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1. Excecutive summary 

While the nature of work and skill demand has changed multiple times, the pace of the change 

has accelerated significantly in a way never seen before. An amount of literature explains this by 

the technological advances that have occurred during the past decades. Increase in automation of 

tasks today is accompanied by concern of the future of jobs and wages. As machines are 

becoming smarter and can increasingly substitute human labor in tasks that require skills 

previously proven challenging to codify and automate, the spectrum of jobs with labor tasks 

amenable to automation is increasing. While there is a large body of literature investigating the 

impact of technological change on labor markets, there exists yet little empirical evidence on the 

impact of robot adoption in particular. Increased use of industrial robots appears to follow an 

inverse pattern as the decrease in hours worked and employment during the last two decades in 

parts of Europe. The purpose of the thesis is to evaluate the effects of industrial robots on the 

European labor landscape, analyzing the impact of increased robot adoption on hours worked 

and wages over time across industries in Europe. The analysis is based on the use of a novel 

panel data on robot adoption within 15 industries in 18 countries from 1995 to 2015. My findings 

suggest there is a negative correlation between the increased use of robots and the fall in hours 

worked.  However, the impact of increased robot adoption on overall hours worked, 

employment, and wages remains ambiguous, as the results cannot be validated through statistical 

significance. I find however, that robot adoption has had a positive impact on low skilled 

workers, by increasing their labor shares. Though only marginally statistically significant, results 

are negative for both high skilled and middle skilled workers, across five aggregate sectors in 12 

of the European countries included in the sample. 

 

Acknowledgements: I would like to thank Ragnhild Balsvik for supervising this thesis. Her 

expertise and feedback have been of great value throughout the process. 
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3. Introduction   

      

The history of automation is not new. While the nature of work and skill demand has changed 

multiple times, the pace of the change has accelerated significantly in a way never seen before. 

Earlier automation has lead to the disappearance of some old industries and the creation of new 

ones, that still are important to this day. This process of Creative destruction was first coined by 

Joseph Schumpeter in 1942, but is still of increasing importance in our days. Increase in 

automation of tasks today is accompanied by concern of the future of jobs and wages. As machines 

are becoming smarter and can increasingly substitute human labor in tasks that require skills 

previously proven challenging to codify and automate, the spectrum of jobs with labor tasks 

amenable to automation is increasing. Together with falling investment costs in technology and 

computerization the past decades, firms are now faced with a choice of technology with increasing 

incentives to substitute robots for wages.  

 

The automation debate today reflects both deep concerns and expectations of increased 

collaboration between man and machine. Profound change in robot capabilities the past decades 

leaves one wondering which tasks will be left for human workers, and which type of workers are 

more vulnerable, and likely, to be replaced by machines in the near future. Frey and Osborne 

(2013), for example, find that based on the tasks that workers perform, 47% of all US jobs are 

vulnerable to automation over the next two decades1. In their newly released report, McKinsey 

(2017) investigate the automation of jobs through 2030. They also investigate which jobs may be 

created in the same period. Based on various scenarios for the future of 46 developed countries, 

their findings suggest that from 75 million to 375 million workers (3 to 14 percent of the global 

workforce) will need to switch occupational categories due to technological progress. The extent 

to which these technologies displace workers will depend on the pace of their development and 

adoption, economic growth, and growth in demand for work. Documented evidence2 on the 

development of labor markets in the US and OECD countries from the past decades suggest the 

                                                
1 Arntz, Gregory and Zierahn (2016) however argues that the number is closer to 9%, arguing that the approach used 

by Frey and Osborne takes into account the susceptibility of tasks, while it should measure the vulnerability of skills 
2 See for example Autor, Levy Murnane (2003), Acemoglu and Autor (2011), Goos and Manning (2014). 
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development of a so-called “employment polarization”, suggesting that middle skilled workers, 

typically performing routine tasks, are the most vulnerable to automation. While there is a large 

body of literature3 investigating the impact of technological change on labor markets, and some 

on the impact of advances in Information and Communications Technology (hereafter “ICT”) 

there exists yet little empirical evidence on the impact of robot adoption in particular. Acemoglu 

and Restrepo (2017) find a negative effect on employment and wages from increased use of 

industrial robots in US local labor markets from 1990 to 2007. Graetz and Michaels (2017) on the 

other hand, analyze the economic contributions of modern industrial robots on labor productivity 

at firm-industry-level in OECD countries during the same period. They find no significant 

implications of increased robot adoption on total employment (aggregate hours worked), but do 

however find that robots appear to reduce low skilled workers employments share.  

 

Increased use of industrial robots appears to follow a similar pattern as the decrease in hours 

worked and employment during the last two decades in parts of Europe. An industrial robot, as 

defined by ISO 8373:2012 (International Federation of Robotics 2016) is “An automatically 

controlled, reprogrammable, multi-purpose manipulator programmable in three or more axes, 

which can be either fixed in place or mobile for use in industrial automation applications”.  

 

The purpose of the thesis is to evaluate the effects of industrial robots on the European labor 

landscape, analyzing the effects of increased robot adoption on hours worked and wages over time 

across industries in Europe. I also investigate changes in labor shares, for three defined skill 

groups. The analysis is based on the use of a novel panel data on robot adoption within 15 

industries in 18 countries from 1995 to 2015. The empirical analysis relies on showing that the 

impact of robots on changes in hours worked and wages (amongst other outcomes of interest) can 

be estimated by regressing the change in robot density on the chosen outcome of interest. This 

approach is inspired by similar approaches used in studies such as Graetz and Michaels (2017) and 

Acemoglu and Restrepo (2017).  

 

                                                
3 See Acemoglu (2002), Autor, Levy and Murnane (2003), Autor (2014, 2015), among others.  



 

 

8 

 

This thesis contributes to the literature in this field by using the newest release of accessible data 

from EUKLEMS (September 2017) and from the International Federation of Robotics, hereafter 

“IFR”(2016) on labor characteristics and the number of operational industrial robot stock per 

industry. This allows me to study the changes over a larger timeframe, including the years after 

the financial crisis. It also allows me to include a higher number of European countries, specifically 

eastern European countries where robot adoption has not been introduced before 2006.  

 

EUKLEMS data on hours worked and employment covers 18 countries for the period of 1995-

2015. Together with data from IFR(2016), I create a measure of robot density across industries 

and countries, defined as the number of industrial robots per million hours worked in a given 

industry. This measure is similar to the one used by Graetz and Michaels (2017).   

 

Changes in average European robot density from 1995 to 2015 is 2,94. This masks country 

differences and industrial differences within countries, as some countries and industries have 

experienced significantly higher changes in robot density than others. Robot adoption, on average, 

has increased by 238 % between 1995 and 2015 in the 18 countries included in the sample. This 

is explained partially from the significant increase in robot adoption in leading countries such as 

Germany, but also from the fact that many of the countries in the sample had not adopted robots 

until 2006. This provides additional motivation to investigate how robotization has affected the 

European labor market during the past two decades.  

 

The remainder of the paper is organized as follows. Section 4 provides an overview of the previous 

literature investigating the relationship between skills, tasks and technologies, with focus also on 

the impact of increased robot adoption on labor markets. Section 5 gives a presentation of the 

regression analysis and form, while Section 6 presents the data sources, the methodology used 

behind the construction of the data, as well as descriptive statistics. Section 7 contains the empirical 

analysis and findings of this study. Lastly, Section 8 presents a conclusion.4 

 

                                                
4 Lack of data resources and time explains why this analysis does not include other controls.  
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4. How does technology and robotization affect the 

labor market: previous literature.  

 

Two hypotheses have been central to understanding the relationship between skill, tasks and 

technology the past decade, namely the “Skill Biased Technological Change” hypothesis (hereafter 

the “SBTC” hypothesis) and the Routinization hypothesis. These hypotheses have paved the way 

for a large body of literature investigating the effects of technological change on skill demand, and 

further, its impact on wages, labor shares and employment in general. While SBTC and 

routinization have been documented in a large body of literature, there is little empirical evidence 

establishing causal effects from the increased use of technology on labor markets. The literature 

covering the effect from increased robot adoption is even less exhaustive. Two studies, Graetz and 

Michaels (2017) and Acemoglu and Restrepo (2017) provide novel evidence of a causal impact of 

robot adoption on employment and wages, as well as other components of the labor market. 

   

4.1. Explaining changes in the employment structure: How 

technological development alters skill demand 

 

Since the industrial 

revolution, 

technological progress, e.g. automation, has replaced human labor in tasks that required strength 

and physical activity. It has long been implemented in agriculture and manufacturing industries, 

associated with a decline in employment in those industries. Documented data is leading to support 

this (Akst 2013, Autor and Acemoglu 2011). Today, technology seems to be climbing the cognitive 

ladder (Akst, 2013), challenging a new group of skills. The direct consequence is that skill demand 

has changed with the increased automation. Attention has therefore been especially brought to the 

potential changes in labor shares, e.g. how computerization and automation alters job skill 

demands. 

 

4.1.1. The Skill Biased Technological Change Hypothesis  
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The “Capital Skill Complementarity hypothesis”, advanced by Zvi Griliches (1969) addresses the 

relationship between physical capital and different types of skills - addressing thereby both the 

challenges and opportunities for human labor resulting from technical advances. Griliches (1969) 

stated that physical capital is more complementary to skilled than to unskilled labor, although 

likely to complement both. This would imply that there is natural substitution pressure on unskilled 

labor as physical capital will tend to increase the relative demand for skilled labor.   

This was later supported by Jan Tinbergen (1975), who advanced a hypothesis that since has 

highlighted the skill level as a significant determinant in the study of the impact of technological 

change on labor markets. The “Skill Biased Technological Change” hypothesis is built on the 

assumption that technological change has been “skill-biased”, in the sense that new technologies 

have greater skill demands for, or are more complementary to, high skill workers, resulting in an 

increase of the skill premium. 

 

Since, economists have been quite receptive to the idea that technological progress would raise 

relative demand for skilled workers. A wealth of relatively recent studies document a robust 

correlation between the increased adoption of computer-based technologies and the increased use 

of college-educated labor within industries, providing evidence that skill demand has been shifted 

in favor of more high skilled workers as a result of technological change (Katz and Murphy 1992, 

Acemoglu 2002). Autor (2002) provide evidence of SBTC by showing that a large number of 

empirical and case studies in the US and OECD countries document that industry and plant level 

investments in computer technology are associated with increases in skill utilization, altering the 

skill demand in recent decades. Autor document evidence of (high) skill demand acceleration from 

the 1970s to the late 1990s, as the supply of skills grew faster between 1970 and 1995 than in prior 

decades. Return to college also increased during the same period of time, by about 0,39 percent a 

year between 1970 and 1995. Further, he shows that almost all skill upgrading in U.S. and OECD 

occurred within detailed industrial sectors, rather than between, even as the relative price of skill 

was rising. Growth of earnings inequality is also documented to begin in the 1970s in the U.S, 

which is coincident with the period of rapid advances and investment in computer technology.  

 

The SBTC hypothesis has previously been used to understand the shift in employment towards 

more educated workers. It therefore predicts a uniform shift in employment away from low-skilled 



 

 

11 

 

and toward high skilled occupations, as technological change develops. Studies have however 

shown that there is growth in employment in both ends : in both the highest skilled and lowest 

skilled occupations, while there has been a decline in middle skilled workers. This phenomenon 

has been described as “job polarization”, first termed by Goos & Manning (2003), and defined by 

Autor and Acemoglu (2011) as “reflected through a simultaneous growth of the share of 

employment in high skill, high wage occupations and low skill, low wage occupations”. A more 

suited explanation for the polarization was suggested by Autor, Levy and Murnane (2003)´s 

(hereafter ALM): the “Routinization hypothesis”, which provides a natural starting point for the 

rest of the literature I present in this section. 

 

 

 

 

ALM (2003) explain job polarization through the “routinization” hypothesis. The hypothesis  

focuses on the task content of occupations, suggesting that some types of tasks are negatively 

affected by technological progress, while other remain vexing to automate. The model describes 

how computerization affects the tasks that workers and machines perform, by predicting how 

demand for workplace tasks responds to an economy wide decline in the price of computer capital.  

 

By investigating implications for task demand at industry- and occupation level, they assess the 

extent to which changes in task composition can account for the recent demand shifts favoring 

more educated workers. According to ALM, how technological advance (e.g. computers) will 

affect the task composition of human work will depend on two conditions. Firstly, it depends on 

how computers substitute for or complement workers in carrying out specific tasks. Secondly, it 

depends on how these tasks substitute for one another.  

 

ALM classify a task as “routine” if they can be accomplished by machines following explicit 

programmed rules. Routine tasks are characteristics of many middle skilled cognitive and manual 

jobs. Non-routine tasks on the other hand involve carrying out problem-solving and complex 

communication activities, and are currently presenting daunting challenges for programming 

engineers. Tasks are further subdivided into two major categories: “cognitive tasks” and 

4.1.2 The routinization hypothesis  
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“manual” tasks. Routine manual and cognitive tasks can easily be substituted by computers. 

Examples of cognitive routine tasks are performing calculations or repetitive customer service. 

Routine manual tasks are for example tasks demanding repetitive assembly. Tasks that present 

strong complementarities to computerization are classified as non-routine cognitive and manual 

tasks. Non- routine cognitive tasks include tasks that require problem solving capabilities, 

intuition, creativity and persuasion. See Autor, Levy and Murnane (2003) for a more detailed 

description of the tasks given these labels. 

 

The model assumes computer capital prices to fall exogenously with time, due to technological 

advances. The model is further built on three assumptions. Firstly, computer capital is more 

substitutable for human labor in carrying out routine tasks than non-routine tasks. Secondly, 

routine and non-routine tasks are themselves imperfect substitutes. Lastly, marginal productivity 

of non routine inputs is increased by greater intensity of routine inputs. Based on this model, they 

argue that industries invest more in computer capital as its price declines, especially industries 

initially intensive in labor input of routine tasks. This in turn raises the marginal productivity of 

non-routine tasks, causing workers to reallocate labor supply from routine to non-routine task 

input. As a result, labor input of routine tasks, for which computer capital substitutes, is reduced,  

while demand for non-routine task input, which computer capital complements, increases. This is 

equivalent to resulting in a raise of relative demand for highly educated workers, who hold 

comparative advantage in non-routine versus routine tasks.  

 

They argue that this displacement of jobs that are intensive in routine tasks may have contributed 

to the polarization of employment, by reducing job opportunities in middle skilled occupations. 

Jobs that are intensive in either cognitive or non-routine manual tasks on the other hand have 

proved more vexing to automate due to the demand for problem-solving and creativity. Since 

routine and non routine jobs are generally found at opposite ends of the occupational skill spectrum 

- the ”consequence may be a partial “hollowing out” or job polarization of employment 

opportunities”, as described by Acemoglu and Autor (2011).  

 

In the same paper, the authors provide evidence of routinization by studying the trends in the 

“quality,” skill content, and task content of U.S. jobs, they explore the changes in the composition 



 

 

13 

 

of job tasks in the US, using representative data on task input from 1960 to 1998. They use data 

on detailed tasks from the Dictionary of Occupational Titles (DOT) to associate particular 

occupations with the intensity of use of routine and non routine cognitive and manual tasks. They 

find that within industries, occupations, and education groups, computerization is associated with 

reduced labor input of routine manual and routine cognitive tasks and increased labor input of non-

routine cognitive tasks. At a industry-level, they show that industries that were relatively intensive 

users of occupations that use routine tasks had more computerization and that the extent of the use 

of routine skills had fallen in these industries.  

 

Similar evidence of polarization emerging in the US labor market around the 1990s are provided 

by Autor Katz and Kearney (2006) 5and Acemoglu and Autor (2011). These studies build on 

ALM´s methodology, but extend data using additional data and extending the time period. Goos 

and Manning (2003) document job polarization in Britain between 1975 to 1999, another country 

with a large increase in wage inequality. Other literature covering the emergence of job 

polarization across the US and other advanced economies include Carboneri, Offermanns & Weber 

(2016), and Autor(2015). Though these studies use slightly different methodologies and data, the 

common finding is that there appears to have been job polarization in both US and other advanced 

countries, mainly OECD countries, during the last decades.   

 

Job polarization has also been suggested to be explained by other recent trends in offshoring and 

outsourcing, which is argued to have replaced workers in certain occupations and tasks the past 

decades (ALM 2003, Autor et al. 2006, Acemoglu and Autor 2011, Autor and Dorn 2013, Wright 

(2014), Acemoglu and Restrepo 2017). Goos, Manning, & Salomons (2014) show that job 

polarization is pervasive across 16 Western European countries over the period 1993-2010. They 

also quantify the importance of routinization relative to offshoring in explaining job polarization, 

finding that routinization plays a much larger role.  

 

The routinization hypothesis provides two implications for the relationship between technology 

and tasks. Firstly, that routine tasks are more amenable to automation. This is supported in several 

                                                
5 Autor Katz and Kearney (2006) extend ALM´s data analysis in industry-gender-education cells using 

data through 2002.  
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studies, including Autor, Katz & Kearney (2006), Goos, Manning and Salomons (2007), Autor 

and Dorn (2013). Secondly, that increased use of technology is, at least in part, a response to a 

decline in technology investment prices. Firms decide on investing in new technologies depending 

on relative factor prices for labor and capital. This latter has been supported by Acemoglu (2002), 

Autor (2014) and Decanio (2016), Arntz, Gregory and Zierahn (2016), Graetz and Michaels 

(2017).  

 

As technological change alters skill demand, the excess supply of middle skilled occupations will 

undoubtedly have an impact on the wage levels. Most literature mentioned so far suggest that the 

effect of technological change on wages depends primarily on the elasticity of substitution between 

human and robotic labor, thus having either a positive or negative effect on wages (Decanio 

(2016)). Acemoglu and Autor (2011) provides an extended version of the task model used by 

ALM, which suggests that the nature of changes on wages will be different for the three suggested 

skill categories.  

 

 

The idea that substitution of human labor for machines depends on cost and comparative 

advantage, is further supported by Acemoglu and Autor (2011). The authors provide an exhaustive 

analysis of the relationship between skills, tasks and technology to link job polarization with the 

routinization hypothesis proposed by ALM (2003). The novelty of their study is the focus on how 

the direction of the technical change alters skill demand, and further how it can explain changes in 

wage structures.  

 

While their model builds on the task-based model suggested by ALM, Acemoglu and Autor relaxes 

assumptions such as assuming that skills and tasks are equivalent. They define the distinction 

between a task and a skill as a task being “a unit of work activity that produces output,” whereas 

a skill is a “worker's endowment of capabilities for performing various tasks”.  

 

4.1.3. How technological improvement may alters wages (for three types of 

skilled workers) 
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They further think of technology as either factor augments high skill, middle skill, or low skill,  

either low, medium, and high skill workers, assuming that the assignment of skills to tasks is 

endogenous. Each worker is endowed with one of these types of skills, and allocate their skills to 

different tasks depending on labor market prices. Tasks are ranked in order of complexity. Medium 

skill workers are for example more productive than low skill workers, but less productive than 

high skill workers in more complex tasks. While all tasks can be performed by either skill workers, 

there exists a comparative advantage of skill groups, which will differ across tasks. Given the 

prices of different tasks and the wages for different types of skills in the market, firms and workers 

choose the optimal allocation of skills to tasks.  

 

Skills, embodied in labor, and technologies, embodied in capital6, offer competing inputs for 

accomplishing various tasks. Which of these inputs is applied depends on cost and comparative 

advantage, and on the direction of the technical change. The authors use comparative statics to 

show that wages can be obtained as the values of the marginal products of different types of skills.  

 

For instance, a technical change making high skill workers uniformly more productive will expand 

the set of tasks performed by this group of workers, while contracting the set of tasks performed 

by low and medium skilled workers. The increase in high skill biased technical change can 

therefore reduce the wages of medium skilled workers by eroding their comparative advantage and 

displacing them from (some of) the tasks that they were previously performing.  

An increase in the supply of middle skilled workers, or a middle skilled biased technical change, 

on the other hand, will put downward pressure on the wages of both low and high skill workers as 

it raises the set of tasks performed by high skilled workers, while reducing the set performed by 

low skilled workers.  

 

Autor and Acemoglu´s framework also shows how technological change will alter the wage ratios. 

An increase in high skill biased technical change will increase ratios between high skill wages 

relative to both medium and low skill wages, but reduce medium skill- relative to low skill wages, 

despite the fact that it reduces the set of tasks performed by both medium and low skill workers. 

