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Abstract We analyze a continuous, nonlinear bioeconomic model to demonstrate how 

stochasticity in the growth of fish stocks affects the optimal exploitation policy when prices 

are stochastic, mean-reverting and possibly harvest dependent. Optimal exploitation has 

nonlinear responses to the price signal and should be conservative at low levels of 

biological stochasticity and aggressive at high levels. Price stochasticity induces 

conservative exploitation with little or no biological uncertainty, but has no strong effect 

when the biological uncertainty is larger. We further observe that resource exploitation 

should be conservative when the price reverts slowly to the mean. Simulations show that, in 

the long run, both the stock level and the exploitation rate are lower than in the 

deterministic solution. With a harvest-dependent price, the long-run price is higher in the 

stochastic system. The price mean reversion rate has no influence on the long-run solutions. 
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Introduction 

Resource management decisions made in a deterministic environment are suboptimal for 

resources that are inherently stochastic in nature, even after assuming risk neutrality and 

constant prices (Hannesson 1987). In particular, fishery management decisions are fraught 

with uncertainty, originating in both the biological and economic systems. We aim to 

advance the insight into management under multiple sources of uncertainty by providing a 

unified analysis of management decisions when the stock growth and the market price are 

stochastic. Stochastic terms that govern the behavior of both state variables are introduced 

into the dynamic equations. To capture likely nonlinearities in net benefits from the 

resource exploitation, we impose a quadratic objective function. While the setup with 

multiple uncertainties is of interest in itself, the price dynamics are of particular interest 

because relatively little attention has been devoted to rational responses to price 

fluctuations in the fisheries economics literature. In contrast, a comprehensive literature 

deals with dynamics and stochasticity in the biology. 

 Optimal fisheries management under multiple sources of uncertainty has attracted 

attention in recent decades. Reed (1979) and Clark and Kirkwood (1986) lay down the 

foundations for subsequent work, studying single sources of uncertainty. Roughgarden and 

Smith (1996) discuss multiple sources of uncertainty and their potential role in the collapse 

of fisheries; the focus on collapse has become a staple of later work. More recent articles of 

particular relevance are Sethi et al. (2005), Nøstbakken (2006), Sarkar (2009), and Poudel 

et al. (2013). Sethi et al. (2005) study optimal escapement levels in a model that includes 

uncertainty in growth, stock measurement and policy implementation. In their model, 
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growth and implementation uncertainty have only small effects when compared with the 

deterministic solution. Measurement uncertainty has larger effects. One interesting result is 

that optimal escapement increases with the measured stock level, resembling the solution 

from a nonlinear model. The result contrasts with the constant escapement level in the 

deterministic model. Nøstbakken (2006) analyzes policy switching curves in the price–

stock space under price and stock uncertainty. When policy switching is costly, entry and 

exit curves will differ. The difference is driven in part by the uncertainty and in part by the 

switching cost. 

Both Sethi et al. (2005) and Nøstbakken (2006) assume a linear objective function. 

Sarkar (2009), on the other hand, studies a nonlinear objective function and his study is 

thereby more similar to ours. In a real option framework, he finds that the optimal policy 

has traits similar to pulse fishing regimes that typically arise from linear models. He 

calculates the optimal harvest trigger (the stock level where it is optimal to exercise the 

option to harvest); not unlike the entry curve in Nøstbakken (2006). Sarkar (2009) also 

calculates the optimal harvest size that implicitly defines an exit point in the state space; not 

unlike the exit curve in Nøstbakken (2006). The findings in Sarkar (2009) align with the 

analysis in Nøstbakken (2006), but the latter extends to uncertainty in price and is therefore 

the prominent work of comparison for our analysis. (Sethi et al. 2005 study different types 

of uncertainty. While our framework applies to studies of the same types of uncertainty, it 

requires a different interpretation of the stochastic term and is beyond the scope of this 

article.) 
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 In summary, our setup compares to Nøstbakken (2006) in terms of dimensionality, 

where both price and stock are stochastic and treated as state variables. However, in 

contrast to Nøstbakken (2006), who studies a linear objective function when price follows a 

geometric Brownian motion, we analyze a nonlinear objective function when the price 

process is mean-reverting and harvest dependent. In terms of nonlinearity, our setup 

compares to Sarkar (2009). While we use a different functional form than him, the 

conceptual frameworks are similar and, as we discuss further below, relate to work by 

Boyce (1995), Grafton et al. (2006) and others. Thus, however incrementally, we aim to 

advance the complexity of cutting-edge fisheries economics models toward arguably more 

realistic models subject to a unified analysis of multiple sources of uncertainty. 

Our arguably more realistic model produces results that require careful 

consideration of the inherent economic intuition. For example, the effect of increasing 

stochasticity in the Sarkar (2009) model leads to an increase in the harvest trigger and a 

decrease in the harvest size; the responses are motivated by caution and are found to be 

consistent with real-option theory. In our model, small levels of stochasticity lead to 

moderation in the harvest rule while higher levels lead to an aggressive and shortsighted 

harvest rule. Both effects are consistent with economic intuition; when transitioning from 

no uncertainty to a low level of uncertainty, moderation motivated by caution seems 

reasonable; when transitioning further to high levels of uncertainty, moderation, which 

essentially is investment, no longer pays off and the best course of action is shortsighted, 

aggressive harvesting. The important point is that there is not necessarily a unidirectional 

best response to a given change in the setup (such as increasing stochasticity). Alas, there 
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are no simple rules-of-thumb when dealing with realistically complex systems. And, of 

course, we admit that our model contains a number of simplifications that require 

significant leaps of faith in order to apply to real-world fisheries management; the right mix 

and balance between simplifications and realism in fisheries management models will keep 

scientists and economists busy for years to come. Nevertheless, from our study, it becomes 

clear that once we leave the simple models behind, each particular system requires 

individual study, which suggests that a more positive focus would be in order. What we 

provide is a step towards a unified and robust framework for the study of fisheries 

management problems that encompass nonlinearities and multiple sources of uncertainty. 

 In terms of method, we apply dynamic optimization to a nonlinear, continuous time 

model with two stochastic state variables, where the objective function is nonlinear in the 

control variable. Further, the control variable is present in the dynamic equations such that 

the differential equation governing the value function is nonlinear, and the control variable 

cannot in general be treated as a constant. This last point is crucial and demarcate our work 

from the typical approach in real options. In real options, one usually considers impulse 

controls that are governed by trigger levels (see Sarkar 2009 and Marten and Moore 2011 

for relevant examples). The methodological advantage of impulse controls is that they can 

be treated as constants in the dynamic equations, and the corresponding differential 

equations that govern the value function take the form of linear differential equations, for 

example of the Euler type that has known closed form solutions. Impulse controls have a 

conceptual disadvantage, however, in that how they translate into real-world fisheries 

policy is unclear, and the inherent dynamics, where changes to the system occur as shifts in 
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the state variables when impulses are triggered, is unrealistic in for example fisheries 

models. 

