MULTIVARIATE MODELING AND ANALYSIS OF REGIONAL OCEAN FREIGHT RATES

ABSTRACT. In this paper, we propose a new multivariate model for the dynamics of regional ocean freight
rates. We show that a cointegrated system of regional spot freight rates can be decomposed into a common
non-stationary market factor and stationary regional deviations. The resulting integrated CAR process is new
to the literature. By interpreting the common market factor as the global arithmetic average of the regional
rates, both the market factor and the regional deviations are observable which simplifies the calibration of the
model. Moreover, forward contracts on the market factor can be traded in the Forward Freight Agreement (FFA)
market. We calibrate the model to historical spot rate processes and illustrate the term structures of volatility
and correlation between the regional prices and the market factor. Our model is an important contribution
towards improved modelling and hedging of regional price risk when derivative market liquidity is concentrated
in a single global benchmark.

1. INTRODUCTION

The degree to which regional markets for a homogeneous good are spatially integrated across the globe
will depend on the physical characteristics of international trade. The greater the trade barriers in terms
of time, transport costs, and tariffs, the less integrated are regional market prices. Ocean transportation
is an integral part of this picture, particularly in the global commodity markets, as the vast majority of
trade is seaborne. The fact that ships and their cargoes move slowly around the world compared to other
transportation modes (Hummels and Schaur [27]) implies that regional imbalances in the physical sup-
ply and demand of a commodity cannot be immediately resolved by international trade. Yet, whenever
two regional prices deviate by more than the transaction costs, commodity traders will take advantage of
the spatial price arbitrage by shipping cargoes from the cheaper region to the expensive region such that
prices are realigned (Pirrong [39]). Large spatial differences in regional freight rates will have a simi-
lar effect on the physical movement of ships, as profit-maximizing shipowners will reallocate their fleet
to higher-paying areas, thereby realigning regional freight rates (Adland et al. [1]). The topic of spatial
market integration has been investigated empirically across many global commodity markets, notably coal
(Warell [48]; Papiez and Smiech [38]), natural gas (Siliverstovs et al. [44]), crude oil (Bachmeier and Grif-
fin [4]), petroleum products (Lanza et al [34]), and regional ocean freight rates (Berg-Andreassen [16, 17];
Glen and Rogers [26]; Veenstra and Franses [47]). The general finding is that regional prices are non-
stationary and co-integrated. Following the definition of Engle and Granger [25]), this means the time
series are integrated, or I(1), while some linear combination between them — the cointegrating vector — is
stationary, or I(0). This is consistent with the idea that regional prices must revert towards some common
global stochastic trend because of the ability of cargoes and ships to continuously move from regions of
oversupply towards regions of undersupply.

Having established that regional prices or freight rates are co-integrated, usually based on the test
methodology of Johansen [28], most of the above studies proceed to model them jointly in the Vector
Error Correction (VEC) model framework (see, for instance, Veenstra and Franses [47]; Lanza et al. [34]).
An alternative approach is the state space representation, where the common stochastic process is un-
observable and extracted empirically using, for instance, the Kalman filter approach (Chang et al. [19]).
Ko [31, 32] uses the latter methodology to derive a common stochastic trend from average freight rate
indices for different vessel sizes in the drybulk freight market and assess the idiosyncratic dynamics of size
effects.

For the purposes of risk management, there are numerous regional spot freight rates for drybulk carriers,
but liquidity in the derivative market is concentrated in Forward Freight Agreements (FFAs) written on the
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weighted global average of such indices. A similar situation exists in the crude oil and fuel oil market,
with a large number of regional prices available around the globe but derivative liquidity focused on one
or two global benchmarks (e.g. Brent crude or Rotterdam HFO). In the context of cross hedging, the im-
plementation and interpretation of a model becomes considerably easier if the common stochastic factor
explicitly represents an observable market price on which tradable derivatives exist. In this paper we pro-
pose, for the first time, to decompose regional prices into such a common observable stochastic factor and
mean-reverting, potentially correlated, regional factors. This factorization can be viewed as an extension
of the famous model by Schwartz and Smith [43], which is the price dynamics empirically argued for by
Prokopczuk [40] in his seminal work on freight futures pricing and hedging.

The contribution of our paper is threefold. Firstly, we develop a new continuous-time stochastic model
for the joint dynamics of regional prices, the Integrated Continuous Autoregressive, or ICAR, process.
Our proposed framework enables the decomposition of observed regional spot price dynamics into a non-
stationary observable market factor, for which tradable contracts exist, and observable stationary regional
factors (deviations from the market average). We focus on Gaussian models, but provide also some the-
oretical discussion and empirical evidence for leptokurtic dynamic models. Secondly, we show the link
between the continuous ARMA process and the ARMA time series model, generalizing results for the
specific autoregressive case in Benth and Saltyté Benth [12]. Thirdly, we calibrate the model empirically
against regional spot freight processes in the Supramax market in both discrete and continuous time, and
illustrate the resulting term structures of correlations and volatility versus contract maturity.

Our findings are important for shipping industry players and maritime economic researchers alike. No-
tably, we bring new insight into how to model and estimate the joint dynamics of regional spot rates in both
a discrete and continuous-time setting. The ease of estimation and simulation makes the model particu-
larly interesting for stochastic scenario generation, which would form an important input in optimization
models for fleet allocation (i.e. how to optimally sequence tripcharters in the bulk shipping spot market
through space and time). In the context of risk management, our extension to the freight derivatives market
directly addresses a practical question that all shipowners, operators and charterers trading drybulk freight
derivatives must deal with: how to hedge physical regional exposure when only global averages are trad-
able in practice. Here, our model also brings the literature on freight derivatives forward by illustrating the
implication of our model for the pricing of regional forward curves and the term structure of volatility.

The remainder of our paper is structured as follows: Section 2 derives the continuous-time cointegrated
model of the spot freight rate dynamics, Section 3 presents our data and time series analysis, Section 4
derives the theoretical FFA price dynamics within our framework, Section 5 shows an application to the
hedging of regional risk and Section 6 gives an outlook to non-Gaussian dynamical models. Finally, Section
7 concludes.

2. A CONTINUOUS-TIME COINTEGRATED MODEL FOR THE FREIGHT RATE SPOT DYNAMICS

In this Section we develop a continuous-time stochastic model for the dynamics of freight rates. To
distinguish continuous-time stochastic processes from time series, we will use the notation Y (¢) for a
continuous time process, while we apply the notation y; for a time series model (with time ¢ in that case
being discrete). In this section and in the remainder of the paper, we let (2, F, P) define a complete
probability space, equipped with a filtration {F; };>0.

First, recall from Brockwell [18] that a real-valued stochastic process Y is called a CAR(p)-process for
p € N,if Y(t) = e] Z(t) where Z € R is the vector-valued Ornstein-Uhlenbeck process given by

(1) dZ(t) = AZ(t) dt + oe, dB(t), Z(0)=2Z"€cRP,

for a Brownian motion B. Here, {e;,}7_; C RP? is the canonical basis of R” and o > 0 is a constant. The
matrix A € RP*? is defined as

0 1 0 0 0
0 0 1 0 0

@) A— . . . . . 7
0 0 0 0 1
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for positive constants o, k = 1, ..., p. Hence,
t
3) Y(t) =e, eMZ° + 0/ el e, dB(s).
0

It is known that the distribution of Y'(¢) converges when ¢ — oo to a normal distribution with mean zero
and variance

o0
Var[Y ()] = e;/ eATSeleIeAS dse,,
0

if and only if the eigenvalues of A have strictly negative real part. The (strictly) stationary representation
of Y is given as

t
) Y(t) = / eTeAlt=2)e dB(s).

We will frequently refer to A as the CAR-matrix. If the eigenvalues of Y™ all have strictly negative real part,
we say that Y is stationary. The process Y is a continuous-time version of a autoregressive process of order
p (see Brockwell [18]).

One can easily extend continuous-time autoregressive processes to include a moving average feature as
well. With ¢ € N, ¢ < p, a CARMA(p, q) process is defined, following Brockwell [18], by
®) Y (t) = b Z(t)

for b € RP, where b = (bo, b1, ..., b4,0,... ,0)" and by = 1. We observe that for ¢ = 0 we recover the
definition of a CAR(p) process. It is simple to see that the characteristic polynomial of the CAR-matrix A
in (2), denoted P()), is

(6) PA) =MW+ NPt a, A+ ay,

for A € C. We also introduce the gth-order polynomial Q(A),

(7) QN\) = b + biA +baA? + -+ by AT,

for A € C. Indeed, we have the representation (see Brockwell [18])

(®) P(D)Y(t) = Q(D)DB(t)

for a CARMA(p, g)-process, where D = d/dt is the derivative operator. Of course, this is a formal
representation, as the time derivative of Brownian motion is not well-defined. However, from (8) we can
show a link between CARMA(p, q) processes and time series of ARMA(p, ¢q) type. This link is established
using a so-called Euler approximation of the dynamics of Y based on the representation in (8), with D
being approximated by forward differences. Recall the nth order forward differencing operator for a time
step & > 0,

10 =3 (1) 041+ (0= 1)
k=0

acting on a function f : R — R. Then 6 ~"AY is a numerical approximation of the nth time derivative. Let
us now introduce the time series {y; }32,, and consider

©) P67 As)ys = Q671 A5)07 A5 B(t:)

where ¢; := id,7 = 0, ... and use the convention that y; = y(t;) in the forward differencing. We have the
following proposition (with the proof relegated to the Appendix):

Proposition 1. The time series {y; }32, is ARMA(p, q),

q

P
Yitp = O BiYitp—k + Y Tnéitn
k=1 n

=0
with

k .
B = (=1 <i> —;ajaj(—u’ﬂ (i_?) k=1,....p,
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q .
Nn = ijépij(il)jin (] i n> = 07' -4,
j=n

and {€;}5°, is a series of IID mean-zero normally distributed random variables with variance o /4.

This result is a generalization of the analysis in Benth and §altyté Benth [12, Sect. 4.3], where the
particular relationship between a CAR(p)-dynamics and an AR(p) time series were established. Obviously,
to let the recursion in Proposition 1 run, we must assume that yo, . .., y,—1 are given.

In the following, we will exclusively restrict our attention to CAR(p) processes since these are the
relevant ones from the empirical analysis, as we will see in the next section.

Forn € N,letY = (Yp,Y1,...,Y,)" € R™*! be a vector valued CAR-process defined as follows:
for p = (po,p1,...,pn) ", let Y; be CAR(p;)-process for i = 0,1,...,n with CAR-matrix A;, volatility
o; € R, and finally Brownian motion B;. We suppose that B = (By, By, ..., B,,) " is an+1-dimensional
Brownian motion, with possibly correlated coordinate processes, and refer to Y as a CAR(p)-process.

We model a market of n routes by the following continuous-time cointegrated dynamics: The freight

rate dynamics of route ¢, 2 = 1, ..., n, is denoted by .S; and defined by
(10) In S;(t) = X (t) + Y;(t),
with

t
(11) X(t) = / Yo(s)ds

0

The common factor X will become, as we shall see, a non-stationary stochastic process. Indeed, we show
below that it is an integrated autoregressive process. The second factor in the log-price of rute 4, Y;, is
a stationary autoregressive moving average process, and one can therefore view the dynamics in (10) as
a generalization of the two-factor model of Schwartz and Smith [43]. The generalization goes in two
directions, one being an extension of the dynamics of the two factors and the other to define the model
in a cointegration context. The dynamics of all the regional routes can be expressed by the vector-valued
process S = (S1,...,5,)" € R
Let us study the process X in (11).

