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Abstract

This paper studies a symmetric two-bidder all-pay auction where the bidders com-
pete for a prize whose unknown common value is either high or low. The bidders’
private signals (or types) are discrete and affiliated through the value. Even with af-
filiated signals, monotonicity of equilibria can fail in the sense that the bidder with
a higher signal does not always win the auction. I show that when monotonicity
fails, there exist multiple symmetric equilibria but the bidder’s type-dependent pay-
off is invariant across the equilibria. The paper provides a closed-form formula for
the equilibrium payoffs and a condition for rent dissipation.
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1. Introduction

Suppose two lobbyists decide to make contributions for a candidate’s campaigns in an-
ticipation of a political prize following an election. The value of the prize to the lobbyists

∗The main idea of this paper has emerged from a joint project with Pauli Murto and Juuso Välimäki.
I am grateful to their insightful comments. Part of this paper has been written when the author visited
the Hanyang unversity in Seoul, South Korea. I would like to thank Youngwoo Koh and the Economics
Department at Hanyang university for their kind hospitality and support. All remaining errors are my
own. Chang Koo Chi: chang-koo.chi@nhh.no
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is common and dependent upon the electoral outcome. The lobbyists have private esti-
mates about the candidate’s chance of getting elected, but their estimates are positively
correlated. The prize is awarded to one of them who made the most contributions. Be-
tween the two lobbyists, who does expend more for the campaigns and take up the prize?
The more optimistic or pessimistic one about the election chance? How does each lobby-
ist’s expected payoff depend on his private information? Do the lobbyists benefit from a
more precise estimate?

I address these questions in a symmetric two-player all-pay auction setting. An all-
pay auction describes a game in which a fixed set of players compete for a fixed prize
by simultaneously submitting bids, under the rule that the player with the highest bid
achieves the prize but all submitted bids are forfeited. Even though auctions with such
all-pay rules are seldom conducted in the real world, this format has been extensively
studied because of its theoretical connection to winner-takes-all contests. In my model,
there are two bidders vying for a common-value prize and its true value depends on a
binary state of the world. Prior to bidding, each bidder is partially informed about the
state by observing a private discrete signal. The bidder’s signal or type is independently
drawn from a common distribution conditional on the state. Hence the types are affiliated
through the binary state. Formulating this auction environment as a static game with
incomplete information, I analyze its symmetric equilibria.1

Despite its simple structure, it is a difficult problem to characterize equilibria of this
game in full. The main challenge comes from the fact that affiliation between the bidders’
types may preclude a monotone bidding behavior in auctions with an all-pay feature, as
is well documented in literature (e.g, Milgrom and Weber (1982), Krishna and Morgan
(1997), Landsberger (2007), Rentschler and Turocy (2016)). In particular, if the types are
strongly correlated, then a monotone-strategy equilibrium may not exist. The idea is
straightforward. Compared to a low-type one, a high-type bidder expects his opponent
to be more optimistic about the state like himself and thus expects the level of competition
in the auction to be higher. When bidding is costly, therefore, the high type may optimally
respond by bidding cautiously. For this reason, the event of observing a high signal is not
necessarily good news to bidders in the all-pay auction.

When monotonicity fails to hold, the standard techniques cannot be applied to find
an equilibrium. Within the two-bidder setting, a recent paper by Rentschler and Turocy
(2016) develops a method of constructing non-monotone equilibria for a general inter-
dependent values model, and their model subsumes the model of this paper. However,
such algorithmic characterizations make further equilibrium analysis difficult. To gain

1Proposition 2 in Rentschler and Turocy (2016) establishes the existence of symmetric equilibria in the
symmetric two-bidder setting with interdependent valuations.
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more insights about non-monotone equilibria, I assume in this paper that the common
value of the prize is either high or low. Although this assumption is restrictive, there
are a few number of contest environments in which the key factor in valuations for the
prize is a binary outcome. In addition to the lobbying example above, undertaking R&D
to obtain a patent, vying for a monopoly position in an industry with potential entrants,
and competing in an elimination tournament for proceeding to the next round without
knowing the next competitor fall into this category.

The main result of this paper is Theorem 1 in Section 3 that provides a full characteriza-
tion of the expected payoffs in symmetric equilibria. The bidder’s type-dependent payoff
is characterized by the power of his type relative to a threshold. To be specific, I show
that the profile of possible types can be categorized into two groups with the threshold.
The group of types lower than or equal to this threshold does not obtain positive payoffs,
put differently, the information rents for this group are fully dissipated. In contrast, the
group of types above the threshold enjoys positive rents, and their equilibrium bidding
strategies are monotone: Every type above the threshold outbids the lower types with
probability one.

The threshold is uniquely determined by the bidder’s valuations for the prize and the
distribution of types, but it is independent of the bidder’s prior beliefs about the states. In
addition to the bidder’s payoffs, the threshold also determines the structure of equilibria.
Therefore, the payoff result shows how the equilibrium structure changes depending on
the configurations of parameter values. If the threshold is determined at the lowest type,
a monotone strategy equilibrium exists and this is a unique symmetric equilibrium.2 In
such an equilibrium, every type except the lowest one receives a positive payoff. The
other extreme case arises when the threshold is determined at the highest type. In this
case, every symmetric equilibrium involves full rent dissipation, and even the highest
type can be beaten by a low type.

Theorem 1 does not rely on equilibrium uniqueness. In Section 3, I show through an
example that when the threshold lies above the second lowest type, the all-pay auction
may have multiple symmetric (non-monotone) equilibria. The probability of one type
winning against another is not constant and thus the allocation is different across this set
of equilibria. Nonetheless, the expected payoff of each type is invariant and uniquely
determined. In other words, the set of symmetric equilibria is not outcome-equivalent
but payoff-equivalent.

Lastly, the payoff characterization result can be applied to the information design
problem. I investigate how a change in the information structure affects the bidder’s

2For monotonicity, the condition is also necessary. That is, if the threshold is not the lowest type, a high
type can be defeated by a low type with positive probability in equilibrium.
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information rents or the expected revenue accruing to the auctioneer.3 An improvement
in the signal’s quality has nontrivial effects on the rents. As the bidder’s type becomes
more informative about the state, his information rents increase due to the higher value
of information. On the other hand, there is a countervailing effect on the structure of
equilibria: a more informative signal results in stronger affiliation between the bidders’
types. Consequently, the threshold is determined at a higher level, thereby undermining
the power of each type.

This paper contributes to the auction and contest theory literature in that all-pay auc-
tions lie in their intersection.4 The early literature of all-pay auctions has generally fo-
cused on environments where bidders have complete information about each player’s
value of the object and cost of bidding (e.g., Hillman and Riley (1989), Baye, Kovenock,
and de Vries (1993, 1996), Che and Gale (1998)). Siegel (2009) provides a definitive treat-
ment of this model, by allowing heterogeneity on the player’s characteristics, and char-
acterizes the expected payoff in equilibrium in terms of the player’s power. Theorem 1
in this paper gives a similar flavor to his payoff result, but their key difference lies in
how to define the power. In a model with complete information and asymmetries among
bidders, the power is determined by a player’s reach, which indicates the player’s maxi-
mum willingness to pay if he wins a prize for certain. On the other hand, in a model with
incomplete information, the power is determined by a player’s type and the threshold.

The literature of all-pay auctions with incomplete information has developed by
relaxing the assumptions of the revenue equivalence theorem. Amann and Leininger
(1996) study the two-bidder case with independent but asymmetrically distributed
private values, and characterize a unique monotone pure-strategy equilibrium (MPSE).5

Siegel (2014) studies the two-bidder model with (asymmetric) interdependent values and
discrete types, and provides an algorithmic way to construct a monotone mixed-strategy
equilibrium. Krishna and Morgan (1997) derive a symmetric MPSE from the model with
symmetric interdependent values and affiliated signals á la Milgrom and Weber (1982).6

However, when bidders’ signals are affiliated, such a monotone equilibrium exists

3In a common values model, there is no surplus loss from misallocation. Hence the revenue can be easily
computed by subtracting away the aggregate rents given away to the bidders from the entire surplus.

4An all-pay auction corresponds to a contest with the success function where the prize is awarded to the
contestant who put forth the greatest effort. The recent survey paper by Kaplan and Zamir (2015) gives a
comprehensive picture of recent developments in the auction and contest theory.

5Parreiras and Rubinchik (2010) find that in the same environment with more than two bidders (possibly
risk-averse), the monotone strategy equilibrium exhibits an ”all-or-nothing” feature. In particular, a bidder
may optimally drop out by bidding zero even though he has a chance of winning.

