
Norwegian School of Economics

Bergen, Spring, 2018

Artificial Intelligence and Nord Pool’s
Intraday Electricity Market Elbas:

A Demonstration and Pragmatic Evaluation of
Employing Deep Learning for Price Prediction

Using Extensive Market Data and Spatio-Temporal Weather Forecasts

Johannes Krokeide Kolberg & Kristin Waage

Supervisor: Walter Pohl

Master’s thesis, Economics and Business Administration,
Finance

NORWEGIAN SCHOOL OF ECONOMICS

This thesis was written as a part of the Master of Science in Economics and Business Administration at
NHH. Please note that neither the institution nor the examiners are responsible – through the approval
of this thesis – for the theories and methods used, or results and conclusions drawn in this work.

i

Acknowledgements

We would like to thank the Professors at NHH that contributed to this thesis: our supervisor

Walter Pohl for the opportunity and support to work on such an ambitious project, Thore

Johnsen for his invaluable input and guidance, Ivan Belik for his comments and support, and

Roger Bivand for his technical pointers. We would also like to thank Nord Pool for access to

their market data, as well as Morten Hegna and Sigfred Sørensen at Montel for access to SMHI’s

weather forecast data. Finally, we would like to thank St̊ale Størdal at Eidsiva Energi and Olav

Johan Botnen at Wattsight for generously sharing their industry expertise, as well as Lars Ove

Skorpen and Bjørn Erik Heiberg at Pareto Securities for their input and for facilitating talks

with market participants to improve the thesis’ practical appeal.

ii

Abstract

This thesis demonstrates the use of deep learning for automating hourly price forecasts in con-

tinuous intraday electricity markets, using various types of neural networks on comprehensive

sequential market data and cutting-edge image processing networks on spatio-temporal weather

forecast maps. Deep learning is a subfield of artificial intelligence that excels on problems such

as these with multifarious input data and manifold interacting factors. It has seen tremendous

success on a range of problems across industries, and while it is important to have realistic expec-

tations, there is little reason to believe that intraday electricity markets are different. Focusing

on Nord Pool’s intraday market Elbas, we predict Nordic buyers’ volume-weighted average price

over the last six hours of trading prior to each delivery hour. Aggregating this window gives buy-

ers flexibility from many trades and sufficient time in which to act on the predictions, and solves

issues with data sparsity while keeping sufficient resolution for predictions to be informative.

We develop various neural networks via extensive experimentation, with inspiration from other

research and problem domains. To make the findings relevant in practice, we impose constraints

on the input data based on what would be available to Elbas market participants six trading

hours ahead of delivery. The neural networks are benchmarked against a set of simple domain-

based heuristics and traditional methods from econometrics and machine learning. We conclude

with a holistic evaluation of the efficacy of deep learning on our problem, whether it is eco-

nomically justifiable in light of its value-add, what the salient hurdles are to implementing it in

practice, and what the implications are for broader applications of AI in intraday markets.

The deep learning models1 are relatively accurate and reliable under normal market conditions.

The average price across all delivery hours in the held-out data is 30.95 EUR/MWh, where our

best network is on average off by 2.72 EUR/MWh. It beats the best simple heuristic by 21–25%,

and the best benchmark model by 12–16%. The network also anticipates major fluctuations in

prices relatively consistently, and generally outperforms all alternative methods when prices are

especially volatile or trading activity particularly high. In contrast to the benchmarks, there are

also ample avenues for improving the network further. Beyond being promising in its own right,

we also argue that the network demonstrates the wider potential of deep learning in a range of

applications in intraday markets, and that these are worthy of serious consideration — though

one should be aware of the practical hurdles to implementing them operationally.

1The Python-code for training and evaluating our final neural networks is available on our public Github
repository at: https://github.com/johannes-kk/Elbas-Deep-Learning.

