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In the first part of the paper we obtain existence and characterizations of an optimal control for a
linear quadratic control problem of linear stochastic Volterra equations. In the second part, using
the Malliavin calculus approach, we deduce a general maximum principle for optimal control of
general stochastic Volterra equations. The result is applied to solve some stochastic control problem
for some stochastic delay equations.

1. Introduction

Let (Q, ¥, %, P) be a filtered probability space and B(t),t > 0 a ¥;real valued Brownian
motion. Let Ry = R\ {0} and v(dz) a o-finite measure on (Ry, B(Ry)). Let N (dt, dz) denote
a stationary Poisson random measure on R, x Ry with intensity measure dtv(dz). Denote by
N (dt,dz) = N(dt,dz) — dtv(dz) the compensated Poisson measure. Suppose that we have a
cash flow where the amount X(f) at time  is modelled by a stochastic delay equation of the
form:

dx(t) = {Al(t)X(t) + Ap(H)X(t - h) + ft Ao, s)X(s)ds}dt
-

+C1(HdB(t) + f Cao(t,z)N(dt, dz); t>0,

Ry

X(H) =n(t); te[-h,0]. (1.1)
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Here h > 0 is a fixed delay and A;(t), A2(t), Ao(t,s), C1(t), Ca(t, z), and 171 are given bounded
deterministic functions.

Suppose that we consume at the rate u(t) at time ¢ from this wealth X(t), and that
this consumption rate influences the growth rate of X(t) both through its value u(t) at time
t and through its former value u(t — h), because of some delay mechanisms in the system
determining the dynamics of X (t).

With such a consumption rate u(f) the dynamics of the corresponding cash flow X*(t)
is given by

AX"(t) = { A1(DXM(t) + Ay() X" (t — h) + ft Ao(t, s)X"(s)ds
t-h

+Bi(H)u(t) + Ba(t)u(t - h) }dt + C1(t)dB(t) 12

+f Co(t,z)N(dt, dz); te[-h,0],
Ry

X"(t) =n(t);, t<0,

where B; (t) and B;(t) are deterministic bounded functions.

Suppose that the consumer wants to maximize the combined utility of the consump-
tion up to the terminal time T and the terminal wealth. Then the problem is to find u(:) such
that

T
J(u) = EUO Us (t, u(t))dt + u2(X”(:r))] (1.3)

is maximal. Here U(t,-) and U(-) are given utility functions, possibly stochastic. See
Section 4.

This is an example of a stochastic control problem with delay. Such problems have been
studied by many authors. See, for example, [1-5] and the references therein. The methods
used in these papers, however, do not apply to the cases studied here. Moreover, these papers
do not consider partial information control (see below).

It was shown in [6] that the system (1.2) is equivalent to the following controlled
stochastic Volterra equation:

t t t .
X" (t) = f K(t,s)u(s)ds +J @O(t,s)C(s)dB(s) +f ’[ @O(t,s)Ca(s,z)N(ds,dz)
0 0 0 JR

0
+@(t,0)7(0) + fh @(t, s + h) As(s + h)n(s)ds (1.4)

h
+ foh <J1) D(t, T)Ay(T, s)d7‘> 71(s)ds,



International Journal of Stochastic Analysis 3

where
K(t,s) = D(t,s)Bi(s) + D(t,s + h)Ba(s + h), (1.5)

and @ is the transition function satisfying

t
a;(t) = A1 (H)D(t,s) + Ax(H)D(t - h, s5) + j Ay(t, T)D(T, s)dr,
—h

F) (1.6)

O(s,s) =1, @O(t,s) =0 fort<s.

So the control of the system (1.2) reduces to the control of the system (1.4). For more
information about stochastic control of delay equations we refer to [6] and the references
therein.

Stochastic Volterra equations are interesting on their own right, also for applications,
for example, to economics or population dynamics. See, for example, Example 1.1 in [7] and
the references therein.

In the first part of this paper, we study a linear quadratic control problem for the
following controlled stochastic Volterra equation:

t
XH(t) = &(t) + IO[K1 (t,5)X"(s) + Di(t, s)u(s) + Ky(t, s)]dB(s)

+ ft Ku(t, s, z)X"(s)N(ds,dz) + f Ds(t,8)X*(s)ds
0 JRy 0

t (1.7)

t
+ J‘ Ds(t, s, z)u(s)N(ds,dz) + f Ks(t,s,z)N(ds,dz)
0 R() 0 RO

t
+ f K;(t, s)u(s)ds,
0

where u(t) is our control process and ¢(#) is a given predictable process with E[¢2(t)] < oo for
all t > 0, while Kj;, D; are bounded deterministic functions. In reality one often does not have
the complete information when performing a control to a system. This means that the control
processes is required to be predictable with respect to a subfiltration {G;} with G; C ¥:. So the
space of controls will be

T
u-= {u(s);u(s) is Gi-predictable and such that E[I |u(s)|2ds] < oo}. (1.8)
0
U is a Hilbert space equipped with the inner product

T
(ur,up) = EI:L ul(s)uz(s)ds]. (1.9)
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|| - || will denote the norm in U. Let /¢ be a closed, convex subset of U, which will be the
space of admissible controls. Consider the linear quadratic cost functional

T T T
J(u) = E[Io Ql(s)uz(s)ds + L Qz(s)X”(s)2ds + .[0 Qs(s)u(s)ds
. (1.10)
+J‘ Q4(s)X*(s)ds + a1 X*“(T)? + a, X" (T)]
0

and the value function

J= uiergqf(u)- (1.11)

In Section 2, we prove the existence of an optimal control and provide some characterizations
for the control.

