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Abstract 

Compared to the oil market, physical movement of oil-carrying vessels is very precise and 

reflects the real production rates more timely than official reports. In this paper, we examine 

whether detailed information on crude oil movements, obtained from AIS tracking system, 

can be used to better predict the oil price. We use a variety of model specifications and 

introduce a novel instrument for the role of expectations to this question. This instrument is 

based on vessel speed, and it offers insights into the apparent lack of empirical indications of 

speed optimization. We show that the AIS data can contribute to predicting the oil price. We 

also explore Kilian’s (2009) hypothesis that the model of the oil price should include three 

factors: expectations of future prices in addition to supply and demand. We triangulate his 

instrument with one that we construct independently. 

We have explored several different specifications for the relationship between inter- and 

intraregional oil ship traffic and the oil price and found that a statistically significant 

relationship exists. Our findings indicate that the correlation between variables make OLS an 

unsuitable tool for this analysis since endogeneity bias will suppress the actual relationship. 

However, we have found that the relationship is robust to different VAR specifications. The 

contribution to explanatory power as measured by Factor Error Variance Decomposition is 

marginal, but it might still be a small improvement on present methods. We have examined 

the apparent paradox of non-optimal ship speed behavior. We found that a less stringent 

specification apparently resolved the paradox; the freight rates do indeed influence ship speed 

if lags and correlation are allowed. The short time-span is preventing us from conclusively 

saying that the issue is resolved, but it appears at least to be worthy of further investigation. 

We assessed the validity of using ship opportunity cost as a measure for GDP. While we cannot 

address the question of possible bias created by Kilian’s use of the Baltic index, we 

nonetheless offer conceptual support, as our unrelated instrument for the same opportunity 

cost showed strong statistical significance. 
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1. Introduction 

Global demand for energy continues to grow as prosperity increases, with oil remaining to be 

the world’s main source of energy, influencing the pricing of the two next largest sources, coal 

and gas (BP, 2018).  Oil is not only a source of energy, but also a dominant cost-driver for 

everything from freight costs to food production, and a base for derivatives in the financial 

markets. Because of its great importance, a good understanding of its price behavior has 

enormous value. 

 

Unfortunately, the oil price is difficult to predict. It exhibits strong heteroscedastic behavior, 

where it be stable for long periods of time, but can change suddenly if the market believes that 

some fundamental factor has changed. Oil has very low short-term elasticities, both on the 

supply and demand side, and consumers of oil-based products often lack good alternatives. To 

better understand how these factors interact, Kilian (2009) has created a model where the oil 

price is assumed to be driven by expectations, in addition to the traditional factors of supply 

and demand.  

 

The intuition behind this idea lies in the combination of the previous points: the oil price can 

be very unpredictable, and oil consumers are often dependent on oil to be able to generate 

value. It is therefore reasonable that consumers would worry about future prices and take steps 

to hedge against unfavorable price changes. The heteroscedastic nature of the oil price makes 

this costly, however, since the sudden price changes that the oil price exhibits are expensive 

to insure against. Additionally, the oil price reverts only slowly to its long-term equilibrium, 

so the one would have to buy coverage for a long period of time to offset the price risks. As a 

result, buying long-term insurance is an expensive solution. Oil storage is also an expensive 

solution. Lacking alternative strategies against the uncertainty, the agents in the markets are 

forced to monitor the market for signs of oil price developments, and therefore the market 

responds mostly to itself. Kilian (2009) described it as expectation-driven demand. 

Mathematically this can be described as a strongly persistent series with unstable equilibria 

can be unstable in the short-run, and a strongly heterogeneous series in the long-run.  

 

In this paper, we examine whether detailed information on crude oil movements, obtained 

from AIS tracking system, can be used to better predict the oil price. We try different model 

specifications and use an instrument to control for the role of expectations. The instrument is 
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based on vessel speed, and our findings offer insights into the apparent lack of empirical 

indications of speed optimization. Specifically, we show that in specifications that are robust 

to endogeneity, we find highly significant Granger causality between the oil price and tanker 

speed, in both directions. This indicates that the opportunity costs of ships are indeed a factor 

that determines speed.  

Compared to the oil market, physical movement of oil-carrying vessels is very precise and 

reflects the real production rates more timely than official reports, which makes it an 

interesting case-study.  Our null hypothesis is that oil market is efficient, which is assumed by 

economic theory, and that there are no other effects, such as physical oil flow, defined as the 

volume of oil at a given time transported from one place to another, or combination of flows, 

that can have a significant effect on the oil price development.  

 

The question of interest is whether we might find any significant results that counter this weak 

efficiency hypothesis. If so, it means that it is possible to get a better understanding of the oil 

price path through the inclusion on non-typical data. If not, we will have confirmed that the 

oil price behaves in accordance with the weak efficiency hypothesis. The contribution of our 

work is a viability test for AIS data in prediction, where we test whether the data confer 

significant information. Additionally, we explore whether the vessel speed optimization 

paradox can be resolved using less restricted specifications. In doing so, we also triangulate 

Kilian’s findings, which have been the subject of legitimate critique. This research could be 

of interest not only to scholars specializing in oil markets efficiency and shipping, but also to 

oil traders, and companies involved in oil production and refining.  

 

The remainder of the paper is organized as follows: Section 2 highlights relevant literature, in 

Section 3 we explain the theory and methodology we use and outlines model specifications, 

Section 4 describes the empirical data used for this research, Section 5 discusses results. The 

paper is concluded with Section 6. 
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2. Literature review 

Oil has been a subject of intensive research for a long time. Many papers investigate the crude 

oil market and prices from different perspectives. The main body of literature focuses on the 

derivatives market, with the relationship between markets, price discovery, and the spot-

futures relationship as central questions; and on physical seaborne trade, with the effect of oil 

price on vessel speed, freight rates and bunker fuel cost.  

Back in 1991, Green and Mork studied the monopolistic behavior of OPEC countries during 

the time when most of the oil was sold at “official prices” under long-term contracts and only 

a marginal part of oil trade was done at the spot market. It turned out that the price under the 

long-term contracts deviated systematically from the ex-post spot price at the time of delivery. 

However, authors concluded that it was improving over time. Silvapulle and Moosa (1999) 

examined the lead-lag relationship between oil spot and futures prices of WTI using linear and 

non-linear models on daily observations from 1985 to 1996.  The linear model revealed that 

futures lead spot prices; however, non-linear model results suggested that effect was in both 

directions.  Ewing and Harter (2000) studied the inter-relationship of UK Brent and US Alaska 

North Slope oil prices on monthly data from 1974 to 1996. They found that markets were 

unified and followed a random walk pattern, moving together over time and reacting 

simultaneously to shocks, with the Alaska North Slope following and adjusting to innovations 

in the market for Brent.  

There are some studies that investigated the degree of crude oil market efficiency over time.  

Alvarez-Ramirez et al. (2002), Serletis and Andreadis (2004) found evidence of long-range 

dependence phenomena. Tabak and Cajueiro (2007) extended the studies and focused on how 

efficiency evolves over time. Their finding was that efficiency does increase and that WTI is 

more weakly efficient than Brent. However, their findings turned out to be inconsistent with 

the results of Charles and Darné (2009), who claimed that Brent oil market was more weak-

form efficient than the WTI crude oil market in 1994-2008. Both Alvarez-Ramirez et al. 

(2008) and Elder and Serletis (2008) concluded that markets do show short-term inefficient 

behavior, yet they become more efficient over a long-term period. Mensi et al. (2012) used 

Symbolic Time Series and modified Shannon entropy to examine the time-varying degree of 

informational efficiency of crude oil markets on daily returns for WTI and Brent and supported 

the conclusion of weak-form efficiency evolution. 
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Maslyuk and Smyth (2008) used Lagrange multiplier unit root tests with structural breaks to 

examine the unit root behavior. They found that each of the series can be characterized as 

random walk process and concluded that, for the time frame considered in the study, it is 

impossible to forecast future movements in crude oil price based on past behavior.   

Another approach was used by Lin and Tamvakis (2001) to study investigated information 

transmission mechanism between WTI and Brent futures prices in two geographically 

separated markets, NYMEX (New York Mercantile Exchange) and IPE (International 

Petroleum Exchange in London). They found out that spillover effects do exist when both 

markets trade simultaneously. They attributed it to the fact that market participants are flexible 

in moving from one market to another throughout the trading day and have trading positions 

at both markets.  

Milonas and Henker (2001) focused on the effect of fundamental measures on the oil price.  

Dées et al. (2007) distinguished between two production behavior models: competitive and 

cooperative. Ewing and Thompson (2007) studied co-movement of oil price with output, 

consumer prices, unemployment and stock prices.  Kaufmann et al. (2008) incorporated 

changes in refinery sector into the model and argued that low refinery utilization rate leads to 

the preference for higher quality crudes and the increase in crude oil prices on average. Kilian 

(2009) has created a model of the oil price that has three fundamental factors rather than the 

traditional two. In addition to supply and demand, he claims that expectations of future prices 

should be a factor by itself. 

Kaufmann and Ullman (2009) examined innovations in the oil price and links between spot 

and futures prices.  They find that prices respond to market fundamentals and are exacerbated 

by speculation. Coleman (2012) expanded the approach by studying fundamental measures 

but also incorporating proxies for speculative and terrorist activity and dummies for industry 

events to explain the dynamics of crude oil price. 

Alizadeh and Nomikos (2004) studied cost-of-carry relationship. Their hypothesis was that as 

crude oil is a storable commodity, cost of carry relationship must hold, and physical crudes 

should be linked to the WTI futures through the transportation costs and tanker freight rates. 

However, they found no evidence that freight rates are related to physical crude and WTI 

futures prices differentials. 
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Another group of studies, primarily from maritime economics, focuses on the physical market 

for oil. From all the merchandise carried by sea, crude oil accounts for more than 50% in the 

terms of weight (Stopford, 2009, p. 24). The effect of oil prices in shipping is two-sideways. 

Firstly, bunker fuel is one of the main cost factors for vessel operators. Secondly, every ship-

operator faces the trade-off between speed reductions and as result fuel cost savings and losses 

because of slow steaming. Ronen (1982) links oil price and vessel speed, and presents three 

models, which determine the optimal speed of one engine vessel for a single vessel at a time. 

From theory, fuel consumption is assumed to be proportional to the third power of its sailing 

speed (Ryder and Chappell (1979), Álvarez (2009), which was empirically confirmed by 

Vernimmen et al. (2007)). Vessel speed affects voyage duration, delivery dates and total 

bunker expenses, and can translate into cost savings for ship operators.  

The later work of Ronen (2011) highlights the cost model of increasing fleet size to 

compensate for speed optimization in the container shipping and still be in line with the service 

frequency, however, minimize bunker costs. Both Adland and Strandenes (2004) and Jonkeren 

et al. (2012) integrate freight rates in their models.   Adland and Strandenes (2004) find that 

short-run supply elasticity is high when rates are low, since there is marginal capacity 

available; but low when rates are high and all marginal supply has been exhausted in the VLCC 

market. Jonkeren et al. (2012) extend Ronen (1982) findings by using data from European 

inland waterways to estimate the speed elasticity of freight rates and fuel price. Their findings 

are somewhat consistent with the theory, supporting the fact that freight rates have a positive 

effect on speed and fuel prices have a negative effect on speed, although the elasticities they 

measure are far weaker than the theory predicts. Assmann (2012) specialize their study to a 

particular vessel class. They attempt to measure the relation between bunker prices, freight 

rates and speed optimization by studying the VCLL movements. Such a relation is assumed 

to exist from orthodox optimization theory, yet they too find only some support for such a 

relation, but with elasticity of lower magnitude than they expect. 

