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Abstract

This thesis investigates whether information derived from AIS-data incorporates superior informa-

tion about future freight rates. Specifically, we assess if such data improve the ability to predict

TD3 spot rates between August 2015 and mid-February 2016. The ability to anticipate short-term

fluctuations in freight rates is a key component to long-term profitability for both shipowners and

charterers, making the purpose of this thesis an important objective.

The AIS-data contain information about 81,728 individual shipments of crude oil between 2013

and mid-February 2016, and are reduced to 53,116 observations after proper cleansing. For anal-

ysis purposes, information deemed relevant are converted into weekly time series, ending up with

162 observations in total. Data-driven selection tools are then used to identify the most powerful

predictors of future TD3 rates, and a multivariate VAR is specified in line with these results. In or-

der to investigate the relative performance of information derived from AIS-data, a one-step-ahead

forecast is conducted, and evaluated against an univariate ARMA and a multivariate VAR solely

based on publicly available data.

Our results suggest that multivariate models perform relatively better than univariate models to pre-

dict future freight rates. Further, comparing error measures from the two multivariate VAR models

specified, we find weak evidence in favour of using information from AIS-derived data for predic-

tive purposes.
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1 Introduction

In late 2004, the International Maritime Organization (IMO) adopted new regulations regarding

carriage requirements for all sea-borne traffic. These regulations required ships of 300 gross ton-

nage and upwards, and passenger ships irrespective of size, to carry an Automatic Identification

System (AIS). The AIS primary objective was to provide information on vessel whereabouts to

coastal authorities and other sea-borne traffic, and by doing so reduce the danger of collision (IMO,

2017). However, the advent of the global AIS, in combination with other data sources on the cargo

onboard, has also enabled maritime researchers to access disaggregated data on the sea-borne trans-

portation of commodities. Such data are more timely than traditional custom-based trade flows,1

and can potentially provide valuable information on the driving factors of freight rate formation.

As for all other free markets, the price for sea-borne transportation is determined by the interplay

between supply and demand. The general notion among maritime researchers is that the supply of

freight not only depends on the overall cargo capacity, but also on the operational efficiency of the

fleet. However, the latter is often assumed constant in the context of shipping market analysis, as

reliable data on these dynamics are not generally available as historical time series. Moving to the

demand dynamics of the market, both the volume of cargo being transported and the distance over

which the cargo are being moved affect the overall demand for freight. Hence, the true demand is

measured on a tonne-mile basis, multiplying the number of metric tonne shipped by the distance

you ship them. However, due to the lack of disaggeregated data on the sea-borne transportation of

commodities, maritime researchers often fail to properly account for the distance effect on demand.

The AIS-data are disaggregated to individual shipments and provide reliable information on sailing

distance and cargo size, which allows us to calculate tonne-mile with great accuracy. Further, in-

formation on vessel specifications and time spent at sea enable us to derive measures of operational

efficiency on a per shipment basis. Hence, by utilizing information derived from AIS-data in our

analysis, we aim to circumvent both of these shortcomings in the exiting literature.

1Customs-based trade flows is only provided at the monthly frequency, and usually with a time-lag of several
weeks, which makes such data less relevant for the purpose of this thesis.
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This thesis investigates whether information derived from AIS-data incorporates superior informa-

tion about future freight rates. Specifically, we assess whether such data improve the ability to

predict TD32 spot rates between August 2015 and mid-February 2016. We have examined this

hypothesis in the following way: First, we use data-driven selection tools to identify most powerful

predictors of future TD3 rates among a pool of potentially relevant variables. Second, we apply

standard time series techniques to our in-sample data to investigate whether any causal relation-

ships with respect to the TD3 rate are captured. Finally, we conduct a one-step-ahead forecast

from August 2015 to mid-February 2016, and we use standard evaluation measures to compare the

out-of-sample performance against a univariate ARMA and a multivariate VAR solely based on

publicly available data.

Freight rates are considered one of the most volatile commodities that exist, with weekly changes

all the way up to 47% between January 2013 and mid-February 2016. The volatile nature of freight

rates makes it difficult to forecast, but also highly rewarding if a good forecasting model were

found. Shipowners cash flow, as well as charterer’s costs, are to a large extent determined by fluc-

tuations in freight rates, which in turn makes reasonable anticipations of future freight rates a key

component to long-term profitability. Today, ships are typically fixed on a lump sum basis, paying

a fixed amount of money for a given period of time. This makes short-term forecasts of freight

rates primarily benefit shipowners in the decision of when to fix, or whether to fix a ship on a short

or long voyage, keeping in mind the alternative cost of not fixing.

The remainder of this thesis is structured as follows: Section 2 reviews relevant literature within

the field of freight rate formation and forecasting. In Section 3, we introduce the methodological

framework used to examine the predictive ability of information derived from AIS-data. Data

preparation and descriptive statistics are described in Section 4, while Section 5 contain results and

discussion of our analyses. Finally, a conclusion to sum up our findings, criticism to our findings

and suggestions to further research, are presented in Section 6.

2The TD3 rate is the benchmark price for VLCC laden trips between the Arabian Gulf and Japan, in which VLCC
refers to crude oil tankers ranging from 180-320 deadweight tonnage.
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2 Literature review

The price for sea-borne transportation is determined by the interplay between supply and demand,

where the freight rates realized in the market are mutually acceptable by both shipowners and char-

terers. Cheng et al. (2010) states that the main determinants of supply are the overall cargo capacity

and the operational efficiency of the fleet, in which Wergeland and Wijnolst (1996) find load factor,

sailing speed and waiting days per trip to constitute the most important elements of the latter. The

driving factors for demand are more ambiguous and directly derive from the market of the cargo

transported. For tanker services, the demand depends on the volume of crude transported, which in

turn is linked to the world economic activity and the overall consumption of oil products (Stopford,

2009). However, the demand also depends on the distance over which the cargo is transported: A

tonne of crude oil shipped from the Arabian Gulf to the US generates a higher demand for tanker

freight than the same tonne going to Europe. Hence, the true demand for tanker freight is measured

on a tonne-mile basis, multiplying the number of metric tonnes shipped by the distance you ship

them (Aadland et al., 2017).