6McAdams (2007) finds that the symmetric equilibrium of Krishna and Morgan (1997) is unique among
the set of monotone pure-strategy equilibria. More precisely, there is no asymmetric MPSE in symmetric all-
pay auctions. Note that his uniqueness result does not apply to the current paper, because all-pay auctions
with discrete types give rise to equilibrium in mixed strategies.
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under a restrictive condition as it has been pointed out earlier. If the condition for mono-
tonicity is violated, the equilibrium is non-monotonic and cannot be derived with stan-
dard methods. A recent paper by Chi, Murto, and Välimäki (2017) provides a full char-
acterization in a symmetric environment with an arbitrary number of bidders, at the
price of restricting to binary signals.7 Within the two-bidder setting, Rentschler and Tur-
ocy (2016) provide algorithmic characterizations for a symmetric interdependent values
model, and Appendix B of the paper by Lu and Parreiras (2017) contains an example of
non-monotone equilibrium under a specific functional form. The common values model
of this paper is a special case of theirs, but this simple model allows for a full characteri-
zation of the equilibrium payoffs. Furthermore, through the payoff characterization, the
paper establishes a systematic link between the structure of equilibria and the payoff.

The rest of the paper is organized as follows. Section 2 lays out the model and its
primitives. Section 3 presents the main result on the bidder’s equilibrium payoffs and
provides an example that shows the possibility of multiple equilibria in the environment.
Section 4 concludes and suggests avenues for future research. The proof of the main
theorem can be found in Appendix A. The other omitted proofs are relegated to Appendix
B.

2. The Model

There are two risk-neutral players who compete for a single prize. The players’ valuations
for the prize depend solely on a binary random variable θ ∈ {θL, θH}, which I call the state
hereafter. Specifically, the value of the prize is common to both players and given by v(θ).
I assume v(θH) > v(θL) > 0 and denote by q ≡ Pr(θ = θH) ∈ (0, 1) the common prior.
The realization of θ is not observable to the players until the prize is awarded to one of
them. Instead, each player i = 1, 2 is privately informed about θ by observing a private
signal (or type) ti ∈ T = {t1, · · · , tM}. I assume that the player’s type is independently
drawn from an identical probability mass function πθ(k) ≡ Pr(ti = tk|θ) conditional on θ.
Throughout the paper, the typical element of T is denoted tk and called ”type k”. I assume
that the information structure has full support: πθ(k) > 0 for all possible realizations of
θ and tk. In addition, I assume that the players’ types are strictly affiliated with θ. Within
the current framework, strict affiliation implies that πθ(k) is log-supermodular, or

πH(k)
πL(k)

is strictly increasing in k.

7Their model accommodates both common values and affiliated private values models. The paper
proves the uniqueness of symmetric equilibrium and determines the revenue ranking between all-pay
auctions and standard auctions.
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After observing a type, each player updates his beliefs about θ and simultaneously
expends efforts or money in order to influence his winning probability. The prize is
awarded to the one exerting the highest effort. Interpreting the effort as a non-refundable
bid, this winner-takes-all contest corresponds to an all-pay auction where the two players
simultaneously submit a bid of bi ≥ 0, the high bid wins the prize, but both have to pay
their bids regardless of the outcomes. I therefore adopt the language of auctions and refer
to players as bidders.

With a profile of bids b = (b1, b2) and an arbitrary tie-breaking rule σi(b) =

Pr(i wins|b1 = b2) ∈ (0, 1), the (ex post) payoff to bidder i can be written as

ũi(b; θ) = −bi + v(θ)
[
1{bi>bj} + σi(b)1{bi=bj}

]
.

At the moment of bidding, the value of the prize is uncertain and each bidder receives
information on the value only through his type. Hence each bidder i’s strategy must be a
function of ti only. Moreover, there is no equilibrium in pure strategies in this setting with
a finite set of types. Let Fk

i (b) ≡ Pr(bi ≤ b|ti = tk) denote the bid distribution function
from which bidder i who observed ti = tk randomly draws a bid. With this notation,
bidder i’s mixed strategy can be represented by a vector of M distribution functions,
Fi = (F1

i , · · · , FM
i ). For each Fk

i , let supp[Fk
i ] denote its support, i.e., the smallest closed

set satisfying Pr(X ∈ supp[Fk
i ]) = 1 when the random bid X follows distribution Fk

i .
When choosing a bid in a common value auction, in order to avoid the winner’s curse,

rational bidders consider the expected value of the prize conditional on their own types
plus conditional on the event of winning. The latter conditioning naturally depends on
the bidding strategy chosen by the opponent. Suppose that bidder i observes type k and
his opponent adopts a strategy Fj. The expected payoff from submitting a bid of b to
bidder i can be written as:

ui
(
b, k|Fj

)
= E

[
ũi(b; θ) | bi = b, ti = tk, bj ∼ Fj

]
. (1)

With this payoff expression, an equilibrium of the game is defined as follows:

Definition 1. An equilibrium of the all-pay auction is a profile of strategies (F1, F2) such that for
each bidder i = 1, 2, for all tk ∈ T , and for all elements bi of the interior of supp[Fk

i ],

bi ∈ argmax
b

ui
(
b, k|Fj

)
.

An equilibrium (F1, F2) is symmetric if both bidders employ the same bidding strat-
egy: Fi = F∗ = (F1

∗ , · · · , FM
∗ ) for i = 1, 2. As the model describes a symmetric environ-

ment, the rest of the paper focuses on symmetric equilibria. In such an equilibrium F∗,
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the bidder’s expected payoff depends on his type. To each type k, I denote by UF∗(k)
the corresponding payoff and refer to it as the information rent. In order for type k to
randomize over supp[Fk

∗ ] in equilibrium, all bids in the interior of the bid support must
yield the same payoff. Using this indifference condition, the rent can be easily computed
by choosing an arbitrary bid from the support:

UF∗(k) = u(b, k|F∗) for every b ∈ int
(

supp[Fk
∗ ]
)

.

Lastly, I say that a symmetric equilibrium F∗ is in monotone strategies if for all pairs of
types k and m with k > m, bk ∈ supp[Fk

∗ ] and bm ∈ supp[Fm
∗ ] imply bk ≥ bm. In a

monotone equilibrium, therefore, bidder i wins against bidder j with probability one if
ti > tj.

3. Equilibrium Payoff Characterization

In this section, I analyze the symmetric equilibria of the all-pay auction and characterize
the bidder’s expected equilibrium payoffs.

Before turning to the analysis, I make two preliminary observations that provide nec-
essary conditions for any symmetric equilibria. First, there cannot be atoms in the equilib-
rium bid distribution for every type. To see this, suppose that distribution Fk

∗ has an atom
at some x ≥ 0 and bidder 2 employs this equilibrium strategy. Then bidder 1’s expected
payoff function u(b, t1|F∗) has an upward jump at b = x, and thus if bidder 1 observed
type k, he would be strictly better off by bidding slightly higher than x. Hence every
equilibrium bid distribution function admits no atoms. Second, the union of the whole
bid supports, ∪M

k=1 supp[Fk
∗ ], must form an interval starting at zero with no internal gaps.

Since the bidders must pay their own bids regardless of the outcome, if no bidders are
active over an interval (b1, b2), the bidder who planned to submit b2 could extenuate his
payment by deviating downwards, without any changes in the winning probability.8

Lemma 1. In every symmetric equilibrium F∗ = (F1
∗ , · · · , FM

∗ ) of the all-pay auction, the follow-
ing properties must hold:

1. For each type k, Fk
∗ is continuous, i.e., no distribution has mass points.

2. The union of all bid supports, ∪M
k=1 supp[Fk

∗ ], is a connected interval that includes zero.

One important implication of Lemma 1 is that a tie does not occur in equilibrium and
hence the expected payoff function in (1) becomes continuous at every b ≥ 0. By virtue

8The two properties in Lemma 1 also hold in a general interdependent values model with an arbitrary
number of bidders (Chi et al. (2017)). Refer to Siegel (2014) for other properties of (asymmetric) equilibria.
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of this property, I can simplify the payoff function into

u(b, k|F∗) = −b + E
[

v(θ) 1{bj<b}

∣∣∣ ti = tk, bj ∼ F∗
]

= −b +
M

∑
m=1

V(k, m)pk(m)Fm
∗ (b). (2)

In (2), V(k, m) ≡ E[v(θ) | ti = tk, tj = tm] denotes the expected value of the prize to bidder
i conditional on the types, and pk(m) ≡ Pr

(
tj = tm| ti = tk) represents bidder i’s beliefs

about the opponent’s type after learning his own. As the bidders’ types are affiliated
through the state, it follows from Milgrom and Weber (1982) that V(k, m) is increasing in
each argument and pk(m) is log-supermodular. For an illustration of the reduced payoff
expression (2), observe that when the opponent of tj = tm employs a bidding strategy F∗,
bidder i wins with probability Fm

∗ (b) and thereby gains V(k, m). The expected payoff is
therefore the average gain from winning weighted by bidder i’s beliefs about tj less his
unconditional bid.