                                                
6 It also looks includes trade and offshoring, but I focus on the relationship between labor and capital 
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The direct effect contracts the set of tasks performed by medium workers. However, as medium 

skill workers become cheaper, firms expand the set of tasks that these workers perform. This 

indirect effect never dominates the direct effect, and thus wages of medium skill workers decrease 

relative to those of low skill workers when there is high skill biased technical change.  

 

Their model shows that progress in technology will have different implications on the different 

skill groups. Depending on which set of tasks expands (contracts) more, wages of the relevant skill 

group increase (decrease). Changes in technology affects the allocation of tasks across skills, 

implying that a factor augmenting increase in productivity for one group of workers can reduce 

the wages for another group by shrinking the set of tasks that they are performing.  

 

The authors provide evidence of changes in wage levels and the distribution of wages have been 

accompanied by “systematic, non-monotone shifts in the composition of employment across 

occupations”, with rapid simultaneous growth in occupations in both ends of education and wage 

groups in the US. They also show that job polarization appears to be at least as pronounced in the 

European Union as in the US. Their findings suggest that job polarization seems to not only reflect 

a change in the composition of skills available in the labor market but also a change in the 

allocation of skill groups across occupations.  
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4.2. How different types of technological change affect the labor 

market 

 

While trends in employment and education suggest technology to have led to job polarization,  

there is little evidence establishing a causal effect from the increased use of  technological change 

on labor markets. The literature investigating a causal effect of robot adoption in particular is even 

less exhaustive. Two studies in particular, Graetz and Michaels (2017) and Acemoglu and Restrepo 

(2017), provide novel evidence of a causal impact of robot adoption on employment and wages, 

as well as other components of the labor market. Both studies are based on models influenced or 

based on the framework(s) presented above, however accounting for the effect of robots, in 

particular.  

 

 

 

 

Investigating the impact of ICT technology, Carboneri, Offermanns, Weber (2016) find that a 

decline in routine occupations and an increase of high skill workers are associated with a higher 

elasticity of substitution between labor and ICT. They investigate empirically two driving forces 

for job polarization: the decline of ICT investment price and the presence of frictions in the labor 

market. They find that cheaper ICT equipment is a promising channel to explain the decline of the 

documented labor share in 8 European countries, given an elasticity of substitution with labor of 

about 1,17. Job frictions, on the other hand, do not seem to be a driving force of the decline. Similar 

findings are suggested by Michaels et al (2009), who test ALM´s routinization hypothesis using 

data on the US, Japan and nine European countries over the period of 1980 to 2004. They find that 

countries and industries (within countries) that differentially increased investment in ICT 

technology raised their relative demand for high skill workers and reduced their relative demand 

for middle skill workers, consistent with ICT-based polarization. Their results suggest that 

technologies account for up to a quarter of the growth in demand for highly educated workers. 

 

4.2.1. How ICT advances affect labor markets 
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ALM (2003) argue that there are strong economic incentives for firms to substitute robots for 

relatively expensive human labor. Similar predictions are suggested by Graetz and Michaels 

(2017), who classify many of the routine tasks as  “replaceable” and develop a model of firms´ 

decisions to adopt robot technology and use robots in production. The novelty of Graetz and 

Michaels model is that they link the replaceability of these tasks to the improvement and increase 

in robot adoption, specifically. Following the same line as ALM, they predict that human labor 

demand over the utilization of a robots depends on changes in the respective factor price ratio. In 

this model, firms have a technology choice between human and robotic labor. The choice is simple: 

firms will adopt robots when profits from doing so exceed profits from using the human labor-

technology only by at least a fixed setup cost (assuming there is a fixed cost when adopting robots).  

 

Based on this model, Graetz and Michaels (2017) study the impact of robot adoption across 14 

industries in 17 countries from 1993-2007. They define robot density as the stock of industrial 

robots divided by hours worked (in millions). While they find that robots appear to reduce the 

share of hours worked by low-skilled workers relative to middle-skilled and high-skilled workers,  

they find no significant implications for aggregate hours worked. Their results are thus consistent 

with viewing technical change as skill biased, but not with predictions provided by the 

routinization hypothesis. Their results suggest that robots do not polarize the labor market, as they 

appear to hurt the relative position of low-skilled workers rather than middle-skilled ones.   

 

Acemoglu, Restrepo (2017) also investigate the effect of the increase in industrial robot usage, but 

on US local labor markets between 1990 and 2007. They use a slightly different measure than that 

used by Graetz and Michaels, measuring the exposure to robots defined as number of robots 

adopted divided by number of employees within each commuting zone in the US. Their analysis 

presents contradictory results to those of Graetz and Michaels, as they find  large and robust effects 

on employment across commuting zones. Their findings suggest that a commuting zone with a 

value of exposure to robots equal to the average for the US experienced 0,37 percentage points 

4.2.2. How  robotization affects labor markets 
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lower employment to population ratio. This fall in employment is equivalent to saying that one 

more robot reduces employment by 6,2 workers, thereby reducing 

the employment to population ratio by about 0.18-0.34 percentage points.  

 

On an industry-level, they find that the effects of robots concentrate in manufacturing and 

especially heavily robotized industries (automobile manufacturing, electronics, metal products to 

mention a few. They also find that there are three sectors showing positive effects in some 

specifications: finance, public sector, and non robotized manufacturing. When looking at effects 

on specific occupations, they find that the effect of robot adoption is negative on essentially all 

occupations, with the exception of managers. Their findings suggest that the major categories 

experiencing substantial declines are routine manual occupations and blue-collar workers, 

implying that their results are consistent with theory presented above.  

  

Drawing attention to the effects of increased robot adoption on wages, Acemoglu and Restrepo 

(2017) find that robots also have a large and negative effect on wages, reducing wages by 0.25-0.5 

percent. Their results suggest that a value of exposure to robots equal to the average led to a 0,73% 

lower wage growth compared to a commuting zone with no exposure to robots. This is equivalent 

to one more robot per thousand workers reducing average yearly wages by about 200 dollars in 

the affected commuting zone. The authors suggest that these numbers may reflect both direct 

effects of robots on employment and wages, but also indirect spillover effects that might arise 

because of a resulting decline in local demand. Graetz and Michaels (2017) on the other hand find 

that average wages are boosted by increased robot adoption.   

 

The contradictory results of the two deserves commenting. Both studies include results robust to 

several robustness and specifications checks. Both analyses control for other trends that might be 

related to trends in employment, such as offshorability, routineness and imports from China. 

Endogeneity concerns are also controlled for, as the studies each construct an instrument variable. 

Differences in the results of the two studies might therefore lie in the sample of countries analyzed. 

Another explanation could be the different use of measure of robot density or in general different 

methodologies, or different IV strategies. 
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4.3. Why the impact on overall employment remains ambiguous  

 

Technological change has always been accompanied by the fear that technological progress will 

lead to mass unemployment, i.e. “technological unemployment”, coined by Keynes in 1930.  

Experts today are split on the validity of this concern, as some experts are more pessimistic on the 

future of jobs, while others argue that there is a tendency to overestimate the technological 

capabilities and their negative impact on employment (Arntz, Gregory and Zierahn (2016), Autor 

(2014, 2015). Previous literature, both theoretical and empirical, suggest that the effect of 

increased robot adoption (and other technological advances) on overall employment and wages is 

inconclusive. The following arguments have been suggested as explanations for why the impact 

on remains ambiguous, and why technological improvement most likely won't result in mass 

unemployment.  

 

 

Technology is a slow process  

Firstly, the utilization of new technologies is a slow process, and its utilization can be lagging, so 

that technologic substitution might not always take place as expected (Arntz, Gregory and Zierahn 

(2016)).  This study also argues that automation and digitalisation are unlikely to destroy large 

number of jobs, partially due to the legal, as well as ethical obstacles that may prevent a 

technological substitution or at least substantially slow down its pace.  

 

New technology might lead to increased labor demand 

Earlier automation has led to the disappearance of some old industries and the creation of new 

ones,  that are still important to this day. This side effect from innovation e.g. technological 

development, called “Creative destruction” is reflected through the destruction of some jobs and 
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their replacement by new jobs or/and new equipment. It was later developed by Baumol (1967): 

rising income may spur demand for activities  in sectors that have nothing to do with the 

technological change, which Baumol categorized as “technologically lagging” sectors. Example 

of these are for example production of haircare, restaurant meals or personal fitness (Autor, 2015).7 

These sectors are neither strongly complemented nor substituted by current technologies. Further, 

other sectors and occupations might expand to soak up the labor freed from tasks now performed 

by machines and increased productivity due to new machines may even expand employment in 

affected industries (Acemoglu and Restrepo 2016). The concept of “creative destruction” e.g. that 

technological progress can interact with the labor market to increase employment in some 

occupations or sectors while decreasing it in others has been supported by Acemoglu, 2002, 

Acemoglu and Autor 2011, Autor 2014, Goos et al 2014. Komlos (2014) on the other hand argues 

that new technologies created today bring about larger negative externalities than in previous 

epochs, due to the different nature of destruction and the much higher intensity of automation. 

According to Komlos, components of the creative destruction were smaller in earlier waves of 

creative destruction, in the sense that the people who were displaced earlier did not necessarily 

have a problem finding a new job because the new industries were labor intensive and did not 

require skills that one learned at the job.  

 

In addition, macroeconomic mechanisms may compensate for the negative labor saving effects of 

new technologies. According to Arntz, Gregory and Zierahn (2016), three mechanisms may result 

in an increase in labor demand and counteract the labor-saving impact of technological advances. 

Firstly, these technologies need to be produced in the first place, thereby creating a demand for 

labor in new sectors and occupations. Further, new technologies may increase the firm's 

productivity, which in turn might increase a firm's competitiveness. Increased productivity might 

also result in lower costs and prices, in turn leading to higher product demand. As a result, firms 

might demand more labor, which can partially counteract the labor-saving effect of technologies. 

Lastly, labor productivity might increase to the extent that new technologies complement workers. 

This might reflect in higher wages, or higher employment, or both, which in turn raises labor 

                                                
7 Autor argues that demand for these goods appears strongly income elastic, so that rising productivity in technology 

leading sectors may boost employment nevertheless in these activities. 
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income. As a consequence, workers may demand more products and services, thereby again 

increasing the demand for labor in the economy. 

An additional argument provided by(Arntz, Gregory and Zierahn (2016)) is the role of the 

endogenous wage levels. They argue that wage levels will “react to an excess labor supply by 

lowering wages, hence improving worker’s employment prospects again”  

 

The second mechanism have also been described by Acemoglu and Restrepo (2017) as the positive 

productivity effect8 on labor demand. According to the authors, there exists a displacement effect 

which will however negatively affect labor demand. It occurs as robots displace workers, thereby 

reducing the demand for labor as fewer workers are needed to produce a given amount of output. 

As a result, they estimate that technological improvement 9 can have a positive or negative effect 

on employment and wages, depending on how automation, e.g.  robotization, interacts and shapes 

labor demand through different forces.  

 

Firms decide on investing in new technologies depending on relative factor prices for labor 

and capital  

In an increasingly complex market with consumers demanding both more quantity and quality, 

firms have incentives to make the right actions in order to maximize profits and/or increase 

competitiveness, or even just remain competitive. 

 

Increases in competitiveness might also incentivize firms to increase robot adoption. Goos et al 

(2014) develop a model of labor demand at the industry level and find that routine-intensive 

industries that are at a higher risk of introducing labor saving technologies gain in competitiveness 

and face an increasing product demand. IFR (2016) predicts that increased robot adoption by firms 

is, and increasingly will be, a response to growing consumers markets. Global competition, the 

decline in products life cycle and the increase in the variety of products require modernization and 

expansion of production facilities, including flexible automation.  

                                                
8 The productivity effect is further decomposed into the price and scale productivity effect. The price-productivity 

effect is reflected through a fall in the costs of production in an industry, lowered by automation. This will expand 

the industry and thus increase its demand for labor. The scale productivity effect occurs when a reduction in costs 

results in an expansion of total output, thereby also increasing the demand for labor in all industries. 
9 Acemoglu and Restrepo look specifically at the effect from increased robot adoption 
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Graetz and Michaels (2017) suggest that robot adoption has an ambiguous effect on overall 

employment. Based on similar arguments to those presented by Arntz, Gregory and Zierahn, they 

argue that whether a decline in robot prices results in more workers required to meet the new output 

demand, or increase use of robots, depends on firms’ response to the fall in the price of robots. 

Although decreased technology investment prices might incentivize firms to substitute human 

labor for machines, there is no guarantee that firms will do so.  

 

Some tasks might still be difficult to automate - Paradoxes of technological improvement 

While for a long time, automation has consisted of computerizing codifiable routine tasks, today, 

machines can undertake an increasing spectrum of tasks earlier challenging to automate. However, 

some tasks are still proved vexed to automation. This raises the following question: Why are robots 

proving to be able to substitute for so many different tasks previously performed by humans - 

while there are still some tasks that prove to be difficult to transfer to robots? This is the basis of 

Polanyi´s (1966) observation, which Autor (2014)  refers to as Polanyi’s Paradox: “We know 

more than we can tell”, i.e. many of the familiar tasks we perform are  difficult to codify and 

automate, as we don´t “know the rules”. There remains tasks that we are engaging in, that we only 

tacitly understand how to perform. Following Polanyi’s observation, Autor claims that humans are 

likely to retain some advantages over machines for the foreseeable future. Similarly, Arntz, 

Gregory and Zierahn (2016) claim most jobs probably aren't sufficiently well defined to be actually 

substituted by machines. They further argue that there is also societal value attached to humans 

performing certain tasks that tends to preserve their comparative advantage.     

 

 From an era of “man vs machine” into one of “man and the machine” 

The effect of new technologies will also depend on the adjustment of workplace tasks. For some 

industries, an increase in automation will not necessarily mean a decline in employment, but rather 

a shift in the tasks needed to be done (Acemoglu and Restrepo (2017)).  It can for example be 

associated with new entrepreneurial opportunities and jobs (Decanio 2016), or tasks involving the 

monitoring of machines (Arntz Gregory and Zierahn 2016). 
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As the tasks performed by robots become increasingly complex, the relationship between human 

and machine changes over time. Both are substitutes in early phases of technological development 

and become complements as the technology advances (Decker, Fischer & Ott (2017). Focus should 

therefore also be drawn to the potential shift in the relationship between human and machine from 

a formerly substitutional to a complementary one. Decker, Fischer, Ott (2017) focus on the 

relationship between human workers and robots in the service sector. They argue that depending 

on whether the collaboration between humans and robots constitutes a substitution of tasks or 

complementary task sharing, the impacts on the labor markets can be completely different.  

 

IFR (2016) further predicts a growing trend in the use of so-called “Cobots” - collaborative robots, 

predicting that cobots are to “lead the departure from “man vs machine and usher into the man and 

machine”. This implies that theory is changing with the increased intensity and complexity of 

automation, the new so-called era of “machine and human”, by the introduction of “cobots” bound 

to challenge previous theory and empirical evidence investigating the relationship between 

technological change and human labor.   
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5. Introducing the regression and variables included 

 

5.1. Regression analysis 

 

In the regression analysis, the equation estimated takes the following form: 

 

𝛥𝑌𝑐𝑖 = 𝛽1 + 𝛽2(𝑓𝑟𝑜𝑏𝑜𝑡𝑠𝑐𝑖) + 𝛽3𝑋𝑐𝑖 + 𝜀𝑐𝑖     (1) 

 

 Where 𝛥𝑌𝑐𝑖 is the change in the outcome of interest, measured as the difference in the outcome 

between 1995 and 2015. I estimate regressions on 1995-2015 changes, because I am interested in 

long run trends. In the main regression, the outcome of interest is the change in log of hours worked 

between this time period. I also look at how the increased robot adoption may have changed other 

outcomes such as wages and labor shares. I also check for differences in the impact when using 

changes in employment as an alternative outcome of interest to changes in hours worked. The main 

explanatory variable, 𝑓𝑟𝑜𝑏𝑜𝑡𝑠𝑐𝑖  is some measure of the change in robot adoption, relative to the 

hours worked. 𝑋𝑐𝑖 is a vector of controls, including country and industry fixed effects, as well as 

other inputs. 

 

5.2. Robot density to explain changes in hours worked  

 

The main regressor in the empirical analysis is changes in robot density, defined as: 

 

𝑅𝑜𝑏𝑜𝑡𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛𝑎𝑙 𝑟𝑜𝑏𝑜𝑡𝑠

𝐻𝑜𝑢𝑟𝑠 𝑤𝑜𝑟𝑘𝑒𝑑 (𝑚𝑖𝑙𝑙𝑖𝑜𝑛𝑠)
     (2) 

 

This measure is similar to the one used by Graetz and Michaels (2017). As with the outcome of 

interest, I look at changes in this measure from 1995 to 2015. 
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Robot density in a given industry and country in year, 𝑦 is defined as 

 

𝑅𝑜𝑏𝑜𝑡𝑑𝑒𝑛𝑠𝑖𝑡𝑦 =  𝐻𝑐𝑖 1995 ×  
𝑅𝑜𝑏𝑜𝑡𝑠𝑖𝑐𝑦

𝐻𝑖𝑐𝑦
    (3) 

 

Change in robot density from 1995 to 2015 is expressed by the following equation: 

 

∆ 𝑅𝑖𝑐𝑦 =  ∑ 1995𝐻
𝑐𝑖 × (

𝑅𝑜𝑏𝑜𝑡𝑠𝑖𝑐2015

𝐻𝑖𝑐𝑦2015
− 

𝑅𝑜𝑏𝑜𝑡𝑠𝑖𝑐1995

𝐻𝑖𝑐1995
)   (4) 

 

Where 𝐻𝑐𝑖 1995 stands for the initial (1995) share of hours worked in a given industry (i) in a given 

country (c) stands for the total number of operational robots in industry i and country c, while 𝐻𝑐𝑖  

stands for the total hours worked in that specific industry, country and year. 
𝑅𝑜𝑏𝑜𝑡𝑠𝑖𝑐2015

𝐻𝑖𝑐𝑦2015
 and  

 
𝑅𝑜𝑏𝑜𝑡𝑠𝑖𝑐1995

𝐻𝑖𝑐1995
 measures robot densities in the last and first year of the analysis, respectively. 

Depending on the period investigated, the latter component will vary. This variable is further 

weighted by an industry’s initial (1995) share of hours in the country-wide amount of hours 

worked, ∑ 𝑐𝑖1995𝐻
𝑐𝑖 . Weighing the robot densities ensures that the average increase in robot 

density reflects the relative importance of industries. 
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5.3. Potential concerns with the regression model 

 

Adjusted form of regression 

Findings suggest that there are high differences in changes in robot density. In addition, while 

some countries, such as Germany, had already adopted robots in the initial 1995 year, it was not 

until 2006 that all countries included in the sample had adopted industrial robots. The skewness in 

the distribution of changes might be a concern, as it would make fitting a linear model using raw 

changes in density challenging. I therefore also test other alternatives to measure the impact of 

robot density on hours worked, finding that I using as a regressor the percentile of changes in robot 

density is more correct. This is further discussed in section 4.   

 

Controlling for other trends 

There is a possibility that the results are related to other trends affecting changes in employment 

(hours worked). For instance some industries might face adverse shocks that can also have a 

negative impact on the hours worked, resulting in some unexplained effect on the dependent 

variable. If not taken account for, such variables could create omitted variable bias, making the 

dependent variable correlated with the error term, and possibly confounding the results. To address 

this concern, I control for changes in ICT and non-ICT capital services, which might also have had 

an impact on employment during the past decades, as suggested in previous literature.  

 

Other potentially confounding trends which have become more prevalent during the last decades 

period could be related to imports from low-cost countries10, migration incentivized by higher 

wages abroad, or other industry level task characteristics, such as the potential disappearance of 

routine jobs and offshorability. Similar control variables have been used in other studies 

investigating the impact of robots on labor markets, see Graetz and Michaels 2017 and Acemoglu 

and Restrepo (2017).  These studies find that empirical results remain statistically significant when 

controlling for such trends and labor market shocks, however reduced in magnitude. 

 

                                                
10 For example Chinese imports shocks. Studies investigating the negative effect of Chinese imports on employment, 

see Autor, Dorn and Hanson (2013), or Balsvik, Jensen  and  Salvanes (201…) 
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Such controls are however not included in this analysis due to limited access to data, but future 

analyses are advised to include these. I therefore suggest to interpret empirical findings of this 

analysis cautiously. 

 

I also control for previous baseline characteristics, such as the log wage and labor productivity 

(measured as value added divided by hours worked). These control variables are included in the 

𝑋𝑐𝑖 vector in the general regression equation (1). For instance, changes in capital services, 

especially ICT, might have had an impact on hours worked during the period, as seen in section 2. 