https://github.com/johannes-kk/Elbas-Deep-Learning

iii

Contents

Acknowledgements i

Abstract ii

List of Tables vi

List of Figures vi

List of Abbreviations 1

1 Introduction 1

1.1 Problem Definition . 3

1.2 Literature Review . 4

1.3 Thesis Structure . 7

2 The Nordic Electricity Market 7

2.1 Nord Pool . 8

2.1.1 The Elspot Market . 8

2.1.2 The Elbas Market . 10

2.2 The Regulating Market . 10

2.3 The Decision to Trade in Elbas . 11

2.4 Nordic Power Production . 13

3 Identification of Elbas Price Determinants 14

3.1 Available Intraday Capacities . 14

3.1.1 Production Capacities . 14

3.1.2 Transmission Capacities . 16

3.2 Magnitude of Power Imbalances . 16

3.2.1 Intermittent Energy Production Forecast Errors 17

3.2.2 Load Forecast Errors . 18

3.2.3 Unplanned Power Outages . 19

3.3 Strategic Behaviour . 19

3.3.1 Available Price Information . 20

3.3.2 Market Power . 21

3.4 Conclusion . 22

4 Data 23

4.1 Data Collection . 23

4.1.1 Nord Pool Market Data . 24

4.1.2 SMHI Weather Forecasts via Montel . 25

4.2 Pre-Processing of Market Data . 25

4.2.1 Calculating Aggregated Elbas Buyer Prices 28

iv

4.3 Pre-Processing of Weather Data . 29

4.3.1 Matching with the Volume-Weighted Average Price 31

4.4 Splitting into Training, Validation, and Test Sets 32

4.5 Exploring the Data . 33

4.5.1 Characteristics of Elbas Trading . 34

4.5.2 The Elbas Volume-Weighted Average Price 36

5 Methodology 38

5.1 Model Evaluation . 39

5.2 Benchmark Models . 40

5.2.1 Simple Heuristics . 41

5.2.2 Econometrics and Simpler Machine Learning 41

5.3 Deep Learning . 43

5.3.1 A Brief Introduction to Deep Learning . 44

5.3.2 Designing Network Architectures . 47

5.3.3 Evaluating the Final Architectures . 49

5.3.4 Windowed Market Models: Deep Residual Networks 50

5.3.5 Sequential Market Models: LSTM Networks 52

5.3.6 Processing Spatio-Temporal Weather Data 53

5.3.7 Market & Weather Model: Multi-Input Network 54

6 Analysis and Results 56

6.1 Model Performance Results . 56

6.1.1 Benchmark Models . 56

6.1.2 Deep Learning Models . 59

6.2 In-Depth Analysis of Model Performance . 62

6.2.1 Performance across Delivery Hours . 62

6.2.2 Performance across Trading Activity . 64

6.2.3 Performance across Price Levels . 65

6.2.4 Detecting Unusually High or Low Price Levels 66

6.3 Conclusion . 69

7 Discussion 70

7.1 The Potential of Deep Learning . 70

7.2 Practical Barriers to Deep Learning . 73

7.3 The ”Black Box” Critique . 74

7.4 Theoretical Limitations and Avenues for Further Research 74

8 Conclusion 76

References 78

Appendix 85

v

A Theory: Deep Learning 85

A.1 The Multi-Layer Perceptron . 85

A.1.1 Activation Functions . 86

A.1.2 Gradient-Based Learning . 87

A.1.3 Optimisation Algorithms . 88

A.1.4 Fighting Overfitting . 88

A.1.5 Residual Connections . 89

A.1.6 Batch Normalisation . 90

A.1.7 Checkpoint Ensembling . 91

A.2 Recurrent Neural Networks . 92

A.2.1 Bidirectional Recurrent Networks . 93

A.2.2 Long Short-Term Memory . 93

A.3 Image Processing: Convolutions and Pooling . 94

A.3.1 Convolutional Pyramids . 95

B Additional Information about Elbas 96

B.1 Prices in the Regulating Market . 96

B.2 Elbas Trade Volumes per Area and Country . 98

B.3 Trading Activity across Trade Hours . 98

C Standardisation or Normalisation? 99

C.1 Distribution Plots . 99

D Deep Learning Models 101

D.1 ResNet 1 . 101

D.2 ResNet 2 . 104

D.3 LSTM . 108

D.4 BD-LSTM . 110

D.5 Multi LSTM ResNet . 112

D.6 Weather Models . 115

D.7 Results LSTM vs. GRU . 118

E Theory on Benchmark Models 119

E.1 Shrinkage Methods . 119

E.2 Feature Selection . 120

E.3 Feature Extraction . 121

E.4 Gradient Boosting . 121

F Market Data Variables 123

F.1 Extracted Variables . 123

F.2 Summary Statistics . 124

vi

List of Tables

1 Market and weather datasets . 24

2 Summary statistics for the near Elbas volume-weighted price in the training,

validation and test sets . 37

3 MAE and RMSE of simple heuristics baselines 57

4 MAE and RMSE of econometrics and simpler machine learning baselines 58

5 Validation MAE and RMSE of the deep learning models 60

6 Test MAE and RMSE of the deep learning models 60

List of Figures

1 Bidding areas and transmission capacities . 9

2 Decision tree for Elbas trading . 12

3 The merit-order curve . 13

4 The far and the near volume-weighted intraday price 29

5 Downsampled and cropped temperature forecast 30

6 Weather and price data merged . 32

7 Number of Elbas trades per delivery hour . 34

8 Prices and volumes per Elbas trade . 35

9 Variation in Elbas trade price for the same hour of power delivery 36