In the second part of the paper (from Section 3), we consider the following general
controlled stochastic Volterra equation:

XH(t) =¢(t) + JZ b(t,s, X*(s),u(s),w)ds + JZ o(t, s, X"(s),u(s),w)dB(s)
(1.12)

t
+f 0(t, 5, X"(s), u(s), z, )N (ds, dz),
0 /Ry

where ¢(t) is a given predictable process with E[¢%(t)] < oo for all + > 0. The performance
functional is of the following form:

T
J(u) = EI:L f(t, X" (t), u(t), w)dt + g(X”(T),w)], (1.13)

whereb : [0,T] x [0, T]x RxRxQ — R,0:[0,T]x[0,T]xRxRxQ — R,0:[0,T]x[0,T] x
RxRxRyxQ — Rand f:[0,T] x Rx RxQ — Rare F-predictable and g: Rx Q — Ris
%7 measurable and such that

T
El:fo | £, X¥ (), u(t)|dt + |g(X”(T))|] < oo, (1.14)

for any u € &4, the space of admissible controls. The problem is to find # € &, such that

@ := sup J(u) = J(u). (1.15)

uEJq

Using the Malliavin calculus, inspired by the method in [8], we will deduce a general
maximum principle for the above control problem.
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Remark 1.1. Note that we are off the Markovian setting because the solution of the Volterra
equation is not Markovian. Therefore the classical method of dynamic programming and the
Hamilton-Jacobi-Bellman equation cannot be used here.

Remark 1.2. We emphasize that partial information is different from partial observation,
where the control is based on noisy observations of the (current) state. For example, our
discussion includes the case G; = ¥is (6 > 0 constant), which corresponds to delayed
information flow. This case is not covered by partial observation models. For a comprehensive
presentation of the linear quadratic control problem in the classical case with partial
observation, see [9], with partial information see [10].

2. Linear Quadratic Control

Consider the controlled stochastic Volterra equation (1.7) and the control problem (1.10),
(1.11). We have the following Theorem.

Theorem 2.1. Suppose that fRo Ki(t, s, z)v(dz) is bounded and Qy(s) > 0, a1 > 0and Q1(s) > 6
for some 6 > 0. Then there exists a unique element u € A, such that

J=]u) = Uierjqf (0). (2.1)

Proof. For simplicity, we assume Ds(t,s,z) = 0 and K;(t, s, z) = 0 in this proof because these
terms can be similarly estimated as the corresponding terms for Brownian motion B(:). By
(1.7) we have

2 2
E[X”(t)z] <7E [g(t)z] +7E f Ki(t, s)X"(s)dB(s) ) | +7E f D (t, s)u(s)dB(s)
0 0

i 2 2
<r Kz(t,S)dB(S)) ] +7E[<f K3(t,s)u(s)ds> ]
| \Jo 0
[/ 2 t 2
+7E <f Dz(t,s)X”(s)ds> ] +7E[<f Kuyl(t, s,z)X“(s)ﬁ(ds,dz)) ]
| 0 0/ Ro

<7E [g(t)z] +7E Ut Ki(t, s)Xu(s)2ds] +7E I:ft Di(t, s)u(s)2ds]
0 0

+7E

t t t t
+ 7J‘ K%(t, s)ds + 7I Kg(t, s)dsE I:f uz(s)ds:l +7tE I:I D%(t, s)X”(s)zds]
0 0 0 0

+7E Ut < K2(t, s, z)v(dz)>X”(s)2ds]. (2.2)
Ry

0
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Applying Gronwall’s inequality, there exists a constant C; such that

E[X”(t)z]s C.E Ituz(s)ds +Cy )eCT. (2.3)
0

Similar arguments also lead to

2
E[(x (1) - X (1))?] < Coe®T <E [< [ Kt 5)(1(s) - u1(S))dS> ]
0

+E I:f D1 (t, s)z(uz(s) - ul(s))zds:I>
0

(2.4)

for some constant C,. Now, let u,, € /¢ be a minimizing sequence for the value function, that
is, lim, o, J (#,) = J. From the estimate (2.3) we see that there exists a constant ¢ such that

T T
E[I Qs(s)u(s)ds + f Qu(s)X*(s)ds + aZX”(T):I <cllu| + c. (2.5)
0 0

Thus, by virtue of the assumption on Q;, we have, for some constant M,
M 2 ] () 2 6||un|? = cllttul| - c. (2.6)

This implies that {u,} is bounded in U, hence weakly compact. Let u,, k > 1 be a
subsequence that converges weakly to some element 1, in U. Since <4, is closed and convex,
the Banach-Sack Theorem implies 19 € 4. From (2.4) we see that u, — u in U implies that
XU (t) — X*(t) in L?(Q) for every t > 0 and X"*(-) — X*(-) in U. The same conclusion holds
also for Z*(t) := X*(t) — X°(t). Since Z* is linear in u, we conclude that equipped with the
weak topology both on U and L?(Q), Z*(t) : U — L?*(Q) is continuous for every ¢ > 0 and
Z"(-) : U — U is continuous. Thus,

X4 U —L[*(Q), X“():U—U (2.7)

are continuous with respect to the weak topology of U and L*(Q). Since the functionals of X*
involved in the definition of J(u) in (1.10) are lower semicontinuous with respect to the weak



International Journal of Stochastic Analysis

topology, it follows that

T T T
lim J(un,) = hmEU Qs (s + [ Qu(o)X™ (s + | Qa(s)un (s)ds
k— oo k— oo 0 0 0

T
+f Qu(s) X" (5)ds + a1 X" (T)? + ap X' (T)]
0

T T T
2EU Q1<s>u5<s>ds+f Qz<s>X“°<s>2ds+f Qs(s)1o(s)ds
0 0 0

T
+I Q4(8)X™(s)ds + a1 X™ (T)2 + a2X”0(T)]
0

= ](uo),

which implies that 1 is an optimal control.