Excluding changes in these services might lead to an overestimation of the impact of robot 

adoption, on hours worked. 

 

Exogenous robot density as a proxy of improvements in the world technology 

While the control variables and robustness specifications do not solve all potential problems of 

omitted variables, they provide some robustness to the empirical results. There are however still 

concerns that other factors could confound the estimates. Another concern is that the main 

explanatory variable, changes in robot density, is explained by something unobserved in the error 

term, resulting in endogeneity.  

 

For instance, the empirical strategy used in the analysis could be compromised if changes in robot 

adoption in other advanced economies are correlated with adverse shock to European industries. 

For instance, there may be common shocks affecting the same industries in the US and Europe. 

These could be in the form of import competition, or rising wages, which could cause industries 

to adopt robots in response.  

 

To address this issue, I run regressions using an instrumental strategy. Instrumental variable (IV) 

strategies allow for consistent estimation when the explanatory variable is correlated with the error 

terms in a regression model.(source). The IV is a measure of exogenous robot density which I 

compute using the changes in robot density in the US, another advanced economy. The exogenous 

robot density is used as a proxy of improvements in the world technology frontier of robots. This 

strategy is similar to that used by Acemoglu and Restrepo (2017). Running the regression using 

the IV allows to focus on the variation that results solely from industries in which the use of robots 

https://en.wikipedia.org/wiki/Dependent_and_independent_variables
https://en.wikipedia.org/wiki/Correlation
https://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
https://en.wikipedia.org/wiki/Errors_and_residuals_in_statistics
https://en.wikipedia.org/wiki/Regression_analysis
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has been concurrent in advanced economies. One concern is however that IFR industry-level data 

in the US starts only in 2004, but in 1995 in the European countries included in this analysis. This 

provides some concerns as to use it as an IV when analyzing the whole time period, whereas this 

concerns are resolved/mitigated when splitting the time period in two and only looking at the time 

period from 2005 and 2015. The construction of the IV is explained in more details in section 4.  

 

The first stage will take the following form  

 

∆𝑅𝑖𝑐𝑦𝐸𝑈𝑅 =  𝛾 𝑅𝑖𝑦𝑈𝑆 +  𝑋𝑖𝑐   (5) 

 

𝑋𝐶𝐼 is the vector of controls mentioned above, including controls for changes in ICT share in total 

capital services, initial log wage in 1995, and changes in labor productivity.  

 

Other Robustness checks 

I further control for different specifications. Some industries might have experienced a 

significantly higher increase in robot density than others, making it possible that they are the driver 

of the results. This might also be the case for certain countries relatively more intensive in robot 

adoption. To address this concern, I separate the specific industry from the sample when running 

the regression. Excluding this from the main regression, the robot density includes only variation 

coming from industries other than this industry. A similar robust test is done for the country having 

experienced the highest increase in robot density. Similar controls have been used by for example 

Acemoglu and Restrepo (2017). Other controls are investigating the impact on employment instead 

of hours worked, and excluding unspecified industries.  
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6. Data description 

6.1 Data sources and methodology used for construction of the 

datasets 

 

While section 3. gives an overview of the regression form and the variables needed in order to 

make the estimates as robust as possible, section 4 provides an explanation to how I construct the 

data and different control variables. I begin by presenting the two main sources of data, before I 

explain several problems met under the construction of the data.  

 

Data on robot adoption 

The first source of data is from International Federation of Robotics (IFR)´s newest release from 

2016. IFR (2016) provides data on the number of industrial robots delivered to -  and operational 

in - each industry, by each country and year. The latest release includes data on use until the year 

2015.  

 

An industrial robot is defined as “An automatically controlled, reprogrammable, multipurpose 

manipulator programmable in three or more axes, which can be either fixed in place or mobile for 

use in industrial automation applications” (IFR 2016). It is important to note that each element of 

the definition are required to fulfilled in order for a machine to be categorized as an industrial 

robot. Industrial robots are further classified by their type and can be broken down by mechanical 

structure. They are also classified by industrial branches they are used in, which is what the data 

of this analysis is based on.  

 

The increased use of service robots has also motivated literature investigating the degree of 

substitution between service robots and human labor (Decanio 2016). A service robot is defined 

by IFR as  “a service robot is a robot that performs useful tasks for humans or equipment excluding 

industrial automation application”. The classification of a robot into a service robot or industrial 

robot relies therefore on its intended application. Manipulating industrial robots could however 

also be regarded as service robots, provided they are installed in non-manufacturing operations.  
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The data on industrial robots is broken down by industrial branches reported in accordance with 

the International Standard Industrial Classification of All Economic Activities (ISIC) revision 4.0, 

usually from two up til four digits. The IFR provides data on both the number of robots delivered 

to each industry, as well as the number of operational robots, in each country and year.  

 

A second major source of data is EUKLEMS, using the newest release from September 2017.  

Using the newest release allows me to include data until the year of 2015. The analysis includes 

data covering two decades, from 1995 to 2015, while the analysis of the closest similar studies, 

Acemoglu and Restrepo (2017) and Graetz and Michaels (2017), only covers the time span of 

1993-2007. Extending the time period allows me to look at changes during the last decade, which 

is especially interesting as some countries did not even adopt robots until the year of 2006.  Figure 

6 and 7 in the Appendix highlights how the increase in robot density has been remarkably higher 

in the last decade than from 1995 to 2015, while the increase in total robots in this specific labor 

market has a steady increase in both decades.   

 

Further, countries covered in this thesis are not the same as the ones used in the studies mentioned 

above. Using the new data also allows me to cover more countries in the initial regression, as data 

on some countries where not available, or not exhaustive, in earlier releases. At the same time, 

data on adopted robots is available from 1995 for the countries included in the analysis.  

 

Extending the time period allows me to analyze the effect over longer time. The risk of extending 

the period after 2007 is the potential concern of overestimating the impact of change in robot 

adoption on hours worked, as there has been large cyclical fluctuations that has had a negative 

impact on employment since. It is however challenging to control for potential confounders as a 

proxy for the financial crisis, in order to verify that results are not influenced by the potential 

impact of the financial crisis and from the subsequent recovery. I therefore suggest to interpret 

empirical findings of this analysis cautiously.  

 

Data from EUKLEMS include information on number of people employed in labor in the various 

industries and hours worked per employees, as well as labor compensation.  
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Main outcome of interest  

The main dependent variable in the analysis is change in hours worked between 1995-2015, so I 

create a measure for change in log of hours worked for that period. Other outcomes of interest are 

changes in wages and changes in labor share. I also look at changes in employment, defined as the 

number of people employed (in millions) as a comparison for the choice of hours worked. I choose 

hours worked as my main regressor because robots will not necessarily replace workers they may 

also simply affect the hours worked negatively or positively. In addition, it is more advantageous 

to use data on hours worked as the countries covered can have longer or shorter work days, more 

holidays or other labor characteristics of such that can differentiate from one country to another. 

Results from using employment instead of hours worked as an outcome are also included, as a 

specification check. 

 

The release also contains information on ICT and non-ICT capital services11, and value added, 

which I use to construct control variables. As with the outcome of interest, I create a measure of 

changes in both variables. These are used to control for potential confounders, as explained in 

section 3. I also include initial wages from 1995, using data on labor compensation. In addition, 

by using data on value added and hours worked, I create a measure of initial 1995 labor 

productivity12, defined as value added per million hours worked. 

 

To construct control variables on changes in ICT and capital services, I am able to use data on this 

for the period 1995-2015 from only 10 countries. Data on capital services are missing for the year 

2015 for Italy, the Czech Republic and Sweden. Missing values for these countries are computed 

using the value from the previous year. This provides a conservative estimate of the 2015 value 

for these countries. Some countries do not have data on capital services at all during the period of 

the analysis. This regards Greece, Lithuania, Portugal, Romania. Others have data on this, but 

starting from a later time period, namely Netherlands, Slovakia, Slovenia and the UK13. Data on 

capital services for the whole period of the analysis is available for the following countries: 

Austria, Belgium, Czech Rep., Germany, Denmark, Spain, Finland, France, Italy and Sweden. 

                                                
11 Values are reported in volumes, based on 2010 indices.  
12 The newest EUKLEMS release also includes data on labor productivity, named LP_I, but data is missing on this 

measure for many of the countries included in the sample. 
13 Data on this in Sweden is covered from 1993, but data is missing for the industry 20-21.  
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When controlling for changes between 2005 and 2015, I am able to include data on capital services 

from 13 out of the 18 countries in the sample.   

 

Conversion rates 

All values in the EUKLEMS 2017 release are reported in national currencies. However, not all 18 

countries included in the sample have adopted the euro. This regards the following countries: UK, 

Czech Republic, Denmark, Romania and Sweden. There is therefore a need to convert values 

reported in national currency into a common currency of euros. I convert other national currencies 

used in these countries using the annual bilateral exchange rates from Eurostat (2017). Eurostat 

provides values for exchange rates between national currencies and euro even in the years before 

1999.  

 

Table 5  show how units for all countries included have been converted to euros for years prior to 

the introduction of the euro in the European market in 1999. In the data from EUKLEMS, units 

for years prior to 1999 are reported in fixed 1999 exchange rates14. This table is similar to, and 

based on, the table presented in a methodology report from 2007 explaining how the EUKLEMS 

datasets are constructed, (Timmer, Moergastel, Stuivenwold, Ypma, O’Mahony and 

Kangasniemi). The latest report on the methodology used in constructing the EUKLEMS datasets 

is from 2009, which is the one the 2017 EUKLEMS data is based on. This report does not however 

include any indication of how the national currencies prior to the adoption of euro (in 1999) have 

been reported, or how units in countries such as Slovenia, Slovakia or Lithuania have been 

reported, countries that did not adopt the euro until after 2007. 15As this remains unclear, I choose 

to convert values from years before 1999 using the 1999 annual conversion rate, while values for 

years after are converted using the annual conversion rate for each respective year. A conversion 

table (Table C) presenting the different conversion rates to euros is included in the Appendix.   

                                                
14 Values for labor compensation in France in the years 1995-1999 are for example reported converting French 

Francs to Euro with the 1999 official fixed Euro conversion rate (6.55957 FRF/EUR). 
15 I find no evidence of how EUKLEMS have converted values before 1999 in the newest release of the 

methodology report. Going back to the report published in 2009 I find information on how data was converted to 

euros for euro-adopting countries. This report includes a table showing that values from before 1999 were converted 

using the 1995 conversion rates given by Eurostat. I therefore assume that the newest release builds on the same 

methodology, and apply the same method to convert values for non-euro countries.  
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An early obstacle for constructing the data when using both IFR and EUKLEMS data, is that the 

two data sources use different industry classifications. In addition, data from IFR does not cover 

all industries covered in the EUKLEMS datasets, and vice versa. I am able to match 15 of the 39 

EUKLEMS industries. These include sectors such as agriculture, electronics, transport equipment, 

to mention a few. By not including industries from the IFR dataset such as “All other non-

manufacturing branches” “All other manufacturing branches” and “unspecified” we lose data on 

some operational robots.  

 

Data from IFR is based on the ISIC rev. 4 classification, while EUKLEMS data is based on the 

NACE 2 classification. Data from EUKLEMS on Basic output, input and productivity data are 

according to the ISIC Rev. 4 (NACE Rev. 2) industry classification. A correspondence table 

provided by UNSTATS16 (United Nations Statistics division) validates the comparison between 

data from both sources. Industries are however grouped differently in the two datasets, making it 

necessary to aggregate some in the IFR dataset in order to match the corresponding ones in the 

EUKLEMS dataset. Some industries also require re-coding of the industry, to make sure that the 

two datasets are merged correctly into one. 

 

Information on all industries, on both detailed and aggregate sectors, is available in data from 

EUKLEMS. Only some are included in the IFR data. Aggregated sectors included in both are: 

Agriculture, Forestry and Fishing, Mining and Quarrying, Total Manufacturing, Electricity, Gas 

and Water Supply, Construction, and Education. The total manufacturing sector is further 

decomposed into industries at 2-digit level, for which data is available from both EUKLEMS and 

IFR. Most of these industries included in the EUKLEMS release are aggregated into industry-

groups, while they are both separated as specific industries and aggregated in industry-groups in 

the IFR data. As I want to look at effects at the most specific industry level, I use data on the 

decomposed total Manufacturing industry (2 digit levels). This implies leaving out one industry 

from the total manufacturing industry, namely industry “Other manufacturing; repair and 

installation of machinery and equipment” (code : 31-33), as IFR data does not cover this industry.  

                                                
16 UNSTATS provides a correspondence table for industry codes based on NACE2 and ISIC rev 4 classifications 

with descriptions of the industries. 
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IFR further provides data on industries at a more detailed level, decomposing two digit level 

industries further into industries at a three, or even four-digit level. In almost all cases, data from 

industries at three digit level are included in a more aggregated level. This is however not the case 

for two industries at a three digit level, industries “229” and “289”, labeled |respectively. One 

concern has therefore been the categorization of these “unspecified” industries in the IFR dataset.  

 

Per definition, industry “229” should be included in the two digit industry 22 “ Rubber and plastic 

products (non-automotive)”, as industry “289” should be included in the two digit level industry 

28 “ Machinery and equipment n.e.c.”, following the same logic used for other industries at a digit 

level higher than two. As they are not, this makes me unsure of how to include observations from 

these unspecified industries. Industry 229 is however included in the IFR industry-group “19-22”; 

“Plastic and chemical products”, as 289 is in the industry-group “24-28”; “Metal”. One alternative 

would therefore be to aggregate these industries in the EUKLEMS dataset. Industries 22 and 23 

are however not separated in the EUKLEMS data, which would mean aggregating industries 19-

23 in both datasets. Further, datasets “24-28” (including 24,25, 28, 289) would have to be 

aggregated in each datasets. By doing so, the industries in the analysis are bigger, implying losing 

the possibility of analyzing the effect of increased robot adoption at a more specific industry-level.  

 

As I wish to analyze the effects of robot adoption at the lowest aggregated level possible, I choose 

to aggregate the unspecified industries with their respective two digit level industries. Excluding 

them might result in losing information, as there might be interesting developments in these 

industries, or result in underestimating true robot densities17. As a robustness check, I also  run a 

regression excluding these industries. Results are presented in section 7.  

 

A presentation of all EUKLEMS and IFR industries is provided in Table W, which also illustrates 

how industries from both sources are aggregated and matched. 

 

 

                                                
17 In fact, robot adoption in the unspecified industries are especially significant in countries such as Germany and…  
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Table W: Comparison table NACE2.0 and ISIC rev4.0 

Code description 

EUKLEMS 

industries 

(NACE2.0)  

Corresponding IFR 

industries (ISIC rev4.0) 

Industries 

incl. In both 

datasets 

Industry labels in 

paper 

AGRICULTURE, FORESTRY AND 

FISHING A A-B ✓ Agriculture 

MINING AND QUARRYING B C ✓ Mining 

TOTAL MANUFACTURING C D ✓ Total manufacturing 

Food products, beverages and tobacco 10-12 10-12 ✓ Food products 

Textiles, wearing apparel, leather and related 

products 13-15 13-15 ✓ Textiles 

Wood and paper products; printing and 

reproduction of recorded media 16-18 16; 17-18 ✓ Wood products 

Coke and refined petroleum products 19 19 ✓ Petroleum products 

Chemicals and chemical products 20-21 20; 21 ✓ Chemical products 

Rubber and plastics products, and other non-

metallic mineral products 22-23 22; 229 ; 23 ✓ 
Rubber & Plastic 

products 

Basic metals and fabricated metal products, 

except machinery and eq. 24-25 24; 25 ✓ 
Basic metals & metal 

products 

Electrical and optical equipment 26-27 26-27 ✓ Electronics 

Machinery and equipment n.e.c. 28 28; 289 ✓ Industrial Machinery 

Transport equipment 29-30 29;30 ✓ Transport equipment 

Other manufacturing; repair and installation of 

machinery and equipment 31-33       

ELECTRICITY, GAS AND WATER 

SUPPLY D-E E ✓ 
Electricity, Gas, water 

supply 

CONSTRUCTION F F ✓ Construction 

Education P P ✓ Education 

     

Notes: Matching is done following the conversion classification table from Unstats, comparing NACE2.0.  and ISIC 

REV4.0 classification. Matching of industries are based on the classification of the data from EUKLEMS. It follows 

that industries from IFR need to be aggregated. This is shown how in the column named "Corresponding IFR 

industries". 
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The final dataset includes 270 country-industries, consistent of 15 industries in 18 countries, during 

the time period of 1995-2015. A list of the countries included in the analysis are presented in the 

appendix, in Table 2.   

 

Constructing the measure of robot density  

Using data from these two sources, I am able to construct a measure of robot densification, defined 

as the stock of operational robots per million hours worked in a certain industry, and country. This 

measure is similar to that used by Graetz and Michaels (2017). Graetz and Michaels however 

construct their stock of robots based on deliveries using the perpetual inventory method, assuming 

a depreciation rate of ten percent. Because any effect robots would have on labor markets will stem 

from robots actually producing output, I choose to use the number of operational robots and 

exclude data on delivered robots 

 

Changes in robot densities are weighted with the country-industry initial share of hours worked to 

ensure that the average increase in robot density reflects the relative importance of industries. I 

primarily weigh robot densities because the unweighted results give huge uneven differences18. It 

does not however seem to be an issue for the other variables used in the regression. 

 

Constructing the measure of exogenous robot density 

To construct the instrumental variable of my choice, I use the changes in robot density in the US, 

another advanced economy. I use the same data sources as used for constructing the main 

regressor. One shortcoming of using this instrumental variable is that data from IFR on operational 

robots only covers a limited period of the period used in the main analysis. While aggregate data 

for the United States is available from 1993, data on operational robots in the US is only available 

for the period from 2004 to 2015. Similarly, data from EUKLEMS on hours worked in the US is 

only available from 1998. I construct estimations of robots adopted in 1998 based on the 

assumption that industry shares were the same in 1998 as they were in 2004. In a similar way, I 

assume that shares of robots in the 6 industries having adopted robots by 2004 was the same 6 

                                                
18 For instance, industry “Coke and refined petroleum products” in Denmark had 303 robots in use in 2015. Given 

the industry´s significantly relative low share of hours, the robot density in this industry has an astonishing value of 

300 (number of robots per million hours worked).  
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years prior. In this way, I can estimate conservative measures for the robot adoption in the 6 

industries in 1998. This provides similar estimated values as when calculating estimates using 

average annual increases from 2004 to 2015 to calculate past values. I present calculations of 

estimates in Table 4A and 4B in the Appendix.  

 

The use of this instrumental variable when analyzing the main period of time thus has some 

shortcomings. Firstly, there is a risk that robot adoption in these 6 industries in 1998 is 

overestimated. Some of the industries having adopted robots in 2004 might not have adopted 

robots in 1998. Real numbers could also be underestimated. This latter regards especially the 

Transport equipment industry. Secondly, the instrument does not cover the whole time frame, as 

data for three years are missing. Based on the development of robot densities in the 18 European 

countries included in the analysis, I argue however that robot densities did not change drastically 

from year to year before the 20th century, making it plausible that changes between 1998 and 1995 

were rather small and insignificant. I include the results when using the IV instrument for the 

whole time period, but suggest that the IV is much more reliable when looking at the impact during 

the time period from 2005 to 2015. When looking at the impact from 2005 to 2015 data is covered 

for all years, making it a stronger proxy of improvements in the world technology frontier of robot 

to predict the changes in European robot density. As with the I main regressor,  use  percentiles of 

changes in robot density, but also provide results for when using alternative forms of both the 

regressor and the IV. Changes in robot densities are weighted using the 1998 initial share of hours 

worked, to ensure that relative importance of industries is reflected in the results. 

 

Looking at changes in labor shares  

I also consider as outcomes the changes in the labor share, using data on labor input from the 2017 

EUKLEMS release. EUKLEMS draw on a number of micro data sources in order to construct the 

labor composition indices. Data on labor input includes information on the employment structure 

of the workforce, such as age, gender, and educational attainment level. In addition to the country 

and economic activity dimensions, the number of people employed are categorized into one of 18 

employment groups within each country, industry and year cell, according to a number of 

demographic characteristics. These employment groups are composed based on two gender 

categories (male, female), three age categories (15-29 years; 30-49 years; 50 years and higher) and 
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three educational qualifications levels (high, medium and low). I use the same measure for robot 

density in this analysis, defined as the number of operational robots divided by the number of hours 

worked.  

