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Abstract

This thesis seeks to unveil evidence of informed trading in option markets. We

use unsigned option volume data to construct a signed modified put call ratio, which

is used to analyze unusual trading patterns prior to large spikes in abnormal returns

on the underlying equities. The data sample consists of daily option volume of ap-

proximately 350 000 options from 232 random companies listed on S&P500 between

the 1st of June 2009 to the 6th of August 2014. We conduct statistical tests across

time, across firms, and across both simultaneously to identify informed trading un-

der the assumption of a semi efficient market; and investigate any preferences an

informed investor might have with regard to selected firm characteristics and tim-

ing. We discover evidence of unusual trading patterns one day prior to large spikes

in abnormal returns, and find supporting evidence that informed traders prefer

out-of-the-money compared to at-the-money and in-the-money options. However,

we do not find any significant linkage between a company’s market value or price-

to-book-value, or that the amount of informed trading in the option market has

decreased with time.
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1 Introduction

1.1 Motivation

Investors with access to private information1 can choose to trade both in stock and

derivative markets, potentially achieving a higher expected profit than under normal

circumstances. Informed traders, traders who have better forecasts on stock returns than

others, trade frequently on such information(Meulbroek, 1992). Informed trades that are

actual corporate insiders2 undermines the level playing field that is fundamental for a

well working, fair and functional capital market by doing so. To balance out such flaws,

decades of research have been conducted to detect how and where informed traders trade.

Previous research has mostly been aimed towards trade volume in stock markets, where

there has been found a significant relationship between stock volume and abnormal re-

turns (see, Chordia and Swaminathan (2000); Chakravarty et al. (2004); Lamoureux and

Lastrapes (1990)), indicating informed trading. The capital market does however consist

of many other instruments. Black (1975) already published a paper where he concluded

that informed investors would find the option market more favorable, given the higher

leverage it offers. Empirical studies such as Easley, O’hara, and Srinivas (1998) have

found that option volume contains price discovery, and Ge, Lin, and Pearson (2016)

found that certain signed options do predict future abnormal returns. Through research

there has been established a relationship between option volume and abnormal returns.

Researchers have also investigated further, finding evidence that informed traders prefer

out-of-the-money options to in-the-money and at-the-money options, reasoning that the

higher leverage in out-of-the-money options is favorable when an investor is informed.

Data used in most of the aforementioned papers is older3. This paper aims to see if similar

results can be found using newer, unsigned data and proposes the following research

question:

1Private information is information affecting a company’s value but not yet announced to the public
2A company employee who can take advantage of their privileged position and knowledge
3Easley et al. (1998) use daily data from October and November 1990, Chakravarty et al. (2004) use

data for the period 1988 to 1992 and Ge et al. (2016) use data for the period 2005 to 2012.
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Do changes in trading volume of options imply evidence of informed trading before large

spikes in abnormal returns?

The question will be answered with data gathered from 232 random companies listed on

S&P500 between 2009 and 2014.

The thesis is structures as following: The objective and our reasoning for pursuing in-

formed trading is summarized in a hypotheses section. To further support these hy-

potheses, a literature review of relevant work is then presented. Following this is a

presentation of all relevant theories needed to correctly define the analysis and interpret

its results, before an extensive and detailed presentation of the methodology framework

and associated model assumptions are discussed. Finally, a three-part empirical analysis

is presented through figures, tables and text, before a discussion of our main findings are

summarized into a final conclusion.

1.2 Hypotheses

By analyzing the relative share of call and put option volume we attempt to discover

evidence that informed traders trade on private information. Our analysis will focus on

the importance of option volume, with further analysis of the statistical and economic

significance of the call to put measure 4 compared to firm size, PTBV and variations over

time.

The underlying assumption for the following hypothesis is that informed traders are

capital-constrained, and therefore seeking to maximize their profits through leveraging

their position, i.e. buying options instead of stocks.

Following are the justifications for all hypotheses5.

• If there is informed trading in the market, and this information is not further leaked,

an investor with capital constraints will benefit from leveraged trading strategies. A

leveraged position will maximize an investors profits, and even though the investor

might not invest all their capital in option markets, we believe that it is highly likely

that they at least partly engage in option trades (Black, 1975). If these assumptions

4The variable is formally defined in chapter 4.3.5
5The hypotheses presented are formulated as alternative hypotheses.

8



hold, we would expect to find an abnormal pattern in the relative call to put option

volume prior to new information being released to the market, i.e. prior to spikes

in abnormal return.

H1: There is evidence of a relative change in call to put option volume prior to

large spikes in abnormal returns on the underlying asset.

• Since out-of-the-money (OTM) options offer a higher leverage, Chakravarty, Gulen,

and Mayhew (2004) suggest that investors prefer OTM over at-the-money (ATM)

and in-the-money (ITM) options. If the stock is anticipated to increase, investors

could prefer to buy cheap OTM call options which will end up ITM. For stocks

anticipated to decrease, investors could prefer to buy cheap OTM put options which

will end up ITM when the stock decreases. However, there are several different

strategies an investor could pursue to gain a leveraged profit. They could sell ITM

put options which falls in value when the underlying stock increased. Following

put-call parity, investors could buy ITM puts and the underlying stock, financed

by borrowing, mimicking the strategy of buying OTM calls.

All these strategies are possible, but since we believe that OTM options are most

preferred by investors, this will be our area of interest. This is further supported

by Chakravarty, Gulen, and Mayhew (2004) who finds that OTM options have a

significant higher information share than ATM or ITM options.

H2: There is evidence of a relative change in the isolated out-of-the money call to

put option volume prior to large spikes in abnormal returns on the underlying asset

• For a large firm, measured by marked value, new information is less likely to cause

a spike in abnormal returns (Chari et al., 1988). The reason for this is that larger

firms’ profitability is not affected as much by one single piece of information, i.e. a

new deal, new products etc., as smaller firms would be. Therefore, it is reasonable

to believe that informed traders prefer smaller companies when trading on private

information. However, one might also argue that the larger liquidity found in the

top firms could better disguise illegal trades.

H3: Market value affects an informed trader’s decision; informed traders are more

likely to trade options in firms with lower market value.
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• This hypothesis suggests that firms with a lower price-to-book-ratio (PTBV) are

more likely to show signs of informed trading. A low PTBV (compared to peers)

can indicate two things; firstly, that the firm is potentially undervalued (Jensen

et al., 1997), and secondly that the firm is close to default. In both cases, the firm’s

stock will be susceptible to large price changes when new information, good or bad,

is released in the market. It is thus reasonable to believe informed trading will

happen more often in firms with a low PTBV.

H4: Price-to-book-ratio affects an informed trader’s decision; informed traders are

more likely to trade options in firms with lower price-to-book-ratio.

• We believe that the significance of the call to put option volume ratio, both sta-

tistically and economically, should decrease over time. As earlier research by Roll,

Schwartz, and Subrahmanyam (2010) and Johnson and So (2012) has shown, varia-

tions of option ratios contain information about future stock returns. Such informa-

tion should, in line with the efficient market hypothesis, be reflected in stock prices

after discovery. As our time frame includes the release of both of these papers, we

expect the significance to decline after 2010.

H5: There is evidence that the statistical and economic significance of the call to

put option volume ratio has decreased over time.

2 Literature Review

Our work relates to previous research done on the relationship between option volume

and future stock movements. This paper is not a direct replica of a specific paper, but

rather a summary of previous ideas gathered from various researchers. When we defined

the scope of this paper, we took inspiration from literature ranging from establishing a

simple relationship between trade volume and changes in price, as done by Morse (1980),

to establishing a theory on where informed traders trade, as done by Easley, O’hara,

and Srinivas (1998). Several authors have analyzed the relationship between informed

trading and option volume. Chakravarty, Gulen, and Mayhew (2004) found through their

“information share” approach that option markets contain price discovery, while Ge, Lin,

and Pearson (2016) found that it is the embedded leverage in options which contributes
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most to why option trading predicts stock returns, and Johnson and So (2012) shows that

O/S6 is a signal of private information. It is also suggested that if informed trading takes

place in option markets, then option volume is expected to contain information about

future stock prices (Pan and Poteshman, 2006).

In accordance with the theoretical prediction that informed traders choose to trade in

options markets, several authors have done extensive research on different measures to

prove this relationship. First, O/S has been a frequently examined ratio to address what

drives volume in options relative to their underlying equities. By using data on option and

equity volumes when trade direction is unobserved, Johnson and So (2012) conclude that

O/S is a negative cross-sectional signal of private information and future equity return.

Roll, Schwartz, and Subrahmanyam (2010) gathers equities and their listed options, and

by analyzing the time-series properties of this ratio they conclude that O/S rise sharply

prior to an earnings announcement. And Ge, Lin, and Pearson (2016) concludes that O/S

is a future stock return predictor. Secondly, option volume has been examined against

equity returns, both the absolute value of returns (Blume, Easley, and O’hara, 1994)

and abnormal returns (Cao, Chen, and Griffin, 2005), were both papers conclude that

option volume and price movements relate. Thirdly, researchers have been examining the

moneyness7 of options and if it affect where informed traders trade. Through an analysis

of abnormal option trading volume prior to M&A announcements, Augustin, Brenner,

and Subrahmanyam (2015) find that the strongest effects are in the OTM call options.

Chakravarty, Gulen, and Mayhew (2004) and Cao et al. (2005) also find supporting results

towards the theory that informed traders prefer to trade in OTM options, given the higher

leverage achievable. And finally, several authors use daily option data to investigate the

informational role of transaction volume in options markets (see, Easley, O’hara, and

Srinivas (1998), Augustin, Brenner, and Subrahmanyam (2015)).

While several authors discover option volume to be informative, this conclusion is not

unambiguous and other authors find no such evidence (see, Vijh (1990), Stephan and

Whaley (1990) and Chan, Chung, and Fong (2002))

6The authors define O/S as the option to stock volume ratio. This is the ratio of total option market

volume to total equity market volume
7Option moneyness is a terminology used to define if an option is in-the-money, at-the-money or

out-of-the-money

11



We apply several of these researcher’s techniques and ideas in our thesis when defining

our hypotheses, collecting relevant data, deciding the methodology and empirical tests,

variable usage and interpretation of results.

3 Theory

3.1 Informed Trader

An informed trader is a trader who has better forecasts of the stock’s future returns

than others. There are two categories of informed traders. First, the trader could be a

corporate insider trading on private information or an investor gaining an advantage by

receiving private information externally. Secondly, an informed trader could be a trader

that has special talents for correctly interpreting public available information. Since both

types of traders have access to information that could lead to higher expected returns

than others, they are considered informed traders.

3.2 Efficient Market

Under ideal conditions the capital market allows investors to allocate resources through

investments in capital stock, under the assumption that security prices fully reflect all

available information. Fama (1970) defines such markets as “efficient”, and states that

a market is efficient when it is frictionless and consisting of investors all agreeing on the

implication new information has on price adjustment.

Fama considered the null hypothesis that security prices at any point “fully reflects”

all available information to be too extreme. Instead he categories market efficiency into

three sub-categories. Through this he could study at which point the hypothesis breaks

down. The three categories are known as weak, semi-strong and strong form of market

efficiency and are individually defined as the following:

• The weak form consists of historical information and the subset of interest consist

of past returns.
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• Semi-strong form consists of all public available information, such as earning an-

nouncements, stock splits, mergers etc.

• Strong form consists of all available information, even private information not avail-

able for the public. This could be an investor or a group with monopolistic access

to any information with relevance for price adjustment.

Extensive empirical work has been performed on all three sub-categories and shows that

there are little or no evidence against the weak and semi-strong form of efficiency (see

Fama et al. (1969) and Ball and Brown (1968)). It seems that prices efficiently adjust to all

public available information. At the strong level of efficiency there are some, but limited,

evidence against the hypothesis (Niederhoffer and Osborne, 1966). This could mean that

there are individual investors with monopolistic access to information who gain a higher

expected trading profit than others. This is however limited to only two documented

groups, corporate insiders and specialists. Fama (1970) finds no other evidence that a

deviation from the strong form spirals any further down the investment community.

3.3 Option Volume

An investor with access to information prior to its public announcement, may be able to

gain a profit by utilizing this private information through informed trading in financial

markets. To detect such trades, it is important to first know where informed traders

choose to trade. In this section, we will discuss the difference of trading in option and

stock markets, and why option volume might reflect information on future stock prices.

Black (1975) describes the differences between trading in option and stock markets as

the following; here exemplified by a European call option. If the stock at option maturity

equals the exercise price, the option is worthless and the initial investment (price of call

option at t = 0, C0) is lost. The option position is thus worse than the stock position. If

the stock goes down, the option will not be exercised and one loses C0 as in the previously

example. The stock position can however go down any amount up to the initial investment

(price of stock at t = 0, S0). If the stock goes up, the option will gain a higher rate of

return than the stock, as C0 ≤ S0. Due to higher leverage found in options, realizing a

high return has a higher probability when investing in this market. An informed trader,
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who is be convinced of the coming changes in the underlying stock price, might find the

higher leverage in option markets favorable. To secure higher returns, an informed trader

will thus be expected to trade more actively in options, rather than in the underlying

stock.

If informed traders prefer option markets, then these markets may be venue for information-

based trading, suggesting that option trades may reflect information to market partici-

pants on future changes in stock and option prices. This is supported by Easley, O’hara,

and Srinivas (1998) who provide a theoretical model that shows under which conditions

an informed trader would choose to trade in options rather than stocks. Johnson and

So (2012) also support this idea by providing theoretical and empirical evidence that

informed traders’ private information is reflected in the O/S-ratio. In both cases option

volume data are used to detect the use of private information.

3.4 ATM, ITM and OTM

The leverage and capital constraints arguments(Chen et al., 2005) imply that the rate

of informed trading incident is unevenly distributed over different option moneyness (i.e.

different leverage). Option volume is thus categorized into three sub-categories; in-the-

money (ITM) for options with strike prices lower than the current stock price (St), at-

the-money (ATM) for options with strike price equal St, and out-of-the-money (OTM)

for options with strike price higher than St. The limits for ITM and OTM are set to 5 %

below or above the current stock price.

For OTM options, theory proposed by Chakravarty, Gulen, and Mayhew (2004) explains

that an informed trader will favor the higher leverage and therefore trade more frequently

in these options. However, for delta equivalent positions, the option bid-ask spread and

trader commissions tend to be the widest/highest for OTM options. ATM options usually

have the lowest bid-ask spread, while ITM options usually have the lowest commissions

of the three categories. The theory also proposes that it is easier for informed traders to

conceal their trades in ATM options, as this category has the highest trading volume due

to volatility traders. However, ATM options are more susceptible to risk from changes in

the underlying asset’s volatility.
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It is possible to argue that informed investors would choose to invest in any of the

three sub-categories of options. Chakravarty, Gulen, and Mayhew (2004) find, through

the empirical implementation of their framework, a relationship between option volume

and stock prices. They further extended their research and analyze these effects over

moneyness. They concluding that while all three sub-categories contain price discovery,

the OTM options have a significant higher amount, indicating that informed traders trade

more frequently in OTM options.

This theory section has provided definitions for informed traders, and why option volume

and different option types are of interest to such an investor. With the assumption of

a semi-efficient market as presented by Fama (1970), our empirical framework presented

in the next section allows us to conclude whether or not changes in trading volume of

options imply evidence of informed trading before large spikes in abnormal returns.

4 Methodology

This chapter addresses our implementation of the MacKinlay framework (MacKinlay,

1997) for event studies, data collection, parameter definitions and the statistical tests

which are to be carried out. We also address some concerns regarding model assump-

tions.

4.1 Event Studies

Under the assumption that the market is semi-efficient, a release of information to the

public should yield an immediate effect in security prices. Financial data can be studied

to measure the impact of such an event. The MacKinlay-paper is based on previous work

by Ball and Brown (1968) and Fama, Fisher, Jensen, and Roll (1969) and is one of the

most widely used frameworks for event studies in empirical finance. The methodology can

be summed up in five distinct steps; 1. Defining the event of interest, 2. Data selection, 3.

Model for abnormal returns, 4. Estimation window, 5. Designing the testing framework.