We will briefly discuss some issues with the model specifications that Assmann and Junkeren 

used, which we hope to avoid in our specifications. These papers used econometric models 

based on Ronen’s (1982) theoretical optimization model. This gives a function for optimal 

speed that is then transformed with natural logs, giving models that can be estimated using 

OLS (Assmann (2012)) or IV (Jonkeren et al. (2012)), which are variations of: 
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ln 𝑡𝑟𝑎𝑣𝑒𝑙𝑡𝑖𝑚𝑒𝑖𝑡
𝜃 = 𝛼 + 𝛽1 ln 𝑓𝑟𝑒𝑖𝑔ℎ 𝑟𝑎𝑡𝑒𝑠𝑖𝑡 + 𝛽2 ln 𝑏𝑢𝑛𝑘𝑒𝑟𝑜𝑖𝑙 𝑐𝑜𝑠𝑡𝑡 + 𝑢𝑖𝑡 + 𝜖𝑖𝑡 

Where θ is a coefficient for the efficiency relationship between speed and fuel consumption. 

 

There are at least four possible problems associated with this approach, any of which can 

explain the lack of strong results. 

 

Firstly, it imposes a myopic static optimization technique to what is clearly a dynamic 

problem. Ronen assumes that the optimizers consider only the present when they optimize. 

Nevertheless, if a ship finishes a journey one day earlier, every concurrent journey will also 

be moved forward in time. Thus, the effect must be calculated as the present value of a finite 

sum of future payments, which makes this a dynamic problem. Adland et al. (2017) pointed 

out that the freight market, while highly competitive when viewed in total and in large 

aggregates of time, can be decomposed into many micro-markets in the short run. In these 

micro-markets, the lack of immediately available substitutes means that the markets are far 

from fully competitive. Since ships are scarce resources in such markets, dynamic 

optimization based on Hoteling’s rules, or some equivalent approach, might prove to be a 

better fit. 

 

Secondly, the model assumes that all optimization is instantaneous in costs and freight rates, 

so that optimizers at time t respond to prices at time t. However, the contracts under which 

ships operate are not instantaneous. Rather, the terms are fixed some time in advance, based 

on the prevailing market prices at this time. This means that a lagged effect from the variables 

is expected and might indeed be the only significant effect we expect. A similar argument can 

be made regarding the bunker oil. While economists realize that the opportunity cost of bunker 

oil is the price today, actual business agents mostly use budgets as the tool for economic 

control. Therefore, it is consistent with normal behavior that they would value bunker oil at 

the price that they paid for it rather than the correct present value. If this is the case, we should 

also include lagged variables of the bunker oil. Some papers have relaxed this assumption by 

adding lagged variables, but the optimization paradox persists, so this explanation might be 

insufficient by itself. 

 

Thirdly, the model makes restrictive assumptions regarding the functional form of the 

optimizer’s problem. There is little empirical proof that vessel speed is correctly modeled 
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using the Cobb-Douglas function, which underpins the regression specification that much of 

the current research is based on. Rather, an important motivator in choosing the Cobb-Douglas 

function is its convenient derivation results, which make it easy to use OLS as a regression 

tool. Moreover, even if the assumptions the model rests on are reasonable, there might still be 

other factors that influence decision-makers which prevent the relation from holding strictly. 

This problem is compounded by the potential for endogeneity issues. 

Fourthly, the use of OLS and IV estimation methods can lead to endogeneity bias if the 

explanatory variables are correlated. Their use implicitly assumes that they are all 

independent. This is highly unlikely in this case. The price for freight and the price of bunker 

oil are both driven by aggregate macroeconomic forces. If OLS is incapable of separating the 

effects of the different variables, it will report both as insignificant even if they are both 

significant.  

We believe that the speed optimization issues we have discussed can be resolved and have a 

strong relevance for our results. We will discuss this further in the Methodology section. 
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3. Methodology 

The goal of this paper is to analyze detailed data for oil shipments to see if there are frictions, 

so that more detailed data might inform the price of oil. There is no specific theory that models 

how our data might improve the oil price predictions. To our knowledge, this exact kind of 

analysis has not been performed before and the lack of theory in this particular case is not 

surprising. We have therefore used general economic theory to build a theoretical foundation 

to answer our questions, which we will present later in this section.  

 

The lack of relevant theory means that our approach will be a data mining effort, where we try 

different specifications. This approach invalidates tests for statistical inference, since fitting 

the model to the data can give spurious results. To resolve this, we will look for results that 

are robust to changes in specification. If we find that the same variables are significant in many 

different specifications, it is unlikely that it is a result of specification bias. In addition to 

looking for robust results, we will focus our discussion on joint tests for significance. The 

binary value of either “jointly significant” or “not jointly significant” strongly limits what kind 

of interpretation of the results we might have, but it is far less sensitive to bias, particularly 

when it is combined with a discussion of robustness. Our main goal, therefore, is not to make 

a finished predictor for the oil price, but rather to check if AIS data has robust and jointly 

significant effect when predicting the oil price.  

 

We also test Kilian’s (2009) hypothesis that the model of the oil price should include three 

factors: expectations of future prices in addition to supply and demand. We triangulate his 

instrument with one that we construct independently. While we lack a setup to test for 

causality, we want to see whether our findings are consistent with his model. If they are, it is 

a strong indication that the precision of oil price estimates can be improved by including 

controls for expectations. Furthermore, it will add a valuable point to further understanding of 

the dynamics of the oil market. 

Kilian uses the Baltic index and some equivalent measures of his own construct as an 

instrument for world GDP. He assumes that the freight rates are a direct function of physical 

transportation and that these are immune from expectations. He further assumes that the 

residuals from his model must be independent of actual supply and demand, and therefore the 

result of expectations.  
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There are several critiques of Kilian’s model, some of which implies that there might be 

significant bias in the results. We therefore address the critique and explain how we will 

attempt to resolve the possible biases. The first point is that it is impossible to conduct 

formalized tests to see whether residuals are caused by expectations or by some other factors. 

Our paper will inform this critique by triangulating his findings; if our results are equivalent, 

it will act as support to his model. A second point is the fact that shocks to freight rates are 

transient, much more so than shocks to GDP or the oil price. As such, the increased demand 

for freight will be met before the increased demand for oil will be, and this will lead to bias in 

his specification. While this problem will persist also with our specifications, it is not relevant 

in this thesis, since we do not interpret our residuals as strongly as Kilian does. We only look 

for robustness of joint tests for significance. Furthermore, we only include this instrument in 

a VAR model, which explicitly estimates multiple lagged variables of the instrument; 

therefore, the transience of a shock to vessel opportunity cost is controlled for and will not 

lead to biases. 

We follow Kilian’s approach in using ship opportunity cost as an instrument for world 

production. His reasoning is that demand for ships at any given time is derived from the need 

to physically move things, and that instantaneous freight rates are therefore close to immune 

to expectations. We use the opportunity cost for vessels in the same fashion, by measuring 

vessel speed rather than freight rates, but we relax the assumption that the speed is immune to 

expectations.  

The inclusion of speed allows us to control for expectations. The reason is that we also include 

traded volumes, the oil price and their interactions, which by the market-clearing property 

must control for both supply and demand at any given time. The market-clearing property 

states that, in an efficient market, price will shift to the point where supply equals demand:  

{

D(t) = f(St, Pt)

S(t) = g(Dt, Pt)

D(t) = S(t)

 

Where D is demand, S is supply, P is price and t is a time subscript.  

Including information on both Supply/Demand and price is therefore sufficient to control for 

these factors. If further instruments are significant, that must mean there are other factors than 

instantaneous supply and demand influencing the market.  
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We will now discuss the intuition behind this mathematical specification, and why it is 

reasonable to believe that expectations could have a significant effect on the price. Both the 

supply and demand for oil show very low short-run elasticities, which means that the price is 

volatile, which introduces some risk that consumers would prefer to avoid. Oil production 

requires significant investments of both time and money before production can begin. These 

investments are required not only in physical oil fields, but in supporting infrastructure, such 

as skilled labor, oil transport, and oil rigs. These investments are largely specialized to their 

purpose and therefore sunk once they are made. For example, there are very few alternative 

uses for an oil platform. The time, resources and the irreversibility of the investments that 

are required to increase production mean that supply is slow to respond to increasing prices. 

On the other hand, the magnitude of these investments means that it is rarely efficient to reduce 

production once the investment has been made, since marginal costs are a small share of the 

total. In the short-run, a price-taking producer will not reduce production, even if prices 

decrease considerably. Some producers are not price takers: OPEC dominates global oil 

production, and some of them act as swing producers in order to maintain revenues, which 

leads to the negative relation between oil prices and OPEC production rates (Kaufmann et al., 

2004).  

 

Demand for oil similarly has a low short-run elasticity. Oil consumers are often barred from 

substitution of inputs due to sunk investments. For instance, the only way to reduce gasoline 

consumption from a car is to drive less or to buy a new car, neither of which might be possible 

in the short run. Compounding this, oil is often an essential factor to economic activity, so that 

many will have no choice in paying whatever the market demands; if a person depends on 

their car to get to work, the cost of gasoline would have to be greater than the wages that 

person would make if the costs were to act as a deterrent to consumption. The combination of 

low supply and demand elasticities leads to high price volatility, which consumers dislike. 

This is necessary but not sufficient for expectations to play a large role in the oil price. If 

consumers could somehow offset the risk, expectations should no longer matter. In order to 

qualify the inclusion of instruments for expectations in our models, we must show that 

insurance against oil price risk is costly and impractical, and we will do so now. 
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The following chart of the oil price for the last ten years illustrates the problem: 

 

Figure 1:  Crude oil prices for Brent (2008-2018)  

(U.S. Energy Information Administration, 2018) 

As we see from the chart, the oil price has been stable for long periods of time, but with some 

sudden and wide swings. The risk that a semi-stable price might suddenly change significantly 

is known as volatility risk and is very expensive to insure against. The reason is that no one 

has any use for volatility risk; with most derivatives, risk can be sold to someone who wants 

it to offset some other position. Volatility also complicates the calculation of other risks, as it 

is often correlated with the kinds of unpredictable shocks that the finance industry abhors. The 

steep fall in the oil price to the left of the graph, for example, was a result of a depressed 

outlook caused by the global financial- and debt crisis of ‘08. This makes volatility expensive 

to insure against, since the buyer must pay to compensate the seller for the chance of a future 

shock. 

 

Oil storage could act as an alternative hedge, but it is too costly to be an alternative for anything 

other than short shocks. The reason is that one would have to store a very large amount of oil 

to last through a prolonged period of high prices. In figure 1 we see that prices were high for 

three years in a row, from 2011 to 2014. One would therefore have to store three years’ worth 

of oil in order to hedge against this. This would bind a lot of capital, introduce the risk of 

spillage and a fire hazard, and require specialized infrastructure. In sum, it would be 

enormously expensive to store any non-trivial amount of oil for that long, which is why this is 

not a valid alternative for most consumers. 
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Since it is difficult to hedge the oil price risk, consumers must attempt to respond to it instead. 

