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Abstract

Sequential investment opportunities or the presence of a rival typically hasten investment under risk

neutrality. By contrast, greater price uncertainty or risk aversion increase the incentive to postpone

investment in the absence of competition. We analyse how price and technological uncertainty,

reflected in the random arrival of innovations, interact with attitudes towards risk to impact both

the optimal technology adoption strategy and the optimal investment policy within each strategy,

under a proprietary and a non-proprietary duopoly. Results indicate that technological uncertainty

increases the follower’s investment incentive and delays the entry of the non-proprietary leader, yet

it does not affect the proprietary leader’s optimal investment policy. Additionally, we show that

technological uncertainty decreases the relative loss in the value of the leader due to the follower’s

entry, while the corresponding impact of risk aversion is ambiguous. Interestingly, we also find that

a higher first-mover advantage with respect to a new technology does not affect the leader’s entry,

and that technological uncertainty may turn a pre-emption game into a war of attrition, where the

second-mover gets the higher payoff.

Keywords: investment analysis, real options, competition, risk aversion

1. Introduction

Emerging technologies are subject to frequent upgrades, that become available at random points

in time, and the firm that adopts them first can capture a greater market share (Lieberman &

Montgomery, 1988; Zachary et al., 2015). Hence, firms investing in emerging technologies must take

into account both strategic interactions and the sequential nature of such investments. Furthermore,

emerging technologies typically entail technical risk that cannot be diversified, and, therefore, firms

are likely to exhibit risk aversion. Indeed, the underlying commodities of such projects are typically

not freely traded, thus preventing the construction of a replicating portfolio. Consequently, risk-

neutral valuation may not be possible as the assumption of hedging via spanning assets breaks down.

Although various models have been developed in order to analyse sequential investment under
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price and technological uncertainty, most of these either ignore strategic interactions (Grenadier &

Weiss, 1997; Doraszelski, 2001; Chronopoulos & Siddiqui, 2015) or assume risk neutrality (Huisman

& Kort, 2003, 2004; Weeds, 2002). Consequently, how strategic interactions impact sequential

investment decisions and how price and technological uncertainty interact with risk aversion to

impact the optimal investment policy remain important open research questions.

Incorporating such features in an analytical framework for sequential investment is crucial as

these are pertinent to various industries, e.g., computer software, telecommunications, pharmaceu-

tical, etc. For example, firms producing brand-name drugs enjoy high revenues so long as their

patents are protected. In the early 1980s, a drug which soothes both pain and inflammation was a

costly patented product. Today, Boots, a British chemist, sells generic tablets for just 2.5 pence per

pill (Wall Street Journal, 2013a). In the area of telecommunications, Apple’s iPhone sales declined

prior to the introduction of iPhone 4s in 2012, while, at the same time, Samsung’s Galaxy S3, the

closest rival to Apple’s market leading iPhone, took close to 18% of the market (Financial Times,

2012). The legal debate between Apple and Samsung reflects a highly competitive environment

in which firms can potentially profit from adopting other firms’ patented technologies. Of course,

there are various other competitive advantages that a firm may have, that may not be related to

the adoption of patented technologies, however, their analysis is beyond of the scope of this paper.

For example, Samsung is more vertically integrated than Apple, and, thus, can bring products to

the market more quickly (Wall Street Journal, 2013b).

We consider the case of duopolistic competition, where two identical firms invest sequentially in

technological innovations facing price and technological uncertainty. Within this context, we analyse

the case of proprietary and non-proprietary duopoly. The former occurs when a firm controls the

innovation process, and, therefore, does not face the threat of pre-emption. By contrast, the latter

occurs when the innovation process is exogenous to both firms, and, therefore, they fight for the

leader’s position. Hence, we contribute to the existing literature by first developing a utility-based

framework for sequential investment in order to analyse how price and technological uncertainty

interact with risk aversion to impact investment under duopolistic competition. Second, we derive

analytical expressions, where possible, for the optimal entry threshold of the leader and the follower.

Thus, for each firm, we determine both the optimal technology adoption strategy, and, within

each strategy, the optimal investment rule. Finally, we provide managerial insights for investment

decisions based on analytical and numerical results.

We proceed by discussing some related work in Section 2 and introduce assumptions and no-

tation in Section 3. We begin the analysis with the benchmark case of monopoly in Section 4. In

Section 5, we assume that firms adopt each technology that becomes available (compulsive strategy)

and analyse the case of proprietary and non-proprietary duopoly in Sections 5.1 and 5.2, respec-

tively. In Section 5.3, we also consider how pre-emption may lead to a war of attrition. In Section
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6, we assume that a firm may wait for a new technology to become available before deciding to

either skip an old technology and invest directly in the new one (leapfrog strategy) or to adopt the

old technology first and then the new one (laggard strategy). In Section 7, we provide numerical

results for each case and illustrate how attitudes towards risk interact with price and technologi-

cal uncertainty to impact not only the optimal technology adoption strategy but also the optimal

investment rule. Section 8 concludes the paper and offers directions for further research.

2. Related Work

Real options models often address the problem of optimal investment timing without considering

strategic interactions (McDonald & Siegel, 1985 and 1986), while the ones that do, either ignore the

sequential nature of investment opportunities (Pawlina & Kort, 2006; Siddiqui & Takashima, 2012)

or attitudes towards risk (Huisman & Kort, 2015). In the area of competition, Spatt & Sterbenz

(1985) analyse how the degree of rivalry impacts the learning process and the decision to invest,

and find that increasing the number of players hastens investment and that the investment decision

resembles the standard NPV rule. Via a deterministic model, Fudenberg & Tirole (1985) show that

a high first-mover advantage results in a pre-emption equilibrium with dispersed adoption timings,

as it increases a firm’s incentive to pre-empt investment by its rivals. Smets (1993) first developed

a continuous-time model of strategic real options under product market competition, stochastic

demand and irreversibility. Extending the framework of Fudenberg & Tirole (1985), Huisman &

Kort (1999) find that uncertainty creates a positive option value of waiting that raises the required

investment threshold. Specifically, in deterministic models a high first-mover advantage leads to a

pre-emptive equilibrium, yet, in stochastic models, higher uncertainty may turn a pre-emptive into

a simultaneous investment equilibrium.

In the same line of work, Lambrecht & Perraudin (2003) incorporate incomplete information into

an equilibrium model in which firms invest strategically. Paxson & Pinto (2005) develop a rivalry

model that allows for price and quantity uncertainty, and, among other results, they find that an

increase in the correlation between the profits per unit and the quantity of units produced raises

their aggregate volatility, and, in turn, the investment trigger of both the leader and the follower.

Takashima et al. (2008) assess the effect of competition on the investment decision of firms with

asymmetric technologies under price uncertainty. They show how mothballing options facilitate

investment, thereby offering a competitive advantage to a thermal power plant over a nuclear

power plant. By contrast, lower variable and construction costs favour coal- and oil-thermal power

plants. Bouis et al. (2009) analyse investment in markets with more than two identical competitors.

In the setting including three firms, they find that, if the entry of the third firm is delayed, then

the second firm has an incentive to invest earlier so that it can enjoy the duopoly market structure

for a longer time. This increases the incentive for the first firm to delay investment, as it faces a
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shorter period in which it can enjoy monopoly profits. In the same line of work, Armada et al.

(2011) introduce a setting with several competitors who arrive according to a Poisson process. Also,

Graham (2011) finds that an equilibrium may not exist when allowing for asymmetric information

over revenues, Thijssen et al. (2012) present an analytical model that deals with the coordination

problem in pre-emptive competition, and Siddiqui & Takashima (2012) explore the extent to which

sequential decision making offsets the impact of competition. Lavrutich (2017) investigates entry

and exit decisions under capacity sizing and duopolistic competition, and finds that the follower

can strategically set capacity such that the leader has an incentive to exit. A detailed overview of

game-theoretic real options models is offered by Azevedo & Paxson (2014).