As evident in Beenstock and Vergottis’ (1993) review of the early efforts to model the market for

shipping, there have been few attempts to model the demand side of the market. Tinbergen (1934)

investigates the sensitivity of freight rates to changes in supply and demand. He considers demand

to be perfectly inelastic with respect to freight rates, while supply to respond to freight rates with

shifts in the overall fleet capacity and the price of fuel. An increase in the overall cargo capacity

leads to a higher supply of freight, which in turn puts negative pressure on freight rates. Conversely,

an increase in the price of fuel forces more vessels into economical slow steaming and lay-up, lead-

ing to lower supply and higher freight rates. Koopmans (1939) further extends Tinbergen’s work

by investigating the behaviour of tanker freight rates under different market conditions. He finds

supply to be rather inelastic in periods with low freight rates, while in periods with high freight

rates the supply is almost perfectly elastic. However, he also problematizes the practical difficulties

in modelling the demand side of the market: ”a quantitative analysis of the demand factors of the

tanker freight market is a task which far surpasses the limits imposed by practical considerations...”.
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Moving to more recent literature on the determinants of Arabian Gulf tanker rates, Tham (2008)

utilizes Bayesian selection methods to identify the leading indicators of TD3 rates. He finds refin-

ing margin in Asia, crude oil production in the Middle East, vessel utilization rate and Brent/Dubai

spread the most significant drivers of TD3 front month swaps. Assmann et al. (2016) argues on sim-

ilar grounds, using data-driven selection tools to select the most powerful predictors of spot TD3

rates. In addition to refining margins in Asia and crude oil production in The Arabian Gulf (AG),

they find gasoline price in Singapore, West/East differences in gasoline price, VLCC available spot

in AG, and VLCC future deliveries useful to predict TD3 spot rates. However, they emphasize

there are several drawbacks to the research, with one being to not properly account for variation in

operational efficiency over time. Aadland et al. (2017) investigate the reliability of AIS-based trade

volumes, in which they find reasonable alignment with official customs-based export numbers. As

a concluding part of the article, they also argue on the implications of such data in modelling ship-

ping markets. First, they note that tonne-mile for individual shipments are observed within the data

set, which provide valuable insight into the demand dynamics in the market. Second, information

on sailing speed and load factor allows maritime researchers to incorporate variation in operational

efficiency.

An academic review by Kavussanos and Visvikis (2006) reveals that the majority of the existing

literature on freight rate forecasting is concerned with the relationship between tradable forward

contracts and future spot rates. Such studies find theoretical support in the unbiassedness hypothe-

sis, in which forward rates are expected to be an unbiased predictor of future spot rates in markets

for non-storable commodities.3 Kavussanos and Nomikos (1999) use a Vector Error Correction

Model (VECM) to investigate the lead-lag relationship between spot rates and the former BIFFEX

futures contracts. They find VECM to perform relatively better than univariate ARIMA and random

walk in forecasting spot freight rates, which indicate that such contracts fulfill their unbiased role.

Batchelor et al. (2007) argue on similar grounds, investigating whether Forward Freight Agree-

ments (FFA) contracts contain information about future spot rates. In line with previous research,

they also find evidence in favour of the unbiassedness hypothesis. However, in forecasting the price

for tradeable forward contracts, neither of the two studies have found a model that are able to beat
3The unbiassedness hypothesis only holds if the market is speculatively efficient.
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the random walk. As become evident, only limited attention has been paid to examine the fore-

casting performance of publicly available data on market fundamentals. One such study is covered

in Assmann et al. (2016), where the aim is to evaluate if variables chosen based on fundamental

reasoning add value to produce good forecasts. However, they find univariate models perform rel-

atively better than multivariate models based on publicly available data. Hence, they have not been

able to identify any group of past or currently available data that incorporate superior information

about the future. As a concluding part of the article, they emphasize that further further research

could include a longer data set or possibly the more recently available AIS-data.

To our knowledge, there has been no attempt in using information derived from the AIS-data for

an analysis of freight rate formation. In addition, the above review highlights considerable gaps in

the existing literature that such data could potentially fill. Accurate estimates of tonne-mile provide

better insight into the demand dynamics of the market, while data on sailing speed and load factor

allow maritime researchers to incorporate variation in operational efficiency. Thus, the contribution

of our thesis to the existing literature is twofold: First, we conduct a more detailed analysis within

the field of freight rate formation, by properly accounting for the distance effect on demand and the

variation in operational efficiency over time. Second, we assess the applicability of such data in the

context of freight rate prediction, keeping in mind that such data have not been used before.
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3 Methodology

3.1 Freight rate determinants

Table 1 presents all the variables we have considered in our analysis of the predictive ability of

information derived from AIS-data. The table also includes the variables’ expected impact,4 the unit

of measurement,5 and, for comparison, whether the variables are found useful to predict TD3 rates

in either Tham (2008) or Assmann et al. (2016). Descriptions of how the variables are constructed,

and the rationale behind each variable, are further elaborated on in Section 3.1.1, Section 3.1.2, and

Section 3.1.3.

Table 1: List of variables
Variables Exp.sign Unit Assmann et al. (2016) Tham (2008)
Dependent variable
TD3 rate $/tonne

Tonne-mile demand
AG VLCC + tm MMM
AG other + tm MMM
global VLCC + tm MMM
global other + tm MMM

Operational efficiency
fleet speed − knots
voyage speed ? knots
load factor − %

Publicly available data
mideast production + $/bbl MM x x
VLCC fleetchange − $/bbl MM x
spot VLCC − dwt M x
gasoil sing ? $/bbl x
diff ussing + $/bbl x
refinery margin + $/bbl x x
Brent/Dubai spread + $/bbl x

4The impact of (gasoil sing) and (voyage speed) on TD3 rates are not obvious.
5Each M indicates 1,000.
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3.1.1 Publicly available data

Variables selected from publicly available data are largely based on findings in Tham (2008) and

Assmann et al. (2016), and aim to capture dynamics discussed in existing literature on freight rate

formation. The supply of tanker freight depends on the overall cargo capacity and the operational

efficiency of the fleet, in which data on operational efficiency are not generally available as histori-

cal time series. However, historical data on VLCC fleet development are accessible from Clarkson

Research (2017) and will in our analysis serve as a proxy for the global supply of tanker freight

(VLCC fleetchange). Local supply dynamics more specifically related to the TD3 route are ap-

proximated by VLCC tonnage available for chartering in AG (spot VLCC) and, similarly to global

supply, will be expected to ceteris paribus have a negative impact on the TD3 rate.

The demand for tanker services is derived by the volume of crude oil transported, which in turn

is linked to world economic activity and the overall consumption of oil products. With refineries

as the only conventional buyer of crude oil, the volume of crude oil transported closely relates to

refinery profitability: In periods with high refinery margins, we expect refineries to be in demand

of more crude oil, which in turn increases the demand on tanker transportation and put upwards

pressure on freight rates. In order to account for these dynamics, we have approximated refinery

margins in Asia as the difference between the retail gasoline price in Singapore and the price for

Dubai crude oil (refinery margin),6 in which both data series are obtained from Bloomberg Pro-

fessional Services (2017). Despite crude oil not being a homogeneous commodity, there might be

considerable cross demand between the different crude oil types. Hence, we expect the demand for

tanker transportation in AG to increase when the price for Dubai crude oil gets relatively cheaper.

To capture this effect, we have constructed a variable on the price difference between Brent crude

oil and Dubai crude oil (brentdubai spread), in which we expect a relatively lower price for Dubai

crude oil to push the TD3 rate upwards.