 

Data available on labor share in industries are on a one-digit level, implying moving away from 

the a more specific analysis. The industries included in this analysis are presented in table 1, above. 

Industry The total manufacturing sector is composed of two-digit level industries, of which most 

are covered in the main regression. IFR however does not provide data on one industry group 

included in this sector, namely “Other manufacturing; repair and installation of machinery and 

equipment”. Thus, while this industry group is excluded in the main analysis, it is included in the 

analysis investigating the effect on labor shares, as I have both data on robots used, and hours 

worked in the overall manufacturing industry.  

 

Further, sectors “Electricity and Gas” and  “Water and sewerage” are aggregated into one common 

industry “ Electricity, Gas and Water supply” in the EUKLEMS for data on hours worked, which 

I use to construct my measure for robot density. These industries are however not aggregated in 

the data on labor shares. Ideally these industries would be aggregated by using a weighted mean 

of observations in both industries. As data required in order to do so is not accessible, I choose to 

not include these, in fear of incorrectly measuring the labor shares compared to shares in other 

industries. Data on labor shares is only available from 2008 to 2015. Further, data is not available 

for Belgium, reducing my sample of countries to 17. 

 

Validity and quality of data used 

Methodology used in constructing data in earlier releases and the 2017 release is reported in 

specific modules and in the following article (Kirsten Jäger (The Conference Board) EU KLEMS 

Growth and Productivity Accounts 2017 release - Description of Methodology and General Notes 

September 2017). This has also been done for previous releases. Further, the 2017 release of the 

EU KLEMS database is funded by the European Commission19. Data used in the EUKLEMS 2017 

release is based on, and in almost all cases consistent with data provided by Eurostat. The data I 

                                                
19 Under the Directorate General Economic and Financial Affairs under the service contract ECFIN-163-

2015/SI2.716986 
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use in the analysis, on output, value added and employment is consistent with official statistics as 

available from Eurostat at the corresponding industry levels. This provides strong validity of the 

EUKLEMS data in the comparability of the series across countries.  

 

With regards to data on operational robots, validity of the quality of the data is ensured by the fact 

that the robot statistics provided by IFR are based on consolidated world data reported by robot 

suppliers as well as on the statistics of the national robot associations of North America (RIA), 

Japan (JARA), Germany (VDMA, R+A), Italy (SIRI), Republic of Korea (KAR), to mention some. 

Methodology used to construct the dataset and the classification of the industries is also described 

in the IFR 2017 report. Validity of the data is further confirmed considering that previous releases 

has been used in studies investigating the same topic as this thesis. This also regards the data 

coming from IFR. Graetz and Michaels (2017) and Acemoglu and Restrepo (2017), both 

investigating the impact of increased robot adoption on labor markets, use both earlier data from 

IFR and earlier releases from EUKLEMS.  

 

6.2. Descriptive statistics 

Summary statistics of average levels of robot density by country and industry are presented in 

tables 7, and 8. A more detailed summary statistic of the variables included is presented in table 9. 

Table 7 presents the average levels of robot density and other variables by industry and countries20 

included in the sample. Variables include the different independent variables, such as  change in 

the log of hours worked, change in log of wages, change in employment, and change in labor 

shares. It also includes statistics on the main regressor and control variables; change in log of 

hourly wages in 1995, in ICT and non-ICT capital services and changes in labor productivity 

between 1995 and 2015. The means reported highlight that there is skewness in the distribution of 

robot density. Robot densities in 1995 heavily concentrated at small positive values, often close to 

0. Distribution in changes of robot density varies also remarkably. In some countries, changes in 

robot density is however very high. This regards in particular Germany and Italy. The skewness in 

the distribution might make fitting a linear model using raw changes in density challenging. As an 

                                                
20 Across country values are not weighted.  
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alternative to investigating the impact of raw changes in robot density (weighted), I use percentiles 

of changes in the distribution of robot density. In order to create the percentiles of changes in robot 

density, I rank the weighted changes,  the highest ranking number reflecting the highest change in 

robot density. In order to assign these rankings percentiles, I follow the Hazen’s rule: 

 

( 𝑖 − 𝑎)

𝑛
 

 

where i and n denote rank and number of values, and a takes the value of 0,5. Values range from 

0 to 1, where a high percentile reflects a large increase in robot density. This method is also applied 

in the construction of the exogenous robot density. Figure 1 (a) and (b) shows the difference in 

using percentiles of changes versus raw changes of robot density. The skewness in the distribution 

is clear in figure (b). Figure (a) deserves some additional commenting. It appears that negative 

changes in hours worked are more pronounced in the 10th to 50th percentile, while industries with 

a high percentile (equivalent to a high change in robot density) seem to have experienced more 

positive changes in hours worked. This could be explained by (some of) the arguments presented 

in section 2.3.  

 

The motivation behind the analysis of this thesis has been the decrease in hours worked, presented 

in Figure A below, parallel to the remarkable increase in robots adopted and robot density (Figure 

B) in 18 European countries from 1995 to 201521.  

 

 

 

 

 

 

 

 

                                                
21 Most of the descriptive figures are based on an indice=100, this is due to the large differences in robot adoption 

across industries and countries. 
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Development of hours worked and employment 1995-2015 

 
 

Figure A. Development of hours worked and employment across countries and industries from 1995 to 

2015. Baseline is 100 (percent).  

 

Development of hours worked, robot density and total number of robots 1995-2015 

 

 
 

Figure B. Development of total hours worked, robot density and total number of robots across countries 

and industries from 1995-2015. Baseline is 100 (percent). Robot density is defined as the number of robots 

divided hours worked by employees (millions) and are weighted by the initial 1995 share of hours worked.  
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Figure C and D gives a better presentation of the development of robot density and total robots 

adopted in two consecutive decades, from 1995 to 2005, and from 2005 to 2015. The figures 

suggest that the increase in robot density has been faster in the second period than in the first, 

though this acceleration appears to start already in 2002-2003. The increase in total robots seems 

however to have dampened compared to the first period, however steadily increasing. The 

emerging difference between increases in robot density and the number of total robots also shows 

how the denominator of the robot to hours-ratio has decreased more in the second decade, as 

clearly visible in figure A.  

 

Development of robot density and number of total robots 
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Figure C and D. In percent, baseline is 100. Development of robot density between 1995 and 2005; and 

between 2005-2015. Baseline is 100 (percent). Robot density is defined as the number of robots divided 

hours worked by employees (millions) and are weighted by the initial 1995 share of hours worked.  
 

Noteworthy in every graph and figure showing the development through 1995 to 2015, is how the 

development curve kinks in the years around 2008. This is a clear sign of the impact of the financial 

crisis, which has had impact on both hours worked and the number of people employed in these 

economies. This is also visible in Figure D, as there was a slight increase in average robot density 

between 2008 and 2009. Cyclical fluctuations from the financial crisis might confound the 

estimated impact of robot adoption on changes in hours worked and other labor characteristics.  

 

I also investigate the magnitude of differences between quartiles, looking at differences between 

four countries. Each representative of a different quartile (descending with Germany belonging to 

the 4th quartile, and Slovakia to the 1st.). Quartiles are based on the average levels in robot density 

from 1995 to 2015, by country. Countries represented are at the top of their respective quartile. 

Looking at the development in percentages, Figure E highlights the rapid increase of robot density 

particularly pronounced in Slovakia. Slovakia experienced the highest increase in robot densities, 

as average robot density increased by an astonishing 18 000 percent from 2004 to 2015. While 

robots were adopted already in 1995 in Germany22, and 1996 in Denmark, Austria and Slovakia 

did not adopt robots until the year of 2004. Austria experienced already a relatively high increase 

                                                
22 In fact, data is provided for robot adoption in Germany already in 1993.  
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from 2004 to 2003, compared to Slovakia, which explains why the increase in percentages is not 

as pronounced.  

 

Comparing Figure E and F shows how Slovakia started with a significantly low robot density 

barely over 023, even compared to Austria, even though neither had adopted robots until in 2004.  

 

Figure F, which looks at the development in real numbers of robot densities (in average levels, by 

country) sets this however in perspective, showing that Slovakia is still in the start phase, compared 

to Germany and Denmark, but that robot densities are increasing and following the same trend in 

the four countries. In fact, Slovakia has reached half the average robot density Germany 

experienced back in 1995. It also highlights the leading position of Germany, which is followed 

closely by the other emerging countries. This reflects that while Germany still is in the leading 

position in terms of robot density, lagging robot adopting countries are slowly catching up. On an 

overall note, it also highlights that robot adoption has increased significantly the past decade, even 

in countries with 0 robots in use in 2004.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                
23 In fact, average robot density in Slovakia in 2004 was of 0,0059, measured as the number of robots used divided 

by hours worked (in millions). 
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Development of robot density in four countries from 1995 to 2015  

 
 

 
Figure E. Development in robot densities in Germany, Denmark, Austria and Slovakia from 1995-2015. 

Baseline is 100 (percent) The four countries are at the top of the, fourth, third, second and first quartile, 

respectively. Quartiles are based on average robot densities over the time period 1995-2015. Robot densities 

are weighted by the initial 1995 share of hours worked. Countries were chosen from each quartile to 

illustrate differences in density development. 
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Real development of robot density in four countries from 1995-2015 

 

 
 
Figure F. Development of robot density in Germany, Denmark, Austria and Slovakia between 1995 and 

2015. (Real values). Values robot densities in average levels, by country. Robots were not adopted until the 

year 2004 in Slovakia and Austria, while already in 1995 in Germany, and by 1996 in Denmark. 

 

In a similar manner, figure G presents the development of four industries: Transport and 

Equipment, Basic metal and metal products, wood and paper products, and Education. Each 

industry belongs to a different quartile, quartiles being based on the average levels of changes in 

robot density, by industry. The figure highlights how robot density has increased (percentage wise) 

more drastically in the Education industry, while the other industries have experienced a steady 

increase from 1995 to 2015.  
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Development of robot density in four industries from 1995 to 2015 

 

 
Figure G. Development in the robot density in 4 industries from 1995 to 2015. Baseline is 100 (percent). 

Industries Transport Equipment, Basic metals and metal products, Wood and paper products, and Education 

are at the top of the fourth, third, second and first quartile, respectively. Quartiles are based on the changes 

in robot density, by industry.  

 

 

The robot density in the education industry remains however relatively low, compared to these 

industries when looking at the development of robot density in Figure H. Figure I highlights the 

leading  position of Germany in the Transport Equipment industry. 
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Real development of robot density in four industries from 1995-2015 

 

 
Figure H. Development in robot density in industries Transport Equipment, Basic metals and metal 

products, Wood and paper products, and Education, in average levels by industry.  

 

Change in robot density in the Transport Equipment industry from 1995 to 2015 

 
 
Figure I. Change in robot density from 1995 to 2015 in the Transport Equipment industry in Germany, 

Denmark, Austria and Slovakia. The four countries are at the top of the, fourth, third, second and first 

quartile, respectively. Quartiles are based on average robot densities over the time period 1995-2015. Robot 

densities are weighted by the initial 1995 share of hours worked.  

0

4

8

12

16

20

24

28

32

1995 1997 1999 2001 2003 2005 2007 2009 2011 2013 2015

Transport Eq. Basic metals and metal products

Wood and paper products Education

0

10

20

30

40

50

60

70

Germany Denmark Austria Slovakia

1995 2015



 

 

50 

 

7. Results 

 

Full versions of the regression tables and coefficients on other variables included are presented in 

the Appendix (Table 9 - 25).  

7.1. Results for hours worked 

I begin by presenting the results from the regression analysis for my main outcome of interest, 

changes in hours worked from 1995-2015. The two alternative forms of the main regressor are 

presented in Table 9 in the Appendix. Table 9 shows how results differ significantly when using 

the percentiles in changes of robot density (weighted) instead of raw changes in robot density. I 

argue that the percentile form is more correct to predict the effect of robot density on hours worked, 

thus the following tables show the estimates when using percentiles of changes. Changes are 

always weighted by the initial (1995) share of within country hours worked, ensuring that the 

relative importance of industries is reflected in the results. Table 9 also provides an estimate of 

changes in robot density on hours worked when including all 18 countries.  

 

Data on ICT - and non-ICT capital services are only available for 10 countries during the time 

period of 1995-2015. Controlling for these trends thus reduces the sample from 270 country 

industry cells to 14924. Data is also missing for the year 2015 for the following countries: Czech 

Republic, Italy and Sweden. Values are computed for missing years, as explained in the previous 

section. The final analysis for the full period from 1995 to 2015 includes 150 country-industry 

cells, representing 15 industries in 10 European countries.   

 

Shown in Figure F, Germany is in the lead position in robot adoption, both in terms of number of 

operational robots adopted, but also in robot density. Column (3) of all regressions presents the 

results when excluding Germany from the sample, in order to verify that it is not the driver of the 

results. Similarly, Figure H highlights that the “Transport Equipment” industry has experienced a 

significant increase in robot density relative to the other 14 industries included in the analysis. I 

                                                
24 In addition, data on these variables are missing for industry “20-21” in Sweden, resulting in the drop of one 

observation when including controls. 
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drop this industry in order to verify that it is not the driver of the results. This robustness 

specification is included in Column (4).  

 

Table A presents the results when regressing changes in robot density on changes in the log of hours 

worked. The coefficient in column (1) suggests that moving from the bottom to the top percentile robot 

adoption has reduced the log of hours worked by 0.0712. The estimate drops slightly in magnitude 

when controlling for changes in labor productivity and initial (1995) values for both wages and 

labor productivity, but remains negative. Not surprisingly, the impact of robot adoption turns 

positive when controlling for changes in ICT and other capital, suggesting the presence of omitted 

variable bias in the first column. Dropping Germany in column (4) results in the estimate becoming 

negative again. This suggests that Germany, overall, has been a positive driving force for hours 

worked. Whereas the reason behind dropping Germany from the sample was based on the 

assumption that Germany could be the driver of negative impact hours worked, as it is the country 

having experienced the largest increase in robot density during the period, results throughout the 

regression analysis suggest the contrary. This may be explained by the fact that Germany is the 

leading industrial power in Europe, disposing both high robot adoption and large sectors 

accounting for much of the employment in the country.  

 

Results when dropping the “Transport Equipment industry” are however consistent with the 

assumptions presented in section 4. Dropping this specific industry (column 5) leads to an increase 

in the coefficient compared to that in column (3), suggesting that this industry is a driver of 

negative impact on hours worked. Results are in all cases statistically insignificant.  
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Table A. Changes in hours worked 1995-2015: OLS estimates 

 (1) (2) (3) (4) (5) 

 ΔH ΔH ΔH ΔH ΔH 

Δ Robot 

adoption 

-0.0712 -0.0582 0.00673 -0.0686 0.0290 

 (-0.65) (-0.54) (0.08) (-0.73) (0.33) 

      

Controls  ✓ ✓ ✓ ✓ 

      

Changes in 

capital 

  ✓ ✓ ✓ 

      

Other 

specifications 

   ✓ ✓ 

      

Constant -0.178* -0.971** -1.412*** -1.428*** -1.582*** 

 (-2.55) (-3.14) (-4.89) (-4.46) (-5.39) 

N 150 150 149 134 139 
Notes: Δ Robot adoption stands for the percentile change of robot density from 1995 to 2015. Changes are weighted 

by an industry’s initial (1995) share of hours in the country-wide amount of hours worked. ΔH stands for the change 

in log of hours worked from 1995 to 2015. Controls include country-industry fixed effect, namely the variation in 

labor productivity from 1995-2015, as well as initial (1995) values of log wages and log labor productivity. Changes 

in capital include changes in both ICT and non-ICT capital services from 1995 to 2015. By other specifications, I 

mean dropping Germany in column (3) and dropping industry “Transport Equipment” in column (4) from the sample. 

The coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are significant at the 5% confidence level; 

and with ∗ are significant at the 10% confidence level. 

 

Table 10 in the Appendix shows that the coefficients for changes in labor productivity and for ICT 

capital services are small in magnitude (even smaller for ICT capital services) and negative, and 

statistically insignificant in all cases. Coefficients for changes in non-ICT capital services and the 

initial log wage in 1995 are however statistically significant at a 1% level and positive, suggesting 

that changes in these trends have had a positive impact on hours worked between 1995 and 2015.  

 

 

 

I next use the exogenous robot density measure to compute two stage least squares estimates.  

Including control variables such as changes in ICT and non-ICT capital services can mitigate some 

concerns related to omitted variable bias. There are still some concerns about the interpretation of 

the results. For instance, robot adoption in European industries might have been accelerated by 

7.1.2. Two Stage Least Squares Estimates  
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increased robot adoption in other advanced economies, which could confound the estimates when 

running OLS regressions.  

 

To address this concern, I use the industry robot density in another other advanced economy, 

namely the US, as a proxy of improvements in the world technology frontier of robots. 

Implementing this instrumental variable strategy allows to focus on the variation that results solely 

from industries in which the use of robots has been concurrent in advanced economies. A slight 

concern is that IFR industry-level data for the US starts in 2004, but in 1995 for the European 

countries included in this analysis. Ideally, a measure of exogenous robot density covering the 

time frame 1995-2015, would be considered a stronger IV. However, there is limited access to data 

on robot adoption and hours worked in other countries that are suitable as good proxies for the technological 

improvement in the world. To extend the period for the changes in robot density in the US as much 

as possible, I am able construct estimates going back to 1998, explained in section 4. This however 

implies that the first three years of the analysis are still missing. I therefore suggest to interpret the 

results from the 2SLS for the time period 1995-2015 cautiously.  

 

Table B shows the first stage regression, using the percentiles of changes in robot density in the 

US to predict the variation in the percentiles of changes in European robot density. The estimate 

suggests that the correlation between the two is strong, implying that the instrument has a strong 

first stage.  Data on robot adoption in the US is only available from 2004, making it difficult to 

establish a causal effect of US robot density on European robot densification. The coefficient from 

Table 3 suggests that the level of robot adoption in the US explains a lot of the variance in changes 

in the European robot density. As the exogenous robot density is used as a proxy of the world level 

robot adoption, this might suggest that 78% of changes in robot adoption in Europe is caused by 

the change in the world level, leaving the unexplained variance to be caused by changes specific 

to the different countries or Europe in general. Standard errors are clustered by country and 

industry.  The result is robust to including control variables, as seen in table 10.  
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Table B. First stage regression 1995-2015  

 (1) 

 Δ Robot adoption EUR  

Δ Robot adoption US 

 

0.781*** 

 (16.45) 

Constant 0.110*** 

 (4.66) 

N 150 
Notes: Δ Robot adoption EUR stands for the percentile of changes in the endogenous (European) robot density from 

1995 to 2015, weighted by the initial (1995) share of within country hours worked. Δ Robot adoption US stands for 

the percentile of changes in the exogenous robot density, in the US, from 1998 to 2015, weighted by the initial 

(1998) share of within-country hours worked. The coefficients with ∗∗∗ are significant at the 1% confidence level; 

with ∗∗ are significant at the 5% confidence level; and with ∗ are significant at the 10% confidence level. 

 

Two-stage least squares (2SLS) estimates using exogenous robot density as an instrument for robot 

densification (Table C) show that increased use of robots decreased hours worked, consistent with 

our OLS estimates. 2SLS estimates are on the other hand negative also when adding controls and 

larger in magnitude, indicating the presence of measurement error in the endogenous measure of 

robot adoption. As with the OLS estimates, 2SLS estimates turn more negative when dropping 

Germany, and drop in magnitude when dropping the Transport Equipment industry.  
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Table C. Change in hours worked from 1995 to 2015 : 2SLS estimates 

 (1) (2) (3) (4) (5) 

 ΔH ΔH ΔH ΔH ΔH 

Δ Robot 

adoption 

-0.0734 -0.0375 -0.0485 -0.142 -0.0293 

 (-0.51) (-0.27) (-0.43) (-1.20) (-0.24) 

      

Controls  ✓ ✓ ✓ ✓ 

      

Change in 

capital 

  ✓ ✓ ✓ 

      

Other 

specifications 

   ✓ ✓ 

      

Constant -0.177* -0.984** -1.369*** -1.367*** -1.535*** 

 (-2.11) (-3.25) (-4.89) (-4.40) (-5.37) 

N 150 150 149 134 139 
Notes: Δ Robot adoption stands for the percentile change of robot density from 1995 to 2015. Changes are weighted 

by an industry’s initial (1995) share of hours in the country-wide amount of hours worked. ΔH stands for the change 

in log of hours worked from 1995 to 2015. Controls include country-industry fixed effect, namely the variation in 

labor productivity from 1995-2015, as well as initial (1995) values of log wages and log labor productivity. Changes 

in capital include changes in both ICT and non-ICT capital services from 1995 to 2015. By other specifications, I 

mean dropping Germany in column (3) and dropping industry “Transport Equipment” in column (4) from the sample. 

The coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are significant at the 5% confidence level; 

and with ∗ are significant at the 10% confidence level.   

 

Next, I look at difference in results when investigating the impact of robot density on hours worked 

for two consecutive decades: 1995-2005 and 2005-2015. Splitting the analysis into two periods 

allows me to look for differences in the impact of changes in robot adoption during two different 

decades that have both experienced fast changes in technology improvements, as well as in prices 

of investing in this technology. Based on theory mentioned previously, the decline in investment 

prices can provide firms strong incentives to substitute human labor for robots. Studies point to 

the decline in technology investment prices as being responsible for the increase in robot adoption 

during the past two decades. The price of industrial robots in major developed economies has been 

estimated to have fallen by approximately one half during 1990-2005 (Graetz and Micheals (2017). 

7.1.2. Splitting the analysis period in two equal time periods: 1995-2005 and 

2005-2015 
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Taking quality improvements into account, the fall in price is estimated to be even steeper: by 

2005, quality-adjusted robot prices were about one fifth of their 1990 level.  

 

Figure F and G highlights how robot density and the total number of robots have increased during 

these two periods. While the increase in total robots adopted and robot density followed a similar 

pattern from 1995 to 2005, robot density increased at a faster pace during the period of 2005 to 

2015 compared to the previous decade. This appears to start already in the years 2002-2003, when 

looking at figure  . This change of pattern could suggest that robot density grew faster and more 

than the number of robots adopted. This would imply that the denominator of the robot density, 

the number of hours worked, fell more drastically during the last decade. This makes it especially 

interesting to investigate impacts in the period stretching from 2005, a period which has been 

excluded in other similar studies. In addition, it was not until the year 2006 that robots were 

adopted in all the countries included in the sample. Looking at the period from 2005 to 2015 also 

allows me to include additional countries to the sample, as data of ICT and non-ICT capital 

services are available for additional countries for this period.   

 

Changes in hours worked between 1995 and 2005 

I begin by analyzing the impact on hours worked between 1995 and 2005. This analysis includes 

150 country-industry cells. The OLS estimate from column (1) in Table D suggest that moving 

from the bottom to the top of the ranking of changes in the robot density distribution corresponds 

to an increase of about 0.006 in the log of hours worked. When controlling for specific country 

effects and initial (1995) wages and labor productivity, the estimate decreases, and loses its 

statistical significance. Results decrease further when controls for changes in ICT and other capital 

services are added, suggesting that robot adoption may not be the sole driver of the positive change 

in hours worked during this period. It further turns negative when dropping Germany, but increases 

when dropping the Transport Equipment industry, consistent with results from previous 

regressions.   

 

The 2SLS estimates are larger than OLS estimates, and in all cases positive and statistically 

insignificant. Changes in ICT capital services also appear to have contributed to an increase in 

hours worked during this period (Table 14 and 15). Both OLS and 2SLS Estimates are positive 
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and statistically significant at a 5% level (Table 14 and 15). Coefficients for changes in non-ICT 

capital services and log labor productivity 1995 remain statistically significant and positive when 

restricting the analysis to this period.  
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Table D. Changes in hours worked 1995-2005 – OLS and 2SLS estimates 

Panel 1: OLS estimates  

 (1) (2) (3) (4) (5) 

 ΔH ΔH ΔH ΔH ΔH 

Δ Robot 

adoption 

0.00598** 0.00332 0.000937 -0.000726 0.00466 

 (2.68) (1.38) (0.38) (-0.18) (0.71) 

      

Controls  ✓ ✓ ✓ ✓ 

      

Change in 

capital 

  ✓ ✓ ✓ 

      

Other 

specifications 

   ✓ ✓ 

      

Constant -0.0896*** -0.305 -0.374 -0.422 -0.379 

 (-3.56) (-1.40) (-1.90) (-1.84) (-1.84) 

Panel 2: 2SLS estimates 

 (1) (2) (3) (4) (5) 

 ΔH ΔH ΔH ΔH ΔH 

Δ Robot 

adoption 

0.0193 0.0212 0.00835 0.00239 0.00239 

 (1.61) (1.73) (0.85) (0.20) (0.20) 

      

Controls  ✓ ✓ ✓ ✓ 

      

Change in 

capital 

  ✓ ✓ ✓ 

      

Other 

specifications 

   ✓ ✓ 

      

Constant -0.112*** -0.245 -0.347 -0.420 -0.420 

 (-3.48) (-1.10) (-1.76) (-1.88) (-1.88) 

N 150 150 149 134 134 
Notes: Δ Robot adoption stands for the percentile change of robot density from 1995 to 2005. Changes are weighted 

by an industry’s initial (1995) share of hours in the country-wide amount of hours worked. ΔH stands for the change 

in log of hours worked from 1995 to 2005. Controls include country-industry fixed effect, namely the variation in 

labor productivity from 1995-2015, as well as initial (1995) values of log wages and log labor productivity. Changes 

in capital include changes in both ICT and non-ICT capital services from 1995 to 2005. By other specifications, I 

mean dropping Germany in column (3) and dropping industry “Transport Equipment” in column (4) from the sample. 

The coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are significant at the 5% confidence level; 

and with ∗ are significant at the 10% confidence level.  
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Changes in hours worked between 2005 and 2015 

 

Looking at changes from 2005 to 2015 results in an increase in the number of observations when 

including control variables. This is because data on ICT and Non ICT services is available for 

some additional countries after 2005. Countries added to the regression are UK, the Netherlands 

and Slovakia. The number of observations in this analysis therefore increased to 195, accounting 

for 15 industries in 13 countries. The IV strategy becomes more reliable when analyzing this 

period, as data used are provided from the IFR and not based on estimates. Robots were not 

adopted in all countries included in the sample until the year of 2006, which implies there are 

interesting changes in robot density for some countries in this period.  I begin by presenting the 

first stage regression. 

 

Table E. First stage 2SLS 2005-2015 

 (1) 

 Δ Robot adoption EUR 

Δ Robot adoption US 0.642*** 

 (11.34) 

  

Constant 0.179*** 

 (7.29) 

N 195 
Notes: ΔRicEU stands for the percentile of changes in the endogenous (European) robot density from 2005 to 2015, 

weighted by the initial (1995) share of within country hours worked. Δ Robot adoption US stands for the percentile of 

changes in the exogenous robot density, in the US, from 2005 to 2015, weighted by the initial (1998) share of 

within-country hours worked. The coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are 

significant at the 5% confidence level; and with ∗ are significant at the 10% confidence level. 

 

Robot densities in both the exogenous and the endogenous measure are weighted by the 1995 share 

of hours worked, and I control for initial 1995 log wage and log labor productivity values to control 

for previous differential trends. I use the initial 1995 value, because while almost no countries had 

adopted robots in 1995, the majority of the countries included in the sample had by 2005.  

 

OLS estimates are negative when investigating the impact of change in robot adoption, solely.  The 

coefficient remains negative when adding controls in column (2), while decreasing slightly in 

magnitude. It turns positive when controlling for changes in capital services (column 3), suggesting 
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that robot adoption is not the driver of the negative impact on hours worked. The constant variable 

is also adjusted, increasing in magnitude and statistical significance. This might suggest that the 

negative impact was not driven by robot adoption, but that there are other factors driving the hours 

worked down. Again, when dropping Germany (column 4), the coefficient decrease in value, 

suggesting that Germany is a driving force for increased hours worked, while the transport 

equipment industry has been driving hours worked down.   
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Table F. Changes in hours worked 2005-2015 : OLS and 2SLS estimates 

Panel A: OLS estimates  

 (1) (2) (3) (4) (5) 

 ΔH ΔH ΔH ΔH ΔH 

Δ Robot 

adoption 

-0.0334 -0.0202 0.0185 0.0112 -0.00904 

 (-0.55) (-0.34) (0.38) (0.21) (-0.19) 

      

Controls  ✓ ✓ ✓ ✓ 

      

Change in 

capital 

  ✓ ✓ ✓ 

      

Other 

specifications 

   ✓ ✓ 

      

Constant -0.112** -0.304** -0.505*** -0.446*** -0.567*** 

 (-3.08) (-2.80) (-5.73) (-4.72) (-6.78) 

Panel B: 2SLS estimates 

 (1) (2) (3) (4) (5) 

 ΔH ΔH ΔH ΔH ΔH 

Δ Robot 

adoption 

-0.175 -0.147 -0.0643 -0.0885 -0.0784 

 (-1.94) (-1.72) (-0.80) (-1.02) (-1.00) 

      

Controls  ✓ ✓ ✓ ✓ 

      

Change in 

capital 

  ✓ ✓ ✓ 

      

Other 

specifications 

   ✓ ✓ 

      

Constant -0.0411 -0.221* -0.444***
 -0.373***

 -0.523***
 

 (-0.84) (-1.99) (-4.68) (-3.63) (-5.79) 

N 195 195 194 179 181 
Notes: Δ Robot adoption stands for the percentile change of robot density from 2005 to 2015. Changes weighted by 

an industry’s initial (1995) share of hours in the country-wide amount of hours worked. ΔH stands for the change in 

log of hours worked from 2005 to 2015. Controls include country-industry fixed effect, namely the variation in labor 

productivity from 2005-2015, as well as initial (1995) values of log wages and log labor productivity. Changes in 

capital include changes in both ICT and non-ICT capital services from 1995 to 2015. Other specifications refer to 

dropping Germany in column (3) and dropping industry “Transport Equipment” in column (4) from the sample. The 

coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are significant at the 5% confidence level; 

and with ∗ are significant at the 10% confidence level. 
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2SLS estimates presented in Table F are larger than OLS estimates, and negative in all cases, while 

remaining statistically insignificant. The coefficient on percentiles of changes in robot density 

suggests that moving from the bottom to the top of the ranking corresponds to a decrease of about 

0.175 in the logarithm of hours worked. When controlling for other variables, the coefficient 

decreases slightly in magnitude, but less when controlling for changes in capital services. Changes 

in the coefficient when dropping Germany are consistent with findings presented above. 

Interestingly, the coefficient turns negative in both the OLS and 2SLS regressions when excluding 

industry “Transport Equipment”, with a larger coefficient in the 2SLS than in the OLS regression. 

Compared to the previous decade, this suggests that this industry is no longer responsible for 

driving the amount of hours worked down. 

 

7.2. Other specification checks  

 

Robustness check 1. Using employment as the outcome of interest 

My main outcome of interest is hours worked. I argue that this measure is more interesting than 

looking at effects on employment in terms of the number of people employed, as robots might 

complement workers, thereby changing hours worked, but not necessarily replacing workers. In 

addition, it is more advantageous to use data on hours worked as the countries covered can have 

longer or shorter work days, more holidays or other labor characteristics that can differ from one 

country to another. As a robustness check, I also explore the impact of changes in robot adoption 

when the outcome of interest is employment – defined as the number of persons employed (in 

millions). The dependent variable is then the change in the log of employment from 1995 to 2015. 

I find that moving from the top percentile to the bottom; changes in robot adoption reduce 

employment by 0.0272 percentage points. This is equivalent to saying that saying that for 

industries one percentile higher in robot density, change in hours worked has been increased by  

0.027 less.  

 

The pattern appears to be the same as when investigating the impact on hours worked. Adding 

control variables dampens the negative effect of robot adoption on employment in both OLS and 
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2SLS regressions. However, while the coefficient turns positive when controlling for changes in 

capital services, 2SLS estimates turn negative, though remain smaller than when regressing only 

robot adoption on hours worked in column (1). This suggests that there are measurement errors in 

the OLS regression. As with hours worked, coefficients from column (4) and (5) suggest that 

Germany is driving the hours worked up, while the transport Equipment drives them down. In all 

cases, the coefficients remain statistically insignificant.  
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Table G. Robustness check: Changes in Employment 1995-2015: OLS  and 2SLS estimates 

Panel A: OLS estimates  

 (1) (2) (3) (4) (5) 

 ΔEmploymen

t 

ΔEmployment ΔEmployment ΔEmployment ΔEmployment 

Δ Robot 

adoption 

-0.0272 -0.0123 0.0465 -0.0206 0.0730 

 (-0.25) (-0.12) (0.53) (-0.22) (0.83) 

      

Controls  ✓ ✓ ✓ ✓ 

      

Change in 

capital 

  ✓ ✓ ✓ 

      

Other 

specifications 

   ✓ ✓ 

      

Constant -0.170* -0.959** -1.385*** -1.369*** -1.545*** 

 (-2.48) (-3.17) (-5.07) (-4.49) (-5.56) 

Panel B: 2SLS estimates 

 (1) (2) (3) (4) (5) 

 ΔEmploymen

t 

ΔEmployment ΔEmployment ΔEmployment ΔEmployment 

Δ Robot 

adoption 

-0.0422 -0.00210 -0.0165 -0.103 0.00787 

 (-0.30) (-0.02) (-0.15) (-0.86) (0.06) 

      

Controls  ✓ ✓ ✓ ✓ 

      

Change in 

capital 

  ✓ ✓ ✓ 

      

Other 

specifications 

   ✓ ✓ 

      

Constant -0.162* -0.966** -1.336*** -1.301***
 -1.492***

 

 (-1.97) (-3.24) (-5.01) (-4.38) (-5.45) 

N 150 150 149 134 139 
Notes: Δ Robot adoption stands for the percentile change of robot density from 1995 to 2015. Changes weighted by 

an industry’s initial (1995) share of hours in the country-wide amount of hours worked. Δ Employment stands for the 

change in log of employment from 1995 to 2015, which is measured as the number of people employed (in millions). 

Controls include country-industry fixed effect, namely the variation in labor productivity from 1995-2015, as well as 
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initial (1995) values of log wages and log labor productivity. Changes in capital include changes in both ICT and non-

ICT capital services from 1995 to 2015. Other specifications refers to dropping Germany in column (3) and dropping 

industry “Transport Equipment” in column (4) from the sample.  The coefficients with ∗∗∗ are significant at the 1% 

confidence level; with ∗∗ are significant at the 5% confidence level; and with ∗ are significant at the 10% confidence 

level. 

 

Robustness check 2. Controlling for changes when excluding unspecified industries  

 

I also test whether results are robust to dropping the unspecified industries “289” and “229” from 

the sample, as the inclusion/ classification of these industries was a concern when comparing data 

from IFR and from EUKLEMS, explained in section 4.1. I find that both OLS and 2SLS results 

are robust and will not be weakened by dropping these industries. Results are presented in Table 

H. 
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Table H. Robustness check : Changes in Hours worked excluding unspecified industries: OLS and 

2SLS estimates 

Panel A: OLS estimates 

 (1) (2) (3) (4) (5) 

 ΔH ΔH ΔH ΔH ΔH 

Δ Robot 

adoption 

-0.0716 -0.0595 0.00688 -0.0692 0.0294 

 (-0.66) (-0.55) (0.08) (-0.74) (0.33) 

      

Controls  ✓ ✓ ✓ ✓ 

      

Change in 

capital 

  ✓ ✓ ✓ 

      

Other 

specifications 

   ✓ ✓ 

      

Constant -0.178* -0.970** -1.412*** -1.428*** -1.582*** 

 (-2.55) (-3.14) (-4.89) (-4.46) (-5.39) 

Panel B:2SLS estimates 

 (1) (2) (3) (4) (5) 

 ΔH ΔH ΔH ΔH ΔH 

Δ Robot 

adoption 

-0.0734 -0.0374 -0.0485 -0.142 -0.0292 

 (-0.51) (-0.27) (-0.43) (-1.20) (-0.24) 

      

Controls  ✓ ✓ ✓ ✓ 

      

Change in 

capital 

  ✓ ✓ ✓ 

      

Other 

specifications 

   ✓ ✓ 

      

Constant -0.177* -0.984** -1.369*** -1.367*** -1.535*** 

 (-2.11) (-3.25) (-4.89) (-4.40) (-5.37) 

N 150 150 149 134 139 
Notes: Δ Robot adoption stands for the percentile change of robot density from 1995 to 2015. Changes are weighted 

by an industry’s initial (1995) share of hours in the country-wide amount of hours worked. ΔH stands for the change 

in log of hours worked from 1995 to 2015. Industries “Chemical products, unspecified“ and “Metal, unspecified are 
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excluded from the sample, as a robust test. Controls include country-industry fixed effect, namely the variation in 

labor productivity from 1995-2015, as well as initial (1995) values of log wages and log labor productivity. Changes 

in capital include changes in both ICT and non-ICT capital services from 1995 to 2015. Other specifications refers to  

dropping Germany in column (3) and dropping industry “Transport Equipment” in column (4) from the sample. The 

coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are significant at the 5% confidence level; 

and with ∗ are significant at the 10% confidence level. 

 

7.3. Other outcomes 

Other outcomes of interest include changes in log wages and changes in the labor share of three 

defined skill-groups. Theory predicts that the impact on wages is ambiguous, while medium skilled 

workers are the most susceptible to automation and being replaced by machines.  

 

 

 

 

I turn to investigating the impact on wages in the reduced sample including 10 of the 18 European 

countries. Wages are measured using data on labor compensation from 1995 to 2015. The main 

outcome of interest is changes in log wages during this time period. Results from the simple OLS 

regression in column (1) of Table I suggest that the change in robot density has reduced wages.   

 

When running the 2SLS regression (Table L), the coefficient however is positive and larger, 

indicating the presence of measurement error in the measure of robot adoption. When adding the 

same control variables as in the previous regressions (column 2), I find that the coefficient turns 

positive and increases in magnitude, both in the OLS and the 2SLS regression. Dropping Germany 

from the sample (column 3) however turns the coefficient negative, implying that Germany is the 

driver for a positive impact on wages, such as previously suggested for the  impact on hours 

worked.  Results are negative when running the 2sls regression as well, but larger in magnitude. 

Dropping industry “Transport Equipment” on the other hand turns the results larger and positive, 

and remain of same value in the 2SLS regression. Coefficients are in all cases statistically 

insignificant, making it impossible to establish a causal impact on changes in wages during the 

period of 1995-2015. The control variables (changes in ICT and non-ICT capital services and 

changes in Labor Productivity) however, are all positive and statistically significant, in both the 

7.3.1 Effects on wages  
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results from the OLS and the 2SLS regressions. This suggests that changes in these variables have 

increased the wages from 1995 to 2015.  

 

 

 

Table I: Changes in wages 1995-2015: OLS and 2SLS estimates 

Panel A: OLS estimates 

 (1) (2) (3) (4) (5) 

 Δ Wages Δ Wages Δ Wages Δ Wages Δ Wages 

Δ Robot 

adoption 

-0.00700 -0.0399 0.0494 -0.0477 0.0588 

 (-0.05) (-0.34) (0.51) (-0.46) (0.61) 

      

Controls  ✓ ✓ ✓ ✓ 

      

Change in 

capital 

  ✓ ✓ ✓ 

      

Other 

specifications 

   ✓ ✓ 

      

Constant 0.399*** 1.204** 0.656* 0.785* 0.555 

 (5.11) (3.12) (2.18) (2.43) (1.83) 

Panel B: 2SLS estimates 

 (1) (2) (3) (4) (5) 

 Δ Wages Δ Wages Δ Wages Δ Wages Δ Wages 

percentiles 0.120 -0.00346 0.00772 -0.111 0.0263 

 (0.67) (-0.02) (0.06) (-0.84) (0.20) 

      

Controls  ✓ ✓ ✓ ✓ 

      

Change in 

capital 

  ✓ ✓ ✓ 

      

Other 

specifications 

   ✓ ✓ 

      

Constant 0.335*** 1.182** 0.688* 0.837**
 0.581 

 (3.56) (3.15) (2.34) (2.67) (1.93) 

N 150 150 149 134 139 
Notes: Δ Robot adoption stands for the percentile change of robot density from 1995 to 2015. Changes are weighted 

by an industry’s initial (1995) share of hours in the country-wide amount of hours worked. Δ Wages stands for the 

change in log of wages from 1995 to 2015. Controls include country-industry fixed effect, namely the variation in 
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labor productivity from 1995-2015, as well as initial (1995) values of log wages and log labor productivity. Changes 

in capital include changes in both ICT and non-ICT capital services from 1995 to 2015. Other specifications refer to  

dropping Germany in column (3) and dropping industry “Transport Equipment” in column (4) from the sample. The 

coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are significant at the 5% confidence level; 

and with ∗ are significant at the 10% confidence level.   

