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Abstract

This paper analyzes relational contracts under moral hazard. We first show that if the avail-
able information (signal) about effort satisfies a generalized monotone likelihood ratio property,
then irrespective of whether the first-order approach (FOA) is valid or not, the optimal bonus
scheme takes a simple form. The scheme rewards the agent a fixed bonus if his performance
index exceeds a threshold, like the FOA contract of Levin (2003), but the threshold can be set
differently. We next derive a sufficient and necessary condition for non-verifiable information
to improve a relational contract. Our new informativeness criterion sheds light on the nature
of an ideal performance measure in relational contracting.

KEYWORDS: Relational contracts, non-verifiable performance measures, first-order approach,
bonus scheme, informativeness criterions

1. Introduction

In many organizations, managerial incentives are frequently implicit. Recent empirical studies
report that firms have since the 1990s increasingly been adopting a practice of using non-financial
measures such as customer satisfaction scores, leadership, or other subjective evaluations, to as-
sess and pay for managerial performance.1 Although being relatively easier to obtain than ob-
jective indicators, such non-verifiable measures cannot be used in incentive contracts enforced by
external parties. Nevertheless, if contracting parties repeatedly transact over time, a wide array
of contracts can be self-enforced by the value of an ongoing relationship. Such relational con-
tracts between firms were observed several decades ago by legal scholars (Macaulay (1963)), and

∗Chi: chang-koo.chi@nhh.no; Olsen: trond.olsen@nhh.no
1For instance, Murphy and Oyer (2003) and Gillan, Hartzell and Parrino (2009) found that more than one-half of

their sample firms base employees’ annual bonus at least in part on non-financial measures of individual performance.
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have since been extensively analyzed and applied in economics and other areas.2 However, the
related literature has mainly focused on the problem of designing an optimal contract with non-
verifiable information (i.e., how to pay) but paid little attention to the problem of choosing an
ideal performance measure among many alternatives (how to evaluate), although both aspects –
an appropriate performance measure and well-designed incentive contract – are key ingredients
to successful long-term relations.

In this paper, we analyze both of these aspects. We consider an infinitely repeated principal-
agent relationship where the parties are risk-neutral and the agent provides hidden effort that is
valuable to the principal. We assume that all available performance measures (or signals), includ-
ing the principal’s objective, are imperfect and non-verifiable, but observable to the contracting
parties.3 We formulate this agency problem as a two-part mechanism, where the principal chooses
a performance evaluation system at the outset and then designs an incentive contract based on the
system. By virtue of Levin (2003), our analysis of optimal contracts focuses on the stationary con-
tract where the principal offers a time-invariant base salary and discretionary bonus every period.
Within this contracting environment, we provide a novel criterion for one measurement system to
be more informative than another in the spirit of Holmström (1979).

The main contribution of this paper is thus two-fold. First, we extend the characterization
of optimal relational bonus schemes to a wider class of multivariate measurement systems than
those for which the standard first-order apptoach (FOA) can be applied, and show that the sim-
ple structure of these schemes prevails in this wider class. To be precise, we prove that as long
as the measurement system satisfies a generalized version of the monotone likelihood ratio prop-
erty (MLRP), the optimal bonus scheme retains a simple hurdle structure, as in the optimal FOA
contract characterized by Levin (2003). The agent is then awarded a bonus if his performance,
measured by an index given by the signal’s likelihood ratio, surpasses a threshold.4 This charac-
terization is of interest in its own right, but also allows us to obtain a more robust informativeness
criterion by relaxing several of the conditions on the available measurement system and contract-
ing environment that must be imposed to validate FOA.

To illustrate our first main result, suppose the performance measure is a univariate non-
verifiable output which is affected additively by effort and noise, and suppose for concreteness
that the noise is normally distributed. Under this specification, it is natural to think that as the
standard deviation (σ) of the noise gets lower, the principal would be able to alleviate the agency
cost and hence elicit higher effort. In fact, under the assumption that FOA is valid, a straightfor-

2Seminal contributions include Klein and Leffler (1981), Bull (1987), MacLeod and Malcomson (1989) and Levin
(2003). See also Malcomson (2012) for a review.

3Much non-verifiable information in practice may not be observable by the agent, in particular when information
is gathered by the principal’s subjective appraisal. A standard example of non-verifiable but observable measures
in organizations is a performance evaluation by other human resource divisions or customer’s satisfaction scores.
Hence we abstract away interesting problems of subjective measures such as leniency bias (MacLeod (2003)), favoritism
(Prendergast and Topel (1996)), or influence activities (Milgrom (1988)).

4That is, our aim is not to provide a condition that ensures validity of FOA in the stationary environment of relational
contracting, but to provide a condition under which the optimal bonus scheme has a simple hurdle structure as the FOA
contract. A recent paper by Hwang (2016) establishes a condition in the same environment as ours under which FOA
is justified.
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ward comparative static analysis of the optimal contract in Levin (2003) confirms this presump-
tion. However, this local approach is not applicable when σ is sufficiently small: the optimal effort
identified by FOA is then a stationary point of the agent’s expected utility, but does not maximize
his utility.5 As a result, the agent would deviate to lower effort, and the FOA bonus scheme would
not implement the desired effort. A characterization of the optimal contract has been lacking for
this case, and a ranking of measurement systems based on FOA has therefore been incomplete
even in this most natural and simple setting. Even if one system is a garbling of another in the
sense of Blackwell (1951, 1953), the existing approach cannot tell which one is more informative
in relational contracting.

We fill in this gap by providing an alternative approach for characterizing the optimal bonus
scheme. Our approach does not call for the so-called Mirrlees-Rogerson conditions on the mea-
surement system and can thus be applied to a large class of signals, even multivariate ones.6 In
Section 3, we provide a sufficient condition—the generalized MLRP—under which our approach
is justified. As its name suggests, the condition is more general than MLRP, and thus implies that
our approach can be applied to the normally distributed noisy signal in the example above, irre-
spective of its standard deviation. We then show that as long as the measurement system satisfies
this condition, the optimal bonus scheme takes a hurdle form for the likelihood ratio: the agent is
awarded a bonus if the likelihood ratio clears a hurdle. In contrast with the FOA optimal contract,
this hurdle is no longer necessarily set at zero.

To understand why a non-zero hurdle arises, it is instructive to see why FOA does not solve
the optimal contract problem in the example above. In relational contracts with two risk-neutral
parties, the optimal contract is designed so as to provide the agent with the strongest incentive for
effort. When only the local incentive compatibility condition is relevant, a simple way to provide
the strongest incentive is to maximize the agent’s marginal gain from effort, given the constrained
monetary incentives in a relational contract. Since the sign of marginal incentives is determined
by the sign of the likelihood ratio, the FOA contract pays a maximal bonus for all outcomes where
the likelihood ratio exceeds the value of zero. Given this hurdle-form contract, as the performance
measure becomes more precise about the hidden effort, marginal incentives are strengthened in
the aspect that by exerting additional effort, the agent can considerably increase the probability
of clearing the hurdle. However, this local approach concerns only the marginal incentives in
the neighborhood of the target effort and overlooks the incentives at low effort distant from the
target, where extra effort has little impact on the agent’s payoff, thereby undermining incentives
to work. Overall, the impact of a decrease in σ on the agent’s total payoff is therefore ambiguous.
If the total gain from exerting the target effort cannot cover the corresponding cost, then the agent
would respond by choosing a minimal level of effort and thus the FOA contract cannot implement
the target effort.7

5Kvaløy and Olsen (2014) pointed out that FOA is valid only if the output shock is sufficiently diffuse in this specific
setting.

6In the static environment of contracting with multivariate verifiable measures, Conlon (2009) and Jung and Kim
(2015) derive conditions under which FOA is justified. See also Kirkegaard (2017).

7A similar discussion can be found in the tournament literature stemming from Lazear and Rosen (1981), where
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Our discussion demonstrates that when FOA is invalid, the optimal hurdle reflects a trade-
off between providing on the one hand strong incentives for effort on the margin (locally) and
preventing on the other hand deviations to distinctly lower effort. Depending on the agent’s
inclination to deviate from the optimal effort, the hurdle is adjusted in the optimal bonus scheme.
In Section 3, we revisit the example above and illustrate how the trade-off affects the optimal
hurdle. It turns out that when σ is sufficiently small, the optimal bonus scheme features a negative
hurdle, put another way, a more lenient threshold than the FOA contract.8 Furthermore, we
show that the optimal contract, equipped with an adjusted hurdle, implements higher effort as σ

decreases. As a result, our approach provides not only a full characterization of optimal contracts,
but a complete (and intuitive) ranking of available measurement systems in the example.

We use our characterization of optimal bonus schemes to derive our second main result, where
we examine the principal’s problem of choosing a performance measurement system: Between
two (multivariate) measurement systems, which one does always lead to a higher surplus in the
optimal relational contract and thus a more successful relationship for the parties? With the simple
hurdle structure of the optimal contract and its applicability to a broad class of signals satisfying
the generalized MLRP, we establish a robust criterion for a more informative system. That is, our
criterion can be applied to determine a binary ranking of non-verifiable signals for a wide class of
relational contracting environments.

The previous example suggests that, like objective measures in explicit contracts, non-
verifiable signals about hidden effort in relational contracts can be ranked by a standard statistical
order. It is intuitive that an improvement of the measurement system in the sense of Blackwell
garbling alleviates the agency cost and results in a more efficient contract. However, there is a
notable difference between the two types of contracts. While the agency costs arise from moral
hazard in explicit contracts with risk-averse agents, the costs arise from the constrained monetary
incentives due to the enforcement problem in relational contracts, as we know that without such
constraints the first-best is implementable in risk-neutral environments. For this reason, it is
unclear whether the standard results on information structures, for example the sufficient statistic
theorem in Holmström (1979), can be applied to rank non-verifiable signals.

In Section 4 we present a new criterion, the likelihood ratio order, which delivers a tight condition
for one signal to be more informative than another in relational contracts. Our criterion rests on
the distribution of the signal’s likelihood ratio, which follows naturally from the fact that this ratio
plays a key role as a performance index in the optimal contract. As the ratio is a unidimensional
information variable, the criterion provides a unified treatment for a comparison of multivariate
(noninclusive) signals, as long as the signals satisfy the generalized MLRP. Simply put, the like-
lihood ratio order compares the variability of likelihood ratios. If one signal’s likelihood ratio
is more variable with regard to the agent’s choice of effort than another, then it contains more

unless the shock to individual output is sufficiently diffuse, the objective function of each agent is not globally concave
so that FOA is invalid.