(2.8)

The uniqueness is a consequence of the fact that J(u) is strictly convex in u which is
due to the fact that X" is affine in u and x is a strictly convex function. The proof is complete.

To characterize the optimal control, we assume D;(t,s) = 0 and Ds(t, s, z) = 0; that is,

consider the controlled system:

t

XU (t) = &) +f

+ ft Kuy(t, s, z)X”(s)ﬁ(ds, dz) + ft Ds(t,8)X*(s)ds
0 JR 0

t
+ f Ks(t,s,z)N(ds,dz)
0 JR

Set
dF(t,s) := dsF(t,s)

= Ky (t,s)dB(s) +

Ku(t,s,z)N(ds,dz) + Dy (t, s)ds.
Ry

For a predictable process h(s), we have

[Kq(t,s)X*(s) + Ky (t,s)]dB(s) + Jt K;(t,s)u(s)ds
0 0

O

(2.9)

(2.10)

t t t s t
J h(s)dF(t,s) := f Ki(t,s)h(s)dB(s) +f f Ky(t,s,z)h(s)N(ds, dz) +J‘ D»(t,s)h(s)ds.
0 0 0 J R 0

(2.11)
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Introduce

[} t s1
M) =40+ 3 [ Pt [ dF(s,s)
n=170 0
- fo E(sn)AF (sn1,51),

t w ot S1
Mot = [ Kalts)aB(s) + 3, [ aF () [ dFG )
n=1

Sp-2 Sn-1
f AF (5,2, sn_l)f Ka(sn1, 5,)dB(sn),
0 0

2.12)

t _ o'} t S1
Mio) = [ [ Katsi, 2N, dz)+ S [ arts [ apss)
0 JR, “—=Jo 0

. f " AF(5p2, 5n1) f " Ks(Sut, $u, 2)dN (dsy,, dz),
0 0
[ee] t S1
L(ts) = Ka(t,s) + 3, [ dF(esn) [ dFGsy s
w=17s s

Sn-1
I K3(sy, s)AF(sp-1,5n)-
S

Lemma 2.2. Under our assumptions, the above series converges at least in LY(Q). Thus M;,i=1,2,3
and L are well-defined.

Proof. We first note that

t 2 t t
EI:<J‘ h(s)dF(t,s)> :| = EI:J‘ K%(t,s)hz(s)ds:l +E[I f Kﬁ(t,s,z)hz(s)v(dz)dsjl
0 0 0 /Ry
t 2 t
+E[<I Dz(t,s)h(s)ds> ] < CTE[I g(t,s)hz(s)ds]
0 0

(2.13)

for t < T, where

g(t,s) = K%(t,s) + Ki(t, s, z)v(dz) + D%(t, s) (2.14)
Ro
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is a bounded deterministic function. Because of the similarity, let us prove only that M; is
well-defined. Repeatedly using (2.13), we have

t S1 Sn-1 2
EI:<.[0 dF(t,sl)IO dF(sl,sz)u-f0 é(sn)dF(sn_l,sn)> ]

<Cr J‘; dsi1g(t,s1)E [(Jj dF(s1,82) - Jj"l ¢(sn)dF (sy-1, Sn)>2]
N (2.15)

t s1 Sn-1
< CS‘flJ‘ dS1g(t,51)f dszg(sl,SZ)---f dsng(sn_l,sn)E[gz(sn)]
0 0 0
e tt
<RIE ds|————
= Uo 0 S] (1)
for some constant Rr. This implies that

|

t S1 Sp-1
de(t,so f dF(sl,sg---j E(sn)dF (51, 51)
0 0 0

|

(2.16)
T V20
(n-1)/2 2 t
<R; <E[f0 ¢ (s)ds]) T
Thus, we have
o T V2 1) /2
(n-1)/2 2 LA 2.17
EIMIO)] < EIROI + R <EUO«; (s)dsD — < (217)
O

The following theorem is a characterization of the optimal control.

Theorem 2.3. Assume that jRo Ki(t,s,z)v(dz) and '[Ro Kg(t,s,z)v(dz) are bounded and

E[foT ¢2(s)ds] < oco. Suppose A = U. Let u be the unique optimal control given in Theorem 2.1.
Then u is determined by the following equation:

T T
2Q1(s)u(s) +2E [Jo u(t) <f th(l)L(l, t)L(I, s)dl>dt | Gs]

+2a;E jTu(t)L(T,t)L(T,s)dtlas +Qs(s) +E J‘TQ4(Z)L(l,s)dl|C;S
0 s (2.18)

T
+2E U Qo) (M (D) + Ma(l) + M3(D))L(L, s)dl | Gs] + ;E[L(T,s) | Gs]
+2a1 E[(My(T) + M (T) + M3(T))L(T, s) | Gs] =0,

almost everywhere with respect to m(ds, dw) : ds x P(dw).
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Proof. For any w € U, since u is the optimal control, we have