The market efficiency theory states that any commonly known information must already be 

priced into the market, so the typical consumer cannot expect to find any more information on 

the future oil price than the present price. Therefore, the actors closely watch the market, ready 

to respond if prices start to rise. This generates self-fulfilling prophecies; if the market 

perceives a positive price signal, demand for futures and derivatives contracts increases as 

actors try to avoid any further costs; this drives prices up further and prolongs the effect. This 

is the effect that Kilian describes as expectation-led demand. 

3.1 Model 1 

A common point-of-departure in econometrics is a basic OLS model. We define the model: 

𝑂𝑖𝑙 𝑝𝑟𝑖𝑐𝑒𝑡 = 𝛼 + 𝛽𝑖𝑜𝑖𝑙𝑓𝑙𝑜𝑤𝑖𝑡 + 𝜖𝑖𝑡 

Where oilflow is the weekly trade of oil from one region to another. This specification 

measures the correlation between the interregional flows of oil and the oil price. It is 

conceptually hard to imagine a causal effect here since the relationship is assumed to be 

instantaneous. On the other hand, both price and volume transported are decided by common 

factors; supply, demand and expectations. The F-test for joint significance still has some 

interest here; it measures whether there is enough and systematic variation in the data that the 

regional flows inform the oil price. This measure is interesting even if the results cannot be 

used directly for predictions. 

One might expect to find a spurious regression problem here; the oil price is a highly persistent 

series, and so are some of the oilflow series. The potential issue is that the correlation between 

the two trends is captured by OLS, which gives spuriously strong results. Fortunately, the 

series are cointegrated in our case, as the residuals from this regression do not exhibit unit root 

behavior. While spurious co-integration is a possible issue, it is unlikely in our case, since the 

Dickey-Fuller cointegration test reports non-unit root behavior for all our specifications. It is, 

therefore, a robust result (please see appendix for the full table of Dickey-Fuller tests). 

To relax the assumption of an instantaneous relationship, we include lagged terms of the 

oilflow variable. This is economically sound: since the time span of our data is a week, and it 

can take several weeks to deliver the oil, we expect that there might be a delayed effect. 

Furthermore, ships are often contracted some time in advance. A possible issue is the effect of 
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overfitting the data. Since we only have 167 periods. If we were to use 10 lagged variables 

with our 10 routes we would estimate 101 coefficients, a ratio that almost guarantees 

overfitting. We therefore limit the number of lagged variables. 

3.2 Model 2 

We attempt to control for the known information that is the oil price at 𝑡 = 𝑡 − 1, and include 

a lagged term for the oil price to the specification: 

𝑂𝑖𝑙 𝑝𝑟𝑖𝑐𝑒𝑡 = 𝛼 + 𝛿𝑂𝑖𝑙 𝑝𝑟𝑖𝑐𝑒𝑡−1 + 𝛽𝑖𝑜𝑖𝑙𝑓𝑙𝑜𝑤𝑖𝑡 + 𝜖𝑖𝑡 

A possible problem with this specification is that we have only a few Oil price variables to 

use, and therefore a limited amount of variation in the explained variable. Since the oil price 

is a highly stationary series, we know that the value at time = t-1 will have a very strong 

predictive power for the price at time = t. The previous observation of the oil price could 

therefore crowd out all other variables. This is actually a form of misspecification: OLS 

assumes that all observations are independent, and the temporal dependence is then captured 

by the 𝛿 coefficient. 

3.3 Model 3 

It is feasible that the relationship  𝑂𝑖𝑙 𝑝𝑟𝑖𝑐𝑒𝑡~𝑂𝑖𝑙 𝑝𝑟𝑖𝑐𝑒𝑡−1 can be captured through by its 

difference. In this case, there might still be some marginal information in the oil volume data. 

This specification would allow us to avoid the misspecification problem of the previous 

models. It is possible that the data we have can help in predicting the change in the oil price 

rather than the oil price itself. We therefore measure 

𝑂𝑖𝑙 𝑝𝑟𝑖𝑐𝑒𝑡 − 𝑂𝑖𝑙 𝑝𝑟𝑖𝑐𝑒𝑡−1  = 𝛼 + 𝛽𝑖𝑜𝑖𝑙𝑓𝑙𝑜𝑤𝑖𝑡 + 𝜖𝑖𝑡 

We also vary the amount of lagged values in this specification. 

3.4 Model 4 

A possible way to avoid the problem of unknown specifications is to use models with weaker 

restrictions, such as Vector Autoregressive models. Due to computational limits, these models 

cannot cover too many lags; the ensuing correlation matrices quickly exceed STATA’s limits 
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as the number of lagged variables increases. In addition, the vast number of parameters that 

must be estimated makes overfitting a near certainty if the period is too long. On the other 

hand, there is no reason to believe that frictions in the markets persist for a long time. In any 

competitive market, mispricing must eventually adjust itself. The large number of actors in 

the market, as well as the geographic flexibility that oil shipping involves, should mean that 

any sub-optimal pricing or oil distribution should resolve itself quickly.  

 

The method descriptions in this part are largely based on Bjørnland & Thorsrud (2015) 

chapters 7 and 8. The Vector Autoregressive (VAR) model works by fitting a correlation 

matrix to a set of variables in a way that allows for linear correlation between all variables. 

For example, a two-variable model with one lag would estimate the relationship 

(
𝑂𝑖𝑙 𝑝𝑟𝑖𝑐𝑒𝑡

𝑂𝑖𝑙𝑓𝑙𝑜𝑤𝑡
) = (

𝛼1

𝛼2
) + (

𝛿1 𝛽1

𝛽2 𝛿2
) (

𝑂𝑖𝑙 𝑝𝑟𝑖𝑐𝑒𝑡−1

𝑂𝑖𝑙𝑓𝑙𝑜𝑤𝑡−1
) + (

𝑒1,𝑡

𝑒2,𝑡
) 

Where 𝛽1 is the interaction between 𝑂𝑖𝑙 𝑝𝑟𝑖𝑐𝑒𝑡 and 𝑂𝑖𝑙𝑓𝑙𝑜𝑤𝑡−1. This simple two-variable case 

is equivalent to the OLS model 

𝑂𝑖𝑙 𝑝𝑟𝑖𝑐𝑒𝑡 = 𝛼 +  𝛽 𝑂𝑖𝑙 𝑝𝑟𝑖𝑐𝑒𝑡−1 + 𝛿 𝑂𝑖𝑙𝑓𝑙𝑜𝑤𝑡−1 + 𝑒𝑡 

If we had used more variables, the relationship would not be possible to regress using OLS. 

The interesting effect is the controls for both the correlation terms 𝛽𝑖 and the autoregressive 

terms 𝛿𝑖 between all variables. This approach removes one of the most awkward assumptions 

of linear regression: the assumption of linearly independent coefficients. When the true shape 

of the data is close to linear independence, regression with OLS or equivalent techniques yield 

good results. However, if the variables in the specification are far from linearly independent, 

OLS might fail to find the true relationship due to endogeneity. The VAR specification 

explicitly controls for such interactions.  

A possible disadvantage is the loss of an instantaneous relationship,  

𝑂𝑖𝑙𝑝𝑟𝑖𝑐𝑒𝑡~𝑂𝑖𝑙𝑓𝑙𝑜𝑤𝑡. 

However, since the purpose is prediction of future prices, the excluded information would not 

have been available. The correlation matrix also implicitly includes the relationship 

𝑂𝑖𝑙𝑝𝑟𝑖𝑐𝑒𝑡~𝑂𝑖̇𝑙𝑓𝑙𝑜𝑤𝑡
̂  
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That is the instantaneous relationship with the predicted oilflow value.  

Economically, there is good reason to expect strong linear dependence of our variables. The 

world economy is strongly integrated, so a change in demand from South Asia will in most 

cases impact the demand from Southeast Asia. Furthermore, there is an explicit correlation 

due to the supply constraints: since supply changes very slowly, increased exports to one area 

must equal reduced exports somewhere else. 

This intuition also extends to the question of ship speed. The assumptions behind ship 

optimization models explicitly assume that ships respond to bunker oil costs and freight rates. 

These concepts cannot be independent on a regional basis, due to the fact that both ships and 

bunker oil can be transferred between shipping routes. Since this kind of substitution happens 

all the time, the coefficients of OLS will be dependent on each other, and linear decomposition 

will fail. In a sense, OLS will try to move one part of the metaphorical ship faster than another 

and find that this cannot be done. 

It is worth mentioning that we have chosen not to use a Structured Autoregressive (SVAR) 

model. Economists often prefer these models because they allow an avenue for economic 

theory into the model, as well as more interpretable coefficients. If the theoretical assumptions 

are true, imposing a stricter structure on the data can improve precision, but if the assumptions 

fail, the results will be biased. The necessary assumption to go from VAR to SVAR is that the 

lags of some variables cannot influence some other variables, but only be influenced by them. 

That is, lagged variable A can influence variable B, but not vice-versa. The SVAR estimates 

a relationship like 

 

(
𝑂𝑖𝑙 𝑝𝑟𝑖𝑐𝑒𝑡

𝑂𝑖𝑙𝑓𝑙𝑜𝑤𝑡
) = (

𝛼1

𝛼2
) + (

𝛿1 0
𝛽2 𝛿2

) (
𝑂𝑖𝑙 𝑝𝑟𝑖𝑐𝑒𝑡−1

𝑂𝑖𝑙𝑓𝑙𝑜𝑤𝑡−1
) + (

𝑒1,𝑡

𝑒2,𝑡
) 

In other words, it is assumed that 𝛽1 = 0. A common approach is to first estimate an 

unstructured VAR, and then perform the Granger causality test. If this fails to reject the null 

hypothesis of no Granger causality, one can move forwards with the SVAR specification. In 

our case, the lack of economic theory regarding the form of our models makes it difficult to 

defend the use of a SVAR specification. In addition, the Granger tests showed that causality 

flows in both directions (see appendix for full table). 
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We estimate the model 

𝑂𝑖𝑙 𝑝𝑟𝑖𝑐𝑒𝑡 = 𝛼 + 𝜷𝒐𝒊𝒍𝒇𝒍𝒐𝒘𝒕 + 𝜖𝑖𝑡 

Bold font is used here to indicate a vector or matrix. Beta loses its subscript as it is now a 

matrix, and oilflow is a matrix of values as well as lags. We have included up to 4 lagged 

variables in this specification. In this Vector Auto-Regressive model beta is a correlation 

matrix between the different variables, which are fitted using the Generalized Method of 

Movements. 

3.5 Model 5 

We here assess the use of travel time as an instrument using a panel data specification. We 

have made no logarithmic or other transformations of the data, and because of this, the 

coefficients are measures of the covariation between the different variables. This correlation 

is the necessary condition for using vessel speed as an instrument; weak correlation has proved 

to lead to possible strong biases. 

The usual approach is to use ship velocity rather than travel time, but since the shipping lanes 

have constant length, velocity is simply a scaling of the time spent, since  

𝑠𝑝𝑒𝑒𝑑 =
𝑡𝑖𝑚𝑒

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
 

This transformation makes no difference to the results, except for a scaling of the coefficients.  

