.17; 3.38; -0.17; 3.38; -0.12; 3.39; -0.12; 3.39; -0.12; 3.39; -0.12; 3.31; -0.08; 0.22; 4.46; -0.29; 4.46; -0.29; 4.46; -0.20; 4.46; -0.20; 1.46; -0.20; 1.46; -0.02; 3.31; -0.08; 0.22; -0.04; 0.14; 0.22; 0.07; 1.18; -0.15]; 2.22; -0.14]	$\begin{array}{c} 2.4\%\\ 2.3\%\\ 1.9\%\\ 2.5\%\\ 2.5\%\\ 2.5\%\\ 1.2\%\\ 0.4\%\\ 1.0\%\\ 0.6\%\\ 1.0\%\\ 0.8\%\\ 1.0\%\\ 0.8\%\\ 1.0\%\\ 0.8\%\\ 1.1\%\\ 1.1\%\\ 1.1\%\\ 1.1\%\\ 1.1\%\\ 1.1\%\\ 1.1\%\\ 0.8\%\\ 0.7\%\\ 0.8\%\\ 0.7\%\\ 0.8\%\\ 0.7\%\\\end{array}$	$\begin{array}{c} 1.6\% \\ 1.6\% \\ 1.6\% \\ 1.5\% \\ 1.6\% \\ 1.5\% \\ 1.5\% \\ 1.5\% \\ 1.5\% \\ 1.5\% \\ 1.5\% \\ 1.4\% \\ 1.5\% \\ 1.5\% \\ 1.4\% \\ 1.5\% \\ 1.5\% \\ 1.6\% \\ 1.5\% \\ 1.6\% \\ 1.6\% \\ 1.6\% \\ 1.6\% \\ 1.4\% \\ 1.5\% \\ 1.6\% \\ 1.4\% \\ 1.5\% \\ 1.4\% \\ 1.$
CETtype = 3 Suh & Kwon 2002 Suh & Kwon 2002 Jain & Jain 2013 Strizhakova et al. 2008 Strizhakova et al. 2008 Strizhakova et al. 2008 Jain & Jain 2013 Rybina et al. 2010 Lee & Mazodier 2015 Kreckova et al. 2012 Fixed effect model Random effects model Heterogenetiy: $I^2 = 93\%$, $r^2 =$ CETtype = 2 Kamaruddin et al. 2002 Douglas & Nijssen 2003	120		-0.09 [-4 -0.19 [-0 -0.52 [-0 0.01 [-4 -0.04 [-4 -0.06 [-4 -0.35 [-0 -0.37 [-0 -0.37 [-0 -0.21 [-0 -0.20 [-0 -0.36 [-0	.60; -0.32] .26; 0.08] .30; -0.08] .61; -0.42] .0.13; 0.05] .0.6; 0.17] .0.17; 0.05] .44; -0.26] .44; -0.26] .44; -0.26] .24; -0.31] .23; 0.05] .24; -0.31] .23; 0.08] .44; -0.24] .44; -0.24]	0.5% 0.5% 1.2% 1.9% 1.2% 1.2% 1.5% 3.7% 0.8% 14.7% 	1.2% 1.3% 1.5% 1.5% 1.5% 1.5% 1.5% 1.6% 1.4% 1.5%
Fixed effect model Random effects model Heterogeneity: $l^2 = 88\%, \tau^2 =$ CETtype = 9 Kottasz & Bennett 2006 Kottasz & Bennett 2006 Fixed effect model Random effects model Heterogeneity: $l^2 = 0\%, \tau^2 = 4$	253 252 505		-0.26 [-0 -0.22 [-0 -0.39 [-0 -0.35 [-0 -0.37 [-0	.35; -0.16] 0.48; 0.08] 0.49; -0.28] 0.45; -0.24] 0.44; -0.29] 0.44; -0.29]	1.5% 1.0% 2.1% 	2.7% 1.4% 1.4% 2.9%
CETtype = 1 van Birgelen et al. 2015 Balabanis et al. 2001 Balabanis et al. 2001 Riefler et al. 2012 Fixed effect model Random effects model Heterogeneity: l^2 = 95%, τ^2 =	175 303 480 222 1180 	*	-0.07 [-0 -0.08 [-0 -0.46 [-0 -0.23 [-0	.63; –0.41] 0.18; 0.04] 0.17; 0.01] 0.56; –0.35] .28; –0.17] .51; –0.05]	0.7% 1.2% 2.0% 0.9% 4.8%	1.4% 1.5% 1.5% 1.4%
Fixed effect model Random effects model Heterogeneity: $l^2 = 89\%$, $\tau^2 =$	24431 0.0237. ρ < 0.	♦		.19; –0.16] .23; –0.15]	100.0%	 100.0%

Handom effects model Heterogeneity: $J^2 = 89\%$, $\tau^2 = 0.0237$, p < 0.01-0.6-0.4-0.2 0 0.2 0.4 0.6

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
CETcoded = 3	3	-0.2197	[-0.2751; -0.1628]	9.17	78.2%
CETcoded = 1	17	-0.1917	[-0.2186; -0.1645]	203.42	92.1%
CETcoded = 9	26	-0.1686	[-0.1884; -0.1486]	163.40	84.7%
CETcoded = 0	7	-0.1647	[-0.2047; -0.1242]	20.30	70.4%
CETcoded = 2	14	-0.1583	[-0.1815; -0.1348]	208.10	93.8%
CETcoded = 4	2	-0.4076	[-0.5206; -0.2805]	5.69	82.4%
Test for subgroup diff	ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	18.50	5	0.0024		
Within groups	610.08	63	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETcoded = 3	3	-0.2207	[-0.3483; -0.0851]	9.17	78.2%
CETcoded = 1	17	-0.2230	[-0.3178; -0.1238]	203.42	92.1%
CETcoded = 9	26	-0.1695	[-0.2209; -0.1171]	163.40	84.7%
CETcoded = 0	7	-0.1690	[-0.2451; -0.0908]	20.30	70.4%
CETcoded = 2	14	-0.1729	[-0.2681; -0.0744]	208.10	93.8%
CETcoded = 4	2	-0.4141	[-0.6560; -0.0951]	5.69	82.4%
Test for subgroup diff	ferences (randon	n effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	3.48	5	0.6264		

D3.9.1 Forest plot of international values for moderator CETtype D3.10 Analysis of international values for moderator CETcoded

D4 Collectivism

2 0	v	•			
Results of subgroups (fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
Yearcoded $= 0$	3	0.2066	[0.1577; 0.2545]	0.78	0.0%
Yearcoded = 1	4	0.0941	[0.0372; 0.1505]	65.04	95.4%
Yearcoded = 2	7	0.2548	[0.2217; 0.2873]	34.16	82.4%
Test for subgroup diff	erences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	23.58	2	< 0.0001		
Within groups	99.98	11	< 0.0001		
Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Yearcoded = 0	3	0.2066	[0.1577; 0.2545]	0.78	0.0%
Yearcoded = 1	4	0.1588	[-0.1184; 0.4131]	65.04	95.4%
Yearcoded $= 2$	7	0.2329	[0.1488; 0.3136]	34.16	82.4%
Test for subgroup diffe	erences (randon	n effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	0.44	2	0.8022		

D4.1 Analysis of collectivism for moderator year

D4.2 Analysis of collectivism for moderator continent

Results of subgroups	0				
results of subgroups	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Continent $= 2$	<u>n</u> 10	0.2065	[0.1802; 0.2326]	<u>×</u> 120.28	<u>-</u> 92.5%
Continent = 1	3	0.2566	[0.1681; 0.3409]	2.12	5.9%
Continent = 0	1	0.2100	[0.0778; 0.3350]	0.00	
Test for subgroup diff	ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	1.15	2	0.5628		
Within groups	122.41	11	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Continent = 2	10	0.1867	[0.0875; 0.2823]	120.28	92.5%
Continent = 1	3	0.2573	[0.1659; 0.3443]	2.12	5.9%
Continent = 0	0	0.2100	[0.0778; 0.3350]	0.00	
Test for subgroup diff	ferences (randon	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	1.13	2	0.5685		

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	<u>Q</u>	<u>I</u> ²
Continent = 2	9	0.2429	[0.2158; 0.2696]	37.67	78.8%
Continent = 1	3	0.2566	[0.1681; 0.3409]	2.12	5.9%
Continent = 0	1	0.2100	[0.0778; 0.3350]	0.00	
Test for subgroup diff	Ferences (fixed e	effect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	0.35	2	0.8405		
Within groups	39.80	10	< 0.0001		
Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Continent = 2	9	0.2322	[0.1715; 0.2912]	37.67	78.8%
Continent = 1	3	0.2573	[0.1659; 0.3443]	2.12	5.9%
Continent = 0	0	0.2100	[0.0778; 0.3350]	0.00	
Test for subgroup diff	Ferences (randor	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	0.39	2	0.8234		

D4.3 Analysis of collectivism for moderator continent, friends excluded

D4.4 Analysis of collectivism for moderator developed

5 5	5	1			
Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Developed = 1	10	0.2065	[0.1802; 0.2326]	120.28	92.5%
Developed = 0	4	0.2418	[0.1686; 0.3124]	2.47	0.0%
Test for subgroup diff	erences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	0.80	1	0.3702		
Within groups	122.76	12	< 0.0001		
Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Developed = 1	10	0.1867	[0.0875; 0.2823]	120.28	92.5%
Developed = 0	4	0.2418	[0.1686; 0.3124]	2.47	0.0%
Test for subgroup diff	erences (randon	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	0.80	1	0.3725		

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Urban = 0	8	0.2569	[0.2255; 0.2877]	31.18	77.6%
Urban = 1	6	0.1402	[0.1003; 0.1797]	71.75	93.0%
Test for subgroup diff	erences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	20.62	1	< 0.0001		
Within groups	102.93	12	< 0.0001		
Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Urban = 0	8	0.2572	[0.1866; 0.3251]	31.18	77.6%
Urban = 1	6	0.1294	[-0.0291; 0.2816]	71.75	93.0%
Test for subgroup diff	erences (randon	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	2.20	1	0.1381		

D4.5 Analysis of collectivism for moderator urban

D4.6 Analysis of collectivism for moderator selection

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Selection $= 2$	2	0.2046	[0.1526; 0.2555]	0.73	0.0%
Selection = 4	1	0.3700	[0.1929; 0.5238]	0.00	
Selection = 0	7	0.1501	[0.1126; 0.1872]	72.24	91.7%
Selection = 5	3	0.3226	[0.2770; 0.3667]	10.50	80.9%
Selection = 9	1	0.0690	[-0.0673; 0.2028]	0.00	
Test for subgroup diff	Ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	40.09	4	< 0.0001		
Within groups	83.47	9	< 0.0001		
Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
Selection $= 2$	2	0.2046	[0.1526; 0.2555]	0.73	0.0%
Selection = 4	1	0.3700	[0.1929; 0.5238]	0.00	
Selection = 0	7	0.1535	[0.0175; 0.2840]	72.24	91.7%
Selection = 5	3	0.3105	[0.1979; 0.4150]	10.50	80.9%
Selection $= 9$	1	0.0690	[-0.0673; 0.2028]	0.00	
Test for subgroup diff	erences (randon	n effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	11.25	4	0.0239		

Study	Total	Corre	elation	COR	95%-CI	Weight (fixed)	Weight (random)
Selection = 2 Sharma et al. 1995 Sharma et al. 1995 Fixed effect model Random effects mod Heterogeneity: $l^2 = 0\%$,		39	····		[0.11; 0.25] [0.15; 0.30] [0.15; 0.26] [0.15; 0.26]	11.5% 11.5% 22.9% 	7.7% 7.7% 15.4%
Selection = 4 Javalgi et al. 2005 Fixed effect model Random effects mod Heterogeneity: not applie					[0.19; 0.52] [0.19; 0.52] [0.19; 0.52]	1.8% 1.8% 	5.7% 5.7%
Selection = 0 Huang et al. 2008 Huang et al. 2008 Yoo & Donthu 2005 Kumar et al. 2011 de Ruyter et al. 1998 Nik-Mat et al. 2015 van Birgelen et al. 2015 Fixed effect model Random effects model Heterogeneity: $l^2 = 92\%$	2654 el	, <i>p</i> < 0.01	+++++++++++++++++++++++++++++++++++++++	-0.21 0.21 0.24 0.22 0.13 0.22 0.15	[0.17; 0.35] [-0.30; -0.12] [0.08; 0.33] [0.17; 0.31] [0.08; 0.36] [0.03; 0.22] [0.07; 0.36] [0.11; 0.19] [0.02; 0.28]	7.4% 7.4% 3.6% 13.7% 3.0% 7.3% 3.0% 45.4%	7.4% 7.4% 6.7% 7.8% 6.5% 6.5% 6.5% 49.8%
Selection = 5 Jain & Jain 2013 Huang et al. 2010 Kumar et al. 2013 Fixed effect model Random effects mod Heterogeneity: $l^2 = 81\%$, <i>p</i> < 0.01	↓ + + + ◊ ◊	0.18 0.40 0.33 0.32 0.31	[0.07; 0.29] [0.32; 0.48] [0.27; 0.39] [0.28; 0.37] [0.20; 0.41]	5.2% 7.4% 13.7% 26.4%	7.1% 7.4% 7.8% 22.4%
Selection = 9 Selli & Kurniawan 201 Fixed effect model Random effects mod Heterogeneity: not applie	209 el	-		0.07	[-0.07; 0.20] [-0.07; 0.20] [-0.07; 0.20]	3.6% 3.6% 	6.7% 6.7%
Fixed effect model Random effects mod Heterogeneity: $l^2 = 89\%$	$, \tau^2 = 0.021,$		0 0.2 0.4	0.21 0.20	[0.19; 0.24] [0.12; 0.28]	100.0% 	 100.0%

D4.6.1 Forest plot of collectivism for moderator selection

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETtype = 0	9	0.2283	[0.1989; 0.2574	24.24	67.0%
CETtype = 3	3	0.0694	[0.0120; 0.1264]	54.76	96.3%
CETtype = 2	1	0.4000	[0.3178; 0.4762]	0.00	
CETtype = 1	1	0.2200	[0.0741; 0.3567]	0.00	
Test for subgroup diff	erences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	44.56	3	< 0.0001		
Within groups	79.00	10	< 0.0001		
Test for subgroups (ra	ndom effects m	odel)			
	<u>K</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETtype = 0	9	0.2197	[0.1645; 0.2736]	24.24	67.0%
CETtype = 3	3	0.0801	[-0.2190; 0.3655]	54.76	96.3%
CETtype = 2	1	0.4000	[0.3178; 0.4762]	0.00	
CETtype = 1	1	0.2200	[0.0741; 0.3567]	0.00	
Test for subgroup diff	erences (randon	n effects model)	•		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	14.58	3	0.0022		

D4.7 Analysis of collectivism for moderator CETtype

Study	Total	Correlation	COR		Weight (fixed)	Weight (random)
CETtype = 0 Sharma et al. 1995 Sharma et al. 1995 Javalgi et al. 2005 Yoo & Donthu 2005 Kumar et al. 2011 de Ruyter et al. 1998 Nik–Mat et al. 2015 Kumar et al. 2013 Selli & Kurniawan 2014 Fixed effect model Random effects model Heterogeneity: $l^2 = 67\%$, c			0.23 [0.21 [0.24 [0.22 [0.13 [0.33 [0.07 [- 0.23]	0.11; 0.25] 0.15; 0.30] 0.19; 0.52] 0.08; 0.33] 0.17; 0.31] 0.08; 0.36] 0.03; 0.22] 0.27; 0.39] 0.07; 0.20] 0.20; 0.26] 0.16; 0.27]	11.5% 11.5% 1.8% 3.6% 13.7% 3.0% 7.3% 13.7% 3.6% 69.6%	7.7% 7.7% 6.7% 7.8% 6.5% 7.4% 7.8% 6.7% 64.1%
CETtype = 3 Huang et al. 2008 Huang et al. 2008 Jain & Jain 2013 Fixed effect model Random effects model Heterogeneity: $J^2 = 96\%$, c		.01	-0.21 [-0 0.18 [0.07 [0.17; 0.35] 0.30; -0.12] 0.07; 0.29] 0.01; 0.13] 0.22; 0.37]	7.4% 7.4% 5.2% 20.0%	7.4% 7.4% 7.1% 22.0%
CETtype = 2 Huang et al. 2010 Fixed effect model Random effects model Heterogeneity: not applica		+ \$ \$	0.40 [0.32; 0.48] 0.32; 0.48] 0.32; 0.48]	7.4% 7.4% 	7.4% 7.4%
CETtype = 1 van Birgelen et al. 2015 Fixed effect model Random effects model Heterogeneity: not applica			0.22 [0.07; 0.36] 0.07; 0.36] 0.07; 0.36]	3.0% 3.0% 	6.5% 6.5%
Fixed effect model Random effects model Heterogeneity: $l^2 = 89\%$, τ	-			0.19; 0.24] 0.12; 0.28]	100.0% 	 100.0%

D4.7.1 Forest plot of collectivism for moderator CETtype

D4.8 Analysis of colle	cuvism jor mod		cu		
Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETcoded = 3	2	0.2046	[0.1526; 0.2555]	0.73	0.0%
CETcoded = 1	5	0.3066	[0.2518; 0.3594]	10.62	62.3%
CETcoded = 9	5	0.1895	[0.1526; 0.2259]	95.97	95.8%
CETcoded = 2	5	0.1498	[0.0778; 0.2201]	0.50	0.0%
Test for subgroup diff	erences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	15.74	3	0.0013		
Within groups	107.82	10	< 0.0001		
Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
CETcoded = 3	2	0.2046	[0.1526; 0.2555]	0.73	0.0%
CETcoded = 1	5	0.2895	[0.1939; 0.3796]	10.62	62.3%
CETcoded = 9	5	0.1450	[-0.0455; 0.3252]	95.97	95.8%
CETcoded = 2	2	0.1498	[0.0778; 0.2201]	0.50	0.0%
Test for subgroup diff	erences (randon	effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	5.69	3	0.1278		

D4.8 Analysis of collectivism for moderator CETcoded

D5 Materialism

D3.1 Analysis 0j male	ruuism jor mo	ucruior yeur			
Results of subgroups (fixed effect m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Yearcoded $= 1$	9	0.0781	[0.0375; 0.1185]	51.54	84.5%
Yearcoded = 2	12	0.0427	[0.0102; 0.0751]	24.39	54.9%
Test for subgroup diff	erences (fixed	effect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	1.79	1	0.1814		
Within groups	75.93	19	< 0.0001		
Test for subgroups (ra	ndom effects 1	nodel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Yearcoded $= 1$	9	0.0726	[-0.0317; 0.1754]	51.54	84.5%
Yearcoded = 2	12	0.0456	[-0.0037; 0.0946]	24.39	54.9%

D5.1 Analysis of materialism for moderator year

Test for subgroup diffe	erences (random	n effects model)	
	Q	<u>d.f.</u>	<u>p-value</u>
Between groups	0.21	1	0.6454

D5.2 Analysis of materialism for moderator continent

Results of subgroups	fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Continent = 0	5	0.0083	[-0.0420; 0.0587]	17.54	77.2%
Continent = 1	5	0.1030	[0.0558; 0.1497]	3.90	0.0%
Continent = 2	8	0.0094	[-0.0338; 0.0526]	17.62	60.3%
Continent = 3	2	0.3046	[0.2105; 0.3930]	1.47	31.9%
Continent = 4	1	0.0300	[-0.0855; 0.1447]	0.00	
Test for subgroup diff	erences (fixed e	effect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	37.18	4	< 0.0001		
Within groups	40.53	16	0.0007		
Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Continent = 0	5	-0.0045	[-0.1123; 0.1034]	17.54	77.2%
Continent = 1	5	0.1030	[-0.0558; 0.1497]	3.90	0.0%
Continent = 2	8	0.0112	[-0.0585; 0.0808]	17.62	60.3%
Continent = 3	2	0.3046	[0.1900; 0.4109]	1.47	31.9%
Continent = 4	1	0.0300	[-0.0855; 0.1447]	0.00	
Test for subgroup diff	erences (randor	n effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	21.88	4	0.0002		

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
Continent = 0 Cleveland et al. 2009 Cleveland et al. 2009 Sharma 2011 Cleveland et al. 2016 Prince et al. 2016 Fixed effect model Random effects model Heterogeneity: I^2 = 77%,		<i>p</i> < 0.01	0.14 0.07 [· -0.11 [· 0.03 [· 0.01 [-	-0.29; -0.04] [0.01; 0.27] -0.01; 0.15] -0.24; 0.01] -0.09; 0.15] -0.04; 0.06] -0.11; 0.10]	4.0% 3.8% 9.2% 4.0% 4.5% 25.5%	4.6% 4.6% 5.5% 4.6% 4.8%
Continent = 1 Cleveland et al. 2009 Cleveland et al. 2009 Cleveland et al. 2009 Sharma 2011 Prince et al. 2016 Fixed effect model Random effects model Heterogeneity: $I^2 = 0\%$,		12	0.06 [· 0.12 0.06 [· 0.11 [· 0.10 [[0.08; 0.29] -0.05; 0.17] [0.02; 0.23] -0.03; 0.15] -0.01; 0.22] [0.06; 0.15] [0.06; 0.15]	5.3% 5.5% 5.5% 7.8% 4.5% 28.7%	5.0% 5.0% 5.4% 4.8%
Continent = 2 Cleveland et al. 2009 Cleveland et al. 2009 Park et al. 2008 Sharma 2011 Sharma 2011 Wang et al. 2013 Cleveland et al. 2013 Cleveland et al. 2013 Fixed effect model Random effects model Heterogeneity: $I^2 = 60\%$,		p = 0.01	0.13 -0.02 [- -0.05 [- -0.01 [- 0.01 [- 0.02 [- 0.19 0.01 [-	-0.36; -0.03] [0.01; 0.26] -0.13; 0.09] -0.15; 0.06] -0.11; 0.09] -0.11; 0.13] -0.12; 0.16] [0.05; 0.32] -0.03; 0.05] -0.06; 0.08]	2.3% 3.9% 5.3% 5.8% 6.5% 4.3% 3.3% 3.2% 34.6%	3.8% 4.6% 5.0% 5.1% 5.2% 4.7% 4.4% 4.3% 37.1%
Continent = 3 Cleveland et al. 2009 Cleveland et al. 2016 Fixed effect model Random effects model Heterogeneity: I^2 = 32%,		<i>p</i> = 0.23	0.25 0.30 [[0.23; 0.48] [0.11; 0.38] [0.21; 0.39] [0.19; 0.41]	3.2% 3.2% 6.4%	4.3% 4.3% 8.6%
Continent = 4 Bevan–Dye et al. 2012 Fixed effect model Random effects mode Heterogeneity: not applic	290 el		0.03 [-	-0.09; 0.14] -0.09; 0.14] -0.09; 0.14]	4.8% 4.8% 	4.9% 4.9%
Fixed effect model Random effects model Heterogeneity: $I^2 = 74\%$,	$\tau^2 = 0.0103,$	p < 0.01 4 -0.2 0 0.2 0.4		0.03; 0.08] 0.01; 0.11]	100.0% 	 100.0%