8We also provide a sufficient condition under which the optimal relational contract has a nonpositive hurdle in our
general model.
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information about his potential deviations so that the principal can more effectively control the
hidden effort by designing a bonus plan based on that signal. Conversely, the criterion is also nec-
essary for the principal to induce higher effort from the agent.9 Consequently, our result provides
a complete characterization of informativeness for a class of relational contracting problems.

To utilize our result in applications, it would be useful if there is a simple way to check for
the likelihood ratio order. We find that our criterion of ranking signals is closely related to the
notion of precision introduced by Lehmann (1988). Compared to the notion of Blackwell garbling
(or sufficiency), Lehmann’s criterion is not just easier to check, but also provides a link to the
existing signal orders developed in the standard agency problems. The link sheds light on how
ideal performance measures differ between explicit and relational contracts.

Related Literature

This paper is related to two strands of literature in contract theory, in that it develops an alternative
approach for the optimal design of incentive contracts, and provides a new criterion for an ideal
performance measure in relational contracting environments.

Our first main result on optimal bonus schemes in relational contracting complements the sem-
inal work by Levin (2003), which characterizes an optimal incentive contract in the environment
where FOA is valid and the univariate performance measure is exogenously given by the princi-
pal’s objective (output). A recent paper by Hwang (2016) allows the principal to use alternative
multivariate measures and establishes a sufficient condition on the signal’s distribution and the
agent’s cost function under which the agent’s expected payoff is globally concave and thus FOA is
justified. Our approach is different from his in the aspect that instead of providing conditions that
justify FOA, we seek conditions that ensure the optimal bonus scheme to take a simple form.10

In the same spirit as this paper, Poblete and Spulber (2012) analyzed a static model of financial
contracting between two risk-neutral parties but with two-sided limited liability, and provided a
condition under which debt-style contracts are optimal regardless of the validity of FOA. As has
been pointed out by Levin (2003), self-enforcement imposes a lower and upper bound on mone-
tary incentives, much like limited liability does. In Appendix B we further discuss and compare
the analysis in Poblete and Spulber (2012) with ours.

Our second result on performance measurement extends a line of research initiated by Holm-
ström (1979). The existing literature on comparison of information structures in agency models
is mostly restricted to verifiable signals in the standard formal contracting problem with a risk-
averse agent. 11 The classic results, including Holmström (1979), Gjesdal (1982) and Grossman and

9More precisely, the necessary part can be established by showing that if one signal (say X) does not dominate
another (Y) in the likelihood ratio order, there exists a model of relational contracting, represented by the principal’s
objective and the agent’s cost function from effort, in which the principal prefers to design an incentive contract based
on Y rather than X.

10It is worthwhile to note that the generalized MLRP (GMLRP) is complementary to the condition of Hwang (2016),
the local convexity of distribution function condition (LCDFC). As we have seen in the example above, when the
additive noise has a small σ, the distribution of output does not satisfy LCDFC but obeys GMLRP. On the contrary,
there is a set of signals satisfying LCDFC but not GMLRP.

11To our best knowledge, one exception is the paper by Dewatripont, Jewitt and Tirole (1999) which compares the

5



Hart (1983), were developed by applying Blackwell’s theorem. Kim (1995) subsequently showed
that provided FOA is valid, the signal having a more dispersed likelihood ratio distribution (in
terms of mean-preserving spread) is more informative in the standard model.12 Our informative-
ness criterion has a similar flavor to Kim’s in that both criteria pertain to the variability of the
likelihood ratio and thus provide a unified treatment of comparison of signals regardless of their
dimension. In addition to different notions of variability, one notable difference is that the MPS
criterion is based on the variability of the ratio at each effort level, whereas our criterion is on
the variability in response to the agent’s possible effort deviations. This highlights the different
sources of the agency costs in formal and relational contracts.

The rest of this paper is organized as follows. In Section 2 we present the model and formu-
late the optimal stationary contract problem. We also address further the motivating example and
demonstrate that the conditions given in the literature are not sufficient for validating FOA. In
Section 3 we introduce the generalized MLRP, illustrate its implications, and characterize the op-
timal bonus scheme. In Section 4 we compare measurement systems and derive a tight condition
for a more efficient system. Section 5 concludes. All omitted proofs are relegated to Appendix A
and more details on the generalized MLRP can be found in Appendix B.

2. The Model

We consider a repeated transaction between a risk-neutral principal and agent on an infinite time
horizon, as in e.g. Levin (2003). At the outset of each period t = 1, 2, · · · , the principal offers the
agent a compensation scheme that consists of a base salary wt and a discretionary bonus βt. The
agent, if he accepts the offer, privately chooses a level of effort et from [0, e] ⊂ < by incurring a
cost of c(et). If he rejects, nothing happens until the next period. The effort et results in gross ex-
pected benefits v(et) accruing to the principal in that period, and also generates a set of commonly
observable but unverifiable outcomes (or performance) xt = (x1

t , · · · , xn
t ) ∈ X ⊂ <n according to

a time-invariant cumulative distribution function (CDF) F(xt, et) conditional on the agent’s choice
of effort. 13 We assume that both v and c are increasing and continuously differentiable functions
over [0, e], and that v− c is increasing for e < eFB = argmaxe′∈[0, e](v(e

′)− c(e′)). We also assume
that F(xt, et) is twice continuously differentiable with respect to both arguments, and we denote
by f the density function of xt. We shall call this outcome-generating process a signal hereafter.14

Throughout the paper we use a capital letter for a random vector and a small letter for its realiza-

market signals about the agent’s unknown talent in the career concern model. Their paper finds that an improvement
of signals (even in the sense of Blackwell sufficiency) may strengthen or undermine incentives to work.

12Recently, Chi and Choi (2018) established that Kim’s mean-preserving spread (MPS) criterion is also necessary for
a verifiable measure to be more informative in the standard agency model, under the assumption that FOA is valid.
They also showed that for univariate signals satisfying MLRP, the MPS criterion is equivalent to the Lehmann (1988)
order.

13In standard agency models with a univariate signal, the principal’s objective is given by the expected value of the
signal; i.e. v(et) = E(Xt|et). In our model, the realized benefit in period t need not be part of xt, that is, the exact benefit
may or may not be observed by both parties when the bonus is paid. We discuss more details in Section 4.

14A signal is therefore defined by a set of distributions F(x, e) for each e ∈ [0, e]. In contract theory literature, this is
often referred to as a performance measurement system or an information system.

6



tion. A bold letter represents a vector, whereas a normal letter represents a scalar.
After observing an outcome vector xt, the principal pays the fixed salary wt as agreed initially

and decides which bonus βt to pay. Here wt is a legally enforceable payment that the principal
can commit to, but the bonus βt : X → < is a discretionary payment that can be conditioned on
the observed performance. Subsequent to the payment stage, the ex post payoff in period t of
each party is determined. The principal obtains a payoff of the realized benefit minus w + βt(xt),
and the agent obtains wt + βt(xt) − c(et). Finally, each party decides whether to continue their
relationship in the future or separate. If at least one party decides to walk away, the game ends.
Let π and u denote the principal’s and agent’s reservation payoff, respectively. Both discount
future payoffs by a common factor δ ∈ (0, 1).

Following Levin (2003), we confine ourselves to stationary contracts for characterization of the
optimal contract. In a stationary contract, the principal offers the same base salary wt = w and
bonus scheme βt = β every period, in anticipation that such payments induce the agent to make
effort et = e. The key intuition of stationary contracts lies in the fact that the two instruments
for providing incentives—the promised utility to the agent and the bonus scheme—are equally
effective under risk-neutrality. Accordingly, we can think of such a stark form of contracts where
the agent’s promised utility remains constant over time and incentives are created by the instan-
taneous bonus only. Dropping the time index, we represent a stationary contract by (w, β, e) from
now on.

In order for a contract (w, β, e) to be sustainable, its implicit part (β, e) must respect the follow-
ing two conditions. First, the payment scheme should provide a proper incentive for the agent
to put forth the desired effort e, so that e must maximize the agent’s expected payoff. Abstract-
ing away the fixed payment w that is unrelated the agent’s choice of effort, this condition can be
written as

e ∈ argmax
e′∈[0, e]

∫
X

β(x) f (x, e′)dx− c(e′). (G-IC)

On top of this incentive compatibility constraint, the voluntary bonus scheme must be self-
enforcing because there is no legal obligation to pay β. The bonus will be paid as promised
only if both parties wish so, put another way, only if the expected payoffs from on-going re-
lationship to each party are higher than those from reneging on the payment. Assuming that
each party responds by terminating future transactions to breach of contracts, we can write the
self-enforcement constraints as follows: for all possible realizations x ∈ X,

−β(x) +
δ

1− δ

(
v(e)− w−E[β(X)|e]

)
≥ δ

1− δ
π

β(x) +
δ

1− δ

(
w + E[β(X)|e]− c(e)

)
≥ δ

1− δ
u.

Denoting by s(e) ≡ v(e)− c(e)− π− u the net per-period expected surplus from the on-going re-
lationship, it is well known (e.g. Levin (2003)) that there are bonuses and payments that satisfy the
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two enforcement conditions if and only if the following aggregate enforcement condition holds:

0 ≤ β(x) ≤ δ

1− δ
s(e) ∀ x ∈ X. (EC)

An optimal contract maximizes the expected surplus s(e) subject to (G-IC) and (EC). The stan-
dard approach to this problem is to replace the global condition (G-IC) with the local stationary
condition and check that the solution obtained is indeed optimal. In this procedure, the solution
maximizes s(e) subject to (EC) and∫

X
β(x)l(x, e) f (x, e)dx − c′(e) = 0, (L-IC)

where l(x, e) ≡ ∂ log f (x, e)/∂e = fe(x, e)/ f (x, e) denotes the likelihood ratio of signal X.15 The
information variable l(x, e) captures how likely it is that the agent has chosen the desired effort e
rather than other nearby effort given outcome x.