While economic theory is clear on what the relationship between shipping rates and vessel 

speed should be, empirical studies so far generally fail to find a significant relationship. This 

might be a result of the exact specification of the problem; Ronen’s (1982) model makes very 

strong assumptions in order to simplify the optimization. We use the variable in a less 

constrained setting, so it could still be significant in our case. 

 

We estimate the model 

𝑇𝑟𝑎𝑣𝑒𝑙 𝑡𝑖𝑚𝑒𝑡𝑖 = 𝛼𝑖 + 𝛽𝑖𝑐𝑜𝑠𝑡𝑡𝑖 + 𝜆𝑏𝑢𝑛𝑘𝑒𝑟𝑜𝑖𝑙𝑡 + 𝜖𝑡𝑖 
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Where t is the time subscript and i is the route subscript. Since we are only interested in 

whether travel time might be a useful instrument, the question of interest is the significance 

and impact of the joint 𝛽𝑖 coefficients. In order to find comparable freight rates, we had to 

make some simplifying assumptions. We have assumed that VLCC’s are approximate 

measures of freight costs, which they are as long as the distribution of ships have not changed 

too much in the period. Equivalently, we have assumed that the distribution of starting- and 

end points in each region has not changed too much in the period; if they had, the use of travel 

time in days would be a biased measure for speed. Given the short span of our data, we believe 

that these assumptions are reasonable. 

In the panel data models, we must make a choice between the fixed effects and the random 

effects estimates. Fixed effects estimate each 𝛽𝑖 independently, while random effects use some 

information from the other variables as well. This increases the available information, which 

can add to the precision of the results. Also, economic theory assumes that the factors that 

influence speed velocity are common to all shipping lanes. For these two reasons, it is 

preferable to use the random effects specification. However, this “pooling” of information 

makes the random effects specification susceptible to endogeneity, which we suspect might 

be an issue here. Since both specifications estimate the same model, the coefficients should be 

equal, if no endogeneity is present. In models 5 and 6 we therefore use the Hausman test, 

which compares the random effects and fixed effects coefficients, to determine whether 

random effects is valid or whether we should choose fixed effects instead. 

3.6 Model 6 

In this model, we replicate the Assmann’ s (2012) model: 

ln 𝑡𝑟𝑎𝑣𝑒𝑙𝑡𝑖𝑚𝑒𝑖𝑡
2 = 𝛼 + 𝛽1 ln 𝑓𝑟𝑒𝑖𝑔ℎ 𝑟𝑎𝑡𝑒𝑠𝑖𝑡 + 𝛽2 ln 𝑏𝑢𝑛𝑘𝑒𝑟𝑜𝑖𝑙 𝑐𝑜𝑠𝑡𝑡 + 𝑢𝑖𝑡 + 𝜖𝑖𝑡 

Since  

(
𝑡𝑖𝑚𝑒

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒
)

2

=
𝑡𝑖𝑚𝑒2

𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒2
 

And distance is a constant, squaring travel time is equivalent to squaring velocity, in the sense 

that tests for significance will be unaffected. 
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3.7 Model 7 

For our final model, we include the speed instrument from model 5 as a measure of the ship’s 

opportunity cost in our full model, in a vector autoregressive model: 

𝑂𝑖𝑙 𝑝𝑟𝑖𝑐𝑒𝑡 = 𝛼 + 𝜷𝒐𝒊𝒍𝒇𝒍𝒐𝒘𝒔𝒑𝒆𝒆𝒅𝒕 + 𝜖𝑖𝑡 

We exclude the intra-regional oil movements from this specification, since the freight rates for 

such movements are very uncertain when we aggregate to the regional level. Conceptually, 

the inclusion of the instrumented speed should act as a control for the opportunity costs of 

ships. Kilian (2009) uses a similar control based on the Baltic freight rate, where he assumes 

that the Baltic index is a reasonable instrument for the activity level of the world economy. If 

his assumption is correct, we should find an equivalent effect, and the inclusion of this 

instrument might allow us to make better predictions. This model therefore acts as a 

triangulation of Kilian’s results. The oil flows directly measure actual supply and demand, and 

the opportunity cost of ships, given the actual supply/demand, should capture the expectation 

effect on oil price.  
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4. Data 

For the purposes of this paper, we used oil tanker shipments data that originates from Clipper 

Data Ltd. The dataset is a combination of detailed seaborne oil data on individual voyages 

obtained using Automated Identification System (AIS- tracking), which is used for reporting 

of real-time vessel position, past-routing and expected port of call; and cargo information from 

port agents’ line-up reports. 

 

Compared to official customs data, which is published monthly, AIS data makes it possible to 

aggregate information on seaborne oil trade-data at higher frequency. AIS aggregated 

estimates for seaborne crude exports have proven to be in the alignment with the customs 

official numbers (Adland et al., 2017). However, at the country level some deviations have 

been found: countries with storages and transshipment hubs appeared among major exporters, 

though with no domestic production, and exporters mainly transporting oil by pipeline were 

not on the list at all. Since we look at the AIS data we get the accurate measures, and the later 

models 4 and 7 control for interactions. If there is a pattern that is "hidden" by a transshipment 

hub, the matrix models will therefore find it as interaction between the two flows. 

 

The dataset covers a time-period from January 1, 2013 to mid-March of 2016 (1173 days of 

observations in total) and contains information on the micro level for 81,728 shipments, 

including vessel name, vessel class, imo number, loading information (date, load point, port, 

country, region) and discharge information (date, offtake point, port, country, region). Each 

observation in the data file starts at the port of loading and ends at the port of discharge. If any 

of the vessels visits several ports of loading or discharge before arriving at the port of final 

destination, it is reflected by AIS as individual shipments.  

 

Our data contains an almost excessive amount of information, with details on every trip and 

every ship in the period. With this level of detail, there are two analytical approaches that can 

be used. The first is to use all the information to train evolving machine-learning algorithms. 

The advantage to this method is that it has very few restrictions, and that the format of the data 

is irrelevant so that no aggregation is necessary. The second approach is to aggregate the data 

to a form where traditional regression tools are usable. We have chosen the second alternative, 

for three reasons. First, evolving machine learning is not yet a strong focus at NHH, while the 

regression techniques are well-established. Second, it is difficult to apply economic theory to 
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an evolving algorithm; while it might yield results that are more precise, those results will not 

be based on economic theory. Third, the results of evolving algorithms can be difficult or even 

impossible to interpret. 

 

Since we have chosen the regression approach, we will aggregate the data to a form where 

regression algorithms can be applied. It is also important to reduce the number of explanatory 

variables to avoid overfitting and limit the calculation requirements. We have chosen a 

relatively strong aggregation: we create variables where we sum all oil shipments from one 

region to another on a week-to-week basis. The weekly aggregation was chosen because we 

had found that the day-to-day variation of oil shipments was largely noise that contributed 

nothing to our estimates, and that days with zero shipments were both frequent and caused 

issues with some of the algorithms. There is an economic argument as well: this variation is 

caused by the non-divisibility of ships. Oil tankers are very large, and even the largest routes 

do not require that many tankers each day, so even if daily demand for oil were constant, 

shipment would vary to use all ship capacity. To further simplify our analysis, we focused on 

the ten largest inter- and intraregional routes by volume and disregarded the others. These 

routes represent 54.36 % of volume in the data, which we deemed sufficient.  

 

While we unfortunately lose some of the details that make these data interesting, we saw no 

other way to approach this problem with traditional techniques. Using country-to-country 

shipments would lead to 1385 different variables. Since we only have 1173 days of 

observations in our set, OLS regression techniques would fail to give reasonable results, due 

to perfectly fitting the data, and multivariate matrix methods would be computationally 

impossible to solve. Using region-to-region shipments basis reduces this to 178, and it allows 

us to cover 54 % of the volume by using only ten variables.  

 

Our first use of the vessel speed variable is in our reproduction of Assmann’s (2012) model 

with our data.  Since the traveling speed will differ as the ship load changes, we measure the 

initial trip and return trips as different groups. We then measure how much time each ship 

spends on each route, and how this changes over time. Since the model of speed optimization 

expresses optimal speed as an epsilon-root of some expression, where ϵ ≈ 2 is a common 

assumption, we use this to estimate the speed instrument in the regressions for model 6. We 

therefore square the travel time for this regression.  Bunker prices is the 380 CST bunker index, 

while freight rates are the Clarkson’s spot indexes for VLCC’s for these routes. Of our ten 
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routes, three do not have costs, since these are intra-regional routes. For the route from the 

Arab Gulf to South Asia shipments are equally divided between Aframax, Suezmax and 

VLCC ships. Unfortunately, we only have freight rates for VLCC’s on this route, so that is 

what we have used. The other routes have 80 % - 90 % VLCC usage, so this should be a good 

price measure here. We have used the full set of shipments even though not every ship is a 

VLCC. As long as the share of VLCC’s does not vary too much in the period, along with the 

oil price, this does not bias the regressions. Given the short time-frame of our data, this is most 

likely not an issue. 

 

Table 1: Model 1-4. Variables description 

Variable Obs Mean Std. Dev. Min Max 

Arab Gulf –  

East Asia 
167 9.12 1.22 6.33 12.18 

Arab Gulf –  

North America 
167 3.26 1.07 1.44 7.01 

Arab Gulf –  

South Asia 
167 3.19 0.87 1.52 5.93 

Arab Gulf – 

Southeast Asia 
167 2.39 0.66 0.87 4.89 

Eurasia –  

Northwest Europe 
167 1.86 0.39 1.07 3.09 

Latin America – 

Latin America 
167 2.30 0.48 1.26 3.72 

Latin America – 

North America 
167 1.70 0.40 0.77 3.11 

North America – 

North America 
167 1.83 0.45 0.87 3.51 

Northwest Europe – 

Northwest Europe 
167 2.27 0.55 0.98 3.91 

West Africa –  

East Asia 
167 1.86 0.49 0.76 3.24 
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Table 2: Model 5-6. Variables description  

Variable Obs Mean Std. Dev. Min Max 

Freight rates 1169 66.71 29.51 18.00 200.00 

Bunker oil price 1670 756.93 208.68 314.44 1022.59 

Log(freight rates) 1169 4.10 0.46 2.89 5.30 

Log(bunker oil) 1670 6.58 0.32 5.75 6.93 

 

Table 3: Model 7. Variables description 

Variable Obs Mean Std.dev. Min Max 

Brent 167 83.13 28.98 27.42 118.05 

Trade Volumes 

Arab Gulf –  

East Asia 
167 9.12 1.22 6.33 12.18 

Arab Gulf –  

North America 
167 3.26 1.07 1.44 7.01 

Arab Gulf –  

South Asia 
167 3.19 0.87 1.52 5.93 

Arab Gulf – 

Southeast Asia 
167 2.39 0.66 0.87 4.89 

Eurasia – 

Northwest Europe 
167 1.86 0.39 1.07 3.09 

Latin America – 

North America 
167 1.70 0.40 0.77 3.11 

West Africa – 

East Asia 
167 1.86 0.49 0.76 3.24 

Trip Durations 

Arab Gulf –  

East Asia 
167 26.19 2.58 23.63 55.79 

Arab Gulf –  

North America 
167 50.07 3.31 42.55 63.31 

Arab Gulf –  

South Asia 
167 9.58 3.35 6.56 46.38 

Arab Gulf – 

Southeast Asia 
167 19.45 2.39 14.40 28.95 

Eurasia – 

Northwest Europe 
167 8.02 1.71 4.08 15.29 

Latin America – 

North America 
167 16.93 3.85 10.64 28.24 

West Africa – 

East Asia 
167 41.61 3.25 35.87 67.18 
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5. Results 

5.1 Model 1 

Table 4: Coefficients for Model 1 

Trade route Coefficient 

Arab Gulf –  

East Asia 

-6.776*** 

(0.000) 

  

Arab Gulf –  

South Asia 

-1.452 

(0.530) 

  

Arab Gulf –  

North America 

2.489 

(0.177) 

  

Latin America – 

Latin America 

-1.441 

(0.729) 

  

North America – 

North America 

-7.133 

(0.122) 

  

Northwest Europe – 

Northwest Europe 

-17.47*** 

(0.000) 

  

Latin America – 

North America 

-6.644 

(0.185) 

  

Arab Gulf – 

Southeast Asia 

-4.290 

(0.152) 

  

Eurasia –  

Northwest Europe 

1.372 

(0.786) 

  

West Africa –  

East Asia 

0.188 

(0.963) 

  

Constant 216.3*** 

 (0.000) 

N 167 

adj. R2 0.250 
p-values in parentheses * p < 0.05, ** p < 0.01, *** p < 0.001 

 

Using this very simple specification, we find that two of the regional flows have highly 

significant explanatory power for the oil price, and adjusted R2 is a respectable 25.0%. Since 
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there are two highly significant variables, it is unsurprising that the F-test for joint significance 

of the oilflow variables rejects the null of no significance, with a p-value of 0. 