 

 

 

 

 

To investigate predictions from previous literature on changes in labor shares, I turn to investigate 

the changes in three different skill groups. Data on labor shares, provided by EUKLEMS only 

covers a limited period of time, from 2008 to 2015. I am able to use data on the five following 

aggregated sectors; “Agriculture, Forestry and Fishing”, “Electricity, Gas and Water supply”, 

“Total Manufacturing”, “Construction and “Education”. As results are controlled for, using the 

same variables as in previous regressions, the sample analysis includes 12 countries25. Further, 

EUKLEMS decompose data on labor input into 18 different employment groups., based on 

differences in gender, education and age. The following analysis investigates differences in labor 

shares, based on the different educational background of  the workers. As a result, a worker will 

be categorized as low-skilled when possessing no formal education, as middle skilled when 

disposing a intermediate education, and high skilled if being a university graduate. The final 

sample thus account for 1080 country-industry-employment group cells. I run regressions for each 

of the skill groups. I also control for initial 1995 log wages and log labor productivity, as a proxy 

for existing differences in the markets, as robots were not adopted in the majority of the countries 

in the sample at that time, while widely adopted in the year 2008. 

 

Table X shows the impact of robot adoption on labor shares for low skilled workers. While OLS 

estimates are negative, small in magnitude, and robust to different controls, 2SLS estimates are 

positive, highly statistically significant, and larger. 2SLS estimates suggest that moving from the 

bottom to the top percentile corresponds to an increase in the share of hours worked by low skilled 

workers. The constant is also adjusted, turning negative and gaining in statistical significance in 

column (1) and (3). This suggests that there are possible measurement errors in the OLS regression, 

                                                
25 Data on Belgium is not available in the latest breakdown of labor input, provided by EUKLEMS (2017).  

7.3.2. Effects on labor shares 
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and that the constant in the 2SLS regression captures some of the unobserved negative impact on 

labor shares.  

 

 

 

 

Table J. Changes in share of hours worked by low skilled workers 2008-2015: OLS and 2SLS 

estimates 

Panel A: OLS estimates 

 (1) (2) (3) 

 Δ Share H Δ Share H Δ Share H 

Δ Robot adoption -0.0268 -0.0286 -0.0249 

 (-1.90) (-1.81) (-1.52) 

    

Controls  ✓ ✓ 

    

Change in capital   ✓ 

Constant 0.0200* 0.0253 0.00170 

 (2.18) (1.40) (0.09) 

Panel B: 2SLS estimates 

 (1) (2) (3) 

 Δ Share H Δ Share H Δ Share H 

Δ Robot adoption 0.0839*** 0.173*** 0.143*** 

 (3.31) (4.97) (4.55) 

    

Controls  ✓ ✓ 

    

Change in capital   ✓ 

    

Constant -0.0347** -0.0355 -0.0609* 

 (-2.76) (-1.50) (-2.50) 

N 360 360 360 
Notes: Δ Robot adoption stands for the percentile change of robot density from 1995 to 2015. Changes are weighted 

by an industry’s initial (1995) share of hours in the country-wide amount of hours worked. Δ Share H stands for the 

change in the share of low skilled workers 1995 to 2015. Controls include country-industry fixed effect, namely the 

variation in labor productivity from 1995-2015, as well as initial (1995) values of log wages and log labor productivity. 

Changes in capital include changes in both ICT and non-ICT capital services from 1995 to 2015. The coefficients with 

∗∗∗ are significant at the 1% confidence level; with ∗∗ are significant at the 5% confidence level; and with ∗ are 

significant at the 10% confidence level. 
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Turning to the middle skilled workers (Table K), 2SLS estimates double from OLS estimates when 

controlling for several trends. Both OLS and 2SLS estimates suggest that robot adoption is 

responsible for the decrease in hours worked by middle-skilled workers, compared to changes in 

ICT capital services, as the negative impact increases both in magnitude and in statistical 

significance when adding these controls.  

 

Table K. Changes in share of hours worked by middle-skilled workers 2008-2015: OLS and 2SLS 

estimates 

Panel A: OLS estimates  

 (1) (2) (3) 

 Δ Share H Δ Share H Δ Share H 

Δ Robot adoption -0.0309* -0.0362* -0.0404** 

 (-2.37) (-2.55) (-2.84) 

    

Controls  ✓ ✓ 

    

Change in capital   ✓ 

    

Constant -0.0283*** -0.0974*** -0.0855** 

 (-3.47) (-3.77) (-2.96) 

Panel B: 2SLS Estimates 

 (1) (2) (3) 

 Δ Share H Δ Share H Δ Share H 

Δ Robot adoption -0.0157 -0.0731 -0.0817* 

 (-0.56) (-1.90) (-2.24) 

    

Controls  ✓ ✓ 

    

Change in capital   ✓ 

    

Constant -0.0358* -0.0863** -0.0701*
 

 (-3.47) (-3.77) (-2.96) 

N 360 360 360 
Notes: Δ Robot adoption stands for the percentile change of robot density from 1995 to 2015. Changes are weighted 

by an industry’s initial (1995) share of hours in the country-wide amount of hours worked. Δ Share H stands for the 

change in the share of middle-skilled workers 1995 to 2015. Controls include country-industry fixed effect, namely 

the variation in labor productivity from 1995-2015, as well as initial (1995) values of log wages and log labor 

productivity. Changes in capital include changes in both ICT and non-ICT capital services from 1995 to 2015. The 

coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are significant at the 5% confidence level; 

and with ∗ are significant at the 10% confidence level. 
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Turning finally to high skilled workers, OLS coefficients are positive, and robust to adding control 

variables in column (2) and (3), while increasing slightly in magnitude.   

 

Table L. Changes in share of hours worked by high skilled workers 2008-2015: OLS and 2SLS 

estimates 

Panel A: OLS estimates 

 (1) (2) (3) 

 Δ Share H Δ Share H Δ Share H 

Δ Robot adoption 0.0540*** 0.0627*** 0.0630*** 

 (3.52) (3.65) (3.60) 

    

Controls  ✓ ✓ 

    

Change in capital   ✓ 

    

Constant 0.0113 0.0765**
 0.0888**

 

 (1.17) (2.73) (2.85) 

Panel B: 2SLS Estimates 

 (1) (2) (3) 

 Δ Share H Δ Share H Δ Share H 

percentiles -0.0815** -0.114** -0.0747* 

 (-2.61) (-2.74) (-1.99) 

    

Controls  ✓ ✓ 

    

Change in capital   ✓ 

    

Constant 0.0782*** 0.130*** 0.140*** 

 (4.92) (4.18) (4.28) 

N 360 360 360 
Notes: Δ Robot adoption stands for the percentile change of robot density from 1995 to 2015. Changes are weighted 

by an industry’s initial (1995) share of hours in the country-wide amount of hours worked. Δ Share H stands for the 

change in the share of high-skilled workers 1995 to 2015. Controls include country-industry fixed effect, namely the 

variation in labor productivity from 1995-2015, as well as initial (1995) values of log wages and log labor productivity. 

Changes in capital include changes in both ICT and non-ICT capital services from 1995 to 2015. The coefficients with 

∗∗∗ are significant at the 1% confidence level; with ∗∗ are significant at the 5% confidence level; and with ∗ are 

significant at the 10% confidence level. 
 

Interestingly, the coefficient on changes in robot adoption turns negative, and loses some statistical 

significance when running the 2SLS regression. 2SLS estimates suggests that when controlling for 

other trends, moving from the bottom to the top of the percentile reduces high skilled labor share 

by 0.075. The coefficient is marginally statistical significant. Further findings suggest that a third 
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of the changes in shares of high skilled workers was negative. This regards primarily workers in 

the education sector (who account for 70% of the negative changes in hours worked), for which 

changes in robot densities have been significantly high, reflected by a high percentile. In fact, as 

seen in Figure 7 in section 4.2., this industry has experienced a significant increase in robot density 

during the last decade.  

 

The 2SLS estimates suggest that, on overall, robot adoption has had a negative impact on both 

high and middle skilled labor shares from 2008 to 2015 in the 12 European countries included in 

the sample. The impact on low skilled workers is on the other hand positive. Results are in all 

cases statistically significant, though marginally for results on the impact on middle and high 

skilled workers. It would be interesting to see whether the results are different when controlling  

for other trends such as offsheaorability, migration, or routineness.  
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8. Conclusion 

 

Increased use of robots appears to follow an inverse pattern to the decrease in hours worked and 

employment during the last two decades, implying there may be a relationship between the trends. 

This was the motivation for writing this thesis, which attempts to investigate the impact of 

increased robot adoption on hours worked in 15 industries, in 18 European countries from 1995 to 

2015. My findings suggest there is a negative correlation between the increased use of robots and 

the fall in hours worked, when controlling for country trends and other trends that may confound 

the results. However, the impact of increased robot adoption on overall hours worked, 

employment, and wages remains ambiguous, as the results cannot be validated through statistical 

significance. There are several theories given in literature to explain why the impact of increased 

robot adoption is inconclusive, the most cited being that new technology might lead to increased 

labor demand. While theory predicts how robots and other technological improvement might 

substitute for human labor due to their cost advantage, there are still other factors in place, which 

might counterbalance the effect of labor saving technologies.   

 

The findings do suggest, however, that robot adoption has had a positive impact on low skilled 

workers, by increasing their labor shares. This finding is the opposite of Graetz and Michaels\ 

(2017) when investigating the impact of robot adoption on labor shares in 17 advanced countries 

from  1993 to 2007. Differences in the results can be explained by the difference in country-

samples, the time period investigated, or the methodology used. Though only statistically 

significant on a ten percent-level, results are negative for both high skilled and middle skilled 

workers, across five aggregate sectors in 12 of the European countries included in the sample. A 

consistent finding throughout the analysis is that the impact of robot adoption varies strongly when 

dropping Germany from the sample. Dropping Germany from the sample increases a negative 

impact on hours worked, while it decreased a positive impact. This suggests that observations 

belonging to Germany may be dampening the negative impact on hours worked. The opposite is 

true when excluding the Transport Equipment industry. The two belong to the 99th country 

percentile and industry percentile, respectively, equivalent to having the highest mean of robot 

density from 1995 to 2015. This would suggest that the industrial force of Germany is driving the 
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number of hours worked upwards, even though robot adoption and robot density has significantly 

increased during the period investigated in the analysis. This may be explained by the fact that 

Germany, as a leading industrial power in Europe, disposes industries that still account for large 

employment shares, where hours worked have remained stable overall during the past decades. On 

the other hand, the Transport Equipment industry appears to be a negative driving force, though it 

is not solely responsible for the results.   

 

There is relatively little evidence yet on the implications of robot adoption on labor markets, which 

in turn makes it difficult to establish causal effects of increased robot use on hours worked. In 

addition, controlling for other trends that most likely have had a negative impact on employment 

during the past decades might yield different results. This analysis thus provides a starting point 

for further research into the impact of robots on our labor markets.  

 

Previous literature suggest that humans most likely will retain a comparative advantage over 

machines, especially high skilled workers. In an interview with the Wall Street Journal, Bill Gates 

(2017) argues that anyone with skills in sciences, engineering and economics will always be in 

demand. Polanyi's manifestation, which argues that there remains tasks that we are engaging in, 

but only tacitly understand how to perform, is challenged by recent technological inventions. 

Today, robots are increasingly learning tacit knowledge, this through for example machine 

learning. Machine learning, a term first coined by Arthur Samuel (1959), is a “field of computer 

science that gives computers the ability to learn without being explicitly programmed”. One of our 

time's most famous example of implementation of machine learning has been the creation of IBM´s 

robot Watson. The rise of new technologies, e.g. robots, is not necessarily bound to substitute 

human labor. IFR (2016) on the other hand predicts a growing trend in the use of collaborative 

robots - dubbed “Cobots” - predicting that cobots are to “lead the departure from “man vs machine 

and usher into the man and machine”. Such developments in the technological world are bound to 

disrupt theory on the implications of technological improvement on labor markets, and to provide 

motivation for a new wave of literature on how skills, technology and tasks interact. 
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10. Appendix 

(1a) 

Percentile of change in Robot Density  

 
Notes: Panel (a) shows the variation in percentile of change in robot density. Observations are country-industry 

cells, with the size of each circle corresponding to an industry\s 1995 witihin country share of hours worked. Fitted 

regression lines are shown.  

 

(1b) Raw change in robot density 

 

 
Notes: Panel (b) shows the correlation using raw changes in robot density. Observations are country-industry cells, 
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Figure 1 A&B. Growth of hours worked and robot density 1995-2015 
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with the size of each circle corresponding to an industry\s 1995 witihin country share of hours worked. Fitted 

regression lines are shown.  

 

Landcode Countries Country number 

AT Austria 1 

BE Belgium 2 

CZ Czech Rep 3 

DE Germany 4 

DK Denmark 5 

ES Spain 6 

FI Finland 7 

FR France 8 

GR Greece 9 

IT Italy 10 

LT Lithuania 11 

NL Netherlands 12 

PT Portgual 13 

RO Romania 14 

SE Sweden 15 

SK Slovakia 16 

SL Slovenia 17 

UK UK 18 

Controls 

US United States 19 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1. Overview countries included in the analysis 
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Year 2015 

Country Average - weighted Average- unweighted 

Austria 3,558 5,958284 

Belgium 6,875 7,891648 

Czech Rep. 1,729 2.579333  

Germany 8,096 13.478   

Denmark 6,595 27.95  

Spain 4,346 6.25  

Finland 3,824 6.534  

France 3,592  7.94   

Greece 0,281 .5870987  

Italy 5,488 7.978  

Lithuania 0,084  .2984301 

Netherlands 3,506 5.511877 

Portgual 0,883 2.138986  

Romania 0,259 .392013 

Sweden 6,606  8.829333 

Slovakia 1,093 2.506777 

Slovenia 4,398 40.58339  

UK 1,893 4.715559 

Notes: Average w  levels are weighted using the initial 1995 within country share of hours 

worked. Average unweighted level for Austria is found in the following way, based on the sum 

presented in Table 2B: 89,3742646/15= 5,958284* 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2. Average levels of robot density in 2015  
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2015 Robot density Share Hours Robot density w 

Food products, beverages and tobacco 1,155 0,0816 0,094 

Textiles 0,290 0,0443 0,013 

Wood and paper products 0,874 0,0674 0,059 

Coke and refined petroleum products 16,235 0,0027 0,044 

Chemicals and chemical products 0,117 0,0261 0,003 

Rubber and plastics products 17,242 0,0629 1,085 

Basic metals and fabricated metal products 7,927 0,0903 0,716 

Electrical and optical equipment 4,499 0,0649 0,292 

Machinery and equipment n,e,c, 3,353 0,0592 0,198 

Transport equipment 35,633 0,0262 0,932 

Agriculture, Forestry and Fishing 0,101 0,0208 0,002 

Mining and Quarrying 1,309 0,0083 0,011 

Electricity, Gas and Water supply 0,025 0,0507 0,001 

Construction 0,163 0,2415 0,039 

Education 0,45 0,1500 0,068 

Sum 89,375429 0,9968798 3,558 

Notes: Robot density is defined as the number of robots divided per million hours worked. Share hours are the initial 

(1995) within country share of hours worked. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3. Calculation of weighted robot density using Austria as an example 
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Table 4A. Total number of robots and number in total manufacturing industry 

in 2004 and 1998 

Year All industries 

Total 

Manufacturing Share 

2004 123663 13110 0,11 

1998 70466 7470 0,11 

Notes: 1998 value for total manufacturing number is estimated by assuming that the within country share was the 

same in 1998 as it was 2004. 

 

 

 

Year Industry 

Number of robots 

1998 Share 

1998 

Total Manufacturing 7470 100 

Food products, beverages and tobacco 358 0,05 

Coke and refined petroleum products 131 0,02 

Rubber and plastics products 522 0,07 

Basic metals and fabricated metal 

products 785 0,11 

Electrical and optical equipment 745 0,10 

Transport equipment 4930 0,66 

Total Manufacturing 7470 100 

Year Industry 

Number of robots 

2004 Share 

2004 

Food products, beverages and tobacco 628 0,05 

Coke and refined petroleum products 230 0,02 

Rubber and plastics products 916 0,07 

Basic metals and fabricated metal 

products 1378 0,11 

Electrical and optical equipment 1307 0,10 

Transport equipment 8651 0,66 

Total Manufacturing 13110 100 

Notes: Other industries included in Total Manufacturing had not adopted robots yet in 2004. Values for 1998 are 

estimated assuming that the share was the same in 1998 as in 2004. 

 

 

Table 4B. Number of robots in the total manufacturing industry in 1998 and 

2004 
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Table 5. Currency units and conversion methods for all 18 countries 

Currency units in EUKLEMS 

Country Currency Comment 

Austria Euro 
In Euros from 1999 onwards, Before 1999, Austrian Schilling converted to 

Euro with the 1999 official fixed Euro conversion rate (13,7603 ATS/EUR), 

Belgium Euro 
In Euros from 1999 onwards, Before 1999, Belgian Francs converted to Euro 

with the 1999 official fixed Euro conversion rate (40,3399 BEF/EUR), 

Czech 

Republic 
Czech Koruna Converted using Eurostats annual exchange rates  

Germany Euro 
In Euros from 1999 onwards, Before 1999, Deutsche Marks converted to Euro 

with the 1999 official fixed Euro conversion rate (1,95583 DEM/EUR) 

Denmark Danish Krone Converted using Eurostats annual exchange rates  

Spain Euro 
In Euros from 1999 onwards, Before 1999, Spanish Pesetas converted to Euro 

with the 1999 official fixed Euro conversion rate (166,386 ESP/EUR), 

Finland Euro 
In Euros from 1999 onwards, Before 1999, Finnish Marks converted to Euro 

with the 1999 official fixed Euro conversion rate (5,94573 FIM/EUR), 

France Euro 
In Euros from 1999 onwards, Before 1999, French Francs converted to Euro 

with the 1999 official fixed Euro conversion rate (6,55957 FRF/EUR), 

Greece Euro 
In Euros from 2001 onwards, Before 2001, Greek Drachmas converted to Euro 

with the 2001 official fixed Euro conversion rate (340,750 GRD/EUR), 

Italy Euro 
In Euros from 1999 onwards, Before 1999, Italian Liras converted to Euro with 

the 1999 official fixed Euro conversion rate (1936,27 ITL/EUR), 

Lithuania Euro N/A 

Netherlands Euro 
In Euros from 1999 onwards, Before 1999, Dutch Guilders converted to Euro 

with the 1999 official fixed Euro conversion rate (2,20371 NLG/EUR), 

Portugal Euro 
In Euros from 1999 onwards, Before 1999, Portuguese Escudos converted to 

Euro with the 1999 official fixed Euro conversion rate (200,482 PTE/EUR) 

Romania Romanian Leu Converted using Eurostats annual exchange rates  

Sweden Swedish Krona Converted using Eurostats annual exchange rates  

Slovakia Euro N/A 

Slovenia Euro N/A 

UK 
British Pound 

Sterling 
Converted using Eurostats annual exchange rates  
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Notes: Based on EUKLEMS 2007 Methodology report (Timmer…,). Countries are sorted by landcode. The final 

analysis only includes 13 of the 18 countries listed, Greece, Lithuania, Portugal, Romania and Slovenia are not 

included, as data needed to construct control variables is not available for these countries. 

 

 

 

 

 

 

Year/ Currency 

Czech 

koruna 

Danish 

krone 

Pound 

sterling Romanian leu 

Swedish 

krona 

1995 36,884 7,4355 0,65874 1,6345 8,8075 

1996 36,884 7,4355 0,65874 1,6345 8,8075 

1997 36,884 7,4355 0,65874 1,6345 8,8075 

1998 36,884 7,4355 0,65874 1,6345 8,8075 

1999 36,884 7,4355 0,65874 1,6345 8,8075 

2000 35,599 7,4538 0,60948 1,9922 8,4452 

2001 34,068 7,4521 0,62187 2,6004 9,2551 

2002 30,804 7,4305 0,62883 3,1270 9,1611 

2003 31,846 7,4307 0,69199 3,7551 9,1242 

2004 31,891 7,4399 0,67866 4,0510 9,1243 

2005 29,782 7,4518 0,68380 3,6209 9,2822 

2006 28,342 7,4591 0,68173 3,5258 9,2544 

2007 27,766 7,4506 0,68434 3,3353 9,2501 

2008 24,946 7,4560 0,79628 3,6826 9,6152 

2009 26,435 7,4462 0,89094 4,2399 10,6191 

2010 25,284 7,4473 0,85784 4,2122 9,5373 

2011 24,590 7,4506 0,86788 4,2391 9,0298 

2012 25,149 7,4437 0,81087 4,4593 8,7041 

2013 25,980 7,4579 0,84926 4,4190 8,6515 

2014 27,536 7,4548 0,80612 4,4437 9,0985 

2015 27,279 7,4587 0,72584 4,4454 9,3535 

Notes: For values before the euro adoption (1999), conversion rates are based on 1999 rates. 