10 Development in the near Elbas volume-weighted average price 37

11 The near Elbas volume-weighted price across delivery hours 38

12 ResNet 1 network architecture . 51

13 ResNet 2 network architecture . 51

14 LSTM network architecture . 52

15 BD-LSTM network architecture . 53

16 Multi LSTM ResNet network architecture . 55

17 Variation in model performance depending on delivery hour 63

18 Variation in model performance depending on number of trades 64

19 Variation in model performance depending on delivery hour 65

20 Multi LSTM ResNet model predictions compared to true values 67

21 Model ability to detect price jumps . 68

vii

List of Abbreviations

Abbreviation Explanation

AI Artificial intelligence

BD Bidirectional

BN Batch normalisation

CE Checkpoint ensembling

CET Central European time

CNN Convolutional neural network

CSV Comma-separated values

Elbas Electricity Balance Adjustment Service

EPEX European Power Exchange

GBM Gradient boosting model

GIME German Intraday Market for Electricity

GPU Graphical Processing Unit

GRIB Gridded binary

GRU Gated Recurrent Units

IQR Interquartile range

LASSO Least Absolute Shrinkage and Selection Operator

LSTM Long-Short Term Memory

MAE Mean absolute error

MARS Multivariate adaptive regression splines

MIBEL Iberian Electricity Market

ML Machine learning

MLP Multi-layer perceptron

MSE Mean squared error

MVL Minimum validation loss

MWh Megawatt hour

RC Residual connection

ReLU Rectifying Linear Unit

ResNet Residual network

RF Random forest

RIE Random initalisation ensembling

RMSE Root mean squared error

RMSprop Root mean square propagation

RNN Recurrent neural network

SDV Semicolon divided values

SGD Stochastic gradient descent

TSO Transmission system operator

UMM Urgent market message

vRES Variable renewable energy sources

VWP Volume weighted average price

XML Extensible Markup Language

1

1 Introduction

Electricity markets require constant balance between supply and demand, since the product

can only be traded cross-border or stored in economic terms to limited extents (Hagemann,

2013; Weron, 2014). Deregulated exchanges provide multiple trading opportunities to efficiently

match supply and demand, and play a crucial role in helping ensure stability in the power system

(Scharff & Amelin, 2016). For physical power delivery, market participants usually have access

to day-ahead and intraday trading.

The day-ahead markets are usually auction-based, where power is traded for each consecutive

hour of the following day, and are the main arena for trading power. They have therefore

been the primary focus of academic and business interests, as day-ahead forecasts are essential

to participants in such markets. A range of approaches have been employed for this purpose,

including multi-agent, statistical, and computational intelligence models (Weron, 2014). In

contrast, the intraday markets vary in design from auctions to continuous markets, or a mix of

both (Scharff & Amelin, 2016). They are primarily used to correct imbalances that arise after the

closure of the day-ahead markets, and have until recently received far less attention. They are,

however, gaining importance as the shares of intermittent power generation in the energy mix

continue to increase; variable renewable energy sources (vRES) — such as wind and solar — are

characterised by their dependence on contemporaneous weather conditions, and since intraday

markets offer such power producers opportunities to adjust production imbalances closer to real-

time, they are important to increasing the share of vRES in the overall energy mix (Henriot &

Glachant, 2013; Pape, Hagemann, & Weber, 2016).

Still, the limited attention given to intraday electricity markets means many questions linger, like

how prices in such markets are best modelled; intraday prices for power delivered at a given hour

can vary significantly (Scharff & Amelin, 2016), and electricity prices are in general characterised

by intermittently large fluctuations (Hellström, Lundgren, & Haishan, 2012). Better methods of

predicting intraday prices may therefore reduce these uncertainties, and improve the decision-

making and profitability of market participants. It is, however, a highly complex field with a

myriad of potentially influential variables2, and where the relationships between these variables

are often non-linear (Hagfors, Bunn, Kristoffersen, Staver, & Westgaard, 2016).

Recent years have seen a rise in the use of artificial intelligence (AI) for addressing similarly

2See, for instance, Hagemann (2013) or Pape et al. (2016).