Local demand for tanker transportation will naturally also be highly affected by the amount of

crude oil available for trading in a particular region. Hence, we have gathered data on the average

6Refinery margins are the difference between the price of crude oil and the petroleum products extracted from it,
and they will typically vary across different crude oil types and refinery configurations.
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production volume of crude oil in the Middle-East (mideast production)7 to capture demand dy-

namics specifically related to AG. Initially, we would also expect retail gasoline price in Singapore

(gasoil sing) to capture demand dynamics related to the TD3 rate, as the price of such product

would reflect the overall demand for crude oil in South-east Asia. However, in the early literature,

gasoline price has also been used as a proxy for supply, contemplating that a rise in the gasoline

price would increase the operational costs of shipowners, which in turn forces more vessels into

slow steaming or lay-up (Tinbergen, 1934). Accodingly, the relationship between the price of retail

gasoline in Singapore and the TD3 rate is not obvious.

3.1.2 Tonne-mile demand

In order to properly account for the distance effect on demand, we calculate tanker demand on a

tonne-mile basis. As underlined in Aadland et al. (2017), the main advantage of using AIS-data in

the context of shipping market analysis is that such data allows for accurate estimates of tonne-mile

on a per shipment basis. However, for an analysis of the formation of freight rates, tonne-mile is

only relevant on a more aggregate level. With no prior guidance on how to aggregate tonne-mile

that capture demand dynamics specifically related to the TD3 rate, we have to consider the follow-

ing: First, whether to separate tonne-mile based on the origin of the shipment and target distinctive

regions, countries or routes, contemplating that there could be significant differences in local and

global demand dynamics. Second, how to properly account for potential cross demand between

different tanker types, keeping in mind that subsegments within the tanker market are not com-

pletely isolated from each other (Stopford, 2009).

As the TD3 route refers to VLCC laden trips between AG and Japan, we would expect the TD3

rate to be more sensitive to tonne-mile arising in AG than in other parts of the world. Hence, we

approximate the local demand for VLCC vessels as the aggregated sum of tonne-mile originating

in AG (AG VLCC). However, Babri et al. (2017) suggest that only a fraction of international trade

flows need to be subject to choice, as a large number of shipments are based long-term contracts

or trading habits. Hence, in periods when vessels on long-term contracts in AG fail to meet the

7The data are gathered from Clarkson Research (2016) and measured in barrels per day (bpd).
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local demand for tanker transportation, an increase in global tonne-mile would make it harder to

get capacity elsewhere. This will essentially increase the demand for tanker freight in AG, and put

upwards pressure on the TD3 rate. We have for this reason also included a variable on the aggre-

gated sum of tonne-mile originating in other parts of the world (global VLCC).

The theory of economies-of-scale suggest that the marginal cost for transporting one barrel of crude

oil always should be lower for a VLCC compared to a Suezmax, given that both vessels are fully

loaded. Thus, charterers with sufficient amount of barrels to fill a VLCC should always prefer to

fix one VLCC instead of the similar capacity of two Suezmax vessels. Keeping in mind that it

takes several years from ordering a new VLCC until it is available in the market, we would expect

substantial cross demand between different subsegments in periods with undercapacity.8 Hence,

we reckon an increase in the price for VLCC freight with positive shifts in the demand for vessel

types other than VLCC. In order to account for this, we include variables on the aggregated sum

of tonne-mile from vessel types other than VLCC, both originating in AG (AG other) and in other

parts of the world (global other).

3.1.3 Operational efficiency

In line with Wergeland and Wijnolst’s (1996) notion of the most important elements of operational

efficiency, we have taken sailing speed and load factor into consideration. Average sailing speed

for the overall VLCC fleet (fleet speed) is extracted from a more complex dataset and provided

by Vit Prochazka, while load factor on a per shipment basis (load factor) can be directly derived

from the AIS-data. Ideally, we would also have a measure for waiting time per trip, but this is nei-

ther observable in the AIS-data nor is it possible to derive an adequate proxy from the information

provided. We only consider measures of operational efficiency in relation to VLCC shipments, as

this is what we a priori would expect to be most relevant to the TD3 rate. Neither would it make

sense to consider efficiency measures across vessel segments, as distinct technical specifications

and trade routes makes them differ by nature.

8Except from the differences in size, the different tanker types essentially offer the same product, and it will for
this reason be competition among the subsegments in the tanker market.
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Sailing speed is generally decided upon through optimization, unless otherwise specified in the con-

tract. In theory, there exists a positive relationship between vessel speed and freight rates: When

freight rates are low, charterers reduce sailing speed to trim operating expenses related to fuel con-

sumption. Conversely, when freight rates are high, the alternative cost of time exceeds the gains

from fuel optimization, which in turn promotes a higher sailing speed (Ronen, 1982). Following

this argument, freight rates seems to lead changes in speed, not the other way around. However,

when all available tonnage is in use, the short-term supply can only be altered by higher speed

and more efficient operation (Cheng et al., 2010). Hence, we would expect an increase in average

sailing speed for the overall VLCC fleet (fleet speed) to give rise to more supply, leading to higher

competition among VLCC vessels and lower TD3 rates.

Even though sailing speed is not directly observable in the AIS-derived data, we utilize information

on time spent at sea and the distance between port pairs to derive the implied speed for each ship-

ment (voyage speed). Due to waiting time in port and time spent on loading or discharge, hours

laden9 will be excessively high relative to the actual time spent in open waters, which essentially

will lower the implied speed calculation. Thus, we might argue the implied speed calculation (see

Equation 1) to simultaneously pick up variation in sailing speed and waiting time without being

able to separate the two effects. While an increase in sailing speed would increase the supply of

tanker freight, the effect of more waiting time per shipment would be the opposite, leading to con-

flicting expectations on the possible impact of this variable on TD3 rates.

V oyage speed =

(
Distance

Hours laden

)
(1)

Equation 2 shows how we have derived the load factor (load factor) for individual shipments. The

maximum cargo capacity for a VLCC vessel is approximately 2.1 million barrels, while cargo in-

take can be directly observed in the AIS-derived data. It is worth mentioning that each observation

in the AIS-data pertains to a shipment from a single loading terminal to a single discharge terminal,

9Hours laden = (Discharge date − Load date)× 24
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leading to a cargo size that is significantly below maximum cargo capacity for a tanker visiting

more than one loading/discharge terminal before reaching its final destination. In order to account

for this nuance, we have sorted our dataset such that multiple shipments are merged to a single

observation, with the cargo size being the aggregated sum of the observations involved.10

Load factor =

(
Cargo intake

Cargo capacity

)
(2)

The rationale for including load factor is closely tied to the theory of economies-of-scale, in which

we expect an inverse relationship between load factor and freight rates: When the tonnage of cargo

transported increases, the marginal cost of transporting one extra unit of crude oil is expected to

decrease, lowering the freight rate on a USD/tonne basis (Adland et al., 2016). On a more aggregate

level, it can also be argued that that a higher average load factor for the overall fleet will increase

the available supply of transportation, which in turn puts negative pressure on TD3 rates.