The following section will describe the aforementioned methodology behind an event

study, define models for measuring and analyzing abnormal performance, and highlight
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issues arising when conducting these studies.

4.1.1 Step 1 – The Event of Interest

The first step is defining the event of interest. We have defined our events as any day, t,

a company, j, has an absolute abnormal stock return higher than x %.

In our case, were we want to examine whether daily option volume data prior to the

event influence abnormal returns, we have set the event window to +/- 2 days prior to

and past the event. We assume informed traders are interested in trading on private

information to gain a competitive market advantage and believe that such trades will

occur in the days before a large change in abnormal return. If the market is efficient

at any level, such spikes should only occur when new information is released into the

market. The fact that the information creates a spike will therefore indicate one of two

possibilities: Either announced news showed surprising or unexpected results, or the new

information was unannounced. In both incidences, an investor with private information

would be able to profit by trading in the days prior to the information release. While the

event itself, by definition, only last for one day, the cause of the event (new information),

may have an effect before and after the event8. To ensure robustness in the analysis the

event window can be set larger than the event of interest so that any estimations does

not become biased by the event itself.

In our regression models9, the events are expressed with the following variable:

• Abnormal day, noted Abnj,t (or as an asterisk, ∗, when modifying other variables),

are any day, t, a company, j, has an absolute abnormal stock return higher than x

%.

A binomial variable is created to capture these events, and is defined as the follow-

ing:

Abnj,t =

1 if |ARj,t| > x %

0 otherwise
(1)

8If the semi-efficient market hypothesis does not hold
9Formally defined in 4.1.5
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4.1.2 Step 2 – Data Selection

We have aimed to make our analysis as comprehensive as possible, and have ended up

with a sample of 232 companies from the S&P500.

The reason for choosing the S&P500 market over others, is based on data availability and

market liquidity. There are several databases with high quality data for equities listed on

S&P500. More reliable data leads to more robust conclusions; this is thus an important

factor to consider when deciding which market to analyze. The S&P500 is also highly

liquid compared to smaller markets, i.e. Oslo Børs, which we believe will help us better

isolate the effects we are analysing.

The data used in the analysis is gathered from Thomson Reuters Datastream, a database

that offers daily updated equity data, and historical equity information as far back as

1973. The database also offers data on bonds, options and other derivatives, which is

what we were after. Datastreams option database has data for most of the companies

which are or have been listed on the S&P500 dating back to mid-2008.

We have chosen to restrict our data collection to the period from (and including) 01.01.2009,

to (and including) 31.12.2014. The lower limit due to 2009 being the first whole year with

available data in Datastream, and the upper limit to make sure that most of the options

traded in the period are dead. This is a necessity caused by the way Datastream struc-

tures its option data, as options are either classified as dead or live. Both classes can be

accessed separately with ease, but any combination must be done manually. Our limited

time frame for this thesis would not have been enough for such manual work, and thus

we set 2014 as our upper limit.

Our 232 companies were selected based on the following criteria. The companies must

have been listed on the S&P500 continuously from 2009 to 2014. This were true for a total

of 405 companies. The companies must also have available option data on Datastream.

This brought our sample down to 398. The order of the 398 companies were randomized

to prevent any form of selection bias. We managed to gather data for 232 of these in our

limited time frame10.

Following next is a description of the data downloaded from Datastream and why it has

10A complete list of the 232 stock tickers and company names can be found in the appendix
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been included.

• Option Volume is measured in traded option contracts and is quoted in daily mea-

sures. It is our main variable of interest, and therefore crucial to include in the

analysis. We have downloaded option volume for both put and call options. The

volume is unsigned, i.e. we do not know which way the trades have gone. Each

option contract is valid for 100 shares.

• Strike price is the specific price that a contract can be exercised at. It is used to

measure when an option contract is ITM, ATM or OTM.

• Adjusted Stock Price is the adjusted closing price of the underlying equity. As this

price is adjusted for dividends and share repurchases it can be used to calculate

stock returns.

• Unadjusted stock price is the actual closing price of the underlying equity. As this

price is unadjusted for dividends and share repurchases it can be used to determine

which options are OTM in conjunction with the Strike price.

• The S&P500 index is necessary to calculate the abnormal returns together with ac-

tual stock returns. Under the assumptions of the market model, S&P500 functions

as a proxy for the market return11.

• Delta, or hedge ratio, is a measure used to compare changes in the price of the

underlying asset to the corresponding change in the derivative. If an option has

a 0.5 delta ratio, a $1 change in the underlying asset will generate a $0,5 change

in the option. A put option can have a delta value between -1 and 0, and a call

options can have a delta value between 0 and 1.

• Market value is included to adjust for firm size. Our earlier discussions suggest that

larger, more liquid firms, might be better at keeping private information private.

Thus, one could expect smaller firms to be more exposed for informed trading.

However, we also argued that trading in more liquid firms could better disguise

illegal trades by corporate insiders. Market value is meant to control for this, and

possibly detect any relationship between firm size and informed trading.

11See section 4.1.3
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• PTBV, Price to tangible book value, is a ratio which expresses the price of a security

compared to its tangible book value. It is a theoretical number that represents

what an investor would receive per share if a company would liquidate all its assets.

PTBV is used as a control variable.

• EPS, Earnings per share, is included as a control variable. This controls for whether

the level of earnings is related to the abnormal return.

The raw option data was cleaned by removing untraded options and options which con-

tained any kind of errors. Banking holidays were removed for all option and stock data,

so that days with zero trade will not interfere and possibly create biases in the regressions.

This resulted in 1510 trading days over the period.

The cleaned option data is summarized in table 1 and 2. Note that the numbers for 2009

and 2014 are lower than the other four years, 2010 to 2013, due to the data being cut

short by 102 trading days in each end. In terms of different options traded, 2013 was the

most active, counting 122 000 different options. The average number of different options

traded for the four full years is just above 100 000. 2011 was however the most active

year in terms of number of contracts, with just above 840 000 000 contracts traded. The

split between call and put contracts is, for all years, between 60 % to 40 % and 65 %

to 35 %, and the share of OTM contracts has been somewhere around 40 %. Note that

the share of OTM put options is higher than the share of OTM call options for all years.

The share of OTM put options is also increasing with time, going from ∼ 53 % in 2009

to ∼ 65 % in 2014. The share of OTM call options is on the other hand decreasing from

∼ 37 % in 2009 to ∼ 26 % in 2014. This shift is also illustrated by the change in average

values for the independent values in table 3 and 4.

19



Table 1: Option data 2009 - 2011

2009 2010 2011

Min Average Max Total Min Average Max Total Min Average Max Total

Companies 214 232 232

Diff. options 37 204 1 028 47 220 32 370 1 735 85 760 57 476 2 920 110 433

ContractsTotal 2.29 687 42 092 159 285 3.75 2 212 83 829 513 200 2.63 3 625 96 409 840 952

ContractsCall 1.25 424 27 992 98 381 1.93 1 470 62 263 341 049 1.66 2 288 57 386 530 803

ContractsPut 0.70 263 14 100 60 904 1.62 742 21 567 172 151 0.77 1 337 40 328 310 149

Contracts
(%)
Call 33.85 % 60.85 % 92.26 % 16.45 % 63.91 % 96.30 % 35.76 % 61.48 % 93.91 %

Contracts
(%)
Put 7.74 % 39.15 % 66.15 % 3.70 % 36.09 % 83.55 % 6.09 % 38.52 % 64.24 %

ContractsOTMTotal 0.81 332 25 400 76 923 1.62 920 46 069 213 466 1.20 1 524 53 079 353 454

ContractsOTMCall 0.45 192 17 105 44 457 0.68 515 31 511 119 398 0.56 823 32 888 190 887

ContractsOTMPut 0.30 140 8 295 32 466 0.79 405 14 558 94 068 0.55 701 20 192 162 568

Contracts
OTM(%)
Call 8.00 % 37.49 % 69.72 % 1.46 % 31.82 % 99.54 % 4.36 % 34.79 % 99.73 %

Contracts
OTM(%)
Put 23.33 % 53.65 % 90.74 % 24.01 % 55.02 % 96.79 % 26.63 % 53.90 % 99.75 %

Contracts
OTM(%)
Total 17.25 % 43.72 % 72.38 % 3.06 % 39.74 % 98.59 % 10.88 % 41.58 % 99.74 %

Trading days 98 3 376 24 510 783 129 128 8 475 59 850 1 966 245 292 13 236 153 423 3 070 704

Avg trading days/option 2.65 13.68 41.72 4.00 19.48 49.98 4.47 23.80 61.42

The table presents descriptive statistics based on option data gathered from the 1st of June 2009 to the 31st of December 2011. Data for the minimum, average
and maximum observed value per company is presented, and the total aggregated value for all companies is found under the column: Total. ContractsTotal,

ContractsCall , ContractsPut , Contracts
(OTM)
Total , Contracts

(OTM)
Call and Contracts

(OTM)
Put are total number of (Total, put or call and OTM or not) contracts observed

per company in thousands. Contracts%Call and Contracts%Put are the percentage of all put or call contracts observed per company, calculated from total contracts.

Contracts
OTM(%)
Put and Contracts

OTM(%)
Call are the percentage of put or call options which are OTM, calculated from total put or call contracts observed. Options

that are traded over multiple years are listed for each year it is traded. Trading days is the total number of different daily traded options throughout the period
and Avg trading days/option is the average number of days a specific option is actively traded before it expires. OTM options are defined as an option with K ≥
St · 1.05.
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Table 2: Option data 2012 - 2014

2012 2013 2014

Min Average Max Total Min Average Max Total Min Average Max Total

Companies 231 231 231

Diff. options 42 510 5 476 118 429 61 526 4 673 121 968 24 382 2 893 88 548

ContractsTotal 2.10 3 224 113 361 748 061 3.34 2 448 63 950 567 830 1.99 1 302 45 377 302 098

ContractsCall 1.71 2 067 69 174 479 501 2.40 1 568 40 402 363 688 1.62 860 31 002 199 413

ContractsPut 0.38 1 158 44 187 268 559 0.72 880 23 548 204 142 0.37 443 14 376 102 685

Contracts
(%)
Call 29.85 % 60.63 % 91.67 % 32.86 % 62.27 % 87.30 % 30.94 % 64.25 % 88.87 %

Contracts
(%)
Put 8.33 % 39.37 % 70.15 % 12.70 % 37.73 % 67.14 % 11.13 % 35.75 % 69.06 %

ContractsOTMTotal 0.42 1 256 49 118 291 480 0.74 994 30 566 230 722 1.01 530 14 673 122 932

ContractsOTMCall 0.16 621 29 464 144 103 0.27 471 14 335 109 227 0.25 252 7 983 58 509

ContractsOTMPut 0.26 635 27 432 147 377 0.46 524 16 231 121 495 0.37 278 8 699 64 423

Contracts
OTM(%)
Call 3.28 % 29.20 % 69.26 % 5.57 % 26.06 % 77.74 % 0.26 % 26.86 % 94.87 %

Contracts
OTM(%)
Put 30.94 % 57.88 % 90.09 % 33.75 % 60.49 % 96.95 % 23.26 % 64.07 % 98.39 %

Contracts
OTM(%)
Total 9.95 % 39.97 % 68.34 % 19.91 % 38.97 % 83.96 % 11.75 % 40.11 % 95.53 %

Trading days 137 12 995 281 284 3 014 940 221 13 061 219 141 3 030 080 77 7 424 108 045 1 722 299

Avg trading days/option 3.26 20.99 51.37 3.62 21.12 46.90 3.21 16.63 37.71

The table presents descriptive statistics based on option data gathered from the 1st of January 2012 to the 6th of August 2014. Data for the minimum, average
and maximum observed value per company is presented, and the total aggregated value for all companies is found under the column: Total. ContractsTotal,

ContractsCall , ContractsPut , Contracts
(OTM)
Total , Contracts

(OTM)
Call and Contracts

(OTM)
Put are total number of (Total, put or call and OTM or not) contracts observed

per company in thousands. Contracts%Call and Contracts%Put are the percentage of all put or call contracts observed per company, calculated from total contracts.

Contracts
OTM(%)
Put and Contracts

OTM(%)
Call are the percentage of put or call options which are OTM, calculated from total put or call contracts observed. Options

that are traded over multiple years are listed for each year it is traded. Trading days is the total number of different daily traded options throughout the period
and Avg trading days/option is the average number of days a specific option is actively traded before it expires. OTM options are defined as an option with K ≥
St · 1.05.
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4.1.3 Step 3 – Modelling Abnormal Returns

The abnormal returns in our analysis are based on the market model; a statistical model

that relates company specific returns to a market portfolio. Even though this is the basis

of our analysis, other methods need to be discussed and evaluated as well.

Measuring normal performance can loosely be done two different ways, statistical and

economic. The key difference is that the statistical models follow statistical assump-

tions, while the economic model rely on assumptions concerning investors’ behaviour and

economic restrictions.

Both the constant mean return model and the market model are statistical approaches

that rely on the assumption that all returns are jointly multivariate normal and inde-

pendently and identically distributed through time. MacKinlay (1997) argues that this

assumption, while strong, does not lead to problems in practice because it is empirically

reasonable to assume this.

The simplest of the two is the constant mean return model, defined as:

Rj,t = µj + ζj,t (2)

E[ζj,t] = 0, V ar[ζj,t] = σ2
ζj,t

(3)

Rj,t is the time t return on asset j, µj is the mean return of asset j and ζj,t is the

disturbance term for asset j at time t. Regardless of its simplicity, Brown and Warner

(1980) find that it often yields similar results as the more sophisticated models.

The market model is defined as:

Rj,t = αj + βj ·Rm,t + εj,t (4)

E[εj,t] = 0, V ar[εj,t] = σ2
εj

(5)

Where Rj,t and Rm,t are the time t return for the individual assets j and the market M.

εj,t is the zero-mean disturbance term. The market model removes the portion of returns

which is related to variance in the market’s return. This will reduce the variance of the

abnormal returns, which serves as an improvement to the constant mean return model.
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The parameters α and β can be estimated using general conditions ordinary least squares

(OLS). OLS will estimate the normal returns, while the disturbance term represents the

estimated abnormal returns.

ARj,t = Rj,t − α̂j − β̂jRm,t (6)

Under the null hypothesis, the abnormal returns calculated will be jointly normally dis-

tributed with a zero-conditional mean and conditional variance, which means that the

abnormal returns and its distributional properties can be used to draw inferences over

the events of interest.

Two common economic models are the Capital Asset Pricing Model (CAPM), introduced

by Sharpe in 1964, and the Arbitrage Pricing Theory (APT), introduced by Ross in 1976.

While intuitive, the CAPM have been shown to be sensitive to its restrictions (Fama and

French, 1996) and APT have been shown to have few factors with significant explanatory

power (Brown and Weinstein, 1985). To circumvent the restrictions of the economic

models, we have taken a statistical approach and will use the market model.

4.1.4 Step 4 – The Estimation Window

The fourth step is defining the estimation window. The most common practice is setting

this as a period of a given number of days prior to and past the event window. The length

of this period varies, but 30, 100 and 365 days are common values. We have decided upon

a window of +/- 100 days.

The estimation window will be the basis for calculating the parameters in equation (4)

that are needed to estimate the abnormal returns in equation (6). To exclude biased

parametric estimators, the event and event window itself should not be part of this

estimation. The parameters in the market model are estimated using OLS.

It is worth noting that the estimation window and event window removes 100 + 2 days

on each side of our data, leaving 1306 usable trading days for the regressions.
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4.1.5 Step 5 – Designing the testing framework

This subsection presents our testing framework, where we argue that to properly answer

all our hypotheses, the data must be analysed three ways: across time, across firms,

and across time and firms simultaneously. We will use regressions as our main statistical

tool to accomplish this, performing time-series regressions, cross-sectional regressions and

panel regressions. In addition to model specification, this subsection also presents variable

definitions. Model assumptions will be addressed in the next subsection.

The first two hypotheses, H1 and H2, which cover the correlation between the relative

change in call to put option volume and abnormal returns, can be answered with any

of the aforementioned regression types. However, regressions across time or firms alone

will be limited to any one date or any one firm respectively, and will thus not include all

available information. A panel data regression can be performed over the two dimensions

simultaneously.