Taking this first-order approach (FOA), we have the associated Lagrangian linear in β. As a
result, the optimal bonus scheme β† is bang-bang with β†(x) = 0 if l(x, e†) < 0 and β†(x) = b† ≡

δ
1−δ s(e†) if l(x, e†) ≥ 0, where the dagger superscript ”†” of each contractual term stands for the
FOA optimal contract. Intuitively, incentives for effort are maximized by paying a bonus for those
outcomes where fe(x, e†) > 0, i.e. for outcomes which are made more likely with higher effort.

To conclude that this solution is indeed an optimal contract, we need to verify that (β†, e†)

satisfies the global IC constraint for the agent:

b† Pr(l(x, e†) > 0 | e)− c(e) ≤ b† Pr(l(x, e†) > 0 | e†)− c(e†), ∀ e ∈ [0, e]. (1)

(β†, e†) satisfies this constraint, and FOA is then justified, if the agent’s expected payoff function
is globally concave in his choice of effort for the given bang-bang structure of β†. A recent pa-
per by Hwang (2016) establishes one sufficient condition for such global concavity that requires
Pr(l(x, e†) ≤ 0|c−1(z)) to be convex in z, and shows that this condition (named LCDFC by the
author, the local convexity of distribution function condition) is less restrictive than CDFC (the
convexity of distribution function condition) first introduced by Mirrlees (1979).16 However, as
we will show shortly by an example, LCDFC does not hold and neither does the global constraint
(1) in several interesting applications. In such cases, FOA is no longer valid and thus the obtained
solution is not optimal.17

Before turning to the example, we note that the above analysis is relevant as long as the first-
best effort (denoted eFB), at which the expected surplus s(e) takes its maximal value, cannot be

15In accordance with custom, we use the subscript of a multivariable function to denote its partial derivative.
16Mirrlees (1979) also assumed the monotone likelihood ratio property (MLRP) which, for a univariate signal X,

requires l(x, e) to be monotone increasing in x for all e. In our setting MLRP plays no role in validating FOA; the
property is used to guarantee the optimal bonus scheme being monotone in x.

17Kirkegaard (2017) proposes an alternative approach for examining whether local incentive compatibility implies
global incentive compatibility in the agency model. In the setting considered here, with risk neutral parties, his suffi-
cient condition (Proposition 1) is equivalent to LCDFC.
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implemented. Throughout the paper, we will assume that this is the case. More precisely, we
assume that there exists no contract implementing effort e ≥ eFB. A sufficient condition for this is

δ

1− δ
s(e) < c(e) ∀ e ≥ eFB.

The left-hand side of the inequality is the maximal bonus that can be paid under the enforcement
condition (EC), and thus the inequality implies that there exists no bonus plan covering the agent’s
effort cost for e ≥ eFB.

An Illustrative Example

Consider a unidimensional signal X ∼ N(e, σ2), for which we have likelihood ratio l(x, e) =

(x− e)/σ2. Under this specification, the optimal FOA contract awards the agent a maximal bonus
b† in case of x > e†. Hence the probability of obtaining the bonus can be written as

Pr
(

l(X, e†) > 0
∣∣∣ e
)

= Pr
(

X− e†

σ
> 0

∣∣∣∣ e
)

= 1−Φ
(

e† − e
σ

)
,

where Φ(·) indicates the standard normal CDF. Being offered this FOA contract (w, β†, e†), the
agent’s marginal net gain from exerting effort is b† Φ′( e†−e

σ ) 1
σ − c′(e). In equilibrium, effort e = e†

must satisfy the agent’s first-order condition, and (as can be easily verified) the EC constaint must
bind for the bonus b†. The optimal effort e† can then be obtained by solving the following equation:

δ

σ(1− δ)
s(e)Φ′(0) = c′(e).

From this condition, it is straightforward to see that a more precise signal about the agent’s
effort (with lower σ) would elevate the agent’s marginal revenue and thus allow higher effort to
be implemented. Given that effort is below first best, this will in turn allow for a higher bonus,
and hence equilibrium effort e† and surplus s(e†) must unambiguously increase. Whenever this
local approach is valid, therefore, a simple comparative static analysis confirms the idea that a
better signal alleviates the loss to the principal from being unable to observe the agent’s action
and hence improves efficiency.

The above analysis suggests that signals in this example can be ranked by their variance. How-
ever, there is a caveat, because the first-order approach is only valid in this setting if the variance is
not too small. In particular, let σ be such that the FOA conditions hold for e† = eFB, indicating that
first best effort can be implemented. But under our standard assumption this cannot be the case,
hence FOA can not be valid for variance σ2. In fact, in equilibrium the probability of obtaining
a bonus is 1/2, so the agent’s net payoff from effort eFB is at most 1

2
δ

1−δ s(eFB)− c(eFB), which is
certainly negative under our assumptions.

LCDFC is not fulfilled in this case, and for a low enough variance the global IC conditions are
violated. Figure 1 provides an illustration.
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Figure 1: Illustrative example where the first-order approach is not valid.

As we have just seen, the agent’s marginal revenue from effort follows the normal density, and
while e† is a local maximum for the agent, it is not a global one if σ is sufficiently small. When
σ is large, the agent’s marginal gain from effort (the green-colored curve in Figure 1) intersects
with the corresponding marginal cost (the blue-colored curve) at a single point, where the agent’s
expected payoff is in fact maximized. Put differently, the local stationary condition implies the
global IC condition for a large σ. For a relatively small σ, however, taking the local approach and
solving the problem leads us to point B, at which the marginal revenue is maximal and equal to
marginal cost. But the level of effort at B is not implemented unless the shaded area ∆2 is larger
than ∆1, for otherwise the agent would deviate and instead choose the minimum level of effort.

This example raises two questions, first, what is an optimal bonus scheme in such cases where
FOA breaks down, and second, will lower σ also in these cases be beneficial?

The normal distribution does not generally satisfy LCDFC but does satisfy MLRP. In the fol-
lowing we will show that MLRP is sufficient to characterize the optimal bonus scheme, and we
will see that for this bonus scheme, a lower σ is indeed beneficial.

3. Optimal Relational Contracts

The discussion in the previous section suggests that we need to develop an alternative approach
to characterize an optimal contract for cases where the FOA is not valid. It turns out that, under
a condition that generalizes the MLRP, the optimal bonus scheme always takes a hurdle form like
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the FOA contract, in the sense that β(x) is either maximal or minimal, depending on whether
the likelihood ratio l(x, e) exceeds a hurdle. In contrast with the FOA contract, this hurdle is not
necessarily zero.

We first introduce a generalized version of MLRP, which plays a key role in the subsequent
analysis.

DEFINITION 1. Signal X is said to possess the generalized monotone likelihood ratio property (GMLRP) if
its likelihood ratio satisfies the following two conditions:

(i) (Regularity) for any κ ∈ < and e, e′ ∈ [0, e], there exists a κ′ ∈ < such that

{x ∈ X|l(x, e) > κ} = {x ∈ X|l(x, e′) > κ′}

(ii) (Stochastic Dominance) for all e and κ,

Pr
(
l(X, e) > κ|e′

)
is increasing in e′.

The second condition has a natural interpretation: the distribution of the likelihood ratio l(X, e)
conditioned on the agent’s choice of effort e′ can be ordered by first-order stochastic dominance.
That is, for all e ∈ [0, e], high effort e′ generates a higher value of the likelihood ratio on average.
It is well-documented (e.g. Milgrom (1981)) that if a univariate signal obeys MLRP (that is, l(x, e)
is increasing in x for all e), then the corresponding CDF satisfies F(x, e′′) ≤ F(x, e′) for all e′′ > e′.
This in turn implies the first-order stochastic dominance of l(x, e). As a result, a univariate signal
with MLRP satisfies the second condition of GMLRP.

The first condition essentially requires that every upper level set of l(x, e) can be duplicated
by the upper set of l(x, e′) with an adjusted level. Analogous to classic consumer theory, this
condition endows the likelihood ratio with an ordinal property: if l(x′, e) ≥ l(x, e) for some (x′, x)
and e, then l(x′, e′) ≥ l(x, e′) for all e′ ∈ [0, e]. That is, if outcome x is less likely to occur than x′ at
effort e, then x remains less likely than x′ at other efforts. If the likelihood ratio l(x, e) satisfies this
ordinal property, we say that l(x, e) is regular. Observe that for scalar x the regularity condition
holds if l(x, e) is increasing, decreasing or constant in x for all e. Hence our condition is literally a
generalized version of MLRP.18

The next result provides a simple characterization of the regular likelihood ratio.

PROPOSITION 1. The likelihood ratio l(x, e) is regular if and only if for each e and e′, there exists an
order-preserving transformation Ψ : < → < satisfying l(x, e′) = Ψ (l(x, e)) for all x ∈ X.

PROOF OF PROPOSITION 1: See Appendix A.1. �

In what follows, we shall be concerned with signals satisfying GMLRP. As a leading exam-
ple, the most natural case X = µe + ε, where µ = (µ1, · · · , µn) and the random noise vector

18For example, X ∼ N(0, σ2) with σ = σ(e) increasing in e has a likelihood ratio l(x, e) that is U-shaped in x and yet
satisfies the regularity condition.

11



ε = (ε1, · · · , εn) follows a multivariate normal distribution with mean zero vector and covariance
matrix Σ = [σij], satisfies the GMLRP. Straightforward algebra shows that the likelihood ratio can
be written as

l(x, e) =
n

∑
i=1

mi(xi − µie), where mi =
n

∑
j=1

σ−1
ij µj,

and σ−1
ij are the elements of Σ−1. The upper set {x ∈ X|l(x, e) > κ} is thus a half-space of the form

{
x ∈ X

∣∣∣ n

∑
i=1

mixi > e
n

∑
i=1

miµi + κ

}
.

It is therefore obvious that X possesses the GMLRP. Another noteworthy class of such signals
includes the case where X consists of an n-tuple of independent random variables Xis with likeli-
hood ratios li(xi, e) = a(e)l(xi) + αi(e), a(e) > 0. Then the likelihood ratio for X takes the form

l(x, e) = a(e)
n

∑
i=1

l(xi) +
n

∑
i=1

αi(e),

and thus it is regular. This class includes as a special case Xi being negative exponential with mean
EXi = e, and thus li(xi, e) = xi/e2 − 1. In this case l(x, e) = ∑n

i=1 xi/e2 + n, where W = ∑n
i=1 Xi

for effort e′ has a gamma distribution with mean h = ne′, which implies that the second condition
in GMLRP is also satisfied.19

DEFINITION 2. A bonus scheme β is a hurdle scheme for the likelihood ratio at effort e ∈ [0, e] with hurdle
κ ∈ < if the scheme β takes the form

β(x) =

b (> 0) if l(x, e) > κ

0 otherwise.