D5.2.1 Forest plot of materialism for moderator continent

Results of subgroups (fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Developed = 0	7	0.0328	[-0.0076; 0.0732]	20.19	70.3%
Developed = 1	14	0.0719	[0.0393; 0.1044]	55.35	76.5%
Test for subgroup diff	erences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	2.18	1	0.1401		
Within groups	75.54	19	< 0.0001		
Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Developed = 0	7	0.0213	[-0.0541; 0.0965]	20.19	70.3%
Developed = 1	14	0.0793	[0.0113; 0.1466]	55.35	76.5%
Test for subgroup diff	erences (randon	n effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	1.26	1	0.2625		

D5.3 Analysis of materialism for moderator developed

D5.4 Analysis of materialism for moderator urban

Results of subgroups (fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Urban = 1	12	0.0682	[0.0324; 0.1038]	66.80	83.5%
Urban = 0	9	0.0446	[0.0085; 0.0805]	10.08	20.6%
Test for subgroup diffe	erences (fixed e	effect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	0.83	1	0.3618		
Within groups	76.88	19	< 0.0001		
Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Urban = 0	12	0.0663	[-0.0225; 0.1541]	66.80	83.5%
Urban = 1	9	0.0451	[0.0042; 0.0859]	10.08	20.6%
Test for subgroup diffe	erences (randor	n effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	0.18	1	1 0.6706		

DS.SAnatysis of mater	iaiism jor moue	selection			
Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Selection $= 4$	14	0.0607	[0.0304; 0.0909	70.48	81.6%
Selection = 1	2	0.0038	[-0.0759; 0.0834]	0.38	0.0%
Selection = 0	4	0.0785	[0.0137; 0.1426]	4.53	33.7%
Selection $= 3$	1	0.0340	[-0.0859; 0.1530]	0.00	
Test for subgroup diff	erences (fixed e	effect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	2.33	3	0.5065		
Within groups	75.38	17	< 0.0001		
Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
Selection $= 4$	14	0.0621	[-0.0096; 0.1332]	70.48	81.6%
Selection = 1	2	0.0038	[-0.0759; 0.0834]	0.38	0.0%
Selection = 0	4	0.0795	[-0.0004; 0.1585]	4.53	33.7%
Selection $= 3$	1	0.0340	[-0.0859; 0.1530]	0.00	
Test for subgroup diff	erences (randon	n effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	1.98	3	0.5761		

D5.5Analysis of materialism for moderator selection

D5.6 Analysis of materialism for moderator characteristics

Results of subgroups (fi	ixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
Characteristics = 0	15	0.0801	[0.0475; 0.1125]	67.90	79.4%
Characteristics = 1	2	0.0038	[-0.0759; 0.0834]	0.38	0.0%
Characteristics = 3	4	0.0258	[-0.0212; 0.0727	4.10	26.8%
Test for subgroup differ	rences (fixed e	ffect model)			
	<u>Q</u>	<u>d.f.</u>	<u>p-value</u>		
Between groups	5.34	2	0.0692		
Within groups	72.37	18	< 0.0001		
Test for subgroups (ran	dom effects m	odel)			
	<u>K</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
Characteristics = 0	15	0.0781	[0.0058; 0.1495]	67.90	79.4%
Characteristics = 1	2	0.0038	[-0.0759; 0.0834]	0.38	0.0%
Characteristics = 3	4	0.0236	[-0.0315; 0.0786]	4.10	26.8%
Test for subgroup differ	rences (randon	n effects model))		
	<u>Q</u>	<u>d.f.</u>	<u>p-value</u>		
Between groups	2.12	2	0.3467		

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETtype = 4	14	0.0854	[0.0516; 0.1190]	66.55	80.5%
CETtype = 3	7	0.0192	[-0.0193; 0.0576]	4.17	0.0%
Test for subgroup diff	erences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	6.45	1	0.0111		
Within groups	71.26	19	< 0.0001		
Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETtype = 4	14	0.0830	[0.0059; 0.1590]	66.55	80.5%
CETtype = 3	7	0.0192	[-0.0193; 0.0576]	4.17	0.0%
Test for subgroup diff	erences (randor	n effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	2.11	1	0.1459		

D5.7 Analysis of materialism for moderator CETtype

D5.8 Analysis of materialism for moderator CETcoded

• •	v				
Results of subgroups	(fixed effect mo	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETcoded = 0	3	-0.0333	[-0.1022; 0.0358]	14.11	85.8%
CETcoded = 2	6	0.0647	[0.0161; 0.1129	16.55	69.8%
CETcoded = 1	7	0.0784	[0.0339; 0.1226]	33.28	82.0%
CETcoded = 9	3	0.0369	[-0.0302; 0.1037]	2.33	14.1%
CETcoded = 3	2	0.1013	[0.0292; 0.1723]	2.10	52.3%
Test for subgroup diff	ferences (fixed e	effect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	9.34	4	0.0531		
Within groups	68.37	16	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETcoded = 0	3	-0.0502	[-0.2311; 0.1340	14.11	85.8%
CETcoded = 2	6	0.0505	[-0.0403; 0.1404]	16.55	69.8%
CETcoded = 1	7	0.1037	[-0.0022; 0.2073]	33.28	82.0%
CETcoded = 9	3	0.0374	[-0.0351; 0.1095]	2.33	14.1%
CETcoded = 3	2	0.1166	[0.0006; 0.2295]	2.10	52.3%
Test for subgroup diff	ferences (randor	n effects model)			

Test for subgroup differences (random effects model)

Q

<u>d.f.</u>

<u>p-value</u>

D6 Product Judgements Domestic

D6.1 Analysis of prod	uct juagment ad	mestic for mode	erator yearcoaea		
Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Yearcoded = 1	10	0.3212	[0.2902; 0.3515]	68.73	86.9%
Yearcoded = 2	10	0.2382	[0.2162; 0.2599]	135.88	93.4%
Test for subgroup diff	erences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	18.30	1	< 0.0001		
Within groups	204.61	18	< 0.0001		
Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Yearcoded = 1	10	0.3246	[0.2307; 0.4124]	68.73	86.9%
Yearcoded = 2	10	0.2475	[0.1586; 0.3324]	135.88	93.4%
Test for subgroup diff	erences (randon	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	1.43	1	0.2320		

D6 1 Analysis of product judgment domestic for moderator vegreeded

D6.2 Analysis of product judgement domestic for moderator continent

5 51	, 0	0			
Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Continent = 2	8	0.3686	[0.3425; 0.3941]	32.34	78.4%
Continent = 1	9	0.2504	[0.2187; 0.2816]	54.42	85.3%
Continent = 0	1	0.3220	[0.1370; 0.4853]	0.00	-
Continent = 9	2	0.1000	[0.0622; 0.1375]	0.00	0.0%
Test for subgroup diff	ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	131.16	3	< 0.0001		
Within groups	86.76	16	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Continent = 2	8	0.3448	[0.2812; 0.4053]	32.34	78.4%
Continent = 1	9	0.2799	[0.1955; 0.3602]	54.42	85.3%
Continent = 0	1	0.3220	[0.1955; 0.3602]	0.00	-

Continent = 9	2	0.1000	[0.0622	2; 0.137	[5]	0.00		0.0%
Test for subgroup differ	ences (random	effects mo	del)					
	Q	<u>d.f.</u>	<u>p-</u>	value				
Between groups	49.62	3	< 0	.0001				
Study	Total	Co	orrelation	COR	95%–Cl	Weight (fixed)	Weight (random)	
-						()	(
Continent = 2	50			0.00	0 47 0 0 41	0.50/	0.40/	
Bawa 2004	58				[-0.17; 0.34]	0.5%	3.1%	
Bawa 2004	103				[0.00; 0.38]	1.0%	4.0%	
Bawa 2004	174				[0.17; 0.44]	1.6%	4.6%	
Wang & Cheng					[0.38; 0.49]	7.6%	5.5%	
Kumar et al. 20			<u>.</u>		[0.26; 0.38]	7.6%	5.5%	
Kumar et al. 20					[0.21; 0.34]	7.6%	5.5%	
Kumar et al. 20					[0.35; 0.47]	7.6%	5.5%	
Kumar et al. 20					[0.38; 0.49]	7.6%	5.5%	
Fixed effect m			•	0.37	[0.34; 0.39]	41.2%		
Random effec Heterogeneity: <i>l</i>	ts model $t^2 = 78\%, \tau^2 = 0.0071$, <i>p</i> < 0.01		0.34	[0.28; 0.41]		39.2%	
Continent = 1								
Dmitrovic et al.	2009 454			0.24	[0.15; 0.33]	4.3%	5.3%	
Dmitrovic et al.	2009 600		<u> </u>	0.28	[0.20; 0.35]	5.7%	5.4%	
Dmitrovic et al.	2009 600				[0.09; 0.25]	5.7%	5.4%	
Dmitrovic et al.	2009 300			0.39	[0.29; 0.49]	2.8%	5.0%	
Zeugner-Roth	et al. 2015 411			0.24	[0.14; 0.33]	3.9%	5.2%	
Zeugner-Roth	et al. 2015 405		- n 5	0.14	[0.05; 0.24]	3.8%	5.2%	
Parts & Vida 20	013 261		<u>_</u>		[0.09; 0.32]	2.5%	4.9%	
Parts & Vida 20)13 271				[0.08; 0.31]	2.6%	5.0%	
Douglas & Nijs	sen 2003 127				[0.55; 0.75]	1.2%	4.2%	
Fixed effect m			♦		[0.22; 0.28]	32.5%		
Random effect	ts model		-		[0.20; 0.36]		45.7%	
Heterogeneity: I ⁴	$\tau^2 = 85\%, \ \tau^2 = 0.0157$, <i>p</i> < 0.01			h / d			
Continent = 0	100			0.00	[0.14:0.40]	1.00/	4.00/	
Verlegh 2007 Fixed effect m	odel 103				[0.14; 0.49]	1.0%	4.0%	
Random effect					[0.14; 0.49]	1.0%	4.0%	
Heterogeneity: n				0.52	[0.14, 0.49]		4.0 /0	
Continent = 9								
Jin et al. 2015	772				[0.03; 0.17]	7.4%	5.5%	
Jin et al. 2015	1883				[0.06; 0.14]		5.7%	
Fixed effect m			♦		[0.06; 0.14]	25.3%		
Random effec			♦	0.10	[0.06; 0.14]		11.2%	
Heterogeneity: J ^é	$\tau^2 = 0\%, \ \tau^2 = 0, \ p = 1.$	00						
Fixed effect m	odel 10522		0	0.26	[0.25; 0.28]	100.0%		
Random effect	te model				[0.22; 0.35]		100.0%	

D6.2.1 Forest plot of product judgement domestic for moderator continent

Results of subgroups	(fixed effect mo	del)						
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²			
Developed = 1	16	0.2721	[0.2529; 0.2911]	165.43	90.9%			
Developed = 0	4	0.2163	[0.1658; 0.2656]	53.20	94.4%			
Test for subgroup diff	ferences (fixed e	ffect model)						
	Q	<u>d.f.</u>	<u>p-value</u>					
Between groups	4.28	1	0.0385					
Within groups	218.64	18	< 0.0001					
Test for subgroups (ra	andom effects m	odel)						
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²			
Developed = 1	16	0.2733	[0.2055; 0.3384]	165.43	90.9%			
Developed = 0	4	0.3433	[0.1078; 0.5423]	53.20	94.4%			
Test for subgroup differences (random effects model)								
	Q	<u>d.f.</u>	<u>p-value</u>					
Between groups	0.34	1	0.5589					

D6.3 Analysis of product judgement domestic for moderator developed

D6.4 Analysis of product judgement domestic for moderator selection

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Selection = 1	4	0.1080	[0.0713; 0.1444]	5.28	43.2%
Selection = 0	3	0.2942	[0.2501; 0.3370]	2.09	4.5%
Selection = 4	2	0.4177	[0.3643; 0.4683]	3.38	70.4%
Selection = 5	10	0.2968	[0.2709; 0.3222]	67.33	86.6%
Selection = 9	1	0.6600	[0.5489; 0.7482]	0.00	-
Test for subgroup diff	erences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	144.84	4	< 0.0001		
Within groups	78.08	15	< 0.0001		
Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Selection = 1	4	0.1209	[0.0566; 0.1843]	5.28	43.2%
Selection = 0	3	0.2938	[0.2480; 0.3382]	2.09	4.5%
Selection = 4	2	0.3881	[0.2547; 0.5070]	3.38	70.4%
Selection = 5	10	0.2769	[0.2033; 0.3473]	67.33	86.6%
Selection = 9	1	0.6600	[0.5489; 0.7482]	0.00	-
Test for subgroup diff	erences (randon	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	59.12	4	< 0.0001		

Study	Total	Correlation	COR	95%–CI	Weight (fixed)	Weight (random)
Selection = 1 Bawa 2004 Verlegh 2007 Jin et al. 2015 Jin et al. 2015 Fixed effect model Random effects model Heterogeneity: $J^2 = 43\%$, τ		15	0.32 [0.10 [0.10 [0.11 [0.17; 0.34] 0.14; 0.49] 0.03; 0.17] 0.06; 0.14] 0.07; 0.14] 0.06; 0.18]		3.1% 4.0% 5.5% 5.7% 18.3%
Selection = 0 Bawa 2004 Kumar et al. 2011 Kumar et al. 2011 Fixed effect model Random effects model Heterogeneity: $I^2 = 4\%$, τ^2			0.32 [0.28 [0.29 [0.00; 0.38] 0.26; 0.38] 0.21; 0.34] 0.25; 0.34] 0.25; 0.34]	1.0% 7.6% 7.6% 16.2%	4.0% 5.5% 5.5% 15.0%
Selection = 4 Bawa 2004 Wang & Cheng 2004 Fixed effect model Random effects model Heterogeneity: $J^2 = 70\%$, τ		07 07	0.44 [0.42 [0.17; 0.44] 0.38; 0.49] 0.36; 0.47] 0.25; 0.51]	1.6% 7.6% 9.3% 	4.6% 5.5% 10.1%
Selection = 5 Dmitrovic et al. 2009 Dmitrovic et al. 2009 Dmitrovic et al. 2009 Dmitrovic et al. 2009 Zeugner–Roth et al. 201 Zeugner–Roth et al. 201 Parts & Vida 2013 Kumar et al. 2013 Kumar et al. 2013 Fixed effect model Random effects model Heterogeneity: $l^2 = 87\%$, c	5 405 261 271 800 800 4902		0.28 [0.17 [0.39 [0.24 [0.14 [0.21 [0.19 [0.41 [0.43 [0.30 [0.15; 0.33] 0.20; 0.35] 0.09; 0.25] 0.29; 0.49] 0.14; 0.33] 0.05; 0.24] 0.09; 0.32] 0.08; 0.31] 0.35; 0.47] 0.38; 0.49] 0.27; 0.32] 0.20; 0.35]	4.3% 5.7% 2.8% 3.9% 3.8% 2.5% 2.6% 7.6% 7.6% 46.6%	5.3% 5.4% 5.0% 5.2% 5.2% 4.9% 5.5% 5.5% 5.5%
Selection = 9 Douglas & Nijssen 2003 Fixed effect model Random effects model Heterogeneity: not applica	127		▶ 0.66 [0.55; 0.75] 0.55; 0.75] 0.55; 0.75]	1.2% 1.2% 	4.2% 4.2%
Fixed effect model Random effects model Heterogeneity: $l^2 = 91\%$, τ		-0.2 0 0.2 0.4 0.6	0.28 [0.25; 0.28] 0.22; 0.35]	100.0% 	 100.0%

D6.4.1 Forest plot of product judgement domestic for moderator selection

Results of subgroups (f	ixed effect mo	del)			
	<u>k</u>	<u>COR</u>	<u>95%-CI</u>	Q	<u>I</u> ²
Characteristics = 3	1	0.0880	[-0.1743; 0.3386]	0.00	-
Characteristics = 2	4	0.1115	[0.0751; 0.1476]	6.03	50.3%
Characteristics = 1	1	0.3070	[0.1658; 0.4359]	0.00	-
Characteristics = 0	14	0.3211	[0.3005; 0.3414]	114.35	88.6%
Test for subgroup diffe	rences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	102.53	3	< 0.0001		
Within groups	120.39	16	< 0.0001		
Test for subgroups (ran	dom effects m	odel)			
	<u>K</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
Characteristics = 3	1	0.0880	[-0.1743; 0.3386]	0.00	-
Characteristics = 2	4	0.1327	[0.0650; 0.1992]	6.03	50.3%
Characteristics = 1	1	0.3070	[0.1658; 0.4359]	0.00	-
Characteristics = 0	14	0.3183	[0.2549; 0.3790]	114.35	88.6%
Test for subgroup diffe	rences (randon	effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	18.02	3	0.0004		

D6.5 Analysis of product judgement domestic for moderator characteristics

Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
		[–0.17; 0.34]	0.5%	3.1%
		[-0.17; 0.34]	0.5%	
	0.09	[–0.17; 0.34]		3.1%
	0.20	[0.00; 0.38]	1.0%	4.0%
	0.32	[0.14; 0.49]	1.0%	4.0%
-		[0.03; 0.17]	7.4%	5.5%
		[0.06; 0.14]		5.7%
♦		[0.08; 0.15]	27.2%	
\diamond	0.13	[0.07; 0.20]		19.1%
		[0.17; 0.44]	1.6%	4.6%
		[0.17; 0.44]	1.6%	
\sim	0.31	[0.17; 0.44]		4.6%
	0.44	[0.38; 0.49]	7.6%	5.5%
		[0.26; 0.38]	7.6%	5.5%
<u> </u>		[0.21; 0.34]	7.6%	5.5%
		[0.15; 0.33]	4.3%	5.3%
		[0.20; 0.35]	5.7%	5.4%
		[0.09; 0.25]	5.7%	5.4%
		[0.29; 0.49]	2.8%	5.0%
		[0.14; 0.33]	3.9%	5.2%
	0.14	[0.05; 0.24]	3.8%	5.2%
	0.21	[0.09; 0.32]	2.5%	4.9%
		[0.08; 0.31]	2.6%	5.0%
		[0.55; 0.75]	1.2%	4.2% 5.5%
	0.41	[0.35; 0.47]	7.6%	
		[0.38; 0.49]	7.6% 70.6%	5.5%
		[0.30; 0.34]	10.0%	73.2%
	0.32	[0.25; 0.36]		13.2%
•	0.26	[0.25: 0.28]	100.0%	
\diamond				100.0%
-	-0.2 0 0.2 0.4 0.6		0.28 [0.22; 0.35]	

D6.5.1 Forest plot of product judgement domestic for moderator characteristics

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETtype = 0	8	0.3686	[0.3425; 0.3941]	32.34	78.4%
CETtype = 4	11	0.1759	[0.1513; 0.2002]	46.57	78.5%
CETtype = 2	1	0.6600	[0.5489; 0.7482]	0.00	-
Test for subgroup diff	ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	144.01	2	< 0.0001		
Within groups	78.91	17	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETtype = 0	8	0.3448	[0.2812; 0.4053]	32.34	78.4%
CETtype = 4	11	0.2097	[0.1531; 0.2648]	46.57	78.5%
CETtype = 2	1	0.6600	[0.5489; 0.7482]	0.00	-
Test for subgroup diff	ferences (randon	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	41.34	2	< 0.0001		

D6.6 Analysis of product judgement domestic for moderator CETtype

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
CETtype = 0 Bawa 2004 Bawa 2004 Bawa 2004 Wang & Cheng 2004 Kumar et al. 2011 Kumar et al. 2013 Kumar et al. 2013 Fixed effect model Random effects model Heterogeneity: l^2 = 78%, τ^2 =	58 103 174 800 800 800 800 800 4335	0.01	0.20 0.31 0.44 0.32 0.28 0.41 0.43 0.43	[-0.17; 0.34] [0.00; 0.38] [0.17; 0.44] [0.38; 0.49] [0.26; 0.38] [0.21; 0.34] [0.35; 0.47] [0.38; 0.49] [0.34; 0.39] [0.28; 0.41]		3.1% 4.0% 4.6% 5.5% 5.5% 5.5% 5.5% 5.5% 39.2%
CETtype = 4 Dmitrovic et al. 2009 Dmitrovic et al. 2009 Dmitrovic et al. 2009 Dmitrovic et al. 2009 Zeugner–Roth et al. 2015 Zeugner–Roth et al. 2015 Parts & Vida 2013 Parts & Vida 2013 Verlegh 2007 Jin et al. 2015 Jin et al. 2015 Fixed effect model Random effects model Heterogeneity: $I^2 = 79\%$, $\tau^2 =$	454 600 600 300 411 405 261 271 103 772 1883 6060 0.0072, <i>p</i> <	0.01	0.28 0.17 0.39 0.24 0.14 0.21 0.19 0.32 0.10 0.10 0.18	$\begin{bmatrix} 0.15; 0.33 \\ [0.20; 0.35] \\ [0.09; 0.25] \\ [0.29; 0.49] \\ [0.14; 0.33] \\ [0.05; 0.24] \\ [0.09; 0.32] \\ [0.08; 0.31] \\ [0.14; 0.49] \\ [0.03; 0.17] \\ [0.06; 0.14] \\ [0.15; 0.20] \\ [0.15; 0.26] \end{bmatrix}$	4.3% 5.7% 2.8% 3.9% 3.8% 2.5% 2.6% 1.0% 7.4% 18.0% 57.6%	5.3% 5.4% 5.0% 5.2% 4.9% 5.0% 5.5% 5.5% 5.5% 5.66%
CETtype = 2 Douglas & Nijssen 2003 Fixed effect model Random effects model Heterogeneity: not applicable	127 127		> 0.66	[0.55; 0.75] [0.55; 0.75] [0.55; 0.75]	1.2% 1.2% 	4.2% 4.2%
Fixed effect model Random effects model Heterogeneity: $I^2 = 91\%$, $\tau^2 =$	10522 0.0212, p −0.1			[0.25; 0.28] [0.22; 0.35]	100.0% 	 100.0%

D6.6.1 Forest plot of product judgement domestic for moderator CETtype

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETcoded = 1	3	0.1136	[0.0581; 0.1685]	0.54	0.00%
CETcoded = 0	1	0.1960	[0.0026; 0.3753]	0.00	-
CETcoded = 3	1	0.3070	[0.1658; 0.4359]	0.00	-
CETcoded = 4	3	0.2120	[0.1780; 0.2454]	77.77	97.4%
CETcoded = 9	12	0.3214	[0.2983; 0.3441]	81.21	86.5%
Test for subgroup diff	ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	63.40	4	< 0.0001		
Within groups	159.52	15	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETcoded = 1	3	0.1136	[0.0581; 0.1685]	0.54	0.00%
CETcoded = 0	1	0.1960	[0.0026; 0.3753]	0.00	-
CETcoded = 3	1	0.3070	[0.1658; 0.4359]	0.00	-
CETcoded = 4	3	0.2646	[0.0270; 0.4739]	77.77	97.4%
CETcoded = 9	12	0.3272	[0.2613; 0.3901]	81.21	86.5%
Test for subgroup diff	ferences (randon	effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	25.88	4	< 0.0001		