=0. (2.19)

F)w) = o] ew)|

This leads to
E [2 JT Q1(s)u(s)w(s)ds +2 JJ Q2(5)X*(s) iX’”Ew(s) ds
0 0 de e=0
T T d
+ 4[0 Qs(s)w(s)ds + —[0 Q4(s)£X”+£w(s) Ezods (2.20)
+2a:X*(T) %X’“Ew (T) » +ap %X’“Ew (T) £=0:| =0

for all w € U. By virtue of (2.9), it is easy to see that

Y® (t) = diXu+£w (t)

- (2.21)

e=0

satisfies the following equation:

YU(t) = Jﬂt Ki(t,s)Y¥(s)dB(s) + ft K;(t, s)w(s)ds
0 0
t B , (2.22)
+J‘ j K4(t,s,2)Y¥(s)N (ds, dz) +I D;(t,s)Y¥(s)ds.
0JE 0

Remark that Y* is independent of u. Next we will find an explicit expression for X*. Let
dF(t,s) be defined as in (2.10). Repeatedly using (2.9) we have

t

XH(t) = &(t) + I [K1(t,51)X"(s1) + Ka(t,51)]dB(s1) + Jo Ks(t, s1)u(s1)ds:

0

t t
. f Ki(t,s1,2)X" (1) N(dsy, d=) +j Di(t, 51)X"(s1)ds
0 /Ry 0

t
+ f Ks(t, 51,2)N(dsy, dz)
0 /Ry
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S1

t
=¢(t) + J;) Ki(t,s1) [@(51) + J‘ [K1(s1,82)X"(52) + Ka(51,52)]dB(s2)

0

S1 ~ S1
+ I K4(Sl,52, Z)Xu(SZ)N(dSZ,dZ) + J‘ Kg,(Sl, Sz)M(Sz)dSz
0 Ry 0

+f D5 (s1,82) X" (s2)dsy + f Ks(sy, sz,z)ﬁ(dsz, dz)] dB(sy)
0 0 JRo

t S1
+ f Ky(t, s1,2) [5(51) + j [K1(51,52)X"(s2) + Ka(51,52)]dB(s2)
0 J R 0

S1 ~ 51
+I Ky(s1,82,2)X"(s2) N(dsy, dz) + j K3(s1,82)u(s2)dsy
0 JRy 0

+f Dz(Sl,Sz)Xu(Sz)dsz‘Ff K5<s1,s2,z>ﬁ<ds2,dz>]N(dsl,dz)
0 0 Ry

t S1
+ f Ds(t,s1,2) |:§(Sl) + f [K1(s1,52)X"(s2) + Ka(51,52)]dB(s2)
0 /Ry 0

S1 ~ S1
+ I K4(Sl,52, Z)Xu(SZ)N(dSZ,dZ) + J‘ Kg(Sl, Sz)M(Sz)dSz
0 Ry 0

+f Dz<s1,Sz>X“(sz>dsz+j K5<s1,s2,z>ﬁ<ds2,dz>]ds1
0

0 Ro

t t t
+f K> (t,s1)dB(s1) +f Ks(t, s1)u(sy)dsy + f Ks(t,s1,z)N(dsy,dz)
0 0 0 /Ry

o o t s1 Sp-1
—s0+ X [ dFs) [ aFus) [ )P,
n=170 0 0

[e’e] t S1
> L dF(t, s1) L dF (51, 52)

Sp-2 Sn-1
f AF (12, 501) f Ka(sn1, $0)dB(s)
0 0

© t S1
+Zj dF(t,sl)J dF(s1, s2)
n=170 0

Sp-2 Sn-1
. f AF (52, $n1) f K(5u-t, 5a)u(s)ds
0 0

[ee] t 51
+ Zl fo dF(t,s1) Jo dF(sy,s2)

Sn-2 Sn-1 —
y f AF (512, $n1) f Ks($n1, $n,2) N (dsy, d2)
0 0 Ry

t t
+I K> (t,s1)dB(s1) +I Ks(t, s1)u(sy)dsy
0 0

t
+f Ks(t,s1,z)N(dsy,dz).
0/ Ry

(2.23)
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Similarly, we have the following expansion for Y*:

t o0 t S1
Y¥(t) = J; K;(t, s)w(s)ds + ; -[0 dF(t,s1) Jo dF(s1,s2) (2.24)

I " AF ($u-2, 501) f " Ka(Sut, $n) W (50) o
0 0
Interchanging the order of integration,
t 0 t s1 Sn-1
YU(t) = f w(s) [K3(t, s) + Zf dF(t, sl)J‘ dF(s1,s2) - f K3(sn,s)dF(sn_1,sn)] ds
0 n=1vs s s
t
= f L(t, s)w(s)ds. (2.25)

0

Now substituting Y™ into (2.20) we obtain that

0 0

E [2 J: Q1 (s)u(s)w(s)ds + 2 J.T Q2(5)X"(s) <r L(s, l)w(l)dl) ds]

+E [J: Qs(s)w(s)ds + JOT Qa(s) (r L(s, l)w(l)dl> ds] (2.26)

0
T

T
+2a1E [f X"“(T)L(T, s)w(s)ds + az J

L(T, s)w(s)ds] =0
0 0

for all w € U. Interchanging the order of integration and conditioning on G, we see that (2.26)
is equivalent to

T T T
E[ZJ Q1 (s)u(s)w(s)ds +ZI w(s)E[I Qx(HX*(HL(1,s)dl | Gs] ds]
0 0 s
T T T
+ E[I Qs(s)w(s)ds + f w(s)EI:f Qa(DL(L, s)dl | GS] ds]
0 0 s (2 27)

T
+ 2a1E[I E[X"(T)L(T,s) | C}s]w(s)ds]
0

T
+aE I:I E[L(T,s) | C}S]w(s)ds] =0.