Proposition 2. The process X defined in (11) is Gaussian with mean
E[X(1)] = ef Ay (e — 1)Zg

for ZY being the initial state of Z(t), and variance

Var[X (t)] = 202e / / Ag (s—w) (/ e Ve, e etV dv) duds ey, .

From Lemma 4.2 in Benth and galtyté Benth [12], the inverse of a general CAR-matrix A defined in (2)
is explicitly available. Therefore, we know A, ! in the expression for the mean of X in Proposition 2.
In the next Proposition we show that X in (11) is a non-stationary CAR(pg + 1)-process.

Proposition 3. The process X in (11) is a CAR(po + 1)-process with a CAR-matrix Aq given by

- [0 ef
AO_[O AO]

where 0 € RP0 is the zero vector. The matrix Ay has zero as an eigenvalue.

Remark in passing that we have, strictly speaking, only defined a CAR-matrix in the case when the
elements in the last row are all negative. In the above representation, we dispense with this and include
also the case of zero values, as turns out to be appropriate to facilitate the representation of X . Since zero is
an eigenvalue of A, at least one eigenvalue of the CAR(py + 1)-process X does not have a strictly negative
real part, and we conclude that its distribution cannot have a limit as ¢ — oo. Hence, it is non-stationary.
Notice from Proposition 2 that if Y} is a stationary CAR(pg)-process, then the mean of X (¢) converges
to felAa 1Z8. However, the variance will diverge. For example, consider pg = 1 when Y, becomes an
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Ornstein-Uhlenbeck process with speed of mean reversion ag. Le., Ay = —ag and from Proposition 2 we
find

Valx(] = 2 (1= 21—+

—(1— e—mof)) .

(67} 20[0

Therefore, Var(X (t)) ~ kt when t — oo for k = 03 /2cy, and we conclude that the variance diverges and
X is non-stationary.
Recall our freight rate dynamics, and observe that

(12) c'logS=> ¢V,
1=1

forany ¢ € R™ suchthat ", ¢; = 0. For example, if n is even, we can choose ¢ = (1, —1,1,—1,...1, =1)T.
IfY;,: =1,...,n are stationary CAR-processes, we conclude that S is a cointegrated model. Straightfor-
wardly we see that for any 4, j € {1,2,...,n},

In S;(£) — In S;(t) = Yi(t) — Y;(t),

and thus any pair of routes are cointegrated.

We next show that the process X can be viewed as an integrated AR(pg) process in discrete time. To
this end, let ¢ = 0 to yield the polynomial Q(A) = 1 in (7), and define the time series {x;}52, given by
(9) for the polynomial P()\) associated with the CAR-matrix Ay defined in Proposition 3. Finally, define
Ax; = Tiy1 — X, 10 find,

Proposition 4. It holds that {x;}5°, is an integrated AR(po) time series with

Po

A$i+p0 = Z kal‘i+p0—k + 05p0+1/2€i .
k=1
Here, {€;}2°, are 1ID standard normal random variables and &,k = 1, ..., py are defined recursively by

Si=01—1land &, = &1 + Brfork =2,...,po for
. 1 i _(po+1—3
ﬂk:(_l)k-‘rl(pok )_Zaj(SJ(_1>k J<p0k] ]>7k:17"'7p0a
j=1

and o, . . . o, comes from the CAR-matrix Ay.

This result motivates the name integrated CAR(pg), or ICAR(pg) for short, associated with the process
X.

Kavussanos and Alizadeh [30] investigate empirically the nature of seasonality in spot and TC rates in
the drybulk market across different sizes. They find significant deterministic seasonality at the monthly
level, with asymmetric and market-dependent seasonal fluctuations. We do not explicitly consider sea-
sonality in our model and analysis to maintain a parsimonious model and to avoid the possible biases
introduced by de-seasonalizing spot freight rates using deterministic monthly factors when these are in
fact time-varying and market dependent. This is particularly critical as we consider regional rates in our
analysis, which may be more sensitive to such adjustments than the global average spot rates considered in
the literature.

3. DATA DESCRIPTION AND TIME SERIES ANALYSIS

As the empirical case for our regional freight rate model we pick the market for Supramax bulk carriers.
Supramax vessels are mid-size drybulk vessels of about 52,000 DWT capacity that carry a wide range of
drybulk commodities around the world, principally coal, iron ore, grains, soybeans and steel products. The
physical dimensions of the vessels are such that they can be accepted by most ports, leading to a diverse
trading pattern. However, based on the intercontinental trade of drybulk commodities within and between
the two main ocean basins (Atlantic and Pacific) we can broadly group the trade flows into four main
region-to-region routes: i) Atlantic to Pacific, ii) trans-Pacific, iii) Pacific to Atlantic, and iv) trans-Atlantic.
Following the standard terminology in the industry, the Atlantic-to-Pacific trade is termed Fronthaul and the
reverse trade Backhaul (see Alizadeh and Nomikos [2]), where Fronthaul refers to higher cargo volumes
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Route Route description
1 BSI Route S1: Fronthaul
2 BSI Route S2: Japan-South Korea/NOPAC or Australia RV $/Day
3 BSI Route S3: Japan-SK Trip Gib-Skaw range $/Day
4 BSI Route S4: Transatlantic RV

TABLE 1. Supramax routes (RV stands for Round Voyage)

and generally higher freight rates. Using weekly Baltic spot freight rate data ($/day vessel hire) obtained
from Clarkson Research [20] results in N = 540 observations for the period 2007-2015 for each route.

Formally, with reference to the standard route definitions in Baltic Exchange [6], we focus on regional
freight rates for the four routes detailed in Table 1. Additionally, we refer to the Supramax timecharter
average as the equal-weighted (25% each) arithmetic average of the freight rates for the individual routes.
The Supramax average is the spot price index against which Forward Freight Agreements (FFAs) for this
vessel size are settled (see Alizadeh and Nomikos [2]).

Let S; ; represent the freight rate at time ¢ for route ¢+ = 1,2, 3, 4, and let s; ; represent the logarithm of
the freight rate .S; ¢, that is, we assume the relationship
(13) St =exp (siy)-
The respective time series are plotted in Figure 1. Route 1 and 4 have higher maximum values compared
to routes 2 and 3 (indeed, also higher mean as seen from the descriptive statistics in Table 2). Neither route
deviates too far from the others as time evolves, even in periods with very high volatility. From Figure 1
there seems to be two distinct periods: Increasing freight rates in 2005-2007 and low freight rates in 2009-
2015. Inbetween these two periods, we observe that 2008 was a rollercoaster year”: First a decline, then
an increase where S4 sets a maximum spot of 94,718 $/day, and finally a steep decline in the second part
of the year along with the onset of the global financial crisis. We also note that the individual routes stay
closer together in the first period, but somewhat less so in the second period, see especially the lower panel
with logarithmic rates.

Levels 2005-07-01 / 2015-12-04

80000

60000

40000

20000

jul 012005  jul 07 2006  jul 06 2007  jul 04 2008  jul 032009  jul 022010 jul012011 jul 062012 jul 052013 jul 04 2014  jul 03 2015

Logarithms 2005-07-01 / 2015-12-04

jul 012005  jul 07 2006  jul 06 2007  jul 04 2008  jul 032009  jul 022010 jul012011 jul 062012 jul 052013 jul 04 2014 jul 03 2015

FIGURE 1. Supramax spot freight rates for four market segments. Upper panel: Data in
levels. Lower panel: Data in logarithms

Our ultimate goal is to propose a model for the joint freight rate dynamics, both in discrete and contin-
uous time, but we start out by looking at the properties of individual time series. In the following we will

INote that in this table S1 represents the arithmetic average of two Fronthaul trips (S1A and S1B), while S4 the arithmetic average
of the Atlantic westbound and eastbound trips (S4A and S4B)
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focus on the logarithmic spot rates. Just by looking at Figure 1 we note the strong persistence in the data,
with the mean of the series changing over time. This is confirmed by the autocorrelation plots in Figure 2.
The shaded area in the graphs is the 95% level of significance. The estimated autocorrelation functions for
the logarithmic spot rates all show very slow decay, indicating that the data is non-stationary. Since we
suspect non-stationary time series, we next proceed with unit root tests.

Si S2
1.00 1.00
0.75- 0.75 -
& 0.50+ & 0.504
< <<
0.25- 0.25-
0.00- R 0.00- RN
0 10 20 0 10 20
Lag Lag
S3 Sa
1.00 1.00
0.75 0.75-
& 0.50 &5 0.504
b4 g
0.25- 0.25-
o.004 FATFATFATEATTIATIATE o004 CATITATIATIAAFFATIATE
0 10 20 0 10 20
Lag Lag

FIGURE 2. Autocorrelation plots for logarithmic freight rate data for each route.

Consider the following version of the Augmented Dickey-Fuller test (see Dickey and Fuller [21] and
Said and Dickey [42]): introduce a time series {u; }4=1,... given by

E
(14) Aup = do + Pout—1 + ZﬂjAut_J‘ + €,
=1
where d is a constant term, 3, 31, . . ., O are parameters, A is the lag operator, that is, Au; = u; — uz_1

and finally {e; }+en is IID noise. The unit root test is a one-tailed ¢-test on the parameter 5, = 0 against
the stationary alternative 8y < 0. Standard unit root tests of Dickey and Fuller [21] have very low power
against stationary near unit-root alternatives. For maximum power against very persistent alternatives the
so-called efficient unit root tests proposed by Elliot et al. [24] could be used. Efficient unit root tests follow
a two-step procedure; first de-trending the data using generalized least squares (GLS) and then performing
a so called point-optimal test on the de-trended data. They also proposed a modified ADF-test based on
GLS de-trending. We conduct both the feasible point optimal test (PT) and the modified ADF-test (ADF-
GLS). We use the method of Ng and Perron [35] and the BIC criteria for lag length selection in the GLS
de-trending step. Test statistics and lag selection for the different routes are presented in Table 2 below.
From the left panel, we see that the null hypothesis of non-stationarity cannot be rejected for the logarithm
of freight rates for routes 1, 3 and 4. Route 2 is marginally significant on the 5% level of significance,
indicating a rejection of the null hypothesis of non-stationarity. In the right panel of Table 2 we report test
statistics for the same tests, but now on the data in first differences. The ADF-GLS test rejects the null
hypothesis of non-stationarity on 1% level of significance, and accepts the stationary alternative. The same
conclusion can be drawn from the PT test, but on 5% level of significance for routes 2 and 3. Overall,
we conclude that the logarithm of Supramax spot rates are non-stationary, and that the time series must be
differenced once to achieve stationarity. This is consistent with findings in the literature, where spot rates
are usually found to be a non-stationary process (see, for instance, Berg-Andreassen [16], Glen and Rogers
[26] and Kavussanos and Alizadeh [30]).