 Several articles from the resource economics literature, in addition to those 

discussed above, are methodologically related to our work. For example, Mason (2012) 

provide a formal analysis of equilibrium in non-renewable resource markets with stochastic 

prices. While the analysis features a two-dimensional problem, there is only a single 

stochastic driver in the model. Poudel et al. (2013) study a fisheries fleet investment 

problem with two stochastic drivers, one related to the biology and one related to the 

economy. Notably, both Mason (2012) and Poudel et al. (2013) are formulations in 

continuous time.  

There are a number of studies of optimization problems in discrete time 

formulations; in what follows, we can only mention a few of them. Discrete time 

formulations are subject to a related, but different methodological framework. Costello and 

Polasky (2008) analyzes the optimal harvest of a resource distributed in patches. Their 

special model setup leads to constant escapement policies where harvest increase linearly 

with stock size over a given threshold. Also the optimization problem in the 

aforementioned Sethi et al. (2005) is formulated in discrete time. The analysis of the social 

cost of climate change by Cai et al. (2013) feature a high-dimensional problem with two 

stochastic drivers that is solved by iterating backwards from an artificial finite time horizon. 

Another climate-related study in discrete time is Crost and Traeger (2013), who study a 

problem with deterministic dynamics, but where the objective function is subject to 

uncertainty. 
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The Bioeconomic Model 

We employ a surplus production model in continuous time. The continuous framework is 

not as common as the discrete formulation in fisheries models, but both Nøstbakken (2006) 

and Sarkar (2009) use continuous time. Stochastic fish stock dynamics can be obtained by 

adding a volatility (or stochastic) term in the incremental description of the stock dynamics 

(Sandal and Steinshamn 1997a): 

 𝑑𝑥 =  (𝑓(𝑥) −  ℎ) 𝑑𝑡 +  𝜎𝑥(𝑥)𝑑𝐵𝑥 (1) 

where 𝑥 is the fish stock and ℎ is the nonnegative harvest rate. 𝑓(𝑥) is the drift component 

of the natural growth function for the fish stock 𝑥 and is a generalized logistic growth 

function that is quasi-concave with roots in zero and 𝑥 = 𝑘. 𝑘 is the carrying capacity of the 

environment. (Note that with the stochastic formulation, stock levels above the carrying 

capacity may occur but will not persist.) The term 𝜎𝑥(𝑥)𝑑𝐵𝑥 represents the incremental 

stochastic part of the stock–growth relationship. We apply the functional form 𝜎𝑥(𝑥)  =

 𝜎0𝑥 𝑥, with 𝜎0𝑥 being a constant volatility coefficient. The term 𝑑𝑡 is the time increment 

and 𝑑𝐵𝑥 represents the incremental Brownian motion that is independent and identically 

distributed with mean zero and variance 𝑑𝑡. 

The incremental, additive noise formulation is a general Wiener process description 

and contains the multiplicative case, as can be seen from the following. Let 𝜀 be standard 

white noise, that is 𝑑𝐵1 =  𝜀𝑑𝑡. It follows that:  

𝑑𝑥 = [{𝑟(𝑥) + 𝑣(𝑥)𝜀}𝑔(𝑥) − ℎ]𝑑𝑡 + 𝜎0(𝑥)𝑑𝐵0 ≡ [𝑓(𝑥) − ℎ]𝑑𝑡 + 𝜎(𝑥)𝑑𝐵 

and 

𝑓(𝑥) ≡ 𝑟(𝑥)𝑔(𝑥) 
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𝜎(𝑥)𝑑𝐵 ≡ 𝑣(𝑥)𝑔(𝑥)𝜀𝑑𝑡 + 𝜎0(𝑥)𝑑𝐵0 ≡ 𝜎0(𝑥)𝑑𝐵0 + 𝜎1(𝑥)𝑑𝐵1 

The transformation holds even for a completely general nonautonomous Wiener process. 

Thus, if noise is multiplicative as in the example above, we can rewrite the system such that 

the noise is additive and generally our approach applies. 

 When the volatility 𝜎𝑥(𝑥) is increasing in 𝑥, we have what we call a downward drag 

in the growth, that is, in the expected drift. In our case, where 𝜎𝑥(𝑥) =  𝜎0𝑥𝑥, we can 

transform equation (1) with 𝑧 = ln 𝑥 and obtain the following dynamic equation:  

𝑑𝑧 =  (
𝑓(𝑥) −  ℎ

𝑥
−

1

2
𝜎0𝑥

2) 𝑑𝑡 +  𝜎0𝑥𝑑𝐵 

where the drift expression has a negative term that increases in the volatility coefficient 

𝜎0𝑥. Downward drag makes intuitive sense: after a negative stochastic movement, recovery 

requires a less likely stochastic movement than the movement required to recover the initial 

state after a positive stochastic movement. One consequence of the downward drag that will 

be of importance is that more paths have lower growth than the expected surplus growth as 

the volatility coefficient increases. Lund (2002) provides further analysis and discussion of 

downward drag and other stochastic effects in natural resource management models. 

Let 𝑦 be the spot price of fish at the time of decision making and let 𝑝(ℎ) be an 

underlying, long-run expected price that may depend on the harvest level ℎ. Further, let the 

spot price evolve as a mean-reverting stochastic process with reversion toward 𝑝(ℎ). When 

compared with the typical geometric Brownian motion model, a mean-reverting price better 

reflect basic, microeconomic ideas about supply behavior (see Insley 2002 and references 

therein). The setup allows us, in the simplest way we can think of, to combine noise into 
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the relationship between quantity and price, while maintaining a typical tendency of 

demand behavior that is often empirically observed. 