To answer H1 and H2, we have decided upon a two-way fixed effect transformation of

the panel data. While a pooled OLS regression assumes that there are no individual

or time specific effects12, the fixed effect model assumes that there are time-invariant

individual differences (Wooldridge, 2012). This again implies that every firm will have

its own constant term, which is illustrated by the different subscripts on β0 in equations

(7) for pooled OLS and equation (8) for a fixed effect model.

Yj,t = β0 + β1 ·Xj,t + εj,t (7)

Yj,t = β0,j + β1 ·Xj,t + εj,t (8)

Where β0,j = β0 + Dj for firms j in [1, K - 1], and β0,K = β0 for firm K. Dj is the

individual firm constant measured relative to β0,K which can be considered the baseline

firm13. This firm-specific constant also controls for any unobserved time-invariant effects,

as they are all conditioned out by this term (Wooldridge, 2002).

12which implies a single constant term for the regression
13This kind of specification is necessary to control for multicollinearity
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Averaging equation (8) over time gives equation (9)

Y j = β0,j + β1 ·Xj + εj (9)

Where, (9) subtracted from (8) gives

Yj,t − Y j = β1 · (Xj,t −Xj) + εj,t − εj (10)

Now, the firm specific constant has disappeared, and the parameters can be estimated

with pooled OLS using equation (10)14 which adheres to the normal OLS assumptions.

Ŷj,t = β1 · X̂j,t + ε̂j,t (11)

The two-way fixed effect transformation also includes dummy variables for each period,

which conditions out any period effects.

As seen from equation (11), the fixed effect model transforms the data in such a way that

one cannot estimate the coefficients for the constant and/or unobserved effect. There is

another method for panel data transformation, the random effect, which only partially

removes the constant and/or unobserved effect in its transformation. This makes the

random effect model more efficient than fixed effects, and it can also estimate the pa-

rameters of these constant and/or unobserved effects. However, a random effect model

has stricter assumptions than a fixed effect model, and assumes that any unobserved ef-

fects must be uncorrelated with the explanatory variables (Wooldridge, 2012). Although

one can decide the better model with a Hausman-test for endogenity, we argue that this

assumption is not plausible15.

Our transformed two-way fixed effect regression equation is specified as

14Written in a collapsed form in equation(11)
15E.g. that changes in EPS are not correlated with an unobserved sector for cyclical companies
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ÂRj,t = β1 · ÊPSj,t + β2 · V̂ Oj,t + β3 · M̂V j,t + β4 · ̂PTBV j,t + β5 · D̂eltaj,t

+
2∑

n=1

β5+n · ̂PCratj,t−n +
2∑

n=1

β7+n · ̂PCrat∗j,t−n
+

2∑
n=1

β9+n · ̂PCratOTMj,t−n +
2∑

n=1

β11+n · ̂PCratOTM∗
j,t−n + ε̂j,t

(12)

The third and fourth hypotheses, H3 and H4, which cover the informed trader’s prefer-

ences regarding firm size and firm PTBV, requires time-series regressions to be conducted

for each firm individually. Such a regression controls for each firm’s average non-observed

effect in the constant term, and makes it possible to compare P-values and regression co-

efficients with each firm’s observed market value and PTBV. Our time-series regression

is specified as

ARt = β0 + β1 · EPSt + β2 · V Ot + β3 ·MVt + β4 · PTBVt + β5 ·Deltat

+
2∑

n=1

β5+n · PCratt−n +
2∑

n=1

β7+n · PCrat∗t−n

+
2∑

n=1

β9+n · PCratOTMt−n +
2∑

n=1

β11+n · PCratOTM∗
t−n + εt

for all j

(13)

The fifth hypothesis, H5, which covers the magnitude of coefficients and significance

over time, requires cross-sectional regressions to be conducted for each date. Such a

regression controls for each date’s average non-observed effect in the constant term, and

makes it possible to see trends in regression coefficients and P-values. Our cross-sectional

regression is specified in (14). Note that t in the subscripts behaves as a constant in this

equation. Both the time-series and cross-sectional regressions are done with OLS.
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ARj = β0 + β1 · EPSj + β2 · V Oj + β3 ·MVj + β4 · PTBVj + β5 ·Deltaj

+
2∑

n=1

β5+n · PCratj,t−n +
2∑

n=1

β7+n · PCrat∗j,t−n

+
2∑

n=1

β9+n · PCratOTMj,t−n +
2∑

n=1

β11+n · PCratOTM∗
j,t−n + εj

for all t

(14)

The variables used in all three regression specifications are defined on the following pages.

While the specification in the definitions include subscripts for both firm, j, and period,

t, the type of regression will decide whether one or both subscripts varies. The number

of lags in some of the variables, noted n, is set to 2. This is because any effects from

further lags did not contribute to the models’ explanatory power.

The dependent variable:

• ARj,t, Abnormal returns, are calculated as the difference between the stock’s ex-

pected return given by the market model and the stock’s actual return. This is our

dependent variable in all our regressions.

ARj,t = RActual
j,t −RMM

t (15)

The control variables are inspired by the work of Ge et al. (2016), Roll et al. (2010)

and Johnson and So (2012), but are somewhat limited by data availability of earnings

forecasts. As the dependent variable, ARj,t, is a signed variable, all variables that are

strictly positive must be normalized

• Normalized EPS, EPSj,t.

EPSj,t =
Actual EPSj,t

1
N
·
∑N

i=1EPSj,t
− 1 (16)

Where N is the estimation window (i.e 200 observations) at time t.

• Normalized volume, VOj,t.

VOj,t =
Actual VOj,t

1
N
·
∑N

i=1 V Oj,t

− 1 (17)

Where N is the estimation window (i.e 200 observations) at time t.
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• Normalized MV, MVj,t.

MVj,t =
Actual MVj,t

1
N
·
∑N

i=1MVj,t
− 1 (18)

Where N is the estimation window (i.e 200 observations) at time t.

• Normalized PTBV, PTBVj,t.

PTBVj,t =
Actual PTBVj,t

1
N
·
∑N

i=1 PTBVj,t
− 1 (19)

Where N is the estimation window (i.e 200 observations) at time t.

• Delta is the average delta for options traded at time t for company j. As the

weighted sum of deltas for securities in a portfolio equals the delta of the portfolio,

it can be calculated as follows.

Deltaj,t =

∑M
i=1(Call

V ol
i,j,t · CallDeltai,j,t ) +

∑N
i=1(Put

V ol
i,j,t · PutDeltai,j,t )∑M

i=1Call
V ol
i,j,t +

∑N
i=1 Put

V ol
i,j,t

(20)

M and N is the total number of call and put options respectively, and Delta can

take values from -1 to 1.

The explanatory variables related to our hypotheses:

• Abnj,t, Abnormal day, as defined in equation (1). This variable will only be used

in conjunction with others.

• Modified Put-Call ratio, PCratj,t−n. This is the first of our main explanatory vari-

ables. The variable is constructed as follows for:

PCratj,t−n =
CallV olj,t − PutV olj,t

CallV olj,t + PutV olj,t

(21)

Where CallV olj,t is the aggregated daily call option volume for the company,

CallV olj,t =
M∑
i=1

CallV oli,j,t for each day, t, and each company, j (22)

and PutV olj,t is the aggregated daily put option volume.

PutV olj,t =
N∑
i=1

PutV oli,j,t for each day, t, and each company, j (23)
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M and N is the total number of call and put options respectively, varying with

combinations of time, t, and company, j. While the volumes are unsigned, the

variable itself is signed taking a value somewhere from -1 to 1. This allows us to

use signed abnormal returns instead of absolute abnormal returns. The n indicates

the ratio for the n-th day prior to the day, t, of the regression.

• Modified Put-Call ratio*, PCrat∗j,t−n. This is the second of our main explanatory

variables. The variable is constructed by multiplying PCratj,t−n with the binomial

variable Abnormal day. If there are any additional information in the PCratj,t−n

prior to an Abnormal day event, we would expect this variable to be significant.

PCrat∗j,t−n = PCratj,t−n · Abnj,t (24)

This kind of variable, a continuous one multiplied with a binomial one, affects the

slope of the regression.

• Modified OTM Put-Call ratio, PCratOTMj,t−n . The OTM moneyness criteria is defined

as any option, put or call, that is more than 5 % out of the money.

PCratOTMj,t−n =
CallOTM Vol

j,t − PutOTM Vol
j,t

CallOTM Vol
j,t + PutOTM Vol

j,t

(25)

Where CallOTM Vol
j,t is the aggregated daily OTM call option volume for company j

at time t,

CallOTM Vol
j,t =

M∑
i=1

CallOTM Vol
i,j,t for each day, t, and each company, j (26)

and PutOTM Vol
j,t is the aggregated daily OTM put option volume.

PutOTM Vol
j,t =

N∑
i=1

PutOTM Vol
i,j,t for each day, t, and each company, j (27)

• Modified OTM Put-Call ratio*, PCratOTM∗
j,t−n .

PCratOTM∗
j,t−n = PCratOTMj,t−n · Abnj,t (28)

Table 3 and table 4 summarizes all the independent variables by year.
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Table 3: Independent variables 2009 - 2011

2009 2010 2011

10 % Average 90 % No. obs 10 % Average 90 % No. obs 10 % Average 90 % No. obs

EPS -1.0000 -0.1320 0.1020 30 813 -0.3586 -0.0574 0.1464 55 256 -0.1242 -0.0195 0.1049 56 701

Vol -0.4663 -0.0636 0.3785 34 800 -0.4380 0.0028 0.5297 58 464 -0.4264 0.0163 0.5590 58 464

Delta -0.1771 0.1299 0.4419 31 292 -0.1488 0.1265 0.4027 55 147 -0.1443 0.0977 0.3447 58 134

MV -0.0857 0.0103 0.1062 34 800 -0.0964 -0.0066 0.0853 58 464 -0.1083 -0.0009 0.0949 58 464

PTBV -0.0800 0.0304 0.1413 34 800 -0.1115 -0.0102 0.0924 58 464 -0.1168 0.0210 0.1001 58 464

PCratt−1 -0.5562 0.2085 0.9317 31 296 -0.4565 0.2145 0.8699 55 125 -0.4345 0.1625 0.7615 58 133

PCratt−2 -0.5556 0.2083 0.9302 31 303 -0.4572 0.2149 0.8713 55 099 -0.4348 0.1620 0.7606 58 132

PCrat∗t−1 -0.3795 0.1380 0.8125 31 296 -0.2439 0.1268 0.7115 55 125 -0.2615 0.0974 0.6049 58 133

PCrat∗t−2 -0.3857 0.1363 0.8071 31 303 -0.2414 0.1272 0.7098 55 099 -0.2634 0.0973 0.6033 58 132

PCratOTMt−1 -0.9611 0.0263 1.0000 29 430 -0.9209 -0.0354 0.9022 52 899 -0.8372 -0.0372 0.7959 57 045

PCratOTMt−2 -0.9604 0.0276 1.0000 29 444 -0.9214 -0.0353 0.9037 52 862 -0.8377 -0.0378 0.7954 57 048

PCratOTM∗
t−1 -0.8066 0.0242 0.8926 29 430 -0.7323 -0.0131 0.6935 52 899 -0.6667 -0.0107 0.6232 57 045

PCratOTM∗
t−2 -0.8049 0.0264 0.8939 29 444 -0.7345 -0.0120 0.6975 52 862 -0.6667 -0.0099 0.6251 57 048

The table presents descriptive statistics gathered from the 1st of June 2009 to the 31st of December 2011, for all independent variables in the regressions. For
each year, data for the 10th percentile (10 %), average value, 90th percentile (90 %) and total number of observations is presented. The data is the accumulated
data across all firms and trading days.
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Table 4: Independent variables 2012 - 2014

2012 2013 2014

10 % Average 90 % No. obs 10 % Average 90 % No. obs 10 % Average 90 % No. obs

EPS -0.1243 -0.0218 0.0901 56 933 -0.1954 -0.0457 0.0891 57 230 -0.1316 -0.0164 0.1143 34 598

Vol -0.4342 -0.0118 0.4726 58 000 -0.4399 -0.0132 0.4785 58 444 -0.4190 0.0303 0.5571 34 650

Delta -0.1552 0.0970 0.3537 57 272 -0.1273 0.1274 0.3869 57 755 -0.1317 0.1292 0.3925 34 145

MV -0.0839 -0.0008 0.0811 58 000 -0.0598 0.0021 0.0654 58 464 -0.0579 0.0039 0.0660 34 800

PTBV -0.0890 0.0025 0.0970 58 000 -0.0847 -0.0151 0.0695 58 464 -0.0703 0.0040 0.0800 34 800

PCratt−1 -0.4603 0.1524 0.7714 57 273 -0.4118 0.1924 0.7774 57 754 -0.4000 0.2305 0.8208 34 147

PCratt−2 -0.4595 0.1532 0.7724 57 277 -0.4126 0.1918 0.7767 57 755 -0.3985 0.2310 0.8210 34 146

PCrat∗t−1 -0.2575 0.0862 0.5906 57 273 -0.1837 0.1048 0.6016 57 754 -0.1525 0.1203 0.6556 34 147

PCrat∗t−2 -0.2575 0.0861 0.5891 57 277 -0.1897 0.1035 0.6012 57 755 -0.1522 0.1196 0.6484 34 146

PCratOTMt−1 -0.9308 -0.1664 0.7274 55 913 -0.9636 -0.2540 0.6134 56 340 -0.9713 -0.2356 0.6466 33 292

PCratOTMt−2 -0.9301 -0.1653 0.7286 55 915 -0.9638 -0.2536 0.6137 56 336 -0.9710 -0.2363 0.6457 33 290

PCratOTM∗
t−1 -0.7742 -0.0790 0.4902 55 913 -0.8133 -0.1233 0.3501 56 340 -0.8121 -0.1119 0.3792 33 292

PCratOTM∗
t−2 -0.7695 -0.0755 0.4985 55 915 -0.8148 -0.1217 0.3539 56 336 -0.8140 -0.1122 0.3745 33 290

The table presents descriptive statistics gathered from the 1st of January 2012 to the 6th of August 2014, for all independent variables in the regressions. For
each year, data for the 10th percentile (10 %), average value, 90th percentile (90 %) and total number of observations is presented. The data is the accumulated
data across all firms and trading days.
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4.2 Model assumptions

If the OLS techniques are going to be applicable, certain assumptions concerning the set

of residuals needs to be fulfilled. The Gauss-Markov theorem stats that under certain

conditions, OLS estimators are the “best linear unbiased estimators” (BLUE) (Dismuke

and Lindrooth, 2006), and the assumptions for this are:

1. E[εi] = 0: Zero mean

2. V ar(εi) = σ2 <∞: Homoscedastic, the variance for all observationsXi are constant

and finite. Since the error variance is a measure of uncertainty, homoscedasticity

causes the uncertainty in the model to be identical for all observations. Violating

the assumption is a problem often found in cross-sectional data and leads to biased

estimates of the variance of the coefficients, which means that standard error and

inferences obtained are not valid.

3. Cov(εi, εj) = 0,∀i 6= j: No autocorrelation, the values of ε are not correlated.

Violations of this assumptions is often caused by omitted variables, misspecification

of the functional form or error of measurements in the dependent variable. In

the presence of autocorrelation there will be complications in estimating the true

variance which could cause H0 to be rejected too often.

4. Cov(εi,Xi) = 0. I.e. εi is uncorrelated with any of the explanatory variables, Xi.

If this assumption is violated, then OLS suffers from what is commonly referred to

as an endogeneity problem. An endogeneity problem causes the coefficients in OLS

to be biased.

When one or more of the OLS assumptions is violated, other models should be considered

as better alternatives to OLS.

The first assumption, E[εi] = 0, is trivial. The regression constant will absorb any

deviation from 0.