An interpretation of this scheme is that the agent is rewarded on the basis of a performance
index computed from the outcomes x. The relevant index is the likelihood ratio l(x, e), and the
bonus scheme is to reward the agent with a one-step bonus b for all outcomes having index value
higher than a hurdle κ.

Our main result in this section states that the optimal bonus scheme maximizing the joint
surplus s(e) is of this type whenever the likelihood ratio is regular. The optimal scheme derived
under the FOA is therefore a special case with hurdle zero (κ = 0).

PROPOSITION 2. Assume that signal X has regular likelihood ratios and that no relational contract can
implement effort e ≥ eFB. Then the optimal bonus scheme is a hurdle scheme for the likelihood ratio at the
optimal effort e∗.

PROOF OF PROPOSITION 2: See Appendix A.2. �

19If W has CDF G(w; n, h), then Gh < 0 and hence G is decreasing in e′.
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As long as the likelihood ratio is regular, Proposition 2 allows us to focus on a set of hurdle-
type bonus schemes in characterizing optimal relational contracts, regardless of whether the FOA
is justified or not. This greatly simplifies the analysis. The underlying intuition for this result is
straightforward. Whenever e ≥ eFB is not implementable due to the issues of unverifiable perfor-
mance measures and unobservable effort, the contract between two risk-neutral parties should be
designed so that it provides the agent with the strongest incentive for effort. 20 A way to achieve
the goal under FOA is to offer a bonus scheme β(x) that maximizes the marginal gain from effort
at the optimal effort e∗: ∫

X
β(x) l(x, e∗) f (x, e∗)dx,

resulting in the hurdle scheme for l(x, e∗) with hurdle zero being optimal. But as we have dis-
cussed in the previous section, this local approach can be justified only if the global IC constraints
are satisfied at the target effort e∗. If not, the scheme must be modified, and Proposition 2 shows
that under regularity, the appropriate modification is simply to adjust the hurdle (and of course
the target effort). As illustrated below, this adjustment reflects a trade-off between on the one hand
inducing strong marginal incentives at the target effort, and on the other, preventing deviatons to
distinctly lower effort.

The formal proof of Proposition 2, given in Appendix A.2, proceeds in two steps. We first
show that if a non-hurdle scheme β satisfying (EC) implements a level of effort e∗, then there
is a hurdle scheme β∗ for the likelihood ratio l(x, e∗), with β∗ 6= β for some positive measure,
such that β∗ yields the same expected payoff for the agent as β, but a higher marginal gain from
effort at e∗. Such a hurdle scheme β∗ can be found for any distribution. If this scheme, which
provides stronger marginal incentives for effort at e∗, also discourages the agent from deviating to
any lower effort (i.e. satisfies all downwards IC constraints), then it will dominate the non-hurdle
scheme β by implementing a higher effort than e∗. In the second step of the proof, we show that
the downwards IC constraints are indeed satisfied if the likelihood ratio is regular. Consequently,
a hurdle scheme is more efficient than others in that the scheme provides the strongest incentives
for effort to the agent.

Another meaningful insight on the regularity condition can be found by linking it to another
strand of contract theory literature. As Levin (2003) has observed, the stationary relational contract
environment is similar to the static environment with two-sided limited liability, in the aspect that
both environments impose a lower and upper bound on the payment scheme. In the context of
financial contracts between a risk-neutral investor and entrepreneur, Innes (1990) has shown that
under the FOA, the additional constraints on liability lead to debt-style contracts being optimal
within the class of monotonic contracts. This result has been extended by Poblete and Spulber
(2012) to a more general model where the FOA is not valid. To establish the optimality of debt
contracts (in a setting where the slope of the payment scheme is constrained to be between 0 and
1), they introduced a critical ratio, defined as the marginal return to the principal from increasing
the slope of the payment scheme, and assumed this ratio to be regular in a similar vein as the

20In fact, this part of the intuition is exactly the same as in Levin (2003), which assumed FOA to be valid.
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regularity condition introduced here for the likelihood ratio.21 Under this assumption plus the
signal X being univariate, they showed that the optimal contract has slope one if the critical ratio
exceeds a hurdle but has slope zero otherwise.

When the performance measure X is unidimensional, and the principal’s value is the mean
E[X|e], the likelihood ratio can be interpreted as the corresponding critical ratio in relational con-
tracts. To see this, suppose without loss of generality that the agent’s promised utility in the
stationary optimal contract is fixed at u.22 In this case, an increment in bonus β(x) by ∆ over
[x, x + dx] would increase the principal’s benefit by ∆ · fe(x, e)dx through the agent’s marginal in-
centive, but at the same time increase the principal’s cost by ∆ · f (x, e)dx in order to maintain the
continuation value u. Therefore, the likelihood ratio indicates the marginal returns to the principal
from increasing the bonus.

While Proposition 2 only relies on the regularity part of GMLRP, our next result also relies on
the stochastic dominance part.

PROPOSITION 3. If GMLRP holds and no e ≥ eFB can be implemented in a relational contract, then

(i) the maximal bonus is b∗ = δ
1−δ s(e∗) in an optimal contract,

(ii) if the likelihood ratio decreases with e, then κ ≤ 0 in an optimal contract.

PROOF OF PROPOSITION 3: See Appendix A.3 �

It now follows that, under the assumptions in Proposition 3, an optimal contract can be found
by solving for the highest effort e∗ ∈ [0, eFB] that satisfies all downward IC constraints:

b∗Pr(l(x, e∗) > κ|e′)− c(e′) ≤ b∗Pr(l(x, e∗) > κ|e∗)− c(e∗), ∀ e′ ≤ e∗, (2)

for some hurdle κ and b∗ = δ
1−δ s(e∗).

An illustration and some intuition for the optimal negative hurdle κ < 0 in Proposition 3 can
be gained from the example in the previous section.

In Figure 2-(a), the red and blue curves depict the agent’s marginal gain and marginal cost
from effort, respectively, for the case of a signal X ∼ N(e, σ2), where the bonus hurdle has been
set at κ = 0 in accordance with FOA.23 In the case depicted, the signal variance is small, and the
FOA solution for effort (given by the intersection point where marginal revenue is maximal) is
a local but not a global optimum for the agent, given the bonus scheme. Given this scheme, the
agent would thus deviate to a smaller effort.

Here a variation of the hurdle κ will entail a horizontal shift of the marginal revenue curve (for
a given bonus level b). The yellow-colored curve corresponds to some negative hurdle κ < 0 for

21In Appendix B, we formally derive the critical ratio and compare their regularity condition with ours in more detail.
The MLRP is sufficient for both regularity conditions, but in general there is no direct connection between them.

22It follows by Theorem 1 in Levin (2003) that the way to split the joint surplus has no influence on the optimal bonus
scheme and thus the agent’s choice of effort because of the fixed wage.

23This bonus hurdle for the likelihood ratio corresponds to a hurdle x > e† for the signal outcome x, and the marginal
revenue is then proportional to the normal density Φ′( e†−e

σ ).
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Figure 2: The effect of lowering hurdle κ on the agent’s marginal and total gains from effort

the likelihood ratio, and thus a lower bonus hurdle for the outcome x than the FOA hurdle (e†),
say a hurdle e†− τ. The effect of this lower hurdle for obtaining the bonus, is to reduce the agent’s
marginal incentives for ”high” efforts (near e†), but also to increase his total payoff for such efforts.
Effort ê at the highest intersection of the marginal revenue (yellow) curve and the marginal cost
(blue) curve is now a global optimum for the agent.

The example illustrates that by relaxing the bonus hurdle, the agent’s downwards incentive
constraints will be relaxed, but the agent’s marginal incentives for ”high” effort will be reduced.
The optimal contract must find the right balance between these two effects.

3.1. Example

To illustrate how to characterize the optimal hurdle scheme, consider a unidimensional noisy
signal of effort X = e + εσ, where ε has a log-concave density h(·) with a unique mode at zero:
0 = argmaxε h(ε). Then the likelihood ratio of X at e can be written as

l(x, e) = − 1
σ

h′
(

x− e
σ

)
/h
(

x− e
σ

)
,

which is increasing in x but decreasing in e. Hence for each hurdle κ, there exists a unique τ such
that (i) l(x, e) > κ iff x− e > τ; and (ii) κ = 0 iff τ = 0. This enables us to write the distribution of
l as

1− Pr(l(X, e) ≤ κ|e′) = Pr
(
X− e > τ|e′

)
= 1− H

(
e− e′ + τ

σ

)
,

where H(·) is the CDF of ε.
Suppose that the principal offers hurdle scheme β with β(x) = b∗ ≡ δ

1−δ s(e∗) if l(x, e∗) > κ

15



and β(x) = 0 otherwise, and that the first-order approach is valid, that is,

u(β, e∗) ≥ u(β, e) for all e ∈ [0, e] ⇔ b∗h
(τ

σ

)
= σc′(e∗).

In order to induce the highest effort e∗ under this local constraint, the principal must set τ = 0, or
equivalently κ = 0 in the hurdle scheme, which provides the strongest marginal incentive to the
agent.

When the first-order approach is not valid, on the other hand, the optimal compensation
scheme β must induce the highest effort under the global downward constraint: u(β, e∗) ≥ u(β, e)
for all e ≤ e∗, or

b∗
[

H
(

e∗ − e + τ

σ

)
− H

(τ

σ

)]
≥ c(e∗) − c(e) ∀ e ≤ e∗.

Figure 2 illustrates how to design the optimal scheme when the first-order approach is not
valid. The scheme corresponding to τ = 0 provides the strongest marginal incentives at the
desired effort e∗ but may not induce the agent to choose e∗. This is indeed the case if the shaded
area in Figure 2-(b) is smaller than c(e∗)−c(e)

b∗ , resulting in a deviation from e∗. The way to resolve
this incentive problem is to lower the hurdle: by setting τ < 0, the principal can feasibly increase
the net gain from making e∗ to the agent as is displayed in Figure 2. Such a lower hurdle relaxes
the global downward constraints, thereby implementing higher effort than the scheme with τ = 0.