Examples of early work in the area of investment under technological uncertainty include Balcer

& Lippman (1984), who analyse the optimal timing of technology adoption taking into account

the expected flow of technological progress. A model for sequential investment in technological

innovations is developed by Grenadier and Weiss (1997), who assume that a firm may either adopt

each technology that becomes available (compulsive), or wait for a new technology to arrive before

adopting either the new (leapfrog) or the old technology (laggard), or purchase only an early

innovation (buy and hold). Their results indicate that a firm may adopt an available technology

even though more valuable innovations may occur in the future, while decisions on technology

adoption are path dependent. Assuming that innovations follow a Poisson process, Farzin et al.

(1998) investigate the impact of technological uncertainty on the optimal timing of technology

adoption, yet ignore price uncertainty. Doraszelski (2001) revisits the analytical framework of

Farzin et al. (1998) and shows that, compared to the net present value (NPV) approach, a firm

will defer technology adoption when it takes the option value of waiting into account. Weeds

(1999) analyses the decision to invest in a research project and finds that increasing technological

and economic uncertainty postpone investment, while technological uncertainty may accelerate

abandonment when the profitability of the project declines. Also, Chronopoulos & Siddiqui (2015)

find that uncertainty over the arrival of innovations facilitates the adoption of an existing technology.

Lukas et al. (2017) consider an uncertain technological lifetime and show how optimal capacity

is related to a product’s life-cycle. Although the aforementioned papers offer a comprehensive

analysis of investment under technological uncertainty, they assume a risk-neutral decision-maker

and ignore the implications of strategic interactions.

Allowing for economic and technological uncertainty, Weeds (2002) analyses strategic investment

in competing research projects and identifies the existence of non-cooperative and cooperative

games. The former involve i. a pre-emptive competition where firms invest sequentially and ii. a

symmetric outcome in which investment is more delayed than in the case of monopoly. The latter

involves sequential investment, yet compared to the non-cooperative (pre-emptive leader-follower)

game, the investment triggers are higher. Also, compared to the optimal cooperative investment
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pattern, investment is found to be more delayed when firms act non-cooperatively as each refrains

from investing in the fear of starting a patent race. Miltersen & Schwartz (2004) analyse how

competition in the development and marketing of a product impacts investment in R&D. They

find that competition not only increases production and reduces prices, but also shortens the

development stage and raises the probability of a successful outcome. Huisman & Kort (2004)

study a dynamic duopoly in which firms compete in the adoption of new technologies under price

and technological uncertainty. Their results indicate that taking into account the likely arrival of a

new technology could turn a pre-emption game into one where the second mover gets the highest

payoff. Leippold & Stromberg (2017) extend Huisman & Kort (2004) by allowing for market

incompleteness and find that undiversifiable risk may accelerate technology adoption.

Other examples of analytical models for investment under uncertainty that allow for risk aversion

include Henderson & Hobson (2002), who extend Merton (1969) by taking the perspective of a risk-

averse decision-maker facing incomplete markets. More specifically, they introduce a second asset

into the framework of Merton (1969) on which no trading is allowed and address the question of how

to price and hedge this random payoff. Alvarez & Stenbacka (2004) implement attitudes towards

risk via a hyperbolic absolute risk aversion (HARA) utility function and develop an analytical

framework for optimal regime-switching. They show that if the decision-maker is risk seeking, then

increasing price uncertainty does not necessarily decelerate investment. A similar result is indicated

in Henderson (2007), who shows that idiosyncratic risk raises the incentive to accelerates investment

and lock in the investment payoff. Hugonier & Morellec (2013) use the framework of Karatzas &

Shreve (1999) in order to determine the analytical expression for the expected utility of a perpetual

stream of cash flows that follows a geometric Brownian motion (GBM). Thus, they express the

investment policy as the solution to an optimal stopping-time problem and find that greater risk

aversion lowers the expected utility of the project and reduces the probability of investment. By

contrast, Chronopoulos et al. (2011) show that operational flexibility in the form of suspension and

resumption options mitigates the impact of risk aversion and increases the incentive to invest. An

extension of the utility-based framework to allowing for Markov-regime switching is described in

Chronopoulos & Lumbreras (2017). Although these papers address the impact of risk aversion on

investment and operational decisions under price uncertainty, they ignore the implications of both

technological uncertainty and competition.

We consider two identical firms that invest sequentially in technological innovations and deter-

mine how competition interacts with price and technological uncertainty to affect the technology

adoption strategy of each firm. The random arrival of innovations is modelled via a Poisson process,

while price uncertainty is modelled via a geometric Brownian motion (GBM). We analyse three

strategies, i.e., compulsive, leapfrog, and laggard, and determine the feasibility of each strategy

under different levels of risk aversion, price, and technological uncertainty. Results indicate that,
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technological uncertainty has a non-monotonic impact on the required investment threshold of the

follower and the non-proprietary leader, yet it does not impact the proprietary leader’s optimal

investment policy. Furthermore, we find that technological uncertainty decreases the leader’s rela-

tive loss in value due to the presence of a rival. We also show how technological uncertainty may

induce a firm to skip an existing technology in order to invest in a more efficient one. Finally, by

comparing a compulsive with a leapfrog/laggard strategy under proprietary duopoly, we find that

the latter strategy may dominate, provided that the rate of innovation and the output price is high.

3. Assumptions and Notation

Given a complete probability space (Ω,F ,P), we introduce technological uncertainty by assuming

that innovations follow a Poisson process {Mt, t ≥ 0}, where t is continuous and denotes time. We

assume that the output price {Et, t ≥ 0} is independent of the process {Mt, t ≥ 0}, and evolves

according to a GBM, as in (1), where µ is the annual growth rate, σ is the annual volatility, and

dZt is the increment of the standard Brownian motion. Also, ρ > µ denotes the subjective discount

rate and r is the risk-free rate.

dEt = µEtdt+ σEtdZt, E0 ≡ E > 0 (1)

The firms’ risk preferences are described by a HARA utility function, which is indicated in (2).

Note that standard economic theory assumes that decision-makers are typically risk averse and that

risk-seeking behaviour is less plausible (Pratt, 1964). Nevertheless, we assume that γ ∈ [0.7, 1.3],

and, thus, examine the implications of both risk-averse γ ∈ [0.7, 1] and risk-seeking behaviour

γ ∈ [1, 1.3] to enable comparisons with both Hugonnier & Morellec (2013) and Chronopoulos &

Lumbreras (2017). Nevertheless, our analysis can accommodate a wide range of utility functions,

e.g., hyperbolic absolute risk aversion (HARA), constant absolute risk aversion (CARA), and con-

stant relative risk aversion (CRRA) utility functions.

U(E) =
E
γ

γ
, γ > 0 (2)

We let a = p, n denoting proprietary and non-proprietary duopoly, respectively, and b = m, `, f

denoting the monopolist, the leader and the follower, where the leader is the first firm to enter the

market in the case of competition. Also, we assume that each firm holds perpetual options to invest

in two technologies, each with an infinite lifetime. There is no operating cost associated with each

technology, while the investment cost is Ii, i = 1, 2 (I1 ≤ I2) and the corresponding output is Di,

where Di or Di indicates that there is one or two firms in the market, receptively. Hence, Di is

decreasing in number of active firms and increasing in i. Thus, depending on the number of firms

in the industry, a firm’s option to invest in technology i while operating technology i−1 is denoted

by F abi−1,i(·), and the expected utility from operating technology i inclusive of embedded options is
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denoted by Φab
i (·). The time of investment and the optimal investment threshold are denoted by

τabi−1,i and εabi−1,i, respectively.