We can model our setup by the following process: 

 𝑑𝑦 =  − 𝛼 (𝑦 − 𝑝(ℎ)) 𝑑𝑡 + 𝜎𝑦(𝑦)𝑑𝐵𝑦 (2) 

The parameter 𝛼 is the rate of reversion. The drift term − 𝛼 (𝑦 − 𝑝(ℎ)) consists of the 

distance between the current price 𝑦 and the possibly harvest-dependent reversion price 

𝑝(ℎ), multiplied by the reversion rate 𝛼. Thus, the stochastic spot price drifts towards the 

long-run expected price, which may change with the harvest level. The spot price is as such 

drifting towards a possibly moving target. The drift term will be positive if 𝑦 <  𝑝(ℎ), 

resulting in an expected upward movement in price 𝑦. If 𝑦 >  𝑝(ℎ), the drift term is 

negative, resulting in an expected downward movement in price 𝑦. The term 𝜎𝑦(𝑦)𝑑𝐵𝑦 in 

(2), with 𝜎𝑦(𝑦) =  𝜎0𝑦 𝑦, is the stochastic part of the price evolution; 𝜎0𝑦 is a constant 

volatility coefficient. 

We assume that the two Brownian noise drivers (𝐵𝑥, 𝐵𝑦) in the system (1-2) are 

uncorrelated. We find the assumption reasonable because one driver represents biological 

noise and the other represents noise from the economy. The price process (2) is a 

generalization of the Orstein–Uhlenbeck process, where we replace the constant volatility 

with the level-dependent volatility. In comparison, Nøstbakken (2006) invokes the standard 

geometric Brownian motion as the price process. We apply the generalized Orstein–

Uhlenbeck process because it lets us include the price–quantity relationship in 𝑝(ℎ) and 

because, in probability, the process has limited support in infinite time, something 

geometric Brownian motion has not. 
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 Note that the mean (or long-term) price 𝑝(ℎ) may depend upon the harvest level, 

but in a noisy fashion, see (2). We have two main reasons for using the model above. First, 

it yields a more adaptive framework that applies to a wider range of real-world situations, 

where prices and harvest levels have empirical relationships; see, for example, Arnason et 

al. (2004). In situations with an exogenous price, 𝑝(ℎ) can simply be set to a constant and 

our general approach still applies. (As discussed below, key results also holds.) Second, the 

model likely better reflects the scenario faced by many high-level fishery management 

bodies, such as regional fishery management organizations, that primarily undertake 

fisheries management with the general biology and the economy of the direct users in mind 

(Grainger and Parker 2013). Further, the demand schedule 𝑝(ℎ) contributes to a nonlinear 

model (we find pulse fishing, which usually arises in linear models, undesirable) and, as 

highlighted by Grafton et al. (2000), the actual specification of functional forms is not as 

important as their ability to model the world. 

The standard assumption is that the sole owner seeks to maximize the expected net 

present value from the fishery over an infinite time horizon, subject to the dynamic 

constraints in (1) and (2). We can then formulate the economic part of the dynamic optimal 

control problem through the expected present value given by: 

 
𝐽(ℎ, 𝑥0, 𝑦0) = E [∫ 𝑒−𝛿𝑡 𝜋(ℎ, 𝑥, 𝑦)𝑑𝑡

∞

0

] 

𝑥(𝑡 = 0) =  𝑥0,   𝑦(𝑡 = 0) =  𝑦0  

(3) 

The function 𝜋(ℎ, 𝑥, 𝑦) is the current payoff rate function from the harvest of fish that 

depends on the stock, harvest and price. E is the expectation operator and the nonnegative 

parameter δ is the discount rate. The dynamic optimization problem can be written as: 
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 𝑉(𝑥, 𝑦) =  max
ℎ ≥ 0

𝐽(ℎ, 𝑥, 𝑦) (4) 

subject to (1) and (2). The optimal harvest is found by solving the Hamilton–Jacobi–

Bellman (HJB) equation for the given optimal control problem (4). The current value 

formulation of the HJB equation is given by: 

 
𝛿𝑉 =  max

ℎ  ≥ 0
{𝜋(ℎ, 𝑥, 𝑦) +  (𝑓(𝑥) −  ℎ)𝑉𝑥 + (−𝛼 (𝑦 − 𝑝(ℎ))𝑉𝑦   

+
1

2
 𝜎0𝑥

2 𝑥2 𝑉𝑥𝑥 +  
1

2
 𝜎0𝑦

2 𝑦2 𝑉𝑦𝑦} 

(5) 

The subscripts of 𝑉 denote partial derivatives. The formal (closed form) solution of the 

HJB equation for the multidimensional and stochastic problem is elusive, and we resort to a 

numerical approximation. 

 The model above poses the fisheries management problem in a two-dimensional 

state space, and thus represents a unified approach to multiple sources of stochasticity. The 

dimensionality make the analysis more demanding, but has merit because intuitions 

established in lower dimensional models may not hold in higher dimensions. The point is 

illustrated by Sandal and Steinshamn (2010), who show that the two-dimensional harvest 

rate in a predator-prey model is highly nonlinear and has surprising features. For example, 

in parts of the state space, the optimal harvest rate declines as the biomass of the target 

specie increases. 

 

The Numerical Approximation 

We have a two-dimensional nonlinear model with two state variables (stock and price) and 

one control variable (harvest) in continuous time. Explicit solutions do in general not exist. 
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In practice, a numerical approximation is the only viable alternative. The Markov chain 

approximation approach is an effective and relatively simple method (Song 2008), is based 

on probability theory, and requires that the HJB equation (5) can be approximated by an 

appropriate controlled Markov chain approach. Kushner and Dupuis (2001) provide 

numerical algorithms for stochastic optimal control problems. They deal with the 

convergence of numerical methods and show that the value function to which the 

approximation converges is the optimal value function. 

 The numerical technique entails discretizing the state space for the HJB control 

problem (5), constructing transition probabilities for the controlled Markov chain by 

applying a finite difference technique, and then iterating on the HJB equation with an initial 

guess 𝑉0 for the value function. In the two-dimensional state space, we establish a uniform 

grid consisting of 10,000 grid points. The optimal stochastic interpolation time is 

proportional to the size of the steps in the grid (Kushner and Dupuis 2001) and is notably 

not a free parameter. The transition probabilities describe the likelihood of the stochastic 

process jumping between neighboring nodes in the grid and reflect the underlying 

stochastic processes. The iterations in policy and value functions are carried out until the 

value function converges to the optimal value function. We assume the system has 

converged when the maximum residual numerical error is smaller than 1𝑒−16 in absolute 

value for a given grid. It implies that the value function and harvest policy are correct for 

the particular finite-state discrete problem. In the base case, convergence requires 

approximately 20,000 iterations. We tested convergence by putting a test run through 

500,000 iterations. The results from the test run were indistinguishable from the base case 
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(the test run results lay within the residual error of the base case). In the iteration procedure, 

we exploit that we can derive the inner optimum of the HJB equation with respect to the 

control variable (see  appendix); the inner solution is compared to boundary solutions. 