0
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Since this holds for all w € U, we conclude that

T T
2Q1(s)u(s) + 2E U Q)X ()L(L, s)dl | cs] +Q(s) +EU Qi(L(, s)dl | cs]

(2.28)
+2m E[X*(T)L(T,s) | Gs] + a2E[L(T,s) | Gs] =0,
m-a.e. Note that X*(t) can be written as
t
X" (t) = M1(t) + My(t) + Ms(t) +I u(s)L(t, s)ds. (2.29)
0
Substituting X*(t) into (2.28), we get (2.18), completing the proof. O
Example 2.4. Consider the controlled system
t t
X" () = ¢(¢) +J K;(t,s)dB(s) +I K;(t, s)u(s)ds (2.30)
0 0

and the performance functional
T T T
J(u) = E[I Qi(s)u*(s)ds + f Qs(s)u(s)ds + f Qu(s)X"(s)ds + a1 X" (T)* + azX”(T)].
0 0 0
(2.31)

Suppose G; = {Q,0}, meaning that the control is deterministic. In this case, we can find
the unique optimal control explicitly. Noting that the conditional expectation reduces to
expectation, the (2.18) for the optimal control u becomes

2Q1(s)u(s) +2a4 <J.0T u(t)Ks(T, t)dt> K;5(T, s)
(2.32)

T
+Qs(s) +f Qu(D)Ks(1, s)dl + a,K3(T, s) +2a18(T)K3(T,s) =0 ds-a.e.,

where we have used the fact that E[M,(t)] = 0, M1 (t) = &(t), L(t, s) = Ks(t, s) in this special
case. Put

T
b= J u(t)Ks(T, t)dt. (2.33)
0

Then (2.33) yields

+ h(s), ds-ae., (2.34)
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where

Qs(5) + J; QuDKs(L)dl _ arKa(T,s) +2a18(D)Ka(T, 5) 235
2Q1(s) 2Q1(s)

h(s) = -

Substitute the expression of u into (2.34) to get

r K3 (T/ t)2 r _ 2
—aib . Wdt+,[o h(t)K3(T,t)dt = b. (2.36)
Consequently,
1 T
b= T 5 J‘ h(t)Ks(T, t)dt. (2.37)
L+ fy (Ko(T,0°/Qu(t) )t

Together with (2.35) we arrive at

1
T+a [ (K3(T )2 /Ql(t) dt

K3(T, S)
Q1(s)

u(s) = - f h(t)K(T, t)dt +h(s),  (2.38)

ds-a.e.

3. A General Maximum Principle

In this section, we consider the following general controlled stochastic Volterra equation:

XH(t) = &(t) + tb(t, s, X"(s),u(s),w)ds + Jd o(t,s,X"*(s),u(s),w)dB(s)
0 0
(3.1)
+ ft 0(t, s, X"(s),u(s), z,w)N(ds,dz),
0 R()

where u(t) is our control process taking values in R and ¢(t) is as in (1.7). More precisely,
u € Ag, where A is a family of G;-predictable controls. Here G; C ¥ is a given subfiltration
andb: [0, T]x[0,T]xRxRxQ — R,0:[0,T]x[0,T]x RxRxQ — Rand 6 :[0,T]x[0,T] x
Rx RxRyx&Q — R are given measurable, F;-predictable functions. Consider a performance
functional of the following form:

T
J(u) = EUo & X (1), (), w)dt + g(X“m,w)], (3.2)

where f : [0,T] x Rx D x Q — Ris ¥; predictable and g : R x Q — Ris ¥r measurable and
such that

T
EU | f(£, X (1), u(t), w)|dt + |g(X“(T),w)|] <o, Yue . (3.3)
0
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The purpose of this section is to give a characterization for the critical point of J(u). First, in
the following two subsections we recall briefly some basic properties of Malliavin calculus

for B(-) and N (+,-) which will be used in the sequel. For more information we refer to [11]
and [12].

3.1. Integration by Parts Formula for B(-)

In this subsection, ¥7 = 0(B(s),0 < s < T). Recall that the Wiener-Ito chaos expansion
theorem states that any F € L?(¥r, P) admits the representation

F = 2)1 (fn) (3.4)
for a unique sequence of symmetric deterministic function f,, € L?([0, T]*") and
T cty t
Li(fa) = n! J; fo - fu(ts, ..., ta)dB(t)dB(ty) - - - dB(t,). (3.5)
Moreover, the following isometry holds:
E[F?] = gn!” Fallz= oz (3.6)
Let D; , be the space of all F € L*(¥r, P) such that its chaos expansion (3.4) satisfies
IFI,,:= gnn!” Full 2o rpeny < - (3.7)
For F € D1, and t € [0,T], the Malliavin derivative of F, D;F, is defined by
D/F = gnzﬂ (Fu 1), (38)

where I,,.1(fn(-,t)) is the n — 1 times iterated integral to the first n — 1 variables of f, keeping
the last variable t,, = t as a parameter. We need the following result.