At an optimal non-zero solution for the hurdle τ (and equivalently for κ), some downwards IC
constraint must be binding, and the corresponding effort, say e0, must be a local optimum for the
agent. Thus we must have

b∗
[

H
(

e∗ − e0 + τ

σ

)
− H

(τ

σ

)]
= c(e∗) − c(e0), e0 < e∗,

and
b∗h

(
e∗ − e0 + τ

σ

)
1
σ
≤ c′(e0), e0 ≥ 0,

where the last two inequalities hold with complementary slackness at the local optimum e0. In
addition, e∗ must be a local (and interior) optimum fior the agent, and EC must hold, so we must
have

b∗h
(τ

σ

) 1
σ

= c′(e∗), b∗ =
δ

1− δ
s(e∗).

These are necessary conditions. If in addition we know, say that the agent’s payoff has at most
two local maxima (as is the case when ε is normal and c′(e) is linear), the conditions will also be
sufficient to determine τ, e∗ and e0.
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4. Value of Information

In the previous section, we studied the properties of an optimal bonus scheme in the stationary
environment for a given signal, i.e., a given performance measurement system. We now turn
to a problem of ranking non-verifiable signals satisfying GMLRP, say X with support X ⊂ <n

and Y with support Y ⊂ <m, and seek a criterion for their ranking in terms of the agency costs
they generate in relational contracts. As we have seen, these costs arise from underprovision of
effort, and the higher ranked signal will thus be the one that allows a higher level of effort to
be implemented. The latter signal is more informative in the sense that it conveys information
that supports a better contract. It turns out that the simple hurdle structure of an optimal bonus
scheme enables us to establish a tight condition for one signal to be more informative than another
signal in this sense.

There are a few papers investigating the nature of a more informative signal in a principal-
agent framework. However, most attention has been devoted to explicit (or formal) contracts, that
is, to models of contracting with a contractible signal and risk-averse agent, where the agency
cost arises from moral hazard. The existing literature has developed criteria for a signal to be
more informative and thus better alleviate agency costs in this environment; for instance, the
informativeness criterion by Holmström (1979) and the mean-preserving spread (MPS) criterion
by Kim (1995), among others. In a relational contract with a risk-neutral agent, on the other hand,
it is the enforcement problem rather than moral hazard that hinders a contract from implementing
the first-best, as moral hazard alone does not induce any agency cost in a risk-neutral environment.
The different source of the agency cost suggests that a direct application of the existing criteria to
relational contracts is inappropriate.

In this section, we establish a new criterion for a more informative signal tailored to relational
contracts. In general, a signal X is more informative than another Y if writing a contract based on
X is more effective in reducing the agency costs than doing so based on Y. In our framework, such
a cost reduction would lead to higher effort in the optimal contract. Our objective is to obtain a
robust condition with respect to the characteristics of the model, under which signal X induces
higher effort than signal Y. For this purpose, we represent a relational contract problem by five
elements 〈(v, π), (c, u), δ〉: the principal’s objective and reservation payoff, the agent’s effort cost
and reservation payoff, and their common discount factor. We denote by Ω the class of contracting
problems of our interest:

Ω ≡
{
〈(v, π), (c, u), δ〉

∣∣∣ v, c : [0, e]→ < C1 and increasing; π, u ∈ <+; δ ∈ (0, 1);

e ≥ eFB not implementable, s(0) ≤ 0 < s(eFB), and s(e) increasing over [0, eFB]

}
.

To put it in a nutshell, the class Ω is a collection of contracting parties such that their transaction
is valuable (s(e) > 0 for some e) but the efficient outcome eFB = argmaxe s(e) is not possible. For
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each problem ω ∈ Ω, denote by eX(ω) and eY(ω) the level of effort implemented by the optimal
contract based on signal X and Y, respectively. The notion of a more informative signal in our
framework can be stated as follows:

DEFINITION 3. Signal X is more informative than signal Y within class Ω if eX(ω) ≥ eY(ω) for all
ω ∈ Ω.

One important feature of this notion is that the principal’s objective v is not directly affected
by her choice of signals but only indirectly affected through the agent’s choice of effort. Irrespec-
tive of whether she designs a contract with signal X or Y, her expected returns from the agent’s
costly effort are generated by the relationship with the agent itself rather than by the information
structure.24 By ruling out its direct effect on v, we can focus on the signal’s effect on incentives.

We present a statistical criterion that characterizes a more informative signal. The results in
the previous section suggest that the criterion pertains to the likelihood ratio of a signal. Given e,
let X ∼ F(·, e) and Y ∼ G(·, e), where F and G are the respective CDFs, and let f (x, e) and g(y, e)
denote the respective densities of each signal. For ease of notation, given fixed e∗, which we will
call the target effort hereafter, we define the CDF of the likelihood ratio l(x, e∗) conditional on the
agent’s choice of effort e as

LX(κ, e) ≡ Pr
(

l(X, e∗) ≤ κ
∣∣∣ e
)

=
∫

X
1{l(x, e∗)≤κ}(x) f (x, e)dx.

LY(κ, e) ≡ Pr (l(Y, e∗) ≤ κ | e) can be defined in a similar way.25

With this notation, our informativeness criterion and main result of this section can be stated
as follows:

DEFINITION 4. Signal X dominates signal Y in the likelihood ratio order if for every κ ∈ < and target
effort e∗ ∈ [0, e], there exists an κ′ such that

LY(κ, e)− LY(κ, e∗) ≤ LX(κ
′, e)− LX(κ

′, e∗) for all e < e∗. (L)

If (L) holds between X and Y, then we write X �L Y.

PROPOSITION 4. Suppose that two signals X and Y satisfy GMLRP. Then X is more informative than Y
within class Ω if and only if X �L Y.

PROOF OF PROPOSITION 4: See Appendix A.4. �

24This assumption can be easily justified in two cases: (1) the realized returns are not observed by the parties and
hence not part of x or y, or (2) the returns are observable and determined by part of x or y (for instance, the first element
of each signal), but both signals have the same marginal distribution on that part.

25Observe that under the regularity condition of GMLRP, the distribution of l(x, e′) with another target effort e′ 6= e∗

can be easily transformed into the distribution of l(x, e∗) with an adjusted κ′, that is, Pr(l(X, e′) < κ|e) = LX(κ
′, e). This

ordinal property allows us to drop the target effort e∗ in the notation of LX.
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Roughly speaking, the statistical order (L) compares the variability of the likelihood ratios
with respect to the agent’s choice of effort. The difference on the left-hand side of (L) represents
the change in the distribution of l(y, e∗) when the agent does not follow the instruction e∗ but
deviates to some lower effort e < e∗. Accordingly, the difference can be interpreted as the amount
of information regarding the agent’s possible deviations conveyed by the informational variable
l(y, e∗). Therefore, the inequality (L) implies that the maximal amount of information contained in
l(y, e∗) is outweighed by that contained in l(x, e∗) regardless of the desired effort e∗, and thereby
the principal can more effectively control the agent’s hidden action by designing a contract based
on signal X rather than Y.

In order to clarify the significance of condition (L), suppose that the target effort e∗, bonus
b∗ and hurdle κ constitute an optimal contract under signal Y, and consider the downward IC
constraints (2), which now can be written as

b∗ (LY(κ, e)− LY(κ, e∗)) ≥ c(e∗)− c(e), ∀ e ≤ e∗.

Note that 1− LY(κ, e) is the probability that the agent will clear the hurdle κ and receive the bonus
b∗ with choice of effort e. The left-hand side of the inequality above is thus the expected loss of
bonus when the agent deviates from e∗ to a lower effort level e. The inequality states that this loss
should exceed the effort costs saved by any such deviation.

If signal X dominates Y in the likelihood ratio order, then there is a hurdle scheme with hurdle
κ′ for signal X such that a deviation to lower effort e < e∗ entails a larger reduction in the probabil-
ity to pass the relevant hurdle under X than under Y. Given the same bonus level b∗, downwards
effort deviations are then even less attractive under signal X, and this implies that effort e∗ can be
implemented also under this signal. Condition (L) thus guarantees that optimal effort under X is
no smaller than optimal effort under Y.

Proposition 4 tells us that the condition (L) is also necessary for X to be more informative than
Y within the class Ω. To be specific, if the two signals X and Y cannot be ranked by the likelihood
ratio order, then there exists a pair of contracting parties 〈(v, π), (c, u), δ〉 ∈ Ω for whom it is more
efficient to evaluate the agent’s performance based on Y rather than on X. Consequently, X �L Y
is the right informativeness criterion for ranking signals in relational contracting.

To see how the likelihood ratio order is related to the existing informativeness criteria in the
literature, consider the notion of precision of a signal, first introduced by Lehmann in the field of
statistical decision theory.26

DEFINITION 5. (LEHMANN (1988)) Univariate signal X ∼ F is more precise about unknown parameter
e ∈ [0, e] than another univariate signal Y ∼ G if for every outcome y ∈ Y, there exists an increasing

26For univariate signals X and Y satisfying MLRP, Lehmann (1988) found that X is more informative than Y in a
statistical decision problem (with some restrictions on the decision maker’s underlying payoff function) if and only
if X �P Y. Comparing with the statistical order in terms of sufficiency developed by Blackwell (1951, 1953), (P) is a
more complete and intuitive order, and moreover, is easier to check so that it has been applied to several economic
environments since Persico (2000). Refer to Chi (2014) for more details on Lehmann’s order.
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function Ty : [0, e]→ X such that

F(Ty(e), e) = G(y, e) for all e. (P)

If (P) holds between X and Y, we write X �P Y.

The essential requirement for one signal to be statistically more precise in Lehmann’s notion
is the monotone property of the function Ty in the unknown parameter for each y. To see its role,
consider the two uniform distributions X ∼ U[e− σ/2, e + σ/2] and Y ∼ U[e− 1/2, e + 1/2].
Equating their CDFs, we can compute the associated T-transformation:

Ty(e) = σ(y− e) + e for y ∈
[

e− 1
2

, e +
1
2

]
.