4. Benchmark Case: Monopoly

First, We consider the benchmark case where a firm holds a single investment opportunity. This

has already been analysed in Hugonier & Morellec (2013), but we present the analysis here for ease

of exposition and to allow for comparisons. The key insight is to decompose all the cash flows of

the project into disjoint time intervals. Hence, we assume that the firm has initially placed the

amount of capital required for investment in a certificate of deposit and earns a risk-free rate r.

Thus, the firm earns the instantaneous utility U(rI1). At time τm0,1, the firm swaps this risk-free

cash flow in return for the instantaneous utility U(ED1), as shown in Figure 1.∫ τm0,1

0
e−ρtU (rI1) dt

0 τm0,1

∫ ∞
τm0,1

e−ρtU
(
ED1

)
dt

t

Figure 1: State-transition diagram for a monopolist

The time-zero expected discounted utility of all the cash flows of the project is described in (3),

where EE [·] denotes the expectation operator that is conditional on the initial output price, E.

EE

[∫ τm0,1

0
e−ρtU (rI1) dt+

∫ ∞
τm0,1

e−ρtU
(
ED1

)
dt

]
(3)

By decomposing the first integral, we can rewrite (3) as in (4).∫ ∞
0

e−ρtU (rI1) dt+ EE

[∫ ∞
τm0,1

e−ρt
[
U
(
ED1

)
− U (rI1)

]
dt

]
(4)

Notice that the first term in (4) is deterministic, as it does not depend on the investment threshold.

Therefore, the optimisation objective is reflected in the second term and can be written as in (5)

using the law of iterated expectations and the strong Markov property of the GBM. The latter

states that the values of the process {Et, t ≥ 0} after time τm0,1 are independent of the values of the

process before time τm0,1 and depend only on the value of the process at time τm0,1.

Fm0,1 (E) = sup
τm0,1∈S

EE
[
e−ρτ

m
0,1

]
EEm0,1

[∫ ∞
0

e−ρt
[
U
(
ED1

)
− U (rI1)

]
dt

]
(5)

Note that the stochastic discount factor is EE [e−ρτ] =
(
E
Eτ

)β1
(Dixit & Pindyck, 1994), β1 >

0, β2 < 0 are the roots of the quadratic 1
2σ

2β(β−1)+µβ−ρ = 0, and S is the set of stopping times

generated by the filtration of the process {Et, t ≥ 0}. Using Theorem 9.18 of Karatzas & Shreeve
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(1999), the maximised expected value of the option to invest can be expressed as in (6)

Fm0,1 (E) = max
Em0,1>E

(
E

Em0,1

)β1
Φm

1

(
Em0,1

)
(6)

where

Φm
1 (E) = ΥU

(
Em0,1D1

)
− U (rI1)

ρ
, Υ =

β1β2

ρ(β1 − γ)(β2 − γ)
(7)

Solving this unconstrained optimisation problem, we obtain the optimal investment threshold that

is indicated in (8) (all proofs can be found in the appendix). Note that, while it is common to

formulate the investment threshold in terms of β1, it is more expedient to use β2 in our case, due

to the relationship β1β2 = −2ρ / σ2. Also, the second-order sufficiency condition (SOSC) requires

the objective function to be concave at εm0,1, which is shown in Chronopoulos & Lumbreras (2017).

εm0,1 = rI1

[
β2 − γ
β2D

γ
1

] 1
γ

and Am0,1 =

(
1

εm0,1

)β1 [
ΥU

(
εm0,1D1

)
− U (rI1)

ρ

]
(8)

5. Compulsive strategy

5.1. Proprietary Duopoly

Follower

We extend the benchmark case by assuming that there are two firms in the market competing in

the adoption of technological innovations. First, we consider the optimal investment policy of the

follower. As illustrated in Figure 2, the follower is initially in state (0, 1) and holds the option to

invest in the first technology and move to state 1. Once an innovation takes place, the follower

moves to state (1, 2), where she has the option to invest in the second technology and move to state

2. We denote a transition due to an innovation (investment) by a dashed (solid) line. Note that the

follower will always adopt each technology after the leader, and, therefore, for ease of exposition,

we will use the notation 1 and 2 to indicate the presence of two firms only where it is necessary to

avoid confusion.

0,1 1 1,2 2
εf0,1 λ εf1,2

Figure 2: State-transition diagram for the proprietary follower under a compulsive strategy

Similar to the benchmark case, we now assume that the amount of capital required for the

adoption of each technology is exchanged immediately at investment for the risky cash flows of the

project, as in Figure 3. For example, at time τ
f
0,1 the follower gets the capital required for investing

in the first technology, I1, and exchanges it for the risky cash flows of the project. Analogously

to (4) and (5), this results in the instantaneous utility U (ED1)− U (rI1), which accrues from τ
f
0,1
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until τf1,2. Next, at τf1,2 the follower gets the capital required for investing in the second technology

and exchanges it immediately for the risky cash flows it generates.

waiting
region

0 τ
f
0,1 τ

f
1,2

∫ τ
f
1,2

τ
f
0,1

e−ρt [U (ED1)− U (rI1)] dt

∫ ∞
τ
f
1,2

e−ρt [U (ED2)− U (rI1)− U (rI2)] dt

t

Figure 3: State-transition diagram under a compulsive strategy

The follower’s objective is to maximise the time-zero discounted expected utility of all the cash

flows of the project, which is described in (9). The first (second) integral in (9) indicates the

expected utility of the cash flows from operating the first (second) technology.

EE

[∫ τ
f
1,2

τ
f
0,1

e−ρt [U (ED1)− U (rI1)] dt+

∫ ∞
τ
f
1,2

e−ρt [U (ED2)− U (rI1)− U (rI2)] dt

]
(9)

By decomposing the first integral, we can rewrite (9) as in (10).

EE
[
e−ρτ

f
0,1

] [
E
Ef0,1

∫ ∞
0

e−ρt [U (ED1)− U (rI1)] dt+ E
Ef0,1

[
e
−ρ

(
τ
f
1,2−τ

f
0,1

)]
×E

Ef1,2

∫ ∞
0

e−ρt
[(
Dγ

2
−Dγ

1

)
U (E)− U (rI2)

]
dt

]
(10)

We determine the follower’s value function in each state using backward induction. Therefore,

we first assume that the follower is already operating the first technology and holds a single embed-

ded option to adopt the second one. The expected utility of the project’s cash flows is indicated in

(11), where the first term is the expected utility from operating the first technology and the second

term is the maximised expected value of the option to adopt the second one.

EE
[∫ ∞

0
e−ρt [U (EtD1)− U (rI1)] dt

]
+Af1,2E

β1 (11)

Notice that the first term does not depend on the investment threshold, and, therefore, the opti-

misation objective is reflected in the second term. The latter is described in (12).

Af1,2E
β1 = max

Ef1,2>E

(
E

Ef1,2

)β1
E
Ef1,2

∫ ∞
0

e−ρt
[(
Dγ

2
−Dγ

1

)
U (Et)− U (rI2)

]
dt

= max
Ef1,2>E

(
E

Ef1,2

)β1 [
Υ
(
Dγ

2
−Dγ

1

)
U
(
Ef1,2

)
− U (rI2)

]
dt (12)

Solving this unconstrained optimisation problem, we obtain the expression of the optimal invest-

ment threshold that is indicated in (13).

εf1,2 = rI2

 β2 − γ

β2

(
Dγ

2
−Dγ

1

)
 1
γ

(13)
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Equivalently, we can express the value function of the follower in state (1, 2) as in (14). The

first two terms on the top part reflect the expected utility of the cash flows from operating the

first technology, while the third term represents the option to adopt the second one. The bottom

part represents the expected utility of the profits from operating the second technology Φf
2(E) =

ΥU (ED2)− U(rI2)+U(rI1)
ρ .