It is important to reiterate that the coefficients in this specification do not measure a casual 

relation. It is highly unlikely that this specification is the correct one, particularly given the 

lack of lagged variables and the fact that the mean travel time for the Arab Gulf – East Asia 

trade route is 26.2, which means that an instantaneous causation would be very surprising. 

This model basically measures the degree of co-variation between the different trade flows 

and the oil price, but that is an important result in itself. Multiple significant relationships 

combined with a non-trivial R2 is a good starting point for further analysis. 

We now extend the analysis by including lagged variables. The literature on lagged variables 

suggests that an information criterion should be used to find the optimal number of lags. 

Simply put, we should choose an optimal number of lags, where including one more lag would 

convey only marginal information. For VAR models it is common to use formal tests such as 

Akaike’s, but for a simple OLS specification, adjusted R2 is the common measure of model 

fit, and that is what we use. Based on the following graph, we specify this model with 4 lags. 

 

Figure 2:  Adjusted R2 for Model 1  

 

To extend the analysis further, we also regressed 4 lags with the 20 largest routes instead. With 

an R2 of 88.0 %, there is every reason to expect overfitting here. To test a hypothesis that some 
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routes and lags are relevant while others are not, we redid the regression using only the 

significant lags and variables. This should also abate the overfitting problem. 

We enclose a subset of the regression tables to illustrate how the changes in specification 

changes the coefficients. This is the result of redoing the regression using only significant 

coefficients. Model 1 is the coefficient from the first model, “With 4 lags” is the coefficient 

from the model with 4 lags, and “Only significant” is a model where only the coefficients that 

were significant in the 4-lag specification are included. 

Table 5: Subset of the regression tables for Model 1 

Region Lag noo Model 1 With 4 lags Only significant 

Arab Gulf - 

East Asia 
0 -6.78*** -4.86*** -6.00*** 

1  -5.60*** -7.47*** 

2  -6.48*** -8.49*** 

3  -6.59*** -8.31*** 

4  -5.20*** -6.62*** 

Arab Gulf - 

South Asia 
0 -1.45 -0.42  
1  -1.36  
2  -3.18  
3  -3.99* -2.27 

4  -2.91  
Northwest 

Europe - 

Northwest 

Europe 

0 -17.47*** -5.32* -8.35*** 

1  -3.13  
2  -4.43  
3  -3.49  
4  -2.85  

                            * p < 0.05, ** p < 0.01, *** p < 0.001 

 

It is interesting to observe that the coefficients for the Arab-East Asian trade changes so little, 

even though we removed a large amount of control variables. The Northwest Europe to 

Northwest Europe instant relationship is similarly consistent. This result is surprisingly robust, 

in both the significance and the sign; to a certain degree the magnitude of the coefficient as 

well. As we wrote in the methodology section, we included model 1 and 2 mostly because of 

their value as measurements for co-variance; we did not expect the coefficients to be unbiased. 

The consistency of the coefficients of these two regions is therefore both interesting and 

surprising. 
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5.2 Model 2 

In the first model we deliberately excluded the oil price as an explanatory variable to properly 

measure co-variation. However, this information is both known and critical to predicting the 

oil price, and it should therefore be included in any predictive model.  

Table 6: Coefficients for Model 2 

 Oil price 

Lag 1 Oil price 1.000*** 

 (0.000) 

  

Arab Gulf –  

East Asia 

-0.0125 

(0.935) 

  

Arab Gulf –  

South Asia 

-0.102 

(0.621) 

  

Arab Gulf –  

North America 

-0.209 

(0.204) 

  

Latin America – 

Latin America 

-0.344 

(0.351) 

  

North America – 

North America 

-0.809* 

(0.050) 

  

Northwest Europe– 

Northwest Europe 

0.127  

(0.719) 

  

Latin America – 

North America 

0.121 

(0.786) 

  

Arab Gulf – 

Southeast Asia 

-0.0967 

(0.718) 

  

Eurasia – 

Northwest Europe 

0.613 

(0.173) 

  

West Africa –  

East Asia 

-0.951** 

(0.009) 

  

Constant 3.330 

 (0.214) 

N 166 

adj. R2 0.994 
p-values in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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We find that the explanatory power is extremely high, with R2 around 99.4 % for both the base 

model and models including up to 10 lags. We did find that some variables were significant, 

a few were even consistently significant as the number of lags changed. However, with such 

a high number of estimated coefficients we should test whether the impact of the variable is 

significant, not only the statistical tests. As a simple measure, we estimated the model 

 

In other words, we leave out the AIS data entirely.  

Table 7: the oil price regressed on its first lag  

 Oil Price 

Lag 1 Oil Price 1.001*** 

 (0.000) 

  

Constant -0.531 

 (0.326) 

N 166 

adj. R2 0.994 
           p-values in parentheses 
              * p < 0.05, ** p < 0.01, *** p < 0.001 

 

The unchanging R2 shows that the contribution of the AIS data were entirely insignificant in 

this model. This is in line with our suspicions; since the oil price is autocorrelated, each new 

observation is not independent of the previous observation. Therefore, we find that the oil 

price highly correlates with itself, and that correlation dominates the specification entirely.  

𝑂𝑖𝑙 𝑝𝑟𝑖𝑐𝑒𝑡 = 𝛼 + 𝛽 𝑂𝑖𝑙 𝑝𝑟𝑖𝑐𝑒𝑡−1 + 𝜖 



 32 

5.3 Model 3 

In this model, we test whether the first differentiated oil price series can be predicted using the 

AIS data.  

Table 8: Coefficients for Model 3 

 (1) 

 Δ Brent 

Arab Gulf –  

East Asia 

-0.0116 

(0.936) 

  

Arab Gulf –  

South Asia 

-0.102 

(0.620) 

  

Arab Gulf –  

North America 

-0.209 

(0.199) 

  

Latin America – 

Latin America 

-0.344 

(0.350) 

  

North America – 

North America 

-0.808* 

(0.048) 

  

Northwest Europe 

– Northwest 

Europe 

0.129 

(0.695) 

  

Latin America – 

North America 

0.122 

(0.782) 

  

Arab Gulf – 

Southeast Asia 

-0.0962 

(0.717) 

  

Eurasia – 

Northwest Europe 

0.613 

(0.171) 

  

West Africa – East 

Asia 

-0.951** 

(0.008) 

  

_cons 3.302 

 (0.134) 

N 166 

adj. R2 0.039 
p-values in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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We also extend this model using multiple lags. The pattern of adjusted R2 generated by those 

models is very interesting:  

 

Figure 3:  Adjusted R2 for Model 3 

 

From 14 lags onwards the R2 explodes, reaching 1 at 15; this is a proof of overfitting; there is 

possibly an equivalent problem at 10 lags onwards. However, we still find some explanatory 

power at 0-4 lags; the few variables used here makes overfitting unlikely, as does the plunge 

from 5 lags to 8. Unfortunately, there are very few significant lags and variables, with a few 

exceptions that are expected by simple statistics: with 21 estimated coefficients, 2 is expected 

to be spuriously significant at the 10 % -level, which is what we find. The F-test that all 

variables have a true value of 0 is 30.99 %, so the model is jointly insignificant. 
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5.4 Model 4 

In a VAR specification it is impossible to estimate an instantaneous model, so we have 

included the table for four lags instead. The explained variable is Oil price, coefficients and p-

values are provided for each explanatory variable in the table. 

Table 9: Coefficients for Model 4 

   

Oil Price Coef. p-value 
NW Europe – 

NW Europe       Coef.       p-value 

L1. 1.378 0.000*** L1. -0.144 0.672 

L2. -0.398 0.002*** L2. -0.473 0.148 

L3. -0.018 0.891 L3. -0.319 0.321 

L4. 0.033 0.684 L4. 0.598 0.075** 

Arab Gulf - East Asia  

 Latin America – 
North America  

L1. 0.019 0.898 L1. -0.361 0.394 

L2. -0.096 0.533 L2. 0.320 0.445 

L3. -0.081 0.604 L3. 0.067 0.868 

L4. -0.133 0.372 L4. 0.658 0.127 

Arab Gulf – South Asia  

 Arab Gulf – 
Southeast Asia  

L1. -0.448 0.029** L1. -0.194 0.445 

L2. 0.120 0.554 L2. 0.123 0.627 

L3. 0.160 0.431 L3. 0.097 0.714 

L4. 0.213 0.329 L4. 0.513 0.058* 
Arab Gulf –  
North America  

 Eurasia –  
NW Europe  

L1. 0.324 0.043** L1. -0.180 0.673 

L2. -0.036 0.824 L2. 0.400 0.349 

L3. -0.245 0.110 L3. 0.669 0.113 

L4. 0.085 0.588 L4. 0.451 0.284 
Latin America –  
Latin America  

 West Africa – East 
Asia  

L1. -0.127 0.715 L1. -0.237 0.480 

L2. 0.116 0.729 L2. -0.501 0.139 

L3. 0.122 0.725 L3. -0.359 0.295 

L4. 0.540 0.109 L4. 0.424 0.194 
North America –  
North America  

 

Constant -2.674 0.593 

L1. 0.843 0.047** 

L2. -0.110 0.780 

L3. -0.244 0.514 

L4. -0.247 0.522 
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It is of particular interest that only the first two lags of the Oil price itself have statistical 

significance, and that these have opposite signs. The interpretation of the coefficients here is 

that a shock to the oil price of USD 1 at t=1 will on average lead to a further increase at t=2, 

to USD 1.38, with an adjustment downwards to 1 at t=3. This is consistent with the hypothesis 

that expectations matter; even random noise is initially interpreted as a signal, but the price 

mostly corrects itself afterwards. It is noteworthy that the “overshooting” of lag 1, which has 

a value of 1.378-1=0.378 where we subtract the initial shock of 1, is almost equal in magnitude 

to the correction in lag 2, of 0.398. These results are evidence against a random walk 

hypothesis, where the coefficient of the oil price lag one should be equal to 1, and every other 

coefficient should be equal to 0.  