Our numerical approach is conceptually similar to that of Sethi et al. (2005), who go 

into some further detail. In the interest of space, and because the approach is well known, 

we refrain from reiterating further details of the numerical scheme. Kushner and Dupuis 

(2001) provide expressions for transition probabilities and detailed discussions of the 

convergence scheme. 

 

Parameters and Functional Forms 

Up until now, our treatment has been general, and has basically presented a framework of 

analysis. Apart from the introduction of the Orstein–Uhlenbeck-inspired price process and 

the note on the generality of the additive noise formulation, our setup is standard in the 

fisheries economics literature. In order to apply the numerical approximation and solve the 

HJB equation, however, it is necessary to specify functional forms and parameter values. 

For the sake of simplicity, we base our parameter values and functional forms on empirical 

work. As noted by Zhang and Smith (2011), a unified approach is necessary to ensure 

consistency of the full model and we do not suggest that our specific results apply directly 

to any fishery. Our results serve merely to demonstrate the viability of the approach and the 

potential outcomes from a complex and nonlinear, but still relatively simple, model. 

Notwithstanding, when we base parameters and functional forms on existing, empirical 
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work, it increases the likelihood that our parameterized model sits in a relevant part of the 

parameter space. 

 For convenience, we look at the Barents Sea cod and base functional forms and 

parameter values on the study by Arnason et al. (2004). (Agnarsson et al. [2008] extended 

the study to include stochastic effects.) The natural growth function in (1) takes the form 

𝑓(𝑥) =  𝑟𝑥2(1 − 𝑥 𝑘⁄ ), which is a modified logistic growth function with noncritical 

depensation. The modified logistic growth function observes what is known as the Allee 

effect (Stephens et al. 1999), which in our simple model means that the population growth 

is weakened at low population levels (a supplemental appendix, available from the authors, 

provides some further discussion of the biological motivation). 𝑟 is an intrinsic growth rate 

and 𝑘 is the environmental carrying capacity. The long-run expected price that goes into (2) 

is given by 𝑝(ℎ) =  𝑝0 −  𝛾2ℎ. The stream of profits in (3) is modeled as 𝜋(𝑥, ℎ) = 𝑦 ℎ −

𝑐(𝑥, ℎ), where costs are given by 𝑐(𝑥, ℎ) =  𝑐1ℎ 𝑥⁄ +  𝛾1ℎ2. Nonlinearities in both the long-

run price and harvest costs make the problem nonlinear in the control variable (the harvest 

rate). Similar nonlinearities arise in a range of different fisheries models (Boyce 1995, Liski 

et al. 2001, Grafton et al. 2006, Sarkar 2009). Motivations for nonlinearities differ, with 

examples including fixed costs (Sarkar 2009) and market conditions (Boyce 1995, Grafton 

et al. 2006). The particular nonlinearities in our model are not as important as our 

demonstration of how they do not impede our ability to solve and analyze the model. To 

demonstrate robustness across functional forms, we solve the model under different 

functional forms and parameter values in the supplemental appendix. In particular, we solve 
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the model with pure (unmodified) logistic growth and with no harvest dependence in 𝑝(ℎ). 

Notably, all main features of the results persist under the alternative specifications. 

Table 1 lists parameter values. Relevant estimates of the volatility coefficients 𝜎𝑖 

and the price reversion parameter 𝛼 are not readily available. We explore a range of 

possible values for the volatility coefficients. For the price reversion speed, we have a 

rough estimate (for a standard mean-reverting price process) based upon data from the 

International Council for the Exploration of the Sea. (Regressing price changes on the 

previous period price yields the coefficient –0.5835, standard error 0.2673, and 𝑅2 =

0.3461, which implies a reversion speed of 0.5835.) 
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Table 1 

Parameter Values 

Parameters Notation Values 

Biological growth rate 𝑟 0.000665 (per year)
 

Biological carrying capacity 𝑘 2,473 (thousand tonnes)
 

Price of harvest 𝑝0 12.65 (million NOK per thousand tonnes)
 

Strength of demand 𝛾2 0.00839 (million NOK a year per thousand tonnes)
 

Cost of harvest 𝑐1 5848.1 (million NOK)
 

Cost parameter 𝛾1 0.01 (million NOK a year per thousand tonnes)
 

Mean-reversion speed 𝛼 0.59 (estimated), 0.3 and 1.0 (sensitivity)
 

Discount rate 𝛿 0.05 (per year)
 

Volatility of the stock 𝜎0𝑥 0 (base) 0.3, 0.5, 0.9 and 1.5 (sensitivity) 

Volatility of the price 𝜎0𝑦 0 (base) 0.3, 0.5, 0.9 and 1.5 (sensitivity) 

Sources: Arnason et al. (2004), Agnarsson et al. (2008)  

 

Results and Discussion 

First, we describe the optimal harvest rate in our model, in both the deterministic and 

stochastic settings. The optimal harvest rate is a surface in the stock-price state space and is 

of classical feedback type because of the autonomous model. To shed further light on the 

properties of the optimal harvest rate and to make the comparison of solutions for different 

levels of stochasticity as straightforward as possible, we present contour plots of the harvest 

rate in different scenarios. Further, we study the optimal solution with either stochastic 

elements active (that is, with one volatility coefficient non-zero) and with both stochastic 
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elements active (both volatility coefficients non-zero). We study different combinations of 

values for the volatility coefficients in both cross sections of the optimal solution and in 

plots of the zero contour. Our study of all these different aspects of the optimal harvest rate 

yields insights into the general behavior of the solution and allows us to identify technical 

and economic intuitions for the observed behavior. To strengthen our analysis, we also 

analyze how sensitive the solution is to variations in some key parameters. 

Further, we find it of interest to describe the dynamic behavior of the system in 

time. The optimal harvest rate tells us the best course of action at any given stock level and 

spot price, but how the system will evolve in time cannot be fully understood from the 

harvest rate alone, as the dynamic behavior involves both the state dependent harvest rate 

and the dynamic equations in the model. We provide some statistics on how the system 

settles at the end of a long simulation horizon; we also draw some simulated paths through 

time and study paths in a phase diagram. Finally, we study the sensitivity of the long-term 

behavior to changes in parameter values. 