Let φ(k, m) ≡ V(k, m)pk(m) and slightly abusing notation, for each type k, let pk ≡
Pr
(
ti = tk) = qπH(k) + (1 − q)πL(k) denote the marginal distribution of the bidder’s

type. Interpreting φ(k, m) as the expected gain to bidder i with ti = tk from winning
against his opponent with tj = tm, consider the difference φ(k′, m)− φ(k, m) for k′ > k.
Using Bayes’ rule and doing simple algebra, it can be shown that the incremental gains to
bidder i when his type rises to k′ take a form of

φ(k′, m)− φ(k, m) = C(k′, k)
[
v(θH)πH(m)− v(θL)πL(m)

]
, (3)

where

C(k′, k) ≡ q(1− q)
πH(k′)πL(k)− πH(k)πL(k′)

pk pk′
.

Note that the defined expression C is independent of the opponent’s type m and is
always positive. Its positive sign is due to affiliation between ti and θ: the expression on
the top of the quotient above, which is the unique factor that determines the sign of C,
is positive for every k′ > k. As a result, the sign of the incremental gains is determined
by the sign of the bracketed expression in (3), which changes the sign at most once from
negative to positive as m increases from 1 to M. To put it another way, the function φ(k, m)

satisfies the single-crossing property in (k; m), in the sense that for every k′ > k,

φ(k′, m)− φ(k, m)

≤ 0 for all m < τ

> 0 for all m ≥ τ.
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The Greek letter τ indicates the tipping point at which the incremental gains, or equiva-
lently the expression v(θH)πH(m)− v(θL)πL(m) in (3), change the sign from negative to
positive. Since πH(M) > πL(M) always holds by affiliation, the expression must take on
a positive value at m = M at least. Hence the sign-changing point τ ≤ M is well defined.9

It is worthwhile to note that the point τ does not depend on the bidder i’s types k′ > k,
nor on the prior beliefs about the state. This property of τ is a salient feature of the binary
states. The assumption of θ being a binary random variable is tantamount to having the
fixed sign-changing point of φ(k′, m)− φ(k, m) regardless of k′ > k. The property plays
an essential role in the subsequent equilibrium analysis.10 Its key implication is the next:

Lemma 2. Given a symmetric equilibrium F∗, choose a bid of b > 0 from ∪M
k=1 supp[Fk

∗ ].

(a) Suppose that the bid yields a nonnegative payoff to type k but a nonpositive payoff to type
m < k and type k′ in the equilibrium. Then the expected payoff from bidding b to all types
below k′ is at most zero.

(b) Suppose that the bid yields a payoff of zero to type m but a nonpositive payoff to type k > m
in the equilibrium. Then the expected payoff from bidding b to all types above m is at most
zero.

PROOF OF LEMMA 2: See Appendix B.1. �

Utilizing Lemma 2, I derive an intuitive characterization for the payoffs in equilibrium
of the all-pay auction. To be specific, I show that given the primitives of the model,
the type space T = {t1, · · · , tM} can be partitioned into two groups with a threshold
as follows. In every symmetric equilibrium, the bidder who observed a type lower than
or equal to this threshold τ∗ earns an expected payoff of zero. On the other hand, if the
bidder’s type lies above τ∗, then he obtains a positive rent. Depending on the information
structure 〈πL(k), πH(k)〉Mk=1 of the game and the bidder’s valuations for the prize, τ∗ can
be determined at the lowest or the highest type so that one of these groups is to be empty.
For example, if τ∗ = 1, then every type except the lowest type earns a positive expected
payoff in equilibrium. In contrast, if τ∗ = M, no bidders earn positive payoffs in any
symmetric equilibrium. In other words, equilibrium must involve full rent dissipation.

To illustrate how to determine the threshold τ∗, consider a partial sum of the difference
φ(k′, t)− φ(k, t) with k′ > k from t = 1 to t = m. Using the formula (3), this partial sum

9In fact, it can be shown that the function φ(k, m) is log-supermodular (so it satisfies the single-crossing
property). Since log-supermodularity is preserved under integration, the expected value V(k, m) is log-
supermodular (See Karlin and Rinott (1980)) in this common value setting. Therefore, φ(k, m) is the product
of the two log-supermodular functions and thus is log-supermodular (See Lemma 2 in Chi et al. (2017)).

10The main difficulty for going beyond the binary state comes from the fact that the invariance property
does not hold in general when the number of possible states is more than two.
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can be written as

m

∑
t=1

(
φ(k′, t)− φ(k, t)

)
= C(k′, k)

m

∑
t=1

(
v(θH)πH(t)− v(θL)πL(t)

)
= C(k′, k)

(
v(θH)ΠH(m)− v(θL)ΠL(m)

)
,

where Πθ(m) = ∑m
t=1 πθ(t) on the bottom line indicates the cumulative distribution of

types conditional on θ. To see how the sign of the partial sum changes as m varies,
recall that C(k′, k) > 0 for every k′ > k and affiliation implies the monotone probability
ratio property, i.e., the increasing ratio ΠH(m)/ΠL(m) over m. Consequently, like the
incremental gains in (3), the partial sum changes its sign at most once as m increases.11

With this single-crossing property in hand, define the threshold τ∗ as the tipping point
at which the m-th partial sum changes the sign. Like the previously defined point τ, the
threshold τ∗ is well-defined because v(θH)ΠH(M)− v(θL)ΠL(M) = v(θH)− v(θL) > 0.
Also, it is uniquely determined and independent of the bidder i’s types k′ > k. To com-
pare these two points, note that a positive m-th partial sum calls for φ(k′, m)−φ(k, m) > 0.
Hence τ must be below τ∗.

I now state the main result of the paper:

Theorem 1. In every symmetric equilibrium F∗ of the all-pay auction, the expected payoff of the
type-k bidder equals

UF∗(k) = max
{

0, wτ∗(k)
}

,

where the function wτ∗(k) represents the power of type k relative to the threshold τ∗:

wτ∗(k) ≡
k

∑
m=1

φ(k, m)−
[

τ∗

∑
m=1

φ(τ∗, m) + 1{k≥τ∗+1}
k

∑
m=τ∗+1

φ(m, m)

]
.

PROOF OF THEOREM 1: See Appendix A. �

The main implication of Theorem 1 comes from the defined power function wτ∗(k).
In order to explain how the function is related to the power of type k, I demonstrate that
wτ∗(k) takes on a nonpositive value for k ≤ τ∗ and a positive value for k > τ∗. When
type k lies below the threshold,

wτ∗(k) =
k

∑
m=1

φ(k, m)−
τ∗

∑
m=1

φ(τ∗, m) ≤ −
τ∗

∑
m=1

[φ(τ∗, m)− φ(k, m)] ≤ 0,

11More generally, if a real-valued function f (x) is single-crossing, then so is F(x) ≡
∫

1{t≤x} f (t)dt.
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where the last inequality follows by definition of τ∗ and becomes strict when
k < τ∗. Accordingly, Theorem 1 implies that if a bidder observes a type in sub-
space T ∗L ≡ {t1, · · · , tτ∗}, then there is no symmetric equilibrium where the bidder
obtains a positive expected payoff. On the other hand, when type k lies above the
threshold, the power function takes a value of

wτ∗(k) =
k

∑
t=1

φ(k, t)−
[

τ∗

∑
t=1

φ(τ∗, t) +
k

∑
t=τ∗+1

φ(t, t)

]

=
τ∗

∑
t=1

(
φ(k, t)− φ(τ∗, t)

)
+

k

∑
t=τ∗+1

(
φ(k, t)− φ(t, t)

)
.

Observe that the last derived expression is strictly positive. This is because its first τ∗-th
partial sum is positive for every type k > τ∗ and the difference φ(k, t) − φ(t, t) in the
second sum is positive for every type t between τ∗ + 1 and k. Therefore, it results from
Theorem 1 that a bidder who observes a type in subspace T ∗H = {tτ∗+1, · · · , tM} earns a
positive rent of wτ∗(k) in equilibrium. Furthermore, it can be shown that wτ∗(k + 1) >

wτ∗(k) for every type k in T ∗H , meaning that the bidder’s equilibrium payoff increases
with his type.