There are other variables that have statistically significant coefficients. Of 45 estimated 

coefficients, we expect around 5 to be spuriously significant at the 5 % level, which is around 

the number that we find. However, it is interesting that Arab Gulf – South Asia and Northwest 

Europe – Northwest Europe both appear to have some statistical significance; they had that in 

model 2 as well. Equally interesting is that Arab Gulf – East Asia has lost all significance here, 

since it was very consistent in the OLS approach. The question of significance can be further 

illuminated by the Granger causality results, which we include here: 
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Table 10: Granger causality results for Model 4 

Equation Excluded Variable P-value of excluded 

Oil Price Arab Gulf - East Asia 88.0 % 

 

Arab Gulf –  

South Asia 22.2 % 

 

Arab Gulf –  

North America 19.3 % 

 

Latin America –  

Latin America 55.3 % 

 

North America – 

North America 32.6 % 

 

Northwest Europe – 

Northwest Europe 14.6 % 

 

Latin America – 

North America 40.8 % 

 

Arab Gulf –  

Southeast Asia 33.2 % 

 

Eurasia –  

Northwest Europe 21.5 % 

 

West Africa –  

East Asia 24.9 % 

 ALL 6.3 % 

Arab Gulf – 

East Asia Oil Price 0.2 % 

   

As we see, even though every region by itself is insignificant, the joint test of All regions is 

weakly significant. We also included one line from the table for Arab Gulf – East Asia, which 

explains the apparent paradox of the lost significance. The low p-value indicates that the oil 

price affects the volume, but not the other way around, at least in this specification. This 

explains why some OLS specifications picked up a relationship, and also illustrates the value 

of a more general specification than OLS. 

The large number of estimated correlation coefficients makes interpretation somewhat 

difficult. For example, the third lag of the oil price is not significant, the two previous lags 
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were. Several other variables are significant only in the first lags, but the exact distribution 

of individually significant lags for a variable might be misleading. It is possible that one data 

point is sufficient to convey the information from the variable, but exactly which lag will 

show that information can be extremely unstable; it is possible that only minor changes to 

the data will change which coefficient will show as the significant one. 

Economically, the result is the same. There is no market where the price information from 

three weeks ago can be viewed isolated from the price two weeks ago. The total interaction of 

coefficients estimated can be viewed as the way the market responds to shocks, or impulses. 

There total response is however iterative; a shock to the oil price at t=1 will generate a response 

to all other variables at t=2, which all will generate responses in the oil price in t=3, and so 

on.  The totality of these interactions can be graphed, and those graphs convey more 

information than the coefficients by themselves. We therefore show the impulse response 

functions, which is a graphical equivalent of the coefficients in OLS. They show the estimated 

change to the oil price as a response to a shock to the other variables, with the totality of 

interactions calculated. 

 

Figure 4:  Impulse response functions for Model 4 
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Table 11: Variables names 

Route name on Graph Route name from Summary 

flowregion4 Arab Gulf – East Asia 

flowregion10 Arab Gulf – North America 

flowregion13 Arab Gulf – South Asia 

flowregion14 Arab Gulf – Southeast Asia 

flowregion84 Eurasia – Northwest Europe 

flowregion94 Latin America – Latin America 

flowregion96 Latin America – North America 

flowregion120 North America – North America 

flowregion132 Northwest Europe – Northwest Europe 

flowregion166 West Africa – East Asia 

 

As we see from the relatively large movements of the blue lines, the impact from the different 

regional trade flows is considerable; the lack of explanatory power is a result of the uncertainty 

of the estimates, expressed by the wide confidence bands. It is noteworthy that most of the 

blue lines are shaped like either u’s or inverted u’s. This is consistent with the hypothesis that 

the market overshoots somewhat after a shock, and then corrects afterwards. Note also that 

this means that we have temporal endogeneity of the lagged variables: since some of the 

variation is cancelled out by corrections, even joint tests might fail to pick up a significant 

relationship, since the totality of the lagged variables goes back to 0. This limits how much 

joint variation we can measure. 
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5.5 Model 5 

In this model we use a panel data specification to assess the use of travel time as an instrument 

for the oil price. The Hausman test does not reject the null of no systematic difference in 

coefficients, so we can choose the less restrictive random effects specifications. We have 

included a table of 0-4 lags to explore whether our strategy of including lags is viable. 

Table 12: Coefficients for Model 5 

Included lags (0) (1) (2) (3) (4) 

 Trip time Trip time Trip time Trip time Trip time 

Freight rates -0.00677 -0.00836 -0.00950 -0.00991 -0.0118 

 (0.166) (0.327) (0.269) (0.250) (0.199) 

      

Bunker price -0.000609 -0.00638 0.00193 0.000873 -0.00176 

 (0.194) (0.295) (0.781) (0.901) (0.815) 

      

L.freight_rates  0.00124 0.00754 0.00794 0.00697 

  (0.886) (0.515) (0.494) (0.574) 

      

L2.freight_rates   -0.00671 -0.00283 -0.00202 

   (0.442) (0.808) (0.871) 

      

L3.freight_rates    -0.00563 -0.00166 

    (0.521) (0.894) 

      

L4.freight_rates     -0.00854 

     (0.361) 

      

L.bunkerprice  0.00578 -0.0191 -0.0121 -0.00663 

  (0.344) (0.110) (0.341) (0.628) 

      

L2.bunkerprice   0.0166* -0.00220 -0.0134 

   (0.017) (0.863) (0.354) 

      

L3.bunkerprice    0.0129 0.0346* 

    (0.068) (0.011) 

      

L4.bunkerprice     -0.0138 

     (0.068) 

      

Constant 25.46*** 25.45*** 25.47*** 25.55*** 26.37*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) 

N 1169 1162 1155 1148 1141 
p-values in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 13: Tests of joint significance for Model 5 

Lags 

p-value for joint 

significance of freight rates Overall R2 

0 17.86 % 21.91 % 

1 32.41 % 19.25 % 

2 38.56 % 14.13 % 

3 42.80 % 14.23 % 

4 18.27 % 18.71 % 

5 0.00 % 29.21 % 

6 0.00 % 30.22 % 

7 0.00 % 30.84 % 

8 0.00 % 31.47 % 

9 0.00 % 32.00 % 

10 0.00 % 32.44 % 

 

With this specification, we find what many others in the literature have already found, a weak 

to non-existing relationship between freight rates and vessel speed. We find very few 

significantly significant variables, and no robustness to different specifications. The table of 

tests for joint significance also confirms that the strategy of including lags is insufficient to 

solve this problem. The sudden drop at 4 to 5 included lags is combined with a large jump in 

overall R2, which is a clear indication of overfitting. This specification thus fails to give any 

significant results. 
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5.6 Model 6 

In this model we replicate Assmann (2012) model, transforming all variables using the 

logarithmic function. We keep our panel data setup. The Hausman test strongly rejects the 

null of no systematic difference in coefficients, so we must choose the fixed-effect 

specification. We include a table of 0-4 here as well, with the same reason as before. 

Table 14: Coefficients for Model 6 

Number of lags (0) (1) (2) (3) (4) 

 Log (travel 

time) 

Log (travel 

time) 

Log (travel 

time) 

Log (travel 

time) 

Log (travel 

time) 

Log(freight) -0.116** -0.0810 -0.0851 -0.0851 -0.0875 

 (0.002) (0.259) (0.236) (0.235) (0.223) 

      

Log(bunker) -0.100** 0.0255 0.497 0.447 0.237 

 (0.002) (0.944) (0.226) (0.280) (0.570) 

      

L.Log(freight)  -0.0431 0.0652 0.0757 0.0735 

  (0.552) (0.505) (0.437) (0.450) 

      

L2.Log(freight)   -0.125 -0.0721 -0.0599 

   (0.091) (0.463) (0.541) 

      

L3.Log(freight)    -0.0791 -0.0319 

    (0.282) (0.744) 

      

L4.Log(freight)     -0.0667 

     (0.363) 

      

L.Log(bunker)  -0.135 -1.508* -1.262 -0.751 

  (0.710) (0.032) (0.096) (0.330) 

      

L2.Log(bunker)   0.902* 0.273 -0.621 

   (0.030) (0.719) (0.451) 

      

L3.Log(bunker)    0.424 2.071** 

    (0.318) (0.008) 

      

L4.Log(bunker)     -1.077* 

     (0.012) 

      

Constant 7.122*** 7.217*** 7.297*** 7.407*** 7.623*** 

 (0.000) (0.000) (0.000) (0.000) (0.000) 

N 1169 1162 1155 1148 1141 
p-values in parentheses 
* p < 0.05, ** p < 0.01, *** p < 0.001 
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Table 15: Tests of joint significance for Model 6 

Lags 

p-value for  

joint significance of travel time Overall  R2 

0 0.22 % 23 .49 % 

1 0.72 % 23 .82 % 

2 0.48 % 23 .38 % 

3 0.47 % 23 .89 % 

4 0.69 % 22 .94 % 

5 1.01 % 21 .21 % 

6 0.18 % 23 .18 % 

7 0.18 % 23 .69 % 

8 0.30 % 23 .14 % 

9 0.46 % 23 .67 % 

10 0 .69 % 24 .20 % 

 

The result of this model, like the previous one, is in line with the literature on this subject. 

We find some significant variables, but their estimated coefficients are far below the 

estimates we would expect from the optimization theory. Models 5 and 6 jointly show that 

our strategy of including lagged variables was insufficient to resolve the speed optimization 

paradox. 
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5.7 Model 7 

Table 16: Coefficients for Model 7 

Oil Price Coef. p-value Constant      Coef. p-value 

L1. 1.356 0.079* 16.081 0.092* 

L2. -0.452 0.127   

L3. 0.008 0.126    

L4. 0.075 0.082*   

Oil Volumes Trip Duration 

Arab Gulf - East Asia    

L1. -0.001 0.138 -0.236 0.116 

L2. -0.181 0.149 -0.110 0.124 

L3. -0.105 0.157 -0.233 0.124 

L4. -0.154 0.150 -0.060 0.118 

Arab Gulf - North America    
L1. 0.311 0.150 0.092 0.055* 

L2. 0.030 0.156 -0.112 0.051* 

L3. -0.210 0.145 -0.006 0.053* 

L4. 0.188 0.151 -0.022 0.053* 

Arab Gulf - South Asia    
L1. -0.477 0.205 0.110 0.090* 

L2. 0.047 0.202 0.063 0.093* 

L3. -0.214 0.209 0.113 0.093* 

L4. -0.128 0.205 0.102 0.094* 

Arab Gulf - Southeast Asia    
L1. 0.069 0.241 0.070 0.068* 

L2. 0.220 0.236 0.154 0.068* 

L3. 0.175 0.236 -0.133 0.067* 

L4. 0.315 0.239 -0.012 0.068* 

Eurasia - Northwest Europe    
L1. 0.546 0.434 -0.064 0.107 

L2. 0.239 0.449 0.096 0.110 

L3. 0.843 0.411 0.039 0.111 

L4. 0.481 0.424 0.146 0.102 
Northwest Europe – 
Northwest Europe    
L1. -0.881 0.455 -0.029 0.045** 

L2. 0.429 0.443 0.069 0.047** 

L3. -0.169 0.416 -0.012 0.048** 

L4. 1.006 0.417 -0.051 0.050* 

West Africa - East Asia    
L1. -0.241 0.325 -0.047 0.051* 

L2. -0.791 0.346 -0.008 0.052* 

L3. -0.727 0.352 -0.073 0.052* 

L4. 0.105 0.320 0.112 0.051* 
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In this model, we combine the speed instrument with a VAR model. We find that 5 of 7 vessel 

speed measures are statistically significant. It is interesting that there is so little variation of p-

values, across all variables.  No trade flows are found to be significant. However, the Granger 

results in table 17 show a different picture. The left p-value is the value of whether the variable 

Granger predicts the oil price, the right p-value is the value of whether the variable is Granger 

predicted by the oil price.  