F f1,2(E) =

ΥU (ED1)− U(rI1)
ρ +Af1,2E

β1 , E < εf1,2

Φf
2(E) , E ≥ εf1,2

(14)

In state 1, the follower is operating the first technology and holds an embedded option to invest

in the second one, that has yet to become available. The dynamics of the follower’s value function

are described in (15), where the first two terms on the right-hand side represent the instantaneous

utility of the profits from operating the first technology and the second term is the expected utility

of the project in the continuation region. As the second term indicates, with probability λdt the

second technology will arrive and the follower will receive the value function, F f1,2(E), whereas,

with probability 1− λdt, no innovation will occur and the follower will continue to hold the value

function, Φf
1(E).

Φf
1(E) = [U (ED1)− U (rI1)] dt+ (1− ρdt)EE

[
λdtF f1,2(E + dE) + (1− λdt) Φf

1(E + dE)
]

(15)

By expanding the right-hand side of (15) using Itô’s lemma, we can rewrite (15) as in (16), where

Λ = Υ
λΥ+1 and Af1 > 0, Bf

1 < 0, are determined analytically by applying value-matching and

smooth-pasting conditions to the two branches of (16). The first two terms on the top part represent

the expected utility of the revenues and cost, respectively. The third term is the option to invest in

the second technology, adjusted via the last term since the second technology is not available yet.

The first three terms on the bottom part, represent the expected utility of operating the second

technology, while the fourth term represents the likelihood of the price dropping in the waiting

region prior to the arrival of an innovation.

Φf
1(E) =

ΥU (ED1)− U(rI1)
ρ +Af1,2E

β1 +Af1E
δ1 , E < εf1,2

Λ [λΥU (ED2) + U (ED1)]− λU(rI2)
(λ+ρ)ρ −

U(rI1)
ρ +Bf

1E
δ2 , E ≥ εf1,2

(16)

Finally, the follower’s value function in state (0, 1) is indicated in (17). By applying value-

matching and smooth-pasting conditions between the two branches of (17), we can solve for the

optimal investment threshold, εf0,1, and the endogenous constant, Af0,1, numerically.

F f0,1(E) =

A
f
0,1E

β1 , E < εf0,1

Φf
1(E) , E ≥ εf0,1

(17)
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Leader

Next, we consider the optimal investment policy of the leader. Notice that once the leader invests

in the first technology, thereby moving from state (0, 1) to state 1, she receives monopoly profits

until the follower enters. Once the follower adopts the first technology, both firms share the market

in state 1. The same process is then repeated with respect to the second technology.

0, 1 1 1 1, 2 2 2

εf1,2εp`
1,2

λ

εf0,1εp`0,1

Figure 4: State-transition diagram for the proprietary leader under a compulsive strategy

Assuming that the follower chooses the optimal policy, the value function of the proprietary

leader in state 2 is described in (18). The first two terms on the right-hand side reflect the monopoly

profits from operating the second technology and the third term is the expected reduction in the

proprietary leader’s profits due to the follower’s entry. The endogenous constant Ap`2 is obtained

by value-matching (18) with the bottom part of (14) at εf1,2 and is indicated in (A–5).

Φp`
2 (E) = ΥU

(
ED2

)
− U (rI1) + U (rI2)

ρ
+Ap`2 E

β1 , E < εf1,2 (18)

Next, the value function of the proprietary leader in state
(
1, 2
)

is described in (19). The first

two terms on the top part reflect the expected utility from operating the first technology and the

third term is the embedded option to invest in the second one.

F p`
1,2

(E) =

ΥU (ED1)− U(rI1)
ρ +Ap`

1,2
Eβ1 , E < εp`

1,2

Φp`
2 (E) , E ≥ εp`

1,2

(19)

The endogenous constant, Ap`
1,2

, and the optimal investment threshold, εp`
1,2

, can be obtained ana-

lytically via value-matching and smooth-pasting conditions and are indicated in (20).

εp`
1,2

= rI2

 β2 − γ

β2

(
Dγ

2 −D
γ

1

)
 1
γ

and Ap`
1,2

=

 1

εp`
1,2

β1 [
Φp`

2

(
εp`

1,2

)
−ΥU

(
εp`

1,2
D1

)
+
U (rI1)

ρ

]
(20)

Corollary 1 indicates the necessary condition for a trade-off between the two technologies. Note

that, by setting γ = 1, we can retrieve the condition under risk neutrality, as in Chronopoulos &

Siddiqui (2015).

Corollary 1. A trade-off between the two technologies exists if
Dγ1
Iγ1

>
Dγ2

Iγ1 +Iγ2
.

Using Corollary 1, we can show that the leader will not invest in the second technology before

the follower adopts the first one, as indicated in Proposition 1. Intuitively, the second technology

is considerably more costly and cannot be adopted when the output price is below the follower’s

required investment threshold for the first technology.

11



Proposition 1. εp`1,2 > εf0,1.

Contrary to Chronopoulos et al. (2014), the leader’s required investment threshold in the second

technology is lower than that of the monopolist, as shown in Proposition 2. Intuitively, the entry

of the follower reduces the monopoly profits of the leader with respect to the first technology. In

turn, this raises the value of the leader’s option to invest in the second technology and lowers the

required adoption threshold, thereby extending the corresponding period of monopoly profits.

Proposition 2. εp`
1,2

< εm1,2.

The proprietary leader’s value function in state 1 is indicated in (21), where Ap`
1

and Cp`
1

are

determined by value matching and smooth pasting the two branches, while Bp`

1
is obtained by value

matching (21) with the top branch of (19) at εpf
0,1

. The first two (three) terms in the top (bottom)

part in (21) reflect the expected utility of the profits under a low (high) output price. The third

term in the top branch is the option to invest in the second technology adjusted via the fourth

term due to technological uncertainty. The fourth term in the bottom branch reflects the reduction

in the expected utility of the leader’s profits due to the follower’s entry adjusted for technological

uncertainty via the fifth term. The last term reflects the likelihood of the price dropping in the

waiting region.

Φp`

1
(E) =


ΥU (ED1)− U(rI1)

ρ +Ap`
1,2
Eβ1 +Ap`

1
Eδ1 , E < εp`

1,2

Λ
[
λΥU

(
ED2

)
+ U (ED1̄)

]
− U(rI1)

ρ − λU(rI2)
ρ(ρ+λ)

+Ap`2 E
β1 +Bp`

1
Eδ1 + Cp`

1
Eδ2 , E ≥ εp`

1,2

(21)

Next, the value function of the proprietary leader in state 1 is indicated in (22), where Ap`
1
< 0

is obtained by value matching (22) with the top branch in (21) at εf0,1 and is described in (A–6).

The first two terms in (22) reflect the expected utility from operating the first technology, and, the

third term, is the expected reduction in the proprietary leader’s profits due to the follower’s entry.

Φp`
1 (E) = ΥU

(
ED1

)
− U (rI1)

ρ
+Ap`1 E

β1 , E < εf0,1 (22)

In state (0, 1), the proprietary leader holds the option to invest in the first technology with an

embedded option to invest in the second, that has yet to become available. The expression of

F p`0,1(E) is described in (23), where the top part is the value of the option to invest and the bottom

part is the expected utility of the active project inclusive of the embedded option to invest in the

second technology.

F p`0,1(E) =

A
p`
0,1E

β1 , E < εp`0,1

Φp`
1 (E) , E ≥ εp`0,1

(23)
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The expression of εp`0,1 and Ap`0,1 is indicated in (24). Notice that, as shown in Proposition 3, the

leader’s decision to adopt the first technology is independent of technological uncertainty.