Theorem A (Integration by parts formula (duality formula) for B(:)). Suppose that h(t) is -
adapted with E[ [y h2(t)dt] < oo and let F € Dy 5. Then

T T
E[F fo h(t)dB(t)] = EUO h(t)DiF dt]. (3.9)
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3.2. Integration by Parts Formula for N

In this section %7 = 0(7(s),0 < s < T), where 7(s) = f; fRo zﬁ(dr,dz). Recall that the Wiener-
Ito chaos expansion theorem states that any F € L?(¥r, P) admits the representation

F=20(f) (3.10)

for a unique sequence of functions f, € L2((dt x v)"), where L2((dt x v)") is the space of
functions f,(t1,z1,...,tn,2n); ti € [0,T], zi € Ry such that f, € L*>((dt x v)") and fn is
symmetric with respect to the pairs of variables (t1, z1), (t2, z2), ..., (tn, z4). Here L,(f,,) is the
iterated integral:

T ty tr N —
Li(fn) =n! f f f f : j fults, z1,. .. b, 2a)N(dty, dz1) - -- N(dt,,dz,).  (3.11)
0JRrR Jo JRy 0 JR
Moreover, the following isometry holds:
E|F?| = in'”f 17 3.12
= N nll L2 @aesvymy: (3.12)
n=0
Let 51,2 be the space of all F € L*(¥r, P) such that its chaos expansion (3.18) satisfies
2 _ < 2
IFII5,, = Zonn!”f"”Lz((dtw)") < . (3.13)
For F € 51,2 and t € [0, T], the Malliavin derivative of F, D; . F, is defined by
Dt,zF = ZnIn—l (fn(',t,2)>, (314)
n=0

where I,,1(fn(-,t,2)) is the n — 1 times iterated integral with respect to the first n — 1 pairs
of variables of f, keeping the last pair (t,, z,) = (t,z) as a parameter. We need the following
result

Theorem B (Integration by parts formula (duality formula) for N). Suppose h(t,z) is F-
predictable with E[j‘OT fRo W2(t, z)dtv(dz)] < oo and let F € Dy 5. Then

T T
E[Ff h(t, z)N(dt, dz)] = E[ f h(t,z)Dy.F dtv(dz)]. (3.15)

0 R() 0 R()
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3.3. Maximum Principles
Consider (3.1). We will make the following assumptions throughout this subsection.

(H.1) The functions b : [0, T]x[0, T]xRxRxQ — R, o0 : [0, T]x[0, T]xRxRxQ — R,
0:[0,T]x[0,T]xRxRxRyxQ — R, f:[0,T]xRxRxQ — R,and g: RxQ — R
are continuously differentiable with respect to x € Rand u € R.

(H.2) For all + € (0,T) and all bounded G;-measurable random variables a the
control

Pa(s) = axir)(s) (3.16)

belongs to 4.

(H.3) For all u, p € #4¢ with g bounded, there exists 6 > 0 such that

u+ypedd, Yye(-60). (3.17)

(H.4) For all u, € #A¢ with  bounded, the process YP(t) = (d/dy) X VP (t)|
exists and satisfies the following equation:

y=0

YP(t) = j; %(t, s, X"(s),u(s))YP(s)ds + J:) %(t, s, X"(s),u(s))p(s)ds

+ t a—G(t, s, X”(s),u(s))Yp(s)dB(s) + r a—G(t, s, X"(s),u(s))p(s)dB(s)
0 0x o Ou (3.18)

t —_—
+ fo . %(t, s, X"(s),u(s),z)YP(s)N(ds, dz)

t —_—
+ fo " %(t, s, X"(s),u(s), z)p(s)N(ds, dz).

(H.5) For all u € &4, the Malliavin derivatives D;(g'(X*(T))) and D;.(g'(X"(T)))
exist.

In the sequel, we omit the random parameter w for simplicity. Let J(u) be defined as
in (3.2).

(H.6) The functions (db/du)(t,s,x,u)?, (db/0x)(t, s, x,u)%, (9c/0u)(t,s,x,u)?,
(00/0x)(t,5,x,u)°,and [ (30/0u)(t, s, x,1,2)*v(dz), [ (30/0x)(t, s, x,u,z)*v(dz)
are bounded on [0,T] x [0,T] x Rx R x Q.
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Theorem 3.1 (Maximum principle I for optimal control of stochastic Volterra equations). (1)

Suppose that i is a critical point for J(u) in the sense that (d/dy)J(u + y,[3)|y:O = 0 for all bounded
p e Ag. Then

E[{ Y (k@) nas [ (s %00, 0)ds
(:r X(s), u(s))A(s, (xm)ds
(T, s)) g (X(T))ds

(:r, X (s), u(s))A s,)D, ( '(X(T)))ds
?(15.509,009)0. (3 (K00 s

+IT IRO gz <T s, X(s),1(s), >A(s,t)Ds,z<g’<}?(T)>>v(dz)>ds

+f<fR ge <:r s, X(s),7(s), z) < f(f((T)))v(dz)>ds} |c;t] =0, (3.19)

where A(s,t) is defined in (3.29) below and X = X%
(2) Conversely, suppose i € A, such that (3.19) holds. Then 1i is a critical point for J ().