Next we investigate the empirical properties of the logarithm of the spot rates in first differences. In
Figure 3 and 4 we present the empirical autocorrelation plots and partial autocorrelation plots, respectively.
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Data in logarithms Data in logarithmic differences
s1 So S3 S4 As Asg Ass Asy

Mean 10.0 9.5 9.2 9.7 -0.003 -0.002 -0.003 -0.003
Median 10.0 9.5 9.0 9.7 -0.001 -0.001 -0.003 -0.001
Min 8.6 8.1 7.1 8.2 -0.353 -0.392 -0.399 -0.469
Max 11.4 11.2 11.2 11.5 0.587 0.486 0.473 0.538
ADF-GLS -1.96 -2.01* —1.81 —1.87 —3.33%*% —2.76%* —2.75%* —6.65%*
PT 3.38  3.17* 3.76  3.67 1.3%* 2.46%* 2.47* 0.31%%*
Lags 4 2 2 2 6 8 8 2

TABLE 2. Descriptive statistics and unit root tests for Supramax rates in logarithms and
logarithmic first differences. Critical levels for the ADF-GLS test on 1% and 5% level
of significance is —2.58 and —1.98, respectively. Critical levels for PT test on 1% and
5% level of significance is 1.78 and 3.17, respectively. The BIC criterion is used for lag
length selection.
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0-87 0.75+
& 0.4- &5 0-50+
< _|+ __________________ < 0.25 -
0.0- i T -
““““““ HAA PR 000+ i3 St aaaeca o
CI) 1‘0 2‘0 (I) 1‘0 2‘0
Lag Lag
AS3 AS4
1.00+ 1.00 4
0.75 - 0.75 -
LL - LL -
S 0.50 O 0.50
< 0.25- ] < 525+ J
I o e Bt Pt it S s
0007 bttt s s 0.001 __i'_l_|J'__'_L'_l_|4|.|_|_|J.LI_'_"_'
-0.25- T T T T T
(0] 10 20 0] 10 20
Lag Lag

FIGURE 3. Autocorrelation plots for logarithmic freight rate data in first differences.

Unsurprisingly, the patterns for the (partial) autocorrelations are similar across routes. The decay in the
autocorrelations in Figure 3 is much more rapid compared to the decay in autocorrelations in Figure 2. This
is of course consistent with the unit root test results above. The partial autocorrelations in Figure 4 show
that the first two lags are significant for all four routes; the first lag being positive, and second negative. As
an initial modelling effort we fit a higher order autoregressive model (AR(p)-model) for each route. We
apply the BIC criterion for selecting the appropriate number of lags. This resulted in an AR(2) model for
each series,

Asiy = P1,:081—1 + B2,iAsi 12 + € 4,

with estimated parameters given in Table 3. From Figure 1 we know that the freight rates stay close together
in the sample period, an indication that the rates are strongly correlated. Indeed, Table 4 presents estimated
correlations of the residuals from the fitted AR(2) models. We note that route 2 and 3 show the strongest
degree of correlation of 0.83, while route 1 and 3 show the lowest degree of correlation of 0.43.

At this stage, one might be tempted to model the joint freight dynamics as a multivariate AR(2)-model
for logarithmic differences with correlated residuals. But this is unfortunately not very fruitful. Correlated
nonstationary processes will tend to move away from each other over time. When two series have drifted
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FIGURE 4. Partial autocorrelation plots for logarithmic freight rate data in first differences.

51 B2 Std(e)
Asy 0.11 —-0.38 0.04
Asy 029 —0.38 0.08
As3 042 —-0.26 0.08
Asy 048 —-0.36 0.06

TABLE 3. Estimated parameters of the AR(2)-models

€1 €9 €3 €4
€1 1.0
e2 048 1.0

es 043 083 1.0
eqs 063 049 045 1.0

TABLE 4. Lower diagonal of correlation matrix for estimated residuals of the fitted
AR(2)-models

apart, correlation cannot help pull the series back together again. We can illustrate this in a small simula-
tion experiment. For each of our four series we simulate future freight rates using the AR(2) models with
parameters estimated above. The residuals are sampled from a multivariate normal distribution, with pa-
rameters for the correlation matrix given in Table 4. Figure 5 shows the result from our simulation exercise.
To the left of the vertical orange line is the historical data for the four routes, in total 540 observations. To
the right we have our simulated series for the next 540 weeks. The strong positive correlation keeps the
freight rates together for the start of the simulation period. But over time, the rates drift apart due to the
randomness that is not common across routes. In the latter part of the simulation period, it is still easy to
see that time series are positively correlated, but there is no gravity that pulls the time series together again.
At the end of the simulation period, routes 3 and 4 end up close together by coincident, these two routes
have the smallest correlation. Routes 1 and 2 have drifted far apart. This behavior will never happen in a
competitive market, as ships would be re-routed to maximize profits, adjusting freight rates accordingly.
The economic reasoning suggesting that rates stick close together in the long run, resonates well with
the statistical concept of cointegration. Let u; = (uq, 7um,f)T denote an n-dimensional vector of non-
stationary time series, that needs to be differenced once to achieve stationarity. u, is said to be cointegrated
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FIGURE 5. Historical and simulated correlated freight rate data. To the left of the vertical
orange line is the historical data (/N = 540). To the right of the vertical orange line is the
simulated data (N = 540).

if there exists an n-dimensional vector ¢ = (cy,, ¢, )" such that

n

T

C u; = E CiUj t,
J=1

is stationary. If some coordinates of c are equal to zero then only the subset of time series in u; with non-
zero coefficients is cointegrated. If the n-dimensional vector time series is cointegrated with 0 < r < n
cointegrating vectors, then there are n — r common stochastic trends (see e.g. Stock and Watson [45] for a
discussion of the duality between cointegration vectors and common stochastic trends). If » = 0, there is
no cointegration. If r = n — 1, there is a single common stochastic trend. In our case we expect the source
of non-stationarity to be common to all rates to keep them all together in the long run, or, equivalently,
r =4 — 1 = 3 cointegrating vectors.

Johansen [28] presents two test statistics for the number of cointegrating vectors within a vector auto-
regressive (VAR) modeling framework; the trace statistics and the maximum eigenvalue statistic. The trace
statistic tests the null hypothesis: there are at most r cointegrating relations against the alternative of m
cointegrating relations (i.e., the series are stationary), for » = 0,1, ..., — 1. The maximum eigenvalue
statistic tests the null hypohesis: there are  cointegrating relations, against the alternative: there are r + 1
cointegrating relations. In Table 5 we present the results from both tests based on a VAR(2) model. From
the results in Table 5 we conclude that both tests indicate » = 3 cointegrating relations vectors at a 5%
level of significance. In other words, the Johansen tests give statistical support to a single stochastic trend in
the Supramax freight rate market. This is consistent with the maritime economic interpretation that overall
supply/demand fundamentals govern a globally integrated freight market in the medium and long run, while
the immediate regional supply/demand balance governs regional rates in the short run (Stopford [46])

So far our empirical investigations suggest persistent freight rates data that might appropriately be mod-
eled using a single, common stochastic trend. In the next subsection we will propose a multivariate time
series model consistent with these empirical facts.

3.1. A cointegrated time series model. In a freight market with n regional freight rates, we assume there
exists a common market factor with dynamics denoted by the time series S;. We use the arithmetic average
of the n routes as the market factor, which in the case of Supramax coincides with the Baltic average
tripcharter index underlying the FFA agreements. Setting z; = In.S; and recalling s, ; = InS;;, we
propose the following model for the logarithmic freight rate for each market segment: = 1,... n:

(15) Sit = T + Yit-
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Maximal eigenvalue test Trace test
Statistic 10% 5% 1% Statistic  10% 5% 1%
r<3 5.67 6.50 818 11.65 5.67 6.50 8.18 11.65

r<2 15.07% 1291 1490 19.19 20.75* 15.66 17.95 23.52
1 47.84*%% 1890 21.07 25.75 68.59** 28.71 3152 37.22
0 87.54%* 2478 27.14 32.14 156.13%* 4523 48.28 55.43

TABLE 5. Johansen [28] tests for the number of cointegrating vectors for n = 4 freight
routes in the Supramax market.

T Y1 Y2 Y3 Ya
Mean 9.7 0.3 —-0.1 -0.5 0.1
Median 9.6 0.3 —-0.1 -0.5 0.1
Std. 0.7 0.2 0.2 04 0.1
Min 83 —-0.2 -08 -—-1.7 —-04
Max 11.2 0.8 0.2 0.2 0.4

TABLE 6. Descriptive statistics for common and regional-specific factors.

Each regional (logarithmic) spot rate can be decomposed into a common and a regional-specific factor.
The regional-specific factors can be found by subtracting the common market factor from the regional spot
rates, ¥;.¢ := S;,+ — Z¢. Note that our market factor is observable from the n market segments, making this
decomposition straightforward to implement. The market factor and the regional-specific factors are all
observable. Figure 6 shows the evolution of each factor, with the common market factor in the top panel,
and all the regional-specific factors in the bottom panel. Summary statistics for x; and y; ; are given in

Common stochastic factor x(t) 2005-07-01 / 2015-12-04

85 @ x 85

jul012005  jul07 2006  jul 06 2007  jul 04 2008  jul 03 2009  jul 022010  jul 012011  jul 06 2012  jul 052013  jul 04 2014  jul 03 2015

Regional factors y;(t) 2005-07-01 / 2015-12-04

jul 012005  jul07 2006  jul 06 2007  jul 04 2008  jul 032009  jul 022010 jul012011 jul 06 2012 jul 052013 jul 04 2014 jul 03 2015

FIGURE 6. Freight rate decomposition into a common market factor and different
regional-specific factors.

Table 6. From the vertical axes in Figure 6 and the descriptive statistics in table 6 it is clear that the common
factor picks up most of the variation in the freight rates. The regional factors represent minor adjustments
to the overall market factor, consistent with the observation that short-term regional over- or undersupply of
ships can lead to temporary regional differences in spot rates. The regional factors are negative, on average,
for route 2 and route 3, and positive for route 1 and route 4. As routes 1 and 4 originate in the Atlantic
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basin, and routes 2 and 3 originate in the Pacific basin, this difference simply reflects the well-known
Atlantic premium in drybulk freight rates (see, Adland et al. [1], 2017, for a thorough discussion). Just
inspecting Figure 6, it seems that route 1 and route 4 are positively correlated, and so is route 2 and route
3. This is also expected, and reflects the fact that ships open in the Atlantic competes for cargoes on routes
1 and 4, while ships open in the Pacific have a choice between routes 2 and 3, respectively. This joint”
supply will impose some positive correlation. Furthermore, route 1 and route 4 seem to be negatively
correlated with route 2 and route 3. We expect that this slightly asynchronous development in the Atlantic
and Pacific freight rates reflects a degree of “overshooting” in the movement of tonnage between the two
key regions. Unlike the common factor, the regional factors all seem to have mean reverting features. Next,
we perform unit root tests on the common and regional factors, before specifying an appropriate dynamic
factor model.

We perform the same unit root tests as we did for the regional freight rates above. The results are
presented in Table 7. Both the ADF-GLS and PT tests agree that the null hypothesis of non-stationary
regional factors can be rejected in favor of the stationary alternative. Turning to the common factor, both
the ADF-GLS test and the PT test accept the null hypothesis of non-stationarity. After differencing the data
once, the tests reject the null hypothesis of non-stationarity at 5% level of significance.