The second and third assumption, regarding homoscedasticity and autocorrelation, are

not trivial. As our data have both a time and cross-sectional dimension, it is reason-

able to assume that for one or more periods or one or more companies, there will be

problems with either heteroscedasticity or autocorrelation. Another potential source of
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heteroscedasticity is the fact that the regression equations (12), (13) and (14) uses ARj,t

as the dependent variable. ARj,t is calculated from equation (4). Since the dependent

variable is calculated by regression parameter estimates, there is a portion of uncertainty

in these numbers which introduces errors in the regression. These standard errors are

adjusted by using heteroscedasticity consistent standard errors in the linear regression

model, which give consistent results even when the presence of heteroscedasticity is of

an unknown form (Long and Ervin, 2000). More precisely, we implement tests based on

a heteroscedasticity consistent covariance matrix (HCCM) based on White (1980) work,

using a version known as HC3 which MacKinnon and White (1985) proves perform bet-

ter than its alternatives. The correction model is implemented in our regression software

package and used directly from there.

For the assumption about endogeneity, we assume it holds.

Although it is not a necessity for OLS to be BLUE according to the Gauss-Markov

theorem, residuals should be normally distributed to claim inference to the population. As

our data is real life data, the return distributions tend to have thicker tails than a perfect

normal distribution. This is also notable in the regression residuals when the explanatory

power of the regression equation is low. Such normality problems can be addressed by

using the method of Fenn and Liang (2001), which winsorizes the data at the 5th and

95th percentiles, or other similar methods. However, transforming observations this way

would be detrimental to our research in this case, as it is exactly these observations that

we are trying to explain with option volume. We have thus included all observations

in our regressions. Regardless of the normality of εi, the normality assumption can by

bypassed in large samples according to Greene (2003). When the sample n increases the

normal distribution becomes a better approximation of the true regression parameters’

distribution. We argue that our samples can be considered large enough for this to hold

true.

4.3 Other issues

Previous research has explored option volumes by using data with different time intervals.

Therefore, it is important to know the strength of the test given the sample intervals.
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Morse (1984) compares daily and monthly data and concludes that decreasing the interval

increases the power of the test. MacKinlay (1997) introduces weekly data as well, and

draws the same conclusion. It is possible to have even shorter sample intervals then one

day, down to single transaction data, but the net benefit of using such data is unclear. We

argue that our daily data has enough resolution to capture any effects that the PCratj,t−n

and any variations thereof may exhibit.

Event dates are not always exact, which leads to uncertainty related to the event window.

For example, when collecting news from publications such as the Wall Street Journal, it

is possible that the market was informed prior to the news release from the paper. As

discussed, this uncertainty can be mitigated by increasing the event window. An event

window consisting of two days, day 0 and day +1, is a method often used. MacKinlay

(1997) shows that the estimates with a larger event window, set at two days, is still good.

If there is uncertainty related to the event of interest, it is therefore better to increase

the event window instead of taking the risk of missing the event.

4.4 Data Presentation

For our time-series and cross-sectional regressions we present our regression outputs in

tables which summarises the proportion of significance of the variables at 5 % and 10 %

together with the regression coefficient medians, 25th and 75th percentiles inspired by the

presentation in Roll et al. (2010). We argue that this is a suitable way to present the

data in two ways.

The P-value is the probability that, given a true null hypothesis, one observes what one

observes (or something more extreme) at random. This implies, for a significance level of

e.g. 5 %, that one should expect a proportion of P-values of 0.05 or lower in 5 % of the

regressions should the null hypothesis hold true. However, if the reported proportion is

significantly higher than 5 %, this would imply that the observed effects are not random

(although they might not be significant in every single regression).

While the above argument gives an intuitive explanation, the combined p-values have

been tested formally with Fisher’s combined probability test (Fisher, 1932). The test

statistic, is chi-squared distributed with 2 · k degrees of freedom, where k is the number
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of tests.

− 2
k∑
i=1

ln(pi) ∼ χ2 (29)

The results of the test for each regression coefficient is also reported in the tables. As the

test assumes independence, a strong assumption, the combined P-values have also been

adjusted according to the mean-method presented in Becker (1994). The mean-method

has the following test statistic:

√
12 · k · (0.5−

k∑
i=1

pi) ∼ Z (30)

The null hypothesis for both of these tests is defined as the effect of interest is not

significant in any of the population studied by Becker.

5 Empirical Analysis

5.1 Panel Data

The following sections presents a summary of the panel data regression from equation

(12). The regression consists of 232 companies observed over 1306 days from the 1st of

June 2009 to the 6th of August 2014. The analysis aspires to find evidence of informed

trading prior to spikes in abnormal returns, thus answering H1 and H2. The regression

outputs are summarized in separate tables for Abnj,t defined with limits of x > 0.5%

and x > 1.0%1617. The table for Abnj,t defined with a limit of x > 1.5% can be found

in the appendix. OTM is, as earlier, defined as all options that are more than 5 %

out-of-the-money.

To answer H1 and H2, the important variables are PCrat∗t−n and PCratOTM∗
t−n . These

variables will indicate whether or not there are any additional explanatory power beyond

the day-to-day variations in PCratt−n and PCratOTMt−n . If this is the case, the coefficients

of PCrat∗t−n and PCratOTM∗
t−n should be statistically significant.

While the hypothesis can be answered on a statistical basis alone, from an empirical

finance perspective it is also interesting to answer them in the sense of economic signif-

16See equation (1)
17The notation Abn > x will from now on be used to describe the limit for which Abnj,t is defined.
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icance. This is done by analyzing the coefficients, which contain information about the

impact our variables have regarding both direction and magnitude. This is also some-

what a robustness check, as results with coefficients so high or low that they do not make

economic sense can be disregarded.

5.1.1 Abn > 0.5 %

Table 5: Two-way fixed-effect panel regression : Abn > 0.005

90 % CI 95 % CI

Estimate Lower Upper Lower Upper T-value P-value

EPS -0.0001 -0.0003 0.0001 -0.0004 0.0001 -0.84 0.4028

Vol -0.0005 -0.0009 -0.0002 -0.0010 -0.0001 -2.34 0.0192

Delta 0.0107 0.0099 0.0115 0.0098 0.0116 23.02 0.0000

MV 0.0184 0.0153 0.0215 0.0147 0.0221 9.81 0.0000

PTBV -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -8.19 0.0000

PCratt−1 -0.0011 -0.0012 -0.0009 -0.0012 -0.0009 -15.49 0.0000

PCratt−2 -0.0008 -0.0009 -0.0007 -0.0009 -0.0007 -14.35 0.0000

PCrat∗t−1 0.0002 0.0000 0.0004 -0.0000 0.0004 1.76 0.0782

PCrat∗t−2 0.0000 -0.0002 0.0002 -0.0002 0.0002 0.20 0.8431

PCratOTMt−1 0.0004 0.0003 0.0004 0.0003 0.0004 8.91 0.0000

PCratOTMt−2 0.0003 0.0002 0.0004 0.0002 0.0004 7.52 0.0000

PCratOTM∗
t−1 0.0002 0.0001 0.0004 0.0001 0.0004 2.62 0.0088

PCratOTM∗
t−2 -0.0001 -0.0002 0.0001 -0.0002 0.0001 -0.86 0.3924

Adj. R2 F -statistic P -value DF

0.0305 752.30 0.0000 260431

The table presents an overview of the regression output for Abn > 0.5 %. The values are calculated from a
panel data regression consisting of 232 companies and 1306 trading days observed from mid-2009 to mid-
2014. The regression coefficients estimates are presented as point estimates, a 90 % confidence interval
and a 95 % confidence interval. The table also presents the T-value and P-value for the individual vari-
ables, and the Adjusted R2, F-statistic, P-value and the degrees of freedom (DF) for the total regression.

From table 5 we observe that both PCratt−1 and PCratt−2 are highly significant with

P-values = 0.00 %. The significance of the PCratt−n variables are in line with the results

from Roll, Schwartz, and Subrahmanyam (2010) that option volume is correlated with

future abnormal returns. Our hypothesis, H1, is however more closely related to PCrat∗t−1

and PCrat∗t−2. We observe that PCrat∗t−1 is significant at a 10 %-level, but not at a 5

%-level with a P-value of 7.82 %. PCrat∗t−2 is, on the other hand, not significant at 10
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%-level with a P-value of 84.31 %. Thus the null hypothesis is rejected for α = 10%18,

but not at α = 5%, and we claim that there is evidence of a relative change in call to put

option volume prior to large spikes in abnormal returns on the underlying asset.

Regarding H2, we see that PCratOTMt−1 and PCratOTMt−2 are significant with P-values = 0.00

%. This is in line with the work of Chakravarty, Gulen, and Mayhew (2004) who finds

that OTM options have a higher information share than ATM and ITM options. We also

observe supporting results towards H2. PCratOTM∗
t−1 is significant at a 5 %-level, with a

P-value of 0.88 %. As with PCrat∗t−2, the second lag is not significant with a P-value of

39.24 %. Given this result we reject the null hypothesis at α = 5%, and claim that there

is evidence of a relative change in the isolated out-of-the money call to put option volume

prior to large spikes in abnormal returns on the underlying asset.

The regression coefficients give estimates of the economic impact and magnitude of

changes in the dependent variable when the explanatory variables changes. E.g. for

a change of 1 in PCratt−1, the abnormal return is expected to decrease with 0.1 %. The

negative sign of the PCratt−n variables implies that a share of put options > 0.5 in the

two previous days is associated with a positive return at t = 0. The positive signs of

PCrat∗t−n, PCratOTMt−n and PCratOTM∗
t−1 mean that a share of call options > 0.5 in the days

prior to t = 0 is associated with a negative return.

The PCratt−n variables are the largest with regard to magnitude, with absolute values of

0.0011 for t − 1 and 0.0008 for t − 2 respectively. The six other variables have absolute

values ≤ 0.0004. The magnitude size of all the regression coefficients of interest can be

considered small compared to the estimates for Delta and MV, being one tenth of the size.

Even tough the null hypotheses of H1 and H2 can be rejected statistically, we believe the

economic impact of the variables is too small to make profitable trading strategies when

considering transaction costs.

As for the total variation in abnormal return captured by the regression, measured by

Adjusted R2, the value of 3.02 % is low. This may be due to our choice of model for

abnormal returns or unobserved properties or events that are not included as variables.

18α defines the significance level
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5.1.2 Abn > 1.0 %

Table 6: Two-way fixed-effect panel regression : Abn > 0.01

90 % CI 95 % CI

Estimate Lower Upper Lower Upper T-value P-value

EPS -0.0001 -0.0003 0.0001 -0.0004 0.0001 -0.81 0.4208

Vol -0.0006 -0.0009 -0.0002 -0.0010 -0.0001 -2.42 0.0154

Delta 0.0107 0.0099 0.0115 0.0098 0.0116 23.03 0.0000

MV 0.0184 0.0153 0.0215 0.0147 0.0221 9.81 0.0000

PTBV -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -8.32 0.0000

PCratt−1 -0.0011 -0.0012 -0.0010 -0.0013 -0.0010 -16.66 0.0000

PCratt−2 -0.0008 -0.0009 -0.0007 -0.0010 -0.0007 -14.43 0.0000

PCrat∗t−1 0.0006 0.0003 0.0010 0.0002 0.0010 3.11 0.0019

PCrat∗t−2 0.0002 -0.0002 0.0005 -0.0002 0.0005 0.76 0.4464

PCratOTMt−1 0.0004 0.0003 0.0005 0.0003 0.0005 9.62 0.0000

PCratOTMt−2 0.0003 0.0002 0.0003 0.0002 0.0004 7.20 0.0000

PCratOTM∗
t−1 0.0003 0.0000 0.0005 -0.0000 0.0006 1.69 0.0902

PCratOTM∗
t−2 -0.0001 -0.0003 0.0002 -0.0004 0.0002 -0.42 0.6716

Adj. R2 F -statistic P -value DF

0.0306 755.48 0.0000 260431

The table presents an overview of the regression output for Abn > 1.0 %. The values are calculated from a
panel data regression consisting of 232 companies and 1306 trading days observed from mid-2009 to mid-
2014. The regression coefficients estimates are presented as point estimates, a 90 % confidence interval
and a 95 % confidence interval. The table also presents the T-value and P-value for the individual vari-
ables, and the Adjusted R2, F-statistic, P-value and the degrees of freedom (DF) for the total regression.

From table 6, when Abn > 1.0 %, we observe many of the same results as in the previous

section. Both PCratt−1 and PCratt−2 are highly significant with P-values = 0.00 %, and

similar results are seen for PCratOTMt−1 and PCratOTMt−2 . Regarding H1, there is however one

main difference. We observe that PCrat∗t−1 is significant at a 5 %-level, with a P-value

= 0.19 %. Compared to the P-value of 7.82 %, when Abn > 0.5 %, this is a notable

reduction. PCrat∗t−2 is, on the other hand, still not significant at 10 %-level with a P-

value of 44.64 %. However, with at least one significant variable we can reject the null

hypothesis for α = 5 %, and we claim that there is evidence of a relative change in call

to put option volume prior to large spikes in abnormal returns on the underlying asset.

We also observe supporting results towards H2, though not as strong as when Abn > 0.5

%. The significance of PCratOTM∗
t−1 has decreased and it is now only significant at a 10

%-level, with a P-value of 9.02 %. The second lag, PCratOTM∗
t−2 , is not significant with a
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P-value of 67.16 %. These results imply a weaker rejection of the null hypothesis, which

can now only be rejected at α = 10%. Although a weaker claim, there is still evidence

of a relative change in the isolated out-of-the money call to put option volume prior to

large spikes in abnormal returns on the underlying asset.

The regression coefficients estimates are almost unchanged compared to Abn > 0.5 %.

The most notable change is that the coefficient for PCrat∗t−1 has tripled from 0.0002 to

0.0006. The magnitude of this coefficient is still lower than those of PCratt−n, and we

still believe the low magnitude limits any profitable trading strategies due to transaction

costs.

5.2 Time Series

The following section summarizes the time-series regressions for all 232 companies, with

a total of 1306 days observed from the 1st of June 2009 to the 6th of August 2014. The

analysis aspires to find supporting evidence towards H1 and H2, but is conducted mainly

to answer H3 and H4. I.e. we will not conclude H1 and H2 with these regressions, but

rather enhance the finding from the panel data analysis on a firm-by-firm basis. By

running a regression for each company j, we are able to map each regression’s coefficients

and P-values to the company’s average market value and PTBV over the period and

present the relationships graphically.

The results substantiating H1 and H2 are summarized in tables, while results substanti-

ating H3 and H4 are summarized in figures, both separated in sections for Abn > 0.5 %

and Abn > 1.0 %. The tables and figures for Abn > 1.5 % can be found in the appendix.

5.2.1 Abn > 0.5 %

Table 7 shows a summary of the P-values, a combined P-value, and the regression coeffi-

cient estimates for the explanatory variables when Abn > 0.5 %. The table is important

for two reasons. First, the table presents the proportions of variables that are significant

at a 5 % and 10 %-level. Following the P-value argument from section 4.4, a posi-

tive deviation between observed proportion of P-values and significance level indicates

a higher proportion of significant regression coefficients than what one would expect at
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Table 7: Time-series regression P-values and coefficients : Abn > 0.005

P-values Combined P-values Regression coefficients

Proportion

significant

at 5%

Proportion

significant

at 10%

Fisher’s

method

Adj. mean 25th

percentile

Median 75th

percentile

Intercept 0.2251 0.3117 0.0000 0.0000 -0.0011 -0.0006 -0.0001

EPS 0.0866 0.1082 0.2982 0.7702 -0.0019 0.0002 0.0021

Vol 0.0996 0.1818 0.0000 0.0123 -0.0015 0.0000 0.0016

Delta 0.9697 0.9697 0.0000 0.0000 0.0061 0.0099 0.0158

MV 0.1732 0.2597 0.0000 0.0000 0.0004 0.0110 0.0207

PTBV 0.0649 0.1299 0.0403 0.1883 -0.0031 0.0018 0.0124

PCratt−1 0.4719 0.5844 0.0000 0.0000 -0.0020 -0.0012 -0.0006

PCratt−2 0.2771 0.3853 0.0000 0.0000 -0.0016 -0.0009 -0.0004

PCrat∗t−1 0.0606 0.1082 0.1432 0.4471 -0.0012 -0.0000 0.0012

PCrat∗t−2 0.0390 0.0823 0.9383 0.9810 -0.0010 0.0000 0.0010

PCratOTMt−1 0.1861 0.2381 0.0000 0.0000 0.0001 0.0004 0.0009

PCratOTMt−2 0.1472 0.2900 0.0000 0.0000 0.0001 0.0004 0.0008

PCratOTM∗
t−1 0.0433 0.0736 0.3884 0.1939 -0.0006 0.0004 0.0013

PCratOTM∗
t−2 0.0519 0.1039 0.6601 0.6923 -0.0009 -0.0001 0.0009

The table summarizes the P-value distributions and the coefficient estimates for the explanatory vari-
ables when Abn > 0.5 %. The values are calculated from 232 different time-series regressions, with a
total of 1306 trading days observed from mid-2009 to mid-2014. Proportion significant at x % is the
number of regressions with a P-value < x %, divided by total regressions (232). The dependent variable
is daily abnormal returns. EPS, Vol, Delta, MV and PTBV are control variables, and the variables of
interest are the different PCrat variations.

random. Second, the coefficients create the baseline for any economic interpretation of

the variables.