Proof. (1) Suppose that # is a critical point for J(u). Let p € «#4¢ be bounded. Write X = X%,
Then

y_OZEUOT{g (t,>2<t>,a<t>)Yﬂ<f>+%(t,f<<t>,ﬁ(t))ﬁ(t)}dt+g’(f«T))Yﬂ(T)],

(3.20)

where

YP(t) = X(u+yﬂ) ()
dy

y=0

_ fo %(t, 5,X(s), 1(s) ) YP (s)ds + jo S—Z(t, 5, X(s), () ) p(s)ds
Jt %9 (1,5, R(9), 4()) YP(5)dB(s) + ftg (15 X(9),4(5) ) p(s)dB(s)
f f (1,5, X(s), (), z) YP(5) N (ds, dz)

+ L fRO = (t s,X(s),a(s),z)ﬁ(s)ﬁ(ds, dz). (3.21)
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By the duality formulae (3.9) and (3.15), we have

E[g/<5<(T))Yﬁ(T)] = E[J'OT S—Z(T, s,5((5),a(s))yﬂ(s)g'(i(T))ds]

+E

+E

+E

+E

+E

T s, X(s), u(s) p(s)g’ <X(T)> ]

a—" T s, X (s), 1i(s) Yﬂ(s)ds(s)> <X(T)>]

29 (T s, X(s),(s), z Yﬁ(s)N(ds dz)>g X(T) ]

J, 5
[{s
([} 5o ez a0)peise )o(xm)]
(1,
(

OTJRD % (T, s,X(s),ﬁ(s),z)ﬁ(s)N(ds, dz)> g (i(T))]

= E[L gb <T s, X(s), u(s))Yﬂ(S)g <X(T)) ]

+E

+E

+E

+E

+E

Sb (1.5, R(s),1())p(s)g (R(T) ) ]

:LT 2 (11 00 (¢ (1) ]
[ 2 (0,0 o ()]
<LT f ae<TSX(s) (s),2) Y (s)Ds- (g (;z(T)»v(dz)dS)]
<foT IRU o (T S"z(s)'f‘(s)'Z)“S)Ds,z(g’(i(T)))v(dz)ds>],

OJ

Q

(3.22)
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Let a be bounded, G; measurable. Choose f.(s) = ay;r](s) and substitute (3.22) into (3.20)
to obtain

E [f { % (s,i(s),a(s))yﬂa(s)ds + af

t

T

Z—i(s,f((s),ﬁ(s))ds}]

+E fT % (T.5,X(s),1(s) ) YP(5)g (X(T))ds]

|/t
+E :a LT % <T, s,f((s),a(s)>g' (X(T))ds]

+E IT %o (T,5,X(s),(s) ) YP“(5)Ds g (X(T)))ds]

|J; ox (3.23)
v Ela LT g—z (T.5,X(s),1(s) ) Ds (g’(X(T)))ds]
+E <f JR g <T, s,)?(s),a(s),z>yﬂ(s)DS,z <g’ ()2(T)))v(dz)ds>]
Ela f IR g—z (T.5,X(s),0(s),2) Ds - (g'(f((T)))v(dz)ds] =0,
where YP«(I) =0 for I < t,and for I > t,
YPe(l) = f: g—i(l, s,)?(s),a(s))yﬁa(s)ds
+ af: S—Z<l, s,)?(s),a(s))ds
+ f: g—(;(l, s,)?(s),a(s)>yﬂ«(s)d3(s)
(3.24)

v Jt IRO g_i <l' S’X(S)’ﬁ(s)’ Z) Yﬂ(s)ﬁ(dS,dz)

+a J—l I % (z, s, i(s),a(s),z)ﬁ(ds, dz).
tJ Ry
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Forl > s, put

dar(l,s) :=dsI'(l,s)

= 22 (1.5,X(9),1(6) )ds + 32 (1,5, (), 1(s) )B(s)

ox ox (3.25)

; IRO g@ 5,X(s), (s),2) N (ds, dz).

This means that for a predictable process h(s), we have

1

jl h(s)dT'(l,s) = fl b (l, s,f((s),a(s))h(s)ds + j 9o

t , 0x ox (s, X(s),(s) ) h(s)dB(s)

l (3.26)
i ft .[RO % <l’ S’X(s)'ﬁ(s)/z)h(s)ﬁ(ds, dz).

Set

! ob

D(,t) = ft a(l, s,f((s),a(s))ds

l o~
+ L g—z<z, s,X(s),ﬁ(s))dB(s) (3.27)

+ f: IRO % (l, s, X(s),1(s), z> N(ds, dz).

Repeatedly using the linear equation (3.24), as in the proof of (2.23), we obtain
YPe(l) = aA(L ), (3.28)

where

[ee] 1 S1
A(Lt) =D, t)+ . f dF(l,sl)j AT (sy,s2)
k=17t t
(3.29)

Sk-1
’[ D(sk, t)dl'(sk-1, Sk)-
t
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As in the proof of Lemma 2.2, we can check that the above series converges in L!(Q) under
the assumption (H.6). We substitute (3.28) into (3.23) to get

T

E[a{f %<s,>2(s),a(s))1\(s, t)ds + L % <s,f<(s),a(s))ds
(:r 5, X(s),14(s) ) A(s, g’ (X(T) ) ds
( s, X(s), u(s)) g'(X(:r))ds

a_o< 5, X(s),1(s) ) Als, )Ds (8 (X(T)) ) ds (3.30)
(T 5, X(s),1(s)) Ds (g (X(T) ) )ds