D6.7 Analysis of product judgement domestic for moderator CETcoded

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
CETcoded = 1 Bawa 2004 Zeugner–Roth et al. 2015 Jin et al. 2015 Fixed effect model Random effects model Heterogeneity: $l^2 = 0\%$, $\tau^2 =$	772 1235		0.14 0.10 0.11	-0.17; 0.34] [0.05; 0.24] [0.03; 0.17] [0.06; 0.17] [0.06; 0.17]	0.5% 3.8% 7.4% 11.7%	3.1% 5.2% 5.5% 13.8%
CETcoded = 0 Bawa 2004 Fixed effect model Random effects model Heterogeneity: not applicable	103 103 e		0.20 [[0.00; 0.38] [0.00; 0.38] [0.00; 0.38]	1.0% 1.0% 	4.0% 4.0%
CETcoded = 3 Bawa 2004 Fixed effect model Random effects model Heterogeneity: not applicable	174 174		0.31	[0.17; 0.44] [0.17; 0.44] [0.17; 0.44]	1.6% 1.6% 	4.6% 4.6%
CETcoded = 2 Wang & Cheng 2004 Zeugner–Roth et al. 2015 Jin et al. 2015 Fixed effect model Random effects model Heterogeneity: $l^2 = 97\%$, τ^2	1883 3094	*	0.24 0.10 0.21	[0.38; 0.49] [0.14; 0.33] [0.06; 0.14] [0.18; 0.25] [0.03; 0.47]	7.6% 3.9% 18.0% 29.5%	5.5% 5.2% 5.7% 16.4%
CETcoded = 9 Kumar et al. 2011 Kumar et al. 2011 Dmitrovic et al. 2009 Dmitrovic et al. 2009 Dmitrovic et al. 2009 Parts & Vida 2013 Parts & Vida 2013 Parts & Vida 2013 Douglas & Nijssen 2003 Kumar et al. 2013 Verlegh 2007 Fixed effect model Random effects model Heterogeneity: l^2 = 86%, τ^2	800 800 454 600 600 300 261 271 127 800 800 103 5916 = 0.0134, <i>p</i> < 0.0 ⁻⁷		0.28 0.24 0.28 0.17 0.39 0.21 0.19 - 0.66 0.41 0.43 0.32 0.32	$\begin{bmatrix} 0.26; 0.38 \\ 0.21; 0.34 \\ 0.15; 0.33 \\ 0.20; 0.35 \\ 0.09; 0.25 \\ 0.29; 0.49 \\ 0.09; 0.32 \\ 0.08; 0.31 \\ 0.55; 0.75 \\ 0.35; 0.47 \\ 0.38; 0.49 \\ 0.36; 0.34 \\ 0.36; 0.34 \\ 0.26; 0.39 \end{bmatrix}$	7.6% 7.6% 4.3% 5.7% 2.8% 2.5% 2.6% 1.2% 7.6% 7.6% 5.6% 	5.5% 5.5% 5.4% 5.4% 5.0% 4.9% 5.0% 4.2% 5.5% 4.2% 5.5% 4.0% 61.2%
Fixed effect model Random effects model Heterogeneity: $l^2 = 91\%$, τ^2	10522 = 0.0212, <i>p</i>	-0.2 0 0.2 0.4 0.6		[0.25; 0.28] [0.22; 0.35]	100.0% 	 100.0%

D6.7.1 Forest plot of product judgement domestic for moderator CET coded

D8.1 Analysis of PIW	v		<i>sii u</i> ci		
Results of subgroups	(fixed effect m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
Construct = 0	6	0.3264	[0.2851; 0.3665]	43.55	88.5%
Construct = 1	6	0.3166	[0.2865; 0.3462]	199.71	97.5%
Construct = 2	13	0.3134	[0.2795; 0.3465]	53.42	77.5%
Test for subgroup diff	erences (fixed	effect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	0.24	2	0.8851		
Within groups	296.68	22	< 0.0001		
Test for subgroups (ra	ndom effects r	nodel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Construct = 0	6	0.3155	[0.1884; 0.4322]	43.55	88.5%
Construct = 1	6	0.3024	[0.0995; 0.4812]	199.71	97.5%
Construct = 2	13	0.3647	[0.2897; 0.4352]	53.42	77.5%
Test for subgroup diff	erences (rando	m effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	0.69	2	0.7069		

D8.1 Analysis of PIWTB domestic for moderator construct

D8 PIWTB Domestic

	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Yearcoded = 0	4	0.3909	[0.3443; 0.4355]	18.08	83.4%
Yearcoded = 2	9	0.1864	[0.1564; 0.2161]	33.95	76.4%
Yearcoded = 1	12	0.4559	[0.4260; 0.4848]	82.28	86.6%
Test for subgroup diff	ferences (fixed	effect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	162.60	2	< 0.0001		
Within groups	134.32	22	< 0.0001		
Test for subgroups (ra	andom effects r	model)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Yearcoded $= 0$	4	0.3901	[0.2702; 0.4982]	18.08	83.4%
Yearcoded $= 2$	9	0.1984	[0.1344; 0.2607]	33.95	76.4%
Yearcoded = 1	12	0.4280	[0.3348; 0.5129]	82.28	86.6%
Test for subgroup diff	ferences (rando	m effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	19.19	2	< 0.0001		

D8.2 Analysis of PIWTB domestic for moderator year

Study	Total	Correlation	COR	95%–Cl	Weight (fixed)	Weight (random)
Yearcoded = 0 Shimp & Sharma 1987 Shimp & Sharma 1987 Shimp & Sharma 1987 Shimp & Sharma 1987 Fixed effect model Random effects model Heterogeneity: $J^2 = 83\%$, τ^2	278 276 267 514 1335 ² = 0.0157, <i>p</i> < 0	.01	0.44 0.50 0.40 0.39	[0.08; 0.31] [0.34; 0.53] [0.40; 0.58] [0.32; 0.47] [0.34; 0.44] [0.27; 0.50]	3.4% 3.4% 3.2% 6.3% 16.3%	4.1% 4.1% 4.3% 16.6%
Yearcoded = 2 Parts & Vida 2013 Parts & Vida 2013 Zeugner–Roth et al. 201 Zeugner–Roth et al. 201 He & Wang 2015 Huang et al. 2010 Selli & Kurniawan 2014 Parker et al. 2011 Mostafa 2010 Fixed effect model Random effects model Heterogeneity: $l^2 = 76\%$, τ^2	5 405 912 434 209 367 776 4046	.01	0.15 0.22 0.18 0.08 0.25 0.17 0.40 0.19 0.19	[0.03; 0.27] [0.03; 0.27] [0.12; 0.31] [0.08; 0.27] [0.02; 0.14] [0.16; 0.34] [0.03; 0.30] [0.31; 0.48] [0.12; 0.25] [0.16; 0.22] [0.13; 0.26]	3.2% 3.3% 5.0% 4.9% 11.2% 5.3% 2.5% 4.5% 9.5% 49.4%	4.1% 4.2% 4.2% 4.4% 4.3% 4.0% 4.2% 4.4% 37.9%
Yearcoded = 1 Huang et al. 2008 Nguyen et al. 2008 Wang & Cheng 2004 Suh & Kwon 2002 Suh & Kwon 2002 Nijssen & Douglas 2004 Nijssen & Douglas 2004 Rose et al. 2009 Rose et al. 2009 Rose et al. 2009 Bose et al. 2009 Douglas & Nijssen 2003 Fixed effect model Random effects model Heterogeneity: I^2 = 87%, τ^2		.01	0.38 0.62 0.49 0.44 0.48 - 0.54 0.22 0.46 0.37 0.35 0.44 0.46	$\begin{matrix} [0.17; \ 0.35] \\ [0.31; \ 0.45] \\ [0.58; \ 0.66] \\ [0.34; \ 0.62] \\ [0.29; \ 0.57] \\ [0.32; \ 0.61] \\ [0.39; \ 0.66] \\ [0.4; \ 0.39] \\ [0.30; \ 0.60] \\ [0.20; \ 0.52] \\ [0.18; \ 0.50] \\ [0.28; \ 0.57] \\ [0.43; \ 0.48] \\ [0.33; \ 0.51] \end{matrix}$	5.3% 6.7% 9.8% 1.4% 1.5% 1.3% 1.3% 1.3% 1.3% 1.5% 34.3%	4.3% 4.3% 4.4% 3.7% 3.6% 3.6% 3.6% 3.6% 3.6% 3.6% 3.6% 3.6
Fixed effect model Random effects model Heterogeneity: $I^2 = 92\%$, τ^2	$p^2 = 0.0357, p < 0$ -0.6 -0	0.01 0.2 0.4 0.0 of PUVTP domentia	0.34	[0.30; 0.34] [0.27; 0.41]	100.0%	 100.0%

D8.2.1 Forest plot of PIWTB domestic for moderator year

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Continent = 0	5	0.3993	[0.3550; 0.4418]	19.71	79.7%
Continent = 1	7	0.2461	[0.2006; 0.2905]	34.82	82.8%
Continent = 2	13	0.3169	[0.2918; 0.3416]	219.59	94.5%
Test for subgroup dif	ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	22.80	2	< 0.0001		
Within groups	274.12	22	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Continent = 0	5	0.4069	[0.3032; 0.5012]	19.71	79.7%
Continent = 1	7	0.3009	[0.1881; 0.4059]	34.82	82.8%
Continent = 2	13	0.3283	[0.2142; 0.4336]	219.59	94.5%
Test for subgroup dif	ferences (random	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	2.15	2	0.3421		

D8.3 Analysis of PIWTB domestic for moderator continent

D8.4 Analysis of PIWTB domestic for moderator developed

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	<u>COR</u>	<u>95%-CI</u>	Q	<u>I</u> ²
Developed = 0	9	0.3813	[0.3449; 0.4165]	40.29	80.1%
Developed = 1	16	0.2936	[0.2702; 0.3167]	240.96	93.8%
Test for subgroup diff	erences (fixed e	ffect model)			
	Q	<u>d.f.</u>	p-value		
Between groups	15.67	1	< 0.0001		
Within groups	281.25	23	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
Developed = 0	9	0.4088	[0.3239; 0.4872]	40.29	80.1%
Developed = 1	16	0.2971	[0.1983; 0.3899]	240.96	93.8%
Test for subgroup diff	ferences (randon	n effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	3.02	1	0.0821		

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Developed = 1	8	0.3490	[0.3204; 0.3769]	209.29	96.7%
Developed = 0	17	0.2911	[0.2640; 0.3179]	79.25	79.8%
Test for subgroup diff	erences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	8.37	1	0.0038		
Within groups	288.55	23	< 0.0001		
Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Developed = 1	8	0.3439	[0.1760; 0.4923]	209.29	96.7%
Developed = 0	17	0.3303	[0.2674; 0.3904]	79.25	79.8%
Test for subgroup diff	erences (randon	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	0.02	1	0.8765		

D8.5 Analysis of PIWTB domestic for moderator urban

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
Selection $= 2$	4	0.3909	[0.3443; 0.4355]	18.08	83.4%
Selection = 5	6	0.2417	[0.2029; 0.2797]	19.71	74.6%
Selection = 0	9	0.2183	[0.1824; 0.2535]	58.68	86.4%
Selection $= 4$	1	0.6200	[0.5754; 0.6609]	0.00	-
Selection = 1	3	0.4263	[0.3590; 0.4892]	1.16	0.0%
Selection = 9	2	0.2748	[0.1724; 0.3713]	7.19	86.1%
Test for subgroup dif	ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	192.10	5	< 0.0001		
Within groups	104.82	19	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Selection = 2	4	0.3901	[0.2702; 0.4982]	18.08	83.4%
Selection = 5	6	0.2275	[0.1486; 0.3035]	19.71	74.6%
Selection = 0	9	0.3202	[0.2156; 0.4174]	58.68	86.4%
Selection = 4	1	0.6200	[0.5754; 0.6609]	0.00	-
Selection = 1	3	0.4263	[0.3590; 0.4892]	1.16	0.0%
Selection = 9	2	0.3046	[0.0162; 0.5463]	7.19	86.1%
Test for subgroup dif	ferences (randon	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	92.09	5	< 0.0001		

D8.6 Analysis of PIWTB domestic for moderator selection

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
Selection = 2 Shimp & Sharma 1987 Shimp & Sharma 1987 Shimp & Sharma 1987 Shimp & Sharma 1987 Fixed effect model Random effects model Heterogeneity: $l^2 = 83\%$, τ^2	278 276 267 514 1335 = 0.0157,	p < 0.01	0.44 0.50 0.40 0.39	[0.08; 0.31] [0.34; 0.53] [0.40; 0.58] [0.32; 0.47] [0.34; 0.44] [0.27; 0.50]	3.2% 6.3%	4.1% 4.1% 4.3% 16.6%
Selection = 5 Parts & Vida 2013 Parts & Vida 2013 Nguyen et al. 2008 Zeugner–Roth et al. 2015 Zeugner–Roth et al. 2015 Huang et al. 2010 Fixed effect model Random effects model Heterogeneity: l^2 = 75%, τ^2	405 434 2331	p < 0.01	0.15 0.38 0.22 0.18 0.25 0.24	[0.03; 0.27] [0.03; 0.27] [0.31; 0.45] [0.12; 0.31] [0.08; 0.27] [0.16; 0.34] [0.20; 0.28] [0.15; 0.30]	5.3%	4.1% 4.1% 4.3% 4.2% 4.2% 4.3%
Selection = 0 Huang et al. 2008 He & Wang 2015 Nijssen & Douglas 2004 Nijssen & Douglas 2004 Rose et al. 2009 Rose et al. 2009 Rose et al. 2009 Rose et al. 2009 Rose et al. 2009 Mostafa 2010 Fixed effect model Random effects model Heterogeneity: $l^2 = 86\%$, τ^2	433 912 110 109 111 111 112 112 776 2786 = 0.0236,	<i>p</i> < 0.01	0.08 - 0.48 - 0.54 0.22 0.46 0.37 0.35 0.19 0.22	$\begin{matrix} [0.17; \ 0.35] \\ [0.02; \ 0.14] \\ [0.32; \ 0.61] \\ [0.39; \ 0.66] \\ [0.30; \ 0.60] \\ [0.30; \ 0.60] \\ [0.20; \ 0.52] \\ [0.18; \ 0.50] \\ [0.12; \ 0.25] \\ [0.18; \ 0.25] \\ [0.22; \ 0.42] \end{matrix}$	1.3% 1.3% 1.3% 1.3% 1.3% 1.3% 9.5%	4.3% 4.4% 3.6% 3.6% 3.6% 3.6% 3.6% 4.4% 34.6%
Selection = 4 Wang & Cheng 2004 Fixed effect model Random effects model Heterogeneity: not applicable	800 800		♦ 0.62	[0.58; 0.66] [0.58; 0.66] [0.58; 0.66]	9.8% 9.8% 	4.4% 4.4%
Selection = 1 Suh & Kwon 2002 Suh & Kwon 2002 Parker et al. 2011 Fixed effect model Random effects model Heterogeneity: $l^2 = 0\%$, $\tau^2 =$	120 128 367 615	6	0.44 0.40 0.43	[0.34; 0.62] [0.29; 0.57] [0.31; 0.48] [0.36; 0.49] [0.36; 0.49]	1.4% 1.5% 4.5% 7.5%	3.7% 3.7% 4.2% 11.6%
Selection = 9 Douglas & Nijssen 2003 Selli & Kurniawan 2014 Fixed effect model Random effects model Heterogeneity: $l^2 = 86\%, \tau^2$	127 209 336 = 0.04 , <i>p</i>	< 0.01	0.17 0.27	[0.29; 0.57] [0.03; 0.30] [0.17; 0.37] [0.02; 0.55]	2.5%	3.7% 4.0% 7.7%
Fixed effect model Random effects model Heterogeneity: $l^2 = 92\%$, τ^2		p < 0.01 / / / / / / / / / / / / / / / / / / /	0.34	[0.30; 0.34] [0.27; 0.41]		 100.0%

D8.6.1 Forest plot of PIWTB domestic for moderator selection

Results of subgroups (#	fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Characteristics = 0	22	0.3086	[0.2880; 0.3289]	285.32	92.6%
Characteristics = 1	3	0.4263	[0.3590; 0.4892]	1.16	0.0%
Test for subgroup diffe	erences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	10.43	1	0.0012		
Within groups	286.49	23	< 0.0001		
Test for subgroups (rar	ndom effects m	odel)			
	<u>K</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Characteristics = 0	22	0.3251	[0.2463; 0.3996]	285.32	92.6%
Characteristics = 1	3	0.4263	[0.3590; 0.4892]	1.16	0.0%
Test for subgroup diffe	erences (randon	n effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	3.91	1	0.0481		

D8.7 Analysis of PIWTB domestic for moderator characteristics

Study	Total	Correlation	COR	95%–Cl	Weight (fixed)	Weight (random)
Characteristics = 0						
Shimp & Sharma 1987	278		0.20	[0.08; 0.31]	3.4%	4.1%
Shimp & Sharma 1987	276			[0.34; 0.53]	3.4%	4.1%
Shimp & Sharma 1987	267		0.50	[0.40; 0.58]	3.2%	4.1%
Shimp & Sharma 1987	514	÷	0.40	[0.32; 0.47]	6.3%	4.3%
Parts & Vida 2013	261	<u>_</u> _	0.15	[0.03; 0.27]	3.2%	4.1%
Parts & Vida 2013	271	— —		[0.03; 0.27]	3.3%	4.1%
Huang et al. 2008	433			[0.17; 0.35]		4.3%
Nguyen et al. 2008	549	1 1	0.38	[0.31; 0.45]	6.7%	4.3%
Wang & Cheng 2004	800		+ 0.62	[0.58; 0.66]	9.8%	4.4%
Zeugner-Roth et al. 2015	411		0.22	[0.12; 0.31]	5.0%	4.2%
Zeugner-Roth et al. 2015	405		0.18	[0.08; 0.27]	4.9%	4.2%
He & Wang 2015	912			[0.02; 0.14]	11.2%	4.4%
Huang et al. 2010	434			[0.16; 0.34]	5.3%	4.3%
Nijssen & Douglas 2004	110	<u>i</u>	- 0.48	[0.32; 0.61]	1.3%	3.6%
Nijssen & Douglas 2004	109		— 0.54	[0.39; 0.66]	1.3%	3.6%
Rose et al. 2009	111		0.22	[0.04; 0.39]	1.3%	3.6%
Rose et al. 2009	111			[0.30; 0.60]		3.6%
Rose et al. 2009	112		0.37	[0.20; 0.52]	1.3%	3.6%
Rose et al. 2009	112		0.35	[0.18; 0.50]	1.3%	3.6%
Douglas & Nijssen 2003	127		0.44	[0.29; 0.57]	1.5%	3.7%
Selli & Kurniawan 2014	209	— —	0.17	[0.03; 0.30]	2.5%	4.0%
Mostafa 2010	776		0.19	[0.12; 0.25]	9.5%	4.4%
Fixed effect model	7588	•	0.31	[0.29; 0.33]	92.5%	
Random effects model			0.33	[0.25; 0.40]		88.4%
Heterogeneity: $I^2 = 93\%$, $\tau^2 =$	= 0.0377, <i>p</i> <	0.01				
Characteristics = 1						
Suh & Kwon 2002	120			[0.34; 0.62]		3.7%
Suh & Kwon 2002	128			[0.29; 0.57]		
Parker et al. 2011	367	11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		[0.31; 0.48]		
Fixed effect model	615	\diamond		[0.36; 0.49]	7.5%	
Random effects model			0.43	[0.36; 0.49]		11.6%
Heterogeneity: $I^2 = 0\%$, $\tau^2 =$	0, <i>p</i> = 0.56					
Fixed effect model	8203	\$		[0.30; 0.34]	100.0%	
Random effects model			0.34	[0.27; 0.41]		100.0%

-0.6-0.4-0.2 0 0.2 0.4 0.6

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	<u>COR</u>	<u>95%-CI</u>	Q	<u>I</u> ²
CETtype = 0	7	0.4526	[0.4221; 0.4822]	92.98	93.5%
CETtype = 4	6	0.1887	[0.1527; 0.2242]	36.23	86.2%
CETtype = 3	10	0.3058	[0.2665; 0.3441]	41.32	78.2%
CETtype = 2	2	0.2948	[0.2171; 0.3688]	4.53	77.9%
Test for subgroup diff	ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	121.87	3	< 0.0001		
Within groups	175.05	21	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETtype = 0	7	0.4027	[0.2676; 0.5223]	92.98	93.5%
CETtype = 4	6	0.1955	[0.0947; 0.2923]	36.23	86.2%
CETtype = 3	10	0.3755	[0.2856; 0.4588]	41.32	78.2%
CETtype = 2	2	0.3369	[0.1388; 0.5091]	4.53	77.9%
Test for subgroup diff	ferences (random	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	9.43	3	0.0241		