Regarding H1, we see that PCratt−1 and PCratt−2 have a 47.19 % and 27.71 % portion

of significance at a 5 %-level. The lags exhibit a falling trend, indicating that the day

closest to a spike in abnormal return is the most significant variable. This is the same as

observed in the panel data regression in table 5. The same falling trends are also observed

for PCrat∗t−1 and PCrat∗t−2. However, the portions 6.06 % and 3.90 % is no larger than

what we could expect from a random sample. Our test for combined P-values concludes

that PCrat∗t−1 and PCrat∗t−2 are non-significant at conventional significance levels. This

is not in line with the panel data conclusion, which rejected the null hypothesis for H1

at α = 10%.

While the day-to-day OTM option volume, PCratOTMt−1 and PCratOTMt−2 , have a high pro-

portion of significant coefficients, with proportions of 18.61 % and 14.72 % at a 5 %-level
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Table 8: Time-series regression explanatory power and observations : Abn > 0.005

Min 25th percentile Median 75th percentile Max

Adj.R2 -0.0011 0.0297 0.0454 0.0622 0.1734

No. obs 135 1024 1246 1303 1306

No. abn. obs 64 580 677 783 999

The table presents summarizing statistical properties when Abn > 0.5 % for a total of 232 different
time-series regressions with a total of 1306 trading days observed from mid-2009 to mid-2014. Adj.R2 is
the “goodness-of-fit” measures, No. obs is the total number of days with registered option trades for all
firms, while No. abn. obs is the number of observations with an abnormal return > 0.5 %.

respectfully, the OTM option volume prior to spikes in abnormal return have portions of

significance no larger than what we expect from a random sample. The same results are

found when comparing at a 10 %-level. The combined P-values substantiates that only

the day-to-day volume is significant, both for α = 5% and α = 10%.

What is noticeable in table 7 is the shifting signs the coefficients have. While PCratt−1,

PCratt−2, PCrat∗t−1 and PCratOTM∗
t−2 have positive signs, PCratOTMt−1 , PCratOTMt−2 , PCratOTM∗

t−1

and PCrat∗t−2 have negative signs. As the volume used in our analysis is unsigned we

cannot draw an unambiguous conclusion of whether call/put options bought/sold causes

the abnormal return to increase or decrease, but we can conclude that the majority of

PCratt−n and PCratOTMt−n pull in different directions. The variable with the largest im-

pact is PCratt−1, with a median effect of about -0.12 % for an increase in PCratt−1 by 1,

while the variable with the lowest impact is PCrat∗t−2 with a coefficient of zero. It is also

worth noting that at least 75 % of the observed coefficients for PCratt−1 and PCratt−2 are

negative, and at least 75 % of the coefficients for PCratOTMt−1 and PCratOTMt−2 are positive.

These observations should be viewed alongside the informational content of table 8. The

regressions explain at the median 4.54 % of the total variation, and between 2.97 % and

6.22 % in the 25th percentile to 75th percentile interval measured by Adjusted R2. This

is in line with the explanatory power of the regressions from Ge, Lin, and Pearson (2016)

which also utilizes a form of option ratio as explanatory variables. The table also show

that the median number of trading days with abnormal returns > 0.5 % is 677 out of

1246 observations. Since the total number of special observations is 54.33 % of total

observations, the special trading days might not be that special. An abnormal return

of 0.5 % will occur often, and is most likely caused by random fluctuations, not specific
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news or information affecting the stock price.

Following are eight different figures showing the variables plotted against market value

and PTBV. The interpretation of these figures, i.e. trends and patterns, will conclude

our third and fourth hypothesis, H3 and H4.

Figure 1: Time-series PCrat
(∗)
t−n P-values vs log(MV): Abn > 0.005
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The figure shows a scatter plot of the P-values and the logarithm of market value for the variables
PCratt−n and PCrat∗t−n. The trend line is computed by linear regression and includes a 95 % confidence
interval. Abn > 0.5 %.

Figure 2: Time-series PCrat
OTM(∗)
t−n P-values vs log(MV): Abn > 0.005
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The figure shows a scatter plot of OTM observations for the P-values and the logarithm of market value
for the variable PCratOTM

t−n and PCratOTM∗
t−n . The trend line is computed by linear regression and in-

cludes a 95 % confidence interval, visualized as the grey area. Abn > 0.5 %. .
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In figure 1 and 2 P-values and the logarithm of market value is compared to establish

any trends between the two.

Both PCratt−1 and PCratOTMt−1 show significant linear downward trends, indicating that

day-to-day option volume for all options and OTM are correlated with firm size for a one

day lag. However, the PCrat∗t−n and PCratOTM∗
t−n variables do not show any significant

trends, as the confidence interval of the slope coefficient of the linearly fitted line contains

zero19. Therefore, rejection of H30 cannot be justified for Abn > 0.5 %; market value

does not affect an informed trader’s decision.

Figure 3: Time-series PCrat
(∗)
t−n regression coefficients vs log(MV): Abn > 0.005
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The figure shows a scatter plot of the regression coefficient (β) estimates and the logarithm of market
value for the variables PCratt−n and PCrat∗t−n. The trend line is computed by linear regression and
includes a 95 % confidence interval. Abn > 0.5 %.

As concluded in the previous paragraph, market value does not affect the portion of

informed trading, which is further supported by analyzing the regression coefficients20

and company market value. From figure 3 we see that for the PCratt−n variables the

trend is significant downward sloping, indicating that the regression coefficients are higher

in absolute values for larger firms. For PCrat∗t−n however, we cannot conclude that

there is a relationship between firm size and the regression coefficient prior to large

spikes in abnormal return. The trend line for OTM observations in figure 4 is however

19Seen from the grey confidence bands in the figures.
20The regression coefficients are referred to as Beta-values in the figures
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Figure 4: Time-series PCrat
OTM(∗)
t−n regression coefficients vs log(MV): Abn > 0.005
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The figure shows a scatter plot of OTM observations for the regression coefficient (β) estimates and the
logarithm of market value for the variable PCratOTM

t−n and PCratOTM∗
t−n . The trend line is computed by

linear regression and includes a 95 % confidence interval, visualized as the grey area. Abn > 0.5 %.

unambiguous, showing a clear flat trend. Market value does not affect the regression

coefficients for OTM observations.

Figure 5: Time-series PCrat
(∗)
t−n P-values vs PTBV: Abn > 0.005
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The figure shows a scatter plot of the P-values and PTBV for the variables PCratt−n and PCrat∗t−n.
The trend line is computed by linear regression and includes a 95 % confidence interval. Abn > 0.5 %.
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Figure 6: Time-series PCrat
OTM(∗)
t−n P-values vs PTBV: Abn > 0.005
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The figure shows a scatter plot of OTM observations for the P-values and PTBV for the variable
PCratOTM

t−n and PCratOTM∗
t−n . The trend line is computed by linear regression and includes a 95 % confi-

dence interval, visualized as the grey area. Abn > 0.5 %.

From figure 5 and 6 we find no results that gives reason to reject H40: PTBV does

not affect an informed traders decision, informed traders are not more likely to trade

in firms with lower PTBV. The only variable that is significant downward sloping is

PCratt−1. With no significant trends in PCrat∗t−n and PCratOTM∗
t−n , we fail to reject the

null hypothesis. This could be because informed traders do not possess information

for multiple companies, and are limited to trade in the ones they are informed about,

regardless of PTBV.
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Figure 7: Time-series PCrat
(∗)
t−n regression coefficients vs PTBV: Abn > 0.005
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The figure shows a scatter plot of the regression coefficient (β) estimates and PTBV for the variables
PCratt−n and PCrat∗t−n. The trend line is computed by linear regression and includes a 95 % confidence
interval. Abn > 0.5 %.

Figure 8: Time-series PCrat
OTM(∗)
t−n regression coefficients vs PTBV: Abn > 0.005
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The figure shows a scatter plot of OTM observations for the regression coefficient (β) estimates and
PTBV for the variable PCratOTM

t−n and PCratOTM∗
t−n . The trend line is computed by linear regression and

includes a 95 % confidence interval, visualized as the grey area. Abn > 0.5 %.

There are no significant trends between regression coefficients and PTBV for neither

combination of PCrat, as seen in figure 7 and 8. These results further support our

conclusion about H4, and there are still no observed connection between informed trading

and PTBV.
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5.2.2 Abn > 1.0 %

Table 9: Time-series regression P-values and coefficients : Abn > 0.01

P-values Combined P-values Regression coefficients

Proportion

significant

at 5%

Proportion

significant

at 10%

Fisher’s

method

Adj. mean 25th

percentile

Median 75th

percentile

Intercept 0.2251 0.3030 0.0000 0.0000 -0.0010 -0.0005 -0.0001

EPS 0.0823 0.1126 0.3439 0.8284 -0.0017 0.0001 0.0021

Vol 0.0909 0.1688 0.0000 0.0079 -0.0016 0.0001 0.0016

Delta 0.9654 0.9697 0.0000 0.0000 0.0060 0.0096 0.0159

MV 0.1645 0.2554 0.0000 0.0000 -0.0001 0.0110 0.0201

PTBV 0.0693 0.1212 0.0682 0.2954 -0.0032 0.0018 0.0121

PCratt−1 0.5022 0.5671 0.0000 0.0000 -0.0021 -0.0013 -0.0007

PCratt−2 0.2857 0.4329 0.0000 0.0000 -0.0015 -0.0009 -0.0004

PCrat∗t−1 0.0823 0.1255 0.1613 0.3904 -0.0016 0.0001 0.0028

PCrat∗t−2 0.0563 0.1169 0.7974 0.8226 -0.0019 0.0001 0.0020

PCratOTMt−1 0.2078 0.2944 0.0000 0.0000 0.0001 0.0005 0.0009

PCratOTMt−2 0.1342 0.2121 0.0000 0.0000 0.0000 0.0003 0.0008

PCratOTM∗
t−1 0.0606 0.1082 0.1294 0.0687 -0.0015 0.0005 0.0023

PCratOTM∗
t−2 0.0346 0.1082 0.4652 0.4312 -0.0019 -0.0001 0.0015

The table summarizes the P-value distributions and the coefficient estimates for the explanatory vari-
ables when Abn > 1.0 %. The values are calculated from 232 different time-series regressions, with a
total of 1306 trading days observed from mid-2009 to mid-2014. Proportion significant at x % is the
number of regressions with a P-value < x %, divided by total regressions (232). The dependent variable
is daily abnormal returns. EPS, Vol, Delta, MV and PTBV are control variables, and the variables of
interest are the different PCrat variations.

While performing the same analysis and answering the same hypotheses as in the previous

section, the threshold for abnormal returns when defining Abn has now increased from

0.5 % to 1.0 %. From table 10, the median number of trading days with an abnormal

return > 1.0 % has decreased to 341 out of 1246 trading days (27.37 %).

Comparing table 9 with table 7, PCratt−1, PCratt−2, PCrat∗t−1 and PCrat∗t−2 all increase

their proportions of significance at a 5 % level with approximately 2 percentage points

each. The diminishing proportions of significance for increased lags are in line with the

results from the panel data regression and the time-series regressions for Abn > 5 %.

The combined P-values of zero for the first two variables substantiates their significance.

The variable PCrat∗t−1 has a proportion of significance at a 5 %-level of 8.23 % and at a

10 %-level of 12.55 %. Both these numbers are higher than what we would expect from

random observations. PCrat∗t−2 exhibit the same trend, with proportions of 5.63 % and
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Table 10: Time-series regression explanatory power and observations : Abn > 0.01

Min 25th percentile Median 75th percentile Max

Adj.R2 0.0050 0.0362 0.0500 0.0664 0.1870

No. obs 135 1024 1246 1303 1306

No. abn. obs 27 244 341 440 741

The table presents summarizing statistical properties when Abn > 1.0 % for a total of 232 different
time-series regressions with a total of 1306 trading days observed from mid-2009 to mid-2014. Adj.R2 is
the “goodness-of-fit” measures, No. obs is the total number of days with registered option trades for all
firms, while No. abn. obs is the number of observations with an abnormal return > 1.0 %.

11.69 %. The combined P-value do however conclude that both PCrat∗t−1 and PCrat∗t−2

are non-significant.

For PCratOTMt−n , both lags are significant when testing combined P-values, but with no-

ticeable smaller proportions of significant obervations compared to PCratt−n. For the

modified variables, PCratOTM∗
t−1 is now significant at a 10 % level according to the adjusted

mean procedure, and almost significant at a 10 % level using Fisher’s method. This is the

same as what was observed using the panel regression. PCratOTM∗
t−2 exhibits no systematic

changes from Abn > 5 %, and its combination of P-values are non-significant.

The regression coefficients in 9 show many similarities with those in table 7. The variable

with the most impact (at the median) is still PCratt−1. The most notable change in the

coefficients is the spread of PCrat∗t−n and PCratOTM∗
t−n . The length of the interval from

the 25th percentile to the 75th percentile has almost doubled. Some of this increased

uncertainty is caused by fewer observations for Abn > 1.0 % than for Abn > 0.5 %, as

the second set will, by definition, be at least as large as the first one. On the other hand,

it is also economically sensible that the coefficients will have a larger spread and impact

when the set of abnormal days have a larger distance between the smallest positive and

negative value used in the absolute function which defines the variable.

We observe that all PCrat variations show signs of more significance, implying that the

model is a better fit for the dependent variable. This is further supported by table 10,

which show that our analysis explains at the median 5.00 % of the total variation, and

between 3.62% and 6.64 % in the 25th percentile to 75th percentile interval measured by

Adjusted R2, an increase from the previous section of about 0.5 percentage points.

The same eighth figures analyzed for Abn > 0.5 %, will now be analyzed for Abn > 1.0
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%. The interpretation of these figures, i.e. trends and patterns, will conclude our third

and fourth hypothesis, H3 and H4.

In figure 9 and 10 we observe that PCratt−1, PCratOTMt−1 and PCratOTMt−2 show significant

downward trends. These trends, except for PCratOTMt−2 , are in line with what was observed

for Abn > 0.5 %. However, since neither PCrat∗t−n or PCratOTM∗
t−n show significant trends,

rejecting H30 cannot be justified for Abn > 1.0 %; market value does not affect an

informed trader’s decision.

Figure 9: Time-series PCrat
(∗)
t−n P-values vs log(MV): Abn > 0.01
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The figure shows a scatter plot of the P-values and the logarithm of market value for the variables
PCratt−n and PCrat∗t−n. The trend line is computed by linear regression and includes a 95 % confidence
interval. Abn > 1.0 %.

Comparing the regression coefficients and firm value in figure 11 and 12, gives the same

concluding remarks as the previous analysis for Abn > 0.5 %. The only variables with a

significant trend are PCratt−1 and PCratt−2. Since the confidence interval, for PCrat∗t−n

and PCratOTM∗
t−n , of the slope coefficient of the linearly fitted line contains zero, we cannot

conclude that there is a relationship between firm size and the regression coefficient prior

to large spikes in abnormal return.
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Figure 10: Time-series PCrat
OTM(∗)
t−n P-values vs log(MV): Abn > 0.01
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The figure shows a scatter plot of OTM observations for the P-values and the logarithm of market value
for the variable PCratOTM

t−n and PCratOTM∗
t−n . The trend line is computed by linear regression and in-

cludes a 95 % confidence interval, visualized as the grey area. Abn > 1.0 %.