Therefore, the theorem shows that the equilibrium payoff of each type is determined
by its relative power to the threshold. A configuration of the information structure and the
prize values uniquely identifies the threshold, which in turn partitions the type space into
T ∗L and T ∗H . More importantly, this type-dependent rent does not depend on equilibrium
uniqueness. If the type space contains more than 3 elements and τ∗ ≥ 3, then the all-
pay auction may possess multiple symmetric equilibria in non-monotone strategies and
characterizing such equilibria in full is a challenging task. Furthermore, the probability of
type k winning against another type m is not constant across equilibria. See the example
at the end of the current section for a case with a continuum of equilibria.

The following two results are by-products of Theorem 1 which concern the structure
of symmetric equilibria. Corollary 2 provides a sufficient and necessary condition for the
existence of monotone strategy equilibrium in the all-pay auction. The condition is also
sufficient for the uniqueness of symmetric equilibrium: if the condition is met, a unique
symmetric equilibrium exists and this equilibrium is in monotone strategies. In contrast,
Corollary 3 provides a condition under which the bidder’s rent is fully dissipated regard-
less of his type.

Corollary 2. For types k in T ∗H , the equilibrium bid distributions are uniquely determined. Specif-
ically, a type-k > τ∗ bidder randomizes over the bid support supp[Fk

∗ ] = [Bk, Bk] according to

11



the uniform distribution, where

Bk ≡
τ∗

∑
t=1

φ(τ∗, t) +
k−1

∑
t=τ∗+1

φ(t, t) and Bk ≡
τ∗

∑
t=1

φ(τ∗, t) +
k

∑
t=τ∗+1

φ(t, t).

Consequently, the all-pay auction has a unique symmetric equilibrium that is in monotone strate-
gies if and only if τ∗ = 1, or equivalently

v(θH)πH(1) > v(θL)πL(1). (MC)

PROOF OF COROLLARY 2: See Appendix B.2. �

Corollary 2 provides a simple but tight condition under which a high signal becomes
unambiguously good news in the all-pay auction, so that there exists a symmetric equi-
librium where a high-type bidder always outbids a low-type one. To understand the
intuition behind (MC), observe that if the condition holds, then v(θH)πH(t) > v(θL)πL(t)
for all types t = 2, · · · , M. This in turn implies that the expected gain φ(k, t) to bidder i is
increasing when his type rises, regardless of the opponent’s type. As a result, the bidder
is willing to bid more aggressively as he observes a higher type.

It is worth noting that (MC) is in line with the existing monotonicity conditions in the
literature. For instance, Krishna and Morgan (1997) and Siegel (2014) have shown that
if φ(k, t) increases in k for every t, then the all-pay auction with general interdependent
valuations possesses a monotone strategy equilibrium.12 In this binary common values
model, however, the condition is also necessary for monotonicity. Indeed, if the expected
gain φ(k, t) is not monotone for some type t, it turns out that the type-t bidder is defeated
by a lower type with positive probability in any symmetric equilibrium.

The next result describes the opposite case to Corollay 2 and provides a condition for
rent dissipation.

Corollary 3. Every symmetric equilibrium of the all-pay auction involves full rent dissipation if
and only if τ∗ = M, equivalently,

v(θH) (1− πH(M)) < v(θL) (1− πL(M)) . (FD)

Since πH(M) > πL(M) by affiliation, the all-pay auction extracts full rents from the
bidders when v(θH) is not sufficiently higher than v(θL). To gain some insights on the con-
dition, observe that the expression on each side of (FD) represents the gain from winning

12In a (asymmetric) two-bidder case with continuous signal distributions, Lu and Parreiras (2017) identify
a sufficient and necessary condition for the existence of a pure-strategy monotone equilibrium.

12



to the highest type when the state is high and low, respectively. Hence if the condition
is met, then the event of winning in the high state becomes bad news to the bidder who
is the most optimistic about the chance of θH. This results in a cautious bidding in the
auction, thereby extracting the entire surplus from the bidders.

I conclude this section with an example that illustrates how Theorem 1 is applied to
the case with three possible types. The example also shows the possibility of multiple
symmetric equilibria and investigates the impact of a change in the information structure
on the payoffs.

Example 1. Consider the following information structure with type space T = {t1, t2, t3}:

t1 t2 t3

πθ(k)
θ = θL α(1− λ) λ (1− α)(1− λ)

θ = θH (1− α)(1− κλ) κλ α(1− κλ)

The parameter λ ∈ (0, 1) controls the chance of the second type relative to the other types
conditional on the state, and another parameter κ = πH(2)

πL(2)
> 0 indicates its likelihood

ratio. Define α̂ ≡ α
1−α and assume α̂ > 1. The parameter α or α̂ measures the informative-

ness of t1 and t3. As α increases, it is more likely that each bidder observes t1 in the low
state and t3 in the high state. The given information structure satisfies the strict monotone
likelihood ratio property (sMLRP) if

1
α̂(1− λ) + λ

< κ <
α̂

α̂λ + (1− λ)
.

Suppose that the threshold is determined at the lowest type, i.e. τ∗ = 1. This is the
case when

v(θH)

v(θL)
> α̂ · 1− λ

1− κλ
,

that is, the true value of the prize in the high state is sufficiently higher than in the low
state. In this case, there exists a unique symmetric equilibrium, and the equilibrium is
in monotone strategies as displayed in Figure 1. Each type k randomizes over its own
support with uniform density 1

φ(k,k) . The equilibrium payoff is

UF∗(1) = w1(1) = 0

UF∗(2) = w1(2) = φ(2, 1)− φ(1, 1) > 0

UF∗(3) = w1(3) = φ(3, 1) + φ(3, 2)− φ(1, 1)− φ(2, 2) > 0,

respectively.
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0 φ(1, 1)
supp[F1

∗ ]
f 1
∗ = 1

φ(1,1)
∑2

t=1 φ(t, t)
supp[F2

∗ ]
f 2
∗ = 1

φ(2,2)
∑3

t=1 φ(t, t)
supp[F3

∗ ]
f 3
∗ = 1

φ(3,3)

Figure 1: The unique symmetric equilibrium is monotonic when τ∗ = 1. Horizontal bars indicate the
equilibrium bid support of the corresponding type, and f k

∗ represents the uniform bid density for type k.

The threshold is determined at τ∗ = 2 if

α̂ · 1− λ

1− κλ
≥ v(θH)

v(θL)
>

α̂ + λ

1 + α̂κλ
.

It can be shown that there exists a unique symmetric equilibrium like in the previous
case, but the equilibrium is not in monotone strategies. Specifically, in every symmet-
ric equilibrium, the bid supports of type 1 and 2 are connected intervals which begin at
zero.13 As a result, both type-1 and type-2 bidders obtain a payoff of zero. In the over-
lapping support, the equilibrium bid distribution is uniquely determined by the no-rent
condition:14 (

φ(1, 1) φ(1, 2)
φ(2, 1) φ(2, 2)

)(
F1
∗ (b)

F2
∗ (b)

)
=

(
b
b

)
.

As opposed to the two low types, the highest type obtains a positive payoff of

UF∗(3) = w2(3) = φ(3, 1) + φ(3, 2)− φ(2, 1)− φ(2, 2).

Figure 2 provides a complete characterization of this non-monotone equilibrium.
Lastly, if

α̂ + λ

1 + α̂κλ
≥ v(θH)

v(θL)
,

then the threshold is determined at the highest type, τ∗ = 3. In this case, the all-pay
auction does not give away any rents to all types and extracts the entire surplus. In

13The uniqueness result does not rely on the 3-tuple type space in this example, but it holds for any finite
set of types whenever τ∗ = 2. The way to prove the uniqueness of equilibrium is similar to the proof of
Proposition 3 in Chi et al. (2017).