10This is further elaborated on in Section 6.2 on data preparation.
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3.2 Subset selection method

3.2.1 Variable selection

Having identified a considerable number of variables that we believe to capture dynamics related

to the formation of TD3 rates (see Table 1), we apply a subset11 selection method to narrow down

a reasonable set of predictors. As we want to investigate the ability to predict future TD3 rates,

we are not interested in variables that exclusively respond to current events. Hence, all variables

are included in lagged form, which allows us to identify the combination of variables that best

incorporate feedback about future TD3 rates. The subset selection method we apply to our data

is based on the leaps-and-bounds algorithm by Furnival and Wilson (1974), which returns the best

subsets based on linear regression in accordance with some prespecified selection criteria. For

the purpose of this thesis, we have chosen to base the variable selection on R2 adjusted, Akaike’s

Corrected Information Criterion (AICC) and Mallow’s Cp, in which the optimal subset would have

the following characteristics: The highest value of R2 adjusted, the smallest value of AICC , and

a value of Cp that is close to the number of predictors +1, or the smallest Mallow’s Cp relative to

other variable combination. The three different selection criterion considered are defined by:

R2adj = 1− n− 1

n− k − 1

RSS

SST
(3)

AICC = AIC +
2k(k + 1)

n− k − 1
(4)

Cp = (n−m− 1)
RSS

RSSFULL

− (n− 2p) (5)

where RSS stands for Residual Sum of Squares and the RSSFULL refer to the residual sum of

squares in a model containing all predictors considered. For each predictor size k, the best model

under each selection criteria is the model that minimizes the RSS. For the same predictor size all

other terms are constant, which allows us to identify the combination of variables that obtain the

smallest RSS.

11A subset will in this context be understood to as a specific combination of variables.
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In order to investigate the relative performance of AIS-derived data, we apply the subset selection

method on two different pools of variables: The first pool of variables contains the full amount

of variables considered, while the the second is restricted to only include variables from publicly

available data. Because the leaps-and-bounds method is based on a linear regression, we find it

useful to run an OLS on the best subset from each pool. This also allow us to investigate whether

the impact of each variable considered is in line with our a priori expectations. The OLS results

are estimated on a linear model of the form:

Y = α + β1X1 + β2X2 . . . βnXn (6)

where Y is the response variable, which in this case is the TD3 freight rate. The coefficient (βn)

can be interpreted as the change in freight rate from a one unit increase in Xn, holding all other

independent variables constant. The alpha (α) corresponds to the intercept, indicating the value of

the response variable when all Xn = 0.

3.2.2 Unit root test

As the variable selection method is based on a linear regression, we have to test for possible unit

root behaviour in the data. Running the Furnival and Wilson (1974) algorithm on non-stationary

variables could result in spurious subset selection results, in which the algorithm interpret rela-

tionships among the variables as causal, even though they only exists at random. Investigating

results from the Augemented Dickey-Fuller test reported in Appendix A, we find the following

three variables to be non-stationary: mideast production, refinery margin and gasoil sing. Hence,

the above-mentioned variables is only considered in first-difference, as test statistics suggests all

three variables to be first-difference stationary.
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3.3 Forecasting models

3.3.1 VAR model

In order to predict future TD3 rates, we have applied variables from each subset to a Vector Au-

toregressive (VAR) model. The VAR fits a multivariate time series regression of each dependent

variable on lags of itself and lags of all the other variables (Zivot and Wang, 2006). It often pro-

vides superior forecasting performance to those from univariate models and has proven useful for

describing the dynamic behaviour among time series. After running the VAR model, we perform

diagnostic tests to determine whether our estimates are reliable. We conduct a stability test for the

model, look for autocorrelation among the residuals and perform a Jarque-Bera test. This allows

us to control for stability and normally distributed residuals in the model. The basic p-lag vector

autoregressive (VAR(p)) has the form

Yt = A1Yt−1 + A2Yt−2 + ...+ ApYp−t + υt (7)

where Ai are (K ∗ K) coefficient matrices for i = 1, .., p and υt is an (K ∗ 1) unobservable zero

mean white noise process, also called the error term.

Furthermore, we will apply a Granger causality test to investigate whether causal relationships with

respect to the TD3 rate are captured by any of the variables included. A variable x is said to cause

y if past values of x help predict the current level of y, given all other appropriate information

(Granger, 1969). If we find that y in fact causes x, then it is unlikely that information on x would

help predict the freight rate, given the past history of y. In a classical philosophical sense, Granger

causality is not identical to causation, but the likelihood for such an event to occur is demonstrated

in this test. The test requires estimating the following two equations, where m is the number of

lags, while ε and η are considered to be two uncorrelated white noise series (error terms):
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yt =
m∑
j=1

ajXt−j +
m∑
j=1

bjYt−j + εt (8)

xt =
m∑
j=1

cjXt−j +
m∑
j=1

djYt−j + ηt (9)

3.3.2 ARIMA model

When the variable we wish to forecast is the only variable, i.e. when Yt is scalar, the VAR model is

reduced to AR(p). Including the integrated order (I(d)) and the moving average term (MA(q)), we

build an ARIMA model of order p, d, q. The AR-term(p) accounts for the autoregressive order in the

time series, d is considered if the time-series exhibits unit root behaviour and q is meant to capture

the effect of autocorrelation in the variable Yt. Given a dependent time series (Yt : 1 ≤ t ≤ n), the

ARIMA model is expressed as

Yt = c+ φ1Yt−1 + . . .+ φpYt−p + θ1et−1 + . . .+ θpet−p + et (10)

where Yt is the TD3 rate explained in time t and c is the constant/intercept. The coefficients for

each autoregressive parameter (p) and the number of errors (q) caused by lagged predicting, are

explained by φ and θ, respectively.

The process of constructing an ARIMA starts by model identification, i.e. select the order of p, d

and q that best fit the time series at hand. We find our univariate model to be autoregressive of order

one, while the moving average term has a order of five. A stationary TD3 rate causes an integrated

order of zero, and consequently the general ARIMA collapses into an ARMA model.12 Further,

we run diagnostic tests to determine whether the model is stable or not, and postestimation results

show that the ARMA model both satisfy the stability condition and the invertibility condition.

12The procedure is similar to the Box-Jenkins approach (Box and Jenkins, 1968).
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3.3.3 Evaluation of models

For evaluation purposes, we split our data into a training set (in-sample) and an evaluation set (out-

of-sample). The multivariate VAR models are based on the in-sample data, whereas the evaluation

is done by comparing the errors of the forecasts against the out-of-sample TD3 rate. Using the

in-sample data, we estimate a one-step-ahead forecast throughout the evaluation period, stretching

from August 2015 to mid-February 2016. The difference between the one-step-ahead forecast and

the first evaluation set observation is seen as the forecasting error. For the next step ahead, the

training set is extended with the first observation in the evaluation set and a new forecast is made.

A new forecasting error is displayed, and the training set is once again augmented with the second

observation in the evaluation set.