Regional-specific factors Common factor
Y1 Y2 Ys Ya T Az
ADF-GLS —3.29%* —5.42%* —3.76%* —5.56%* —1.59 —2.85%*
PT 1.14%%  0.53**  0.86%*  0.56%*  4.44 2.14*
Lags 1 1 1 1 4 7

TABLE 7. Unit root tests for the regional-specific factors y;, the common factor x and
the common factor in first differences Azx. Critical levels for the ADF-GLS test on 1%
and 5% level of significance is —2.58 and —1.98, respectively. Critical levels for PT test
on 1% and 5% level of significance is 1.78 and 3.17, respectively. The BIC criterion is
used lag length selection.

Overall, this suggests that the common factor is non-stationary (the common stochastic trend), while
the regional-specific factors are stationary mean reverting processes around this trend. Next we estimate
dynamic models for both the market factor and the regional factors.

We assume that the market factor z; can be modeled as an autoregressive integrated moving average
(ARIMA) process. We have already established that this is a non-stationary process that needs to be
differenced once to achieve stationarity. We use the BIC criterion to determine the number of lags, which
result in an AR(4)-process without constant term for Az, with the following parameters:

(16) Az, =0.93Az;_1 — 0.48Ax,_9 + 0.28Az;_3 — 0.13Ax;_4 + €44, std(ez,+) = 0.05.

We assume that the regional-specific factors can be modeled by a higher order autoregressive model. Once
more we use the BIC criterion for lag selection. This results in an AR(2)-model with significant constant
terms for all regional factors,

(17 Yit = i + BriYit—1+ B2,iVit—2 + €10 = 1,2,3,4,
with parameter estimates presented in Table 8. Correlations between estimated residuals are given in Ta-

P B B2 std(e)
yi| 03 151 —-0.53 0.03
y2 | —0.14 1.46 —-0.54 0.04
ys | —0.46 1.55 —0.57 0.05
ye | 0.0 1.5 —0.55 0.03
TABLE 8. Estimated parameters for the regional AR(2) models

ble 9. We see that the estimated residuals for the regional-specific factors for route 2, 3 and 4 are positively
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correlated with the changes in the market factor x; (the latter two only weakly positively correlated). For
route 1 the corresponding correlation is negative.

€ €1 €2 €3 €4
€ 1.0
€1 —-0.4 1.0
€2 0.3 —-0.7 1.0
€3 02 —-0.6 0.6 1.0
€4 01 -0.1 -05 -0.5 1.0
TABLE 9. Lower diagonal of correlation matrix for estimated residuals

Correlation between estimated residuals for the regional factors shows the pairwise pattern observed
already from the time series plot in Figure 6. Route 2 and route 3 are positively correlated with estimated
coefficient of correlation of 0.6. Correspondingly, route 1 is negatively correlated with all other routes,
route 2 is negatively correlated with route 4 and the same between routes 3 and 4.

As a validation of our model, we build a simulation engine for regional freight rates to see graphically
how it performs. Now the modeling process is reversed. We proceed in three steps:

(1) Draw correlated random error terms for €, ; and ¢; ; from the multivariate normal distribution using
the correlation matrix in Table 9 as input.

(2) Simulate univariate AR(p) models for Az; and y; ; using the estimated models from (16) and
Table 8.

(3) Compute the logarithmic regional freight rates using (15).

Figure 7 shows a single simulation of our model that compares directly to the case of correlated regional
freight rates in Figure 5.

2005-07-01 / 2026-04-10 02:00:00
11

10!

5

jul 01 2005 jan 04 2008 jan 082010 jan 06 2012 jan 03 2014 jan 01 2016 jan 052018 jan 032020 jan 07 2022 jan 052024 jan 02 2026

FIGURE 7. Historical and simulated freight rate data based on cointegration model. To
the left of the vertical line is the historical data (N = 540). To the right of the vertical
line is the simulated data (/N = 540).

We note that our cointegrated time series model can be viewed as a discrete-time analogue of the
continuous-time framework proposed in Benth and Koekebakker [15]. There the authors propose a fac-
tor model for cointegrated commodity prices by splitting into a non-stationary common factor (a stochastic
trend) and stationary specific factors, based on drifted Brownian motion and continuous-time autoregres-
sive moving average processes, respectively. One of the main messages of Benth and Koekebakker [15] is
that cointegration in the spot market is inherited by the forward market, when one considers fixed time to
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maturities. This is true in commodity markets which are incomplete, that is, where there are market fric-
tions preventing the buy and hold strategy to be used in replicating forward contracts. The freight market
constitutes a prime example of such an incomplete market as the transportation service cannot be stored or
traded. In the next section we will analyse forward freight rate agreements for our cointegrated model.

3.2. Calibrating the continuous-time model to data. We apply the data analysis and time series model
to assess the parameters of the continuous-time dynamics (10) proposed in the previous section.

First, we consider a market with n = 4 routes, and recall that the regional-specific factor time series
where found to be AR(2) processes with a level. Hence, we assume that Y;,7 = 1,2, 3,4 to be modelled
by CAR(2)-processes, which means that p; = 2,7 = 1,2, 3,4. In our definition of a CAR(p)-process, we
have assumed a zero level. To correct for this, we make the following slight change in the definition of
logarithmic spot freight prices, that is, we assume that Y; := Y; + ; and define In S; to have the dynamics

(18) In 8(t) = X (t) + Yi(t),
fori =1,2,3,4.. The parameters 6;,7 = 1,2, 3,4 are all assumed to be constants.

From Proposition 1 we have that a CAR(2)-process {Y (¢) };>o with volatility o and CAR-matrix A as
in (2) for p = 2 can be expressed on a discrete time scale t = 0, 1,2, ..., with time stepping § = 1 as the
AR(2)-process {y: }1=0,1,2.....

Yy =(2—a)yr—1 + (1 —az — D)ys—2 + 06 .
Here,_{et}t:O,lw is a time series of IID standard normally distributed random variables (white noise). But
then Y (¢) := Y (¢) + 6 for a constant 6 has the time series representation,
(19) Uy = 0ax + (2 —a1)ys—1 + (01 —az — )72 + 0¢; .

We compare the estimated parameters in Tab}e (8) with (19) in order to find o, as, 6 and o for each of
the four regional-specific factor processes {Y;(¢)}+>0. The results are shown in Table 10. We may ask

o 1D 0 o
Y: 049 0.02 15 0.03
Y, 0.54 0.08 —1.75 0.04
Ys 0.45 0.02 —-23 0.05
Y, 0.50 0.05 0 0.03

TABLE 10. Calibrated CAR(2)-parameters for the regional-specific continuous-time model.

whether the four CAR-matrices defined from the estimated «’s in Table 10 have eigenvalues with negative
real part to ensure a stationary dynamics. Indeed, as we see in Table 11, this is true, and we can conclude
that Y;,¢ = 1,2, 3, 4 all have a stationary normal distribution in the limit as time tends to infinity.

A Ao
Y: —0.045 —0.45
Yo —0.27+0.08 —0.27 —0.08i
Y; —0.050 —0.40
Y, —0.14 —0.36

TABLE 11. Eigenvalues for the CAR-matrices from the calibrated CAR(2)-parameters
in Table 10 for the regional-specific continuous-time model.

By Proposition 4, the common factor X is suggested to be an integrated AR(py) model on a discrete

scale. From (16), we find py = 4, and using this autoregressive order in Proposition 4 yields the time series
dynamics

Az = (4 — al)A.’L't71 + (3011 — Qg — 6)A$t72
+ (202 —3a1 — a3 +4)Azi 3 + (1 —az + a3 — oy — 1)Azy_4 + 006
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where a1, . . ., ay are the four parameters in the CAR-matrix A of the CAR(4)-process Y and {e; }1—0,1,2....
are IID normally distributed random variables. We identify from (16)
(20) a; =3.07, a=3.69, «a3=189, «a4=0.58.

The estimated volatility becomes o¢p = 0.05. These estimates yield a CAR-matrix Ay for X which has
eigenvalues \; o = —1.23740.6181i and A3 4 = —0.298+£0.4632i, i.e., all four eigenvalues have negative
real part. We conclude that Y} is a stationary CAR(4) process, while X = fot Yo(s) ds is a non-stationary
process.

We model the noise process B as a 5-dimensional Brownian motion, correlated according to the matrix
of correlation coefficients found in Table 9. Le., we suppose that corr(B;(t), B;(t)) = p; t fori,j =
0,1,2, 3,4, where p; ; are the coefficients in the 5 x 5 matrix,

1.0 —-04 0.3 0.2 0.1

—0.4 1.0 -0.7 —-06 -0.1

I'= 0.3 -0.7 1.0 0.6 —0.5
0.2 —-0.6 0.6 1.0 —-0.5

0.1 -0.1 —-0.5 -0.5 1.0

This is a positive definite matrix, as all the eigenvalues are positive, and thus a valid correlation matrix
for the Brownian motions. Hence, we have fully specified a cointegrated model in continuous-time for the
freight market we study.

4. FFA PRICING

We suppose that there are available FFA written on the common factor, in the sense that there are
contracts delivering the common market factor at time 7. In our modelling context, this means that one
can trade in FFA’s with financial delivery of

S(T) = exp(X(T)),

at time 7'. Following the arguments of Benth, galtyté Benth and Koekebakker [13, Sect. 4.1] for non-
hedgeable forwards, we define the FFA price F'x (t,T) at time ¢ < T for a contract delivering the common
factor S(T") at time T" > 0 as

2D Fx(t,T) =Eq[S(T)| A,

where Q ~ P is a pricing measure. Note that the probability () is not necessarily a risk-neutral probability
in the sense that the discounted common factor process ¢ — ¢~ "'.S(t) is a Q-martingale, with r > 0 being
the risk-free interest rate. The pricing measure () models the risk premium in the FFA market, and here
we will assume that it takes the simple form of a constant market price of risk 7y € R defined as follows:
Introduce the stochastic process

Then, by Girsanov’s Theorem (see Karatzas and Shreve [29, Thm. 5.1, Ch. 3]), there exists a probability
@ ~ P such that Wy is a (Q-Brownian motion. We will use this () as our pricing measure, and we
observe that the -dynamics of Y[ in the definition of the common market factor process X becomes
Yy(t) = e Zo(t) where from (1),

23) dZo(t) = (AOZO (t) — Uo’yoepo) dt + T0€p, dWy (t) .