 

The Optimal Solution 

Before we consider solutions to the stochastic problem in equation (5), we find it 

instructive to study the solution to the deterministic problem (where the stochastic diffusion 

terms are set to zero; 𝜎0𝑥 =  𝜎0𝑦 = 0). Figure 1 shows the optimal harvest rate for the 

deterministic model. The figure shows the harvest surface as a feedback solution in the 

stock–price state space, with stock size along the right axis, the spot price along the left axis 

and the optimal harvest rate along the vertical axis. At small stock levels (smaller than 
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approximately one million tons), the harvest rate is zero for any spot price; density-

dependent harvest costs make it very costly to harvest at low stock levels, but the zero 

harvest rate at low stock levels also depends on further nonlinear properties discussed 

below. At high stock levels (larger than two million tons), the harvest rate increases 

approximately linearly with the spot price. At intermediate stock levels, the solution is 

more complex, and we will explore this territory further below. For all spot price levels, the 

harvest rate has the familiar concave shape (once it turns positive) as a function of the stock 

level; see, for example, Sandal and Steinshamn (1997a) for similar solutions in a model 

with a similar objective function. In most cases, a higher price yields a higher optimal 

harvest rate, and for small price levels, the stock level has to be very large to make any 

harvest viable. Contours of the optimal harvest rate are similar in shape to the entry and exit 

curves in Nøstbakken (2006). In Nøstbakken (2006), the shape is driven by the density-

dependent costs; in our model, the shape is driven in part by density-dependent costs and in 

part by other, nonlinear effects that we will delve into below. On another note, the solution 

in figure 1 leads to a gradual and adaptive (feedback) fishing process, while both 

Nøstbakken (2006) and Sarkar (2009) predict pulse fishing. 
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Figure 1. Deterministic Optimal Harvest Rate as a Feedback Policy in Price-Stock State 

Space 

 

 Figure 2(a) shows a contour plot of the solution in figure 1. The white curve is the 

zero contour, that is, where the harvest rate switches from zero to a positive rate. Further, 

the harvest rate increases with 75 thousand tonnes per year between each contour. The 

contour plot shows that, at low price levels, an increase in price yields a higher harvest rate, 

but the effect does not necessarily occur at higher price levels. At price levels higher than 

approximately 13 (that is, approximately 𝑝0) and at intermediate stock levels, the optimal 

harvest rate decreases in price. We call this effect backward folding, as the contours seem 

to fold backward. A technical explanation of backward folding is that while the gradient of 

the harvest rate in the price dimension (𝜕ℎ 𝜕𝑦⁄ ) is positive at low spot prices, it turns 
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negative at higher spot prices, and it only occurs in parts of the state space (at moderate 

stock levels). Less technically, backward folding means that, in parts of the state space, the 

optimal response in the harvest rate to an increasing spot price is to reduce harvest. We find 

that backward folding does not conform to our common intuition (we expected that the 

harvest rate would increase with an increasing price, as it does in most of the state space) 

and that it is of interest to investigate further. First, we discuss our technical understanding 

of backward folding before discussing its economic intuition. 

 To understand the technical or mathematical intuition of backward folding, it is 

instructive to consider the optimal harvest rate in the limit where the spot price goes to 

infinity. In the limit, the nonlinearity of the objective function disappears as the first term 

dominates the second. That is, in the limit, the objective function is linear in the harvest 

rate, and the optimal harvest rate is the bang-bang policy. The critical stock level where the 

harvest rate would switch from the minimum to the maximum viable rate is possible to 

derive. We refrain from carrying out the derivation; suffice it to say that it is larger than the 

maximum sustainable yield stock level because of the density-dependent costs (Sandal and 

Steinshamn 1997b). Thus, in the limit, the optimal harvest rate is zero for all stock levels 

below the maximum sustainable yield level and, as the spot price increases, the harvest rate 

must approach the limit solution. Therefore, we explain backward folding as a consequence 

of the weakening or breakdown of the nonlinear structure in the objective function when 

the spot price increases. 

We note that backward folding does not depend on the mean-reverting price 

property and, consequently, backward folding should be observable in similar nonlinear 
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models where the nonlinear feature degenerates as the price increases. Indeed, we have 

solved our model under alternative specifications and parameterizations, and backward 

folding persist across the different models. The results are reported in the supplemental 

appendix. Backward folding will not appear in the Nøstbakken (2006) model because her 

model is linear. On the other hand, backward folding could occur in the Sarkar (2009) 

model if it was extended to the price dimension. 

Backward folding, the fall in the optimal harvest rate as the spot price increases, has 

two positive effects on the economy in our model. First, a lower harvest rate conserves the 

fish stock and thereby reduces future harvest costs because harvest costs are density 

dependent. This temporal trade-off makes backward folding sensitive to the discount rate 

and the effect will vanish at high discount rates. Indeed, the myopic solution (ℎ𝑚) has no 

backward folding, a result that is straightforward from the solution formula that has level 

curves which are proportional to 1 𝑥⁄ : 

ℎ𝑚 = max (
𝑦 −

𝑐1
𝑥⁄

2𝛾1
, 0) 

Second, a lower harvest rate curbs the downward drift in the spot price. This effect is 

readily seen from inserting the expression for 𝑝(ℎ) =  𝑝0 − 𝛾2ℎ in equation (2) and 

observing that the drift is negatively linear in harvest. Both effects improve the profitability 

of the future fishery at the expense of a lower, immediate return. According to our 

numerical analysis, the two positive effects overwhelm the negative effect of reducing the 

current flow of profits at high prices and intermediate stock levels. In the appendix, we 

derive a sufficient criterion on the curvature of the value function for backward folding to 
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occur. We further show numerically that the criterion holds in the part of the state space 

where backward folding occurs.  

 The remaining panels in figure 2, (b) through (d), show the effect of stochasticity on 

the optimal solution. In the panels, the volatility coefficients σ0𝑥 and σ0𝑦 are increased 

successively and in tandem. At the moderate levels of stochasticity in panel (b), the 

contours are pushed away from the origin, and the solution is more conservative than the 

deterministic solution in panel (a). A more conservative harvest rate reduces the possibility 

of stock extinction as it yields a higher and less vulnerable stock level. Sarkar (2009) finds 

that the harvest trigger (the point of entry in the Nøstbakken [2006] terminology) increases 

in the volatility level and rationalizes it as cautious behavior in response to extinction risk. 

Another effect is that the stochasticity leads to a downward drag in the growth, which in 

turn leads to a reduced harvest rate; Sarkar (2009) did not consider downward drag as a 

potential driver in his results. 

At the higher levels of stochasticity in figure 2, panels (c) and (d), the harvest 

contours move closer to the origin and the optimal harvest rate is thereby more aggressive. 