In order to examine the relative performance of the multivariate VAR models, forecast errors for a

univariate ARMA are included as a benchmark. Performances are compared using the following

error measures: Mean Absolute Percentage Error (MAPE), Mean Absolute Error (MAE) and Root

Mean Square Error (RMSE). Even though there is no consensus on the most appropriate error mea-

sures, these three are widely used to assess the performance of forecasting techniques (Zhang and

Hu, 1998). Their mathematical expressions are as follows:

MAPE =

(
1

n

n∑
t=1

Actual − Forecast
|Actual|

)
∗ 100 (11)

MAE =
1

n

n∑
t=1

|Actual − Forecast| (12)

RMSE =

√
1

n

∑
(Actual − Forecast)2 (13)
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4 Data

4.1 Data preparation

The AIS-data are provided by Clipper Data Ltd. (2016) and contain information about 81,728 in-

dividual shipments of crude oil between January 2013 and mid-February 2016, and results from

a combination of AIS-tracking of individual vessels and information on cargo size from lineup

reports. After proper cleansing and necessary adjustments to the dataset, we end up with 53,116

observations in total. Information within the AIS-data deemed relevant is further converted into

162 weekly time series, with variables on operational efficiency as the weekly average of com-

mencing shipments, and tonne-mile as the weekly sum that arises during the week. All other time

series considered are either collected from Clarksons Research (2017) or Bloomberg Professional

Services (2017). In order to maintain consistency throughout the paper, all time series considered

are stated in a weekly number. If we were to use monthly, quarterly or semi-annual time series in

our analysis, the number of observations would become very low due to the relatively short time

span of the AIS-data. Hence, we have deemed an analysis of weekly time series most appropriate

for the data at hand.

Each observation in the AIS-derived data pertains to a shipment from a single loading terminal to

a single discharge terminal. Hence, if one of the tankers in question visits more than one load-

ing/discharge terminal before reaching its final destination, this will be accounted for as multiple

shipments in the AIS-data. This nuance is consequential for the purpose of this thesis in two ways:

First, the average shipment size will appear to be substantially below the average capacity of the

tanker, which in turn would bias our estimates of load factor. Second, estimates of tonne-mile will

be artificially high as the distance effect on demand are factored in more than one time.

Accounting for this nuance, we have sorted our data in the following way: If a specific vessel visits

more than one loading terminal on the same day, the cargo size from each loading terminal are

aggregated to one observation, with the longest distance remaining. Similarly, if a specific vessel

visits more than one discharge terminal on the same day, the cargo size from each discharge ter-
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minal is aggregated to one observation, with the longest distance remaining.13 We are aware that

this might not adequately solve the problem, but as we can see from Table 2 the variable on load

factor averages to 86% with a standard deviation of 3.55%, which is similar to what is found in

Thomassen and Oestensen (2016). In addition, Wergeland and Wijnolst (1996) suggests that the

overall load factor hardly ever will be higher than 95%, in which the highest observed load factor

in our data is 95.5%.

To our knowledge, there exists no weekly data on VLCC fleet development (VLCC fleetchange)

and Middle East crude oil production (mideast production). Hence, we have used a cubic spline

interpolation to create weekly estimates between the known monthly data points (Anacleto et al.,

2013). We are aware that the cubic spline interpolated variables will introduce a systematic source

of autocorrelation in their respective time series. However, with the overall cargo capacity being

the most important determinant of freight supply, and the fact that 82% of all crude oil imported

to Japan is shipped from the Middle East, we find it necessary to include both variables as part of

our analysis. To further substantiate our decision to include these variables, both Assmann et al.

(2016) and Tham (2008) find VLCC fleet development and Middle East crude oil production useful

to predict TD3 rates.

13The first sorting reduce the number of observations with 20,935, while the second sorting reduce the number
observations with 7,677, leading to 53,116 observations in total.
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4.2 Data description

Table 2 summarizes the descriptive statistics14 for all variables considered, categorized by the de-

pendent variable, tonne-mile demand, operational efficiency and publicly available data. In addi-

tion, we have included a correlation matrix between the variables, presented in Appendix B.15

Table 2: Descriptive statistics

Variables Unit obs mean Std. Dev. Min Max

Dependent variable
TD3 rate $/tonne 162 14.05 3.82 8.01 24.26

Tonne-mile demand
AG VLCC tm MMM 162 71.95 9.11 47.33 101.23
AG other tm MMM 162 9.24 2.53 3.31 17.04
global VLCC tm MMM 162 30.77 7.12 12.68 49.83
global other tm MMM 162 40.40 4.11 30.47 50.13

Operational efficiency
fleet speed knot 162 12.43 0.26 11.86 14.03
voyage speed knot 162 9.40 0.37 7.57 10.31
load factor %*100 162 86.21 3.55 71.12 95.55

Publicly available data
mideast production bpd MM 162 30.79 0.82 29.46 32.70
VLCC fleetchange dwt MM 162 0.08 0.15 -0.24 0.56
spot VLCC dwt M 162 1,234.46 1,021.33 0 4,922
gasoil sing $/bbl 162 94.05 26.48 37.17 132.31
diff ussing $/bbl 162 43.33 5.12 28.99 56.53
refinery margin $/bbl 162 12.03 4.05 1.86 21.55
Brent/Dubai spread $/bbl 162 2.33 1.86 -3.73 8.71

Source: Authors’ calculations.

14Each M indicates 1,000.
15All calculations are performed using the statistical software STATA.
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The dependent variable (TD3 rate) indicates the cost of shipping one metric tonne and is found by

using the following formula: USD/mt = (WS
100

) ∗ FlatRate, where the annual flat rates are pro-

vided by the Worldscale Association (Worldscale, 2017) and fixtures reported in worldscale (WS)

gathered from Clarksons Research (2017). The freight rate incurs high variation in the period be-

tween year-end 2012 and mid-February 2016, fluctuating between a minimum of 8.01 USD/tonne

and a maximum of 24.26 USD/tonne.

VLCCs are handling two-thirds of the tonne-mile demand within the period, with a standard devi-

ation of 12.41 billion tonne-miles. VLCCs within AG has a mean of 71.95, occupying 47.22% of

the total demand, but only 32.43% total metric tonne is exported (see Figure 1). Long haul routes

are usually more present from AG than most other parts of the world, hence the different fractions

of metric tonnes and tonne-miles in regards to the total amount. From the correlation matrix in Ap-

pendix B, both AG VLCC and global VLCC have a negative correlation with their respective other

variables. Even though correlation give no indication of causality, the negative relationship could

indicate cross demand relationships, where some would prefer chartering two suezmaxes rather

than one VLCC and vice versa.

Figure 1: Total tonne-mile and metric tonne

Source: Authors’ calculations
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We notice from the variables regarding operational efficiency, a significant difference in speed,

where voyage speed averages 9.4 knots and fleet speed centres around 12.43 knots. In Section

3.1.3 we argue that implied speed can pick up some of the waiting days exposed to a shipment,

which in this case is illustrated in the difference of 3 knots. Both variables have an opposite corre-

lation in regards to the freight rate, and we cannot know whether an increase in potential waiting

days causes the rate to decline or if an increase in the freight rate force the ships to be more effi-

cient. Further, load factor seems stable during the period, averaging 86% utilization of the ships’

capacity. Having a negative correlated load factor indicates the marginal cost of transporting òne

extra unit of crude is expected to decrease when the cost of freight increases.