 

When we moved on to the VAR from the OLS models, we were worried that endogeneity 

might be preventing OLS from finding the correct results. We pointed out that both the supply 

of oil and the supply of ships is limited, which means that a change in one regional variable 

must be correlated with other regional variables. Also, the demand for oil in different regions 

is driven by the same economic forces and will thus be correlated; the same can be said about 

shipping speeds. The Granger test from model 7 show that we were right to worry. 

 

Table 17: Coefficients for Model 7 

Variable p (-> Brent) p (<- Brent) 

Oil volumes 

Arab Gulf - East Asia 0.645 0.000* 

Arab Gulf - North America 0.092* 0.387 

Arab Gulf - South Asia 0.061* 0.442 

Arab Gulf - Southeast Asia 0.635 0.186 

Eurasia - Northwest Europe 0.068* 0.030** 

Northwest Europe –  

Northwest Europe 0.016** 0.023** 

West Africa - East Asia 0.070* 0.015** 

Trip Durations 

Arab Gulf- East Asia 0.031** 0.999 

Arab Gulf -  North America 0.085* 0.000* 

Arab Gulf - South Asia 0.118 0.770 

Arab Gulf - Southeast Asia 0.029** 0.019** 

Eurasia - Northwest Europe 0.444 0.186 

Northwest Europe –  

Northwest Europe 0.459 0.000** 

West Africa - East Asia 0.138 0.003** 

 

In this specification, 5 of 7 trade flows statistically predict the oil price. The flow from the 

Arab Gulf to East Asia does not predict the price but responds instead. This is consistent 

with the results from model 4, and it is interesting that this result is so robust. Only one trade 

flow neither predicts or is predicted by the oil price. The same holds for the speed 
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instrument; 3 of 7 instruments predict the oil price, and 5 of 7 responds to it; only one is 

neither predicted or predictive. 

The large number of significant variables is a highly interesting result, particularly since the 

VAR specification also contains all the information from the lagged oil price observations. 

Moreover, if we consider the following chart of Impulse Response Functions, it is clear that 

many of the trade routes have significant impacts as well as statistical significance: 

 

Figure 5:  Impulse response functions for Model 7 
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the appendix is the full table of the Granger causality tests. It is far too long to include here, 
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explain the lack of significance in models 5 and 6, that persisted even as we added lags; in 
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We also find that the speed instrument both affects and is affected by the oil price. The two-

way speed-oil price causality that we found is consistent with Kilian’s (2008) model, since an 

underlying assumption there is that shipping rates can be used as an instrument for global 

economic activity. The instrument on speed that we have used here is another measure of the 

opportunity cost of the ships. The fact that the causality between instrumented speed and oil 

price goes both ways is indicative of some underlying factor that affect both; the activity of 

the world economy seems a likely suspect. While we cannot address the unbiasedness of 

Kilian’s instrument, our findings are at least consistent with his assumptions, and thus act as 

a triangulation of same. 

 

 

 



 47 

6. Discussion and concluding remarks 

We have explored the relationship between the flow of crude oil and the oil price. Tangentially, 

we have also examined the relationship between ship speed and freight rates. We have also 

offered a triangulation of Kilian’s (2009) assumption that opportunity costs of a ship can be 

used as an instrument for world GDP. 

It is common to use measures of model fit to asses which model performs better, such as Root 

Square Mean Error, but we have chosen not to do so. Since our dataset covers only a few 

years, and the oil price is influenced by macroeconomic trends that stretch longer than that, 

we are incapable of assessing the precision of our models without potentially creating large 

biases in the measures, since even a well-crafted model might find results that are spurious to 

the period. This means that it is impossible to assess the validity of our models out-of-sample. 

If longer data is available sometime in the future, it might be worth re-investigating. 

We have found that it is feasible that information from the AIS tracking system be useful in 

predicting the oil price, if used in a proper specification. OLS models failed to give any 

significant results when information from the oil price itself was included, which could 

indicate that there was no more information to extract from the AIS data. However, we have 

argued that this is probably a result of misspecification bias; both the assumptions of 

independent observations and endogeneity were violated, which could suppress otherwise 

significant results. VAR models gave mixed results. In model 4 we failed to find a strong 

relationship, but we did find a weak link. The Granger p-value of 6.3 % is not as strong as we 

would have liked to have for a conclusive result, but there exists some statistical relation. 

Model 7, which included the vessel speed instrument, gave much stronger results. 

We have also examined the apparent paradox of non-optimal ship speed behavior. We offered 

some critique of the current models and tried a specification that should solve the issued we 

raised. We found that a less stringent specification apparently resolved the paradox; the 

opportunity cost of ships and the oil price are consistently correlated when we control for both 

lags and endogeneity. The short time-span is again preventing us from conclusively saying 

that the issue is resolved, but it appears at least to be worthy of further investigation. 

In the same model, we assessed the validity of using ship opportunity cost as a measure for 

GDP. While we cannot address the question of possible bias created by Kilian’s use of the 
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Baltic index, we nonetheless offer conceptual support, as our unrelated instrument for the same 

opportunity cost showed strong statistical significance. 

The most interesting result is found by comparing models 4 and 7; in model 7 we use vessel 

speed as an instrument to control for the role of expectations; in model 4 we do not. 

Unfortunately, we cannot isolate the effect of this instrument. The VAR specification is too 

unrestricted to allow interpretation of some coefficients in isolation, which is one reason why 

many economists prefer SVAR specifications. We have chosen not to use the SVAR models, 

since we suspected that endogeneity was a problem, which could create bias in a SVAR model. 

The high degree of two-way Granger causality between the different variables is proof of 

endogeneity. The fact that most variables had high Granger causality significance and low 

coefficient significance is supportive evidence. This result throws doubt on the unbiasedness 

of Kilian’s results, as they rely on the SVAR specification. 

Despite this, our findings support the overlying concept of Kilian’s model. While we cannot 

measure the precise effect of the speed instrument, we can compare the models with and 

without it. Model 7 stands out from our other models in the number of significant variables 

and the strength of the Granger causality tests. A majority of the Granger tests in model 7 are 

significant, both among the oil trade and ship speed variables. This is consistent with Kilian’s 

model. Since our results are constructed in an entirely different and independent matter, this 

triangulation is a supportive result of his general model.  

We can draw other conclusions from comparing the VAR with and without the speed 

instrument. First, the market is not perfectly identified using only Quantity and Price, because 

if it were, the vessel speed instrument would not be significant. As a continuation of this 

argument, the market for oil is not perfect, because if it were, Quantity and Price would be 

sufficient information to identify the market. While these are not the most exciting 

conclusions, it is nevertheless good to see that the prices are more complex than that, as it 

validates our attempt to find deeper relations. We can further conclude that inclusion of AIS, 

and by extension other types of non-standard data, can be a viable approach. Most of these 

observations were highly significant in the last VAR model, which also included all data from 

the oil price; it follows that they must have added information.  

The significance of the speed instrument also supports the theory of vessel speed optimization. 

Although we did not test this relationship directly, we indirectly used vessel speed as a 
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measure of the opportunity cost of ships. The fact that this information was significant shows 

that there must exist some relationship between vessel speed and opportunity cost, which 

freight rates also measure. The lack of significance in models 5 and 6 indicates that controlling 

with lagged variables was insufficient to resolve the paradox. The increase in significance to 

model 7, combined with the strong indications of endogeneity, is a strong indication that 

endogeneity lies at the heart of this paradox. As far as we know, the use of a vessel speed 

instrument directly in a VAR model has not been done before in this setting, so it is possible 

that we have found a genuine discovery. 

We must, however, be careful not read too much into the results; they are interesting, but not 

proof of the actual effect. The short time-span of our dataset makes these predictions dubious. 

It is possible that the two effects that we just discussed is a mere artifact from that period; the 

oil price increased, and exports from the Arab Gulf shifted from North America to South Asia. 

We meet here a constant problem in macroeconomic modeling: we only have one draw of 

outcomes from the world. The macro shift towards Asia is the only data that we will ever have, 

so it is impossible to find counterfactual observations. As such, even if the model fits very 

well, it might be the result of overfitting. Usually, we would not expect overfitting to be a 

problem with only 4 weeks of lagged variables. However, if the macro trends are strong 

enough, they might lead to overfitting even with very sparse specifications. 

For future avenues of research, the endogeneity issues that we found in the vessel speed 

instrument stands out. This can possibly explain the apparent vessel speed optimization 

paradox. A further exploration of this issue is an exciting possibility. Another option is 

expanding the scope of time for this kind of study. The results would be more reliable if they 

covered a larger amount of time. This would also allow for reasonable estimations of model 

fit, which we lack in our results. Possibly, this could lead to more precise estimates of the oil 

price, which could have large economic consequences. 
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8. Appendix 

Table 18: Cointegration tests: Augmented Dickey-Fuller on residuals 

Level 1%  5%  10%     

Critcal values -3.489 -2.886 -2.576    

Lags Model 1 Model 2 Model 2b Model 3 Model 4 Model 7 

0 -3.843 9.441 -8.779  -9.440   

1 -4.256  -9.479  -9.458   

2 -4.273 -9.738  -9.746   

3 -3.805 -9.572    -9.620   

4 -3.221 -9.370  -9.389  -12.081 -12.461 

5 -3.026   -9.702   

6 -3.035   -9.772   

7 -3.243   -9.625   

8 -2.917   -10.203   

9 -2.951   -10.424    

10 -3.603   -9.900    

Models 5 and 6 - Dickey Fuller not possible for panel data   
 

Table 19: Granger causality tests from model 4 

Equation Excluded p-value 

Brent oilflow_region4 0.88 

 oilflow_region13 0.222 

 oilflow_region10 0.193 

 oilflow_region94 0.553 

 oilflow_region120 0.326 

 oilflow_region132 0.146 

 oilflow_region96 0.408 

 oilflow_region14 0.332 

 oilflow_region84 0.215 

 oilflow_region166 0.249 

 ALL 0.063* 

   

oilflow_region4 Brent 0.002*** 

 oilflow_region13 0.552 

 oilflow_region10 0.396 

 oilflow_region94 0.102 

 oilflow_region120 0.326 

 oilflow_region132 0.04** 

 oilflow_region96 0.809 

 oilflow_region14 0.329 

 oilflow_region84 0.531 

 oilflow_region166 0.158 
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 ALL 0,000 