We see that the obtained Ty is increasing in e if and only if σ < 1, i.e., the density of X is more
clustered around e. For a signal that is exposed to an additive shock, Lehmann’s order provides a
more intuitive and complete ranking than Blackwell’s sufficiency.27

With this order we have the following result:

PROPOSITION 5.

(i) Suppose that l(X, e∗) is more precise than l(Y, e∗) for all e∗ ∈ [0, e]. That is, for every κ ∈ < in the
support of l(Y, e∗), there exists an increasing function Tκ(e) such that

LX

(
Tκ(e), e

)
= LY(κ, e) ∀ e.

Then X �L Y.

(ii) For a comparison of univariate signals satisfying strict MLRP, signal X is more precise than Y if and
only if l(X, e∗) is more precise than l(Y, e∗) for every e∗. Consequently,

X �P Y implies X �L Y.

PROOF OF PROPOSITION 5: See Appendix A.5. �

By establishing a link to Lehmann’s order, Proposition 5 generalizes our finding in the previous
example of Section 3. On top of that, it provides an intuitive interpretation of the likelihood ratio
order and a simple method to check whether signals can be ranked in the likelihood ratio order.28

The result has two implications. First, a signal with a more precise likelihood ratio dominates
in the likelihood ratio order, and hence allows higher effort to be implemented in a relational

27The given example is due to Lehmann (1988). Comparing with Blackwell’s sufficiency, he showed that X is suffi-
cient for Y only if σ = 1/k where k ≥ 1 is a natural number.

28The condition (P) can be put in a number of alternative ways. For example, the condition holds if and only if (1)
the difference G(y, e) − F(x, e) obeys the single-crossing property in e for every pair of x and y; (2) for all e1 < e2,
F(F−1(κ, e2), e1) ≥ G(G−1(κ, e2), e1).
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contract. The principal uses the likelihood ratio as a key indicator to decide whether to pay a
bonus in the optimal contract, and thus she prefers to evaluate the agent’s performance with a
more precise likelihood ratio.

Second, for univariate signals satisfying strict MLRP, the notion of a more precise likelihood
ratio is equivalent to Lehmann’s original notion of a more precise signal. To gain some intu-
ition for this equivalence, observe that for such signals, the distribution of the signal’s likeli-
hood ratio is isomorphic to that of the signal itself: if l(y, e∗) is strictly increasing in y, then
LY(κ, e) = Pr(l(Y, e∗) ≤ κ | e) = G(y, e), where y is the unique solution to l(y, e∗) = κ. As a
result, X �P Y implies X �L Y. By virtue of this implication, we can tell which is an informative
signal in relational contracting just by comparing the underlying distributions, without further
computation work for the likelihood ratio and its distribution, thereby greatly simplifying the
whole analysis of an informative signal. The next example illustrates how Proposition 5 can be
applied to the previous example in Section 3.

EXAMPLE 1. Let X = e+ εσ1 and Y = e+ εσ2, where the additive noise ε has CDF H(·) as in the example
in Section 3.1. We can write the distribution of each signal as F(x, e) = H

(
x−e
σ1

)
and G(y, e) = H

(
y−e
σ2

)
.

The associated T-transformation is therefore

Ty(e) =
σ1

σ2
· y +

σ2 − σ1

σ2
· e,

which is increasing in e whenever σ2 > σ1. Consequently, X is more precise than Y, and hence more
informative than Y if σ1 < σ2. This implication holds regardless of whether FOA can be applied or not.

In case of univariate signals satisfying MLRP, if signal X is more precise than signal Y in the
sense of (P), then X dominates Y in the likelihood ratio order so that X is a more informative signal
in relational contracting. The converse is generally not true, but we have the following result.

COROLLARY 1. Given two univariate signals X and Y satisfying strict MLRP, suppose that the associated
T-transformation satisfying F(Ty(e), e) = G(y, e) ∀ e is additively separable. Then X �L Y if and only if
X �P Y.

If the T-transformation is additively separable, then X �L Y implies X �P Y so that the two
stochastic orders are equivalent. To see this, observe that in case of univariate signals satisfying
MLRP, the likelihood ratio order (L) can be written in the following fashion: for all y ∈ Y, there
exists a x ∈ X such that Ge(y, e) ≥ Fe(x, e). Taking the derivative of both sides of the identity
F(Ty(e), e) = G(y, e) with respect to e, we have

Ge(y, e) = f (Ty(e), e) ·
∂Ty(e)

∂e
+ Fe(Ty(e), e). (3)

Since Ty(e) is a bijective function of y for each e, for the existence of x satisfying Ge(y, e) ≥ Fe(x, e)
for all y, ∂Ty(e)/∂e must be nonnegative at least for some y. Hence if T is additively separable, we
have a nonnegative derivative of Ty for every y, leading to X �P Y.
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Figure 3: Link to Alternative Signal Orderings

For signals generated by an additive shock as in the previous example, the associated T-
transformation is indeed additively separable, and consequently X dominates Y in the likelihood
ratio order if and only if σ2 > σ1.

Proposition 5 also presents a link to the MPS criterion proposed by Kim (1995) for verifiable
signals in legally enforced contracts. With our notation, Kim’s criterion X �MPS Y can be stated
as follows: the distribution LX(κ, e) ≡ Pr(l(X, e) ≤ κ|e) is more dispersed than the distribution
LY(κ, e) ≡ Pr(l(Y, e) ≤ κ|e) for all e in the sense of a mean-preserving spread. Just as the likelihood
ratio order in relational contracts, X �MPS Y serves as an informativeness criterion for ranking
verifiable signals in a standard formal contract (but in the latter case under the assumption that
FOA is justified).29 The key insight is similar: a more dispersed likelihood ratio conveys more
information about the agent’s possible deviations, and writing a contract based on such a signal
is thus more effective in mitigating the agency problem.

The likelihood ratio order is in line with the MPS criterion proposed by Kim (1995) in the aspect
that both criteria are based on the variability of the likelihood ratio. In particular, for a comparison
of univariate signals satisfying MLRP, these two criteria are connected through Lehmann’s order.
A recent working paper by Chi and Choi (2018) shows that for univariate signals obeying MLRP,
the MPS criterion is equivalent to Lehmann’s order. Hence it follows from Proposition 5-(ii) that
X �MPS Y implies X �L Y. Figure 3 displays this linkage. However, in general, the two criteria do
not mutually imply each other, since they adopt different notions of variability.30 This distinction
brings forth a new approach to ranking signals in relational contracts, enlightening the different
sources of the agency costs in the two types of contracts.

29Kim (1995) establishes the sufficiency part of the MPS criterion for informativeness. Jewitt (2007) and more recently
Chi and Choi (2018) establish the necessity of the criterion by using the dual approach.

30Another notable difference is that the MPS criterion hinges upon FOA so that it compares the variability of the
likelihood ratios in response to the agent’s local deviation from each target effort, whereas our criterion compares the
variability in response to all possible downward deviations.
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5. Conclusion

Performance measurement and design of incentive schemes are central issues in agency theory.
The main purpose of this paper has been to develop a new criterion to characterize a better mea-
surement system in relational contracts. Relational incentive contracts with non-verifiable infor-
mation are subject to the enforcement problem, which is the main source of agency costs when the
contracting parties are risk neutral. This results in a distinctive criterion, compared to the existing
informativeness criteria for verifiable signals in formal contracts with risk averse agents. For its
application to a wide class of signals, we also developed a condition (GMLRP) under which the
optimal bonus scheme takes a simple hurdle form, regardless of whether FOA is applicable. In
such settings the likelihood ratio order can be employed to tell which is a more efficient measure-
ment system.

Our criterion is especially useful in the aspect that in contrast with objective measures, a wide
array of non-verifiable (subjective) measures are available in most organizations. As long as both
contracting parties have the same beliefs on such measures, our criterion can be used to address
the problem of how to evaluate and reward employees’ performances.

A limitation of our model is that it is confined to one-dimensional effort. Many agents are
involved in multi-tasking, and the issues analyzed here are of course also relevant for such set-
tings. When FOA is valid in a multi-task problem, the likelihood ratios on the agent’s various
tasks will play a key role in the optimal bonus scheme for a relational contract (Kvaløy and Olsen
(2017)). It would be interesting to see if the results developed in this paper can be extended also
to a multi-task setting.

While this paper is confined to relational contracting with only non-verifiable performance
measurements, in reality there is often a combination of verifiable and non-verifiable measures
available. A recent paper Miller, Olsen and Watson (2018) develops a general framework to an-
alyze relational contracting in such settings, where contracts will have self-enforced as well as
externally enforced elements. Extending our results regarding optimal bonus schemes and rank-
ing of performance measurement systems to such environments would also be interesting and
useful.
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A. Omitted Proofs

A.1. Proof of Proposition 1

The sufficiency part can be easily done by setting κ′ = Ψ−1(κ). To prove the other direction,
suppose the likelihood ratio l(x, e) is regular. Observe that the regularity condition implies the
existence of κ′ ∈ < satisfying

{x ∈ X|l(x, e) = κ} = {x ∈ X|l(x, e′) = κ′} for every e, e′ ∈ E and κ, (4)

because the upper set of L(x, e) can be written as

{x ∈ X|l(x, e) = κ} =
∞⋂

n=1

{
x ∈ X

∣∣∣l(x, e) > κ − 1
n

}
.

Consider a partition PN ≡ {κ0, · · · , κN} of the image of L(x, e) made by an increasing sequence
of {κn}N

n=0 with κn+1 > κn. Then the likelihood ratio can be approximated by a simple function:

N

∑
n=0

κn1{l(x,e)=κn}(x)
N↑∞−−→ l(x, e).

To a sequence of {κn}, we obtain a corresponding sequence {κ′n} satisfying (4) for each n. Observe
that the obtained sequence is also increasing in n. Define a real-valued function Ψ that trans-
forms κn to κ′n, i.e., Ψ(κn) = κ′n. It is self-evident that the constructed Ψ is an order-preserving
transformation.

Then using the regularity condition, we can write the next simple function as

N

∑
n=0

κ′n1{l(x,e′)=κ′n}(x) =
N

∑
n=0

Ψ(κn)1{l(x,e)=κn}(x).