Statistics from publicly available data show a positive mean in VLCC fleetchange, weekly increas-

ing with an average of 80,000 DWT during the period. From VLCC spot in AG there seems to be

an average of 5 VLCCs available for chartering, assuming a VLCC of 250,000 DWT. Moreover,

the cost of gasoline in Singapore is highly negatively correlated with the dependent variable, and

because lower oil prices have a positive impact on global trades, it consequently impacts trans-

portation.
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5 Empirical results

5.1 Subset selection results

Furnival and Wilson’s (1993) leaps-and-bonds algorithm suggests the following two linear regres-

sion models of lagged variables to best incorporate feedback about future TD3 spot rates.16 As

shown in Table 3, model (2a) is based on the full amount of variables considered, while model (2b)

is restricted to only include variables from publicly available data.

Table 3: Linear regression results
(2a) (2b)

TD3 rate TD3 rate

L1spot VLCC
-0.00140***
(-6.55) L1spot VLCC

-0.0015***
(-5.20)

L2global other
0.1620***
(3.89) L3∆mideast production

7.039**
(3.44)

L2global VLCC
0.0878**
(3.21) L3VLCC fleetchange

-11.193*
(-1.83)

L3global VLCC
0.0889**
(2.91) L3spot VLCC

-0.0004*
(-1.91)

L1load factor
-0.1624**
(-3.27 L1diff ussing

-0.1127
(-1.66)

L1AG VLCC
0.0330
(1.60) L2∆gasoil sing

-0.4005***
(-3.61)

L1global other
0.0896*
(1.96) L2BD spread

-0.6153***
(-3.91)

L3spot VLCC
-0.0005**
(-2.37) L2VLCC fleetchange

5.8165
(1.13)

L1global VLCC
0.0833**
(3.00) L2∆refinery margin

0.303**
(2.19)

L3voyage speed
-0.9889
(-1.65) cons

22.414***
(7.53)

L3load factor
-0.1395**
(-2.68)

L1fleet speed
-2.0816**
(-2.45)

L3VLCC fleetchange
-3.4237**
(-2.54)

cons
56.7377***
(4.00)

R2-adj. 0.62 R2-adj. 0.42
AICC 586.39 AICC 636.55
Mallow’s Cp 3.67 Mallow’s Cp 7.56

*** p<0.01, ** p<0.05, * p<0.1
Source: Authors’ calculations

16Both linear regression models are estimated with heteroskedasticity-consistent standard errors.
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Comparing the realized values of AICC , Mallow’s Cp and R2-adjusted for the two models in ques-

tion, we find model (2a) to perform relatively better than model (2b) in our in-sample period. With

higher explanatory power of future TD3 rates and better in-sample fit, the model based on the full

amount of variables considered performs better along all relevant criteria. Under the assumption

that a good representation of the past leads to reasonable anticipations of the future,17 a combina-

tion of variables on tonne-mile demand, operational efficiency and publicly available data exhibits

most promise in an out-of-sample forecast. Investigating more extensive subset selection results

reported in Appendix C, we observe that the relative improvement for each quantity of predictors

is reduced when more variables are included. This suggests that the most powerful predictors is

selected first and the more inferior later. To emphasize the relative importance of each predictor,

the variables in Table 3 is presented in the same order as they were selected by the subset selection

method, in which both models suggests L1spot VLCC to be the most powerful predictor. Because

many of the models are similar in fit, we do not lose or gain much explanatory power choosing

one or another. For this reason, we make an arbitrary choice among them, and choose the most

desirable value of AICC and Mallow’s Cp, keeping in mind that the optimal R2-adjusted includes

slightly more predictors.

Investigating the variables assigned to each of the two models, we only find VLCC available spot

in AG and the weekly change in overall VLCC capacity present in both models. Our estimates of

one week lagged spot VLCC are significant on a 99% level, and suggest that one additional VLCC

available for chartering in AG reduces prevailing TD3 rates with approximately 0.35 USD/tonne.18

Three week lagged change in the overall VLCC capacity is significant on a 95% level, which sug-

gests that sudden changes to the global supply of VLCC vessels first are fully reflected in the TD3

rate 3 weeks into the future. However, the impact of changes to the fleet is significantly different

across the two models, indicating a reduction of 0.86 USD/tonne and 2.79 USD/tonne respectively,

for each additional vessel added to the fleet.

17A good in-sample fit does not necessarily lead to a good forecast, and vice-versa: An overfit model will typically
have very small in-sample errors, but be terrible at forecasting.

18−0.00140 ∗ 250 = 0.35 USD/tonne, assuming a VLCC of 250,000 DWT.
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Except for tonne-mile originating in AG from vessels types other than VLCC, all tonne-mile vari-

ables are included in model (2a). Estimates of VLCC tonne-mile originating from other regions

than AG are significant on all three lags, having an impact of similar magnitude on prevailing TD3

rates. Further, we notice that VLCC tonne-mile originating in AG fail to significantly incorporate

feedback about about future TD3 rates, which is in contrast to our a priori expectations. This might

suggest that the large amount of vessels stationed in AG on long-term contracts makes the TD3 rate

more sensitive to VLCC tonne-mile originating in other parts of the world. With estimates for the

variable on tonne-mile from vessel types other than VLCC being significant on 99% level, there

also seems to be substantial cross demand between subsegements in the tanker market. All vari-

ables on operational efficiency are also represented in model (2a), with one week lagged load factor

and one week lagged fleet speed being significantly able to explain future TD3 rates. In line with

a priori expectations, an increase in average sailing speed by one knot reduce TD3 rates with 2.1

USD/tonne, while increasing the average load factor with one percentage point reduce the freight

rate in question with 0.162 USD/tonne.

In model (2b), both Brent-Dubai spread and weekly changes in Singapore gasoline prices are sig-

nificant on a 99% level. Estimates of Brent-Dubai spread suggests a reduction in the TD3 rate when

the price for AG crude oil gets relatively cheaper. This is not in line with our a priori expectations

and might indicate that the cross demand between the two crude oil types is not strong enough to

have a visual impact on the freight rate. Estimates of weekly changes in Singapore gasoline price

suggests that such dynamics are more related to the supply of freight than the demand, which is in

line with findings in Tinbergen (1934). Estimates of Middle East crude oil production and weekly

changes in refinery margins are both significant on a 95% level, and exhibits a positive relationship

with respect to TD3 rates.
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5.2 VAR results

Having identified the variables that best incorporate feedback about future TD3 rates, we want to

specify our two VAR models based on these variables. Keeping in mind that we only have 132

observations in our in-sample data, we have to carefully consider whether it would be sensible to

include all variables suggested: linear regression (2a) suggest 8 different variables,19 with a max-

imum lag length of 3, to best incorporate feedback about future TD3 rates. If we were to specify

a VAR model based on these variables, the model would be required to calculate 25220 estimates

in total, which far exceeds the number of observations in our in-sample data. Similarly, linear

regression (2b) suggests 7 different variables, with a maximum lag length of 3, which in a VAR

model would equal 154 estimates. Hence, including all variables suggested by Furnival and Wil-

son’s (1993) leaps-and-bonds algorithm would in both cases lead to negative degrees of freedom,

which in turn would penalize the accuracy of the VAR estimates and impair the predictive ability

of the two models. (Baltagi, 2008).