Figure 11: Time-series PCrat
(∗)
t−n regression coefficients vs log(MV): Abn > 0.01
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The figure shows a scatter plot of the regression coefficient (β) estimates and the logarithm of market
value for the variables PCratt−n and PCrat∗t−n. The trend line is computed by linear regression and
includes a 95 % confidence interval. Abn > 1.0 %.
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Figure 12: Time-series PCrat
OTM(∗)
t−n regression coefficients vs log(MV): Abn > 0.01
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The figure shows a scatter plot of OTM observations for the regression coefficient (β) estimates and the
logarithm of market value for the variable PCratOTM

t−n and PCratOTM∗
t−n . The trend line is computed by

linear regression and includes a 95 % confidence interval, visualized as the grey area. Abn > 1.0 %.

From figure 13 and 14, we observe that non of the PCrat variations, expect for PCrat∗t−1,

exhibit a significant trend between P-values and PTBV. However, the significant trend

in PCrat∗t−1 is upward sloping, which is in contrast with what is stated in H4. While we

cannot justify rejecting H40, we can however conclude that there is a significant positive

correlation between P-values and PTBV the day prior to spikes in abnormal return > 1.0

%. There were no significant trends between the regression coefficients and PTBV21.

21Tables comparing regression coefficients and PTBV for Abn > 1.0 % are found in the appendix
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Figure 13: Time-series PCrat
(∗)
t−n P-values vs PTBV: Abn > 0.01
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The figure shows a scatter plot of the P-values and PTBV for the variables PCratt−n and PCrat∗t−n.
The trend line is computed by linear regression and includes a 95 % confidence interval. Abn > 1.0 %.

Figure 14: Time-series PCrat
OTM(∗)
t−n P-values vs PTBV: Abn > 0.01
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The figure shows a scatter plot of OTM observations for the P-values and PTBV for the variable
PCratOTM

t−n and PCratOTM∗
t−n . The trend line is computed by linear regression and includes a 95 % confi-

dence interval, visualized as the grey area. Abn > 1.0 %.
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5.3 Cross Sectional

The following section summarizes the cross-sectional analysis. For each applicable trading

day in the period 1st of June 2009 to the 6th of August 2014 a cross-sectional regression

has been carried out. This totals 1306 regression over the period. Unlike the previous ap-

proaches, a series of cross sectional regressions will illustrate any changes in statistical and

economic significance over time. This technique has been used before by Roll, Schwartz,

and Subrahmanyam (2010) and will be utilized to answer H5 about any time-varying

differences in the effect of the call to put option volume ratio.

Similar to the time-series sections, we will not conclude H1 and H2, but rather use the

regression results to enhance the findings from the panel data analysis on a day-by-day

basis. However, the analysis is mainly conducted to find supporting evidence of H5. It is

worth noting that our third and fourth hypothesis is not applicable in the cross-sectional

setting. The average market value in the cross-sectional regression would somewhat

be a proxy for S&P500, and would thus not be an appropriate measure for individual

differences.

The results substantiating H1 and H2 are summarized in tables, while results substanti-

ating H5 are summarized in figures, both separated in sections for Abn > 0.5 % and Abn

> 1.0 %. The tables and figures for Abn > 1.5 % can be found in the appendix.

5.3.1 Abn > 0.5 %

Table 11 shows a summary of the P-values and the regression coefficient estimates for the

explanatory variables when Abn > 0.5 %. There seems to be no evidence of PCratt−1

and PCratt−2 containing any information at a significant level when comparing observed

proportions of significance to expected proportions. The proportions of significant obser-

vations are 7.35 % and 5.59 % at a 5%-level and 13.94 % and 9.95 % at a 10 %-level for

the two, just slightly more than what would be expected from a random sample. The

combined test for P-values, which accounts for the composition of individual P-values,

concludes differently. Both PCratt−1 and PCratt−2 are significant at a 5 %-level accord-

ing to these tests. With regard to H1, the same proportions are observed for PCrat∗t−1

and PCrat∗t−2, with 4.13 % and 5.51 % at a 5 %-level and 9.19 % and 11.49 % at a 10
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Table 11: Cross-sectional regression P-values and coefficients : Abn > 0.005

P-values Combined P-values Regression coefficients

Proportion

significant

at 5%

Proportion

significant

at 10%

Fisher’s

method

Adj. mean 25th

percentile

Median 75th

percentile

Intercept 0.1937 0.2695 0.0000 0.0000 -0.0022 -0.0005 0.0012

EPS 0.0689 0.1217 0.0029 0.1189 -0.0025 -0.0001 0.0027

Vol 0.1654 0.2243 0.0000 0.0000 -0.0036 0.0008 0.0052

Delta 0.5674 0.6807 0.0000 0.0000 0.0061 0.0097 0.0139

MV 0.1394 0.2213 0.0000 0.0000 -0.0019 0.0146 0.0338

PTBV 0.0459 0.0789 1.0000 1.0000 -0.0042 0.0007 0.0087

PCratt−1 0.0735 0.1394 0.0000 0.0001 -0.0023 -0.0009 0.0003

PCratt−2 0.0559 0.0995 0.0144 0.0015 -0.0019 -0.0008 0.0005

PCrat∗t−1 0.0413 0.0919 0.8144 0.6909 -0.0030 -0.0002 0.0028

PCrat∗t−2 0.0551 0.1149 0.0913 0.3455 -0.0029 -0.0001 0.0029

PCratOTMt−1 0.0605 0.1172 0.2789 0.5571 -0.0006 0.0003 0.0012

PCratOTMt−2 0.0360 0.0819 0.9615 0.8975 -0.0006 0.0002 0.0011

PCratOTM∗
t−1 0.0429 0.0995 0.4716 0.5608 -0.0019 0.0003 0.0026

PCratOTM∗
t−2 0.0536 0.1103 0.1539 0.2482 -0.0024 -0.0000 0.0022

The table summarizes the P-value distributions and the coefficient estimates for the explanatory vari-
ables when Abn > 0.5 %. The values are calculated from 1306 different cross-sectional regressions, with
a total of 232 companies observed from mid-2009 to mid-2014. Proportion significant at x % is the num-
ber of regressions with a P-value < x %, divided by total regressions (1306). The dependent variable
is daily abnormal returns. EPS, Vol, Delta, MV and PTBV are control variables, and the variables of
interest are the different PCrat variations.

%-level. These modified variables show no significance in their combined P-values, except

for PCrat∗t−2 which is significant at a 10 %-level using Fisher’s method.

The variables for everyday OTM option volume, PCratOTMt−1 , PCratOTMt−2 , PCratOTM∗
t−1 and

PCratOTM∗
t−2 all have observed proportions of significance of approximately 5 % at the 5

%-level and 10 % at the 10 %-level. The non-significance of these variables are justified by

their combined P-values. Note that the cross-sectional regressions shows less significance

for all the PCrat-variations compared to panel data. Fixed effect panel data controls

for firm, j, and time, t, specific effects, and time-series control for firm specific. Cross-

sectional regression, however, controls time specific effects. As the results observed in

the panel data regression and the time series regressions are much closer in terms of

significance than the panel data regression and the cross-sectional regressions, this implies

that the firm specific effects has a much larger impact on how the regression coefficients

of PCrat-variations behaves than the time specific effects.
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Table 12: Cross-sectional regression explanatory power and observations : Abn > 0.005

Min 25th percentile Median 75th percentile Max

Adj.R2 -0.0714 0.0401 0.0844 0.1431 0.6463

No. obs 135 204 211 214 225

No. abn. obs 59 105 116 127 185

The table presents summarizing statistical properties when Abn > 0.5 % for a total of 1306 different
cross-sectional regressions with a total of 232 companies observed from mid-2009 to mid-2014. Adj.R2

is the “goodness-of-fit” measures, No. obs is the total number of days with registered option trades for
all firms, while No. abn. obs is the number of observations with an abnormal return > 0.5 %.

As before, one of the most notable observations are the signs for the median observa-

tions for the day-to-day options and the OTM options variables. They have, expect

for PCratOTM∗
t−2 , opposite signs. An increase in the PCrat

(∗)
t−n variables will at the me-

dian value predict a decrease in abnormal returns, while an increase in the PCrat
OTM(∗)
t−n

variable predicts an increase in abnormal returns.

The PCratt−n variables have the largest impact in regard to the magnitude of the coef-

ficients, with the first and second lag having a median effect of just under -0.1 % for an

increase in the ratio of 122. Note that the coefficients spreads for the modified variables,

PCrat∗t−n and CratOTM∗
t−n , are wider comparing the cross-sectional regressions with the

time-series regressions. This is sensible when taking the total number of observations

and number of Abnormal day observations into account. For each cross-sectional regres-

sion there is a median of 211 observations while the time-series regressions have a median

of 1246 observations.

As seen from the summary of regression meta data in table 12, our analysis explains

at the median 8.4 % of the total variation, and between 4.0 % and 14.3 % in the 25th

percentile to 75th percentile interval measured by Adjusted R2. With a median of 116

observations of Abnormal Days and a minimum of 59, there are no reason to be concerned

that the findings are purely a mechanical consequence of the statistical methods. This is

also shown in figure 37 in the appendix.

Our fifth hypothesis, H5, cannot be answered by the summary tables. The changes in

P-values and regression coefficients over time is presented graphically in the figures on

the following pages. This is inspired by the work of Roll, Schwartz, and Subrahmanyam

22Equation (21)
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(2010). The trends have been summarized with two statistical techniques. The blue line

is a simple linear regression on time, while the red line is a series of localized regressions

(LOESS) paired with a 95 % confidence band. LOESS is explained in the appendix.

In our hypothesis we argued that the information rate in option ratios should have de-

creased over the time period, as research by Roll, Schwartz, and Subrahmanyam (2010)

and Johnson and So (2012) have shown that option ratios contain information about

future stock returns.

Figure 15: Cross-sectional PCrat
(OTM)
t−n P-values vs Dates: Abn > 0.005
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The figure shows a scatter plot of the development of P-values over time for the variables PCratt−n and
PCratOTM

t−n when Abn > 0.5 %. The blue trend line is computed by a linear regression and the red trend
line with a 95 % confidence interval is computed by a LOESS regression with the parameter α = 0.05.
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As seen in figure 15, all variations of the PCratt−n and PCratOTMt−n variables have a

downwards trend in their P-values over time. This is not in line with our hypothesis, which

would suggest and upward trend, i.e. less significance with time. All fitted linear trends

have a negative slope coefficient, but time explains very little of the actual variation. Flat

trends are observed for PCrat∗t−n and PCratOTM∗
t−n in figure 16

Figure 16: Cross-sectional PCrat
(OTM)∗
t−n P-values vs Dates: Abn > 0.005
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The figure shows a scatter plot of the development of P-values over time for the variables PCrat∗t−n and
PCratOTM∗

t−n when Abn > 0.5 %. The blue trend line is computed by a linear regression and the red trend
line with a 95 % confidence interval is computed by a LOESS regression with the parameter α = 0.05.

The regression coefficients and thus the economic impact of the ratios have increased in

magnitude over time. The coefficients for PCratt−n have decreased from approximately 0

to -0.0015, which is an increase in absolute value and its effect on abnormal returns. The
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betas for PCratOTMt−n on the other hand has increased from approximately 0 to 0.0015,

which is also an increase in its absolute value and effect on abnormal returns.

Figure 17: Cross-sectional PCrat
(OTM)
t−n regression coefficients vs Dates: Abn > 0.005
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The figure shows a scatter plot of the development of the regression coefficient (β) estimates over time
for the variables PCratt−n and PCratOTM

t−n when Abn > 0.5 %. The blue trend line is computed by a lin-
ear regression and the red trend line with a 95 % confidence interval is computed by a LOESS regression
with the parameter α = 0.05.

While the absolute values of the coefficients in figure 17 have increased, the variance shows

a decreasing trend over time. The coefficients for PCrat∗t−n and PCratOTM∗
t−n in figure 18

does not have the same interesting findings as the previous figures. The coefficients show

no trends or variations in variance over time, but have been included for completeness.

All in all, the null hypothesis of H5 cannot be rejected. Any trends in the P-values
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have indicated increased significance, and the trends in regression coefficients have shown

increasing absolute values.

Figure 18: Cross-sectional PCrat
(OTM)∗
t−n regression coefficients vs Dates: Abn > 0.005
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The figure shows a scatter plot of the development of the regression coefficient (β) estimates over time
for the variables PCrat∗t−n and PCratOTM∗

t−n when Abn > 0.5 %. The blue trend line is computed by a
linear regression and the red trend line with a 95 % confidence interval is computed by a LOESS regres-
sion with the parameter α = 0.05.

5.3.2 Abn > 1.0%

The threshold for Abnormal Days has now increased to 1.0%. While our cross-sectional

regressions for Abn > 0.5 % had few significant coefficients, regressing with the new

limit for Abn in table 13 increases the significance for multiple variables. PCratt−1 and
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Table 13: Cross-sectional regression P-values and coefficients : Abn > 0.01

P-values Combined P-values Regression coefficients

Proportion

significant

at 5%

Proportion

significant

at 10%

Fisher’s

method

Adj. mean 25th

percentile

Median 75th

percentile

Intercept 0.1784 0.2519 0.0000 0.0000 -0.0021 -0.0004 0.0012

EPS 0.0636 0.1080 0.0596 0.1972 -0.0025 -0.0000 0.0028

Vol 0.1547 0.2144 0.0000 0.0000 -0.0035 0.0007 0.0052

Delta 0.5299 0.6531 0.0000 0.0000 0.0058 0.0093 0.0136

MV 0.1363 0.2052 0.0000 0.0000 -0.0022 0.0147 0.0330

PTBV 0.0406 0.0697 1.0000 1.0000 -0.0042 0.0006 0.0086

PCratt−1 0.0819 0.1539 0.0000 0.0000 -0.0023 -0.0010 0.0003

PCratt−2 0.0689 0.1248 0.0000 0.0000 -0.0020 -0.0008 0.0004

PCrat∗t−1 0.0521 0.0965 0.4872 0.6629 -0.0052 -0.0001 0.0050

PCrat∗t−2 0.0651 0.1187 0.0839 0.7073 -0.0053 0.0001 0.0050

PCratOTMt−1 0.0658 0.1340 0.0000 0.0002 -0.0006 0.0003 0.0013

PCratOTMt−2 0.0620 0.1118 0.1383 0.5700 -0.0007 0.0002 0.0012

PCratOTM∗
t−1 0.0536 0.1064 0.2464 0.7190 -0.0036 0.0006 0.0047

PCratOTM∗
t−2 0.0605 0.1034 0.0915 0.5541 -0.0043 -0.0001 0.0041

The table summarizes the P-value distributions and the coefficient estimates for the explanatory vari-
ables when Abn > 0.5 %. The values are calculated from 1306 different cross-sectional regressions, with
a total of 232 companies observed from mid-2009 to mid-2014. Proportion significant at x % is the num-
ber of regressions with a P-value < x %, divided by total regressions (1306). The dependent variable
is daily abnormal returns. EPS, Vol, Delta, MV and PTBV are control variables, and the variables of
interest are the different PCrat variations.

PCratt−2 have had their proportions of significant results increase slightly compared to

Abn > 0.5 %, from 7.35 % to 8.19 % and from 5.59 % to 6.89 % at the 5% level, and

from 13.94 % to 15.39 % and from 9.95 % to 12.48 % at the 10% level. Their combined

P-values have also decreased to zero for both, making them more significant than before.

I.e. the put call ratio is more evident as an explanatory variable in days prior to a larger

stock price change.

The modified ratios, PCrat∗t−n, are not significant, with no evident changes in the pro-

portions of significance compared to Abn > 0.5 %. PCrat∗t−2 is the exception when using

the Fisher method, still being significant at the 10 %-level.