Then the result follows from the limiting argument that the expression on each side approaches
l(x, e′) and Ψ(l(x, e)), respectively, as N increases. �

A.2. Proof of Proposition 2

Given β and e ∈ [0, e], define by u(β, e) the agent’s expected payoff:

u(β, e) =
∫

X
β(x) f (x, e)dx− c(e),

and by ue(β, e) ≡ ∂u(β, e)/∂e the marginal incentive at e given β. Observe that we abstracted
away the base salary w in the definitions above as it does not affect the agent’s choice of effort.

The next lemma shows that for an arbitrary bonus scheme that implements effort e0, there
exists a bonus scheme taking a hurdle form such that this new scheme yields the same expected
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payoff but provides a higher marginal incentive than the original scheme at the target effort e0.

LEMMA 1. Let βN : X → < be a bounded bonus scheme with 0 ≤ βN(x) ≤ b for all x ∈ X. Then for
each admissible effort e0, there exists a hurdle scheme β such that

u(β, e0) = u(βN , e0) but ue(β, e0) > ue(βN , e0).

PROOF OF LEMMA 1: Given admissible effort e0 ∈ [0, e], construct a hurdle scheme for likelihood
ratio l(x, e0) with hurdle κ ∈ < as follows:

β(x) =

 0 if l(x, e0) < κ

b otherwise,

where κ is set to yield the same expected payoff as the payoff from the given non-hurdle scheme
βN at e = e0: b(1 − Pr(l(X, e0) ≤ κ|e0) − c(e0) = u(βN , e0). The intermediate value theorem
guarantees the existence of such a κ.

We now demonstrate that the constructed hurdle scheme provides a higher marginal incentive
at e0. For this purpose, observe that the difference of marginal incentives at e = e0 can be written

ue(β, e0)− ue(βN , e0) =
∫

X
(β(x)− βN(x)) l(x, e0) f (x, e0)dx

= −
∫
{l(x,e0)<κ}

βN(x)l(x, e0) f (x, e0)dx

+
∫
{l(x,e0)≥κ}

(b− βN(x))l(x, e0) f (x, e0)dx

> κ

[
−
∫
{l(x,e0)<κ}

βN(x) f (x, e0)dx +
∫
{l(x,e0)≥κ}

(b− βN(x)) f (x, e0)dx
]

,

where the last inequality holds in a strict form whenever the set {x ∈ X | βN(x) 6= β(x)} has
positive measure. Since the braketed expression is simply u(β, e0)− u(βN , e0) = 0, we obtain the
desired result. �

We use this lemma to prove the desired result by contradiction. Suppose to the contrary that
the optimal bonus scheme takes a non-hurdle form βN and elicits effort e∗ from the agent. Due
to the enforcement condition, we have 0 ≤ βN(x) ≤ δ

1−δ s(e∗) for all x. Then it follows from the
previous lemma that there exists a hurdle scheme β, β(x) = 0 if l(x, e∗) < κ and β(x) = δ

1−δ s(e∗)
otherwise, such that u(β, e∗) = u(βN , e∗) but ue(β, e∗) > ue(βN , e∗).

Observe that if β satisfies

u(β, e) ≤ u(βN , e) for all e ≤ e∗, (5)

then it implements higher effort than e∗, contradicting that βN is the optimal contract. We shall
prove that (5) is indeed true whenever the GMLRP holds.
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Suppose that u(β, e′) > u(βN , e′) for some e′ < e∗. Along with u(β, e∗) = u(βN , e∗) and
ue(β, e∗) > ue(βN , e∗), we can infer from the mean value theorem that there exists an e0 ∈ (e′, e∗)
satisfying u(β, e0) = u(βN , e0) and ue(β, e0) < ue(βN , e0). But by the regularity condition, β is also
a hurdle scheme for the likelihood ratio l(x, e0) with adjusted hurdle κ′, leading to a contradiction.
�

A.3. Proof of Proposition 3

Suppose the optimal bonus level is b < b∗, b∗ = δ
1−δ s(e∗). Since e∗ is interior, the agent’s FOC

must hold, hence
0 = b

∫
κ<l(x,e∗)

l(x, e∗) f (x, e∗)dx− c′(e∗),

where we have used fe = l f . A higher bonus b′ > b will strictly increase the marginal incentive for
effort at e∗. Moreover, due to property (ii) of GMLRP, the higher bonus will relax all downwards
IC constraints. (See (2), and note that a bonus b′ < b∗ will tighten the constraints.) Bonus b′ > b
will then induce higher effort than b, thus the latter cannot be optimal.

Suppose κ > 0. Optimal effort is the largest effort e∗ that satisfies the downwards incentive
constraints (2). Moreover, since e∗ is interior, the agent’s FOC must hold as above, with b = b∗.

Now replace κ with κ′ ∈ (0, κ). Then the agent’s marginal revenue at effort e∗ will strictly
increase, and as shown below all downwards IC constraints (2) will be strictly relaxed when le < 0.
Hence, by reducing κ a higher effort can be implemented. Then κ > 0 cannot be optimal.

Note that the claim regarding the IC constraints will hold true if the following claim is true:
Claim. le(x, e) < 0 implies that Pr( l(X, e) > κ| e)− Pr( l(X, e) > κ| e′) is strictly decreasing in κ

for κ > 0 and e′ < e.
To verify the claim we show that e′ < e and 0 < κ′ < κ imply

Pr( l(X, e) > κ′
∣∣ e′)− Pr( l(X, e) > κ| e′) < Pr( l(X, e) > κ′

∣∣ e)− Pr( l(X, e) > κ| e)

This is verified by showing that the expression on the LHS is strictly increasing in e′. The deriva-
tive of this expression with respect to e′ satisfies∫

κ′<l(x,e)≤κ
fe(x, e′)dx > κ′

∫
κ′<l(x,e)≤κ

f (x, e′)dx > 0,

where the first inequality follows from fe(x, e′) = l(x, e′) f (x, e′) with l(x, e′) > l(x, e) > κ′ due to
e′ < e, le < 0, and the lower limit of integration being κ′. This verifies the claim and completes the
proof.

A.4. Proof of Proposition 4

To establish the sufficiency part, it is enough to show that if X �L Y, then the optimal effort under
signal Y is implementable by a contract based on signal X.
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Choose a problem ω = 〈(v, π), (c, u), δ〉 from the set Ω and denote by eY the optimal effort
under Y in this problem. In light of Proposition 2 and 3, we see that there exists a hurdle scheme

β(y) =

0 if l(y, eY) < κY

bY otherwise,

with bY ≡ δ
1−δ s(eY), which implements eY. Since eY is the optimal effort under Y, the given contract

(w, β, eY) must satisfy the global IC constraint: u(β, eY) ≥ u(β, e) for all e, or equivalently

LY(κY, e)− LY(κY, eY) ≥
c(eY)− c(e)

bY
for all e ∈ [0, e].

Then it follows from X �L Y that there exists a hurdle κ′ for signal X such that

LX(κ
′, e)− LX(κ

′, eY) ≥
c(eY)− c(e)

bY
for all e ≤ eY.

The last inequality implies that eY is also implementable by hurdle scheme β′ for the likelihood
ratio l(x, eY), which awards fixed bonus bY iff l(x, eY) > κ′. This proves that X �L Y is sufficient
for X to be a more informative signal within Ω.

To prove the converse, suppose to the contrary that X does not dominate Y in the likelihood
ratio order. This means that there exists a κ and e∗ such that for all κ′ ∈ <,

LY(κ, eκ)− LY(κ, e∗) > LX(κ
′, eκ)− LX(κ

′, e∗) for some eκ < e∗. (6)

Below we demonstrate that if the two signals are not ranked in the likelihood ratio order, then
there exists a pair of contracting parties with 〈(v, π), (c, u), δ〉 ∈ Ω for which e∗ is implementable
by a hurdle scheme under signal Y, whereas no effort e ≥ e∗ is implementable under X. This
contradicts that X is more informative than Y within class Ω.

The proof is by construction. To construct the agent’s cost function from effort, denote by Γ the
set of decreasing C1-functions defined on the compact set [0, e∗] such that γ(e∗) = 0 for all γ ∈ Γ.
With κ and e∗ that are specified in (6), note that LY(κ, e)− LY(κ, e∗), regarding as a function of e
and restricting its domain to [0, e∗], becomes an element of Γ due to the stochastic dominance of
GMLRP. Similarly, for every κ ∈ <, LX(κ

′, e) − LX(κ
′, e∗) ∈ Γ. Observe that if (6) holds, we can

choose a function γ from the set Γ satisfying

LY(κ, e)− LY(κ, e∗) ≥ γ(e) for all e ≤ e∗ and (7)

LX(κ
′, eκ)− LX(κ

′, e∗) < γ(eκ) for eκ < e∗. (8)

To construct the function γ on the remaining domain [e∗, e], fix γ(e∗) = 0 for its continuity and
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choose a continuous decreasing function satisfying

γ(e) ≤ min
{

LY(κ
′, e)− LY(κ

′, e∗), min
κ∈<

LX(κ, e)− LX(κ, e∗)
}

(9)

with the inequality being strict except at e = e∗, where the min operator inside the curly bracket
indicates the point minimization at each e.

We are now ready to construct the cost function from effort. We first assign one positive value
to c(e∗) ≥ δ

1−δ s(e∗)γ(0) so that the cost function below takes a nonnegative value everywhere on
[0, e] and set

c(e) =

c(e∗)− δ
1−δ s(e∗) γ(e) for e ∈ [0, e∗]

c(e∗)− δ
1−δ s(eFB) γ(e) for e ∈ [e∗, e],

where the principal’s objective v, an increasing and C1 function, and the parties’ reservation pay-
offs are chosen such that (i) the expected surplus s(e) = v(e)− c(e)− π − u attains its maximum
at eFB > e∗, (ii) s(e∗) > 0, and (iii) the constructed cost function is differentiable at e = e∗, that is,

lim
e↓e∗

c′(e) = − δ

1− δ
s(eFB) lim

e↓e∗
γ′(e) = − δ

1− δ
s(e∗) lim

e↑e∗
γ′(e) = lim

e↑e∗
c′(e).