14Recall that the expected gain φ(k, t) is log-supermodular in my framework (See Footnote 9). Hence
the 2-by-2 matrix in the no-rent condition has a positive determinant, thereby giving rise to positive bid
densities in the overlapping region.
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0 B1
supp[F1

∗ ]
f 1
∗ = φ22−φ12

φ22φ11−φ12φ21 B2
supp[F2

∗ ]
f 2
∗ = φ11−φ21

φ22φ11−φ12φ21
f 2
∗ = 1

φ22 B3
supp[F3

∗ ]
f 3
∗ = 1

φ33

Figure 2: Characterization of the unique symmetric equilibrium that arises when τ∗ = 2. When τ∗ 6= 1,
the equilibrium is non-monotonic so that a type-2 bidder can be defeated by type 1 with positive probability.
In this unique equilibrium, the bid support of type 1 is included in that of type 2. In contrast, the type-3
bidder outbids the lower types with probability one. The upper support for each type is B1 = ( f 1

∗ )
−1,

B2 = ∑2
t=1 φ(2, t), and B3 = B2 + φ(3, 3). The function φ(k, t) is abbreviated to φkt in this figure.

addition, the symmetric equilibrium is not unique. In fact, there exists a continuum of
symmetric equilibria in this game, depending on the configurations of parameter values.

Figure 3 describes a continuum of symmetric equilibria that arises when τ∗ = τ = 3
and features supp[F2

∗ ] having an internal gap.15 In this set, type 1 and type 2 are active
until the bid reaches B3, the lower bound of supp[F3

∗ ]. Here the choice of B3 is arbitrary.
It can vary from zero to the point where the type-2 bidder exhausts the bid density:

B3 ∈
[

0 ,
φ(2, 2)φ(1, 1)− φ(1, 2)φ(2, 1)

φ(1, 1)− φ(2, 1)

]
.

Each choice of B3 generates a symmetric equilibrium, ranging from the equilibrium with-
out I1 (corresponding to B3 = 0) to the equilibrium without I3.

To see that this is an equilibrium, observe that the proposed equilibrium is constructed
in a way that two types are active on each piece of the interval [0, B2]. For example, t1 and
t2 are active on I1. Together with Theorem 1, this means that any bids in I1 yield a payoff
of zero to those types:

v(θH)q1W(b|F∗, θH) + v(θL)(1− q1)W(b|F∗, θL) = b

v(θH)q2W(b|F∗, θH) + v(θL)(1− q2)W(b|F∗, θL) = b,

where I reformulate the no rents condition in terms of the probability of winning at b
given state θ:

W(b|F∗, θ) ≡
3

∑
t=1

πθ(t)Ft
∗(b) for each θ = θL, θH.

15The condition τ = 3 allows for an overlap between supp[F2
∗ ] and supp[F3

∗ ].

15



0 B1
supp[F1

∗ ]

B2
supp[F2

∗ ]
I1 I2 I3

I4
B3

B3
supp[F3

∗ ]

Figure 3: A set of non-monotone symmetric equilibria that arises when τ∗ = τ = 3.

Since the posterior beliefs satisfy q2 ≡ Pr(θH|t2) > q1 ≡ Pr(θH|t1) by affiliation, solving
the system of equations above leads to v(θH)W(b|F∗, θH) = v(θL)W(b|F∗, θL). This im-
plies that the bidders are indifferent between winning at b in the high state and winning
at b in the low state, irrespective of types. Therefore, the inactive type t3 cannot obtain a
positive payoff by deviating and choosing a bid in I1.

The same argument can be applied to I2 and I3, establishing that the inactive type has
no incentives to deviate over the support [0, B2]. If type m = 1, 2 deviates from Bm by
making a bid of Bm + ∆ in I4, his net payoff is negative as φ(m, 3) · ∆

φ(3,3) − ∆ < 0. This
precludes any global deviations to I4 for the two low types, and hence the bid support
described in Figure 3 is indeed an equilibrium.

The discussion shows how the structure of symmetric equilibrium changes depending
on the configurations of parameter values. Intuitively, a higher ratio of the prize values
would enhance the informational advantage of high types and thus lead to their aggres-
sive bidding behavior, resulting in a monotone equilibrium.

The example also can be used to investigate the effect of a change in the information
structure on the equilibrium outcomes. To this end, suppose that the auctioneer is able
to control the parameter α by supplying her own information about the state.16 Observe
that as α increases, the information structure becomes more statistically precise about the
state. This has two effects on the bidder’s information rents. On the one hand, a higher α

renders the bidder’s private information more valuable and thus increases the informa-
tion rent. On the other hand, a higher α implies a higher degree of affiliation between
the bidders’ types, put differently, a higher degree of competition between the bidders.
Hence the bidders optimally respond by bidding cautiously, and thus the threshold tends
to be higher, thereby undermining the power of each type.

It depends on the parameter values which effect overwhelms the other. Figure 4 dis-

16This is related to the information design problem in auction literature. Refer to Ganuza and Penalva
(2010).
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Figure 4: The impact of an increase α on aggregate information rents. The specified information structure
satisfies the sMLRP if α > 23

43 ≈ 0.535. The threshold is determined at τ∗ = 3 if α ≥ 5
6 , and thus the

aggregate rents boil down to zero.

plays a numerical result when the parameters are given by v(θH) = 200, v(θL) = 100,
λ = 0.3, κ = 1.1, and q = 0.5. Under these specifications, the all-pay auction has a mono-
tone symmetric equilibrium iff α > 67

102 ≈ 0.657, and the auction extracts a full surplus
from the bidders iff α ≥ 5

6 . Formulating the aggregate information rents as a function of
α, Figure 4 shows how the rents and the equilibrium structure change as α varies. Each
function takes on a hump shape, suggesting that the effect of precision dominates the ef-
fect of affiliation for a low value of α. For α ≥ 0.685, however, the ranking is reversed so
that the rents given away to the bidders are monotone decreasing in α.

4. Conclusion

This paper studies a symmetric two-bidder all-pay auction with common values. When
the bidders’ private signals are highly affiliated, or when their valuations for the prize
are not much sensitive to a change in the underlying state, the monotonicity of equilibria
fails to hold and non-monotone ones inevitably arise. In the model with binary com-
mon values, this paper proposes a novel way to analyze such equilibria and provides a
closed-form formula for the expected payoffs in both types of equilibria. The threshold
is key in the main result. The bidder’s payoff is characterized by the power of his type
relative to the threshold. The result presents simple conditions for existence of monotone
equilibrium and rent dissipation, and enables further interesting equilibrium analysis.

Furthermore, the techniques and insights developed in this paper can be used as a
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building block for future research on non-monotone equilibrium analysis in contests or
in auctions with costly bidding. One avenue for future research is to extend the payoff
result into more general information settings that accommodate more-than-two possible
states and asymmetric signal distributions. These settings naturally give rise to type-
dependent thresholds, and the main hurdle is to sort out which one is relevant to the
equilibrium payoffs. Another promising avenue is to extend the analysis into contests
with more general stochastic success functions, including the two specifications—logit
and probit—commonly used in the literature. Further analysis of these models is left for
future work.
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A. Proof of Theorem 1

I prove Theorem 1 through a series of lemmas. The proof is comprised of 3 parts.

Part 1

In the first part of the proof, I use the sign-changing point τ of the incremental gains
to break the type space T into two separate groups, TL = {t1, · · · , tτ−1} and TH =

{tτ, · · · , tM}. The main result of Part 1 is Proposition A.1, which proves that in any sym-
metric equilibrium the bidder in TL obtains no information rents. In what follows, the
supremum and the infimum of a set A are denoted by sup A and inf A, respectively.

Lemma A.1. In every symmetric equilibrium F∗ of the all-pay auction, inf
⋃

t∈ TL
supp[Ft

∗] =

inf
⋃

t∈ TH
supp[Ft

∗] = 0.

PROOF OF LEMMA A.1: Define B ≡ inf
⋃

t∈ TL
supp[Ft

∗] and B′ ≡ inf
⋃

t∈ TH
supp[Ft

∗].
Suppose to the contrary that B > 0. Then B′ = 0 follows from Lemma 1. However, B′ = 0
implies that there exists a type k in TH whose bid distribution function satisfies Fk

∗(B) > 0
and the expected payoff from submitting the bid B is at most zero. In parallel, as the bid B
is an element of

⋃
t∈ TL

supp[Ft
∗], there must exist a type m in TL who earns a nonnegative

expected payoff from submitting B. These two derived conditions can be put into

−B + ∑
t∈TH

φ(m, t)Ft
∗(B) ≥ 0 ≥ −B + ∑

t∈TH

φ(k, t)Ft
∗(B),

where I used Ft
∗(B) = 0 for all t ∈ TL. The two inequalities above can be reduced further

into

∑
t∈TH

[φ(k, t)− φ(m, t)] Ft
∗(B) ≤ 0.