Source: Eurostat (2017), Romania is not included in the final analysis, as data needed to 

construct control variables is not available for this country. 

 

 

Table 6. Conversion table with exchange rates from national currencies to euro 

1995-2015 
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Table 7A: Summary statistics by country 

Table A: 1995 Levels Averaged by Country 

          
  #robots/H ln(H) ln (EMP ) ln(LAB) 

Austria 0 4,37 -3,05 7,55 

Belgium 0 4,27 -3,06 7,65 

Czech Republic 0 5,31 -2,15 6,19 

Germany 2,44 6,78 -0,55 10,03 

Denmark 0 3,87 -3,50 7,00 

Spain 0,59 5,77 -1,67 8,46 

Finland 1,18 3,87 -3,54 6,93 

France 1,31 6,01 -1,34 9,21 

Greece 0 4,24 -3,35 6,47 

Italy 1,95 6,26 -1,21 9,18 

Lithuania 0 3,60 -3,87 4,25 

Netherlands 0 4,66 -2,73 7,90 

Portugal 0 4,73 -2,79 6,72 

Romania 0 6,07 -1,50 4,30 

Sweden 2,07 4,50 -2,97 7,33 

Slovenia 0 4,49 -2,97 5,40 

Slovakia 0 3,38 -3,99 5,14 

UK 0,67 6,28 -1,26 9,40 

          

Mean 0,57 4,91 -2,53 7,17 

  

Table B: Change in Levels Averaged by Country (1995-2015) 

          

  #robots/H ln(H) ln(EMP) ln(LAB) 

Austria 3,56 -0,15 -0,11 0,33 

Belgium 6,88 -0,21 -0,21 0,21 

Czech Republic 1,73 -0,32 -0,29 1,13 

Germany 5,66 -0,26 -0,20 0,14 

Denmark 6,60 -0,39 -0,33 0,28 

Spain 3,75 -0,05 -0,10 0,38 

Finland 2,65 -0,14 -0,08 0,46 

France 2,28 -0,32 -0,29 0,21 

Greece 0,28 -0,30 -0,27 0,18 

Italy 3,53 -0,21 -0,15 0,31 

Lithuania 0,08 -0,24 -0,32 1,27 

Netherlands 3,51 -0,19 -0,17 0,38 

Portugal 0,88 -0,26 -0,25 0,34 

Romania 0,26 -0,63 -0,58 2,80 

Sweden 4,54 -0,10 -0,08 0,53 

Slovenia 1,09 -0,43 -0,38 1,09 

Slovakia 4,40 -0,55 -0,55 0,65 

UK 1,22 -0,32 -0,31 0,44 

          

Mean 2,94 -0,28 -0,26 0,62 
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Notes: Robot densities are weighted by an industry’s initial (1995) share of hours in the country-wide amount of hours 

worked. 

Table 7 B&C: Summary statistics by industry 

 Table B: 1995 Levels Averaged by Industry  

       

 Industry #robots/H ln(H) ln(EMP) ln(LAB)  

 Food products, beverages and tobacco 0,16 5,44 -1.997341 7,53  

 Textiles 0,14 5,18 0,20 7,05  

 Wood and paper products 0,25 5,16 0,15 7,25  

 Coke and refined petroleum products 0,00 2,37 0,01 5,04  

 Chemicals and chemical products 0,00 4,49 0,10 6,89  

 Rubber and plastics products 1,25 5,01 0,16 7,16  

 

Basic metals and fabricated metal 

products 1,21 5,42 0,24 7,53  

 Electrical and optical equipment 0,85 4,91 0,15 7,08  

 Machinery and equipment n,e,c, 1,17 4,87 0,16 6,97  

 Transport equipment 4,40 4,71 0,15 6,90  

 Agriculture, Forestry and Fishing 0,00 5,24 0,19 8,18  

 Mining and Quarrying 0,00 3,49 0,04 5,76  

 Electricity, Gas and Water supply 0,00 4,87 0,12 7,16  

 Construction 0,00 6,31 0,56 8,54  

 Education 0,01 6,24 0,59 8,53  

       

       

   

 Table C: Change in Levels Averaged by Industry (1995-2015)  

       

 Industry #robots/H ln(H) ln(EMP) ln(LAB)  

 Food products, beverages and tobacco 3,87 -0,18 -0,01 0,62  

 Textiles 1,21 -1,02 -0,11 -0,04  

 Wood and paper products 1,18 -0,46 -0,05 0,42  

 Coke and refined petroleum products 66,06 -0,76 -0,01 0,26  

 Chemicals and chemical products 0,11 -0,19 -0,02 0,74  

 Rubber and plastics products 8,38 -0,21 -0,03 0,65  

 

Basic metals and fabricated metal 

products 4,29 -0,12 -0,03 0,78  

 Electrical and optical equipment 2,64 -0,28 -0,03 0,70  

 Machinery and equipment n,e,c, 3,12 -0,14 -0,01 0,83  

 Transport equipment 25,48 -0,18 0,00 0,75  

 Agriculture, Forestry and Fishing 0,27 -0,24 -0,03 0,32  

 Mining and Quarrying 0,42 -0,49 -0,02 0,52  

 Electricity, Gas and Water supply 0,04 -0,02 0,00 0,88  

 Construction 0,11 -0,07 -0,06 0,84  

 Education 0,15 0,14 0,11 0,99  
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Notes: Robot densities are not weighted.  

 

              

  Table 7D & E: Summary statistics by country   

  Table D: 1995 Levels Averaged by Country   

              

    #robots/H ln(H) ln (EMP ) ln(LAB)   

  Austria 0 4,37 -3,05 7,55   

  Belgium 0 4,27 -3,06 7,65   

  Czech Republic 0 5,31 -2,15 6,19   

  Germany 2,44 6,78 -0,55 10,03   

  Denmark 0 3,87 -3,50 7,00   

  Spain 0,59 5,77 -1,67 8,46   

  Finland 1,18 3,87 -3,54 6,93   

  France 1,31 6,01 -1,34 9,21   

  Greece 0 4,24 -3,35 6,47   

  Italy 1,95 6,26 -1,21 9,18   

  Lithuania 0 3,60 -3,87 4,25   

  Netherlands 0 4,66 -2,73 7,90   

  Portugal 0 4,73 -2,79 6,72   

  Romania 0 6,07 -1,50 4,30   

  Sweden 2,07 4,50 -2,97 7,33   

  Slovenia 0 4,49 -2,97 5,40   

  Slovakia 0 3,38 -3,99 5,14   

  UK 0,67 6,28 -1,26 9,40   

              

  Mean 0,57 4,91 -2,53 7,17   

      

  Table E: Change in Levels Averaged by Country (1995-2015)   

              

    #robots/H ln(H) ln(EMP) ln(LAB)   

  Austria 3,56 -0,15 -0,11 0,33   

  Belgium 6,88 -0,21 -0,21 0,21   

  Czech Republic 1,73 -0,32 -0,29 1,13   

  Germany 5,66 -0,26 -0,20 0,14   

  Denmark 6,60 -0,39 -0,33 0,28   

  Spain 3,75 -0,05 -0,10 0,38   

  Finland 2,65 -0,14 -0,08 0,46   

  France 2,28 -0,32 -0,29 0,21   
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  Greece 0,28 -0,30 -0,27 0,18   

  Italy 3,53 -0,21 -0,15 0,31   

  Lithuania 0,08 -0,24 -0,32 1,27   

  Netherlands 3,51 -0,19 -0,17 0,38   

  Portugal 0,88 -0,26 -0,25 0,34   

  Romania 0,26 -0,63 -0,58 2,80   

  Sweden 4,54 -0,10 -0,08 0,53   

  Slovenia 1,09 -0,43 -0,38 1,09   

  Slovakia 4,40 -0,55 -0,55 0,65   

 

Table A: 2008 Levels Averaged by Industry 

        

Industry 

(1) Δ Share H 

Low (2) Δ Share H Middle (3) Δ Share H High 
Agriculture, Forestry and 

Fishing 0,06 0,09 -0,03 
Mining and Quarrying 0,04 0,09 0,00 
Total Manufacturing 0,07 0,19 -0,01 
Construction 0,05 0,10 0,02 
Education 0,01 0,05 0,10 

        

        

Table B: Changes in levels from 2008-2015 : Averaged by Industry 

        

Industry 

(1) Δ Share H 

Low (2) Δ Share H Middle (3) Δ Share H High 
Agriculture, Forestry and 

Fishing -0,03 -0,03 0,07 
Mining and Quarrying 0,00 -0,04 0,05 
Total Manufacturing -0,01 -0,05 0,06 
Construction -0,02 -0,06 0,08 
Education 0,09 -0,03 -0,06 

Notes: Δ Share H stands for labor share of five industries of hours worked. Industry " Electricity, Gas and Water 

supply " is removed, as explained in section 6.2. 

 

 

 

 

 

Table 7 F: Summary statistics by industry 
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A: 1995 levels 

              

  Mean Std Dev Min  Median Max Number of obs. 

Robot density 0,57 1,99 0,00 0,00 16,91 270 

ln(H) 4,91 1,46 0,32 4,93 8,46 270 

K ICT 53,80 46,40 0,52 44,98 335,31 149 

K OTHER 82,90 28,15 17,38 80,44 190,37 149 

Productivity 3,37 1,02 -2,09 3,52 7,39 270 

              

              

              

B: Changes from 1995-2015 

              

  Mean Std Dev Min  Median Max Number of obs. 

Δ Robot density 2,94 6,84 -0,80 0,31 67,23 270 

Δ ln(H) -0,28 0,49 -3,73 -0,21 1,07 270 

Δ K ICT 179,77 755,51 -246,64 71,99 8571,91 149 

Δ K OTHER 19,54 44,20 -122,83 18,77 312,75 149 

Δ Productivity 0,95 0,91 -1,26 0,67 6,10 270 

              
Notes: Robot density stands for the number of operational robots per million hours worked. Δln(H) stands for the 

change in log of hours worked from 2005 to 2015. Controls include country-industry fixed effect, namely the 

variation in labor productivity from 2005-2015, changes in both ICT (K ICT) and non-ICT capital (K OTHER) services 

from 1995 to 2015. 

 

 

Table 8. Summary statistics for variables 
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 (2) (3) 

 ΔH ΔH 

Δ Robot adoption UNW -0.00203  

 (-0.39)  

   

Δ Robot adoption PERC  0.0820 

  (0.72) 

   

Constant -0.276*** -0.322*** 

 (-9.33) (-5.26) 

N 270 270 

Notes: ΔH stands for the change in log of hours worked between 1995 and 2015. Δ Robot adoption stands for  

percentiles of changes in robot density, weighted by an industry’s initial (1995) share of hours in the country-wide 

amount of hours worked. The coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are significant 

at the 5% confidence level; and with ∗ are significant at the 10% confidence level. 

 

 

 

 

 

 

 

 

 

 

Table 9: Simple OLS regression 1995-2015  
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 (1) (2) (3) (4) (5) 

 ΔH ΔH ΔH ΔH ΔH 

Δ Robot 

adoption 

-0.0712 -0.0582 0.00673 -0.0686 0.0290 

 (-0.65) (-0.54) (0.08) (-0.73) (0.33) 

      

Wage 1995  0.0622** 0.0786*** 0.0901*** 0.0863*** 

  (2.68) (4.13) (3.93) (4.47) 

      

Productivity 

1995 

 0.0813 0.132** 0.125* 0.160** 

  (1.46) (2.65) (2.43) (3.35) 

      

Δ Labor 

Productivity  

 0.0260 0.00223 0.000534 0.00510 

  (0.62) (0.04) (0.01) (0.09) 

      

Δ K ICT   0.0000256 0.0000203 0.0000348 

   (0.81) (0.63) (1.11) 

      

Δ K OTHER   0.00600*** 0.00592*** 0.00596*** 

   (7.74) (7.20) (8.27) 

      

Constant -0.178* -0.971** -1.412*** -1.428*** -1.582*** 

 (-2.55) (-3.14) (-4.89) (-4.46) (-5.39) 

N 150 150 149 134 139 
Notes: Δ Robot adoption stands for the percentiles of changes in robot density, weighted by an industry’s initial (1995) 

share of hours in the country-wide amount of hours worked. Robot densities are defined as the number of operational 

robots per million hours worked. ΔH stands for changes in hours worked (in millions). Wage 1995 is the initial (1995) 

wage, while Productivity 1995 is the initial (1995) level of labor productivity in a given industry, country and year. Δ 

Labor Productivity stands for changes in labor productivity, Δ K ICT and  Δ K OTHER stand for changes in ICT and non-

ICT capital services, respectively. The coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are 

significant at the 5% confidence level; and with ∗ are significant at the 10% confidence level. 

 

 

 

 

 

 

 

Table 10. Changes in hours worked 1995-2015: OLS estimates 
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 (1) 

 Δ Robot adoption EUR 

Δ Robot adoption US 0.777*** 

 (16.69) 

Δ K ICT -0.0000251** 

 (-2.90) 

Δ K OTHER -0.000589 

 (-1.71) 

Wage 1995 -0.00645 

 (-0.76) 

Constant 0.180* 

 (2.34) 

N 149 

Notes: Δ Robot adoption EUR stands for the percentile of changes in the endogenous (European) robot density from 

1995 to 2015, weighted by an industry’s initial (1995) share of hours in the country-wide amount of hours worked. Δ 

Robot adoption US stands for the percentile of changes in the exogenous robot density, in the US, from 1998 to 2015, 

weighted by the initial (1998) share of within-country hours worked. The coefficients with ∗∗∗ are significant at the 

1% confidence level; with ∗∗ are significant at the 5% confidence level; and with ∗ are significant at the 10% 

confidence level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 11: First stage regression 1995-2015  
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 (1) (2) (3) (4) (5) 

 ΔH ΔH ΔH ΔH ΔH 

Δ Robot 

adoption 

-0.0734 -0.0375 -0.0485 -0.142 -0.0293 

 (-0.51) (-0.27) (-0.43) (-1.20) (-0.24) 

      

Wage 1995  0.0622** 0.0783*** 0.0897*** 0.0858*** 

  (2.72) (4.23) (4.03) (4.60) 

      

Productivity 

1995 

 0.0820 0.128** 0.120* 0.157*** 

  (1.50) (2.63) (2.37) (3.34) 

      

Δ Labor 

Productivity 

 0.0263 0.00158 -0.000895 0.00296 

  (0.63) (0.03) (-0.02) (0.05) 

      

Δ K ICT   0.0000216 0.0000148 0.0000310 

   (0.71) (0.48) (1.02) 

      

Δ K OTHER   0.00597*** 0.00586*** 0.00593*** 

   (7.78) (7.23) (8.33) 

      

Constant -0.177* -0.984** -1.369*** -1.367*** -1.535*** 

 (-2.11) (-3.25) (-4.89) (-4.40) (-5.37) 

N 150 150 149 134 139 
Notes: Δ Robot adoption stands for the percentile of changes in robot density, weighted by an industry’s initial (1995) 

share of hours in the country-wide amount of hours worked. Robot densities are defined as the number of operational 

robots per million hours worked. ΔH stands for changes in hours worked (in millions). Wage 1995 is the initial (1995) 

wage, while Productivity 1995 is the initial (1995) level of labor productivity in a given industry, country and year. Δ 

Labor Productivity stands for changes in labor productivity, Δ K ICT and  Δ K OTHER stand for changes in ICT and non-

ICT capital services, respectively. The coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are 

significant at the 5% confidence level; and with ∗ are significant at the 10% confidence level. 

 

 

 

 

 

 

 

 

 

Table 12. Change in hours worked 1995-2015 : 2SLS estimates 
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 (1) (2) (3) (4) (5) 

 ΔH ΔH ΔH ΔH ΔH 

Δ Robot 

adoption 

0.00598** 0.00332 0.000937 -0.000726 0.00466 

 (2.68) (1.38) (0.38) (-0.18) (0.71) 

      

Wage 1995  0.0296 0.0235 0.0362 0.0231 

  (1.59) (1.46) (1.77) (1.42) 

      

Productivity 

1995 

 0.00639 0.0184 0.0115 0.0227 

  (0.20) (0.58) (0.35) (0.69) 

      

Δ Labor 

Productivity  

 -0.0942 -0.178* -0.209** -0.201** 

  (-1.26) (-2.42) (-2.80) (-2.62) 

      

Δ K ICT   0.00119** 0.00113* 0.00115* 

   (2.63) (2.43) (2.53) 

      

Δ K OTHER   0.00656*** 0.00653*** 0.00659*** 

   (5.64) (5.01) (5.45) 

      

Constant -0.0896*** -0.305 -0.374 -0.422 -0.379 

 (-3.56) (-1.40) (-1.90) (-1.84) (-1.84) 

N 150 150 149 134 139 
Notes: Δ Robot adoption stands for percentile of changes in robot density, weighted by an industry’s initial (1995) 

share of hours in the country-wide amount of hours worked. Robot densities are defined as the number of operational 

robots per million hours worked. ΔH stands for changes in hours worked (in millions). Wage 1995 is the initial (1995) 

wage, while Productivity 1995 is the initial (1995) level of labor productivity in a given industry, country and year. Δ 

Labor Productivity stands for changes in labor productivity, Δ K ICT and  Δ K OTHER stand for changes in ICT and non-

ICT capital services, respectively. The coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are 

significant at the 5% confidence level; and with ∗ are significant at the 10% confidence level. 

 

 

 

 

 

 

Table 13: Changes in hours worked 1995-2005 – OLS estimates 



 

 

97 

 

 (1) (2) (3) (4) (5) 

 ΔH ΔH ΔH ΔH ΔH 

Δ Robot 

adoption 

0.0193 0.0212 0.00835 0.00239 0.0195 

 (1.61) (1.73) (0.85) (0.20) (1.06) 

      

Wage 1995  0.0191 0.0193 0.0353 0.0212 

  (0.93) (1.11) (1.69) (1.30) 

      

Productivity 

1995 

 0.00512 0.0174 0.0120 0.0253 

  (0.16) (0.56) (0.37) (0.77) 

      

Δ Labor 

Productivity  

 -0.100 -0.179* -0.207** -0.195* 

  (-1.38) (-2.50) (-2.86) (-2.52) 

      

Δ K ICT   0.00119** 0.00111* 0.00106* 

   (2.68) (2.46) (2.35) 

      

Δ K OTHER   0.00643*** 0.00652*** 0.00669*** 

   (5.71) (5.21) (5.62) 

      

Constant -0.112*** -0.245 -0.347 -0.420 -0.390 

 (-3.48) (-1.10) (-1.76) (-1.88) (-1.95) 

N 150 150 149 134 139 
Notes: Δ Robot adoption stands for percentile of changes in robot density, weighted by an industry’s initial (1995) 

share of hours in the country-wide amount of hours worked. Robot densities are defined as the number of operational 

robots per million hours worked. ΔH stands for changes in hours worked (in millions). Wage 1995 is the initial (1995) 

wage, while Productivity 1995 is the initial (1995) level of labor productivity in a given industry, country and year. Δ 

Labor Productivity stands for changes in labor productivity, Δ K ICT and Δ K OTHER stand for changes in ICT and non-

ICT capital services, respectively. The coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are 

significant at the 5% confidence level; and with ∗ are significant at the 10% confidence level. 