Then the constructed problem is an element of Ω.
We demonstrate that within this contracting environment, e∗ is implementable under signal

Y but neither e∗ nor any higher effort than e∗ is implementable under signal X. For signal Y,
consider the hurdle scheme β(y) = 0 if l(y, e∗) < κ and β(y) = δ

1−δ s(e∗) otherwise, where κ

and e∗ are defined as in (6). Then it follows from (7) that the agent would find any downward
deviation e ≤ e∗ nonprofitable. No upward deviation e > e∗ is profitable either, since (9) yields

u(β, e)− u(β, e∗) =
δ

1− δ
s(e∗)

[
LY(κ, e∗)− LY(κ, e)

]
+

δ

1− δ
s(eFB)γ(e) < 0.

Hence e∗ is indeed implementable with a feasible hurdle scheme under Y.
In the same manner as above, it can be shown that e∗ is not implementable with any hurdle

scheme under X. To see that any higher effort than e∗ is subject to deviations, suppose to the
contrary that some eX ∈ (e∗, eFB) is implementable under X. By Proposition 2 and 3, amongst
possible payment schemes implementing eX, we can restrict attention to a hurdle scheme, β(x) = 0
for l(x, eX) < κX, equivalently by the regularity condition of GMLRP, β(x) = 0 for l(x, e∗) < κ∗,
and β(x) = δ

1−δ s(eX) for the other case. But given any schemes taking this form, a deviation to e∗

is profitable to the agent because

u(β, e∗)− u(β, eX) =
δ

1− δ
s(eX)

[
LX(κ

∗, eX)− LX(κ
∗, e∗)

]
− δ

1− δ
s(eFB)γ(eX) > 0,

where the inequality follows from s(eX) ≤ s(eFB) and the inequality put in (9), which holds with a
strict inequality at e = eX > e∗. Therefore, any feasible schemes under signal X cannot implement
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effort e ≥ e∗ in the constructed contracting problem. This contradiction establishes that X �L Y is
necessary for implementation of higher effort under X within class Ω. The proof is now complete.
�

A.5. Proof of Proposition 5

Given a pair of multivariate signals X and Y, suppose that the likelihood ratio of X is more precise
than the ratio of Y in the sense of (P). That is, for each κ ∈ <, there exists an increasing function
Tκ : [0, e]→ < such that

LX
(
Tκ(e), e

)
= LY(κ, e) ∀ e ∈ [0, e]. (10)

For a κ and e∗, let κ′ = Tκ(e∗). Then by definition of the function Tκ in (10), for every e < e∗ we
have

LY(κ, e)− LY(κ, e∗) = LX(Tκ(e), e)− LX(κ
′, e∗)

≤ LX(κ
′, e)− LX(κ

′, e∗),

where the inequality follows from Tκ(e) ≤ Tκ(e∗) = κ′. As such κ′ exists for arbitrarily chosen κ

and e∗, we have X �L Y. This proves the first statement of Proposition 5.
To prove the second statement, let X ∼ F and Y ∼ G be univariate signals satisfying strict

MLRP. Regarding this proof, in order to avoid confusions, we attach subscript X and Y to repre-
sent their likelihood ratio. The strict MLRP implies that their likelihood ratios at e∗, lX(·, e∗) and
lY(·, e∗), are strictly increasing in the first argument. We show that in this case, lX(·, e∗) �P lY(·, e∗)
if and only if X �P Y.31 For the remaining implication, the same proof as above can be applied.

Suppose X is more precise than Y, i.e., for each y there exists an increasing function Ty(e) such
that F(Ty(e), e) = G(y, e) for all e. Define by λ the inverse function of lY(·, e∗) with respect to the
first argument, and put κ = lY(y, e∗) for some y in the support of signal Y so y = λ(κ). With this
notation, we then have

LY(κ, e) = Pr( lY(Y, e∗) ≤ κ| e) = G(λ(κ), e) = F
(

Tλ(κ)(e), e
)

. (11)

Define Hκ(e) ≡ lX(Tλ(κ)(e), e∗). As its inner function Tλ(κ) is increasing in e and its outer function
lX is increasing in the first argument, we see that their composition Hκ(e) is increasing in e. Then
by definition of LX and Hκ(e), we have

LX (Hκ(e), e) = Pr
(

lX(X, e∗) ≤ lX(Tλ(κ)(e), e∗)
∣∣∣ e
)

= F
(

Tλ(κ)(e), e
)

.

Hence it follows from (11) that LY(κ, e) = LX(Hκ(e), e), along with Hκ increasing, implying that
the likelihood ratio of X is more precise than the ratio of Y.

31A similar proof can be used to establish a more general statement: X is more precise than Y if and only if m(X) is
more precise than n(Y) with m(·) and n(·) strictly increasing.
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To prove the converse, suppose lX(·, e∗) is more precise than lY(·, e∗), i.e. for every κ in the
support of lY(Y, e∗), there exists an increasing function Hκ(e) such that LX(Hκ(e), e) = LY(κ, e) for
all e. Choose a sample y from the support of Y, and let κ(y) = lY(y, e∗). Then we have

G(y, e) = LY (lY(y, e∗), e) = LY(κ(y), e) = LX

(
Hκ(y)(e), e

)
. (12)

Define by µ the inverse of lX(·, e∗). Then with µ and a constant κ′ ∈ <, we can write

LX(κ
′, e) = Pr( lX(X, e∗) ≤ κ′

∣∣ e) = F(µ(κ′), e). (13)

Putting (12) and (13) together leads us to

G(y, e) = F
(

µ(Hκ(y)(e)), e
)
∀ e.

Since both µ and Hκ are increasing in its argument, their composition Ty(e) ≡ µ(Hκ(y)(e)) must
increase with e. This proves the existence of an increasing transformation equating the two distri-
bution functions, and thus we have X �P Y. The proof is now complete. �

B. The regularity condition

In this section, we derive the critical ratio developed by Poblete and Spulber (2012) in the contract-
ing environment with a verifiable unidimensional signal and compare their regularity condition
with our regularity condition of GMLRP.

Assume that the outcome x ∼ F(·, e) with support [x, x] indicates the principal’s objective, and
denote by s(x) the sharing rule between the two risk-neutral parties. After carrying out a contract,
the principal obtains a payoff of x− s(x) and the agent obtains s(x)− c(e). The critical ratio ρ(x, e)
is defined as the ratio of the net expected benefit to cost from increasing the slope of s(x) by ∆
over [x, x + dx]. The increment of s′(x) increases the principal’s expected benefit by −∆Fe(x, e)dx
through the agent’s marginal incentive, and at the same time aggravates her expected cost by
∆(1− F(x, e))dx.32 Therefore, the critical ratio reduces into

ρ(x, e) =
−∆Fe(x, e)dx

∆(1− F(x, e))dx
= − Fe(x, e)

1− F(x, e)
.

The critical ratio is regular if ρ(x′, e) ≥ ρ(x, e) for some x and x′ and for some e implies ρ(x′, e′) ≥
ρ(x, e′) for all e′. Observe that the notion of regularity is the same as what we used for GMLRP.

To examine the relation between the regularity condition of ρ(x, e) and l(x, e), recall that if

32Integrating by parts, the agent’s expected payoff from s(x) can be written as∫ x

x
s(x) f (x, e)dx =

∫ x

x
s′(x)

(
1− F(x, e)

)
dx.

Therefore, the increment of s′(x) by ∆ over [x, x+ dx] would strengthen the agent’s marginal incentives by−∆Fe(x, e)dx
and total incentives by ∆(1− F(x, e))dx, respectively.
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f (x, e) is log-supermodular, then the hazard rate f (x, e)/[1− F(x, e)] is decreasing in e for all x.
This in turn is equivalent to the increasing critical ratio property for all e. As a result, if l(x, e) is
increasing in x for all e, then ρ(x, e) is increasing in x for all e as well. The reverse is not true, so
MLRP is not always necessary for ρ(x, e) to be increasing. See Poblete and Spulber (2012) for a
counterexample. Hence the regularity condition of l(x, e) is seemingly more restrictive than the
regularity condition of ρ(x, e). However, the following example shows the existence of a signal for
which the likelihood ratio is regular but the critical ratio is not.

EXAMPLE 2. Consider a signal X ∼ N(0, σ(e)2), where the agent’s effort does not affect the mean of X
but affects its variance. This signal has likelihood ratio

l(x, e) =
∂

∂e
ln f (x, e) =

[
−1 +

(
x

σ(e)

)2
]

σ′(e)
σ(e)

.

Suppose σ′(e) > 0 for all e, implying that as the agent exerts higher effort, the output distribution is more
diffuse. Then for every admissible e, l(x, e) is increasing in x for all x ≥ 0 but decreasing for all x < 0, and
moreover, it satisfies the condition for regularity in Definition 1.33

On the other hand, the signal X has the critical ratio as

ρ(x, e) =
zφ(z)

1−Φ(z)
· σ′(e)

σ(e)
, z =

x
σ(e)

,

where Φ(·) and φ(·) indicate the c.d.f and p.d.f of the standard normal distribution, respectively. Then

∂

∂x
ρ(x, e) = ρx(x, e) =

d
dz

(
zφ(z)

1−Φ(z)

)
σ′(e)
σ(e)2 ,

where

d
dz

(
zφ(z)

1−Φ(z)

)
=

1
(1−Φ(z))2

[
(zφ′(z) + φ(z))(1−Φ(z))− zφ(z)(−φ(z))

]
=

φ(z)
(1−Φ(z))2

[
(−z2 + 1)(1−Φ(z)) + zφ(z)

]
, since φ′(z) = −zφ(z),

≡ Ψ(z).

Note that the derivative Ψ(z) takes a strictly positive value at z = 0 but a negative value at z = −1. Hence
there exist z1 < z2 < 0 such that Ψ(z1) < 0 and Ψ(z2) > 0.

For given e1, let x1 = z1σ(e1) and let e2 > e1 denote the level of effort at which σ(e2)z2 = x1. Then
we have

ρx(x1, e1) = Ψ(z1) ·
σ′(e1)

σ(e1)2 < 0 and ρx(x1, e2) = Ψ(z2) ·
σ′(e2)

σ(e2)2 > 0.

33However, the given signal does not satisfy GMLRP as it violates the stochastic dominance condition.
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That is, the critical ratio is decreasing in x for effort e1 but increasing for e2. Consequently, ρ(x, e) is not
regular. �
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