But this leads to a contradiction, since φ(k, t)− φ(m, t) > 0 for all t ∈ TH and Fk
∗(B) > 0

at least for the type k in TH. B′ = 0 can be established in an analogous way. �

Lemma A.2. In every symmetric equilibrium F∗, both
⋃

t∈ TL
supp[Ft

∗] and
⋃

t∈ TH
supp[Ft

∗] are
connected intervals.

PROOF OF LEMMA A.2: Suppose to the contrary that
⋃

t∈ TL
supp[Ft

∗] is not a con-
nected interval. To be precise, there exists a closed interval [b1, b2] such that
[b1, b2] ∩

(⋃
t∈ TL

supp[Ft
∗]
)

= {b1, b2}. Observe that in this case, the interval [b1, b2]

must be a subset of
⋃

t∈ TH
supp[Ft

∗] due to Lemma 1. Then I can choose a type k from TH

and a type m from TL such that the incremental returns from bidding b2 rather than b1
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are nonpositive for type k but nonnegative for type m. Using the fact that Ft
∗(b2) = Ft

∗(b1)

for all t ∈ TL, the last statement can be translated into

∑
t∈TH

[φ(k, t)− φ(m, t)]
[
Ft
∗(b2)− Ft

∗(b1)
]
≤ 0. (4)

Since φ(k, t) − φ(m, t) > 0 and Ft
∗(b2) − Ft

∗(b1) ≥ 0 for all t ∈ TH, and since the latter
inequality becomes strict for at least one type t ∈ TH, the inequality (4) gives a con-
tradiction. It can be shown in a similar way that

⋃
t∈ TH

supp[Ft
∗] is a connected interval. �

The previous lemmas are used to prove the next result:

Lemma A.3. In every symmetric equilibrium F∗,
⋃

t∈ TL
supp[Ft

∗] ⊂
⋃

t∈ TH
supp[Ft

∗] = [0, B].

PROOF OF LEMMA A.3: In light of the previous lemmas, for the proof, it suffices
to show that the supremum of

⋃
t∈ TL

supp[Ft
∗] is no greater than the supremum of⋃

t∈ TH
supp[Ft

∗]. Suppose there is an element b in the set
⋃

t∈ TL
supp[Ft

∗] which is greater
than B ≡ sup

⋃
t∈ TH

supp[Ft
∗]. Then it follows from Lemma A.1 that making the bid b

yields a nonnegative expected payoff for some type m in TL but a nonpositive payoff for
some type k in TH. Since b > B is assumed, Ft

∗(b) = 1 for all t ∈ TH. Hence I have

u(b, k|F∗)− u(b, m|F∗) = ∑
t∈TL

[φ(k, t)− φ(m, t)] Ft
∗(b) + ∑

t∈TH

[φ(k, t)− φ(m, t)] ≤ 0. (5)

However, since the total sum ∑t∈T [φ(k, t)− φ(m, t)] is strictly positive and φ(k, t) −
φ(m, t) ≤ 0 for all t ∈ TL, the payoff difference in (5) must be strictly positive, thereby
leading to a contradiction. �

Proposition A.1. There is no information rent to a bidder of type t ∈ TL in any symmetric
equilibrium.

PROOF OF PROPOSITION A.1: Choose an arbitrary bid b from
⋃

t∈ TL
supp[Ft

∗]. Below
I demonstrate that the expected payoff from bidding b is at most zero for all t ∈ TL,
implying that the rents accruing to type t ∈ TL are completely dissipated in equilibrium.

In light of Lemma A.3, the chosen bid b must be an element of
⋃

t∈ TH
supp[Ft

∗]. Hence
b ∈ supp[Fk

∗ ] for some type k in TH, meaning that the bid must yield a nonnegative payoff
to the type. On the other hand, in light of Lemma A.1, there is at least one type m in TL

who earns at most a payoff of zero by bidding b. Note k > m. In addition, Lemma A.1
suggests that such a type, say type k′, also exists in the group TH, for whom the payoff
from bidding b is nonpositive.

The previous discussion confirms that all of the given conditions in Lemma 2-(a) are
satisfied for the bid b. Therefore, it follows that u(b, s|F∗) ≤ 0 for all s ≤ k′. Since type k′
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was selected from TH and the bid b was arbitrarily chosen from the bid support for TL, I
conclude that there are no bids that ensure a positive payoff for TL. �

Part 2

In the second part of the proof, I partition the type space T again but this time with the
threshold τ∗: T ′L = {t1, · · · , tτ∗−1} and T ′H = {tτ∗ , · · · , tM}.17 The main goal of this
part is (i) to extend the rent dissipation result in Proposition A.1 to the group T ′L , as is
stated in Lemma A.5, and (ii) to characterize the equilibrium bid supports for each group,
as is displayed in Figure 5.

The next lemma is parallel with Lemma A.1 in the first part. It demonstrates that
at least one type in the group T ′H obtains an expected payoff of zero in any symmetric
equilibrium. The lemma plays an essential role in establishing the ensuing results. In the
following, I use A\B to denote the complement of set B in set A.

Lemma A.4. There exists one type in T ′H who earns no rents in any symmetric equilibrium.

PROOF OF LEMMA A.4: Let B ≡ inf
⋃

t∈ T ′H supp[Ft
∗] denote the lower support for T ′H. I

assume B > 0, for otherwise there is nothing to prove. In addition, I assume τ < τ∗, or
equivalently T ′H is a strict subset of TH, for otherwise the result is immediate from Lemma
A.1. I first prove by contradiction that B ≤ B′ ≡ sup

⋃
t∈ TL

supp[Ft
∗], where B′ represents

the upper support for TL.
For this purpose, suppose B > B′ and consider a bid b ∈ (B′, B). By definition of B′,

b /∈ ∪t∈ TL supp[Ft
∗], and thus it results from Proposition A.1 that u(b, m|F∗) ≤ 0 for all

types m ∈ TL. In addition, since b > B′ and b < B, I have Ft
∗(b) = 1 for all t ∈ TL and

Ft
∗(b) = 0 for t ∈ T ′H. Accordingly, I can write the expected payoff from bidding b to type

m in TL as
u(b, m|F∗) = −b + ∑

t∈ T ′L

φ(m, t)Ft
∗(b) ≤ 0. (6)

Observe that the bid b must be an element of
⋃

t∈ T ′L\TL
supp[Ft

∗]. Furthermore, Ft
∗(b) < 1

for at least one type t ∈ T ′L\TL = {tτ, · · · , tτ∗−1} due to b < B and Lemma 1. Conse-
quently, the expected payoff from bidding b to type k in T ′L\TL is

u(b, k|F∗) = −b + ∑
t∈ T ′L

φ(k, t)Ft
∗(b)

≤
τ−1

∑
t=1

[φ(k, t)− φ(m, t)] +
τ∗−1

∑
t=τ

[φ(k, t)− φ(m, t)] Ft
∗(b)

17Recall that τ ≤ τ∗ by definition. Hence TL ⊂ T ′L and T ′H ⊂ TH .
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<
τ∗−1

∑
t=1

[φ(k, t)− φ(m, t)]

≤ 0,

where the first inequality follows from (6) and the fact that Ft
∗(b) = 1 for all t ∈ TL, the

second strict inequality from the fact that Ft
∗(b) < 1 for at least one type t ∈ T ′L\TL and

φ(k, t)− φ(m, t) > 0 for all types t ∈ T ′L\TL, and the last inequality from the definition of
the threshold τ∗. Hence the expected payoff is strictly negative for all types within T ′L\TL,
which contradicts with the fact that the bid b is an element of the support for T ′L\TL. This
establishes B ≤ B′, which in turn together with Lemma A.2 implies that the lower support
for T ′H must be an element of the bid support for TL: B ∈ ⋃t∈ TL

supp[Ft
∗].

I next claim that the payoff from bidding B is at most zero for every type t ∈ T ′H.
Observe that this will complete the proof of the lemma, since B ∈ ⋃t∈ T ′H supp[Ft

∗] implies
that at least one type within that group has no information rents in equilibrium. For the
proof of the claim, I make use of Lemma 2-(b). Proposition A.1 and B ∈ ⋃t∈ TL

supp[Ft
∗]

suggest that there exists a type m in TL who obtains an expected payoff of zero from
bidding B. On the other hand, it follows from Lemma A.1 that there exists a type k in
TH (so k > m) who weakly prefers to bid zero rather than B. Therefore, for every s ≥ m,
u(B, s|F∗) ≤ 0 is immediate from Lemma 2-(b). Since the type m is an element of TL, the
obtained result ensures a nonpositive payoff from B for every type in T ′H. �

Lemma A.4 is used to establish rent dissipation for all types m ≤ τ∗.