, L IRO = (T,5,X(9),2(5), 2) A(s, D (8 (X(D)) )v(d2)dls

. Joo 5™ 55“5)'&(5)'Z)Dsrz(g’(im))vuz)ds}] -

Since a is arbitrary, it follows that

E[ff 2

/N

s,)?(s),a(s))A(s, t)ds + LT 2—£<s,)2(s),a(s))ds

T,s,X(s), s))A(s tg' <X(T)>

T,s,X(s),ii(s) ) g (X(T))ds

T,s,X(s), u(s))A(s 1D, ( ( ))ds
)

T,s,X(s),7(s) ) Ds ( (X(T)))

ai (:r s,f((s),a(s),z)A(s, HD;. (g' ()Z(T)))v(dz)ds

+ +
—_—
)
&

9<T s, X(s),i(s), ) < ’(X(T))>v(dz)ds | qt] =0,

(3.31)

completing the proof of (1).
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(2) Suppose that (3.19) holds for some i € «#. Running the arguments in the proof of
(1) backwards, we see that (3.20) holds for all bounded f§ € &4, of the form f(s) = ay;1](s).
This is sufficient because the set of linear combinations of such f is dense in 4. O

Next we consider the case where the coefficients are independent of x. The maximum
principle will be simplified significantly. Fix a control # € g with corresponding state
process X (t). Define the associated Hamiltonian process H (t,u) by

H(tu) = f(t,u) + b(T, t,u)g (X(T)) +0(T,t,u)D; (g'(fc(T)))
~ (3.32)
+f G(T,t,u,z)Dt,z<g’<X(T)>>v(dz); te[0,T], ueR.
Ro

Theorem 3.2 (Maximum principle II for optimal control of stochastic Volterra equations).
Suppose that f,b, o, 0 are all independent of x. Then the followings are equivalent.

(i) i is a critical point for ] (u).
(ii) Foreach t € [0,T], u = u(t) is a critical point for u — E[H(t,u) | G¢], in the sense that

0
35 EHH G W) | Gelymay = 0- (3.33)

Proof. Suppose that f,b, 0,0 are all independent of x. Then (3.19) reduces to

E[Jj %(s,ﬁ(s))ds

+ fT %(T, s,7i(s))g (X(T))ds

s (3.34)
+f o (T,s,1(s)Ds (g (X(D)) ) ds

T
+ J' IRO g—z(T, s,7i(s), z)Ds,» (g' (X(T)))v(dz)ds | qv] =0 Yoel0,T].

By inserting G; we deduce that for all v > ¢,
T
EUU %(s,ﬁ(s))ds
T ob ~ e
+ L 5. (T,s,(s))g (X(T))ds .

N f T 2—2@ s,1(s))Ds (&' (X(1)) ) ds

+J: R %(T/ Sfﬁ(s)/z)Ds,z<g,<)A((T)>)v(dz)ds | qt:l =0.

Taking the right derivative with respect to v at the point t we obtain (3.33). O
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4. Applications to Stochastic Delay Control

We now apply the general maximum principle for optimal control of Volterra equations to
the stochastic delay problem (1.2)-(1.3) in the Introduction, by using the equivalence between
(1.2) and (1.4). Note that in this case we have (see (3.1), (3.2) and compare with (1.2), (1.3))

f(t/-x/u) = ul(tl ”)/g(x) = UZ(x)I b(tl S/xru) = K(tl S)u/
o(t,s,x,u) =D0(t,s)C(s),O(t, s, x,u,z) =D(t,s)Cy(s, z),

0 0 h
&(t) = d(t,0)n(0) + f_h @D(t, s+ h)Asx(s + h)n(s)ds + f_h <f0 D(t, T)Ap(T, s)d7‘>71(s)ds.
(4.1)

Hence the system (1.4) satisfies the conditions of Theorem 3.2. By (3.32) we get the
Hamiltonian

H(t,u) = Uy (t,u) + K(T, Hyull) (X(T)) +®(T, t)C(H) D, (g’ (X(T)))
(4.2)
+ IRO (T, t)Cs(t, z) Dy <u’2 (X(T)))v(dz).

Therefore by Theorem 3.2 we get the following condition for an optimal harvesting rate #i(f):

E[u (¢, a(t), w) + K (T, U (X(T), @) | G| =0, (4.3)

where X(T) = X*(T) and U} = (8/0x)U;; i =1,2.
Now suppose that U; and U, are stochastic utilities of the form

Uyt u,w) = p(w) (), weQ, (4.4)

Us(x,w) = §(w)s(x), weQ, (4.5)

where y;(w) > 0 is ¥-adapted, {(w) is Fr-measurable, and fll, flz are concave, C!-functions
on (0, o) and R, respectively. The (4.3) simplifies to

0y (¢, () E[yiGi] = -K(T,0E[¢T (X(T)) Gi]. (4.6)

This gives a relation between the optimal control (t) and the corresponding optimal terminal
wealth X (T). In particular, if

U, (x) = x, (4.7)
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we get

_K(TOER| Gl

U (¢, (t)) = Elrl G

(4.8)

We have proved the following.

Corollary 4.1. The optimal consumption rate ii(t) for the stochastic delay system (1.2), (4.4), (4.5),
(4.7) and the performance functional

T
J(u) =E U Yi(w) U (8, u(t))dt + §(w) X" (T)] (4.9)

0

with partial information G, is given by (4.8).
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