D8.7.1 Forest plot of PIWTB domestic for moderator characteristics

D8.8 Analysis of PIWTB domestic for moderator CETtype

Total	Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
278 276 267 514 800 209 367 2711 = 0.0394, <i>p</i> < 0.01		- 0.44 0.50 0.40 0.62 0.17 0.40 0.40 0.45	[0.34; 0.53] [0.40; 0.58] [0.32; 0.47] [0.58; 0.66] [0.03; 0.30] [0.31; 0.48] [0.42; 0.48]	3.4% 3.2% 6.3% 9.8% 2.5% 4.5% 33.1%	4.1% 4.1% 4.3% 4.4% 4.0% 4.2% 29.2%
405 912 2809	+ + + + + + + + + + + + + + + + + + +	0.15 0.38 0.22 0.18 0.08 0.19	[0.03; 0.27] [0.31; 0.45] [0.12; 0.31] [0.08; 0.27] [0.02; 0.14] [0.15; 0.22]	3.2% 3.3% 6.7% 5.0% 4.9% 11.2% 34.3%	4.1% 4.3% 4.2% 4.2% 4.4% 25.4%
433 120 128 110 109 111 111 112 112 776 2122 = 0.0193, <i>p</i> < 0.01		← 0.49 ← 0.44 ← 0.48 ★ 0.54 0.22 ← 0.46 − 0.37 − 0.35 0.19 0.31	[0.34; 0.62] [0.29; 0.57] [0.32; 0.61] [0.39; 0.66] [0.04; 0.39] [0.30; 0.60] [0.20; 0.52] [0.18; 0.50] [0.12; 0.25] [0.27; 0.34]	5.3% 1.4% 1.5% 1.3% 1.3% 1.3% 1.3% 9.5% 25.7%	4.3% 3.7% 3.6% 3.6% 3.6% 3.6% 3.6% 4.4%
8203	· · · ◆	- 0.44 0.29 - 0.34 0.32	[0.29; 0.57] [0.22; 0.37] [0.14; 0.51] [0.30; 0.34]	5.3% 1.5% 6.8% 100.0%	4.3% 3.7% 7.9%
	278 276 267 514 800 209 367 2711 = $0.0394, p < 0.01$ 261 271 549 411 405 912 2809 = $0.0141, p < 0.01$ 433 120 128 110 109 111 111 112 112 776 2122 = $0.0193, p < 0.01$ 434 127 561 = $0.0183, p = 0.03$ 8203	$278 \\ 276 \\ 267 \\ 514 \\ 800 \\ 209 \\ 367 \\ 2711 \\ = 0.0394, p < 0.01 261 \\ 271 \\ 549 \\ 411 \\ 405 \\ 912 \\ 2809 \\ = 0.0141, p < 0.01 433 \\ 120 \\ 128 \\ 110 \\ 109 \\ 111 \\ 111 \\ 112 \\ 112 \\ 176 \\ 2122 \\ = 0.0193, p < 0.01 434 \\ 127 \\ 561 \\ = 0.0183, p = 0.03 8203$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	278 0.20 $[0.08; 0.31]$ 267 0.50 $[0.44; [0.34; 0.53]$ 514 0.44 $[0.32; 0.47]$ 800 0.40 $[0.32; 0.47]$ 2711 0.62 $[0.58; 0.66]$ 2711 0.45 $[0.42; 0.48]$ 0.40 $[0.31; 0.42]$ $[0.42; 0.48]$ 0.40 $[0.27; 0.52]$ $[0.40; 0.58]$ = 0.0394, $p < 0.01$ = $[0.15; [0.03; 0.27]$ 261 = $[0.15; [0.03; 0.27]$ 2711 = $[0.44; [0.34; 0.48]$ 405 0.44 $[0.22; 0.12; 0.31]$ 405 0.38 $[0.31; 0.45]$ 912 0.38 $[0.32; 0.61]$ 2809 0.19 $[0.15; 0.22]$ = 0.0141, $p < 0.01$ = 0.26 433 = 0.26 $[0.17; 0.35]$ 110 0.22 $[0.44; [0.29; 0.57]$ 111 0.35 $[0.18; 0.50]$ 112 0.35 $[0.18; 0.50]$ 112 0.35 $[0.18; 0.50]$ 114 0.25 $[0.16; 0.34]$	Total Correlation COR 95%-Cl (fixed) 278 0.20 [0.08; 0.31] 3.4% 3.4% 276 0.44 [0.34; 0.53] 3.4% 267 0.62 [0.58; 0.66] 9.8% 514 0.62 [0.58; 0.66] 9.8% 800 0.62 [0.58; 0.66] 9.8% 209 0.40 [0.32; 0.47] 6.3% 2711 0.62 [0.58; 0.66] 9.8% 203 0.40 [0.31; 0.48] 4.5% 2711 0.15 [0.03; 0.27] 3.2% 0.0394, $p < 0.01$ 0.40 [0.22; 0.48] 33.1% 261 0.15 [0.03; 0.27] 3.2% 271 0.15 [0.03; 0.27] 3.2% 912 0.18 [0.08; 0.27] 4.4% 912 0.18 [0.08; 0.27] 4.4% 912 0.18 [0.08; 0.27] 4.4% 2809 0.19 [0.15; 0.22] 34.3% 0.0141, $p < 0.01$ 0.26 [0.17; 0.35] 5.3% 120 0.38 [0.32; 0.61] 1.3% 121 0.37 [0.20; 0.52] 1.5% 110 0.44 [0.29; 0.57] 1.5% 111 0.44 [0.39; 0.66] 1.3% 112 0.37 [0.20; 0.52] 1.3% 114 0.44 [0.29; 0.57] 1.5% 0

D8.8.1 Forest plot of PIWTB domestic for moderator CETtype

D8.9 Analysis of PIW	5		coucu		
Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETcoded = 2	4	0.4430	[0.4056; 0.4790]	97.58	96.9%
CETcoded = 1	8	0.2783	[0.2451; 0.3108]	92.72	92.5%
CETcoded = 9	9	0.2546	[0.2099; 0.2983]	22.65	64.7%
CETcoded = 0	3	0.4185	[0.3581; 0.4754]	4.44	54.9%
CETcoded = 3	1	0.1850	[0.1161; 0.2521]	0.00	-
Test for subgroup diff	ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	79.53	4	< 0.0001		
Within groups	217.39	20	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETcoded = 2	4	0.3757	[0.1251; 0.5812]	97.58	96.9%
CETcoded = 1	8	0.3483	[0.2244; 0.4611]	92.72	92.5%
CETcoded = 9	9	0.2761	[[0.1979; 0.3509]	22.65	64.7%
CETcoded = 0	3	0.4505	[0.3419; 0.5473]	4.44	54.9%
CETcoded = 3	1	0.1850	[0.1161; 0.2521]	0.00	-
Test for subgroup diff	ferences (randon	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	18.55	4	0.0010		

D8.9 Analysis of PIWTB domestic for moderator CETcoded

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
CETcoded = 2 Shimp & Sharma 1987 Wang & Cheng 2004 Zeugner–Roth et al. 2015 Parker et al. 2011 Fixed effect model Random effects model Heterogeneity: $I^2 = 97\%$, $\tau^2 =$	278 800 411 367 1856 = 0.073 , <i>p</i> < 0.01	*	0.62 0.22 0.40 0.44	[0.08; 0.31] [0.58; 0.66] [0.12; 0.31] [0.31; 0.48] [0.41; 0.48] [0.13; 0.58]	3.4% 9.8% 5.0% 4.5% 22.7%	4.1% 4.4% 4.2% 4.2% 16.9%
CETcoded = 1 Shimp & Sharma 1987 Shimp & Sharma 1987 Shimp & Sharma 1987 Zeugner-Roth et al. 2015 He & Wang 2015 Suh & Kwon 2002 Suh & Kwon 2002 Huang et al. 2010 Fixed effect model Random effects model Heterogeneity: $l^2 = 92\%$, τ^2	276 267 514 405 912 120 128 434 3056 = 0.0343, <i>p</i> < 0.01		0.50 0.40 0.18 0.08 0.49 0.44 0.25 0.28	$\begin{matrix} [0.34;0.53]\\ [0.40;0.58]\\ [0.32;0.47]\\ [0.08;0.27]\\ [0.02;0.14]\\ [0.34;0.62]\\ [0.29;0.57]\\ [0.16;0.34]\\ [0.25;0.31]\\ [0.22;0.46] \end{matrix}$	3.4% 3.2% 6.3% 4.9% 11.2% 1.4% 1.5% 5.3% 37.3%	4.1% 4.3% 4.2% 3.7% 3.7% 4.3%
CETcoded = 9 Parts & Vida 2013 Parts & Vida 2013 Huang et al. 2008 Rose et al. 2009 Rose et al. 2009 Rose et al. 2009 Douglas & Nijssen 2003 Selli & Kurniawan 2014 Fixed effect model Random effects model Heterogeneity: $l^2 = 65\%$, $\tau^2 =$	261 271 433 111 112 112 127 209 1747 = 0.01 , <i>p</i> < 0.01	 	0.15 0.26 0.22 0.46 0.37 0.35 0.44 0.17 0.25	$\begin{matrix} [0.03; 0.27]\\ [0.03; 0.27]\\ [0.17; 0.35]\\ [0.04; 0.39]\\ [0.30; 0.60]\\ [0.20; 0.52]\\ [0.18; 0.50]\\ [0.22; 0.57]\\ [0.03; 0.30]\\ [0.21; 0.30]\\ [0.20; 0.35] \end{matrix}$	3.2% 3.3% 5.3% 1.3% 1.3% 1.3% 1.5% 2.5% 21.2%	4.1% 4.1% 4.3% 3.6% 3.6% 3.6% 3.6% 3.7% 4.0%
CETcoded = 0 Nguyen et al. 2008 Nijssen & Douglas 2004 Nijssen & Douglas 2004 Fixed effect model Random effects model Heterogeneity: $l^2 = 55\%$, τ^2 =	549 110 109 768	**************************************	0.48 - 0.54 0.42	[0.31; 0.45] [0.32; 0.61] [0.39; 0.66] [0.36; 0.48] [0.34; 0.55]	6.7% 1.3% 1.3% 9.3%	4.3% 3.6% 3.6% 11.5%
CETcoded = 3 Mostafa 2010 Fixed effect model Random effects model Heterogeneity: not applicable	776 776	‡ ♦ ♦	0.19	[0.12; 0.25] [0.12; 0.25] [0.12; 0.25]	9.5% 9.5% 	4.4% 4.4%
Fixed effect model Random effects model Heterogeneity: $l^2 = 92\%$, $\tau^2 =$	8203 = 0.0357, <i>p</i> < 0.01 −0.6 −0.4		0.34	[0.30; 0.34] [0.27; 0.41]	100.0% 	 100.0%

D8.9.1 Forest plot of PIWTB domestic for moderator CETcoded

D9 Product Judgements Foreign

Results of subgroups	(fixed effect mo	del)						
	<u>k</u>	COR	<u>95%-CI</u>	Q	$\underline{I^2}$			
Yearcoded = 1	19	-0.2183	[-0.2426; -0.1937]	119.72	85.0%			
Yearcoded = 2	26	-0.2068	[-0.2232; -0.1903]	322.42	92.2%			
Yearcoded = 0	1	-0.4000	[-0.5004; -0.2889]	0.00	-			
Test for subgroup differences (fixed effect model)								
	Q	<u>d.f.</u>	<u>p-value</u>					
Between groups	11.08	2	0.0039					
Within groups	442.14	43	< 0.0001					
Test for subgroups (ra	ndom effects m	odel)						
	<u>k</u>	COR	<u>95%-CI</u>	Q	$\underline{I^2}$			
Yearcoded = 1	19	-0.1956	[-0.2620; -0.1274]	119.72	85.0%			
Yearcoded $= 2$	26	-0.1927	[-0.2526; -0.1313]	322.42	92.2%			
Yearcoded = 0	1	-0.4000	[-0.5004; -0.2889]	0.00	-			
Test for subgroup diff	erences (randon	n effects model)						
	Q	<u>d.f.</u>	p-value					
Between groups	10.93	2	0.0042					

D9.1 Analysis of foreign product judgment for moderator year

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
Yearcoded = 1		0				
Ishii 2009	300	ŝ <u></u>	0.20	[0.08; 0.30]	1.6%	2.2%
Ishii 2009	300	<u>e</u> <u>e</u>		[-0.24; -0.01]	1.6%	2.2%
Bawa 2004	58			[-0.49; -0.01]	0.3%	1.4%
Bawa 2004	103			[-0.45; -0.09]	0.5%	1.7%
Bawa 2004	174			[-0.40; -0.13]	0.9%	2.0%
Suh & Kwon 2002	120	<u> </u>		[-0.26; 0.09]	0.6%	1.8%
Suh & Kwon 2002	128			[-0.36; -0.03]	0.7%	1.9%
Yoo & Donthu 2005	213			[-0.46; -0.23]	1.1%	2.1%
Nguyen et al. 2008	549		-0.13	[-0.21; -0.05]	2.9%	2.3%
Nijssen & Douglas 2004	110		0.14	[-0.05; 0.32]	0.6%	1.8%
Nijssen & Douglas 2004	109		-0.03	[-0.22; 0.16]	0.6%	1.8%
Carter 2009	800	+ 6	-0.36	[-0.42; -0.30]	4.2%	2.4%
Carter 2009	800		-0.31	[-0.37; -0.25]	4.2%	2.4%
Carter 2009	800	÷	-0.21	[-0.27; -0.14]	4.2%	2.4%
Klein 2002	202		-0.33	[-0.45; -0.20]	1.0%	2.1%
Ettenson & Klein 2005	261		-0.28	[-0.39; -0.16]	1.4%	2.2%
Ettenson & Klein 2005	329			[-0.34; -0.14]	1.7%	2.2%
Nakos & Hajidimitriou 2007	430			[-0.25; -0.07]	2.2%	2.3%
Verlegh 2007	103	<u>_</u>		[-0.48; -0.12]	0.5%	1.7%
Fixed effect model	5889	¢.		[-0.24; -0.19]	30.6%	
Random effects model		\diamond	-0.20	[-0.26; -0.13]		38.9%
Heterogeneity: $I^2 = 85\%$, $\tau^2 = 0$	0.0191, <i>p</i> < 0.	01				
Yearcoded = 2 Kumar et al. 2011	800	-	-0.31	[-0.37; -0.25]	4.2%	2.4%
Kumar et al. 2011	800	i i i i i i i i i i i i i i i i i i i		[-0.34; -0.21]	4.2%	2.4%
Huang et al. 2010	434			[0.11; 0.29]	2.3%	2.3%
Zeugner-Roth et al. 2015	411	<u></u>		[-0.24; -0.05]	2.1%	2.3%
Zeugner-Roth et al. 2015	405	<u> </u>		[-0.18; 0.01]	2.1%	2.3%
Fernandez-Ferrin et al. 2015		-		[-0.70; -0.55]	1.3%	2.1%
Parker et al. 2011	367			[-0.17; 0.03]	1.9%	2.3%
Kumar et al. 2013	800			[-0.41; -0.29]	4.2%	2.4%
Kumar et al. 2013	800			[-0.42; -0.30]	4.2%	2.4%
Sharma 2011	349	<u>}</u>	-0.09	[-0.19; 0.02]	1.8%	2.2%
Sharma 2011	388	÷	-0.13	[-0.23; -0.03]	2.0%	2.3%
Sharma 2011	468		-0.15	[-0.24; -0.06]	2.4%	2.3%
Sharma 2011	547		-0.18	[-0.26; -0.10]	2.9%	2.3%
Jin et al. 2015	772	<u></u>	-0.10	[-0.17; -0.03]	4.0%	2.4%
Jin et al. 2015	1883	+	-0.17	[-0.21; -0.13]	9.9%	2.5%
Cai et al. 2012	224			[-0.22; 0.04]	1.2%	2.1%
De Nisco et al. 2016	274	<u> </u>		[-0.27; -0.04]	1.4%	2.2%
De Nisco et al. 2016	182			[-0.06; 0.23]	0.9%	2.0%
Wang et al. 2013	257	- m		[-0.46; -0.25]	1.3%	2.2%
Cheah et al. 2016	435			[-0.16; 0.02]	2.3%	2.3%
Ma et al. 2012	255	1. I		[-0.23; 0.01]	1.3%	2.2%
Ma et al. 2012	255			[-0.20; 0.04]	1.3%	2.2%
Ma et al. 2012	255			[-0.21; 0.03]	1.3%	2.2%
Funk et al. 2010	319			[-0.50; -0.31]	1.7%	2.2%
Richardson & Harris 2014	348			[-0.40; -0.21]	1.8%	2.2%
Mostafa 2010 Fixed effect model	776			[-0.41; -0.29]	4.1%	2.4%
Random effects model	13053	× I		[-0.22; -0.19] [-0.25; -0.13]	68.1% 	58.9%
Heterogeneity: $I^2 = 92\%$, $\tau^2 = 0$	0.0243, <i>p</i> < 0.	01	-0.19	[-0.25, -0.15]		30.3%
Yearcoded = 0						
Klein et al. 1998	244	— — ¹	-0.40	[-0.50; -0.29]	1.3%	2.1%
Fixed effect model	244			[-0.50; -0.29]	1.3%	
Random effects model		\diamond	-0.40	[-0.50; -0.29]		2.1%
Heterogeneity: not applicable						
Fixed effect model	19186	Ó		[-0.23; -0.20]	100.0%	
Random effects model		A 1		[-0.24; -0.15]		100.0%
Heterogeneity: $I^2 = 90\%$, $\tau^2 = 0$	· •					
	-0	.6–0.4–0.2 0 0.2 0.4	0.6			

D9.1.1 Forest plot of product judgement foreign for moderator year

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Continent = 2	23	-0.2052	[-0.2249; -0.1853]	261.23	91.6%
Continent = 0	10	-0.2899	[-0.3172; -0.2620]	31.78	71.7%
Continent = 1	9	-0.1652	[-0.2023; -0.1277]	109.08	92.7%
Continent = 5	2	-0.2578	[-0.3318; -0.1806]	0.27	0.0%
Continent = 9	2	-0.1498	[-0.1868; -0.1124]	2.78	64.0%
Test for subgroup diff	ferences (fixed e	ffect model)			
	<u>Q</u>	<u>d.f.</u>	<u>p-value</u>		
Between groups	48.09	4	< 0.0001		
Within groups	405.13	41	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	$\underline{I^2}$
Continent = 2	23	-0.1776	[-0.2475; -0.1059]	261.23	91.6%
Continent = 0	10	-0.2913	[-0.3458; -0.2348]	31.78	71.7%
Continent = 1	9	-0.1437	[-0.2818; 0.0002]	109.08	92.7%
Continent = 5	2	-0.2578	[-0.3318; -0.1806]	0.27	0.0%
Continent = 9	2	-0.1405	[-0.2074; -0.0722]	2.78	64.0%
Test for subgroup diff	ferences (randon	n effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	14.96	4	0.0048		

D9.2 Analysis of foreign product judgement for moderator continent

Study	Total	Correlation	COR	95%–CI	Weight (fixed)	Weight (random)
Continent = 2		e e				
Ishii 2009	300		0.20 [0.08; 0.30]	1.6%	2.2%
Ishii 2009	300	<u>6</u>	-0.13 [-0	0.24; –0.01]	1.6%	2.2%
Bawa 2004	58		-0.27 [-0	0.49; –0.01]	0.3%	1.4%
Bawa 2004	103		-	0.45; –0.09]	0.5%	1.7%
Bawa 2004	174			0.40; -0.13]	0.9%	2.0%
Suh & Kwon 2002	128			0.36; -0.03]	0.7%	1.9%
Nguyen et al. 2008 Kumar et al. 2011	549		-	0.21; -0.05]	2.9%	2.3% 2.4%
Kumar et al. 2011	800 800			0.37; –0.25] 0.34; –0.21]	4.2% 4.2%	2.4%
Huang et al. 2010	434			0.11; 0.29]	2.3%	2.4%
Klein et al. 1998	244	§	-	0.50; -0.29]	1.3%	2.1%
Parker et al. 2011	367		•	0.17; 0.03]	1.9%	2.3%
Kumar et al. 2013	800	-		0.41; -0.29]	4.2%	2.4%
Kumar et al. 2013	800	- }	-0.36 [-0	0.42; –0.30]	4.2%	2.4%
Sharma 2011	349			0.19; 0.02]	1.8%	2.2%
Sharma 2011	388	C C	-	0.23; -0.03]	2.0%	2.3%
Cai et al. 2012	224	<u>i</u>		0.22; 0.04]	1.2%	2.1%
Wang et al. 2013	257		-	0.46; -0.25]	1.3%	2.2%
Cheah et al. 2016 Ma et al. 2012	435 255	é de la companya de l		0.16; 0.02] 0.23; 0.01]	2.3% 1.3%	2.3% 2.2%
Ma et al. 2012	255			0.20; 0.01]	1.3%	2.2%
Ma et al. 2012	255		-	0.21; 0.03]	1.3%	2.2%
Mostafa 2010	776			0.41; –0.29]	4.1%	2.4%
Fixed effect model	9051	¢.	•).22; -0.19]	47.2%	
Random effects model Heterogeneity: $I^2 = 92\%$, $\tau^2 = 0$.	0283, <i>p</i> < 0	01	-0.18 [-0).25; –0.11]		49.9%
Continent - 0						
Continent = 0 Suh & Kwon 2002	120		0.00 1	0.06. 0.001	0.6%	1 00/
Yoo & Donthu 2005	213	0		0.26; 0.09] 0.46; –0.23]	0.6% 1.1%	1.8% 2.1%
Carter 2009	800	-	-	0.40; -0.20] 0.42; -0.30]	4.2%	2.1%
Carter 2009	800		•	0.37; –0.25]	4.2%	2.4%
Carter 2009	800	- <u>-</u>		0.27; -0.14]	4.2%	2.4%
Klein 2002	202			0.45; -0.20]	1.0%	2.1%
Verlegh 2007	103			0.48; –0.12]	0.5%	1.7%
Sharma 2011	547	- <u>è-</u>	-0.18 [-0	0.26; –0.10]	2.9%	2.3%
Funk et al. 2010	319			0.50; –0.31]	1.7%	2.2%
Richardson & Harris 2014	348			0.40; -0.21]	1.8%	2.2%
Fixed effect model Random effects model	4252	\diamond).32; -0.26]	22.2%	 21.7%
Heterogeneity: $I^2 = 72\%$, $\tau^2 = 0$.	0063, <i>p</i> < 0	01	-0.29 [-0).35; –0.23]		21.770
Continent = 1		0 0 0				
Nijssen & Douglas 2004	110		0.14 [-	0.05; 0.32]	0.6%	1.8%
Nijssen & Douglas 2004	109	<u> </u>	-0.03 [-	0.22; 0.16]	0.6%	1.8%
Zeugner-Roth et al. 2015	411		-0.15 [-0	0.24; –0.05]	2.1%	2.3%
Zeugner-Roth et al. 2015	405			0.18; 0.01]	2.1%	2.3%
Fernandez–Ferrin et al. 2015	249	- č	•	0.70; –0.55]	1.3%	2.1%
Nakos & Hajidimitriou 2007	430			0.25; -0.07]	2.2%	2.3%
Sharma 2011	468	10 10 10 10 10 10 10 10 10 10 10 10 10 1	•	0.24; -0.06]	2.4%	2.3%
De Nisco et al. 2016 De Nisco et al. 2016	274 182		-	0.27; –0.04] 0.06; 0.23]	1.4% 0.9%	2.2% 2.0%
Fixed effect model	2638			0.00; 0.23]	13.7%	2.0 %
Random effects model	2000	\sim		0.28: 0.001		19.1%
Heterogeneity: $I^2 = 93\%$, $\tau^2 = 0$.	0447, <i>p</i> < 0	01	0111	0120, 0100]		1011/0
Continent = 5						
Ettenson & Klein 2005	261	-	-0.28 [-0	0.39; –0.16]	1.4%	2.2%
Ettenson & Klein 2005	329		•	0.34; -0.14]	1.7%	2.2%
Fixed effect model	590).33; –0.18]	3.1%	
Random effects model			-0.26 [-0).33; –0.18]		4.4%
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, μ	0.61					
Continent = 9						
Jin et al. 2015	772		-0.10 [-0	0.17; –0.03]	4.0%	2.4%
Jin et al. 2015	1883	÷+		0.21; -0.13]	9.9%	2.5%
Fixed effect model	2655	♦ ♦	•).19; –0.11]	13.9%	
Random effects model			-0.14 [-0).21; –0.07]		4.9%
Heterogeneity: $I^2 = 64\%$, $\tau^2 = 0$.	0016, $p = 0$	10				
Fixed effect model	19186	0	-0.21 [-(0.23; -0.20] 1	100.0%	
Random effects model		♦	-).24; -0.15]		100.0%
Heterogeneity: $I^2 = 90\%$, $\tau^2 = 0$.		01		,		
	-0	.6-0.4-0.2 0 0.2 0.4	0.6			

D9.2.1 Forest plot of product judgement foreign for moderator continent

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Developed = 1	27	-0.2048	[-0.2220; -0.1876]	341.52	92.4%
Developed = 0	19	-0.2264	[-0.2484; -0.2043]	109.41	83.5%
Test for subgroup diff	ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	2.29	1	0.1304		
Within groups	250.93	44	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Developed = 1	27	-0.1932	[-0.2569; -0.1278]	341.52	92.4%
Developed = 0	19	-0.2087	[-0.2652; -0.1508]	109.41	83.5%
Test for subgroup diff	ferences (randon	n effects model))		
	Q	<u>d.f.</u>	p-value		
Between groups	0.12	1	0.7244		