εp`0,1 =
rI1

D1

(
β2 − γ
β2

) 1
γ

and Ap`0,1 =

(
1

εp`0,1

)β1
Φp`

1

(
εp`0,1

)
(24)

Proposition 3. The proprietary leader’s required investment threshold for the first technology is
independent of λ.

5.2. Non-Proprietary Duopoly

With two firms in the market fighting for the leader’s position, each one of them runs the risk of

pre-emption. Note that, under a compulsive strategy, the follower will invest in each technology

after the leader has already adopted it. Consequently, the value function of the follower in each

state is the same as in Section 5.1. In order to determine the non-proprietary leader’s optimal

investment threshold for the second technology we consider the strategic interactions between the

leader and the follower. Note that the leader’s value function in state 2 is described in (18). If

E < εn`
1,2

, then a firm is better off being the follower, since F f1,2(E) > Φn`
2 (E). By contrast, if

E > εn`
1,2

, then a firm is better off being a leader, since F f1,2(E) < Φn`
2 (E). Consequently, the point

of indifference between being a leader and a follower is determined numerically by solving (25).

F f1,2 (x) = Φn`
2 (x) (25)

We consider two possible scenarios: i. εf0,1 > x and ii. εf0,1 < x. In the former case, the follower

invests in the first technology after the leader can pre-empt the second one, which implies that the

leader does not face the risk of pre-emption. By contrast, in the latter case, the follower’s optimal

investment threshold is lower than that of the non-proprietary leader, which implies that the leader

now faces the threat of pre-emption. Consequently, the leader’s optimal investment threshold in

the second technology is εn`
1,2

= max
{
εf0,1, x

}
, as shown in Proposition 4.

Proposition 4. The optimal investment threshold of the non-proprietary leader for the first tech-

nology is εn`
1,2

= max
{
εf0,1, x

}
, where x satisfies the condition F f1,2 (x) = Φn`

2 (x).

Following the same reasoning as in (25), the leader’s pre-emption threshold in the first technology

is determined by solving (26). Note that the value function of the leader while operating the first

technology is indicated (22). However, Ap`1 is now determined by value matching (22) with either

(16) or (21) depending on whether εf0,1 > x or εf0,1 < x.

F f0,1

(
εn`0,1

)
= Φn`

1

(
εn`0,1

)
(26)
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5.3. War of Attrition

Due to the competitive advantage created by ignoring the first technology, a firm may choose to

invest in the second one directly. Due to the difference in investment strategies, it is not possible

to compare the two firms directly. Therefore, we take the perspective of each firm separately and

analyse their value functions assuming initially that it is possible for each firm to assume both roles,

i.e., leader and follower. Then, we can conclude which role is viable for each firm (Takashima et al.,

2008). Within this context, we denote as follower the firm that gets pre-empted in the adoption of

the first technology, and, therefore, has a greater incentive to adopt the second one directly. The

follower’s value function when investing in the second technology directly is described in (27). The

top part is the value of the option to invest and the bottom part is the expected utility of the active

project.

F f0,2(E) =

A
f
0,2E

β1 , E < εf0,2

ΥU (ED2)− U(rI2)
ρ , E ≥ εf0,2

(27)

The expression of Af0,2 and εf0,2 is obtained through value-matching and smooth-pasting conditions

and are indicated in (28).

εf0,2 =
rI2

D2

(
β2 − γ
β2

) 1
γ

and Af0,2 =

(
1

εf0,2

)β1 [
ΥU

(
εf0,2D2

)
− U (rI2)

ρ

]
(28)

The corresponding leader’s value function is denoted by Φ̂n`
2 (·) and is described in (29). Note that

Ân`2 is determined by value matching (29) with the bottom part of (27) at εf0,2. The pre-emptive

leader’s threshold, ε̂n`0,2, satisfies the condition F f0,2 (E) = Φ̂n`
2 (E).

Φ̂n`
2 (E) = ΥU

(
ED2

)
− U (rI2)

ρ
+ Ân`2 E

β1 , ε̂n`0,2 < E ≤ εf0,2 (29)

Similarly, the pre-emptive leader’s expected utility from operating the second technology after

having already adopted the first one is denoted by Φ̃n`
2 (·) and is described in (30). Note that Ãn`2

is determined by value matching (30) with the bottom part of (14) at εf1,2.

Φ̃n`
2 (E) = ΥU

(
ED2

)
− U (rI1) + U (rI2)

ρ
+ Ãn`2 E

β1 , ε̃n`0,2 < E ≤ εf1,2 (30)

The pre-emptive leader’s threshold, ε̃n`0,2, satisfies the condition F f1,2 (E) = Φ̃n`
2 (E). Consequently,

skipping the first technology is a feasible strategy provided that ε̃n`0,2 > ε̂n`0,2. Intuitively, the follower

can invest in the second technology first provided the pre-emption threshold of the compulsive

leader is greater than the threshold of directly adopting the second technology. This does not

however imply that it is optimal skip one technology, only that it is a feasible strategy.
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6. Leapfrog and Laggard Strategy

Assuming that the leader has proprietary rights on each technology, she may decide to ignore a

technology temporarily in order to wait for a new one to arrive before deciding which one to invest

in. If the leader ignores the first technology, then only the second one will be commercialised,

and, therefore, the follower will never invest in the first one. The value function of the follower is

indicated in (27).

Given the followers optimal response, the proprietary leader can choose whether to adopt a

leapfrog or a laggard strategy as illustrated in Figure 5. Instead of moving from (0, 1) to 1, the

leader moves to state (0, 1 ∨ 2), and then, either invests in the first technology, holding the option to

switch to the second one, i.e., state (1, 2), or (∨) invests directly in the second technology, thereby

moving to state 2.

0, 1 1

0, 1 ∨ 2

1, 2

2 2

1,2 2 2
λ

λ

Lag
ga

rd
ε
p`

0,1
, ε̂
p`

0,1

εf0,1 εp`
1,2 εf1,2

Leapfrog

εp`0,2 εf0,2

Figure 5: Proprietary duopoly under a leapfrog/laggard strategy

Notice that the value function of the proprietary leader in states
(
1, 2
)
, 2, and 2 following a laggard

strategy is the same as in Section 5.1, while her value function in state 2 following a leapfrog

strategy is indicated in the bottom part of (27). Hence, we proceed directly to state (1, 2), where

the leader operates the first technology and earns monopoly profits until the follower enters at εf0,1.

The leader’s value function is described in (31), where the third term on the right-hand side reflects

the expected reduction in the leader’s profits due to the followers entry. The endogenous constant,

Ap`1,2, is obtained by value matching (31) with the bottom part of (19) at εf0,1.

F p`1,2(E) = ΥU
(
ED1

)
− U (rI1)

ρ
+Ap`1,2E

β1 (31)

Due to the presence of the second technology, there exist two waiting regions: i. E ≤ εp`0,1

and ii. ε̂p`0,1 ≤ E ≤ ε̂p`0,2 (Décamps et al., 2006). Hence, the value function in state (0, 1 ∨ 2) is

described in (32), where Bp`
0,1∨2, Cp`0,1∨2, ε̂p`0,1, and ε̂p`0,2 are obtained numerically via value-matching

and smooth-pasting conditions between the bottom three branched, and Φp`
2 (E) is indicated in

(18). Notice that, if E < εp`0,1, then the firm will wait until E = εp`0,1 and then invest in the first

technology. By contrast, if ε̂p`0,1 ≤ E ≤ ε̂p`0,2, then the firm will either invest directly in the second

technology if E ↑ ε̂p`0,2, or it will invest in the first one and hold the option to switch to the second
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if E ↓ ε̂p`0,1.