Following this argument, we have specified our two VAR models in the following way: For each

of the two VAR models we include the 6 most powerful predictors of TD3 rates (see Table 3), and

for the number of estimates to not exceed the number of observations in our in-sample data, the

maximum lag order is set to 3. Further, we use lag-order selection statistics to identify the most

appropriate lag-length for each of the two models, in which both Akaike’s Information Criterion

(AIC) and Bayesian information criterion (BIC) suggest 2 lags. The model based on the full amount

of variables considered will now be referred to as the preferred VAR, while the one solely based

on publicly available data will be the restricted VAR. Postestimation results (see Appendix D) for

our preferred VAR model indicate the model estimates satisfy the stability condition, and there

are no signs of autocorrelation in the residuals for either of the two lag-orders. However, due to

severe kurtosis in the disturbance term, the model fails to satisfy the Jarque-Bera test of normally

distributed residuals. Turning to the restricted VAR, neither the Jarque-Bera test are satisfied, nor

can we reject the possibility of autocorrelation in the error term.

19The total number of variables selected by the subset selection method is 13, but as each variable are included with
more than one lag-order some of the variables appear more than once.

20Each matrix of coefficients for a given lag length is 8 ∗ 8 = 64, and the vector of constant has 8 elements, so a
total of 64 ∗ 3 + 8 = 252 estimates are calculated.
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In order to determine if our preferred VAR model or the restricted VAR can be used for predictive

purposes, we investigate whether causal relationships with respect to the TD3 rate are captured by

any of the variables included. Table 4 below presents the variables selected to each of the two VAR

models and postestimation results from a Granger causality test.

Table 4: Granger causality test
Preferred VAR Prob > chi2 Restricted VAR Prob > chi2
spot VLCC 0.465 spot VLCC 0.608
global other 0.055 B/D spread 0.044
global VLCC 0.153 fleet netchange 0.310
load factor 0.258 diff ussing 0.123
AG VLCC 0.775 ∆mideast production 0.438
voyage speed 0.023 ∆gasoil sing 0.025
ALL 0.031 ALL 0.307

Source: Authors’ calculations

Starting with our preferred VAR model, results from the Granger causality test suggest that the two

lags of voyage speed is the only variable that exhibits a causal relationship with respect to TD3

rates. The two lags of tonne-mile originating outside AG also show some promise, being signif-

icant on a 90% level. Despite mediocre feedback from individual variables, test statistics for the

joint significance of the full set of endogenous variables suggest the model is useful for forecasting

purposes. For the restricted VAR model, both weekly changes in Singapore gasoline prices and

Brent/Dubai spread are significant on a 95% level. However, unlike our preferred VAR model,

the combination of variables included in the restricted VAR show no sign of causality. Hence, we

would expect our preferred VAR model to perform best in an out-of-sample prediction.
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5.3 Forecast evaluation

The out-of-sample performance of our preferred VAR model and the restricted VAR are summa-

rized Table 5, and are evaluated based on error measures introduced in Section 3.3.3. In order to

examine the relative performance of the two multivariate VAR models, forecast errors for a uni-

variate ARMA are included as a benchmark.

Table 5: Forecast error - TD3 spot rate

Error measure Preferred VAR Restricted VAR ARMA

MAE 2.11 2.11 2.38
MAPE 0.124 0.125 0.143
RSME 2.69 2.70 2.91

Source: Authors’ calculations

Comparing the realized forecast errors for the univariate ARMA and the restricted VAR, we find the

univariate ARMA performs significantly worse along all error measures considered. This indicates

that weekly TD3 rates are somewhat predictable between August 2015 to mid-February 2016, and

that publicly available data on freight rate determinants incorporate superior information about

future spot rates. This result is nothing new to the existing literature on freight rate forecasting,

as both Batchelor et al. (2007) and Kavussanos and Nomikos (1999) find evidence in favour of

predictable spot rates when utilizing the cointegrated relationship between spot freight rates and

tradable forward contracts. However, contrary to our results, Assmann et al. (2016) find univariate

models to perform relatively better than multivariate VAR models based on publicly available data.

One reason for the conflicting results might be the relative difference in sample size: Assmann et al.

(2016) use monthly data between 2006 and 2012, amounting to approximately 72 observations in

total, which is significantly below the 132 observations that we have utilized in our VAR models. As

the accuracy of VAR estimates are highly sensitive to loss of degrees of freedom when the sample

size is small, the relatively low number of observations used in Assmann et al. (2016) might favour

the performance of the univariate models.
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In order to specifically examine the predictive ability of information derived from AIS-data, we

compare the out-of-sample performance of both multivariate models considered. In line with

Granger causality results and our a priori expectations, we find that the VAR model including

AIS-derived variables performs better than the VAR model solely based on publicly available data.

With slightly more desirable values of MAPE and RMSE, and more or less equal values of MAE,

we have established weak evidence in favour of using AIS-data for forecasting purposes. How-

ever, investigating Diebold-Mariano comparison of forecast accuracy (Baum, 2003)21, test statis-

tistics suggest the mean difference in out-of-sample performance is statistically insignificant across

all three error measures. Hence, the slightly better performance between August 2015 and mid-

February 2016 might not hold for other periods in time.

As both multivariate models show promise in forecasting spot TD3 rates, we also want to investi-

gate whether the same models could be applied to forecast the price of FFA contracts. A reasonable

forecast of FFA contracts would not only assist charterers and shipowners in when or whether to

hedge their position, but also could be used to earn speculative profits. In an efficient market, the

price for tradable assets should reflect all publicly available data about the market already, but with

the AIS-derived data only made available for a small number of people, it would not be considered

publicly available data per se. However, investigating realized forecast errors reported in Table 6,

we find no evidence of forecastable +1 month FFA prices, as neither our preferred VAR nor the

restricted VAR can outperform the univariate ARMA. Hence, in line with previous literature, we

find the market for FFA contracts to be seemingly efficient.

Table 6: Forecast error - TD3 +1 month FFA

Error measure Preferred VAR Restricted VAR ARMA

MAE 1.40 1.37 1.14
MAPE 0.079 0.077 0.067
RSME 1.80 1.77 1.55

Source: Authors’ calculations

21Allow the null-hypothesis of equal accuracy to be tested.
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6 Concluding remarks

The purpose of this thesis has been to investigate whether information derived from AIS-data in-

corporates superior information about future freight rates. Specifically, we have assessed if such

data improve the ability to predict TD3 spot rates between August 2015 and mid-February 2016.