Analysis of foreign product judgement for moderator developed

D9.3 Analysis of foreign product judgement for moderator urban

Results of subgroups (fixed effect mo	del)						
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²			
Developed = 1	12	-0.2403	[-0.2685; -0.2117]	163.08	93.3%			
Developed $= 0$	34	-0.2051	[-0.2204; -0.1896]	285.61	88.4%			
Test for subgroup differences (fixed effect model)								
	<u>Q</u>	<u>d.f.</u>	<u>p-value</u>					
Between groups	4.52	1	0.0334					
Within groups	448.69	44	< 0.0001					
Test for subgroups (random effects model)								
	<u>k</u>	COR	<u>95%-CI</u>	Q	$\underline{I^2}$			
Developed = 1	12	-0.2525	[-0.3615; -0.1366]	163.08	93.3%			
Developed = 0	34	-0.1809	[-0.2280; -0.1331]	285.61	88.4%			
Test for subgroup differences (random effects model)								
	Q	<u>d.f.</u>	<u>p-value</u>					
Between groups	1.28	1	0.2581					

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	$\underline{I^2}$
Selection $= 4$	8	-0.1042	[-0.1398; -0.0683]	37.63	81.4%
Selection = 1	13	-0.1290	[-0.1566; -0.1012]	21.33	43.7%
Selection $= 0$	13	-0.2858	[-0.3117; -0.2594]	47.49	74.7%
Selection $= 5$	6	-0.1970	[-0.2292; -0.1644]	126.99	96.1%
Selection $= 3$	6	-0.3400	[-0.3705; -0.13087]	57.49	91.3%
Test for subgroup dif	ferences (fixed e	ffect model)			
	<u>Q</u>	<u>d.f.</u>	<u>p-value</u>		
Between groups	162.29	4	< 0.0001		
Within groups	290.93	41	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Selection $= 4$	8	-0.1017	[-0.1849; -0.0171]	37.63	81.4%
Selection $= 1$	13	-0.1173	[-0.1600; -0.0742]	21.33	43.7%
Selection $= 0$	13	-0.2663	[-0.3212; -0.2095]	47.49	74.7%
Selection $= 5$	6	-0.1522	[-0.3141; -0.0183]	126.99	96.1%
Selection $= 3$	6	-0.3803	[-0.4805; -0.2703]	57.49	91.3%
Test for subgroup dif	ferences (randon	n effects model)		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	32.51	4	< 0.0001		

D9.4 Analysis of foreign product judgement for moderator selection

Selection = 4 Ishii 2009 300
Ishii 2009 300 -0.13 $1-0.24$, -0.01 1.6% 2.2% Bawa 2004 174 -0.27 -0.27 , $[-0.40; -0.13]$ 0.9% 2.0% Sharma 2011 349 -0.13 $[-0.24, -0.06]$ 2.4% 2.2% Sharma 2011 548 -0.13 $[-0.24, -0.06]$ 2.4% 2.3% Sharma 2011 547 -0.13 $[-0.24, -0.06]$ 2.4% 2.3% Cheah et al. 2016 435 -0.07 $[-0.16, 0.02]$ 2.3% 2.3% Cheah et al. 2016 58 -0.07 $[-0.16, 0.02]$ 2.3% 2.3% Sun & Kwon 2002 120 -0.09 $[-0.26, 0.09]$ 0.6% 1.8% Sun & Kwon 2002 120 -0.07 $[-0.16, -0.02]$ 0.7% 1.9% Sun & Kwon 2002 120 -0.07 $[-0.26, 0.09]$ 0.6% 1.8% Sun & Kwon 2002 120 -0.07 $[-0.17, 0.03]$ 1.9% 2.4% Jin et al. 2015 1883 -0.17 $[-0.17, 0.03]$ 0.9% 2.4% De Nisco et al. 2016 1
Bawa 2004 174 -0.27 $[-0.40] - 0.13]$ 0.9% 2.0% Sharma 2011 349 -0.09 $[-0.13]$ 0.9% 2.2% Sharma 2011 388 -0.13 $[-0.23] - 0.03]$ 2.0% 2.3% Cheah et al. 2016 435 -0.13 $[-0.26] - 0.10]$ 2.3% 2.3% Cheah et al. 2016 435 -0.07 $[-0.16] - 0.07]$ $[5.4\%]$ -0.10 $[-0.14] - 0.07]$ $[5.4\%]$ Sharma 2011 367 -0.10 $[-0.14] - 0.07]$ $[5.4\%]$ -0.10 $[-0.16] - 0.07]$ $[5.4\%]$ Selection = 1 Bawa 2004 58 -0.27 $[-0.49] - 0.01]$ 0.3% 1.4% Suh & Kwon 2002 120 -0.00 $[-0.26] - 0.03]$ 0.0% 1.9% Jin et al. 2015 1883 -0.17 $[-0.36] - 0.03]$ 0.7% 1.9% De Nisco et al. 2016 274 -0.00 $[-0.22] - 0.04]$ 1.2% 2.1% De Nisco et al. 2016 274 -0.00 $[-0.22] - 0.04]$ 1.2% 2.1% Ma et al. 2012 255 -0
Sharma 2011 349 -0.09 $[-0.19, -0.02]$ 1.8% 2.2% Sharma 2011 368 -0.13 $[-0.23, -0.03]$ 2.0% 2.3% Sharma 2011 547 -0.18 $[-0.26, -0.06]$ 2.4% 2.3% Cheah et al. 2016 435 -0.07 $[-0.16, 0.02]$ 2.3% 2.3% Fixed effect model 2961 -0.10 $[-0.14; -0.07]$ 15.4% Random effects model 2961 -0.10 $[-0.14; -0.07]$ 15.4% Sub & Kwon 2002 128 -0.07 $[-0.16; 0.02]$ 2.3% Sub & Kwon 2002 128 -0.07 $[-0.17; -0.03]$ 0.7% 1.9% Jin et al. 2015 772 -0.01 $[-0.48; -0.12]$ 0.5% 1.7% De Nisco et al. 2016 274 -0.01 $[-0.27; -0.49]$ 1.4% 2.2% Ma et al. 2012 255 -0.01 $[-0.27; -0.49]$ 1.4% 2.2% Ma et al. 2012 255 -0.01 $[-0.27; -0.02]$ 1.3% 2.2%
Sharma 2011 388 -0.13 $[-0.23] (-0.06] 2.4\% 2.3\%$ Sharma 2011 468 -0.15 $[-0.24] (-0.06] 2.4\% 2.3\%$ Cheah et al. 2016 435 -0.07 $[-0.16] (-0.2] 2.3\% 2.3\%$ Cheah et al. 2016 2961 -0.10 $[-0.14] (-0.07] 15.4\%$ -0.10 $[-0.14] (-0.07] 15.4\%$ Fixed effect model 2961 -0.10 $[-0.14] (-0.07] 15.4\%$ -0.10 $[-0.14] (-0.07] 15.4\%$ -0.10 $[-0.14] (-0.07] 15.4\%$ Selection = 1 Bawa 2004 58 -0.27 $[-0.49] (-0.01] 0.3\%$ 1.4% Suh & Kwon 2002 128 -0.20 $[-0.36] (-0.03] 0.7\%$ 1.9% Parker et al. 2011 367 -0.31 $[-0.48] (-0.12] 0.5\%$ 1.7% Jin et al. 2015 1883 -0.17 $[-0.33] 0.7\%$ 1.9% Cai et al. 2016 224 -0.00 $[-0.27] (-0.4] 1.2\%$ 2.5% Cai et al. 2016 244 -0.00 $[-0.27] (-0.4] 1.4\%$ 2.2% Ma et al. 2012 255 -0.01 $[-0.27] (-0.4] 1.4\%$ 2.2% De Nisco et al. 2016 182 -0.01 $[-0.27] (-0.01] 1.3\%$ 2.2% Ma et al. 2012 255 -0.01 $[-0.27] (-0.01] 1.3\%$ 2.2% Ma et al. 2012 255 -0.01 $[-0.27] (-0.01] 1.3\%$
Sharma 2011 547 -0.18 -0.002 2.3% 2.3% Cheah et al. 2016 435 -0.07 $[-0.16, 0.02]$ 2.3% 2.3% Fixed effect model 2951 -0.07 $[-0.16, 0.02]$ 2.3% 2.3% Heterogeneity: $l^2 = 81\%$, $t^2 = 0.0121$, $p < 0.01$
Cheah et al. 2016 435 -0.07 [-0.16; 0.02] 2.3% 2.3% Fixed effect model 2961 -0.10 [-0.14; -0.07] 15.4% -0.10 [-0.14; -0.07] 15.4% Random effects model -0.07 [-0.16; 0.02] 2.3% 2.3% -0.10 [-0.14; -0.07] 15.4% -0.10 [-0.14; -0.07] 15.4% -0.10 [-0.14; -0.07] 15.4% -0.07 [-0.16; 0.02] 2.3% 2.3% Sub & Kwon 2002 120 -0.10 [-0.14; -0.07] 0.3% 1.4% -0.07 [-0.17; 0.03] 1.9% 2.3% Sub & Kwon 2002 120 -0.07 [-0.17; 0.03] 0.0% 1.8% -0.07 [-0.17; 0.03] 1.9% 2.3% Verlegh 2007 103 -0.07 [-0.17; 0.03] 1.9% 2.5% -0.07 [-0.17; 0.03] 1.9% 2.5% Cai et al. 2012 225 -0.10 [-0.27; -0.04] 1.4% 2.1% -0.16 [-0.27; -0.04] 1.4% 2.2% De Nisco et al. 2016 82 -0.08 [-0.20; 0.04] 1.3% 2.2% Ma et al. 2012 255 -0.08 [-0.20; 0.04] 1.3% 2.2% Kim et al. 2011 800 +0.13 [-0.37; -0.25] 4.2% -0.28 [-0.45; -0.09]
Fixed effect model 2961 -0.10 [-0.14; -0.07] 15.4% 0.10 [-0.16; -0.02] -0.10 [-0.18; -0.02] -0.10 [-0.18; -0.02] 17.9% Heterogeneity: $l^2 = 81\%$, $t^2 = 0.0121$, $p < 0.01$ -0.27 [-0.49; -0.01] 0.3% 1.4% Sub & Kwon 2002 120 -0.09 [-0.26; -0.09] 0.5% 1.8% Sub & Kwon 2002 128 -0.07 [-0.17; -0.03] 1.9% -0.09 [-0.26; -0.09] 0.7% 1.9% Verlegh 2007 103 -0.01 [-0.48; -0.12] 0.5% 1.7% Jin et al. 2015 172 -0.01 [-0.17; -0.03] 1.9% 2.2% Cai et al. 2016 274 -0.09 [-0.26; 0.04] 1.2% 2.1% De Nisco et al. 2016 182 -0.08 [-0.23; 0.01] 1.3% 2.2% Ma et al. 2012 255 -0.08 [-0.26; 0.04] 1.3% 2.2% Ma et al. 2012 255 -0.08 [-0.26; 0.04] 1.3% 2.2% Kumar et al. 2011 800 + -0.12 [-0.16; -0.07] 26.7% Heterogeneity: $l^2 = 45\%$, $t^2 = 0.0024$, $p = 0.05$ -0.28 [-0.45; -0.09] 0.5% 1.7% Selection = 0 Bawa 2004 103
Random effects model Heterogeneity: $f^2 = 81\%$, $t^2 = 0.0121$, $p < 0.01$ -0.10 [-0.18; -0.02] -17.9% Selection = 1 Bawa 2004 58 -0.27 [-0.49; -0.01] 0.3% 1.4% Suh & Kwon 2002 120 -0.09 [-0.26; 0.09] 0.6% 1.8% Suh & Kwon 2002 128 -0.07 [-0.17; 0.03] 0.9% 1.9% Parker et al. 2011 367 -0.07 [-0.17; -0.03] 1.9% Jin et al. 2015 772 -0.10 [-0.17; -0.03] 4.0% 2.4% Ouis Co et al. 2016 224 -0.16 [-0.27; -0.04] 1.4% 2.2% De Nisco et al. 2016 182 -0.09 [-0.22; 0.04] 1.4% 2.2% Ma et al. 2012 255 -0.08 [-0.20; 0.04] 1.4% 2.2% Ma et al. 2012 255 -0.08 [-0.20; 0.04] 1.3% 2.2% Ma et al. 2012 255 -0.08 [-0.20; 0.03] 1.3% 2.2% Ma et al. 2012 255 -0.09 [-0.22; 0.06] 1.3% 2.2% Fixed effect model 4876 -0.13 [-0.16; -0.07] -0.28 [-0.45; -0.09] 0.5% 1.7% Kumar et al. 2011 800 -0.33 [-0.44; -0.14]
Heterogeneity: $P^2 = 81\%$, $r^2 = 0.0121$, $p < 0.01$ Selection = 1 Bawa 2004 58 Suh & Kwon 2002 120 Parker et al. 2011 367 Verlegh 2007 103 Jin et al. 2015 772 Jin et al. 2015 178 Cai et al. 2016 274 De Nisco et al. 2016 274 De Nisco et al. 2016 274 De Nisco et al. 2016 255 Ma et al. 2012 255 Ma et al. 2012 255 Pixed effect model 4876 Random effects model 4876 Heterogeneity: $r^2 = 44\%$, $r^2 = 0.0024$, $p = 0.05$ Selection = 0 9awa 2004 Bawa 2004 103 Nijssen & Douglas 2004 109 Nijssen & Douglas 2010
Bawa 2004 58 -0.27 [-0.49; -0.01] 0.3% 1.4% Sub & Kwon 2002 120 -0.08 [-0.26; 0.09] 0.6% 1.8% -0.09 [-0.26; 0.09] 0.6% 1.8% -0.09 [-0.26; 0.09] 0.6% 1.8% -0.09 [-0.26; 0.09] 0.6% 1.8% -0.07 [-0.17; 0.03] 1.9% 2.3% -0.07 [-0.17; 0.03] 1.9% 2.4% -0.010 [-0.17; -0.03] 4.0% 2.4% -0.010 [-0.17; -0.03] 4.0% 2.4% -0.010 [-0.17; -0.03] 4.0% 2.4% -0.010 [-0.27; -0.4] 1.4% 2.2% De Nisco et al. 2016 182 -0.09 [-0.26; 0.09] 0.5% 1.7% De Nisco et al. 2016 182 -0.09 [-0.26; 0.01] 1.3% 2.2% Ma et al. 2012 255 -0.08 [-0.27; -0.4] 1.4% 2.2% Ma et al. 2012 255 -0.08 [-0.27; -0.4] 1.4% 2.2% Ma et al. 2012 255 -0.08 [-0.27; -0.4] 1.4% 2.2% Ma et al. 2012 255 -0.08 [-0.27; 0.04] 1.3% 2.2% Ma et al. 2012 255 -0.09 [-0.21; 0.03] 1.3% 2.2% Ma et al. 2012 255 -0.08 [-0.27; 0.04] 1.3% 2.2% Ma et al. 2012 255 -0.08 [-0.27; 0.04] 1.3% 2.2% Ma et al. 2012 255 -0.09 [-0.21; 0.03] 1.3% 2.2% Ma et al. 2012 255 -0.08 [-0.26; -0.07] - 26.7% Heterogeneity: $l^2 = 44\%$, $\tau^2 = 0.0024$, $p = 0.05$ Selection = 0 Bawa 2004 103 -0.28 [-0.45; -0.09] 0.5% 1.7% Nijssen & Douglas 2004 110 -0.28 [-0.46; -0.23] 1.1% 2.1% Nijssen & Douglas 2004 110 -0.28 [-0.34; -0.21] 4.2% 2.4% Ktein et al. 1998 244 -0.03 [-0.26; -0.07] 2.2% 2.3% Wang et al. 2013 257 Nakos & Hajidmitriou 2007 430 -0.26 [-0.25; -0.07] 2.2% 2.3% Wang et al. 2013 257 -0.36 [-0.46; -0.25] 1.3% 2.2% Nakos & Hajidmitriou 2007 430 -0.36 [-0.46; -0.25] 1.3% 2.2% Nakos & Hajidmitriou 2007 430 -0.36 [-0.46; -0.25] 1.3% 2.2% Richardson & Harris 2014 348 -0.30 [-0.46; -0.25] 1.3% 2.2% Random effects model -0.27 [-0.32; -0.21] - 27.8% Heterogeneity: $l^2 = 75\%$, $t^2 = 0.0084$, $p < 0.01$
Suh & Kwon 2002 120 -0.09 [-0.26]; 0.09] 0.6% 1.8% Suh & Kwon 2002 128 -0.09 [-0.26]; 0.09] 0.6% 1.8% Suh & Kwon 2002 128 -0.09 [-0.26]; 0.09] 0.6% 1.8% Verlegh 2007 103 -0.07 [-0.17]; -0.03] 1.9% 2.3% Jin et al. 2015 772 -0.01 [-0.27]; -0.04] 1.2% 2.1% De Nisco et al. 2016 274 -0.10 [-0.27]; -0.04] 1.4% 2.2% Ma et al. 2012 255 -0.11 [-0.23] 0.9% 2.0% Ma et al. 2012 255 -0.08 [-0.20]; 0.04] 1.3% 2.2% Fixed effect model 4876 -0.13 [-0.16]; -0.07] -26.7% Heterogeneity: $l^2 = 44\%$, $t^2 = 0.0024$, $p = 0.05$ -0.35 [-0.46]; -0.29] 1.3% 2.2% Sub a Xeini 2005 213 -0.35 [-0.46]; -0.29] 1.3% 2.2% Kumar et al. 2011 800 -0.35 [-0.46]; -0.29] 1.3% 2.1% Nijssen & Douglas 2004 109 -0.31 [-0.25]
Suh & Kwon 2002 128 -0.20 [-0.36 ; -0.03] 0.7% 1.9% Parker et al. 2011 367 -0.07 [-0.17 ; 0.03] 1.9% 2.3% Verlegh 2007 103 -0.07 [-0.17 ; 0.03] 1.9% 2.3% Jin et al. 2015 172 -0.07 [-0.17 ; 0.03] 4.0% 2.4% Jin et al. 2015 1883 -0.10 [-0.17 ; -0.03] 4.0% 2.4% De Nisco et al. 2016 274 -0.09 [-0.22 ; 0.04] 1.2% 2.1% De Nisco et al. 2016 274 -0.16 [-0.27 ; -0.04] 1.4% 2.2% Ma et al. 2012 255 -0.11 [-0.23 ; 0.01] 1.3% 2.2% Ma et al. 2012 255 -0.08 [-0.23 ; 0.01] 1.3% 2.2% Ma et al. 2012 255 -0.08 [-0.23 ; 0.01] 1.3% 2.2% Fixed effect model 4876 -0.13 [-0.16 ; -0.10] 25.4% -0.13 [-0.16 ; -0.07] -0.28 [-0.45 ; -0.09] 0.5% 1.7% Kumar et al. 2011 800 + -0.28 [-0.45 ; -0.29] 1.3% 2.4% Kumar et al. 2013 204 -0.03 -0.28 [-0.45 ; -0.29]
Parker et al. 2011 367 -0.07 $[-0.17; 0.03]$ 1.9% 2.3% Verlegh 2007 103 -0.31 $[-0.48; -0.12]$ 0.5% 1.7% Jin et al. 2015 1883 -0.07 $[-0.17; 0.03]$ 4.0% 2.4% Jin et al. 2015 1883 -0.10 $[-0.17; 0.03]$ 4.0% 2.4% De Nisco et al. 2016 224 -0.09 $[-0.22; 0.04]$ 1.2% 2.1% De Nisco et al. 2016 182 -0.09 $[-0.22; 0.04]$ 1.2% 2.1% Ma et al. 2012 255 -0.09 $[-0.22; 0.04]$ 1.3% 2.2% Ma et al. 2012 255 -0.09 $[-0.22; 0.04]$ 1.3% 2.2% Ma et al. 2012 255 -0.09 $[-0.22; 0.04]$ 1.3% 2.2% Fixed effect model 4876 -0.13 $[-0.16; -0.07]$ -26.7% Heterogeneity: $l^2 = 44\%$, $r^2 = 0.0024$, $p = 0.05$ -0.33 $[-0.46; -0.23]$ 1.1% 2.1% Kumar et al. 2011 800 -0.31 $[-0.37; -0.25]$ 4.2% 2.4% Kumar et al. 2011 800 -0.31 $[-0.35; -0.21]$ 1.3% 2.2% Nijssen & Douglas 2004 103 -0.36 $[-0.46; -0.25]$ <
Verlegh 2007 103 -0.31 [-0.48; -0.12] 0.5% 1.7% Jin et al. 2015 772 -0.10 [-0.17; -0.03] 4.0% 2.4% Cai et al. 2012 224 -0.09 [-0.22; 0.04] 1.2% 2.1% De Nisco et al. 2016 182 -0.09 [-0.22; 0.04] 1.2% 2.1% Ma et al. 2012 255 -0.09 [-0.22; 0.04] 1.3% 2.2% Ma et al. 2012 255 -0.09 [-0.20; 0.04] 1.3% 2.2% Ma et al. 2012 255 -0.09 [-0.21; 0.03] 1.3% 2.2% Ma et al. 2012 255 -0.08 [-0.20; 0.04] 1.3% 2.2% Fixed effect model 4876 -0.13 [-0.16; -0.01] 25.4% -0.12 [-0.16; -0.07] -26.7% Heterogeneity: l^2 = 44%, t^2 = 0.0024, p = 0.05 -0.38 [-0.45; -0.09] 0.5% 1.7% Selection = 0 -0.31 [-0.26; -0.27] 1.1% 2.1% Nijssen & Douglas 2004 103 -0.35 [-0.46; -0.23] 1.1% 2.1% Nijssen & Douglas 2004 109 -0.36 [-0.46; -0.23] 1.3% 2.2% Nakos & Hajidimitriou 2007 430 -0.28 [-0.39; -0.16]
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
Cai et al. 2012 224 -0.09 $[-0.22; 0.04]$ 1.2% 2.1% De Nisco et al. 2016 274 -0.09 $[-0.22; 0.04]$ 1.4% 2.2% De Nisco et al. 2016 182 -0.09 $[-0.06; 0.23]$ 0.9% 2.0% Ma et al. 2012 255 -0.09 $[-0.22; 0.04]$ 1.4% 2.2% Ma et al. 2012 255 -0.09 $[-0.22; 0.04]$ 1.3% 2.2% Ma et al. 2012 255 -0.09 $[-0.21; 0.03]$ 1.3% 2.2% Fixed effect model 4876 -0.13 $[-0.16; -0.01]$ 25.4% -0.12 $[-0.16; -0.07]$ -26.7% Heterogeneity: $l^2 = 44%$, $t^2 = 0.0024, p = 0.05 -0.38 [-0.45; -0.09] 0.5% 1.7% Selection = 0 -0.38 [-0.45; -0.09] 0.5% 1.7% Bawa 2004 103 -0.38 [-0.45; -0.29] 1.1% 2.1% Kumar et al. 2011 800 -0.33 [-0.22; 0.16] 0.5% 1.2% Nijssen & Douglas 2004 100 -0.38 [-0.33; -0.21] 4.2% 2.4% Nuissen & Leoids 2005 261 -0.38 [-0.32; -0.21] 1.8% 2.2% Nakos & Hajidimitriou 2007 430 $
De Nisco et al. 2016 274 De Nisco et al. 2016 182 Ma et al. 2012 255 Ma et al. 2012 255 Fixed effect model 4876 Heterogeneity: $l^2 = 44\%$, $\tau^2 = 0.0024$, $p = 0.05$ Selection = 0 Bawa 2004 103 Yo & Donthu 2005 213 Nijssen & Douglas 2004 109 Ettenson & Klein 2005 261 Nijssen & Douglas 2004 109 Ettenson & Klein 2005 261 Heterogeneity: $l^2 = 75\%$, $\tau^2 = 0.0084$, $p < 0.01$ Selection = 4.2013 257 Nakos & Hajidimitriou 2007 430 Fixed effect model 488 Mage et al. 2013 257 Nakos & Hajidimitriou 2007 430 Heterogeneity: $l^2 = 75\%$, $\tau^2 = 0.0084$, $p < 0.01$ Selection = 5 Nguyen et al. 2008 549 -0.13 [-0.21; -0.05] 2.9% 2.3%
De Nisco et al. 2016 182 Ma et al. 2012 255 Ma et al. 2012 255 Fixed effect model 4876 Random effects model Heterogeneity: $l^2 = 44\%$, $t^2 = 0.0024$, $p = 0.05$ Selection = 0 Bawa 2004 103 Yoo & Donthu 2005 213 Kimar et al. 2011 800 Ettenson & Klein 2005 261 Nijssen & Douglas 2004 110 Nijssen & Douglas 2004 110 Nijssen & Douglas 2004 109 Ettenson & Klein 2005 261 Heterogeneity: $l^2 = 75\%$, $t^2 = 0.0084$, $p < 0.01$ Selection = 5 Nguyen et al. 2008 549 -0.13 [-0.21; -0.05] 2.9% 2.2%
Ma et al. 2012 255 -0.11 $[-0.23; 0.01]$ 1.3% 2.2% Ma et al. 2012 255 -0.08 $[-0.20; 0.04]$ 1.3% 2.2% Fixed effect model 4876 -0.09 $[-0.21; 0.03]$ 1.3% 2.2% Fixed effect model 4876 -0.09 $[-0.21; 0.03]$ 1.3% 2.2% Fixed effect model 4876 -0.09 $[-0.21; 0.03]$ 1.3% 2.2% Heterogeneity: $l^2 = 44\%$, $r^2 = 0.0024$, $p = 0.05$ -0.11 $[-0.23; 0.01]$ 1.3% 2.2% Selection = 0 -0.12 $[-0.16; -0.07]$ -26.7% Kumar et al. 2011 800 -0.35 $[-0.46; -0.23]$ 1.1% 2.1% Nijssen & Douglas 2004 103 -0.31 $[-0.37; -0.25]$ 4.2% 2.4% Nijssen & Douglas 2004 109 -0.31 $[-0.37; -0.25]$ 4.2% 2.4% Nijssen & Douglas 2004 109 -0.38 $[-0.39; -0.16]$ 1.4% 2.2% Nijssen & Douglas 2004 109 -0.28 $[-0.39; -0.16]$ 1.4% 2.2% Nakos & Hajidimitriou 2007 430 -0.28 $[-0.39; -0.16]$ 1.4% 2.2% Nakos & Hajidimitriou 2007 430 -0.36 $[-0.46; -$
Ma et al. 2012 255 -0.09 $[-0.21; 0.03]$ 1.3% 2.2% Fixed effect model 4876 -0.13 $[-0.16; -0.10]$ 25.4% -0.12 $[-0.16; -0.07]$ -26.7% Heterogeneity: $f^2 = 44\%$, $t^2 = 0.0024$, $p = 0.05$ -0.28 $[-0.45; -0.09]$ 0.5% 1.7% Selection = 0 -0.35 $[-0.46; -0.23]$ 1.1% 2.1% Kumar et al. 2011 800 -0.35 $[-0.46; -0.23]$ 1.1% 2.1% Kumar et al. 2011 800 -0.28 $[-0.34; -0.21]$ 4.2% 2.4% -0.40 $[-0.50; -0.29]$ 1.3% 2.1% -0.40 $[-0.50; -0.29]$ 1.3% 2.1% Nijssen & Douglas 2004 109 -0.38 $[-0.34; -0.21]$ 4.2% 2.4% Ettenson & Klein 2005 261 -0.28 $[-0.34; -0.21]$ 1.4% 2.2% Wang et al. 2013 257 -0.36 $[-0.46; -0.25]$ 1.3% 2.2% Wang et al. 2013 257 -0.36 $[-0.46; -0.25]$ 1.3% 2.2% Richardson & Harris 2014 348 -0.30 $[-0.40; -0.21]$ 1.8% 2.2% Notata 2010 776 -0.35 $[-0.41; -0.29]$ 4.1% 2.4% Fixed eff
Fixed effect model 4876 -0.13 [-0.16; -0.10] 25.4% Random effects model -0.12 [-0.16; -0.07] -26.7% Heterogeneity: $l^2 = 44\%$, $r^2 = 0.0024$, $p = 0.05$ -0.28 [-0.45; -0.09] 0.5% 1.7% Selection = 0 -0.33 [-0.46; -0.23] 1.1% 2.1% Kumar et al. 2011 800 -0.33 [-0.46; -0.23] 1.1% 2.1% Kumar et al. 2011 800 -0.33 [-0.37; -0.25] 4.2% 2.4% Nijssen & Douglas 2004 100 -0.41 [-0.05; -0.29] 1.3% 2.1% Nijssen & Douglas 2004 109 -0.42 [-0.34; -0.14] 1.7% 2.2% Ettenson & Klein 2005 261 -0.28 [-0.39; -0.16] 1.4% 2.2% Nakos & Hajidimitriou 2007 430 -0.28 [-0.46; -0.25] 1.3% 2.2% Wang et al. 2013 257 -0.46 [-0.25; -0.07] 2.2% 2.3% Mostafa 2010 776 -0.35 [-0.41; -0.29] 4.1% 2.4% -0.35 [-0.41; -0.29] 4.1% 2.4% -0.35 [-0.41; -0.29] 4.1% 2.4% Heterogeneity: $l^2 = 75\%$, $r^2 = 0.0084$, $p < 0.01$ -0.27 [-0.32; -0.21] -0.27 [-0.32
Random effects model Heterogeneity: $l^2 = 44\%$, $t^2 = 0.0024$, $p = 0.05$ Selection = 0 Bawa 2004 103 4 Bawa 2004 103 4 Yoo & Donthu 2005 213 4 Kumar et al. 2011 800 4 Nijssen & Douglas 2004 100 4 Nijssen & Bouglas 2004 100 4 Nijssen & Bouglas 2004 100 4 Nakos & Hajidimitriou 2007 430 4 Oata [-0.25; -0.07] 2.28 Oata [-0.25; -0.07] 2.2% Oata [-0.26; -0.26] 1.3% Polas [-0.46; -0.25] 1.3% Polas [-0.46; -0.26] 1.4% Polas [-0.46; -0.26] 1.4% Polas [-0.46; -0.26] 1.4% Polas [-0.46; -0.26] 1.3% Polas [-0.46; -0.26] 1.3% Polas [-0.46; -0.26] 2.4% Polas
Heterogeneity: $l^2 = 44\%$, $t^2 = 0.0024$, $p = 0.05$ Selection = 0 Bawa 2004 103 Yoo & Donthu 2005 213 Kumar et al. 2011 800 Kumar et al. 2011 800 Nijssen & Douglas 2004 109 Ettenson & Klein 2005 221 Ettenson & Klein 2005 261 Bichardson & Klein 2005 329 Pichardson & Harris 2014 348 Pixed effect model 4780 Pixed effect model 4780 Heterogeneity: $l^2 = 75\%$, $t^2 = 0.0084$, $p < 0.01$
Bawa 2004 103 -0.28 [-0.45; -0.09] 0.5% 1.7% Yoo & Donthu 2005 213 -0.35 [-0.46; -0.23] 1.1% 2.1% Kumar et al. 2011 800 -0.35 [-0.46; -0.23] 1.1% 2.1% Klein et al. 1998 244 -0.40 [-0.50; -0.29] 1.3% 2.4% Nijssen & Douglas 2004 109 -0.33 [-0.25; -0.29] 1.3% 2.1% Nijssen & Douglas 2004 109 -0.33 [-0.25; -0.29] 1.3% 2.2% Ettenson & Klein 2005 261 -0.28 [-0.39; -0.16] 0.6% 1.8% Wadg et al. 2013 257 -0.36 [-0.46; -0.25] 1.3% 2.2% Richardson & Harris 2014 348 -0.30 [-0.40; -0.21] 1.8% 2.2% Mostafa 2010 776 -0.35 [-0.41; -0.29] 4.1% 2.4% Heterogeneity: $l^2 = 75\%, \tau^2 = 0.0084, p < 0.01$ -0.29 [-0.31; -0.26] 24.9% -0.28 [-0.21; -0.05] 2.9% 2.3%
Yoo & Donthu 2005 213 -0.35 [-0.46; -0.23] 1.1% 2.1% Kumar et al. 2011 800 -0.31 [-0.37; -0.25] 4.2% 2.4% Kumar et al. 2011 800 -0.38 [-0.34; -0.21] 4.2% 2.4% Nijssen & Douglas 2004 110 -0.46 [-0.50; -0.29] 1.3% 2.1% Nijssen & Douglas 2004 109 -0.40 [-0.50; -0.29] 1.3% 2.1% Ettenson & Klein 2005 261 -0.28 [-0.39; -0.16] 0.6% 1.8% Wang et al. 2013 257 -0.36 [-0.46; -0.25] 1.3% 2.2% Watafa 2010 776 -0.36 [-0.40; -0.21] 1.8% 2.2% Mostafa 2010 776 -0.35 [-0.41; -0.29] 4.1% 2.4% Fixed effect model 4780 -0.35 [-0.41; -0.29] 4.1% 2.4% Heterogeneity: $l^2 = 75\%, r^2 = 0.0084, p < 0.01$ -0.27 [-0.32; -0.21] -27.8% Selection = 5 Nguyen et al. 2008 549 -0.13 [-0.21; -0.05] 2.9% 2.3%
Kumar et al. 2011 800 -0.31 [-0.37; -0.25] 4.2% 2.4% Kumar et al. 2011 800 -0.31 [-0.37; -0.25] 4.2% 2.4% Klein et al. 1998 244 -0.40 [-0.50; -0.29] 1.3% 2.1% Nijssen & Douglas 2004 110 0.14 [-0.05; 0.32] 0.6% 1.8% Nijssen & Douglas 2004 109 -0.38 [-0.32; -0.16] 0.6% 1.8% Ettenson & Klein 2005 261 -0.28 [-0.39; -0.16] 1.4% 2.2% Ettenson & Klein 2005 329 -0.24 [-0.34; -0.14] 1.7% 2.2% Nakos & Hajidimtiriou 2007 430 -0.16 [-0.25; -0.07] 2.2% 2.3% Mostafa 2010 776 -0.35 [-0.41; -0.29] 1.1% 2.2% Mostafa 2010 776 -0.35 [-0.41; -0.29] 4.1% 2.4% Fixed effect model 4780 -0.35 [-0.41; -0.29] 4.1% 2.4% Heterogeneity: l^2 = 75%, t^2 = 0.0084, $p < 0.01$ -0.27 [-0.32; -0.21] -27.8% Selection = 5 Nguyen et al. 2008 549 -0.13 [-0.21; -0.05] 2.9% 2.3%
Kumar et al. 2011 800 -0.28 [-0.34; -0.21] 4.2% 2.4% Klein et al. 1998 244 -0.40 [-0.50; -0.29] 1.3% 2.1% Nijssen & Douglas 2004 110 0.14 [-0.05; -0.29] 1.3% 2.1% Nijssen & Douglas 2004 109 -0.33 [-0.22; 0.16] 0.6% 1.8% Ettenson & Klein 2005 261 -0.28 [-0.34; -0.14] 1.7% 2.2% Nakos & Hajdimitriou 2007 430 -0.28 [-0.29; -0.07] 2.2% -0.36 [-0.46; -0.25] 1.3% 2.2% Richardson & Harris 2014 348 -0.30 [-0.40; -0.21] 1.8% 2.2% Mostafa 2010 776 -0.36 [-0.46; -0.25] 1.3% 2.2% Fixed effect model 4780 -0.29 [-0.31; -0.26] 24.9% -0.27 [-0.32; -0.21] -0.27 [-0.32; -0.21] -0.27 [-0.32; -0.21] -0.27 [-0.32; -0.21] -0.27 [-0.32; -0.21] -0.27 [-0.32; -0.21] -0.27 [-0.32; -0.21] -0.27 [-0.32; -0.21] -0.27 [-0.32; -0.21] -0.27 [-0.32; -0.21] -0.27 [-0.32; -0.21] -0.27 [-0.32; -0.21] -0.27 [-0.32; -0.21] -0.27 [-0.32; -0.21] -0.27 [-0.32; -0.21] -0.27 [-0.32; -0.21] -0.27 [-0.32; -0.21] -0.27 [-0.32; -0.21] -
Klein et al. 1998 244 -0.40 $[-0.50; -0.29]$ 1.3% 2.1% Nijssen & Douglas 2004 110 0.14 $[-0.05; 0.32]$ 0.6% 1.8% Nijssen & Douglas 2004 109 -0.03 $[-0.22; 0.16]$ 0.6% 1.8% Ettenson & Klein 2005 261 -0.28 $[-0.33; -0.16]$ 1.4% 2.2% Wang et al. 2013 257 -0.36 $[-0.46; -0.25]$ 1.3% 2.2% Richardson & Harris 2014 348 -0.30 $[-0.40; -0.21]$ 1.8% 2.2% Mostafa 2010 776 -0.35 $[-0.41; -0.29]$ 1.1% 2.4% Fixed effect model 4780 -0.29 $[-0.31; -0.26]$ 24.9% -0.27 $[-0.32; -0.21]$ -27.8% Heterogeneity: $l^2 = 75\%, \tau^2 = 0.0084, p < 0.01$
Nijssen & Douglas 2004 109 -0.03 $[-0.22; 0.16]$ 0.6% 1.8% Ettenson & Klein 2005 261 -0.28 $[-0.39; -0.16]$ 1.4% 2.2% Nakos & Hajidimitriou 2007 430 -0.24 $[-0.34; -0.14]$ 1.7% 2.2% Nakos & Hajidimitriou 2007 430 -0.16 $[-0.25; -0.07]$ 2.2% 2.3% Mang et al. 2013 257 -0.36 $[-0.46; -0.25]$ 1.3% 2.2% Mostafa 2010 776 -0.35 $[-0.41; -0.29]$ 4.1% 2.4% Fixed effect model 4780 -0.29 $-0.32; -0.21]$ -0.27 $[-0.32; -0.21]$ -0.27 27.8% Heterogeneity: $l^2 = 75\%, \tau^2 = 0.0084, p < 0.01$ Selection = 5 -0.13 $[-0.21; -0.05]$ 2.9% 2.3%
Ettenson & Klein 2005 261 -0.28 [-0.39; -0.16] 1.4% 2.2% Ettenson & Klein 2005 329 -0.24 [-0.34; -0.14] 1.7% 2.2% Nakos & Hajidimitriou 2007 430 -0.26 [-0.25; -0.07] 2.2% -0.36 [-0.46; -0.25] 1.3% 2.2% Richardson & Harris 2014 348 -0.36 [-0.46; -0.25] 1.3% 2.2% Fixed effect model 4780 -0.36 [-0.41; -0.29] 4.1% 2.4% Heterogeneity: $l^2 = 75\%$, $\tau^2 = 0.0084$, $p < 0.01$ -0.27 [-0.32; -0.21] -0.27 [-0.32; -0.21] -0.27.8% Selection = 5 Nguyen et al. 2008 549 -0.13 [-0.21; -0.05] 2.9% 2.3%
Ettenson & Klein 2005 329 -0.24 [-0.34; -0.14] 1.7% 2.2% Nakos & Hajidimitriou 2007 430 -0.64 [-0.55; -0.07] 2.2% 2.3% Wang et al. 2013 257 -0.36 [-0.46; -0.25] 1.3% 2.2% Mostafa 2010 776 -0.35 [-0.41; -0.29] 1.8% 2.2% Fixed effect model 4780 -0.29 [-0.31; -0.26] 24.9% -0.27 [-0.32; -0.21] 27.8% Heterogeneity: $l^2 = 75\%$, $\tau^2 = 0.0084$, $p < 0.01$ Selection = 5 -0.13 [-0.21; -0.05] 2.9% 2.3%
Nakos & Hajidimitriou 2007 430 -0.16 $[-0.25; -0.07]$ 2.2% 2.3% Wang et al. 2013 257 -0.36 $[-0.46; -0.25]$ 1.3% 2.2% Michardson & Harris 2014 348 -0.30 $[-0.46; -0.25]$ 1.3% 2.2% Mostafa 2010 776
Wang et al. 2013 257 -0.36 [-0.46; -0.25] 1.3% 2.2% Richardson & Harris 2014 348 -0.30 [-0.40; -0.21] 1.8% 2.2% Mostafa 2010 776 -0.35 [-0.41; -0.29] 4.1% 2.4% Fixed effect model 4780 -0.29 [-0.31; -0.26] 24.9% -0.27 [-0.32; -0.21]
Richardson & Harris 2014 348 - -0.30 [-0.40; -0.21] 1.8% 2.2% Mostafa 2010 776 - - -0.35 [-0.41; -0.29] 4.1% 2.4% Fixed effect model 4780 - -0.25 [-0.31; -0.26] 24.9% - Random effects model - - $-0.27 [-0.32; -0.21]$ - 27.8% Heterogeneity: $l^2 = 75\%$, $\tau^2 = 0.0084$, $p < 0.01$ - - $-0.27 [-0.32; -0.21]$ - 27.8% Selection = 5 Nguyen et al. 2008 549 - - $-0.13 [-0.21; -0.05]$ 2.9% 2.3%
Fixed effect model 4780 -0.29 [-0.31; -0.26] 24.9% -0.29 [-0.31; -0.26] 24.9% -0.27 [-0.32; -0.21] -0.27 [-0.
Random effects model $-0.27 \ [-0.32; -0.21]$ -27.8% Heterogeneity: $l^2 = 75\%$, $r^2 = 0.0084$, $p < 0.01$ $-0.27 \ [-0.32; -0.21]$ -27.8% Selection = 5 Nguyen et al. 2008 549 $-0.13 \ [-0.21; -0.05]$ 2.9% 2.3%
Heterogeneity: $l^2 = 75\%$, $\tau^2 = 0.0084$, $p < 0.01$ Selection = 5 Nguyen et al. 2008 549 — -0.13 [-0.21; -0.05] 2.9% 2.3%
Nguyen et al. 2008 549 -0.13 [-0.21; -0.05] 2.9% 2.3%
Huang et al. 2010 434 - 0.20 [0.11; 0.29] 2.3% 2.3%
Zeugner–Roth et al. 2015 411 += -0.15 [-0.24; -0.05] 2.1% 2.3%
Zeugner-Roth et al. 2015 411 -0.15 [-0.24; -0.05] 2.1% 2.3% Zeugner-Roth et al. 2015 405 -0.08 [-0.18; 0.01] 2.1% 2.3%
Kumar et al. 2013 800 \pm -0.35 [-0.41; -0.29] 4.2% 2.4%
Kumar et al. 2013 800 + -0.36 [-0.42; -0.30] 4.2% 2.4%
Fixed effect model 3399 ♦ -0.20 [-0.23; -0.16] 17.7%
Random effects model -0.15 [-0.31; 0.02] 14.0% Heterogeneity: $l^2 = 96\%$, $\tau^2 = 0.0441$, $p < 0.01$ 14.0%
Selection = 3
Fernandez-Ferrin et al. 2015 249
Carter 2009 800 -0.36 [-0.42; -0.30] 4.2% 2.4%
Carter 2009 800 -0.31 [-0.37; -0.25] 4.2% 2.4%
Carter 2009 800 -0.21 [-0.27; -0.14] 4.2% 2.4% Klein 2002 202
Funk et al. 2010 319
Fixed effect model 3170 ♦ -0.34 [-0.37; -0.31] 16.5%
Random effects model
Heterogeneity: $I^2 = 91\%$, $\tau^2 = 0.0211$, $p < 0.01$
Fixed effect model 19186 –0.21 [-0.23; -0.20] 100.0% –-
Random effects model 19186 → -0.20 [-0.23; -0.20] 100.0%
Heterogeneity: $l^2 = 90\%$, $\tau^2 = 0.0222$, $p < 0.01$
-0.6-0.4-0.2 0 0.2 0.4 0.6