F p`0,1∨2(E) =



Ap`0,1∨2E
β1 , E < εp`0,1

F p`1,2(E) , εp`0,1 ≤ E ≤ ε̂
p`
0,1

Bp`
0,1∨2E

β2 + Cp`0,1∨2E
β1 , ε̂p`0,1 < E < ε̂p`0,2

Φp`
2 (E) , ε̂p`0,2 ≤ E

(32)

Finally, in state (0, 1) either the second technology will become available with probability λdt

and the proprietary leader will receive the value function F p`0,1∨2(E), or no innovation will take place

with probability 1− λdt and the leader will continue to hold the value function F p`0,1(E).

F̂ p`0,1(E) = (1− ρdt)EE
[
λdtF p`0,1∨2(E + dE) + (1− λdt)F p`0,1(E + dE)

]
(33)

The expression of the value function in state (0, 1) is indicated in (34), where Dp`
1 , Gp`1 , Hp`

1 ,

Jp`1 , Kp`
1 , Lp`1 , and Mp`

1 are determined numerically via the value-matching and smooth-pasting

conditions between the branches of (34). Notice that, (34) has five branches, this is a consequence

of the value function, Φ̂p`
2

(E) changing to Φ̂pb
2

(E) when the follower enters the market.

F̂ p`0,1(E) =



Ap`0,1∨2E
β1 +Dp`

1 E
δ1 , E < εp`0,1

λΛΥU
(
D1E

)
− λU(rI1)

ρ(ρ+λ) +Ap`1,2E
β1 +Gp`1 E

δ1 +Hp`
1 E

δ2 , εp`0,1 ≤ E ≤ ε̂
p`
0,1

Bp`
0,1∨2E

β2 + Cp`0,1∨2E
β1 + Jp`1 E

δ1 +Kp`
1 E

δ2 , ε̂p`0,1 < E < ε̂p`0,2

λΛΥU
(
D2E

)
− λU(rI2)

ρ(ρ+λ) +Ap`2 E
β1 + Lp`1 E

δ1 +Mp`
1 E

δ2 , ε̂p`0,2 ≤ E < εf
0,2

λΛΥU (D2E)− λU(rI2)
ρ(ρ+λ) , εf

0,2
≤ E

(34)

7. Numerical Results

Proprietary duopoly with compulsive firms

For the numerical results, the parameter values are µ = 0.01, ρ = r = 0.08, σ ∈ [0.1, 0.25],

I1 = 500, I2 = 1500, D1 = 8, D2 = 15, D1 = 11, D2 = 19, and λ ∈ R+. These values ensure

that there is a trade-off between the two technologies, as shown in Corollary 1. Figure 6 illustrates

the value function of the leader and the follower for the case of investment in the first (left panel)

and the second (right panel) technology under a compulsive strategy. According to the right

panel, the proprietary leader has the option to delay investment, and, therefore, adopts the second

technology at E = 19.76. By contrast, the non-proprietary leader faces the risk of pre-emption

and adopts the second technology at E = 14.58. Indeed, for E < 14.58 the option value of the

follower is greater than the project value of the leader, while for E > 14.58 the opposite is observed.

Consequently, E = 14.58 indicates the point of indifference between being the leader or the follower.

For 14.58 < E ≤ 32.12, the leader enjoys monopoly profits, however, once the follower invests in
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the second technology at 32.12, then both firms share the market. The left panel illustrates the

value function of the leader and the follower when contemplating investment in the first technology,

while holding an embedded option to invest in the second one, that has yet to become available.

Notice that, upon adoption of the first technology, the value function of the proprietary leader

(thin curve) is not the same as that of the follower (thick curve), since the leader holds the option

to invest in the second technology first. Consequently, unlike state 2, the value function of the

proprietary leader value matches with her own value function in state 1 at E = 7.88 and not with

the follower’s value function.
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Figure 6: Option and project value of the leader and the follower in the first (left panel) and the second technology

(right panel) under a proprietary and a non-proprietary duopoly for λ = 0.1, γ = 0.9, and σ = 0.2.

Figure 7 illustrates the impact of technological uncertainty and risk aversion on the required

investment threshold of the proprietary leader (left panel) and the follower (right panel) for σ =

0.18, 0.20. Notice that price uncertainty increases the required investment threshold of both the

leader and the follower by raising the opportunity cost of investing, thereby increasing the value

of waiting. Interestingly, while the impact of technological uncertainty on the required investment

threshold of the follower is non-monotonic, the proprietary leader’s decision to invest is not affected

by technological uncertainty. The former result is in line with Chronopoulos & Siddiqui (2015), who

show that greater λ increases a firm’s incentive to adopt the currently available technology in order

to have a shot at the yet unreleased version. The latter result happens because the the follower

invests in the first technology before the leader invests in the second one, as shown in Proposition 1.

Consequently, the leader’s adoption of the first technology does not affect her prospective monopoly

profits in the second one, thus resulting in a myopic strategy, as indicated in Proposition 3.
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Figure 7: Impact of λ and γ on the optimal investment threshold of the proprietary leader (left panel) and the follower

(right panel).

The right panel of Figure 8 illustrates the impact of λ and γ on the required investment threshold

of the non-proprietary leader for σ = 0.18, 0.20. Notice that the impact of γ and σ is the same

as in Figure 7, however greater λ induces later adoption for the leader. Intuitively, this happens

because earlier entry of the follower reduces the period of monopoly profits for the non-proprietary

leader, thereby decreasing the attractiveness of the first technology for the leader. In the left panel,

we increase the first-mover advantage, which increases the attractiveness of being a leader, thereby

lowering the point of indifference between being a leader and a follower.

Figure 8: Impact of first-mover advantage on εn`0,1 (left panel) and impact of λ and γ on εn`0,1 for σ = 0.18, 0.2 (right

panel).

Figure 9 illustrates the impact of greater first-mover advantage on the required investment

threshold of the proprietary (left panel) and non-proprietary leader (right panel). In this numerical
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example εf0,1 < x, which implies that the follower has entered the market before the indifference

threshold is reached, thus, the leader cannot postpone adoption as shown in Proposition 4. As both

panels illustrate, the compulsive leader’s required investment threshold in the first technology is not

affected by the first-mover advantage in the second one. More specifically, since the follower does

not adjust her entry in response to higher first mover advantage, the period of monopoly profits in

the first technology is unchanged. Consequently, the leader has no incentive to change her adoption

time. By contrast, a greater first-mover advantage in the first technology accelerates investment.

Also, compared to the left panel, the threat of pre-emption increases the investment incentive, as

illustrated in the right panel.

Figure 9: Impact of D1 and D2 on the optimal investment threshold of the proprietary (left panel) and non-proprietary

leader (right panel).

The impact of γ and σ on the relative loss in the value of the proprietary and non-proprietary

leader is indicated in the left- and the right-hand side expression of (35), respectively, and is

illustrated in Figure 10.

Am0,1ε
n`
0,1

β1 −Ap`0,1εn`0,1
β1

Am0,1ε
n`
0,1

β1
and

Am0,1ε
n`
0,1

β1 − Φn`
1 (εn`0,1)

Am0,1ε
n`
0,1

β1
(35)

In line with Chronopoulos et al. (2014), the left panel in Figure 10 illustrates that the relative

loss in the value of the proprietary leader increases (decreases) with greater price uncertainty when

the first-mover advantage is high (low). Intuitively, this happens because, under low discrepancy

in market share, the increase in the proprietary leader’s value of investment opportunity due to

the follower’s late investment is greater than the expected loss due to the entry of the follower.

However, when the discrepancy is high the period of time with monopoly profits in the second

project is more pronounced causing the relative loss to increase. Also, as the right panel illustrates,

greater price uncertainty and a lower first-mover advantage decreases the relative loss in the value

of the non-proprietary leader.
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Figure 10: Relative loss in the value of the proprietary (left panel) and non-proprietary leader (right panel) versus γ

and σ for λ = 0.1.