The most notable change in significance after increasing the limit for Abnormal Days

concern PCratOTMt−1 . PCratOTMt−1 is now significant according to both combined P-values

at all conventional significance levels. As argued in the previous section, controlling for

firm specific differences isolates the effect of the PCrat-variables more than controlling
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Table 14: Cross-sectional regression explanatory power and observations : Abn > 0.01

Min 25th percentile Median 75th percentile Max

Adj.R2 -0.0661 0.0647 0.1132 0.1775 0.6636

No. obs 135 204 211 214 225

No. abn. obs 11 50 60 71 152

The table presents summarizing statistical properties when Abn > 1.0 % for a total of 1306 different
cross-sectional regressions with a total of 232 companies observed from mid-2009 to mid-2014. Adj.R2

is the “goodness-of-fit” measures, No. obs is the total number of days with registered option trades for
all firms, while No. abn. obs is the number of observations with an abnormal return > 1.0 %.

for time specific effects. From both the panel regression and the time-series section, the

effect for all option volume and OTM option volume is stronger at a one-day lag than at

a two-day lag. The observation that PCratOTMt−1 becoming significant while PCratOTMt−2 is

not, is thus in line with the previous findings. The increased significance for PCratOTMt−1

from Abn > 0.5 % to Abn > 1.0 % implies that OTM option volume becomes increasingly

important for larger values of abnormal returns.

When assessing the economic significance of the regression results in table 13 we note

the many similarities with the coefficients from table 11. In order of magnitude, the

coefficients (at the median) with most impact are still PCratt−1 and PCratt−2. The

observed median in table 13 for all coefficients are almost identical as in table 11 with

the exception of PCrat∗t−2 which now is negative.

From table 14 we observe that the total explained variation, expressed with Adj.R2, has

increased compared to the 0.5 % limit for abnormal days, from 8.4 % to 11.3 %. The

median number of observations of abnormal days has decreased to 60, with 50 % of the

regressions having several such observations in the interval [50, 71]. There is, however,

still no relation between this number and the observed P-values for the regressions which

makes our conclusions robust. This can be seen in figure 38 in the appendix.
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Figure 19: Cross-sectional PCrat
(OTM)
t−n P-values vs Dates: Abn > 0.01

P
C
rat

t−
1

P
C
rat

t−
2

P
C
rat

O
T
M

t−
1

P
C
rat

O
T
M

t−
2

20
10

20
11

20
12

20
13

20
14

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

0.00

0.25

0.50

0.75

1.00

Dates

P
-v
a
lu
e

The figure shows a scatter plot of the development of P-values over time for the variables PCratt−n and
PCratOTM

t−n when Abn > 1.0 %. The blue trend line is computed by a linear regression and the red trend
line with a 95 % confidence interval is computed by a LOESS regression with the parameter α = 0.05.

While there are some differences regarding H1 and H2 when adjusting Abn from > 0.5 %

to > 1.0 %, there are no big differences concerning H5. The same downward sloping trend

for all PCrat
(OTM)
t−n -variations is observed in figure 19 and a flat trend for all PCrat

((OTM)∗)
t−n -

variations in 20. As with Abn > 0.5 %, this is not in line with H5, which would suggest

and upward trend and less significance with time.
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Figure 20: Cross-sectional PCrat
(OTM)∗
t−n P-values vs Dates: Abn > 0.01
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The figure shows a scatter plot of the development of P-values over time for the variables PCrat∗t−n and
PCratOTM∗

t−n when Abn > 1.0 %. The blue trend line is computed by a linear regression and the red trend
line with a 95 % confidence interval is computed by a LOESS regression with the parameter α = 0.05.

The fitted linear trends for the coefficients for Abn > 1.0 % are similar to those of Abn >

0.5 %. Comparing figure 21 and 17, we observe that they are almost identical. Although,

coefficients for Abn > 0.5 % have an increased number of extreme observations and some

increased variance, the fitted linear trend lines do not deviate by much. This is contrary

to what we would expect, i.e. Abn > 0.5 % having a lower variance than Abn > 1.0 %.
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Figure 21: Cross-sectional PCrat
(OTM)
t−n regression coefficients vs Dates: Abn > 0.01
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The figure shows a scatter plot of the development of the regression coefficient (β) estimates over time
for the variables PCratt−n and PCratOTM

t−n when Abn > 1.0 %. The blue trend line is computed by a lin-
ear regression and the red trend line with a 95 % confidence interval is computed by a LOESS regression
with the parameter α = 0.05.

The last figure, 22, for the coefficients of the modified variables, PCrat∗t−n and PCratOTM∗
t−n ,

have also not changed much from Abn > 0.5 % to Abn > 1.0 %. The fitted linear

regression lines shows no trend upwards or downwards. We note that the variance has

increased with the new parameter value, but this is to be expected, as we have fewer

observations for Abn > 1.0 % than for Abn > 0.5 %.
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Figure 22: Cross-sectional PCrat
(OTM)∗
t−n regression coefficients vs Dates: Abn > 0.01
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The figure shows a scatter plot of the development of the regression coefficient (β) estimates over time
for the variables PCrat∗t−n and PCratOTM∗

t−n when Abn > 1.0 %. The blue trend line is computed by a
linear regression and the red trend line with a 95 % confidence interval is computed by a LOESS regres-
sion with the parameter α = 0.05.

As with Abn > 0.5 % we fail to reject the null hypothesis for H5 for Abn > 1.0 %. For the

first four variables, PCratt−n and PCratOTMt−n , the variables become both more statistically

and economically significant with time. The P-values are decreasing on average, and the

betas are increasing in absolute value. The modified variables, PCrat∗t−n and PCratOTM∗
t−n ,

have no trends for either P-value or coefficients.
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6 Conclusion

Volume is an extensive part of the financial markets. While previous research of volume

primarily has focused on stock volume and its role as a stock price predictor, multiple

studies of option volume has been conducted the last decade. Published research in-

cludes option volume as a stock price predictor and the relative informational content of

options with different moneyness. For investors with private information, trading in op-

tion markets can be a more lucrative opportunity than stock markets due to e.g. capital

restrictions. This thesis takes the research of option volume as a price predictor one step

further. While previous research show that option volume leads stock price changes on

a day-to-day basis, we examine whether option volume has additional predictive power

in days prior to large changes in abnormal returns of the underlying asset. Under the

assumption that the market is semi-efficient there should be no extra information in op-

tion volume prior to these changes, and any significant change in trading patterns will

be a result of informed trading. Through our analyses we find significant evidence of un-

usual trading patterns prior to these spikes, indicating that informed trading is present

in option markets.

This paper specifically investigates a modified put call ratio, PCrat, that takes the differ-

ence between unsigned call and put option volume divided by the total option volume.

Such a ratio was also constructed for the out-of-the money options with a moneyness

criteria of 5 %, PCratOTM . The data set is comprehensive and covers 232 companies

over 1306 trading days for a total of approximately 350 000 different options. The effect

of these put to call ratios was analysed at a 0.5 % and a 1.0 % threshold for abnormal

returns.

A fixed effect panel data regression concluded that the modified put to call ratio display

a different pattern the day prior to large stock price changes. This is true for both the

total option volume ratio, PCrat, and the out-of-the money ratio, PCratOTM . At the 0.5

% threshold for abnormal returns, the out-of-the-money option ratio is more significant

than the total option ratio. At the 1.0 % threshold, the significance is reversed with

PCratOTM being the most significant. The fixed effect panel data regression concludes

our first and second sub-hypothesis, and we claim that there is evidence of a relative

change in both the total and the isolated out-of-the-money call to put option volume
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prior to large spikes in abnormal return on the underlying asset. The effect is, however,

only significant for a one-day lag.

The collection of time-series regressions, one for each company in the sample, concludes

our sub-hypotheses H3 and H4. There is a significant correlation between market value

and the day-to-day put to call ratios, but there is no significant change in pattern prior

to days with a high abnormal return. The same is true for price-to-book-value, where no

significant change in patterns were observed. There is however a significant correlation

between price-to-book-value and the total put to call ratio, PCrat for a one-day lag at both

thresholds for abnormal returns. For out-of-the-money options, there is no significant

correlation with price-to-book-value for any lag. As some informed traders cannot choose

which companies they obtain information of, such as corporate insiders, no systematic

correlation between company characteristics and changes in day-to-day option volume

pattern prior to large changes in abnormal returns is sensible. We fail to reject our null

hypotheses for both H3 and H4, and claim that informed traders have no preference with

regard to market value and price-to-book-ratio.

The collection of cross-sectional regressions, one for each day in the sample, concludes our

last sub-hypothesis, H5. The significance of the modified put to call ratio should decrease

over time under the assumption of a semi-efficient market. As previous research has

concluded option volume as a significant predictor of future stock returns, the predictive

power of option volume should diminish over time as the market is now informed of

the predictive power of option volume. Our analysis concludes with the contrary, as

both the average statistical significance and the absolute values of the coefficients of the

variables have increased over time. We fail to reject the null hypothesis, as the effects

are increasing, not decreasing.

We note that the economic impact of changes in any of the modified put to call ratios

have been of small magnitude in all our analyses; but the results from the empirical

results, combined with the assumption that the market is semi-efficient, sustain a claim

that changes in trading volume of options imply evidence of informed trading before large

changes in abnormal returns.
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Appendices

A Tickers

Table 15: Stock tickers and company names, A - IBM

Ticker Company name Ticker Company name

A Agilent Technologies Inc. DE Deere & Co.
AAPL Apple Inc. DGX Quest Diagnostics
ABC AmerisourceBergen Corp. DHI D. R. Horton
ABT Abbott Laboratories DHR Danaher Corp.
ADI Analog Devices Inc. DIS The Walt Disney Co.
ADP ADP, LLC. DOW Dow Chemical
ADSK Autodesk Inc. DPS Dr Pepper Snapple Group
AEE Ameren Corp. DRI Darden Restaurants
AEP American Electric Power DUK Duke Energy
AES AES Corp. DVN Devon Energy Corp.
AFL AFLAC Inc. EA Electronic Arts
AIG AIG, Inc. ECL Ecolab Inc.
AIZ Assurant Inc. ED Consolidated Edison
AKAM Akamai Technologies Inc. EIX Edison Int’l
ALL Allstate Corp. EMC EMC Corp.
ALTR Altera Corp. EMN Eastman Chemical
AMAT Applied Materials Inc. EMR Emerson Electric Co
AMGN Amgen Inc. EOG EOG Resources
AMP Ameriprise Financial EQR Equity Residential
AN AutoNation Inc. EQT EQT Corporation
APH Amphenol Corp. ETFC E*Trade Financial Corp.
ATI Allegheny Technologies Inc. EXC Exelon Corp.
AVB AvalonBay Communities EXPD Expeditors Int’l
AXP American Express Co EXPE Expedia Inc.
BAC Bank of America Corp. FAST Fastenal Co.
BAX Baxter International Inc. FCX Freeport-McMoRan Inc.
BEAM Beam Inc. FDX FedEx Corporation
BEN Franklin Resources FE FirstEnergy Corp
BF.B Brown-Forman Corp. FIS Fidelity Nat. Info. Services
BK BNY Mellon FISV Fiserv Inc
BLL Ball Corp FITB Fifth Third Bancorp
BMS Bemis FLIR FLIR Systems
BSX Boston Scientific FLR Fluor Corp.
BTUUQ Peabody Energy FLS Flowserve Corporation
C Citigroup Inc. FTR Frontier Communications
CBG CBRE Group GAS AGL Resources Inc.
CCL Carnival Corp. GE General Electric
CHK Chesapeake Energy GME GameStop Corp.
CHRW C. H. Robinson Worldwide GNW Genworth Financial Inc.
CI Cigna Corp. GOOGL Alphabet Inc. Class A
CL Colgate-Palmolive GPS Gap Inc.
CMA Comerica Inc. GS Goldman Sachs Group
CME CME Group Inc. GT Goodyear Tire & Rubber
CNP CenterPoint Energy GWW W. W. Grainger, Inc.
CNX Consol Energy Inc. HAL Halliburton Co.
COG Cabot Oil & Gas HAS Hasbro Inc.
COH Coach Inc. HBAN Huntington Bancshares
COL Rockwell Collins HCBK Hudson City Bancorp
COP ConocoPhillips HCP HCP Inc.
COST Costco Co. HD Home Depot
CPB Campbell Soup HIG Hartford Financial Services
CSX CSX Corp. HOG Harley-Davidson
CTAS Cintas Corp. HRB H&R Block, Inc.
CTSH Cognizant Technology Sol. HRS Harris Corp.
CTXS Citrix Systems HST Host Hotels & Resorts
CVS CVS Health Corp. HSY The Hershey Company
CVX Chevron Corp. HUM Humana Inc.
D Dominion Resources IBM IBM Corp.

72



Table 16: Stock tickers and company names, IFF - ZBH

Ticker Company name Ticker Company name

IFF Intl Flavors & Fragrances PFG Principal Financial Group
INTU Intuit Inc. PH Parker-Hannifin
IP International Paper Co. PHM PulteGroup Inc
IPG Interpublic Group PM Philip Morris Int’l
ISRG Intuitive Surgical Inc. PNW Pinnacle West Capital
IVZ Invesco Ltd. PPG PPG Industries
JBL Jabil Circuit PRU Prudential Financial
JNJ Johnson & Johnson PSA Public Storage
JPM JPMorgan Chase & Co. PX Praxair Inc.
JWN Nordstrom PXD Pioneer Natural Resources
KLAC KLA-Tencor Corp. RAI Reynolds American Inc.
KO The Coca Cola Co. RDC Rowan Companies plc
KR Kroger Co. RF Regions Financial Corp.
KSS Kohl’s Corp. RL Polo Ralph Lauren Corp.
L Loews Corp. RRC Range Resources Corp.
LB L Brands Inc. RSG Republic Services Inc.
LH LabCorp RTN Raytheon Co.
LLL L-3 Comm’s Holdings SBUX Starbucks Corp.
LLTC Linear Technology Corp. SCHW Charles Schwab Corp.
LLY Eli Lilly and Co. SHW Sherwin-Williams Co.
LM Legg Mason SJM J.M. Smucker Co.
LMT Lockheed Martin Corp. SNDK SanDisk Corporation
LNC Lincoln National SPG Simon Property Group Inc.
LO Lorillard Inc. SRCL Stericycle Inc.
LOW Lowe’s Cos. STI SunTrust Banks
LUK Leucadia National Corp. STJ St. Jude Medical, Inc.
LUV Southwest Airlines STT State Street Corp.
MA Mastercard Inc. SWK Stanley Black & Decker
MAS Masco Corp. SWN Southwestern Energy
MAT Mattel Inc. SYY Sysco Corp.
MCD McDonald’s Corp. TAP Molson Coors Brewing Co.
MCHP Microchip Technology TE TECO Energy
MCK McKesson Corp. TIF Tiffany & Co.
MET MetLife Inc. TMO Thermo Fisher Scientific
MKC McCormick & Co. TSN Tyson Foods
MMC Marsh & McLennan TWX Time Warner Inc.
MO Altria Group Inc. TXT Textron Inc.
MON Monsanto Co. UNH United Health Group Inc.
MRK Merck & Co. UNP Union Pacific
MRO Marathon Oil Corp. UPS United Parcel Service
MSI Motorola Solutions Inc. USB U.S. Bancorp
MTB M&T Bank Corp. VAR Varian Medical Systems
MU Micron Technology VZ Verizon Communications
MUR Murphy Oil WAT Waters Corp.
MWV MeadWestvaco Corp. WFC Wells Fargo
NBL Noble Energy Inc. WFM Whole Foods Market
NEE NextEra Energy WIN Windstream Comm’s
NKE Nike, Inc. WMB Williams Companies
NOV National Oilwell Varco Inc. WMT Wal-Mart Stores
NWL Newell Rubbermaid Co. WU Western Union Co.
OI Owens-Illinois Inc. WY Weyerhaeuser Corp.
ORCL Oracle Corp. WYNN Wynn Resorts Ltd.
PBCT People’s United Bank X U.S. Steel Corp.
PBI Pitney-Bowes XL XL Capital
PCP Precision Castparts XLNX Xilinx Inc.
PDCO Patterson Companies XRX Xerox Corp.
PEG Public Serv. Enterprise Inc. YHOO Yahoo Inc.
PFE Pfizer Inc. ZBH Zimmer Biomet Holdings
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B Tables

B.1 Time Series

Table 17: Time-series regression P-values and coefficients : Abn > 0.015

P-values Combined P-values Regression coefficients

Proportion

significant

at 5%

Proportion

significant

at 10%

Fisher’s

method

Adj. mean 25th

percentile

Median 75th

percentile

Intercept 0.2251 0.3160 0.0000 0.0000 -0.0010 -0.0005 -0.0001

EPS 0.0823 0.1039 0.4134 0.8223 -0.0018 0.0002 0.0021

Vol 0.0952 0.1602 0.0002 0.0092 -0.0016 0.0000 0.0016

Delta 0.9567 0.9740 0.0000 0.0000 0.0059 0.0096 0.0155

MV 0.1602 0.2511 0.0000 0.0000 -0.0003 0.0107 0.0201

PTBV 0.0563 0.1212 0.0855 0.3355 -0.0030 0.0016 0.0126

PCratt−1 0.3983 0.5368 0.0000 0.0000 -0.0023 -0.0012 -0.0006

PCratt−2 0.3030 0.3983 0.0000 0.0000 -0.0016 -0.0010 -0.0005

PCrat∗t−1 0.0649 0.1082 0.2067 0.4448 -0.0031 0.0007 0.0047

PCrat∗t−2 0.0519 0.1082 0.8012 0.7262 -0.0032 0.0007 0.0045

PCratOTMt−1 0.2078 0.3117 0.0000 0.0000 0.0001 0.0006 0.0010

PCratOTMt−2 0.1385 0.2121 0.0000 0.0000 -0.0000 0.0004 0.0009

PCratOTM∗
t−1 0.0433 0.0866 0.6031 0.5466 -0.0030 0.0004 0.0033

PCratOTM∗
t−2 0.0736 0.1126 0.3471 0.6974 -0.0034 -0.0001 0.0026

The table summarizes the P-value distributions and the coefficient estimates for the explanatory vari-
ables when Abn > 1.5 %. The values are calculated from 232 different time-series regressions, with a
total of 1306 trading days observed from mid-2009 to mid-2014. Proportion significant at x % is the
number of regressions with a P-value < x %, divided by total regressions (232). The dependent variable
is daily abnormal returns. EPS, Vol, Delta, MV and PTBV are control variables, and the variables of
interest are the different PCrat variations.