In other words, there is a reversal in the response to increasing stochasticity. Interestingly, 

Sarkar (2009) does not observe the reversal. (Saphores [2003], work that Sarkar [2009] 

builds upon, observes reversal in a linear model. But, according to Sarkar [2009, p. 281] 

and references therein, there could be a problem with the model. It is beyond our scope to 

delve into those details here.) Nevertheless, aggressive harvesting in highly stochastic 

settings relies on a strong, economic intuition. With high levels of stochasticity, the present 

state holds little information about future states and the optimal harvest rate moves toward 
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the myopic solution (infinite discounting and maximization of present profits) at low stock 

levels. At high stock levels, the optimal harvest rate is still lower than in the deterministic 

solution because of the downward drag (the expected surplus growth is lower). That is, at 

high stock levels, moderation, which essentially is investment in future stock levels, is 

valuable at higher stochastic levels. This last result is difficult to discern in the contour 

plots, but figure 3(a) shows a cross-section of the solutions in figure 2(a), (b) and (d). The 

cross section runs parallel to the stock axis and shows the optimal harvest rate as a function 

of the stock level for a given price (𝑦 =  𝑝0). From the cross sections in figure 3(a), it is 

clear that the stochastic solution is lower than the deterministic solution at high stock 

levels. 
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Figure 2. The Effect of Stochasticity on the Optimal Harvest Rate: (a) Deterministic Model 

(σ0𝑥 = σ0𝑦 = 0), (b) Stochastic Model (σ0𝑥 = σ0𝑦 = 0.5), (c) Stochastic Model (σ0𝑥 =

σ0𝑦 = 0.9), and (d) Stochastic Model (σ0𝑥 = σ0𝑦 = 1.5) 

 

 To disentangle the effects from the two sources of stochasticity we look at further 

cross sections of the optimal harvest rate. Figure 3 displays cross sections from three 
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different scenarios: in panel (a), the volatility coefficients increase from zero to 1.5, in 

tandem (as in figure 2); in panel (b), the price volatility coefficient is zero while the growth 

volatility coefficient increases from zero to 1.5; and in panel (c), the growth volatility 

coefficient is zero while the price volatility coefficient increases, also from zero to 1.5. The 

panels also show the myopic solution that is identical in all cases. The cross sections in the 

three panels in figure 3 suggest that the main driver behind the behavior of the solutions in 

figure 2 is the growth volatility. The results in panel (b) of figure 3, with volatility only in 

growth, are almost identical to those in panel (a), with volatility in both price and growth. 

Panel (c) shows that the effect from price volatility is relatively small and leads to some 

moderation of the harvest rate for the range of volatility rates we explore. In the related 

work, neither Nøstbakken (2006) nor Sarkar (2009) arrive at similar conclusions. The 

former does not focus on analyzing how the different sources of uncertainty affect the 

harvest rule; the latter only considers uncertainty in the biological dimension. 

 The two stochastic elements in our model are of rather different natures, where one 

relates to the biological stock and the other to the spot price, and, therefore, comparing their 

size directly (𝜎0𝑥 versus 𝜎0𝑦) is not necessarily meaningful. However, when we use the 

form 𝜎𝑧(𝑧) =  𝜎0𝑧𝑧, where 𝑧 denotes the state variable, the volatility coefficient 𝜎0𝑧 

becomes a relative factor. Thus, while the relative volatility coefficients cannot be 

compared directly either, because the degree of stochasticity must be considered relative to 

the drift, which differs, we are at least confident that a volatility of 1.5 times the level of the 

state variable must nevertheless be considered large in any sense of the word. That is, we 

cannot compare the volatility coefficients in the different cases in Figure 3, but we can 
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consider the volatility levels as unanimously large, and we are thereby confident in our 

conclusion that growth volatility is the main stochastic driver. 

 

 

Figure 3. Cross-Sections of the Optimal Harvest Rate at 𝑦 = 𝑝0. (a) Effect of Both Price 

and Stock Stochasticity, (b) Effect of Stock Stochasticity with Deterministic Price, and (c) 

Effect of Price Stochasticity with Deterministic Stock Growth 
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The harvest rate cross-sections in figure 3 consider a given price level; to study how 

uncertainty affects the optimal harvest rate at different price levels, we draw the zero 

contour of the harvest rate (that is, the moratorium level) in the state space under different 

combinations of the volatility coefficients. (Figures and further details are presented in the 

supplemental appendix.) From the results, we conclude that growth dynamics (and its 

uncertainty) dictates the optimal harvest rate at high price levels, while the price (the price 

uncertainty can be mostly ignored) dictates the optimal harvest rate at low price levels.  

 The last part of the parameter space to investigate is that of the mean-reversion rate 

𝛼 in the equation of price dynamics (2). At low reversion rates, the price process is 

dominated by the noise term (when the reversion rate is zero, the price is pure noise). From 

our previous results, we expect moderate volatility levels to lead to moderation in the 

harvest rate, whereas higher volatility levels should move the harvest rate toward the 

myopic solution. At high reversion rates, the price reverts quickly to 𝑝(ℎ) and the drift 

dominates. As in figure 3, we study cross sections of the harvest rate, parallel to the stock 

axis, at 𝑦 =  𝑝0. Figure 4 shows the cross sections together with the (deterministic) growth 

curve and the cross section of the myopic solution. In total, the figure holds eight curves. In 

addition to the growth curve and the myopic cross-section, there are six cross-sections of 

the harvest rate—three with zero volatility coefficients and three with positive volatility 

coefficients. The reversion rate varies from a low level (0.3), to the base case (0.59), to a 

high level (1.0). Cases where only the reversion rate differs are close together; varying it 

has little influence. The optimal harvest rate increases and becomes more aggressive for a 

higher reversion rate, whereas it decreases and becomes more moderate for a lower 
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reversion rate. In other words, the behavior agrees with our intuition. The effect of the 

reversion rate diminishes at high stock levels. The intuition is the same as earlier: a high 

stock level increases the probability that an investment in the fish stock via a moderate 

harvest rate pays off. 

 

Figure 4. Cross-Sections of the Optimal Harvest Rate at Different Levels of  at Spot Price 

𝑦 = 𝑝0 

 

Dynamic Behavior 

To study the behavior of the fishery and the optimal solution in time, we simulated the 

system forward in time from a range of initial conditions in the state space. For each initial 

condition, 1,000 different realizations were simulated for 500 years. We simulated both the 
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deterministic and the stochastic system. At the end of the simulation horizon, the 

deterministic system had settled at the equilibrium for all initial positions. While there is no 

equilibrium in the stochastic setting, all simulated paths reached a stable, or stationary, 

region. We call this region the long-term sustainable optimal (LSO) region (Poudel et al. 