D9.4.1 Forest plot of foreign product judgement for moderator selection

Results of subgroups (#	fixed effect mo	del)			
	<u>k</u>	<u>COR</u>	<u>95%-CI</u>	Q	<u>I</u> ²
Characteristics = 0	30	-0.2447	[-0.2608; -0.2284]	380.58	92.4%
Characteristics = 3	5	-0.1471	[-0.1921; -0.1016]	2.81	0.0%
Characteristics = 1	10	-0.1373	[-0.1671; -0.1072]	21.20	57.5%
Characteristics = 2	1	-0.2700	[-0.4026; -0.1268]	0.00	-
Test for subgroup diffe	erences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	48.63	3	< 0.0001		
Within groups	404.59	42	< 0.0001		
Test for subgroups (rar	ndom effects m	odel)			
	<u>K</u>	COR	<u>95%-CI</u>	<u>Q</u>	<u>I</u> ²
Characteristics $= 0$	30	-0.2217	[-0.2811; -0.1606]	380.58	92.4%
Characteristics = 3	5	-0.1473	[-0.1921; -0.1016]	2.81	0.0%
Characteristics = 1	10	-0.1285	[-0.1834; -0.0729]	21.20	57.5%
Characteristics = 2	1	-0.2700	[-0.4026; -0.1263]	0.00	-
Test for subgroup diffe	erences (randon	n effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	7.63	3	0.0532		