Lemma A.5. There is no information rent to a bidder of type t ∈ T ∗L ≡ {t1, · · · , tτ∗} in any
symmetric equilibrium.

PROOF OF LEMMA A.5: Let type k′ in T ′H denote the one who receives no information
rent in the proof of Lemma A.4. I use Lemma 2 to demonstrate that there is no bid in the
whole support yielding a strictly positive payoff to any types s ≤ k′. Since type k′ is equal
to or higher than the threshold τ∗, this proves the current lemma.

To proceed, choose an arbitrary bid b from
⋃

t∈ TL
supp[Ft

∗]. Since this bid belongs to
some type m ≤ τ− 1, it follows from Proposition A.1 that the bid b yields a payoff of zero
to the type m. In contrast, the bid yields a nonpositive payoff to the type k′ > m. Then
the part (b) of Lemma 2 can be used to establish that u(b, s|F∗) ≤ 0 for all types s ≥ m.
Together with Proposition A.1, this result guarantees no rents for T ∗L from any bids in the
bid support for TL.

To complete the proof, consider now a bid B in the complement of
⋃

t∈ TL
supp[Ft

∗] in⋃
t∈ TH

supp[Ft
∗] (Recall Lemma A.3). Since this bid must be an element of the bid support
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for some type k in TH, u(B, k|F∗) ≥ 0 follows. However, making that bid is not profitable
for every type m in TL (so m < k) and the type k′ in T ′H. Then the part (a) of Lemma 2 can
be used to prove u(B, s|F∗) ≤ 0 for every type s ≤ k′. As no bids in the whole support
can earn a positive payoff to types s ≤ k′, the desired result follows. �

The next lemma characterizes the equilibrium bid support of the no-rent group, T ∗L .

Lemma A.6. In every symmetric equilibrium F∗,
⋃τ∗

k=1 supp[Fk
∗ ] =

[
0, Bτ∗

]
.

PROOF OF LEMMA A.6: Let B ≡ sup
⋃

t∈ T ′L supp[Ft
∗]. I first demonstrate that B < Bτ∗ ≡

sup supp[Fτ∗
∗ ] and thus Bτ∗ constitutes the upper support for T ∗L . To this end, I begin by

finding an alternative expression of B. Since there is a type m in T ′L whose bid support
includes the bid B, and since the expected payoff to the type m must be zero by Lemma
A.5, I can write B = ∑t∈T φ(m, t)Ft

∗(B). Using this expression, the expected payoff from
bidding B to the threshold τ∗ can be decomposed into the following three terms:

u(B, τ∗|F∗) =
τ∗−1

∑
k=1

[φ(τ∗, k)− φ(m, k)] + [φ(τ∗, τ∗)− φ(m, τ∗)] Fτ∗
∗ (B)

+
K

∑
k=τ∗+1

[φ(τ∗, k)− φ(m, k)] Fk
∗(B).

In this decomposition, I used Ft
∗(B) = 1 for all t ∈ T ′L . Recall that the expected payoff to

the threshold must be nonpositive due to Lemma A.5. In order to have u(B, τ∗|F∗) ≤ 0,
however, Fτ∗

∗ (B) in the second term must be strictly smaller than 1, since otherwise the
sum of the first two terms becomes strictly positive (by the definition of τ∗) and the last
term is always nonnegative, thereby leading to a contradiction. Hence B < Bτ∗ must be
the case.

The fact that
⋃τ∗

k=1 supp[Fk
∗ ] forms a connected interval without any internal gaps fol-

lows by a similar argument used in the proof of Lemma A.2. The proof of the minimum
element being zero is already done in Lemma A.1. The proof is now complete. �

The next proposition characterizes the equilibrium bid support for the other group
T ∗H = {tτ∗+1, · · · , tM}. It shows that the upper support for the threshold τ∗ separates the
bid support for T ∗L and the support for T ∗H , as is described in Figure 5.

Proposition A.2. In every symmetric equilibrium F∗, ∪M
k=τ∗+1 supp[Fk

∗ ] =
[
Bτ∗ , B

]
, where the

maximum element of supp[Fτ∗
∗ ] is given by

Bτ∗ =
τ∗

∑
t=1

φ(τ∗, t).
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Bτ∗0 B
∪

t∈ T
supp[Ft

∗]

τ∗
∪

k=1
supp[Fk

∗ ]

M
∪

k=τ∗+1
supp[Fk

∗ ]

Figure 5: Proof of Part 2 - In every symmetric equilibrium F∗ of the all-pay auction, the full bid support
is partitioned at Bτ∗ into two parts, the union of supports for T ∗L and the union of supports for T ∗H .

PROOF OF PROPOSITION A.2: For the proof of the bid support, I show that the defined
Bτ∗ constitutes the lower support for T ∗H , which is denoted by B′ ≡ inf∪M

k=τ∗+1 supp[Fk
∗ ].

To this end, it suffices to show that Bτ∗ ≤ B′ because Bτ∗ ≥ B′ follows from Lemma A.6.
Suppose to the contrary that Bτ∗ > B′. Below I demonstrate that in this case, sub-

mitting the bid Bτ∗ rather than B′ is a profitable deviation for every bidder with type
k ≥ τ∗ + 1, i.e., u(Bτ∗ , k|F∗) > u(B′, k|F∗) for every tk ∈ T ∗H . This contradicts with the fact
that the bid B′ is an element of ∪M

k=τ∗+1 supp[Fk
∗ ].

I proceed by showing that if Bτ∗ > B′, then u(B′, k|F∗) is at most zero for every type
k ≥ τ∗ + 1. For this, note that due to Lemma A.5 and A.6, Bτ∗ > B′ implies either (i)
B′ = ∑t∈T φ(m, t)Ft

∗(B′) for some type m ≤ τ∗ − 1 or (ii) B′ = ∑t∈T φ(τ∗, t)Ft
∗(B′). In

words, according to whether B′ belongs to ∪τ∗−1
t=1 supp[Ft

∗] or supp[Fτ∗
∗ ], the bid B′ can be

rewritten as the expected gain conditional on winning. Then a similar argument to the
proof of Lemma A.4 establishes that the bidder with type k ≥ τ∗ + 1 earns at most an
expected payoff of zero from bidding B′.

I now compute the expected payoff from submitting the bid of Bτ∗ to type k ≥ τ∗ + 1.
Since I have u(Bτ∗ , τ∗|F∗) = 0 from Lemma A.5, and since I have Fm

∗ (Bτ∗) = 1 for every
type m ≤ τ∗ from Lemma A.6, I can express the bid Bτ∗ as

Bτ∗ =
τ∗

∑
t=1

φ(τ∗, t) +
M

∑
t=τ∗+1

φ(τ∗, t)Ft
∗(Bτ∗). (7)

Using (7), I can write the expected payoff to type k ≥ τ∗ + 1 as

u(Bτ∗ , k|F∗) =
τ∗

∑
t=1

[φ(k, t)− φ(τ∗, t)] +
M

∑
t=τ∗+1

[φ(k, t)− φ(τ∗, t)] Ft
∗(Bτ∗).

Observe that both summations above take a strictly positive value. Hence the expected
payoff must be strictly positive. This implies that in contrast with B′, the bid Bτ∗ yields a
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strictly positive expected payoff, and thus the deviation to Bτ∗ is indeed profitable for all
types k ≥ τ∗ + 1. Therefore, if Bτ∗ < B′, then B′ cannot be an element of the bid support
for T ∗H , establishing the desired result, Bτ∗ = B′. The bid Bτ∗ identifies the lowest bid of
∪M

k=τ∗+1 supp[Fk
∗ ] and thus it must be the case that Fk

∗(Bτ∗) = 0 for all types k ≥ τ∗ + 1
in every symmetric equilibrium F∗. The closed-form expression of Bτ∗ is then immediate
from (7). �

Part 3

The third part completes the proof of Theorem 1 by characterizing the equilibrium payoff
accruing to the types in T ∗H = {tτ∗+1, · · · , tM}. To this end, I first establish the following
lemma. It shows that the single-crossing condition developed by Athey (2001) is satisfied
for the types in T ∗H .

Lemma A.7. For every pair of types k′ > k in T ∗H , supp[Fk′
∗ ] is larger than supp[Fk

∗ ] in the
strong set order.