We remark in passing that while the CAR-matrix and o can be estimated from market prices as we showed
in Section 2, the market price of risk vy must be calibrated from observed FFA prices. Note also that
we have assumed a rather restrictive class of parametric pricing measures here. Indeed, following Benth
and §altyté Benth [12, Proposition 5.1] (or also the discussion in Benth and Koekebakker [15]), one can
introduce pricing measures () that not only changes the level of Zj by some parameter g, but also changes
the o’s in the CAR-matrix. We refrain from such generality here, as we may always simply re-interpret the
CAR-matrix.
In the next Proposition we derive the FFA price (the proof is found in Appendix A).
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Proposition 5. Suppose the common factor X is defined as in (11). Then for every 0 < t < T we have
Fx(t,T) = S(t)exp (h(Zo(t), T — 1)),
where

h(z,s) = eIAgl (eAOs — Ipo) zZ — JO’yOeIAaz (eAUs - Ipo) €p,
2 s
g T
+ oov0e] Ag tep,s + ?0 / e, (eAO Y- Ipo) Ay Tere] Ayt (e —I,) ey, du
0
for s > 0 and z € RPo,

The inverse of a CAR-matrix A is explicitly available (see Lemma 4.2 in Benth and Saltyt¢ Benth [12]).
Hence, we have an explicit expression for Ay ! in Proposition 5 above.
Indeed, as the next result shows, the FFA dynamics is a geometric Brownian motion with time-dependent
volatility (the proof is relegated to Appendix A):
Proposition 6. The FFA price Fx (t,T) has the Q-dynamics
dFx(t,T) T A—1( Ao(T—
m = 0p (el AO 1(6 o(T—t) _ Ipo)ep0> dWO(t) .
As a direct consequence of this proposition we find the market dynamics of F'x to be
dFx(t,T)
Fx(t,T)
This shows that 7, has a natural intepretation as the market price of risk. Concerning the volatility term
structure X x (T —t), T > t, of Fx, where
(24) Yx(s) = o0 (e Ag (20" — Iy ep)

for s > 0, we have:

= 0090 (o] A5 (™70 — I, )ey, ) dt + 00 (e] A7 (477 — Ly )ey, ) dBo(t).

Corollary 7. Assume the CAR-matrix of Yy have eigenvalues with negative real part. The volatility term
structure X x (s) defined in (24) for s > 0 satisfies £ x (0) = 0 and lim,_, o X x (8) = 0¢/p,.

The proof of this result is found in Appendix A. We note that in the long end of the FFA market, the
volatility is constant o /c,,. In the specific case of the market we consider in this paper, we recall from
Sections 2 and 3 that py = 4, ay = 0.58 and oy = 0.05, and hence the long term volatility is estimated
to be 0.086, or 62% annually.? In Figure 8 we plot the volatility term structure Xy (solid curve) as a
function of time to maturity (measured in weeks) for the set of estimated parameters found in Section 3.
The volatility is positive and converges asymptotically to the long term level of 62% for FFA contracts
delivering in around half a year. The maximum volatility is just below 70%, and is reached for the FFA
with delivery in 8 weeks. Interestingly, the volatility is an increasing function in time to maturity, from zero
up to its maximum reached at 8 weeks time to maturity. Next, it has a bump with a minimum at around 15
weeks to maturity. After a slight increase again, it stabilizes. This complex term structure is a reflection of
the memory inherited from the CAR(4)-process Yy and the integrating feature of X.

In the market there exist no exchange-traded FFA’s on the regional routes. However, we still compute
the FFA prices on each route, which is readily available from our theoretical framework. To this end,
let v € R*""! be the vector v = (70,71,---,V) ', and from Girsanov’s Theorem (see Karatzas and
Shreve [29, Thm 5.1, Ch. 3]), there exists a probability (2 ~ P such that W defined as

(25) AW (t) = ~ dt + dB(t)

is a (Q-Brownian motion, where the correlation structure from B is inherited. Thus, we extend the pricing
probability () introduced for the market factor X above to also include a risk premium ;,¢ = 1, ..., n for
each of the n regional routes. It follows immediately from (1) that for Y;(t) = e Z;(t), the Q-dynamics
of Z;(t) € R¥: is given by

(26) le (t) = (AlZl(t) — amiepi) dt + 0;€p; dVVZ (ﬁ) s

ZWe assume 52 trading weeks in this calculation.
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fori = 1,...,n. We assume that the FFA price at time ¢ > 0 for delivery of the regional route 7,7 =
1,...,nattime T > t, denoted F;(t,T), is given by

with S;(t) given by (10). We compute the price to obtain the following:

Proposition 8. Suppose that the common factor X is defined as in (11) and the regional-specific factor'Y;
is a CAR(p;)-process. Then for every 0 <t <Tandi=1,...,n, we have

Fi(t,T) = S(t) exp (M(Zo (1), T — t) + hi(Zi(1), T — 1))

where h(zo, s) is defined in Proposition 5 and

1 S
T _A; T 41—1 A 2 T_A; 2
hi(ZT;, S) =e;e SZ,‘ — 0i7i€1 Az (6 5 — II)i) €p,; + 5 g; (el € uepi) du
0

S
T A-1/ A T A;
4 [ mionoi(el 43 (A~ 1)) (€] e, ) d
0
forzg € RP°, z;, € RP and s > 0 and p ; being the correlation coefficient between Wy and W. .

An alternative expression for F;(t;T) is
(28) Fi(t,T) = Fx(t,T)exp (h;(Z;(t), T —t)) ,
with h; defined in Proposition 8. We can also show for the regional FFA that its dynamics is a geometric
Brownian motion with a time-dependent volatility;
Proposition 9. The FFA price F;(t,T) has the Q-dynamics
dgl(it,,j?)) — gpe] Az (M0

Now, introducing the notation

Jep, AW (t) + oie] e T Ve, dW,(t)

(29) Yy, (s) = ose] eMi¥e,,
for s > 0, we see that the volatility term structure of the FFA for route ¢ is defined by
(30) ¥2(s) = 2% (s) + 2p0,i Ex (5)Zy, () + 3. (s).-

In Figure 8 we have plotted the volatility term structure of route 1 (broken curve, left graphics), where we

__________
-

aam
e

Annualized volatility (in 261
Annualized volatility (in 261

1 ! | | ! | |
N A A || | ] | A (I | ]

Time tomaturty in weeks, Time to maturty (nvegks)

FIGURE 8. Plot of the volatility term structures ¥ (s) (broken curve, left) and Xa(s)
(broken curve, right) defined in (30) for the estimated parameters from Section 3, along

with the ¥ x (solid curve).
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recall the parameters from Section 3 and the correlation coefficient pp ; = —0.4. There are some deviations
from the common factor term structure volatility, which is shown as a solid curve. The regional volatility is
slightly above, until approximately 5 weeks out on the FFA curve where the regional volatility goes below
but follows the shape of the common factor volatility. The regional volatility converges asymptotically to
the long term level, which is slightly above 62%. Indeed, since in in general

lim Yy, (s) =0
§—00
when A; has eigenvalues with negative real part, we see that

Jim %i(s) = lim Y (s) = 00/ap, ,

whenever A has eigenvalues with negative real part. For route 1, the correlation with the market common
factor was negative. The same example for route 2 yields the volatility term structure as depicted in Fig-
ure 8 (broken curve, right graphics). For this positively correlated case, the difference between the market
common factor and the route becomes more pronounced, as well as always yielding a higher volatility for
all maturities. Indeed, the maximal volatility for route 2 is 81%.

We end this section with a discussion of the correlation term structure between route 7 and the common
market factor. Define the correlation term structure by the function s — R;(s), s > 0, where

_ COV(dFX(taT)/FX(tvT)vdFl(taT)/Fl(taT))
VVar(dFx (t,T)/Fx (t,T))/Var(dF;(t,T)/F;(t,T)
Seemingly R; will depend on ¢ and 7', however, we find

Cov(dFx (t,T)/Fx(t,T),dF;(t,T)/F;(t,T)) = (% (T —t) + po,: Sx (T — )Ly, (T — 1)) dt,

31) Ri(T —t)

Var(dFx (t,T)/Fx(t,T)) = £% (T — t) dt
and
Var(dF;(t,T)/Fi(t,T)) = (5% (T — t) 4+ 2p0,;Sx (T — t)Sy, (T —t) + 3. (T — t)) dt.

We have plotted the correlation term structure in Figure 9, for route 1 and route 2 respectively. The shape
for route 1 is rather peculiar.

Carrelation

Uow o o1 o0 @ @ m & 9w N A | A (O S
Tirne o matuty in wesks T to sty (i weeks)

FIGURE 9. Plot of the correlation term structure between route 1 and the common factor
(left), and route 2 and the common factor (right), for the estimated parameters in Sec-
tion 2.
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4.1. Dynamics of FFA’s with settlement period. Admittedly, the FFA’s traded in the market are settled
over a period and not instantaneously. These periods are typically calendar months. Assume the FFA is
settled over the period [T, 7], Ty < T, and denote the FFA price F(t,T1,T%), t < T;. From Benth et
al. [13], a no-arbitrage relationship between F(t, Ty, Ty) and F(t,T) is

Ts

— 1
32 F(t,Th,T3) = F(t,T)dT
( ) (717 2) T2T1/T1 (a ) ’

as the market settles on the average spot rate over the settlement period. We have used F and F as a generic
notation here.

From the geometric Brownian motion dynamics of F’x and F; in Props. 6 and 9 with maturity-dependent
volatility, it seems impossible to derive a reasonable closed-form expression for the dynamics of ¢ +—
Fx(t,Ty,Ty) and t — F;(t, Ty, Ty). Here we propose an approximation, where we preserve the geometric
Brownian motion dynamics but average the volatility term structure over the settlement period, i.e., we
suppose that

dF x (t,T1,T>»)

33 — =Sx(t,T1, Do) dWy(t
(33) (. Th. o) x(t, Ty, Ty) dWy(t)
with
_ 1 T2
(34) Sx(t, Ty, Ty) = / Sx(T—t)dT,t< Ty,
T, =T Jp,
and fori=1,...,n,
dFi(t7T17T2) - -
35 —— =L = (¢, Ty, Tn) dWo (t) + Xy, (¢, Th, To) dW;(t) ,
(35) F0.T). o) x (8, Th, To) dWo () + Xy, (¢, 11, T2) dW;(t)
with
_ 1 T2
(36) Yy, (t,T1,To) ::7/ Sy, (T —t)dT,t <Ty.
o -1 Jp

We recall ¥ x (s) and Xy, (s) from (24) and (29), respectively. We find:
Proposition 10. Fort < Ty < T5, it holds that

— 1
Yx(t,Th,Ts) = croe]—AO_2 (eAO(TZ*t) — eAO(Tl*t)) €p, — JOeIAalepO ,
-1y
and
— 1
Zy. (t, T17 Tg) = O’ieIA;l (eAi'(Tz_t) — eA'i(Tl_t)) €p,
k3 T2 . Tl 7
fori=1,... n
Proof. The result follows after a straightforward integration of ¥ x (7' — t) and X, (T — t). O

We notice from the inverse of Ay (see Lemma 4.2 in Benth and éaltyté Benth [12]) that the last term in
Yx(t,T1,Ty) is equal to ope] Ay 1ep0 = —09/ay,. It may be convenient to re-parametrize the expressions
for the volatilities into “time to settlement” x = 7} — ¢ and “length of settlement” y = 75 — 7. The
following corollary follows immediately from Proposition 10,

Corollary 11. Fort > 0, x > 0 and y > 0, it holds that x (t,T1,Ts) = §X(T1 —t,Ty — T1) and
iyi (t,Tl,TQ) = iyi (Tl — t,TQ — Tl), where

~ _ o
Sx(z,y) = ooy e Ay Zeto” (ery —Ip,) €p, + aio )

Po
and

EY«; (x7y) = UiyileIA;leAiw (eAiy - Ipz) €p,; »

fori=1,... n
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In the procedure above, we have suggested to approximate the FFA with settlement in (32) by a geo-
metric Brownian motion dynamics. Indeed, we claim here that the sum (i.e., the average) over geometric
Brownian motions are reasonably approximated by another geometric Brownian motion. It turns out that
such an approximation is relatively good, as empirically investigated in Benth [11]. Although not perfectly
correct, it provides an analytically tractable dynamics for further studies.