The impact of γ and λ on the relative loss in value for the proprietary (left panel) and non-

proprietary leader (right panel) is illustrated in Figure 11. As both panels illustrate, a higher

innovation rate lowers the relative loss in the value of the leader by raising the expected utility of the

embedded option to adopt a more efficient technology. Interestingly, risk aversion has an ambiguous

effect on the relative loss in the value of the proprietary leader (left panel). More specifically, under

a low (high) rate of technological innovation, greater risk aversion decreases (increases) the relative

loss in the value of the leader. This happens because greater risk aversion postpones the entry of

the follower, thereby allowing the leader to enjoy monopoly profits for a longer time. However,

when λ is high, the second technology is more likely to become available, which in turn, gives the

leader greater incentive to invest than the monopolist, as shown in Proposition 2. Consequently,

the impact of greater risk aversion is mitigated by higher technological uncertainty.

Figure 11: Relative loss in the value of the proprietary (left panel) and non-proprietary leader (right panel) versus γ

and λ.
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War of attrition.

Figure 13 illustrates (36) which is the relative value of the war of attrition and the compulsive

strategy under a low (left panel) and a high (right panel) output price without technological un-

certainty.

Φ̂n`
2 (E)

F f0,1 (E)
(36)

Note that we take the perspective of each firm separately and analyse their value functions assuming

each firm can assume both roles, i.e., leader and follower, as shown in Figure 12. The top panel

indicates that the pre-emption threshold for the second technology when the first one has already

been adopted is 14.58. However, as the bottom panel illustrates, direct pre-emption of the second

technology requires a threshold of 8.31. Consequently, the competitive advantage from ignoring

the first technology is enough to enable the pre-emption of the second one.
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Figure 12: Value function of the leader and the follower, when the follower adopts a leapfrog strategy under a

non-proprietary duopoly with λ = 0.1, γ = 0.9 and σ = 0.2.

Although skipping the first technology in order to pre-empt the second may be feasible, it is

not necessarily the optimal strategy. Indeed, if output price is low, then it is always better to be a

compulsive follower as the left panel of Figure 13 illustrates. However, if the output price is high,

then increasing volatility makes it optimal to skip the first technology in order to pre-empt the

second one (right panel).
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Figure 13: Relative value of a war of attrition strategy compared to the compulsive strategy for the follower evaluated

at E = ε̂n`0,2 (left panel) and E = εp`0,2 (right panel).

Proprietary duopoly under a leapfrog/laggard strategy.

The left panel in Figure 14 illustrates the value function of the proprietary leader under a leapfrog/

laggard strategy for γ = 0.9, 1.0. Notice that if γ = 0.9 and E < 5.75, then the leader will wait

until E = 5.75 to adopt the first technology and enjoy monopoly profits until the follower enters

at E = 7.90. By contrast, if E ∈ [13.27, 15.13], then the leader will either adopt a laggard strategy

if E ↓ 13.27 or a leapfrog strategy if E ↑ 15.13. Also, lower risk aversion raises the expected utility

of the project and lowers the investment thresholds. As the right panel illustrates, greater price

uncertainty raises all investment threshold, yet decreases the likelihood of a laggard strategy by

narrowing the intermediate waiting region (Siddiqui & Fleten, 2010).
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Figure 14: Value function of the proprietary leader for σ = 0.2 (left panel) and optimal investment thresholds for

γ = 0.9 (right panel), under proprietary duopoly with a leapfrog/laggard strategy.
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Figure 15 illustrates the relative value of the compulsive and leapfrog/laggard strategy for the

proprietary leader. More specifically, the left panel illustrates the left-hand side expression in (37),

which compares the first branch of (34) with (22) when the output price is low, i.e., E = εp`0,1.

Similarly, the right panel illustrates the right-hand side expression that compares the bottom part

of (34) with the top part of (21) when the output price is high, i.e., E = εp`0,2.

Ap`0,1∨2E
β1 +Dp`

1 E
δ1

ΥU
(
ED1

)
− U(rI1)

ρ +Ap`1 E
β1

and
Bp`

0,1∨2E
β2 + Cp`0,1∨2E

β1 + Jp`1 E
δ1 +Kp`

1 E
δ2

ΥU (ED1)− U(rI1)
ρ +Af1,2E

β1 +Af1E
δ1

(37)

As the right panel illustrates, the compulsive strategy dominates when the output price is low. This

happens because a firm must wait longer to invest in the more capital intensive technology and

the associated payoff does not offset the foregone revenues from ignoring the existing one. In fact,

greater risk aversion promotes the adoption of a compulsive strategy and makes the leapfrog/laggard

strategy relative less attractive. Interestingly, unlike Chronopoulos & Siddiqui (2015), the same

result holds even at a high output price, as long as the discrepancy in market share is large.

However, as the right panel illustrates, a leapfrog strategy may dominate, under a high output

price and a low discrepancy in market share.
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Figure 15: Relative value of compulsive and leapfrog/laggard strategy for the proprietary leader at E = εp`0,1 (left

panel) and E = εp`0,2 where D1 = 9, D2 = 16 (right panel) for σ = 0.2.

8. Conclusions

We analyse how attitudes towards risk interact with price and technological uncertainty to impact

the optimal investment decision of firms within the context of duopolistic competition. The analysis

is motivated by three main features of the modern economic environment: i. increasing competition

due to the deregulation of many sectors of the economy, such as energy and telecommunications; ii.
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market incompleteness and associated attitudes towards idiosyncratic risk that impact investment

decisions; and iii. the sequential nature of investment decisions in emerging technologies, e.g.,

energy, and the R&D-based sector of the economy. We incorporate these features into a utility-

based framework for investment under uncertainty by assuming that two identical firms compete

in the sequential adoption of technological innovations. More specifically, we assume that the firms

compete in the adoption of two technologies, of which the first one is available, while the arrival of

the second, more efficient one is subject to technological uncertainty.

Results indicate that insights from traditional real options models do not extend naturally to

a competitive setting with various interacting uncertainties. Indeed, we find that technological

uncertainty increases the follower’s incentive to adopt the existing technology. This is in line with

Chronopoulos & Siddiqui (2015), who address the problem of sequential investment in technological

innovations ignoring, however, the implications of strategic interactions. Interestingly, under a

proprietary duopoly, the leader’s required investment threshold for both technologies is independent

of technological uncertainty. In addition, the required investment threshold of the proprietary leader

for the new technology is lower than that of the monopolist. Furthermore, we find that although

greater price uncertainty lowers the relative loss in the value of the non-proprietary leader, in the

case of proprietary duopoly, the impact of price uncertainty on the relative loss in the leader’s

option value depends on the discrepancy in market share. Also, a higher innovation rate lowers

the relative loss in the value of the proprietary and non-proprietary leader. With respect to the

technology adoption strategy, we show how ignoring the existing technology in order to adopt the

second one directly may lead to a game, where neither firm wants to be the leader. By comparing

a compulsive to a leapfrog/laggard strategy under a proprietary duopoly we find that the former

strategy always dominates under a low output price. However, the latter strategy may dominate

when the discrepancy in market share is small, provided that both the rate of innovation and the

output price is high.

Extensions in the same line of work may include the flexibility to choose not only the time of

investment but also the size of the project. In line with Huisman & Kort (2015), this will also enable

the analysis of how different types of strategic interactions impact social welfare in terms of the time

of investment and the amount of installed capacity. Additionally, other types of uncertainties may

also be relevant within the context of strategic interactions. For example, regulatory risk regarding

the availability of subsidies for specific technologies may impact strategic interactions, significantly.