PROOF OF LEMMA A.7: Choose two arbitrary bids, b1 and b2 with b2 > b1, from
∪M

k=τ∗+1 supp[Ft
∗] = [Bτ∗ , B]. Using the fact that Fm

∗ (b2) = Fm
∗ (b1) = 1 for every type m in

T ∗L , the incremental return from making the bid b2 rather than b1 to type k in T ∗H can be
written as

u(b2, k|F∗)− u(b1, k|F∗) = −(b2 − b1) +
M

∑
t=τ∗+1

φ(k, t)
[
Ft
∗(b2)− Ft

∗(b1)
]

.

Similarly, the corresponding return to type k′ > k can be written as

u(b2, k′|F∗)− u(b1, k′|F∗) = −(b2 − b1) +
M

∑
t=τ∗+1

φ(k′, t)
[
Ft
∗(b2)− Ft

∗(b1)
]

.

Note that φ(k′, t) > φ(k, t) for all types t ≥ τ∗+ 1 and that Ft
∗(b2) > Ft

∗(b1) for at least one
type t ≥ τ∗ + 1. Hence the incremental return must be higher for type k′. This implies
that the expected payoff function, when the opponent adopts an equilibrium strategy,
satisfies (strict) increasing differences in (b, k) for k ≥ τ∗ + 1. The result then follows
from the Monotonicity Theorem in Milgrom and Shannon (1994). �

In the next lemma, I enumerate implications of Lemma A.7 on the equilibrium bid
support for types in T ∗H .

Lemma A.8. In every symmetric equilibrium F∗ of the all-pay auction, the following properties
hold:
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(i) For each type k ≥ τ∗ + 1, supp[Fk
∗ ] is a connected interval.

(ii) inf∪M
k=τ∗+1 supp[Fk

∗ ] = Bτ∗+1.

(iii) For the group T ∗H , the bid supports are fully separate, that is, Bk = Bk+1 for each type
k = {τ∗ + 1, · · · , M− 1}.

PROOF OF LEMMA A.8: The first two statements are straightforward. To prove (iii), note
that Lemma A.7 implies Bk ≥ Bk+1. Hence it is enough to show that Bk > Bk+1 cannot
occur in any symmetric equilibrium. Suppose to the contrary that Bk > Bk+1 is the case.
Then it follows from part (i) of the current lemma that the two distinct bids must be
indifferent to type k, i.e., u(Bk, k|F∗) = u(Bk+1, k|F∗), and Fk+1

∗ (Bk) − Fk+1
∗ (Bk+1) > 0.

However, this implies

u(Bk, k + 1|F∗) > u(Bk+1, k + 1|F∗).

That is, type k + 1 strictly prefers to submit the bid Bk rather than Bk+1, contradicting
with Bk+1 ∈ supp[Fk+1

∗ ]. �

The previous lemma pins down the bid support for types k ≥ τ∗ + 1 in the all-pay
auction, and thus the equilibrium bidding strategy for those types is uniquely determined
by the standard indifference conditions.

Proposition A.3. In every symmetric equilibrium F∗ of the all-pay auction, a type-k ≥ τ∗ + 1
bidder randomly draws a bid from the uniform distribution over [Bk, Bk]. The constant bid density
is

f k
∗ =

1
φ(k, k)

over the support [Bk, Bk],

where

Bk = Bk−1 and Bk = Bτ∗ +
k

∑
t=τ∗+1

φ(t, t).

PROOF OF PROPOSITION A.3: Lemma A.8 implies that each supp[Fk
∗ ] is disjoint with other

supports and is a connected interval. Hence the indifference condition between b1 and b2

chosen from supp[Fk
∗ ] leads to

u(b2, k|F∗)− u(b1, k|F∗) = −(b2 − b1) + φ(k, k)
[

Fk
∗(b2)− Fk

∗(b1)
]

= 0.

Thus, the equilibrium bid distribution Fk
∗ follows a uniform distribution with density

1
φ(k,k) over the support [Bk, Bk]. The lower and upper bound of each support can be
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obtained by mathematical induction. �

The next proposition completes the proof of Theorem 1.

Proposition A.4. For each type k ∈ {τ∗ + 1, · · · , M}, the equilibrium expected payoff is

UF∗(k) =
k

∑
t=1

φ(k, t)−
[

τ∗

∑
t=1

φ(τ∗, t) +
k

∑
t=τ∗+1

φ(t, t)

]
.

PROOF OF PROPOSITION A.4: Note that u(b, k|F∗) = u(Bk, k|F∗) for all b ∈ [Bk, Bk] due to
the indifference condition, and that by submitting the bid Bk, the bidder of type k ≥ τ∗+ 1
can outbid the opponent with type t ≤ k for certain. Therefore, the information rents for
type k in T ∗H are

UF∗(k) =
∫ Bk

Bk

u(b, k|F∗)dFk
∗(b) = u(Bk, k|F∗)

= −Bk +
k

∑
t=1

φ(k, t)

= −
(

Bτ∗ +
k

∑
t=τ∗+1

φ(t, t)

)
+

k

∑
t=1

φ(k, t),

where the last expression results from Proposition A.3. �

B. Other Omitted Proofs

B.1. Proof of Lemma 2

Using the payoff expression (2), I first rewrite the given conditions in part (a) as b ≤
∑M

t=1 φ(k, t)Ft
∗(b), b ≥ ∑M

t=1 φ(m, t)Ft
∗(b) and b ≥ ∑M

t=1 φ(k′, t)Ft
∗(b), respectively. Combin-

ing the first two inequalities, I obtain

M

∑
t=1

(
φ(k, t)− φ(m, t)

)
Ft
∗(b) ≥ 0. (8)

The equilibrium payoff to type s ≤ k′ from submitting b is then

u(b, s|F∗) = −b +
M

∑
t=1

φ(s, t)Ft
∗(b) ≤ −

M

∑
t=1

(
φ(k′, t)− φ(s, t)

)
Ft
∗(b)
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= −C(k′, s)
C(k, m)

M

∑
t=1

(
φ(k, t)− φ(m, t)

)
Ft
∗(b) ≤ 0,

where the first inequality follows from u(b, k′|F∗) ≤ 0, and the last inequality follows
from (8) and C(k′, s)/C(k, m) ≥ 0 for all s ≤ k′. This proves part (a) of the lemma.

For part (b), I first obtain an alternative expression of b from the given condition:

u(b, m|F∗) = 0 ⇒ b =
M

∑
t=1

φ(m, t)Ft
∗(b).

With this expression, the condition u(b, k|F∗) ≤ 0 can be translated into

M

∑
t=1

(
φ(k, t)− φ(m, t)

)
Ft
∗(b) ≤ 0. (9)

The equilibrium payoff to type s ≥ m is then

u(b, s|F∗) =
M

∑
t=1

(
φ(s, t)− φ(m, t)

)
Ft
∗(b) =

C(s, m)

C(k, m)

M

∑
t=1

(
φ(k, t)− φ(m, t)

)
Ft
∗(b) ≤ 0,

where the last inequality results from (9). The proof is now complete.

B.2. Proof of Corollary 2

The equilibrium bid distributions along with their supports are derived in the proof of
Proposition A.3 in Appendix A. The sufficiency of τ∗ = 1 for the uniqueness of F∗ and
monotonicity is then immediate from Bk = Bk−1. To prove its necessity, it is enough to
show that τ∗ > 1 leads to

supp[Fτ∗
∗ ] ∩

(
∪τ∗−1

t=1 supp[Ft
∗]
)
6= ∅. (10)

If (10) holds, then a bidder with type m ≤ τ∗− 1 outbids a type-τ∗ opponent with positive
probability in any symmetric equilibrium F∗, thereby breaking its monotonicity.

I prove (10) by contradiction. Suppose to the contrary that there exists a bid of b on
the boundary between the two supports. Then it must be the case that (i) Fk

∗(b) = 0 for all
k ≥ τ∗, (ii) Fm

∗ (b) = 1 for all types m ≤ τ∗ − 1, and the bid belongs to both supports, that
is, (iii) b ∈ supp[Fτ∗

∗ ] and (iv) b ∈ supp[Fm
∗ ] for some type m ≤ τ∗ − 1. By Theorem 1, (iv)

28



implies u(b, m|F∗) = 0, and using (i) and (ii), the bid b can be written as

b =
τ∗−1

∑
t=1

φ(m, t).

But this implies that a type-τ∗ bidder obtains a negative payoff from bidding b, because

u(b, τ∗|F∗) = −b +
τ∗−1

∑
t=1

φ(τ∗, t) =
τ∗−1

∑
t=1

(
φ(τ∗, t)− φ(m, t)

)
< 0.

The negative expected payoff contradicts with (iii) that the bid b is an element of
supp[Fτ∗

∗ ].
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