The volatility structure of the FFA for route ¢ is defined naturally by

~2 ~2 =~ =~ ~2
(37 X (z,y) = Xx(2,y) + 2p0,:2x (2,y) 2y, (z,y) + Dy, (2, ) .

Returning back to our estimated model for Supramax data, we have plotted the volatility term structure for
the common factor and for route 1 in Figure 10. We assume monthly settlement period (e.g., y = 1month)
and we plot the volatility for contracts starting settlement immediately, in one month, two months etc... The
stepwise graph indicates the volatility over the settlement month. Recall that we have estimated on weekly
data, so one month corresponds to 4 on our time scale. We observe that the volatility is not equal to zero

70 T T T

T — _

40+ &

- =

Annualized wolatility (in %)

- 4

10 1 1 | 1 |
0 20 40 Gl 50 100 120

Time to start of measurement (in weeks)

FIGURE 10. Plot of the volatility term structure for monthly contracts on route 1 (broken
curve) and the common factor (solid curve) for the estimated parameters in Section 2.

for the front contract, being above 10% for the common factor and above 20% for the route. Recall the
volatility term structure for instantaneous delivery in Figure 8. In Figure 11 we have plotted the correlation
term structure between route 1 and the common factor. Notable is the very high positive correlation for
the front month contracts, being slightly below 0.8. Recall that for instantaneous delivery, the correlation
for contracts with immediate delivery was —0.4. This shows that the effect of having settlement periods is
rather dramatic on both volatility and correlation. Due to stationarity of the factor Y7 and cointegration, a
monthly FFA on route 1 will be perfectly correlated with the common factor in the long end of the curve.
Thus, for contracts on route 1 settled far out on the curve, there is approximately zero basis risk with respect
to the common factor.

The FFA dynamics in (33) is a geometric Brownian motion, with an explicitly given volatility term
structure in Prop. 10. Hence, we can easily price call and put options on FFAs using the Black-76 formula
for time-dependent volatility, see e.g., Benth and Saltyt¢ Benth [12, Prop. 7.6]. Given price quotes from
the market, we can calibrate the parameters of the volatility term structure from the implied volatilities.
However, this procedure will not provide us with an estimate of the market price of risk vector v defining
the pricing measure (). Furthermore, although there is a trade in options on FFAs, this market is still highly
illiquid.
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Correlation between common factor and route 1
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FIGURE 11. Plot of the correlation term structure between route 1 and the common
factor for monthly contracts for the estimated parameters in Section 2.

5. APPLICATION TO HEDGING OF REGIONAL RISK

In this section we apply our models to a problem of hedging the risk exposure when entering positions in
the physical market. In reality, FFAs are traded only on the global average tripcharter averages provided by
the Baltic Exchange, while physical players typically have exposure in various route segments. This means
that market agents must decide on the optimal cross-hedging strategy given their portfolio of physical
contracts on the individual routes. We note that our framework can be easily expanded to any number of
individual routes. We focus on two specific mean-variance optimal hedging problems, a static hedging
problem and a dynamic one set in the framework of Duffie and Richardson [22].

We suppose that we have available a tradeable FFA contract written on the market factor with settlement
period [T7, T3], and assume that its risk-neutral dynamics is given by (33). Thus, with the specification of
the probability () in the previous section, we find the market dynamics of the FFA to be

dFX (tv T17 TQ)

(38) >
FX (t7 Tla TQ)

=02x (t, T1,T2) dt + Sx (t, T1,T2) dBy(t),

for ¢ < T1, and volatility Yy (t,T1,T») given in (34). Assume that we have a risk exposure in route i,
which is given by k f;:z Si(s)ds for k € R. If k = —1, then we have promised to pay the freight rate
to a counterparty over the settlement period [, 7], or equivalently, the service of shipping route 4 in
the settlement period. In practice this physical exposure could be in the form of an index-linked trip or
timecharter for an individual ship, or an approximation of the cashflow from a large fleet of vessels trading
on a particular route. We hedge this exposure by the FFA market forward contracts, and we consider a
static hedge, that is, taking a fixed position at time ¢ = 0. We thus have a portfolio position with value at
time ¢ > 0,

T> o o
(39) V(ﬂ')(t) =k . 57(5) ds + T(Fx(t, Tl, TQ) - Fx(o, Tl, TQ))

1
Here, 7 € R is our hedging position in the market FFA, and we suppose that we hedge up to time 7" < T7.
Hence, we do not consider any trading within the settlement period.

The aim is to maximize the value V (7)(T") for the utility function U(v) = v — cv? for ¢ > 0 a constant

measuring the risk aversion. The problem is of mean-variance type, where we seek to find 7* such that

(40) max E (U (V(m)(T))] = E[U(V (*)(T))]

This problem has the following solution.
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Proposition 12. The optimal static hedge 7 solving (40) is
. E [Fx(T,T1,T»)] — Fx(0,T1,T>) — 2ckE [(FX(Ta T1,T5) — Fx(0,T1,T3)) ;;Flz Si(s) ds}

m =

2K [(Fx(T, T, Ts) — fX(O,Tl,Tg))Q}

Proof. For a function g(7) = a + br — nn?, where > 0 and a, b two constants, we find the maximum
value attained for 7* = b/2n. Computing E [U(V (7)(T))] =: g(r), we find

n=ck [(Fx(T, T1,T5) *FX(07T17T2))2} )

and
— p— —_— T2
b:EF)((T,Tl,TQ)] —Fx(O,Tl,TQ)—2CI€E (Fx(T7T1,T2)—Fx(O,Tl,TQ)) SI(S) d8‘| s
T
and the result follows since n > 0. U

To find 7*, we must know E[F x (T, 711, T3)], E[F;(T, T, 1)), E[Fx(T,T1,T>) fgf S;(s)ds] and

T e . . .
E[ Tf S;(s) ds]. For our model specifications, we can compute semi-analytic expressions for these expec-

tation functionals. We list the formulas in a sequence of Lemmas.

Lemma 13. It holds that

T
E |_?X (T7 Tla TQ):I - FX(Oa Tl) TQ) exp (’YO / E)((57 Tla TQ) d$>
0

T
2 —2 - =2
E [FX(T, TI,T2)] = Fo (0,11, T) exp (/ 205 x (5, T, To) + ZX(S,Tl,TQ)dS>
0
Proof. Since

T
— — = 12
Fx(T,Tl,TQ) = Fx(O,Tl,TQ) exp </ ’YOEX(SyTl;TQ) — §ZX(S,T17T2) d5>
0

T
X exp (/ Sx (s, Ty, Ty) dBo(s)>

0

the expressions follow from standard formulas for exponential moments of Gaussian random variables. [J

Lemma 14. It holds that

Ty T> 1
E Si(s)ds| = / exp (m(s) + w(s)) ds
T T 2
where
m(s) := eLeAisZi(O) + eIOAal(eA(’S —1)Zy(0)
and

S S
2 T Al T _Ajv T Ajv T A—1/_ Agv
w(s) = a-/ e, e’ile; e e ey, dv+2aoaipo’i/ e, e e e oAy (e — I)ey, dv
0 0

S

2 T AL -T T 4—1/ A

+JO/ epo(e 0¥ — 1A, er0€; oAy (e70Y — Iep, dv.
0

Here we have used the notation e, ; and e, g to distinguish the first unit vectors in RP¢ and RP°, resp.

Proof. From the definition of S;(s), we find
T> T> s
E Si(s)ds| = e’ / E [exp (/ Yo(u) du + Y;(s))] ds.
T: Ty 0

Yi(s) = e e°Z;(0) + Ji/ el e Ve, dB;(v).
0

‘We recall that
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Note that e; is the first unit vector in RP:. Furthermore, using the analogous expression for Yj(u), we
derive using the stochastic Fubini theorem,

/ Yo(u)du = e] / e duZo(0) + 00/ / e eMe dBy(v)du
0 0 o Jo

= e Ayl (e — 1)Zo(0) + o /0 el Ayt (e~ — Ie,, dBy(v).

Here, ey is the first unit vector in RP°. Hence, [; Yp(u)du + Y;(s) is a normally distributed random
variable with mean m(s) and variance w(s). The result follows. O

Lemma 15. It holds,

T
Fx(T, T17T2) SZ(S) ds

Th

T>

E

= Fx(o, T17 Tg)eai /

Ty

~ 1.
exp (mT(s) + 2wT(s)> ds
where
~ T 12 T A T 1/ A
mr(s) = / YoXx (v, 11, o) — §2X(U7T1aT2) dv + e ;"2 (0) + ey Ay~ (70 = 1)Zo(0),
0
and

S
wr(s) = 0-2/ e—r e Ve, ze? etive,, dv
0

+20ipo / ey Yers (Lo (0)Ex (0,11, Tz) + o0e] g Ay (% — Dy, ) dv
0
s o B ) 9
+ / (1[O,T] (’U)Zx(’u, Tl, TQ) + UOeIOAO 1(6A0 - I)epo) dv.
0
Proof. Using the explicit dynamics of Fx (t, Ty, T») and S;(s) we find,

E

T>
Fx(T, Tl,Tz) Si(S) dS]

T

_/TZ]E [Fx(T,T1,T2)S(s)] ds

T
B T, T 1_
=Fx(0,T1,T»)e” / exp / Y0Xx (v, Ty, T2) — §EX(U, T1,T3) dv
i 0
T
x E exp / Ex(v Tl,TQ)dBO / Yb dU+Y( ) ds.
0
Following the same analysis as in the proof of Lemma 14 yields the result. O

With these three lemmas at hand, we can find an expression for 7* in Proposition 12 in terms of integrals
of the various components in the dynamics of route ¢ and the FFA forward price. In a concrete application,
we must perform numerical integration to find the explicit optimal static hedge.

If we want to compute the optimal expected value function, we need in addition E[( fT (s)ds)?],
which is stated in the next Lemma:

Lemma 16. It holds,

Ty 2
E Si(s)ds = 220 / / exp( )+ 1w(t s)) dsdt,
T1 Tl 2

where, for s < t,

m(t,s) == eL (eAiS + eAit) Z;(0) + eIOAal(eAOS + eot — 21)Z(0),
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and

t 2
wt.s) = o? [ (el (1 (0) + MO ey, ) o
0

t
+20’00’0p071;/ (e;i(eAi(va)l[O’s](v) +6Ai(t7v))epi>
0

x (1045 (€407 = D1 g (v) + (€2 — D)ey ) dv

t 2
#03 [ (eToAs (=)~ Do) + (4= - Dyey, ) .
Proof. Since
Ts T> t
([ Si(s)ds)? =2 / Si(5)Si(t) ds dt
T T

T
it holds

E (/TTQ Si(s) d5>2

2/TT /TtlIE[Si(s)Si(t)] ds dt

= 2¢%% /TT /TtlE[exp (/OSYO(u)du—i-Yé(S)+/0tY0(u)du+Y;(t)ﬂ ds dt .

Using the expressions for [ Yo (u) du and Y;(s) derived in the proof of Lemma 14, we can conclude the
result by appealing to the known expressions for the exponential moment of normal random variables. [

We end this first mean-variance hedging application by remarking that one may extend the above anal-
ysis to include hedging within the settlement period by modifying the dynamics of the FFAs. We refer to
Benth and Dethering [14] for an analysis of dynamic hedging when one cannot hedge within a settlement
period.