D9.5 Analysis of foreign product judgement for moderator characteristics

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
Characteristics = 0 Ishii 2009	300	е е е	0.20	[0.08; 0.30]	1.6%	2.2%
Ishii 2009	300	16 III.		-0.24; -0.01]	1.6%	2.2%
Yoo & Donthu 2005	213			-0.46; -0.23]	1.1%	2.1%
Nguyen et al. 2008	549		-	-0.21; -0.05]	2.9%	2.3%
Kumar et al. 2011	800 800			-0.37; -0.25]	4.2% 4.2%	2.4% 2.4%
Kumar et al. 2011 Huang et al. 2010	434		-	-0.34; -0.21] [0.11; 0.29]	4.2% 2.3%	2.4%
Klein et al. 1998	244			-0.50; -0.29]	1.3%	2.1%
Nijssen & Douglas 2004	110		-	-0.05; 0.32]	0.6%	1.8%
Nijssen & Douglas 2004	109	<u> </u>		-0.22; 0.16]	0.6%	1.8%
Zeugner-Roth et al. 2015	411			-0.24; -0.05]	2.1%	2.3%
Zeugner-Roth et al. 2015	405	§	–0.08 [-0.18; 0.01]	2.1%	2.3%
Fernandez-Ferrin et al. 20			-	-0.70; -0.55]	1.3%	2.1%
Carter 2009	800		-	-0.42; -0.30]	4.2%	2.4%
Carter 2009	800		-	-0.37; -0.25]	4.2% 4.2%	2.4% 2.4%
Carter 2009 Klein 2002	800 202		-	-0.27; -0.14] -0.45; -0.20]	4.2%	2.4%
Ettenson & Klein 2005	261		-	-0.39; -0.16]	1.4%	2.1%
Ettenson & Klein 2005	329	<u> </u>	-	-0.34; -0.14]	1.7%	2.2%
Nakos & Hajidimitriou 2007			-	-0.25; -0.07]	2.2%	2.3%
Kumar et al. 2013	800	+		-0.41; -0.29]	4.2%	2.4%
Kumar et al. 2013	800	+ {	-0.36 [-	-0.42; -0.30]	4.2%	2.4%
Wang et al. 2013	257			-0.46; -0.25]	1.3%	2.2%
Cheah et al. 2016	435			-0.16; 0.02]	2.3%	2.3%
Ma et al. 2012	255			-0.23; 0.01]	1.3%	2.2%
Ma et al. 2012	255			-0.20; 0.04]	1.3%	2.2%
Ma et al. 2012 Funk et al. 2010	255 319			-0.21; 0.03] -0.50; -0.31]	1.3% 1.7%	2.2% 2.2%
Richardson & Harris 2014	348			-0.30; -0.31]	1.8%	2.2%
Mostafa 2010	776	-		-0.41; -0.29]	4.1%	2.4%
Fixed effect model	13046	¢ ^c		0.26; -0.23	68.0%	
Random effects model		\diamond		0.28; -0.16]		66.8%
Heterogeneity: $I^2 = 92\%$, $\tau^2 =$	0.0284, p < 0.0	1				
		é é				
Characteristics = 3		i i i i i i i i i i i i i i i i i i i	0 07 I		0.00/	
Bawa 2004	58			-0.49; -0.01]	0.3%	1.4%
Sharma 2011 Sharma 2011	349 388		-	-0.19; 0.02] -0.23; -0.03]	1.8% 2.0%	2.2% 2.3%
Sharma 2011	468	<u>è</u>	-	-0.23; -0.03]	2.0%	2.3%
Sharma 2011	547	<u>-</u>	-	-0.26; -0.10]	2.9%	2.3%
Fixed effect model	1810	♦		0.19; -0.10]	9.4%	
Random effects model		\diamond	-0.15 [-	0.19; -0.10]		10.6%
Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$), <i>p</i> = 0.59	6 6 6				
Characteristics = 1	100	6 9	0.00.1	0.45	0.50/	4 70/
Bawa 2004 Suh & Kwon 2002	103 120			-0.45; -0.09]	0.5% 0.6%	1.7% 1.8%
Suh & Kwon 2002	120			-0.26; 0.09] -0.36; -0.03]	0.0%	1.0%
Parker et al. 2011	367	<u> </u>		-0.17; 0.03]	1.9%	2.3%
Verlegh 2007	103		-	-0.48; -0.12]	0.5%	1.7%
Jin et al. 2015	772	§		-0.17; -0.03]	4.0%	2.4%
Jin et al. 2015	1883		-0.17 [-	-0.21; -0.13]	9.9%	2.5%
Cai et al. 2012	224			-0.22; 0.04]	1.2%	2.1%
De Nisco et al. 2016	274	- <u>6</u>		-0.27; -0.04]	1.4%	2.2%
De Nisco et al. 2016	182			-0.06; 0.23]	0.9%	2.0%
Fixed effect model Random effects model	4156	\diamond		·0.17; –0.11] ·0.18; –0.07]	21.7%	20.6%
Heterogeneity: $l^2 = 58\%$, $\tau^2 =$	0.004 n = 0.01		-0.15 [-	0.10, -0.07]		20.0 /0
	5.55 i , p = 0.01					
Characteristics = 2						
Bawa 2004	174		-0.27 [-	-0.40; -0.13]	0.9%	2.0%
Fixed effect model	174	$ \rightarrow $		0.40; -0.13	0.9%	
Random effects model			-0.27 [-	0.40; -0.13]		2.0%
Heterogeneity: not applicable		0 0 0				
Fixed effect model	19186		_0.04 7	-0.23; -0.20]	100 00/	
Random effects model	19100	¢		-0.23; -0.20]		100.0%
Heterogeneity: $I^2 = 90\%$, $\tau^2 =$	0.0222. <i>p</i> < 0 ⁰	-	-0.20 [-	·····		
		, 3-0.4-0.2 0 0.2 0.4 (0.6			

D9.5.1 Forest plot of foreign product judgement for moderator characteristics

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETtype = 4	13	-0.1371	[-0.1617; -0.1124]	89.34	86.6%
CETtype = 0	12	-0.2994	[-0.3214; -0.2770]	40.85	73.1%
CETtype = 3	15	-0.1746	[-0.2024; -0.1466]	63.18	77.8%
CETtype = 2	1	0.2000	[0.1079; 0.2887]	0.00	-
CETtype = 1	4	-0.3886	[-0.4383; -0.3367]	40.37	92.6%
CETtype = 9	1	-0.3050	[-0.3974; -0.2065]	0.00	-
Test for subgroup dif	ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	219.47	5	< 0.0001		
Within groups	233.74	40	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETtype = 4	13	-0.1349	[-0.2057; -0.0626]	89.34	86.6%
CETtype = 0	12	-0.2911	[-0.3366; -0.2444]	40.85	73.1%
CETtype = 3	15	-0.1438	[-0.2056; -0.0809]	63.18	77.8%
CETtype = 2	1	0.2000	[0.1079; 0.2887]	0.00	-
CETtype = 1	4	-0.4005	[-0.5680; -0.2011]	40.37	92.6%
CETtype = 9	1	-0.3050	[-0.3974; -0.2065]	0.00	-
Test for subgroup dif	ferences (randon	n effects model))		
	Q	<u>d.f.</u>	p-value		
Between groups	98.38	5	< 0.0001		

D9.6 Analysis of foreign product judgement for moderator CETtype

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
CETtype = 4		i i				
Ishii 2009	300		- 0.20	[0.08; 0.30]	1.6%	2.2%
Ishii 2009	300	<u>6</u>	-0.13	[-0.24; -0.01]	1.6%	2.2%
Nguyen et al. 2008	549			[-0.21; -0.05]	2.9%	2.3%
Zeugner–Roth et al. 2015	411	- <u>+</u>	-0.15	[-0.24; -0.05]	2.1%	2.3%
Zeugner–Roth et al. 2015	405			[-0.18; 0.01]	2.1%	2.3%
Klein 2002	202			[-0.45; -0.20]	1.0%	2.1%
Verlegh 2007	103			[-0.48; -0.12]	0.5%	1.7%
Jin et al. 2015	772	<u>c</u> — — —		[-0.17; -0.03]	4.0%	2.4%
Jin et al. 2015	1883			[-0.21; -0.13]	9.9%	2.5%
De Nisco et al. 2016	274	- <u></u>		[-0.27; -0.04]	1.4%	2.2%
De Nisco et al. 2016	182			[-0.06; 0.23]	0.9%	2.0%
Cheah et al. 2016	435			[-0.16; 0.02]	2.3%	2.3%
Funk et al. 2010	319			[-0.50; -0.31]	1.7%	2.2%
Fixed effect model	6135	*		[-0.16; -0.11]	32.0%	
Random effects model Heterogeneity: $I^2 = 87\%$, $\tau^2 = 0$.	0148, <i>p</i> < 0.	01	-0.13	[-0.21; -0.06]		28.7%
CETtype = 0						
Bawa 2004	58		-0.27	[-0.49; -0.01]	0.3%	1.4%
Bawa 2004	103	.		[-0.45; -0.09]	0.5%	1.7%
Bawa 2004	174	<u> </u>		[-0.40; -0.13]	0.9%	2.0%
Yoo & Donthu 2005	213	.		[-0.46; -0.23]	1.1%	2.1%
Kumar et al. 2011	800	-		[-0.37; -0.25]	4.2%	2.4%
Kumar et al. 2011	800			[-0.34; -0.21]	4.2%	2.4%
Carter 2009	800	-		[-0.42; -0.30]	4.2%	2.4%
Carter 2009	800			[-0.37; -0.25]	4.2%	2.4%
Carter 2009	800	÷		[-0.27; -0.14]	4.2%	2.4%
Parker et al. 2011	367			[-0.17; 0.03]	1.9%	2.3%
Kumar et al. 2013	800	-		[-0.41; -0.29]	4.2%	2.4%
Kumar et al. 2013	800	-	-0.36	[-0.42; -0.30]	4.2%	2.4%
Fixed effect model	6515	۵	-0.30	[-0.32; -0.28]	34.0%	
Random effects model		\diamond	-0.29	[-0.34; -0.24]		26.3%
Heterogeneity: $I^2 = 73\%$, $\tau^2 = 0$.	0052, <i>p</i> < 0	01				
CETtype = 3		6				
Suh & Kwon 2002	120		-0.09	[-0.26; 0.09]	0.6%	1.8%
Suh & Kwon 2002	128	- <u>+</u>		[-0.36; -0.03]	0.7%	1.9%
Nijssen & Douglas 2004	110			[-0.05; 0.32]	0.6%	1.8%
Nijssen & Douglas 2004	109	<u>•</u> ••		[-0.22; 0.16]	0.6%	1.8%
Nakos & Hajidimitriou 2007	430			[-0.25; -0.07]	2.2%	2.3%
Sharma 2011	349			[-0.19; 0.02]	1.8%	2.2%
Sharma 2011	388	÷ =		[-0.23; -0.03]	2.0%	2.3%
Sharma 2011	468	(=		[-0.24; -0.06]	2.4%	2.3%
Sharma 2011	547			[-0.26; -0.10]	2.9%	2.3%
Cai et al. 2012	224	e m		[-0.22; 0.04]	1.2%	2.1%
Wang et al. 2013	257			[-0.46; -0.25]	1.3%	2.2%
Ma et al. 2012	255	<u> </u>		[-0.23; 0.01]	1.3%	2.2%
Ma et al. 2012	255			[-0.20; 0.04]	1.3%	2.2%
Ma et al. 2012	255	_		[-0.21; 0.03]	1.3%	2.2%
Mostafa 2010	776	-		[-0.41; -0.29]	4.1%	2.4%
Fixed effect model	4671	•		[-0.20; -0.15]	24.3%	
Random effects model Heterogeneity: $I^2 = 78\%$, $\tau^2 = 0$.	0117 0 10	A 1	-0.14	[-0.21; -0.08]		31.8%
Helefogeneity. $T = 76\%$, $\tau = 0$.	0117, <i>p</i> < 0.					
CETtype = 2 Huang et al. 2010	434		- 0.20	[0.11; 0.29]	2.3%	2.3%
Fixed effect model	434		> 0.20	[0.11; 0.29]	2.3%	2.0%
Random effects model	404				2.0 /0	2.3%
leterogeneity: not applicable			> 0.20	[0.11; 0.29]		2.0 /0
CETtype = 1						
Klein et al. 1998	244		_0.40	[-0.50; -0.29]	1.3%	2.1%
Fernandez-Ferrin et al. 2015				[-0.50; -0.29]	1.3%	2.1%
Ettenson & Klein 2005	243	<u>_</u>		[-0.39; -0.16]	1.3%	2.1%
Ettenson & Klein 2005	329			[-0.34; -0.14]	1.4%	2.2%
Fixed effect model	1083	\diamond		[-0.44; -0.34]	5.6%	ر <u>۲.۲</u>
Random effects model		\sim		[-0.57; -0.20]		8.7%
Heterogeneity: $I^2 = 93\%$, $\tau^2 = 0$.	0468, <i>p</i> < 0	01	0.40	,		
CETtype = 9						
Richardson & Harris 2014	348		-0.30	[-0.40; -0.21]	1.8%	2.2%
Fixed effect model	348	\diamond		[-0.40; -0.21]	1.8%	
Random effects model		\diamond		[-0.40; -0.21]		2.2%
Heterogeneity: not applicable				-		
	19186	0	_0.21	[-0.23; -0.20]	100.0%	
Fixed effect model Random effects model	19100	\$		[-0.24; -0.15]	100.070	100.0%

D9.6.1 Forest plot of foreign product judgement for moderator CET type

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	$\underline{I^2}$
CETcoded = 2	9	-0.1331	[-0.1619; -0.1040]	58.91	86.4%
CETcoded = 1	13	-0.1901	[-0.2155; -0.1645]	141.75	91.5%
CETcoded = 0	10	-0.1972	[-0.2360; -0.1578]	115.26	92.2%
CETcoded = 3	6	-0.2859	[-0.3227; -0.2483]	22.19	77.5%
CETcoded = 9	8	-0.2861	[-0.3127; -0.2590]	39.92	82.5%
Test for subgroup dif	ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	p-value		
Between groups	75.19	4	< 0.0001		
Within groups	378.03	41	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETcoded = 2	9	-0.1096	[-0.1950; -0.0225]	58.91	86.4%
CETcoded = 1	13	-0.1823	[-0.2723; -0.0892]	141.75	91.5%
CETcoded = 0	10	-0.1854	[-0.3245; -0.0385]	115.26	92.2%
CETcoded = 3	6	-0.2790	[-0.3593; -0.1947]	22.19	77.5%
CETcoded = 9	8	-0.2722	[-0.3381; -0.2037]	39.92	82.5%
Test for subgroup dif	ferences (randon	n effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	11.48	4	0.0216		

D9.7 Analysis of foreign product judgement for moderator CETcoded

Study	Total	Correlation	COR		Weight (fixed)	Weight (random)
CETcoded = 2 Ishii 2009 Ishii 2009 Zeugner-Roth et al. 2015 Klein 2002 Ettenson & Klein 2005 Parker et al. 2011 Sharma 2011 Jin et al. 2015 De Nisco et al. 2016 Fixed effect model Random effects model Heterogeneity: $l^2 = 86\%$, $\tau^2 = 0$	300 300 411 202 329 367 468 1883 182 4442 .0149, <i>p</i> < 0.01		-0.13 [- -0.15 [- -0.33 [- -0.24 [- -0.07 [-0.15 [- 0.09 [-0.13 [-	$\begin{bmatrix} 0.08; \ 0.30 \end{bmatrix}$ $\begin{bmatrix} 0.24; -0.01 \end{bmatrix}$ $\begin{bmatrix} -0.24; -0.05 \end{bmatrix}$ $\begin{bmatrix} -0.45; -0.20 \end{bmatrix}$ $\begin{bmatrix} -0.34; -0.14 \end{bmatrix}$ $\begin{bmatrix} -0.17; \ 0.03 \end{bmatrix}$ $\begin{bmatrix} -0.24; -0.06 \end{bmatrix}$ $\begin{bmatrix} -0.21; -0.13 \end{bmatrix}$ $\begin{bmatrix} -0.06; \ 0.23 \end{bmatrix}$ $\begin{bmatrix} -0.16; -0.10 \end{bmatrix}$ $\begin{bmatrix} -0.19; -0.02 \end{bmatrix}$	1.6% 1.6% 2.1% 1.0% 1.7% 1.9% 2.4% 9.9% 2.4% 0.9% 23.2%	2.2% 2.2% 2.1% 2.3% 2.3% 2.3% 2.3% 2.5% 2.0%
CETcoded = 1 Bawa 2004 Suh & Kwon 2002 Yoo & Donthu 2005 Huang et al. 2010 Zeugner–Roth et al. 2015 Carter 2009 Carter 2009 Carter 2009 Sharma 2011 Sharma 2011 Sharma 2011 Jin et al. 2015 Wang et al. 2013 Fixed effect model Random effects model Heterogeneity: $J^2 = 92\%$, $\tau^2 = 0$	58 - 120 - 128 - 213 - 434 - 405 - 800 - 800 - 349 - 388 - 772 - 257 - 5524 -		-0.09 [-0.20 [- -0.35 [- 0.20] -0.36 [- -0.31 [- -0.21 [- -0.21 [- -0.13 [- -0.13 [- -0.13 [- -0.13 [- -0.13 [- -0.19 [-	-0.49; -0.01] -0.26; 0.09] -0.36; -0.03] -0.46; -0.23] [0.11; 0.29] -0.18; 0.01] -0.42; -0.30] -0.37; -0.25] -0.27; -0.14] -0.19; 0.02] -0.23; -0.03] -0.16; -0.25] -0.22; -0.16] -0.27; -0.09]	0.3% 0.6% 0.7% 1.1% 2.3% 4.2% 4.2% 4.2% 4.2% 4.2% 1.8% 2.0% 4.0% 1.3% 28.8%	1.4% 1.8% 1.9% 2.3% 2.3% 2.4% 2.4% 2.4% 2.4% 2.2% 2.2% 2.3% 2.4% 2.2% 2.2% 2.2% 2.2%
CETcoded = 0 Bawa 2004 Nguyen et al. 2008 Klein et al. 1998 Nijssen & Douglas 2004 Nijssen & Douglas 2004 Fernandez–Ferrin et al. 2015 Cai et al. 2012 Ma et al. 2012 Ma et al. 2012 Ma et al. 2012 Fixed effect model Random effects model Heterogeneity: $J^2 = 92\%$, $\tau^2 = 0$	224 255 255 255 2353		-0.13 [- -0.40 [- 0.14 [-0.03 [-0.63 [- -0.09 [-0.11 [-0.08 [-0.09 [-0.20 [-	-0.45; -0.09] -0.21; -0.05] -0.50; -0.29] -0.05; 0.32] -0.22; 0.16] -0.22; 0.04] -0.23; 0.01] -0.23; 0.04] -0.21; 0.03] -0.24; -0.16] -0.32; -0.04]	0.5% 2.9% 1.3% 0.6% 1.3% 1.2% 1.3% 1.3% 1.3%	1.7% 2.3% 2.1% 1.8% 2.1% 2.1% 2.2% 2.2% 2.2% 2.2% 2.2%
CETcoded = 3 Bawa 2004 Ettenson & Klein 2005 Sharma 2011 De Nisco et al. 2016 Funk et al. 2010 Mostafa 2010 Fixed effect model Random effects model Heterogeneity: $J^2 = 77\%$, $\tau^2 = 0$	174 261 547 274 319 776 2351	↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓	-0.28 [- -0.18 [- -0.16 [- -0.41 [- -0.35 [- -0.29 [-	-0.40; -0.13] -0.39; -0.16] -0.26; -0.10] -0.27; -0.04] -0.50; -0.31] -0.41; -0.29] -0.32; -0.25] -0.36; -0.19]	0.9% 1.4% 2.9% 1.4% 1.7% 4.1% 12.2%	2.0% 2.2% 2.3% 2.2% 2.2% 2.4% 13.3%
CETcoded = 9 Kumar et al. 2011 Kumar et al. 2011 Nakos & Hajidimitriou 2007 Kumar et al. 2013 Kumar et al. 2013 Verlegh 2007 Cheah et al. 2016 Richardson & Harris 2014 Fixed effect model Random effects model Heterogeneity: $J^2 = 82\%$, $\tau^2 = 0$	800 800 430 800 103 - 435 348 4516		-0.28 [- -0.16 [- -0.35 [- -0.36 [- -0.31 [- -0.07 [-0.30 [- -0.29 [-	-0.37; -0.25] -0.34; -0.21] -0.25; -0.07] -0.41; -0.29] -0.42; -0.30] -0.48; -0.12] -0.16; 0.02] -0.40; -0.21] -0.31; -0.26] -0.34; -0.20]	4.2% 4.2% 4.2% 4.2% 0.5% 2.3% 1.8% 23.6%	2.4% 2.4% 2.3% 2.4% 1.7% 2.3% 2.3% 2.2%
Fixed effect model Random effects model Heterogeneity: $l^2 = 90\%$, $\tau^2 = 0$		0.4-0.2 0 0.2 0.4 0.	-0.20 [-	-0.23; –0.20] -0.24; –0.15]	100.0% 	 100.0%

-0.6-0.4-0.2 0 0.2 0.4 0.6

D9.7.1 Forest plot of foreign product judgement for moderator CETtype

D10 PIWTB Foreign

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
Construct = 0	8	-0.2415	[-0.2747; -0.2077]	0.0523	95.2%
Construct = 1	25	-0.4187	[-0.4352; -0.4019]	0.063	95.9%
Test for subgroup dif	ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	p-value		
Between groups	91.69	1	< 0.0001		
Within groups	732.07	31	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Construct = 0	8	-0.2436	[-0.3896; -0.0857]	0.0523	95.2%
Construct = 1	25	-0.4189	[-0.4986; -0.3322]	0.063	95.9%
Test for subgroup dif	ferences (randon	n effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	4.09	1	0.0431		

D10.1 Analysis of product judgment foreign for moderator construct

Results of subgroups	(fixed effect m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Yearcoded = 2	18	-0.3165	[-0.3376; -0.2950]	582.98	97.1%
Yearcoded = 1	14	-0.4388	[-0.4601; -0.4170]	149.99	91.3%
Yearcoded = 0	1	-0.6300	[-0.7002; -0.5478]	0.00	-
Test for subgroup diff	ferences (fixed	effect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	90.78	2	< 0.0001		
Within groups	732.97	30	< 0.0001		
Test for subgroups (ra	andom effects r	nodel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Yearcoded = 2	18	-0.358	[-0.4734; -0.2306]	582.98	97.1%
Yearcoded = 1	14	-0.388	[-0.4643; -0.3061]	149.99	91.3%
Yearcoded = 0	1	-0.630	[-0.7002; -0.5478]	0.00	-
Test for subgroup diff	ferences (rando	m effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	20.71	2	< 0.0001		