Table 18: Time-series regression explanatory power and observations : Abn > 0.015

Min 25th percentile Median 75th percentile Max

Adj.R2 0.0024 0.0424 0.0601 0.0794 0.2383

No. obs 135 1024 1246 1303 1306

No. abn. obs 12 103 167 247 516

The table presents summarizing statistical properties when Abn > 1.5 % for a total of 232 different
time-series regressions with a total of 1306 trading days observed from mid-2009 to mid-2014. Adj.R2 is
the “goodness-of-fit” measures, No. obs is the total number of days with registered option trades for all
firms, while No. abn. obs is the number of observations with an abnormal return > 1.5 %.
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B.2 Cross Sectional

Table 19: Cross-sectional regression P-values and coefficients : Abn > 0.015

P-values Combined P-values Regression coefficients

Proportion

significant

at 5%

Proportion

significant

at 10%

Fisher’s

method

Adj. mean 25th

percentile

Median 75th

percentile

Intercept 0.1696 0.2387 0.0000 0.0000 -0.0019 -0.0004 0.0011

EPS 0.0591 0.1090 0.2923 0.6675 -0.0024 -0.0000 0.0027

Vol 0.1343 0.1972 0.0000 0.0000 -0.0034 0.0006 0.0047

Delta 0.4942 0.6309 0.0000 0.0000 0.0054 0.0090 0.0132

MV 0.1236 0.2034 0.0000 0.0000 -0.0025 0.0142 0.0321

PTBV 0.0307 0.0737 1.0000 1.0000 -0.0042 0.0006 0.0082

PCratt−1 0.0890 0.1581 0.0000 0.0000 -0.0023 -0.0009 0.0003

PCratt−2 0.0721 0.1305 0.0000 0.0000 -0.0021 -0.0008 0.0005

PCrat∗t−1 0.0514 0.0967 0.2702 0.9952 -0.0094 0.0003 0.0100

PCrat∗t−2 0.0714 0.1228 0.0014 0.7945 -0.0092 0.0003 0.0112

PCratOTMt−1 0.0675 0.1213 0.0002 0.0038 -0.0007 0.0003 0.0013

PCratOTMt−2 0.0652 0.1120 0.0472 0.3951 -0.0008 0.0002 0.0012

PCratOTM∗
t−1 0.0553 0.0990 0.9487 0.9991 -0.0070 0.0011 0.0082

PCratOTM∗
t−2 0.0675 0.1097 0.2594 0.9921 -0.0077 -0.0002 0.0074

The table summarizes the P-value distributions and the coefficient estimates for the explanatory vari-
ables when Abn > 1.5 %. The values are calculated from 1306 different cross-sectional regressions, with
a total of 232 companies observed from mid-2009 to mid-2014. Proportion significant at x % is the num-
ber of regressions with a P-value < x %, divided by total regressions (1306). The dependent variable
is daily abnormal returns. EPS, Vol, Delta, MV and PTBV are control variables, and the variables of
interest are the different PCrat variations.

Table 20: Cross-sectional regression explanatory power and observations : Abn > 0.015

Min 25th percentile Median 75th percentile Max

Adj.R2 -0.0334 0.0898 0.1534 0.2227 0.6978

No. obs 135 204 211 214 225

No. abn. obs 4 24 30 39 117

The table presents summarizing statistical properties when Abn > 1.5 % for a total of 1306 different
cross-sectional regressions with a total of 232 companies observed from mid-2009 to mid-2014. Adj.R2

is the “goodness-of-fit” measures, No. obs is the total number of days with registered option trades for
all firms, while No. abn. obs is the number of observations with an abnormal return > 1.5 %.
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B.3 Panel Data

Table 21: Two-way fixed-effect panel regression : Abn > 0.015

90 % CI 95 % CI

Estimate Lower Upper Lower Upper T-value P-value

EPS -0.0001 -0.0003 0.0001 -0.0003 0.0001 -0.78 0.4362

Vol -0.0006 -0.0010 -0.0002 -0.0011 -0.0002 -2.64 0.0083

Delta 0.0107 0.0099 0.0115 0.0098 0.0116 23.04 0.0000

MV 0.0184 0.0153 0.0215 0.0147 0.0221 9.81 0.0000

PTBV -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -8.45 0.0000

PCratt−1 -0.0011 -0.0012 -0.0010 -0.0013 -0.0010 -15.96 0.0000

PCratt−2 -0.0009 -0.0010 -0.0008 -0.0010 -0.0008 -15.19 0.0000

PCrat∗t−1 0.0012 0.0006 0.0018 0.0005 0.0020 3.44 0.0006

PCrat∗t−2 0.0008 0.0002 0.0013 0.0001 0.0015 2.16 0.0307

PCratOTMt−1 0.0004 0.0003 0.0005 0.0003 0.0005 9.60 0.0000

PCratOTMt−2 0.0003 0.0002 0.0004 0.0002 0.0004 7.15 0.0000

PCratOTM∗
t−1 0.0004 -0.0001 0.0008 -0.0001 0.0009 1.44 0.1503

PCratOTM∗
t−2 -0.0003 -0.0008 0.0002 -0.0008 0.0003 -1.03 0.3042

Adj. R2 F -statistic P -value DF

0.0309 762.62 0.0000 260431

The table presents an overview of the regression output for Abn > 1.5 %. The values are calculated from a
panel data regression consisting of 232 companies and 1306 trading days observed from mid-2009 to mid-
2014. The regression coefficients estimates are presented as point estimates, a 90 % confidence interval
and a 95 % confidence interval. The table also presents the T-value and P-value for the individual vari-
ables, and the Adjusted R2, F-statistic, P-value and the degrees of freedom (DF) for the total regression.
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C Figures

C.1 Time Series

Figure 23: Time-series PCrat
(∗)
t−n regression coefficients vs PTBV: Abn > 0.01
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The figure shows a scatter plot of the regression coefficient (β) estimates and PTBV for the variables
PCratt−n and PCrat∗t−n. The trend line is computed by linear regression and includes a 95 % confidence
interval. Abn > 1.0 %.

Figure 24: Time-series PCrat
OTM(∗)
t−n regression coefficients vs PTBV: Abn > 0.01
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The figure shows a scatter plot of OTM observations for the regression coefficient (β) estimates and
PTBV for the variable PCratOTM

t−n and PCratOTM∗
t−n . The trend line is computed by linear regression and

includes a 95 % confidence interval, visualized as the grey area. Abn > 1.0 %.
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Figure 25: Time-series PCrat
(∗)
t−n regression coefficients vs log(MV): Abn > 0.015
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The figure shows a scatter plot of the regression coefficient (β) estimates and the logarithm of market
value for the variables PCratt−n and PCrat∗t−n. The trend line is computed by linear regression and
includes a 95 % confidence interval. Abn > 1.5 %.

Figure 26: Time-series PCrat
OTM(∗)
t−n regression coefficients vs log(MV): Abn > 0.015
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The figure shows a scatter plot of OTM observations for the regression coefficient (β) estimates and the
logarithm of market value for the variable PCratOTM

t−n and PCratOTM∗
t−n . The trend line is computed by

linear regression and includes a 95 % confidence interval, visualized as the grey area. Abn > 1.5 %.
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Figure 27: Time-series PCrat
(∗)
t−n P-values vs log(MV): Abn > 0.015
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The figure shows a scatter plot of the P-values and the logarithm of market value for the variables
PCratt−n and PCrat∗t−n. The trend line is computed by linear regression and includes a 95 % confidence
interval. Abn > 1.5 %.

Figure 28: Time-series PCrat
OTM(∗)
t−n P-values vs log(MV): Abn > 0.015
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The figure shows a scatter plot of OTM observations for the P-values and the logarithm of market value
for the variable PCratOTM

t−n and PCratOTM∗
t−n . The trend line is computed by linear regression and in-

cludes a 95 % confidence interval, visualized as the grey area. Abn > 1.5 %.
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Figure 29: Time-series PCrat
(∗)
t−n regression coefficients vs PTBV: Abn > 0.015
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The figure shows a scatter plot of the regression coefficient (β) estimates and PTBV for the variables
PCratt−n and PCrat∗t−n. The trend line is computed by linear regression and includes a 95 % confidence
interval. Abn > 1.5 %.

Figure 30: Time-series PCrat
OTM(∗)
t−n regression coefficients vs PTBV: Abn > 0.015
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The figure shows a scatter plot of OTM observations for the regression coefficient (β) estimates and
PTBV for the variable PCratOTM

t−n and PCratOTM∗
t−n . The trend line is computed by linear regression and

includes a 95 % confidence interval, visualized as the grey area. Abn > 1.5 %.
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Figure 31: Time-series PCrat
(∗)
t−n P-values vs PTBV: Abn > 0.015
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The figure shows a scatter plot of the P-values and PTBV for the variables PCratt−n and PCrat∗t−n.
The trend line is computed by linear regression and includes a 95 % confidence interval. Abn > 1.5 %.

Figure 32: Time-series PCrat
OTM(∗)
t−n P-values vs PTBV: Abn > 0.015
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The figure shows a scatter plot of OTM observations for the P-values and PTBV for the variable
PCratOTM

t−n and PCratOTM∗
t−n . The trend line is computed by linear regression and includes a 95 % confi-

dence interval, visualized as the grey area. Abn > 1.5 %.
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C.2 Cross Sectional

Figure 33: Cross-sectional PCrat
(OTM)
t−n regression coefficients vs Dates: Abn > 0.015
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The figure shows a scatter plot of the development of the regression coefficient (β) estimates over time
for the variables PCratt−n and PCratOTM

t−n when Abn > 1.5 %. The blue trend line is computed by a lin-
ear regression and the red trend line with a 95 % confidence interval is computed by a LOESS regression
with the parameter α = 0.05.
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Figure 34: Cross-sectional PCrat
(OTM)∗
t−n regression coefficients vs Dates: Abn > 0.015

P
C
rat ∗t−

1
P
C
rat ∗t−

2
P
C
rat

O
T
M

∗
t−

1
P
C
rat

O
T
M

∗
t−

2

20
10

20
11

20
12

20
13

20
14

-0.02

0.00

0.02

-0.02

0.00

0.02

-0.02

0.00

0.02

-0.02

0.00

0.02

Dates

B
e
ta

-v
a
lu
e

The figure shows a scatter plot of the development of the regression coefficient (β) estimates over time
for the variables PCrat∗t−n and PCratOTM∗

t−n when Abn > 1.5 %. The blue trend line is computed by a
linear regression and the red trend line with a 95 % confidence interval is computed by a LOESS regres-
sion with the parameter α = 0.05.
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Figure 35: Cross-sectional PCrat
(OTM)
t−n P-values vs Dates: Abn > 0.015
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The figure shows a scatter plot of the development of P-values over time for the variables PCratt−n and
PCratOTM

t−n when Abn > 1.5 %. The blue trend line is computed by a linear regression and the red trend
line with a 95 % confidence interval is computed by a LOESS regression with the parameter α = 0.05.
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Figure 36: Cross-sectional PCrat
(OTM)∗
t−n P-values vs Dates: Abn > 0.015
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The figure shows a scatter plot of the development of P-values over time for the variables PCrat∗t−n and
PCratOTM∗

t−n when Abn > 1.5 %. The blue trend line is computed by a linear regression and the red trend
line with a 95 % confidence interval is computed by a LOESS regression with the parameter α = 0.05.
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Figure 37: Cross-sectional PCrat
(OTM)∗
t−n P-values vs Number of abnormal observations:

Abn > 0.005
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The figure shows a scatter plot of P-values and the number of days with Abn > 0.5 % for the variables
PCrat∗t−n and PCratOTM∗

t−n .
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Figure 38: Cross-sectional PCrat
(OTM)∗
t−n P-values vs Number of abnormal observations:

Abn > 0.01
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The figure shows a scatter plot of P-values and the number of days with Abn > 1.0 % for the variables
PCrat∗t−n and PCratOTM∗

t−n .
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Figure 39: Cross-sectional PCrat
(OTM)∗
t−n P-values vs Number of abnormal observations:

Abn > 0.015
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The figure shows a scatter plot of P-values and the number of days with Abn > 1.5 % for the variables
PCrat∗t−n and PCratOTM∗

t−n .
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C.3 Residual sample plots

Figure 40: AAPL residual plot, Abn > 0.05
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The figure shows four different residual plots for the company AAPL when Abn > 0.05. The four fig-
ures are a normal probability plot, a residual histogram, residuals vs. fitted values, and residuals vs.
observation order.
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Figure 41: 01.02.2013 residual plot, Abn > 0.05
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The figure shows four different residual plots for the date 01.02.2013 for Abn > 0.05. The four figures
are the normal probability plot, a residual histogram, residuals vs. fitted values, and residuals vs. ob-
servation order.
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D LOESS

Local regression (LOESS) is most commonly used to enhance the visual information on

a scatter plot, by computing and plotting smoothed points. The method was originally

proposed by Cleveland (1979), and represents a non-parametric regression that avoids

assuming a fixed model structure and solving it. This differs from a linear regression

which makes assumptions of the underlying model structure and tries to explicitly solve

for the model parameters (Ruan et al., 2007).

The regression is local because the fitting at any point x is determined by a nearest

neighbors’ algorithm, using subsets of data for each weighted least square fit, where the

weights for (xi and xk) is large if xi is close to xk, and small otherwise. It focuses on

estimating the fitted model, and not estimating parameters like α and β found in linear

regressions.

When constructing LOESS, the parameter α needs to be set. α is a smoothing parameter

and controls for flexibility in the LOESS regression function. Large values of α generates

the smoothest output, while smaller α will generate output closer to the data. α is defined

on the interval [0,1].

The advantage of LOESS is most importantly that it does not require the specification

of a function to fit a model, but only the decision of the size of the smoothing parameter

used. However, LOESS requires larger and denser sets of data to produce a good model.

LOESS is almost explicitly used for visual purposes, and therefore does not produce a

regression function easily interpreted through a mathematical formula.
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