We now move our attention to a slightly different mean-variance problem, which can be formulated
in the context of Duffie and Richardson [22]. Suppose that a trader has an exposure in rute ¢ given by
kF;(T, Ty, m) for T < 7, and k some real number (positive or negative, indicating long or short position
in the FFA). This FFA is not traded, but we aim at hedging the risk exposure by dynamically trading in the
market FFA. L.e., we consider a situation where we aim at matching a fixed FFA position in route ¢ (which
is not tradeable) with dynamically trading in the market FFA. In some sense, we can view this problem as
trying to mimic a FFA in route ¢ using the market FFA.

Recall the dynamics of F; (t, 71, 72) from (35) to be (with respect to the market probability),

dfi(f, 71, 7'2)

— 22 2 = (v X x(t, T, ) + 1Dy, (8, T, ) dt
Fi(t,Tl,Tz) (’Yo X( 1 2) 8t YL( 1 2))

41 +ix(t,T1,T2)dBo(t)+iyi(t,7'1,7'2)dBi(t),

where Yy, (t, 71, 72) is defined in (36). We suppose here that the start of the settlement period of the market
FFA is after the settlement of the regional FFA, that is, ; < T} < 7. This is for convenience since we
have not studied the FFA price dynamics within the settlement period, and if we would have T' > T, say,
then we would need to use the market FFA in the hedging procedure also within its settlement. However, it
is not too difficult to dispense with this restriction by, for example, choosing another market FFA with later
settlement, or to consider a roll-over strategy (which we do not consider here).

We suppose that the trader dynamically hedge in the market FFA using an F;-adapted strategy ()
which is integrable with respect to dF x (t,T1,T). The aim for the trader is to maximize the wealth at
time 7", defined by V (7)(T") with

42) V(m)(t) = KFA(T, 71, 72) + /0 7(s) dFx (5, T1,Ty)
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The utility function is again U (v) = v — cv? for some risk-aversion coefficient ¢ > 0, and the problem of
the trader is to find an optimal 7* maximizing E[U(V (7)(T))]. The solution to this problem is given in
Duffie and Richardson [22]. After some reformulation and identification, we find from their paper that the
optimal 7* is given as follows:

Define the function «(¢,T) for t < T by

_ 0 + Ex(t, 71, 72) + po,iZy, (t, 71, 72)
Yx(t,T1,T5)

a(t,T)

T
(43) X exp <—/ (Vi +70p0.) Xy, (8,1, T2) + 270X x (8, T1, T2) ds) .
t
Then we have 7* given by the equation

t

* Enl Y0 * ¥l

r <t)FX<t,T1,T2>+f7/ *(s) dFx (5, Ty, Ty)
Yx(t,T1,T3) Jo

"o

(44) =—— 72
2CEX (t, Tl, TQ)

—a(t, T)Fi(t, 11, 72)

The optimal strategy 7* is given through an integral equation, which can be solved using numerical sim-
ulation in a discretized form. Choosing a homogeneous time stepping t, = nA, n = 0,1,..., N with
N € Nand A :=T/N (where in practice T >> N, of course), we find the recursive scheme based on a
Riemann approximation of the integral

n—1
* Fnl Yo * il
s (tn)Fx(tn,Tl,Tg) + = T (ti)AFx(ti,Tth)
Yx(tn, 11, T») ;
o

:7—_atn’TF1 tfn/,T’T .
QCZX(LLn,Tl,Tg) ( ) ( ! 2)

Here, AFx(t;,T1,Ts) = Fx(tiv1,T1,T2) — Fx(t;,T1,T2). Given 7*(0), we can iterate the above

recursion to compute 7*(¢,,) foralln = 1,..., N. By (44), we find

Fi(0,71,72)

7(0) L (0, T) =210 T2)
Fx(0,71,T5)

N 2Ci)( (07 T17 TZ)FX((L T17 T2) -

To run this numerical scheme, we must have available the prices F; (ti, 71, 72). As the market does not trade
in the regional FFAs, we can instead apply the derived regional FFA dynamics in the previous Section as
benchmarking using the observed spot freight rates for the regional route.

6. AN OUTLOOK TO NON-GAUSSIAN MODELS

There is evidence for jumps in freight prices (see e.g. Nomikos et al. [36] and Kyriakou et al. [33]),
and more general dynamics than the Brownian-driven models analysed in this paper may be desirable.
In this Section we briefly discuss extensions of our models, both in view of some exisiting literature on
non-Gaussian dynamics for financial time series and in the context of our specific Supramax data.

An alternative to the classical (multivariate) geometric Brownian motion dynamics is a multidimensional
exponential Lévy process (see e.g. Ballotta and Bonfiglioli [5]). A Lévy process allows for much more
flexibility to include jumps in the price dynamics and to model heavy tails and skewness in returns. On the
other hand, Lévy processes preserve analytical tractability when it comes to pricing of derivatives.

In our context, we have argued for cointegration of Supramax regional prices, non-stationarity in the
common factor as well as autoregressive effects (recall the empirical analysis in Section 3). We consider
here substituting the Brownian driver in the CAR(p)-dynamics with a Lévy process. To this end, let L =
(Lo, Ly,...,Ly,)" be an + 1-dimensional Lévy process where we assume that the moment generating
function exists for all x € ®, © being an open subset of R"*! including the origin (see Applebaum [3]).
We introduce the log-moment generating function

(45) ¢(x) = InE [exp(x"L(1))] ,x € ©.
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We note in passing that the Lévy process has finite second moment. From the Levy-Kintchine representa-
tion, we find

1
H(x) =x"at + §XTCX + /

e (o) (exT" -1- XTV) £(dv)

where a € R™*! is the drift, ¢ € R(*+1)x(+1) the covariance matrix of the Brownian motion part and £
is the Lévy measure.

Observe that ¢;(z) := ¢(xe;), v € R defines the log-moment generating function of the Lévy pro-
cess L;, i+ = 0,1,...,n, as long as xe; € ©. We define the vector-valued CAR(p)-process Y =
(Yba Yla AR Yn) by }/;(t) = eirzl(t)’ where

46) le(t) = A;7Z; (t) dt + €p, dL; (t) R

fori = 0,...,n. The matrices A;, i = 0,...,n are defined in (2) with the same assumptions as stated in
Section 2. We recall the model for the regional freight rate dynamics .S;(¢) in (10) and (11).

In Figure 12 we show the empirical density of the residuals €, and €; 4,4 = 1,2,3,4 in the AR-
dynamics of the market factor and the routes, see (16) and (17), along with the fitted normal distribution
(broken line). The density plots make use of a logarithmic frequency axis to emphasise possible heavy tails
on the data. As we can see, there are some deviations from Gaussianity visible in the data. In particular, all
the routes and the market factor have slightly heavier tails than the normal. Also, the center of the empirical
distributions have more mass than assigned by the normal distribution.
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FIGURE 12. Empirical distribution of residuals with fitted normal (broken line) and NIG
distribution (complete line), on a logarithmic frequency axis.

Also plotted in Figure 12 are the fitted normal inverse Gaussian (NIG) distributions estimated using
maximum likelihood (complete line). The four parameter family of NIG distributions were introduced by
Barndorft-Nielsen [7] as a member of the family of generalized hyperbolic distributions, which has been
succesfully applied to model financial logreturns (see e.g. Barndorff-Nielsen [8] and Eberlein and Keller
[23]) due to its flexibility to explain skewness and heavy tails. As we can see from the figure, the empirical
distribution is better explained by the NIG than the Gaussian distribution, although the improvement is not
very prominent.

The log-moment generating function of an NIG-distributed random variable takes the form (see Barndorff-
Nielsen [8])

S oniG(7) = px + 6 <\/a2 —B2—\/a2—(B +x)2) 7
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where a > |f| and z € R such that « > |5 + x|. The parameters are named 1 € R location, 8 € R
skewness,> @ > 0 tail heaviness and 6 > 0 scale. A multivariate (n + 1-dimensional) NIG distribution
is introduced in Rydberg [41] (see also @igard and Hansen [37]), which has the log-moment generating
function

(48) dvniG(x) =x "+ 6 (\/ a2 - BT~ \/042 —(B+x)TI(B+ x))

Here, o, 0 > 0, 1, B € R"*! and o > 3" T'3. The covariance of the n + 1-dimensional NIG distribution
is described by the matrix I' € R(»+D*("+1) "and the log-moment generating function ¢ynig is defined
for all x € R™*! such that a? > (B +x) 'T'(B + x).

As an application of the Lévy process model for Supramax price dynamics, let us consider pricing of a
futures. Introduce a pricing measure Q ~ P by the Esscher transform (see e.g. Benth, Saltyt¢ Benth and
Koekebakker [13, Sect. 4.1]), where for a market price of risk v € @, L is a Lévy process in R**! with
respect to ) with log-moment generating function

49) ¢7 (%) = ¢(x +7) — 9(7)-
We find the following result for the futures price Fix (t,7T'),t < T in the current context:

Proposition 17. Suppose the common factor X is defined as in (11) with Zq given as in (46). Assume that
v € O®and~y+ g(u)e; € O forall0 < u < T, where

glu) = e Ayt (eAU(T_t) — Ipo) €p, ;U > 0.
Then, for 0 < t < T it holds
Fx(t,T) = S(t)exp (R(Zo(t), T~ 1)) ,
where
h(z,s) = e] A7! (ef%(T*t) - Ipo) z+ /0 "7 (g(u)er) du
for s >0,z € RP°, and ¢” defined in (49).

Proof. First, observe that
T T
S(T) = exp (/ Yo(s) ds) = S(t) exp (/ Yo(s) ds) .
0 t

Zo(s) = e Z (1) +/ efo=be dLo(u)
t

But, since for s > ¢,

we find
T T
/ Yo(s)ds = eir / Zo(s)ds
t t

T
= el Ayt (M0 — 1) Zo(t) + / ef Ayt (AT — 1) ey, dLo(u)

t

after using the stochastic Fubini Theorem. From JF;-measurability of S(¢) and independent increment
property of Lévy processes, it follows that

Fx(t,T) = S(t) exp (eIAgl (6A0<T*t> - 1,,0) Zo(t)>
T

exp (/ el Ay? (eAO(T*") - Ipo) €p, dLO(u))] .
t

3There is a slight notational clash here with the autoregression coefficients of the time series model.

X]EQ
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Calculating the expectation under () yields,

exp (/fT eirAal (er(T—“) — Ipo) €p, dLo(u)>] = exp (/tT &7 (g(T . u)el) du) ’

and the result follows. 0

Eq

We remark that we can use similar arguments to derive futures price dynamics for the regional routes.

Stochastic volatility is another feature that is frequently analysed and modelled in financial time series.
In our autoregressive time series for the market factor and the four routes, we have assumed independent
residuals. Looking at the autocorrelation plot in Figure 13 (top), the residuals are uncorrelated (dotted
lines indicate 95% significance level), whereas the squared residuals show some degree of correlation at
lags up to 15-20. Although the evidence is not very strong, there are indications of dependency in the
residuals. In Benth [10], a stochastic volatility model in a mean-reverting dynamics has been proposed and
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FIGURE 13. Autocorrelation function for the residuals (top) and squared residuals (bot-
tom) for the market factor.

analysed. The stochastic volatility dynamics were assumed to follow the Barndorff-Nielsen and Shepard
model (see Barndorff-Nielsen and Shephard [9]). The mean-reversion process would be a continuous-time
autoregressive process or order 1 in our context. This stochastic volatility dynamics can be tailormade to
explain correlation effects in the autocorrelation function along with NIG distributed residuals.