2013); Smith (1986) calls it the optimal stochastic steady state. 

 The real interest in reporting steady state values is in how they relate to key 

parameters such as the carrying capacity. Therefore, we report them in terms of the relative 

variables 𝑥̃ (the stock level relative to carrying capacity, 𝑥/𝑘), 𝑦̃ (the price level relative to 

the maximum price, 𝑦/𝑝0) and ℎ̃ (the harvest level relative to the maximum sustainable 

yield, ℎ/ℎ𝑀𝑆𝑌). In the deterministic setting, the equilibrium (denoted by asterisks) is 

characterized by the following values: 

𝑥̃∗ = 0.896, 𝑦̃∗ = 0.775, ℎ̃∗ = 0.560 

It is beyond our scope to fully describe the distribution of the simulated paths at the 

simulation horizon in the stochastic case (a full description requires resolution of the 

Fokker-Planck equation). However, means and standard deviations of all simulated paths 

do give a rough idea of how the paths are situated and distributed at the simulation horizon. 

Below, we report means (and standard deviations in parentheses) of the simulated paths at 

the end of the simulation horizon in the stochastic case with 𝜎0𝑥 =  𝜎0𝑦 = 0.3: 

𝑥̃∗ = 0.815 (0.191), 𝑦̃∗ = 0.802 (0.200), ℎ̃∗ = 0.485 (0.195) 

The stochastic LSO stock level has a mean lower than the deterministic steady state, but the 

mean is still substantially higher than the deterministic maximum sustainable yield level at 

𝑥̃𝑀𝑆𝑌 = 0.666 (around 1,600 thousand tonnes, see figure 4). The LSO mean harvest level is 
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still smaller than the harvest level in the deterministic equilibrium, which demonstrates the 

significant effect of the downward drag on the natural growth induced by the stochasticity. 

With a lower LSO mean stock level, the LSO mean price level becomes higher because of 

the price–quantity relationship in (2). 

 Given our simplifications of the functional forms, we should be careful when 

discussing our results about the long-term steady state in relation to the cod fishery in the 

Barents Sea. If our results are compared with the historical catch levels reported in Arnason 

et al. (2004), the optimal steady state harvest level is lower than most recorded annual 

landings. We see two possible reasons for the high historic catches. One is that the real 

discount rate is higher than the one we use here. Another is that maximum sustainable yield 

has been a historic target for the fishery management. 

 Figures 5 and 6 display how the stock and price levels evolve in time under the 

optimal harvest rate. Panels (a) in both figures display deterministic time paths, whereas 

panels (b) display stochastic time paths, with 𝜎0𝑥 =  𝜎0𝑦 = 0.3. Each path is drawn from 

different initial positions in the stock–price space, such that some paths have an equal 

initial stock level, but different initial price levels while other paths have equal initial price 

levels but different initial stock levels. In the stochastic setting, each plotted path is the 

mean of 1,000 realized paths from the same initial condition and thereby approximates how 

the expected system behaves. 

 The general impression from figure 5 is that it takes more time to reach the 

stationary state (the equilibrium or the LSO region) from below than from above. From 

below, the natural growth constrains the drift, whereas from above, the harvest rate, which 
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is practically unconstrained, constrains the drift. That the stock reaches the stationary state 

faster from above is thus no surprise. From very low initial stock levels, growth is slow for 

a number of years because of the depensation of the growth curve (see figure 4). Some 

overshooting occurs (where the stock level grows past the stationary state before it 

converges) when the initial price is low and exploitation is deferred to let the price revert 

toward its mean. Finally, it takes more time on average to reach the stationary state in the 

stochastic setting because of the stochastically induced downward drag on the growth. 

Also, for small initial stock levels, a significant number of the simulated paths remain 

trapped in a collapsed state and depreciate the mean path. 

 
Figure 5. Optimal Evolution of the Stock Level over Time for Different Initial Stock and 

Price Levels: (a) Deterministic Model, (b) Stochastic Model with 𝜎0𝑥 =  𝜎0𝑦 = 0.3 

 

 The behavior of the price dynamics in figure 6 are more difficult to rationalize. A 

number of paths first stabilize at a high level (𝑦 =  𝑝0) before regressing to the long run 

stationary state. All of these paths relate to very low initial stock levels that dictate a zero 
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harvest rate for a long period with slow natural growth. As long as the harvest rate is zero, 

the price will drift toward and stay at 𝑝0. For the remaining paths, the price moves to the 

stationary state relatively quickly. For some cases with high initial price levels and low 

initial stock levels, more time is required to reach the stationary price. For yet other cases 

with low initial price levels and low initial stock levels, overshooting occurs while the stock 

grows to a level where a nonzero harvest rate is optimal. Again, when the optimal harvest 

rate is zero (see figure 2), the price will regress toward 𝑝0, whereas when the optimal 

harvest rate is nonzero, the price will regress toward 𝑝(ℎ). As in figure 5, it takes more 

time on average to reach the stationary state in the stochastic setting; as long as the stock 

level, and hence the harvest rate, are out of the stationary state, the price will also be out of 

the stationary state. 

 

Figure 6. Evolution of Price to LSO over Time for Different Initial Stock Levels: (a) 

Deterministic Model and (b) Stochastic Model 
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 To complete our description of the behavior of the dynamic system in time, we 

show how the time paths in figures 5 and 6 evolve in the state space. In figure 7, panel (a) 

displays how the deterministic system evolves; panel (b) displays how the average 

stochastic system evolves. Figure 7 demonstrates the contrast between the equilibrium state 

in the deterministic setting, which is a single, well-defined point in the state space, and the 

LSO region in the stochastic setting, which is more like a cloud in the state space. The 

figure also demonstrates the difference in location of the stationary states. The stochastic 

LSO region is placed more or less symmetrically in the stock dimension along a stretch of 

the price schedule 𝑝(ℎ). In panel (a), we recognize the price development for cases with 

small initial stock levels from figure 6(a), where all paths first stabilize at 𝑦 =  𝑝0, before 

moving approximately along 𝑝(ℎ) to the equilibrium. Also, in panel (a), overshooting in 

both price and stock is observable, whereas the average, stochastic system in panel (b) 

moves more directly toward the stationary state. Individual, stochastic realizations display 

considerable over- and undershooting, of course, depending on the realization of the 

stochastic process, but the averaging smooths out such idiosyncrasies. Figure 7 holds an 

important policy lesson: while the deterministic model dictates an extensive initial period of 

no harvest when the initial stock level is low, the stochastic model has a positive expected 

harvest rate early on. 
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Figure 7. The Optimal Paths in the Stock Price State Space at  = 0.59 and  = 0.05: (a) 

Deterministic Model and (b) Stochastic Model 

 

 In the supplemental appendix, we analyze the sensitivity of the long-run solutions to 

changes in the volatility coefficients and the reversion speed. Both the LSO stock and 

harvest levels decrease with increasing volatility coefficients, as expected from the 

stochastic effect (downward drag) on natural growth. Reed (1979) comes to similar 

conclusions. The LSO price level changes in accordance with the price-quantity 

relationship. Further, the price volatility coefficient has only small effects. For the reversion 

speed, we also find only small effects, which is in line with our earlier results. 