D10.2 Analysis of PIWTB foreign for moderator year

Study	Total	Correlation	COR	95%-CI	Weight (fixed)	Weight (random)
Yearcoded = 2 Akdogan & Ozgener 2012 Sharma 2011 Sharma 2011 Sharma 2011 Sharma 2011 Fakharmanesh & Miyandehi 2013 Funk et al. 2010 Zeugner-Roth et al. 2015 Zeugner-Roth et al. 2015 Fernandez-Ferrin et al. 2015 He & Wang 2015 Tabassi et al. 2012 Cai et al. 2012 Wang et al. 2013 Cheah et al. 2016 Ma et al. 2012 Ma et al. 2012 Fixed effect model Random effects model	208 349 388 468 547 463 319 411 405 249 912 500 224 257 435 255 255 255 255 6900		-0.07 -0.09 -0.12 [-0.14 [-0.25 [-0.25 [-0.35 [-0.37 [-0.86 [-0.88 [-0.62 [-0.53 [-0.62 [-0.53 [-0.40 [-0.94 [-0.25 [-0.44 [-0.32 [-0.34 [-0.32 [-0.34 [-0.32 [-0.34 [-0.32 [-0.34 [-0.32 [-0.34 [$\begin{array}{l} -0.49; -0.26] \\ [-0.17; 0.04] \\ [-0.19; 0.01] \\ -0.21; -0.03] \\ -0.22; -0.06] \\ -0.35; -0.14] \\ -0.43; -0.26] \\ -0.26; -0.07] \\ -0.26; -0.07] \\ -0.89; -0.82] \\ -0.14; -0.02] \\ -0.67; -0.56] \\ -0.62; -0.43] \\ -0.50; -0.29] \\ [-0.18; 0.00] \\ -0.57; -0.38] \\ -0.36; -0.13] \\ -0.36; -0.13] \\ -0.34; -0.30] \\ -0.47; -0.23] \end{array}$	1.6% 2.8% 3.1% 3.7% 4.4% 3.7% 2.5% 3.3% 3.2% 2.0% 4.0% 1.8% 2.0% 3.5% 2.0% 2.0% 54.9%	3.0% 3.1% 3.1% 3.1% 3.1% 3.0% 3.1% 3.1% 3.0% 3.1% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0% 3.0%
Heterogeneity: $l^2 = 97\%$, $\tau^2 = 0.0885$, $p < 0.01$ Yearcoded = 1 Park et al. 2008 Ishii 2009 Huang et al. 2008 Suh & Kwon 2002 Suh & Kwon 2002 Yoo & Donthu 2005 Jimenez Torres & San Martin Gutierrez 2007 Carter 2009 Carter 2009 Carter 2009 Carter 2009 Ettenson & Klein 2005 Ettenson & Klein 2005 Ettenson & Klein 2005 Nakos & Hajidimitriou 2007 Fixed effect model Random effects model Heterogeneity: $l^2 = 91\%$, $\tau^2 = 0.0281$, $p < 0.01$	319 300 433 120 128 213 202 800 800 800 261 329 430 5435		-0.48 [-0.44 [-0.25 [-0.27 [0.09] -0.49 [-0.14] -0.56 [-0.46 [-0.46 [-0.42 [-0.53 [-0.42] -0.49 [-0.44]	-0.29; -0.08] -0.57; -0.39] -0.53; -0.34] -0.34; -0.16] -0.43; -0.10] [-0.08; 0.26] -0.59; -0.38] [-0.27; 0.00] -0.60; -0.51] -0.58; -0.41] -0.52; -0.31] -0.56; -0.42] -0.46; -0.42]	2.5% 2.4% 3.4% 0.9% 1.0% 1.6% 6.4% 6.4% 2.1% 2.6% 3.4% 43.2%	3.0% 3.0% 3.1% 2.8% 3.0% 3.1% 3.1% 3.1% 3.1% 3.0% 3.1% 3.0% 3.1% 42.2%
Yearcoded = 0 Klein et al. 1998 Fixed effect model Random effects model Heterogeneity: not applicable	244 244	+ \$ \$	-0.63 [-	–0.70; –0.55] –0.70; –0.55] –0.70; –0.55]	1.9% 1.9% 	3.0% 3.0%
Fixed effect model Random effects model Heterogeneity: $l^2 = 96\%$, $\tau^2 = 0.066$, $p < 0.01$	12579	-0.5 0 0.5	-	–0.39; –0.36] –0.45; –0.30]	100.0% 	 100.0%

D10.2.1 Forest plot of PIWTB foreign for moderator year

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Continent = 1	7	-0.3736	[-0.4078; -0.3383]	267.29	97.8%
Continent = 2	17	-0.3314	[-0.3538; -0.3086]	397.60	96.0%
Continent = 0	7	-0.4367	[-0.4629; -0.4098]	111.37	94.6%
Continent = 5	2	-0.4832	[-0.5429; -0.4187]	2.92	65.8%
Test for subgroup diff	Ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	44.57	3	< 0.0001		
Within groups	779.18	29	< 0.0001		
Test for subgroups (ra	ndom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Continent = 1	7	-0.4036	[-0.6045; -0.1544]	267.29	97.8%
Continent = 2	17	-0.3472	[-0.4543; -0.2302]	397.60	96.0%
Continent = 0	7	-0.3991	[-0.5147; -0.2693]	111.37	94.6%
Continent = 5	2	-0.4791	[-0.5792; -0.3647]	2.92	65.8%
Test for subgroup diff	erences (randon	n effects model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	2.75	3	0.4320		

D10.3 Analysis of PIWTB foreign for moderator continent

D10.4 Analysis of PIWTB foreign for moderator developed

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Developed = 1	21	-0.3617	[-0.3816; -0.3416]	630.04	96.8%
Developed = 0	12	-0.3997	[-0.4223; -0.3767]	187.70	94.1%
Test for subgroup diff	ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	6.01	1	0.0142		
Within groups	817.74	31	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Developed = 1	21	-0.3850	[-0.4901; -0.2689]	630.04	96.8%
Developed = 0	12	-0.3674	[-0.4620; -0.2644]	187.70	94.1%
Test for subgroup diff	ferences (randon	n effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	0.05	1	0.8167		

	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Urban = 0	24	-0.3947	[-0.4120; -0.3772]	441.58	94.8%
Urban = 1	9	-0.3319	[-0.3613; -0.3017]	369.13	97.8%
Test for subgroup diff	ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	13.05	1	0.0003		
Within groups	810.70	31	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Urban = 0	12	-0.3628	[-0.4394; -0.2810]	441.58	94.8%
Urban = 1	34	-0.4212	[-0.5922; -0.2139]	369.13	97.8%
Test for subgroup diff	ferences (randon	n effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	0.29	1	0.5874		

D10.5 Analysis PIWTB foreign for moderator urban

D10.6 Analysis of PIWTB foreign for moderator selection

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
Selection = 0	10	-0.3931	[-0.4198; -0.3657]	205.93	95.6%
Selection = 1	7	-0.3307	[-0.3745; -0.2854]	58.95	89.8%
Selection = 4	7	-0.1885	[-0.2242; -0.1524]	74.23	91.9%
Selection = 9	2	-0.4995	[-0.5546; -0.4400]	47.39	97.9%
Selection $= 3$	5	-0.5359	[-0.5611; -0.5097]	157.72	97.5%
Selection $= 5$	2	-0.2610	[-0.3239; -0.1957]	7.76	87.1%
Test for subgroup dif	ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	271.77	5	< 0.0001		
Within groups	551.98	27	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
Selection = 0	10	-0.4399	[-0.5568; -0.3059]	205.93	95.6%
Selection = 1	7	-0.3111	[-0.4467; -0.1615]	58.95	89.8%
Selection $= 4$	7	-0.2105	[-0.3323; -0.0818]	74.23	91.9%
Selection = 9	2	-0.4098	[-0.7648; 0.1361]	47.39	97.9%
Selection $= 3$	5	-0.5701	[-0.7065; -0.3928]	157.72	97.5%
Selection = 5	2	-0.2604	[-0.4287; -0.0746]	7.76	87.1%

Test for subgroup differences (random effects model)

Q

<u>d.f.</u>

<u>p-value</u>

Study	Total	Correlation	COR		Weight (fixed)	Weight (random)
Selection = 0 Akdogan & Ozgener 2012 Huang et al. 2008 Yoo & Donthu 2005	208 433 213	*	-0.25 -0.49	[-0.49; -0.26] [-0.34; -0.16] [-0.59; -0.38]	1.6% 3.4% 1.7%	3.0% 3.1% 3.0%
Klein et al. 1998 He & Wang 2015 Ettenson & Klein 2005 Ettenson & Klein 2005	244 912 261 329	* *	-0.08 -0.42	[-0.70; -0.55] [-0.14; -0.02] [-0.52; -0.31] [-0.60; -0.45]	1.9% 7.3% 2.1% 2.6%	3.0% 3.1% 3.0% 3.0%
Nakos & Hajidimitriou 2007 Tabassi et al. 2012 Wang et al. 2013 Fixed effect model	430 500 257 3787	*	-0.62 -0.40	[-0.56; -0.41] [-0.67; -0.56] [-0.50; -0.29] [-0.42; -0.37]	3.4% 4.0% 2.0% 30.1%	3.1% 3.1% 3.0%
Random effects model Heterogeneity: $I^2 = 96\%$, $\tau^2 = 0.0602$, $p < 0.01$				[-0.56; -0.31]		30.3%
Selection = 1 Park et al. 2008	319	-		[-0.29; -0.08]	2.5%	3.0%
Suh & Kwon 2002 Suh & Kwon 2002 Cai et al. 2012	120 128 224		0.09 -0.53	[-0.43; -0.10] [-0.08; 0.26] [-0.62; -0.43]	0.9% 1.0% 1.8%	2.8% 2.8% 3.0%
Ma et al. 2012 Ma et al. 2012 Ma et al. 2012	255 255 255	*	-0.25 -0.44	[-0.57; -0.38] [-0.36; -0.13] [-0.53; -0.34]	2.0% 2.0% 2.0%	3.0% 3.0% 3.0%
Fixed effect model Random effects model Heterogeneity: $l^2 = 90\%$, $\tau^2 = 0.0409$, $\rho < 0.01$	1556	\diamond		[–0.37; –0.29] [–0.45; –0.16]	12.3%	20.7%
Selection = 4 Sharma 2011	349	-		[-0.17; 0.04]	2.8%	3.0%
Sharma 2011 Sharma 2011 Sharma 2011	388 468 547	* *	-0.12	[-0.19; 0.01] [-0.21; -0.03] [-0.22; -0.06]	3.1% 3.7% 4.4%	3.1% 3.1% 3.1%
Ishii 2009 Ishii 2009 Cheah et al. 2016 Fixed effect model	300 300 435 2787	-	-0.44 -0.09	[-0.57; -0.39] [-0.53; -0.34] [-0.18; 0.00] [-0.22; -0.15]	2.4% 2.4% 3.5% 22.2%	3.0% 3.0% 3.1%
Random effects model Heterogeneity: $l^2 = 92\%$, $\tau^2 = 0.029$, $p < 0.01$	2101			[-0.33; -0.08]		21.4%
Selection = 9 Fakharmanesh & Miyandehi 2013 Jimenez Torres & San Martin Gutierrez 2007	463 202	-		[-0.67; -0.56]	3.7%	3.1% 3.0%
Fixed effect model Random effects model Heterogeneity: $l^2 = 98\%$, $\tau^2 = 0.167$, $p < 0.01$	665	*	-0.50	[-0.27; 0.00] [-0.55; -0.44] [-0.76; 0.14]	1.6% 5.3% 	6.0%
Selection = 3 Funk et al. 2010 Fernandez-Ferrin et al. 2015	319 249 ≖			[–0.35; –0.14] [–0.89; –0.82]	2.5% 2.0%	3.0% 3.0%
Carter 2009 Carter 2009 Carter 2009	800 800 800		-0.53 -0.46	[-0.60; -0.51] [-0.58; -0.48] [-0.52; -0.41]	6.4% 6.4% 6.4%	3.1% 3.1% 3.1%
Fixed effect model Random effects model Heterogeneity: $I^2 = 97\%$, $\tau^2 = 0.0682$, $\rho < 0.01$	2968	\diamond		[–0.56; –0.51] [–0.71; –0.39]	23.7%	15.4%
Selection = 5 Zeugner–Roth et al. 2015 Zeugner–Roth et al. 2015 Fixed effect model Random effects model	411 405 816	* * *	-0.17 -0.26	[-0.43; -0.26] [-0.26; -0.07] [-0.32; -0.20] [-0.43; -0.07]	3.3% 3.2% 6.5%	3.1% 3.1% 6.1%
Heterogeneity: $l^2 = 87\%$, $\tau^2 = 0.0167$, $p < 0.01$ Fixed effect model Random effects model	12579			[–0.39; –0.36] [–0.45; –0.30]	100.0%	 100.0%
Heterogeneity: $l^2 = 96\%$, $\tau^2 = 0.066$, $p < 0.01$		-0.5 0 0.5	5.00	, 0.00]		

D10.6.1 Forest plot of PIWTB foreign for moderator selection

Results of subgroups (f	fixed effect mo	del)			
	<u>k</u>	<u>COR</u>	<u>95%-CI</u>	Q	<u>I</u> ²
Characteristics = 0	25	-0.4280	[-0.4439; -0.4119]	590.07	95.9%
Characteristics = 1	4	-0.2660	[-0.3299; -0.1996]	40.78	92.6%
Characteristics = 3	4	-0.1098	[-0.1559; -0.0631]	1.27	-
Test for subgroup diffe	erences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	191.63	2	< 0.0001		
Within groups	632.12	30	< 0.0001		
Test for subgroups (rar	ndom effects m	odel)			
	<u>K</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
Characteristics = 0	25	-0.4372	[-0.5132; -0.3543]	590.07	95.9%
Characteristics = 1	4	-0.2406	[-0.4724; 0.0223]	40.78	92.6%
Characteristics = 3	4	-0.1098	[-0.1559; -0.0631]	1.27	-
Test for subgroup diffe	erences (randon	n effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	41.83	2	< 0.0001		

D10.7 Analysis of PIWTB foreign for moderator characteristics

Study	Total	Correlation	COR		eight Weight xed) (random)
Characteristics = 0					
Akdogan & Ozgener 2012	208	<u> </u>	-0.38 [-0	0.49; -0.26]	1.6% 3.0%
Fakharmanesh & Miyandehi 2013	463	-			3.7% 3.1%
Funk et al. 2010	319				2.5% 3.0%
Ishii 2009	300				2.4% 3.0%
Ishii 2009	300				2.4% 3.0%
Huang et al. 2008	433		-0.25 [-0	0.34; –0.16]	3.4% 3.1%
Yoo & Donthu 2005	213		-0.49 [-0	0.59; –0.38]	1.7% 3.0%
Klein et al. 1998	244	-	-0.63 [-0	0.70; –0.55]	1.9% 3.0%
Jimenez Torres & San Martin Gutierrez 2007			-0.14 [-	. ,	1.6% 3.0%
Zeugner-Roth et al. 2015	411	- 		· ·	3.3% 3.1%
Zeugner-Roth et al. 2015	405				3.2% 3.1%
Fernandez-Ferrin et al. 2015	249 =				2.0% 3.0%
Carter 2009	800			· ·	6.4% 3.1%
Carter 2009	800			· •	6.4% 3.1%
Carter 2009	800			· ·	6.4% 3.1%
He & Wang 2015	912	1		· •	7.3% 3.1%
Ettenson & Klein 2005 Ettenson & Klein 2005	261 329			· ·	2.1% 3.0% 2.6% 3.0%
Nakos & Hajidimitriou 2007	430				2.0% 3.0% 3.4% 3.1%
Tabassi et al. 2012	430 500	+ · · · · · · · · · · · · · · · · · · ·			4.0% 3.1%
Wang et al. 2013	257			· ·	2.0% 3.0%
Cheah et al. 2016	435				3.5% 3.1%
Ma et al. 2012	255				2.0% 3.0%
Ma et al. 2012	255			· ·	2.0% 3.0%
Ma et al. 2012	255			,	2.0% 3.0%
Fixed effect model	10036	•			9.8%
Random effects model		\diamond	-0.44 [-0).51; -0.35]	76.0%
Heterogeneity: $I^2 = 96\%$, $\tau^2 = 0.0599$, $p < 0.01$					
Characteristics = 1					
Park et al. 2008	319		-0.19 [-0	0.29; -0.08]	2.5% 3.0%
Suh & Kwon 2002	120		-0.27 [-0	0.43; –0.10]	0.9% 2.8%
Suh & Kwon 2002	128		0.09 [-	0.08; 0.26]	1.0% 2.8%
Cai et al. 2012	224			· ·	1.8% 3.0%
Fixed effect model	791	\diamond	-	/ 4	6.2%
Random effects model			-0.24 [-0	0.47; 0.02]	11.7%
Heterogeneity: $I^2 = 93\%$, $\tau^2 = 0.0686$, $p < 0.01$					
Characteristics = 3					
Sharma 2011	349			· •	2.8% 3.0%
Sharma 2011	388			· •	3.1% 3.1%
Sharma 2011	468			· ·	3.7% 3.1%
Sharma 2011	547			· · · · · · · · · · · · · · · · · · ·	4.4% 3.1%
Fixed effect model	1752	\$		/ 4	3.9%
Random effects model Heterogeneity: $I^2 = 0\%$, $\tau^2 = 0$, $p = 0.74$		\$	-0.11 [-0	0.16; –0.06]	12.3%
neterogeneity: $r = 0\%$, $\tau^{-} = 0$, $p = 0.74$					
Fixed effect model	12579	۸		0.39; -0.36] 100	
Random effects model			-0.38 [-0	0.45; –0.30]	100.0%
Heterogeneity: $I^2 = 96\%$, $\tau^2 = 0.066$, $p < 0.01$					
		-0.5 0 0.5			

D10.7.1 Forest plot of PIWTB foreign for moderator characteristics

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
CETtype = 0	6	-0.5254	[-0.5496; -0.5002]	24.65	79.7%
CETtype = 3	16	-0.2937	[-0.3187; -0.2683]	241.85	93.8%
CETtype = 4	7	-0.2267	[-0.2600; -0.1928]	81.71	92.7%
CETtype = 1	4	-0.6334	[-0.6679; -0.5962]	99.58	97.0%
Test for subgroup dif	ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	375.97	3	< 0.0001		
Within groups	447.78	29	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETtype = 0	6	-0.5168	[-0.5725; -0.4564]	24.65	79.7%
CETtype = 3	16	-0.2883	[-0.3874; -0.1827]	241.85	93.8%
CETtype = 4	7	-0.2700	[-0.3888; -0.1424]	81.71	92.7%
CETtype = 1	4	-0.6428	[-0.8037; -0.3943]	99.58	97.0%
Test for subgroup dif	ferences (randon	n effects model))		
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	25.89	3	< 0.0001		

D10.8 Analysis of PIWTB foreign for moderator CETtype

Study	Total	Correlation	COR		eight Weight ixed) (random)	
CETtype = 0 Akdogan & Ozgener 2012 Yoo & Donthu 2005 Carter 2009 Carter 2009 Tabassi et al. 2012 Fixed effect model Random effects model Heterogeneity: l^2 = 80%, τ^2 = 0.0075, p < 0.01	208 213 800 800 800 500 3321	*	-0.49 [-0.56 [-0.53 [-0.46 [-0.62 [-0.53 [-	-0.59; -0.38] -0.60; -0.51] -0.58; -0.48] -0.52; -0.41] -0.67; -0.56]	1.6% 3.0% 1.7% 3.0% 6.4% 3.1% 6.4% 3.1% 6.4% 3.1% 6.5% 18.4%	
CETtype = 3 Park et al. 2008 Sharma 2011 Sharma 2011 Sharma 2011 Sharma 2011 Fakharmanesh & Miyandehi 2013 Huang et al. 2008 Suh & Kwon 2002 Suh & Kwon 2002 Jimenez Torres & San Martin Gutierrez 2007 Nakos & Hajidimitriou 2007 Cai et al. 2012 Wang et al. 2013 Ma et al. 2012 Ma et al. 2012 Ma et al. 2012 Fixed effect model Random effects model Heterogeneity: $I^2 = 94\%$, $\tau^2 = 0.0485$, $p < 0.01$	319 348 468 547 463 120 128 202 430 224 257 255 255 255 5093	***	-0.07 -0.09 -0.12 [-0.14 [-0.62 [-0.25 [-0.27 [0.09 -0.14 -0.49 [-0.53 [-0.40 [-0.48 [-0.25 [$\begin{bmatrix} -0.17; \ 0.04 \\ -0.19; \ 0.01 \\ -0.21; \ -0.03 \\ -0.22; \ -0.06 \\ -0.43; \ -0.16 \\ -0.43; \ -0.16 \\ -0.43; \ -0.10 \\ -0.43; \ -0.10 \\ -0.65; \ -0.41 \\ -0.27; \ 0.00 \\ -0.56; \ -0.41 \\ -0.62; \ -0.43 \\ -0.50; \ -0.29 \\ -0.57; \ -0.38 \\ -0.36; \ -0.13 \\ -0.56; \ -0.34 \end{bmatrix}$	2.5% 3.0% 2.8% 3.0% 3.1% 3.1% 3.7% 3.1% 3.7% 3.1% 3.7% 3.1% 3.7% 3.1% 3.7% 3.1% 3.7% 3.1% 3.4% 3.1% 3.6% 3.0% 2.0% 3.0%	
CETtype = 4 Funk et al. 2010 Ishii 2009 Ishii 2009 Zeugner-Roth et al. 2015 Zeugner-Roth et al. 2015 He & Wang 2015 Cheah et al. 2016 Fixed effect model Random effects model Heterogeneity: $l^2 = 93\%$, $t^2 = 0.0299$, $p < 0.01$	319 300 300 411 405 912 435 3082	+ + + + + + +	-0.48 [-0.44 [-0.35 [-0.17 [-0.08 [-0.09 -0.23 [-	-0.57; -0.39] -0.53; -0.34] -0.43; -0.26] -0.26; -0.07] -0.14; -0.02] [-0.18; 0.00]	2.5% 3.0% 2.4% 3.0% 2.4% 3.0% 3.3% 3.1% 3.2% 3.1% 3.5% 3.1% 4.5% 21.4%	
CETtype = 1 Klein et al. 1998 Fernandez–Ferrin et al. 2015 Ettenson & Klein 2005 Fixed effect model Random effects model Heterogeneity: $I^2 = 97\%$, $\tau^2 = 0.1209$, $p < 0.01$	244 249 ≖ 261 329 1083	*	-0.86 [-0.42 [-0.53 [-0.63 [–0.89; –0.82] –0.52; –0.31] –0.60; –0.45]	1.9% 3.0% 2.0% 3.0% 2.1% 3.0% 2.6% 3.0% 8.6% 12.0%	
Fixed effect model Random effects model Heterogeneity: $l^2 = 96\%$, $\tau^2 = 0.066$, $p < 0.01$	12579	-0.5 0 0.5		–0.39; –0.36] 10 –0.45; –0.30]	0.0% 100.0%	

D10.8.1 Forest plot of PIWTB foreign for moderator CETtype

Results of subgroups	(fixed effect mo	del)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> ²
CETcoded = 1	12	-0.3405	[-0.3640; -0.3166]	293.17	96.2%
CETcoded = 9	6	-0.3449	[-0.3804; -0.3084]	134.03	96.3%
CETcoded = 2	6	-0.4269	[-0.4601; -0.3926]	96.48	94.8%
CETcoded = 3	3	-0.2393	[-0.2938; -0.1834]	16.53	87.9%
CETcoded = 0	6	-0.5653	[-0.5991; -0.5294]	149.87	96.7%
Test for subgroup dif	ferences (fixed e	ffect model)			
	Q	<u>d.f.</u>	<u>p-value</u>		
Between groups	133.67	4	< 0.0001		
Within groups	690.08	28	< 0.0001		
Test for subgroups (ra	andom effects m	odel)			
	<u>k</u>	COR	<u>95%-CI</u>	Q	<u>I</u> 2
CETcoded = 1	12	-0.2997	[-0.4231; -0.1653]	293.17	96.2%
CETcoded = 9	6	-0.3142	[-0.4918; -0.1115]	134.03	96.3%
CETcoded = 2	6	-0.4351	[-0.5706; -0.2766]	96.48	94.8%
CETcoded = 3	3	-0.2701	[-0.4224; -0.1030]	16.53	87.9%
CETcoded = 0	6	-0.5667	[-0.7274; -0.3471]	149.87	96.7%
Test for subgroup dif	ferences (randon	n effects model))		
	<u>Q</u>	<u>d.f.</u>	<u>p-value</u>		
Between groups	6.66	4	0.1549		

D10.9 Analysis of PIWTB foreign for moderator CET coded