7. CONCLUSIONS

In this paper we propose the decomposition of regional freight rates into a non-stationary market factor,
which is observable and has a natural interpretation as the global market average, and (additive) correlated
regional factors.

Our discrete-time model for the joint dynamics of regional spot freight rates is parsimonious, easy to
estimate within a standard ARIMA framework, and is able to capture the main characteristics discussed in
the literature. This includes: 1) a common stochastic, non-stationary, trend reflecting changes in the global
supply/demand balance, ii) mean-reverting deviations from the market average in regional freight rates
reflecting the mobility of tonnage, iii) the long-run co-integration of regional routes and iv) the Atlantic
freight rate premium (see, for instance, Berg-Andreassen [16] and Adland et al. [1]).

Based on our empirical results we can also make some interesting observations about the joint dynamics
of regional freight rates. Mainly this relates to the statistical significance of the constants in our estimated
regional factor models. Among our four main routes, some are consistently above or below the market
rate throughout our sample. On the face of it, this is not consistent with a spatially efficient market with
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mobile assets controlled by profit-maximizing operators — in such a system we would expect the long-
run average regional factor to be zero. Upon closer inspection, some but not all of this can be explained
away. Specifically, we notice that in the case of the cross-basin (Fronthaul/Backhaul) routes, the constants
are similar in magnitude but of opposite signs. In order to avoid building up a surplus of ships in the
Pacific, we note that the flow of ships must be bi-directional and of the same magnitude. Put differently,
in order to take advantage of the higher-paying Fronthaul route, the average owner must at some stage
return the vessel by way of the lower-paying Backhaul route and the two effects cancel out according to
our estimates. Accordingly, statistically significant regional factor constants for Routes S1 and S3 are not
inconsistent with market efficiency.

The trans-Atlantic premium (S4) is well known in the literature (Adland et al. [1]) but is harder to
explain. It is possible that, in reality, the availability of cargoes is lower in the Atlantic and therefore the
apparent premium in rates is offset by more idle time for the vessels viz-a-viz operating the ships in the
Pacific. Since our model does not account for idle time between contracts, we cannot exclude the possibility
that real vessel earnings in the trans-Atlantic and trans-Pacific are in fact the same.

Future research along these lines should include further empirical applications of the hedging procedures
described herein. While our model has been derived with the spot freight market in mind, it is applicable
to any cross-hedging problem where agents have physical exposure to a portfolio of regional prices but
can only hedge using a single liquid market instrument. An example would be ship operators exposed
to fuel prices in ports around the globe and hedging this with, say, Singapore fuel oil futures or Brent
crude oil forward contracts. Knowledge of regional price dynamics also allows the development of spatial
optimization models for the regional chartering of a fleet of vessels which, in the case of tramp shipping,
is an emerging research area.

APPENDIX A. PROOFS

In this Appendix we present proofs of some of the results in the paper.

Proof of Proposition 1. Let¢; := 06! ( (tix1) — B(t;)) fori = 0,1, .... From the independent incre-

ment property of Brownian motion, {€;}$2, are independent random varlables Moreover, since B(t;+1) —

B(t;) e B(0), where < mean equality in distribution, we find that {€;}° are IID mean-zero normally

distributed random variables, with variance given by o2 /4.
From (9) and the defintion of the polynomials P and @ in (6) and (7), resp., we find

b
FTPARY(t:) > oy 6P ARyt +Zb6 INTE;

Multplying with §P and using the definition of the forward dlfferencmg operator together with the fact that
t; +1rd =t;1, forany r € N, yield,

-J s
Yitp t Z < ) yz+p kt Zajaj Z (p k j) (71)kyi+p—j—k

Jj=1 k=0
—zbwz()
After some algebraic (and tedious) manipulations of the terms in this expression, the result follows. U

Proof of Proposition 2. From the definition of a CAR-process, Y| is a Gaussian process. Hence, X be-
comes Gaussian as well since it is the integral of a Gaussian process, e.g., a limit of a sum of normally
distributed random variables. The mean is trivial to compute. Concerning the variance, we find

Var[X (¢)] = 2/0 /08 Cov(Yo(u), Yo(s)) duds.

But, when u < s,

COV(YO(U),YO(S)):E{ /0 el eM(=)e  dBy(v) /0 el e e dB(v)
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u

_ T Ao(s—v) T Ag(u—v)

—/ e e ep,€; € ep, dv,
0

where we used the independent increment property of Brownian motion along with the It6 isometry. The
result follows after some straightforward manipulations. O

Proof of Proposition 3. Consider the vector- valued process Zg := (X, Zg) € RPoF!, By definition of the
matrix Ag, the fact that dX (t) = Yy (t) dt = e{ Zo(t) dt, and
dZo(t) = A()Z()(t) dt + €),00 dBO (t) s
it follows - o
dZO(t) = A()Z()(t) dt + €p,+100 dBo(t) .
Hence, since X (t) = e (X (t), Zo(t)), the first claim follows.
For the second, the characteristic polynomial of the matrix Ay is easily seen to be

Py(A) =det(Ag — Mpp1) = (=N Po(N),
where P, is the characteristic polynomial of Agy. Hence, A = 0 is an eigenvalue of Ag. U

Proof of Proposition 4. From Proposition 1 with ¢ = 0, p = py + 1 and CAR-matrix A, defined in

Proposition 3, it holds
po+1

Titpo+1 = E BrTitpo+1—k + No€i
k=1

where 79 = bdPo+t1(—1)(3) = 8,,+41. Since & is Gaussian with mean zero and variance 2 /5, we define

€; := 0'/2671¢;, which then defines a sequence of IID standard normally distributed random variables.
Hence, ng¢; = gdPot1/2¢.  After some algebraic considerations, it follows that

Axi'i‘po = Litpo+1 — Litpo
= (1 = DAz py—1+ (1 = 1+ B2)AZigpy—2+ -+ (b1 — 1+ B2+ -+ + B, ) Ay
+ (B = L+ Bat -+ + Bpar)wi + 0070 2
Consider the term in front of x; above, that is, Zp otl r — 1. From the definition of 3, we find

po+1 po+1 po+1l k .
ki1 (Pot+1 i i(Po+1—

> s= Y (M) - Yt ().

k=1 k=1 j=1

But we know that (z + y)" = >";_ (})a*y" ", sowithz = -1,y =1

o= S o () = () X (e

k=0 k=1
and we conclude S5 ' (—1)¥+1 (P0F1) = 1. Therefore,
po+1 pot+l k po+1—3j
i _
1= s= 3 e ()
k=1 j=1

j +1- _j(po+1—3j
— ;67 (—1)k J<p0 > +3 a8 (—1)pott J( .
$ S s > ol

k=1 j=1

where we used that a1 = 0 in the last equality. But we see that

1 —p:Zj By — ars (i(_l)k (?)) + ap6? (pi_‘:l(—l)k(pok_ 1)) +

k=0

k=0
1
S, 0P <kz_0(—1)k<;>>
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The claimed integrated AR(py) dynamics follows. O

Proof of Proposition 5: First, by F;-measurability, it follows
T T
exp / Yo(s)ds | | Fi| = S(t)Eq |exp / Yo(s)ds | | F
0 t

From the Q-dynamics of Zg in (23) we find for ¢ < s,
Zo(s) = eCDZ4(t) — ooy0Ay (eAO(S_t) - Ipo) €po —|—/ eob=e AWy (u).
t

FX(taT) :EQ

Hence, applying the stochastic Fubini theorem,
T
/ Yo(s)ds = e Ay* (eAU(T_t) - Ipo) Zo(t) — ooyoe] Ay? (eAU(T_t) - Ipo) €p,
t

T
+ aoy0e; Ay ey, (T —t) + oo / el Ayt (eAO(T*“) - Ip0> ep, AWo(u) .
¢

The result follows after appealing to the F;-measurability of Z(¢) and the fact that the stochastic integral
above is independent of F; due to the independent increment property of Brownian motion. Furthermore,
the stochastic integral is Gaussian distributed with mean zero and variance given by the It isometry.  [J

Proof of Proposition 6: We observe by definition of Fx (¢,T) that t — Fx(¢,T) is a Q-martingale for
t < T. Using It6’s Formula, it is thus only the term giving a dWWy-contribution that matters, which is the
po-coordinate of Zy. Hence, differentiating the function h(z, s) in Proposition 5 with respect to the pg
coordinate we find

dFx(t.T) = Fx(t,T) (eIAgl (eAO(T—ﬂ - Ip0> epo) a0 AW (1)
and the Proposition follows. (]

Proof of Corollary 7: Obviously, ¥x(0) = 0 since exp(A4¢0) = I,,. Moreover, since A is assumed
to have eigenvalues with negative real part, it follows that lim, ., ez = 0 for all z € RPo. There-
fore, lims_,o0 Lx(8) = faoelTAglepo. From Benth and Saltyté Benth [12, Lemma 4.2], we have Agl
explicitly available and it follows

eIAal = (7O‘Po—1/apoa 7O‘Po—2/apoa ) 70‘1/0%0’ 71/0‘170) :
Hence, e] A, 1ep0 = —1/cy, and the proof is complete. g

Proof of Proposition 8. Fixi = 1,...,n, and recall that S;(t) = exp(X(t) + 6; + Y;(¢)). From (26) we
have for 7" > ¢ that

T
Y;(T) = elTeAi(Tit)Zi(t) — O'i’yie;rAi_l (eAi(Tit) — Ip1> €p,; + O'i/ elTeAi(Tis)epi dWZ(S) .
t

We note that Z;(t) is JF;-measurable and the stochastic integral with respect to W; is F;-independent
since Brownian motion has independent increments. Using the same line of arguments as in the proof of
Proposition 5 yields,

Fi(ta T)
= S(t)exp (elTAal (eAO(T—t) - Ipo) Zo(t) + elTeA”(T_t)Zi(t))
X exp (—aofyoeIAJQ (eAU(T_t) — Ipo) ey, + UO'yOeIAalepU (T - t))

X exp (701"‘}/1'8?141-_1 (eA"'(T*t) — Ipi) epi)

T T
x Eq |exp (ao/ e Ay? (eAO(T’S) - Ipo) ep, AWoy(s) + ai/ e eAiT=%)e, dW,(s)) |]-}] .
t t
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Let po,; be the correlation coefficient between the two Brownian motions Wy and W;. Then, since the sum
of the two stochastic integrals is mean zero Gaussian distributed, we find

T T
Eq |exp 00/ el A? (eA"(T_S) - Ipo) ep, AWy(s) + ai/ el eMiT=%e, dWi(s) | | F;
t t

1t v
2 /0 Ug(eIAal(ers - Ipo)ep0)2 + 2p0>i000i(eIAal<ers - Ipo)epo)(eIeAisem)

= exp

+ai2(e1reA"sepi )2 ds) .

Collecting terms yields the result. U
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