   

oilflow_region13 Brent 0.914 

 oilflow_region4 0.14 

 oilflow_region10 0.043** 

 oilflow_region94 0.7 

 oilflow_region120 0.966 

 oilflow_region132 0.319 

 oilflow_region96 0.424 

 oilflow_region14 0.214 

 oilflow_region84 0.38 

 oilflow_region166 0.438 

 ALL 0.111 

   

oilflow_region10 Brent 0.764 

 oilflow_region4 0.619 

 oilflow_region13 0.1 

 oilflow_region94 0.105 

 oilflow_region120 0.396 

 oilflow_region132 0.527 

 oilflow_region96 0.103 

 oilflow_region14 0.51 

 oilflow_region84 0.331 

 oilflow_region166 0.439 

 ALL 0.047** 

   

oilflow_region94 Brent 0.923 

 oilflow_region4 0.58 

 oilflow_region13 0.024** 

 oilflow_region10 0.038** 

 oilflow_region120 0.694 

 oilflow_region132 0.155 

 oilflow_region96 0.329 

 oilflow_region14 0.652 

 oilflow_region84 0.388 

 oilflow_region166 0.919 

 ALL 0.137 

   

oilflow_region120 Brent 0.015** 

 oilflow_region4 0.045** 

 oilflow_region13 0.001*** 

 oilflow_region10 0.004*** 

 oilflow_region94 0.369 

 oilflow_region132 0.543 

 oilflow_region96 0.079** 

 oilflow_region14 0.001*** 
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 oilflow_region84 0.324 

 oilflow_region166 0.499 

 ALL 0.000*** 

   

oilflow_region132 Brent 0.113 

 oilflow_region4 0.129 

 oilflow_region13 0.038** 

 oilflow_region10 0.914 

 oilflow_region94 0.981 

 oilflow_region120 0.009*** 

 oilflow_region96 0.092* 

 oilflow_region14 0.036 

 oilflow_region84 0.198 

 oilflow_region166 0.052* 

 ALL 0.000*** 

   

oilflow_region96 Brent 0.192 

 oilflow_region4 0.008*** 

 oilflow_region13 0.006*** 

 oilflow_region10 0.018** 

 oilflow_region94 0.94 

 oilflow_region120 0.254 

 oilflow_region132 0.591 

 oilflow_region14 0.038** 

 oilflow_region84 0.497 

 oilflow_region166 0.316 

 ALL 0.004*** 

   

oilflow_region14 Brent 0.59 

 oilflow_region4 0.426 

 oilflow_region13 0.759 

 oilflow_region10 0.557 

 oilflow_region94 0.572 

 oilflow_region120 0.157 

 oilflow_region132 0.186 

 oilflow_region96 0.567 

 oilflow_region84 0.402 

 oilflow_region166 0.969 

 ALL 0.266 

   

oilflow_region84 Brent 0.035** 

 oilflow_region4 0.106 

 oilflow_region13 0.00*** 

 oilflow_region10 0.468 

 oilflow_region94 0.479 

 oilflow_region120 0.723 
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 oilflow_region132 0.223 

 oilflow_region96 0.119 

 oilflow_region14 0.081* 

 oilflow_region166 0.349 

 ALL 0.004** 

   

oilflow_region166 Brent 0.024** 

 oilflow_region4 0.477 

 oilflow_region13 0.991 

 oilflow_region10 0.021** 

 oilflow_region94 0.006*** 

 oilflow_region120 0.045** 

 oilflow_region132 0.154 

 oilflow_region96 0.601 

 oilflow_region14 0.002*** 

 oilflow_region84 0.094* 

 ALL 0.002*** 

 

Figure 6: IRF for the time instrument for model 7 
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Table 20: Granger causality tests for model 7 

Equation Excluded p-value 

   

Brent oilflow_region4 0.645 

 oilflow_region10 0.092* 

 oilflow_region13 0.061* 

 oilflow_region14 0.635 

 oilflow_region84 0.068* 

 oilflow_region96 0.016** 

 oilflow_region166 0.07* 

 timetrip4 0.031** 

 timetrip10 0.085* 

 timetrip13 0.118 

 timetrip14 0.029** 

 timetrip84 0.444 

 timetrip96 0.459 

 timetrip166 0.138 

 ALL 0.000*** 

   

oilflow_region4 Brent 0.000*** 

 oilflow_region10 0.026** 

 oilflow_region13 0.306 

 oilflow_region14 0.584 

 oilflow_region84 0.323 

 oilflow_region96 0.32 

 oilflow_region166 0.05* 

 timetrip4 0.562 

 timetrip10 0.067 

 timetrip13 0.548 

 timetrip14 0.003 

 timetrip84 0.216 

 timetrip96 0.18 

 timetrip166 0.856 

 ALL 0.000*** 

   

oilflow_region10 Brent 0.387 

 oilflow_region4 0.786 

 oilflow_region13 0.193 

 oilflow_region14 0.792 

 oilflow_region84 0.242 

 oilflow_region96 0.574 

 oilflow_region166 0.433 

 timetrip4 0.173 

 timetrip10 0.659 

 timetrip13 0.696 
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 timetrip14 0.173 

 timetrip84 0.38 

 timetrip96 0.753 

 timetrip166 0.393 

 ALL 0.027** 

   

oilflow_region13 Brent 0.442 

 oilflow_region4 0.001*** 

 oilflow_region10 0.002*** 

 oilflow_region14 0.557 

 oilflow_region84 0.174 

 oilflow_region96 0.104 

 oilflow_region166 0.147 

 timetrip4 0.148 

 timetrip10 0.013** 

 timetrip13 0.075* 

 timetrip14 0.59 

 timetrip84 0.002*** 

 timetrip96 0.003*** 

 timetrip166 0.07* 

 ALL 0.000*** 

   

oilflow_region14 Brent 0.186 

 oilflow_region4 0.01* 

 oilflow_region10 0.253 

 oilflow_region13 0.61 

 oilflow_region84 0.412 

 oilflow_region96 0.109 

 oilflow_region166 0.384 

 timetrip4 0.171 

 timetrip10 0.076* 

 timetrip13 0.197 

 timetrip14 0.344 

 timetrip84 0.096 

 timetrip96 0.091* 

 timetrip166 0.207 

 ALL 0.005*** 

   

oilflow_region84 Brent 0.03** 

 oilflow_region4 0.207 

 oilflow_region10 0.18 

 oilflow_region13 0.000*** 

 oilflow_region14 0.003*** 

 oilflow_region96 0.029 

 oilflow_region166 0.054 

 timetrip4 0.189 
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 timetrip10 0.015** 

 timetrip13 0.04** 

 timetrip14 0.309 

 timetrip84 0.128 

 timetrip96 0.324 

 timetrip166 0.263 

 ALL 0.000*** 

   

oilflow_region96 Brent 0.023** 

 oilflow_region4 0.001*** 

 oilflow_region10 0.017** 

 oilflow_region13 0.001*** 

 oilflow_region14 0.034** 

 oilflow_region84 0.047 

 oilflow_region166 0.019** 

 timetrip4 0.000*** 

 timetrip10 0.002** 

 timetrip13 0.002** 

 timetrip14 0.344 

 timetrip84 0.283 

 timetrip96 0.482 

 timetrip166 0.055* 

 ALL 0.000*** 

   

oilflow_region166 Brent 0.015** 

 oilflow_region4 0.362 

 oilflow_region10 0.011** 

 oilflow_region13 0.942 

 oilflow_region14 0.031** 

 oilflow_region84 0.047** 

 oilflow_region96 0.408 

 timetrip4 0.899 

 timetrip10 0.168 

 timetrip13 0.623 

 timetrip14 0.672 

 timetrip84 0.068* 

 timetrip96 0.797 

 timetrip166 0.538 

 ALL 0.103 

   

timetrip4 Brent 0.999 

 oilflow_region4 0.434 

 oilflow_region10 0.076* 

 oilflow_region13 0.098* 

 oilflow_region14 0.775 

 oilflow_region84 0.706 
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 oilflow_region96 0.612 

 oilflow_region166 0.105 

 timetrip10 0.619 

 timetrip13 0.13 

 timetrip14 0.103 

 timetrip84 0.504 

 timetrip96 0.942 

 timetrip166 0.601 

 ALL 0.176 

   

timetrip10 Brent 0.000*** 

 oilflow_region4 0.053* 

 oilflow_region10 0.000*** 

 oilflow_region13 0.016** 

 oilflow_region14 0.006*** 

 oilflow_region84 0.002*** 

 oilflow_region96 0.081* 

 oilflow_region166 0.493 

 timetrip4 0.015** 

 timetrip13 0.002*** 

 timetrip14 0.081 

 timetrip84 0.318 

 timetrip96 0.055* 

 timetrip166 0.049** 

 ALL 0.000*** 

   

timetrip13 Brent 0.77 

 oilflow_region4 0.491 

 oilflow_region10 0.062 

 oilflow_region13 0.083* 

 oilflow_region14 0.898 

 oilflow_region84 0.733 

 oilflow_region96 0.508 

 oilflow_region166 0.076* 

 timetrip4 0.139 

 timetrip10 0.161 

 timetrip14 0.205 

 timetrip84 0.34 

 timetrip96 0.253 

 timetrip166 0.465 

 ALL 0.083* 

   

timetrip14 Brent 0.019* 

 oilflow_region4 0.001*** 

 oilflow_region10 0.523 

 oilflow_region13 0.000*** 
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 oilflow_region14 0.016** 

 oilflow_region84 0.000*** 

 oilflow_region96 0.01** 

 oilflow_region166 0.17 

 timetrip4 0.023** 

 timetrip10 0.015** 

 timetrip13 0.865 

 timetrip84 0.607 

 timetrip96 0.000*** 

 timetrip166 0.517 

 ALL 0.000*** 

   

timetrip84 Brent 0.44 

 oilflow_region4 0.000*** 

 oilflow_region10 0.752 

 oilflow_region13 0.737 

 oilflow_region14 0.032** 

 oilflow_region84 0.291 

 oilflow_region96 0.162 

 oilflow_region166 0.166 

 timetrip4 0.321 

 timetrip10 0.841 

 timetrip13 0.508 

 timetrip14 0.135 

 timetrip96 0.183 

 timetrip166 0.147 

 ALL 0.000*** 

   

timetrip96 Brent 0.000*** 

 oilflow_region4 0.283 

 oilflow_region10 0.069* 

 oilflow_region13 0.026** 

 oilflow_region14 0.391 

 oilflow_region84 0.025** 

 oilflow_region96 0.854 

 oilflow_region166 0.076* 

 timetrip4 0.362 

 timetrip10 0.623 

 timetrip13 0.737 

 timetrip14 0.49 

 timetrip84 0.403 

 timetrip166 0.941 

 ALL 0.000*** 

   

timetrip166 Brent 0.003** 

 oilflow_region4 0.081* 
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 oilflow_region10 0.003*** 

 oilflow_region13 0.011** 

 oilflow_region14 0.65 

 oilflow_region84 0.003*** 

 oilflow_region96 0.17 

 oilflow_region166 0.539 

 timetrip4 0.114 

 timetrip10 0.004 

 timetrip13 0.091* 

 timetrip14 0.114 

 timetrip84 0.531 

 timetrip96 0.245 

 ALL 0.000*** 

 