 

 

 

 

 

 

 

 

Table 14: Changes in hours worked 1995-2005: 2SLS estimates 
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 (1) 

 Δ Robot adoption EUR 

Δ Robot adoption US 0.642*** 

 (11.34) 

  

Constant 0.179*** 

 (7.29) 

N 195 
Notes:  Δ Robot adoption EUR stands for the percentile of changes in the endogenous (European) robot density from 

1995 to 2015, weighted by an industry’s initial (1995) share of hours in the country-wide amount of hours worked. Δ 

Robot adoption US stands for the percentile of changes in the exogenous robot density, in the US, from 1998 to 2015, 

weighted by an industry’s initial (1998) share of hours in the country-wide amount of hours worked. The coefficients 

with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are significant at the 5% confidence level; and with ∗ are 

significant at the 10% confidence level. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 15. First stage regression 2005-2015 
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 (1) (2) (3) (4) (5) 

 ΔH ΔH ΔH ΔH ΔH 

Δ Robot 

adoption 

-0.0334 -0.0202 0.0185 0.0112 -0.00904 

 (-0.55) (-0.34) (0.38) (0.21) (-0.19) 

      

Wage 1995  0.00973 0.0225** 0.0142 0.0257** 

  (0.95) (2.61) (1.39) (3.03) 

      

Productivity 

1995 

 0.0340 0.0486** 0.0495** 0.0635*** 

  (1.62) (2.61) (2.62) (3.67) 

      

Δ Labor 

Productivity 

 -0.0249 -0.0239 -0.0220 -0.00964 

  (-0.52) (-0.48) (-0.44) (-0.22) 

      

Δ K ICT   0.0000290 0.0000287 0.0000300 

   (1.80) (1.76) (1.91) 

      

Δ K OTHER   0.00351*** 0.00346*** 0.00336*** 

   (5.14) (4.98) (5.39) 

      

Constant -0.112** -0.304** -0.505*** -0.446*** -0.567*** 

 (-3.08) (-2.80) (-5.73) (-4.72) (-6.78) 

N 195 195 194 179 181 
Notes: Δ Robot adoption stands for the percentile of changes in robot density, weighted by the initial 1995 industry\ s 

share of hours worked. Robot densities are defined as the number of operational robots per million hours worked. ΔH 

stands  for changes in hours worked (in millions). Wage 1995 is the initial (1995) wage, while Productivity 1995 is the 

initial (1995) level of labor productivity in a given industry, country and year. Δ Labor Productivity stands for changes 

in labor productivity, Δ K ICT and Δ K OTHER stand for changes in ICT and non-ICT capital services, respectively. The 

coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are significant at the 5% confidence level; 

and with ∗ are significant at the 10% confidence level. 

 

 

 

 

 

Table 16. Changes in hours worked 2005-2015 : OLS estimates 
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 (1) (2) (3) (4) (5) 

 ΔH ΔH ΔH ΔH ΔH 

Δ Robot 

adoption 

-0.175 -0.147 -0.0643 -0.0885 -0.0784 

 (-1.94) (-1.72) (-0.80) (-1.02) (-1.00) 

      

Wage 1995  0.00776 0.0209* 0.0121 0.0248** 

  (0.77) (2.48) (1.21) (2.99) 

      

Productivity 

1995 

 0.0325 0.0471* 0.0474* 0.0626*** 

  (1.55) (2.56) (2.55) (3.70) 

      

Δ Labor 

Productivity  

 -0.0233 -0.0224 -0.0204 -0.00942 

  (-0.54) (-0.49) (-0.46) (-0.24) 

      

Δ K ICT   0.0000258 0.0000248 0.0000279 

   (1.56) (1.48) (1.74) 

      

Δ K OTHER   0.00344*** 0.00337*** 0.00332*** 

   (5.08) (4.89) (5.40) 

      

Constant -0.0411 -0.221* -0.444*** -0.373*** -0.523*** 

 (-0.84) (-1.99) (-4.68) (-3.63) (-5.79) 

N 195 195 194 179 181 
Notes: Δ Robot adoption stands for percentile of changes in robot density, weighted by the initial 1995 industry\ s 

share of hours worked. Robot densities are defined as the number of operational robots per million hours worked. ΔH 

stands for changes in hours worked (in millions). Wage 1995 is the initial (1995) wage, while Productivity 1995 is the 

initial (1995) level of labor productivity in a given industry, country and year. Δ Labor Productivity stands for changes 

in labor productivity, Δ K ICT and Δ K OTHER stand for changes in ICT and non-ICT capital services, respectively. The 

coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are significant at the 5% confidence level; 

and with ∗ are significant at the 10% confidence level. 

 

 

 

 

Table 17. Changes in hours worked 2005-2015 :2SLS estimates 
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Table 18. Robustness check 1A : Changes in Employment 1995-2015 : OLS estimates 

 (1) (2) (3) (4) (5) 

 Δ 

Employment 

Δ Employment Δ Employment Δ Employment Δ Employment 

Δ Robot 

adoption 

-0.0272 -0.0123 0.0465 -0.0206 0.0730 

 (-0.25) (-0.12) (0.53) (-0.22) (0.83) 

      

Wage 1995  0.0562* 0.0718*** 0.0779*** 0.0786*** 

  (2.48) (3.81) (3.37) (4.12) 

      

Productivity 

1995 

 0.0915 0.141** 0.135** 0.168*** 

  (1.66) (2.93) (2.70) (3.62) 

      

Δ Labor 

Productivity  

 0.0415 0.0199 0.0173 0.0232 

  (1.03) (0.44) (0.38) (0.51) 

      

Δ K ICT   0.0000216 0.0000169 0.0000301 

   (0.75) (0.58) (1.06) 

      

Δ K OTHER   0.00585*** 0.00579*** 0.00579*** 

   (7.67) (7.08) (8.14) 

      

Constant -0.170* -0.959** -1.385*** -1.369*** -1.545*** 

 (-2.48) (-3.17) (-5.07) (-4.49) (-5.56) 

N 150 150 149 134 139 

Notes: Δ Robot adoption stands for percentile of changes in robot density, weighted by the initial 1995 industry\ s 

share of hours worked. Robot densities are defined as the number of operational robots per million hours worked. Δ 

Employment stands for changes in the number of people employed (in millions). Wage 1995 is the initial (1995) wage, 

while Productivity 1995 is the initial (1995) level of labor productivity in a given industry, country and year. Δ Labor 

Productivity stands for changes in labor productivity, Δ K ICT and Δ K OTHER stand for changes in ICT and non-ICT 

capital services, respectively. The coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are 

significant at the 5% confidence level; and with ∗ are significant at the 10% confidence level. 
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Table 19. Robustness check 1B: Changes in Employment 1995-2015 : 2SLS estimates 

 (1) (2) (3) (4) (5) 

 Δ Employment Δ Employment Δ Employment Δ Employment Δ Employment 

Δ Robot 

adoption 

-0.0422 -0.00210 -0.0165 -0.103 0.00787 

 (-0.30) (-0.02) (-0.15) (-0.86) (0.06) 

      

Wage 1995  0.0562* 0.0714*** 0.0774*** 0.0780*** 

  (2.52) (3.89) (3.43) (4.22) 

      

Productivity 

1995 

 0.0919 0.137** 0.130** 0.164*** 

  (1.70) (2.89) (2.61) (3.57) 

      

Δ Labor 

Productivity  

 0.0417 0.0191 0.0157 0.0208 

  (1.04) (0.44) (0.35) (0.46) 

      

Δ K ICT   0.0000171 0.0000107 0.0000259 

   (0.61) (0.38) (0.93) 

      

Δ K OTHER   0.00582*** 0.00573*** 0.00575*** 

   (7.70) (7.10) (8.18) 

      

Constant -0.162* -0.966** -1.336*** -1.301*** -1.492*** 

 (-1.97) (-3.24) (-5.01) (-4.38) (-5.45) 

N 150 150 149 134 139 
Notes: Δ Robot adoption stands for percentile of changes in robot density, weighted by the initial 1995 industry\ s 

share of hours worked. Robot densities are defined as the number of operational robots per million hours worked. Δ 

Employment stands for changes in the number of people employed (in millions). Wage 1995 is the initial (1995) wage, 

while Productivity 1995 is the initial (1995) level of labor productivity in a given industry, country and year. Δ Labor 

Productivity stands for changes in labor productivity, Δ K ICT and Δ K OTHER stand for changes in ICT and non-ICT 

capital services, respectively. The coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are 

significant at the 5% confidence level; and with ∗ are significant at the 10% confidence level. 
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Table 20. Robustness check 2A : Changes in Hours worked excluding unspecified 

industries: OLS estimates 

 (1) (2) (3) (4) (5) 

 ΔH ΔH ΔH ΔH ΔH 

Δ Robot 

adoption 

-0.0716 -0.0595 0.00688 -0.0692 0.0294 

 (-0.66) (-0.55) (0.08) (-0.74) (0.33) 

      

Wage 1995  0.0622** 0.0786*** 0.0901*** 0.0863*** 

  (2.68) (4.13) (3.93) (4.47) 

      

Productivity 

1995 

 

 0.0812 0.132** 0.125* 0.160** 

  (1.46) (2.65) (2.43) (3.35) 

      

Δ Labor 

Productivity  

 0.0259 0.00224 0.000443 0.00514 

  (0.62) (0.04) (0.01) (0.09) 

      

Δ K ICT   0.0000256 0.0000203 0.0000348 

   (0.81) (0.64) (1.11) 

      

Δ K OTHER   0.00600*** 0.00592*** 0.00597*** 

   (7.74) (7.19) (8.27) 

      

Constant -0.178* -0.970** -1.412*** -1.428*** -1.582*** 

 (-2.55) (-3.14) (-4.89) (-4.46) (-5.39) 

N 150 150 149 134 139 
Notes: Δ Robot adoption stands for percentile of changes in robot density, excluding unspecified industries “Chemical 

products, unspecified“ and “Metal, unspecified”. Changes are weighted by the initial 1995 industry\ s share of hours 

worked. Robot densities are defined as the number of operational robots per million hours worked. Δ H stands for 

changes in hours worked (in millions). Wage 1995 is the initial (1995) wage, while Productivity 1995 is the initial (1995) 

level of labor productivity in a given industry, country and year. Δ Labor Productivity stands for changes in labor 

productivity, Δ K ICT and Δ K OTHER stand for changes in ICT and non-ICT capital services, respectively. The 

coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are significant at the 5% confidence level; 

and with ∗ are significant at the 10% confidence level. 
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Table 21. Robustness check 2B: Changes in Hours worked excluding unspecified 

industries: 2SLS estimates 

 (1) (2) (3) (4) (5) 

 ΔH ΔH ΔH ΔH ΔH 

Δ Robot 

adoption 

-0.0734 -0.0374 -0.0485 -0.142 -0.0292 

 (-0.51) (-0.27) (-0.43) (-1.20) (-0.24) 

      

Wage 1995  0.0622** 0.0783*** 0.0897*** 0.0858*** 

  (2.72) (4.23) (4.03) (4.60) 

      

Productivity 

1995 

 0.0820 0.128** 0.120* 0.157*** 

  (1.50) (2.63) (2.37) (3.34) 

      

Δ Labor 

Productivity  

 0.0263 0.00153 -0.00106 0.00293 

  (0.63) (0.03) (-0.02) (0.05) 

      

Δ K ICT   0.0000217 0.0000148 0.0000310 

   (0.71) (0.48) (1.02) 

      

Δ K OTHER   0.00597*** 0.00586*** 0.00593*** 

   (7.78) (7.23) (8.32) 

      

Constant -0.177* -0.984** -1.369*** -1.367*** -1.535*** 

 (-2.11) (-3.25) (-4.89) (-4.40) (-5.37) 

N 150 150 149 134 139 
Notes: Δ Robot adoption stands for percentile of changes in robot density, excluding unspecified industries “Chemical 

products, unspecified“ and “Metal, unspecified”. Changes are weighted by the initial 1995 industry\ s share of hours 

worked. Robot densities are defined as the number of operational robots per million hours worked. Δ H stands for 

changes in hours worked (in millions). Wage 1995 is the initial (1995) wage, while Productivity 1995 is the initial (1995) 

level of labor productivity in a given industry, country and year. Δ Labor Productivity stands for changes in labor 

productivity, Δ K ICT and Δ K OTHER stand for changes in ICT and non-ICT capital services, respectively.  The 

coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are significant at the 5% confidence level; 

and with ∗ are significant at the 10% confidence level. 
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 (1) (2) (3) (4) (5) 

 Δ Wages Δ Wages Δ Wages Δ Wages Δ Wages 

Δ Robot 

adoption 

-0.00700 -0.0399 0.0494 -0.0477 0.0588 

 (-0.05) (-0.34) (0.51) (-0.46) (0.61) 

      

Wage 1995  -0.0378 -0.0178 -0.0170 -0.0152 

  (-1.52) (-0.96) (-0.79) (-0.82) 

      

Productivity 

1995 

 -0.168* -0.102 -0.122* -0.0782 

  (-2.56) (-1.82) (-2.12) (-1.45) 

      

Δ Labor 

Productivity 

 0.137 0.110* 0.0873* 0.105* 

  (1.49) (2.22) (2.06) (2.35) 

      

Δ K ICT   0.0000655 0.0000567 0.0000718* 

   (1.89) (1.66) (2.12) 

      

Δ K OTHER   0.00640*** 0.00636*** 0.00620*** 

   (7.38) (6.70) (7.84) 

      

Constant 0.399*** 1.204** 0.656* 0.785* 0.555 

 (5.11) (3.12) (2.18) (2.43) (1.83) 

N 150 150 149 134 139 
Notes: Δ Robot adoption stands for percentile of changes in robot density, weighted by the initial 1995 industry\ s 

share of hours worked. Robot densities are defined as the number of operational robots per million hours worked. Δ 

Wages stands for changes in wages. Wage 1995 is the initial (1995) wage, while Productivity 1995 is the initial (1995) 

level of labor productivity in a given industry, country and year. Δ Labor Productivity stands for changes in labor 

productivity, Δ K ICT and Δ K OTHER stand for changes in ICT and non-ICT capital services, respectively. The 

coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are significant at the 5% confidence level; 

and with ∗ are significant at the 10% confidence level. 

 

 

 

 

 

 

 

 

 

Table 22. Changes in wages 1995-2015: OLS estimates 
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 (1) (2) (3) (4) (5) 

 Δ Wages Δ Wages Δ Wages Δ Wages Δ Wages 

Δ Robot 

adoption 

0.120 -0.00346 0.00772 -0.111 0.0263 

 (0.67) (-0.02) (0.06) (-0.84) (0.20) 

      

Wage 1995  -0.0378 -0.0180 -0.0174 -0.0156 

  (-1.55) (-1.00) (-0.83) (-0.87) 

      

Productivity 

1995 

 -0.167** -0.105 -0.127* -0.0802 

  (-2.59) (-1.91) (-2.25) (-1.52) 

      

Δ Labor 

Productivity  

 0.138 0.109* 0.0861* 0.103* 

  (1.53) (2.23) (2.05) (2.35) 

      

Δ K ICT   0.0000625 0.0000520 0.0000697* 

   (1.85) (1.56) (2.08) 

      

Δ K OTHER   0.00638*** 0.00631*** 0.00618*** 

   (7.44) (6.74) (7.91) 

      

Constant 0.335*** 1.182** 0.688* 0.837** 0.581 

 (3.56) (3.15) (2.34) (2.67) (1.93) 

N 150 150 149 134 139 

Notes: Δ Robot adoption stands for the percentile of changes in robot density, weighted by the initial 1995 industry\ s 

share of hours worked. Robot densities are defined as the number of operational robots per million hours worked. Δ 

Wages stands for changes in wages. Wage 1995 is the initial (1995) wage, while Productivity 1995 is the initial (1995) 

level of labor productivity in a given industry, country and year. Δ Labor Productivity stands for changes in labor 

productivity, Δ K ICT and Δ K OTHER stand for changes in ICT and non-ICT capital services, respectively. The 

coefficients with ∗∗∗ are significant at the 1% confidence level; with ∗∗ are significant at the 5% confidence level; 

and with ∗ are significant at the 10% confidence level. 

 

 

 

Table 23. Changes in wages 1995-2015: 2SLS estimates 
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 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 Low skilled workers Middle skilled workers High skilled workers 

 Δ Share 
H 

Δ Share H Δ Share H Δ  Share H Δ  Share H Δ Share H Δ  Share H Δ  Share H Δ  Share H 

Δ Robot 

adoption 

-0.0268 -0.0361* -0.0321* -0.0309* -0.0253 -0.0266 0.0540*** 0.0590*** 0.0562** 

 (-1.90) (-2.41) (-2.08) (-2.37) (-1.91) (-1.96) (3.52) (3.46) (3.20) 

          

Wage 1995  0.000938 0.00224  0.00489* 0.00494  -0.00629* -0.00766** 

  (0.45) (1.09)  (1.99) (1.89)  (-2.33) (-2.66) 

          

Productivity 1995  -0.0100** -0.00891**  0.0191*** 0.0181***  -0.00837 -0.00858 

  (-2.93) (-2.64)  (4.49) (3.94)  (-1.76) (-1.74) 

          

Δ Productivity  0.00201 0.00409  0.000465 0.000871  -0.00262 -0.00514* 

  (0.91) (1.84)  (0.20) (0.34)  (-1.36) (-2.42) 

          

Δ K ICT   0.000000960   -0.00000420   0.00000304 

   (0.63)   (-0.83)   (0.72) 

          

Δ K OTHER   0.000580***   0.000107   -0.000694*** 

   (4.27)   (0.55)   (-3.96) 

          

Constant 0.0200* 0.0488** 0.0260 -0.0283*** -0.136*** -0.133*** 0.0113 0.0916** 0.112** 

 (2.18) (2.94) (1.53) (-3.47) (-4.78) (-3.96) (1.17) (2.88) (3.06) 

N 360 360 360 360 360 360 360 360 360 

Notes: Δ Robot adoption stands for the percentile change of robot density from 1995 to 2015. Changes are weighted by an industry’s initial (1995) share of hours 

in the country-wide amount of hours worked. Δ Share H stands for the change in the share of high-skilled workers 1995 to 2015. Wage 1995 is the initial (1995) 

wage, while Productivity 1995 is the initial (1995) level of labor productivity in a given industry, country and year. Δ Labor Productivity stands for changes in 

Table 24. Changes in labor shares 2008-2015: OLS estimates 
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labor productivity, Δ K ICT and Δ K OTHER stand for changes in ICT and non-ICT capital services, respectively. The coefficients with ∗∗∗ are significant at the 1% 

confidence level; with ∗∗ are significant at the 5% confidence level; and with ∗ are significant at the 10% confidence level. 

 

 

 

 

 

Table 25. Changes in Labor shares 2008-2015: 2SLS estimates 

 (1) (2) (3) (4) (5) (6) (7) (8) (9) 

 Low skilled workers Middle skilled workers High skilled workers 

 Δ  Share H Δ Share H Δ Share H Δ  Share H  Δ Share H Δ Share H Δ Share H Δ  Share H Δ Share H 

Δ Robot adoption 0.0839*** 0.132*** 0.109*** -0.0157 -0.00726 -0.0168 -0.0815** -0.138*** -0.106** 

 (3.31) (4.27) (3.79) (-0.56) (-0.19) (-0.46) (-2.61) (-3.30) (-2.80) 

          

Wage 1995  -0.00614* -0.00301  0.00413 0.00458  0.00202 -0.00165 

  (-2.31) (-1.23)  (1.39) (1.56)  (0.60) (-0.50) 

          

Productivity 1995  0.000239 0.00115  0.0202*** 0.0188***  -0.0204*** -0.0201*** 

  (0.06) (0.28)  (4.12) (3.59)  (-3.60) (-3.49) 

          

Δ Productivity  -0.00136 0.00188  0.000103 0.000719  0.00133 -0.00261 

  (-0.54) (0.80)  (0.04) (0.28)  (0.46) (-0.99) 

          

Δ K ICT   0.00000609***   -0.00000384   -0.00000284 

   (3.48)   (-0.73)   (-0.64) 

          

Δ K OTHER   0.000746***   0.000118   -0.000884*** 

   (4.73)   (0.58)   (-4.62) 

          

Constant -0.0347** -0.00509 -0.0330 -0.0358* -0.142*** -0.137*** 0.0782*** 0.155*** 0.180*** 

 (-2.76) (-0.26) (-1.59) (-2.26) (-4.55) (-3.72) (4.92) (4.36) (4.53) 

N 360 360 360 360 360 360 360 360 360 



 

 

3 

 

 Notes: Δ Robot adoption stands for the percentile change of robot density from 1995 to 2015. Changes are weighted by an industry’s initial (1995) share of 

hours in the country-wide amount of hours worked. Δ Share H stands for the change in the share of high-skilled workers 1995 to 2015. Wage 1995 is the initial 

(1995) wage, while Productivity 1995 is the initial (1995) level of labor productivity in a given industry, country and year. Δ Labor Productivity stands for changes 

in labor productivity, Δ K ICT and Δ K OTHER stand for changes in ICT and non-ICT capital services, respectively. The coefficients with ∗∗∗ are significant at the 

1% confidence level; with ∗∗ are significant at the 5% confidence level; and with ∗ are significant at the 10% confidence level. 

 

 

 

 

 



 

 

1 

 

 

 

 

 