 

Concluding Remarks 

We have analyzed the optimal exploitation of a fishery in a general framework that 

incorporates two sources of uncertainty: uncertainty in the stock–growth relationship and 
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uncertainty in the price dimension. The primary novelty in our analysis is that the price 

follows a stochastic, mean-reverting process. Another important feature is that the decision 

variable (the harvest rate) is present in the stochastic processes and the system dynamics, 

see equations (1) and (2), which in general poses a problem involving non-trivial 

probability distributions determined by the associated Fokker-Planck equation. At the 

conceptual level, we provide a unified analysis of a more realistically complex fisheries 

management problem that contain two-dimensional stochastic dynamics and an objective 

function that is nonlinear in the control variable. 

With our type of models, closed form solutions are virtually impossible to establish; 

they amount to solving a nonlinear partial differential equation of elliptic type. We have 

developed a numerical scheme, based on dynamic programming, which solves for the 

optimal harvest rate. While the shape and general properties of the solution are robust to 

changes in functional forms and parameters, the solution depends critically upon the level 

of stochasticity. That stochasticity is a driving factor resounds throughout the literature 

(Sethi et al. 2005, Nøstbakken 2006, Sarkar 2009). Further, the volatility in the stock 

growth equation has a much stronger influence on the solution than the price volatility. Our 

analysis suggests that, in the type of models we look at, little is lost if price volatility is 

assumed away, particularly when the relative volatility coefficients (𝜎0𝑖) are at similar 

levels or larger in the stock growth equation. 

 Our solution represents a nonlinear harvest rate in a two-dimensional state space 

and contrasts the solutions presented by Nøstbakken (2006) and Sarkar (2009). Both 

suggest solutions with pulse-fishing traits that typically arise from linear models. While 
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Nøstbakken (2006) studies a linear model, Sarkar (2009) studies a nonlinear model that 

could potentially give rise to nonlinear solutions like ours. The pulse-fishing traits in the 

Sarkar (2009) analysis arise from the particular harvest dynamics that derives from his real-

option framework. Nøstbakken (2006) presents harvest switching curves, where the harvest 

rate switches from zero to some upper bound, in a two-dimensional state space. The shape 

of the switching curves aligns to a large degree to the shape of the contours of the optimal 

harvest rate in our model. However, while Nøstbakken (2006) predicts that in the long run 

the fishery will be closed more than half the time, we predict a permanently open fishery 

that approaches a stable, stationary state. 

 The fishery problem is too complex for any one model to solve, and a word of 

caution is in order. While we have tested the sensitivity of our solutions to perturbations in 

key parameters and functional forms, and taken steps to put our base case in a relevant part 

of the parameter space, our results could still be specific to our choices of functional forms, 

parameter values and general approach. Notwithstanding, we demonstrate the viability of 

pursuing highly nonlinear models of renewable resource management in settings with 

multiple sources of uncertainty. 
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Appendix 

We expand the Hamilton–Jacobi–Bellman equation (5) and write as follows: 

 
𝛿𝑉 =  max

ℎ ≥0
{(𝑦 −

𝑐1

𝑥
−  𝛾1ℎ) ℎ +  (𝑓(𝑥) −  ℎ)𝑉𝑥

+  (−𝛼𝑦 +  𝛼(𝑝0 −  𝛾2ℎ))𝑉𝑦 +
1

2
 𝜎𝑥

2 𝑥2 𝑉𝑥𝑥 + 
1

2
 𝜎𝑦

2 𝑦2 𝑉𝑦𝑦} 

(A1) 
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If we let 𝐿 denote the object of the maximum operator, (A1) is written as 𝛿𝑉 = max
ℎ≥0

𝐿. 𝐿 is 

concave in ℎ and the inner optimum is given by: 

 𝜕𝐿

𝜕ℎ
 =  𝑦 −  

𝑐1

𝑥
−  2 𝛾1ℎ −  𝑉𝑥 −  𝛼 𝛾2𝑉𝑦 = 0 (A2) 

from which we have: 

 

 ℎ =  max {0,
𝑦 − 

𝑐1

𝑥 −  𝑉𝑥 − 𝛼 𝛾2𝑉𝑦

2 𝛾2
} (A3) 

From (A3), we can derive an expression for a contour of the inner solution. In particular, the 

zero contour is characterized by setting the numerator equal to zero. We have: 

 𝑦 −  
𝑐1

𝑥
 −  𝑉𝑥  −  𝛼 𝛾2𝑉𝑦 = 0 (A4) 

Total differentiation with respect to 𝑦 yields an expression for 𝑑𝑥/𝑑𝑦 along the contour; that 

is, the derivative of the x-component of the contour as a function of 𝑦 is: 

 𝑑𝑥

𝑑𝑦
=  − 

1 −  𝑉𝑥𝑦 −  𝛼 𝛾2𝑉𝑦𝑦

𝑐1

𝑥2 − 𝑉𝑥𝑥 −  𝛼 𝛾2𝑉𝑥𝑦 
 (A5) 

When the expression in (A5) is positive we have backward folding. 

Figure A1 shows the zero contour of the right-hand side of (A5) (the black curve), 

where the expression is positive above (north of) the contour. The figure also shows the 

unsmoothed zero contour of the harvest rate (the grey curve; identical to the white curve in 

figure 2[a]). Note that (A5) changes behavior outside the zero harvest contour because the 

harvest rate has a kink along its zero contour. While we should be careful to interpret (A5) 

in the ℎ = 0 region, figure A1 demonstrates that the right-hand side of (A5) is positive 

along the part of the zero harvest contour where we observe backward folding. 
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Figure A1. Zero Contours of the Right-Hand Side of (A4) (Black Curve) and the Harvest 

Rate (Grey Curve) for the Deterministic Model 