Other strategies may also be analysed as in Grenadier and Weiss (1997), or asymmetries can be

included to analyse proprietary duopoly as in Takashima et al. (2008). Finally, to determine the

robustness of the analytical and numerical results, it may be interesting to apply an alternative

stochastic process such as a mean reverting GBM as well as other utility functions, e.g., Epstein-Zin

utility or preferences in accordance with Prospect theory.
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APPENDIX

Compulsive Strategy

Follower

The expected utility from operating the second technology is given in (A–1)

Φf
2(E) = ΥU (ED2)− U (rI1) + U (rI2)

ρ
(A–1)

and the value function of the follower in state (1, 2) is indicated in (A–2).

F f1,2 (E) =

[U (ED2)− U (rI1)] dt+ (1− ρdt)EE
[
F f1,2(E + dE)

]
, E < εf1,2

Φf
2(E) , E ≥ εf1,2

(A–2)

By expanding the top branch on the right–hand side of (A–2) using Itô’s lemma, we obtain the

solution that is indicated in (A–3).

F f1,2(E) = ΥU (ED2)− U (rI1)

ρ
+Af1,2E

β1 + Cf1,2E
β2 (A–3)

Notice that β2 < 0 ⇒ Cf1,2E
β2 → ∞ as E → 0. Hence, we must have Cf1,2 = 0. The endogenous

constant, Af1,2, and the required investment threshold, εf1,2, are obtained via the value-matching

and smooth-pasting conditions. Thus, the value function in state (1, 2) is described in (14).

Next, by expanding the right-hand side of (15) using Itô’s lemma we obtain the differential

equation (A–4), where L = 1
2σ

2E2 d2

dE2 + µE d
dE denotes the differential generator. By solving

(A–4) for each expression of F f1,2(E) that is indicated in (14) yields (16).

[L − (ρ+ λ)] Φf
1(E) + λF f1,2(E) + U (D1E)− U (ρI1) = 0 (A–4)

Leader

In a state 2, the value function of the leader described in (18) will value match with the bottom

part of the leader’s value function (14), because for E ≥ εf1,2 the two firms will share the market.

Hence, Ap`2 is described in (A–5).

Ap`2 =

(
1

εf1,2

)β1
ΥU

(
εf1,2

) [
Dγ

2
−Dγ

2

]
(A–5)

By contrast, in state 1, Ap`
1

is obtained by value matching (22) with the top branch in (21) at εf0,1.

Hence, the endogenous constant Ap`1 is indicated in (A–6).

Ap`1 =

(
1

εf0,1

)β1 [
ΥU

(
εf0,1

) [
Dγ

1
−Dγ

1

]
+Ap`

1,2
εf

β1

0,1 +Ap`
1
εf

δ1

0,1

]
(A–6)

25



�

Corollary 1 There is a trade-off between the two technologies if
Dγ1
Iγ1

>
Dγ2

Iγ1 +Iγ2
.

Proof: Let ε denote the indifference point between the two projects, i.e., Φab
1 (ε) = Φab

2 (ε).

Φab
1 (ε) = Φab

2 (ε) ⇔ ΥU (D2ε)−
U(rI2) + U(rI1)

ρ
= ΥU (D1ε)−

U (rI1)

ρ

⇔ ε =

(
γU(rI2)

Υρ (Dγ
2 −D

γ
1 )

) 1
γ

(A–7)

A trade-off between the technologies requires that Φab
1 (ε) > 0.

Φab
1 (ε) > 0⇒ ΥU (D1ε)−

U (rI1)

ρ
> 0⇒ Dγ

1

Iγ1
>

Dγ
2

Iγ1 + Iγ2
(A–8)

�

Proposition 1 εp`
1,2

> εf0,1.

Proof: From Chronopoulos and Siddiqui (2014), we know that εf0,1 is described in (A–9).

εf0,1 =
rI1

D1

(
β2 − γ
β2

) 1
γ

(A–9)

Also, the expression for εp`
1,2

is indicated in in (A–10).

εp`
1,2

= rI2

 β2 − γ

β2

(
Dγ

2 −D
γ

1

)
 1
γ

(A–10)

Consequently:

εp`
1,2

> εf0,1 ⇔ rI2

(
β2 − γ
β2

) 1
γ

(
1

Dγ
2 −D

γ
1

) 1
γ

>
rI1
D

1

(
β2 − γ
β2

) 1
γ

⇔ Dγ
1
Iγ2 > Iγ

1

(
Dγ

2 −D
γ
1

)
(A–11)

Finally, we have
Dγ1
Iγ1

>
Dγ2

Iγ1 +Iγ2
, which is required in order to have trade-off between the first and the

second technology according to Corollary 1. �

Proposition 2 εp`
1,2

< εm1,2.

Proof: Based on the analytical expression of εp`
1,2

and εm1,2, we have:

εp`
1,2

= rI2

 β2 − γ

β2

(
Dγ

2 −D
γ

1

)
 1
γ

< rI2

 β2 − γ

β2

(
Dγ

2 −D
γ
1

)
 1
γ

= εm1,2 ⇔ D1 > D1 (A–12)

�
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Proposition 3 The proprietary leader’s required investment threshold for the first technology is

independent of λ.

Proof: We can alternatively express the first branch in (23) as in (A–13) to investigate the impact

of λ.

F p`0,1(E) = max
Ep`0,1>E

(
E

Ep`0,1

)β1
Φp`

1

(
Ep`0,1

)
(A–13)

The optimal investment rule is found by applying the first-order necessary conditions to (A–13)

with respect to Ep`0,1 and is outlined in (A–14), where the marginal benefit (MB) of delaying the

investment is equal to the marginal cost (MC).

γΥU
(
D1

)
εp`0,1

γ−1
+
β1U (rI1)

εp`0,1ρ
− β1A

p`
1 ε

p`
0,1

β1−1
= β1ΥU

(
D1

)
εp`0,1

γ−1
− β1A

p`
1 ε

p`
0,1

β1−1
(A–14)

The first term on the left-hand side reflects the extra benefit from allowing the project to start at a

higher price threshold and the second term is the increase in MB form postponing the investment

cost. Similarly, the first term on the right-hand side represent opportunity cost of forgone cash

flows. The endogenous constant Ap`1 is negative since it adjusts for the possible entry of a competi-

tor. Thus, the third and second term on the left- and right-hand side represent the MB of waiting

for a higher investment threshold, which is completely offset by the MC on the right-hand side,

since the leader enjoys less monopoly profits by waiting. These opposing forces cancel each other,

because the follower will enter before the second technology arrives. Consequently, the leader’s

investment threshold in the first technology does not impact her possible monopoly profits in the

second technology, and, thus, it is optimal for the leader to adopt a myopic investment strategy. �

Proposition 4 The optimal investment threshold of the non-proprietary leader for the first tech-

nology is εn`
1,2

= max
{
εf0,1, x

}
, where x satisfies the condition F f1,2 (x) = Φn`

2 (x).

Proof: Ideally, the leader would invest at the threshold that maximises her expected utility, i.e.,

εp`
1,2

. However, the threat of pre-emption lowers the adoption threshold to εn`
1,2

. Let x denote the

price threshold at which the a firm is indifferent between being the leader or the follower, i.e.,

F f1,2 (x) = Φn`
2 (x). Given that the follower adopts a compulsive strategy, there are two possible

scenarios: i. εf0,1 > x and ii. εf0,1 < x. In the former, the threat of pre-emption is eliminated,

however, in the latter the threat still exists. If εf0,1 > x, then the leader will invest at εf0,1, since

Fn`
1,2

(
εf0,1

)
> Fn`

1,2
(x). By contrast, if εf0,1 < x, then the leader will have to pre-empt the first

technology at x. Consequently, εn`
1,2

= max
{
εf0,1, x

}
. �
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