The ability to anticipate short-term fluctuations in freight rates is a key component to long-term

profitability for both shipowners and charterers, making the purpose of this thesis an important ob-

jective.

There are some important takeaways from our empirical results that we want to highlight. First,

Furnival and Wilson (1974) leaps-and-bonds algorithm find information derived from AIS-data to

significantly improve the ability explain future TD3 rates. With 10 out of 13 variables within the

optimal subset being directly derived from AIS-data, the variables seems to capture important dy-

namics related to the formation of TD3 rates. Second, unlike our a priori expectations, tonne-mile

originating in AG fail to significantly incorporate feedback about future TD3 rates. Hence, the

price for tanker freight between AG and Japan seems to be unaffected by the amount of occupied

tonne-mile originating in the same region. One reason for the conflicting result might be that the

large amount of vessels stationed in AG on long-term contracts makes the TD3 rate more sensitive

to tonne-mile originating in other parts of the world. However, in line with our a priori expecta-

tions, we find tonne-mile from vessel types other than VLCC to significantly explain future TD3

rates, which suggests considerable cross demand between subsegments in the tanker market. Third,

variables on operational efficiency also shows promise in the context of shipping market analysis.

Variables on load factor and fleet speed both incorporates feedback about future TD3 rates, while

the variable on voyage speed exhibits a causal relationship with respect to TD3 rates. Final, we

find weak evidence in favour of using information derived from AIS-data for predictive purposes,

as the multivariate VAR model based on the full amount of variables considered outperform the

univariate ARMA and the multivariate VAR model solely based on publicly available data. In line

with previous literature, we also find the market for FFA contracts seemingly efficient, as neither

of our preferred VAR nor the restricted VAR can outperform the univariate ARMA in forecasting

+1 month FFA prices.
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Even though our results show promise, we acknowledge there are several limitations to our re-

search, in which the most decisive are related to the short time span of the AIS-data. For the

purpose of this thesis, neither load factor, sailing speed nor tonne-mile are interesting on a per ship-

ment basis, and each must be converted into one-dimensional time series in order to make sense.

However, due to the relatively short time span of the AIS-data, even an analysis of weekly time

series leads to a relatively low number of observations, which in turn is consequential for how we

can specify our models. First, a great number of time series on shipping market dynamics are only

available in a monthly interval, which reduce the number of variables considered in our analysis.

Second, the chosen lag-length should ideally reflect a whole shipping cycle, which for all practical

considerations is impossible with the data at hand. Other limitations are mainly related to how we

have prepared the AIS-derived data for analyses purposes. Due to the complexity of such data, we

have not been able to properly account for multiple shipments, which essentially lead to biased esti-

mates of tonne-mile and load factor. Moreover, we have not been able to obtain sailing distance for

all 81,728 shipments, which reduces the number of observations made possible to use. Ideally, we

would also include a measure for waiting time per trip in our analysis, but this is neither observable

in the AIS-data nor is it possible to derive an adequate proxy from the information provided.

Further research using AIS-data is required to exploit the full potential of the information within

it. With AIS-data stretching over a longer period of time becoming available, it would be possi-

ble to include more variables and a higher lag-order, which in turn could lead to a more desirable

model. Moreover, if a more desirable model were found, it would be interesting to extend on the

timing decision for shipowners of when to fix, or whether to fix on a short or long voyage. We also

acknowledge that the current method used for estimating tonne-mile and measures of operational

efficiency may not be optimal, and could possible be resolved using more sophisticated program-

ming techniques. Another potential area for future research using AIS-data would be to investigate

whether physical movements of crude oil lead changes in the price of the commodity, keeping in

mind that the such data covers all seaborne trade of this commodity.
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Appendicies

Appendix A - Dickey-Fuller test for unit root

Variable Test Statistics 1 % Critical Value 5 % Critical Value p-value
mideast production -0.132 -3.490 -2.886 0.946
refinery margin -1.74 -3.490 -2.886 0.072
gasoil VLCC 0.717 -3.490 -2.886 0.990

Source: Authors’ calculations

Variable Test Statistics 1 % Critical Value 5 % Critical Value p-value
∆mideast production -3.479 -3.490 -2.886 0.009
∆refinery margin -14.248 -3.490 -2.886 0.000
∆gasoil VLCC -10.092 -3.490 -2.886 0.000

Source: Authors’ calculations
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Appendix B - Correlation matrix

Source: Authors’ calculations
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Appendix C - Subset selection results

Results from unrestricted pool Results from restricted pool
Preds R2ADJ C AICC R2ADJ C AICC
1 0.247735 107.6454 661.9789 0.247735 38.0987 661.9789
2 0.363282 71.76802 640.9069 0.306041 25.97057 652.3563
3 0.439088 48.75638 625.1805 0.338012 19.80082 647.2163
4 0.481657 36.32465 615.8422 0.368448 14.07242 642.1155
5 0.512308 27.73218 608.9216 0.373516 13.91028 642.2302
6 0.541657 19.68101 601.8808 0.394059 10.45886 639.0097
7 0.563806 13.93199 596.5356 0.408205 8.433152 637.1103
8 0.582928 9.190544 591.845 0.4153 7.9379 636.7777
9 0.595949 6.34308 588.9281 0.42197 7.555257 636.5533
10 0.602329 5.503833 588.1439 0.42304 8.353884 637.6395
11 0.61034 4.221034 586.8013 0.428343 8.287525 637.7755
12 0.614922 3.964872 586.6248 0.429145 9.155042 638.9856
13 0.619721 3.668912 586.3872 0.430609 9.891635 640.0743
14 0.622739 3.900461 586.7921 0.431561 10.73569 641.3164
15 0.622519 5.056417 588.3699 0.431233 11.83688 642.8933
16 0.622799 6.072066 589.808 0.430363 13.0437 644.6333
17 0.622721 7.187792 591.4096 0.426886 14.75583 647.0169
18 0.623193 8.152502 592.8557 0.424199 16.3034 649.2517
19 0.623414 9.187807 594.4304 0.420308 18.07256 651.7999
20 0.623489 10.26325 596.0973 0.415419 20.01805 654.6103

Source: Authors’ calculations
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Appendix D - Postestimation results

Postestimation results
Included AIS-derived data Excluded AIS-derived data

Tests Prob >chi2 Prob >chi2
Jaque-Bera* 0.004 0.000
Skewness* 0.375 0.000
Kurtosis* 0.01 0.000

Autocorrelation**
Lag 1: 0.1254
Lag 2: 0.2249

Lag 1: 0.000
Lag 2: 0.000

Eigenvalue stability
condition

All eigenvalues
inside unit circle

All eigenvalues
inside unit circle

* H0: the disturbance in VAR is normally distributed
** H0: no autocorrelation at lag order

Source: Authors’ calculations

Source: Authors’ calculations
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