2

complex and non-linear prediction problems in a variety of domains, including day-ahead elec-

tricity pricing (Weron, 2014), and may presumably offer an avenue for tackling the complexity

of intraday electricity markets as well. Machine learning (ML) is a subfield of AI where systems

are trained rather than explicitly programmed; they learn to recognise statistical structures in

the examples they are shown, in order to define rules to automate the given task (Chollet, 2018).

Such techniques have become very popular in recent years due to a proliferation of computa-

tional power and big data, as ML excels on complex problems with comprehensive datasets

where many traditional statistical methods would be impractical (Chollet, 2018).

However, the number of combinations of variable values increases exponentially the more vari-

ables there are, and many ML techniques struggle when the data has very high dimensionality

(Chollet, 2018). Many such methods also presuppose, either directly or indirectly, the kind of

function they should fit to tackle the given problem (Goodfellow, Bengio, & Courville, 2016).

Deep learning is a subfield of ML, usually in the form of neural networks, which emphasises learn-

ing successive layers of increasingly complex and meaningful representations (Chollet, 2018).

Such deep networks incorporate more general-purpose assumptions that the data-generating

process is a hierarchical composition of factors (Goodfellow et al., 2016), and automate feature

engineering — the manual refining of input data into successive representation spaces needed

for shallow methods (Chollet, 2018) — that made previous ML methods somewhat esoteric.

Deep learning has seen impressive results on a range of AI problems, from self-driving cars to

fraud detection, but media hype and lofty promises from practitioners with an axe to grind tend

to inflate expectations of what is possible and what time frames are reasonable (Chollet, 2018).

Research has made tremendous leaps in recent years, but little of this has been put to extensive

use in practice. However, while there is significant untapped potential of deep learning across

many industries (Chollet, 2018), we also caution against taking unrealistic claims at face value.

The aim of this thesis is therefore to demonstrate the use of deep learning to automate hourly

price forecasts in the Nordic intraday electricity market, Elbas, using specialised sequential

networks on comprehensive market data and cutting-edge image processing on weather forecast

maps. The results demonstrate the potential of using deep learning to both address problems

that have been left untouched due to their complexity, and to automate hitherto laborious and

repetitive processes. We also attempt to elucidate the practical challenges to implementing such

AI agents, based both on our own experience with this thesis, and industry experience.

3

1.1 Problem Definition

Specifically, we focus on the Nordic electricity exchange, Nord Pool, and its continuous intraday

market, Elbas. We take the perspective of a Nordic3 market participant with an interest in buying

power for a given delivery hour. As Elbas operates continuously, many trading opportunities

may arise for each hour of power delivery. Knowing when or if specific trades occur is outside

the scope of this thesis, hence we do not predict prices of individual trades. Instead, we predict

Nordic buyers’ volume-weighted average price over the last six hours of trading prior to each

delivery hour. This window is a balance between giving the buyer sufficient time to act on

the prediction, and the fact that intraday trading activity is usually concentrated in these final

hours (Garnier & Madlener, 2015; Scharff & Amelin, 2016). This aggregation also mitigates some

challenges with data sparsity, while keeping sufficient detail for predictions to be interesting.

This thesis is intended for both decision-makers in the Nordic electricity market that are inter-

ested in trading in Elbas — but do not necessarily have knowledge of deep learning — and for

technically inclined readers without a deep understanding of electricity markets. To make this

thesis accessible to a broader audience, we therefore aim to provide sufficient background both

on Elbas and how deep learning works. While the focus is on building deep learning models

that are as accurate and reliable as possible in their predictions, we also incorporate constraints

and trade-offs that would exist in practice, so as to demonstrate the potential of deep learning

under realistic conditions. Given this, we investigate the following research questions:

1. To what extent can deep learning predict the volume-weighted average Elbas price six hours

ahead of a given hour of power delivery, and how reliable are the forecasts in practice?

2. What does this suggest about the potential of deep learning in wider applications in the

Elbas market, and what are the salient hurdles to implementing such AI agents?

To our knowledge, this is the first study to apply deep learning to predicting hourly prices in

Elbas. It therefore provides several contributions to existing research: it introduces techniques

that exploit multifarious inputs — such as hundreds of market variables, and spatio-temporal

weather forecast images; it evaluates the benefits and practical challenges of using deep learning

for price prediction in Elbas; the techniques presented may be adapted to specific bidding areas

or extended for other purposes; finally, deep learning enables considerable automation in Elbas,

where much of the trading is currently done manually (Scharff & Amelin, 2016).

3Sweden, Finland, Denmark, and Norway.

4

1.2 Literature Review

There are, to the best of our knowledge, few studies with the aim of predicting prices in Elbas.

Botnen Holm (2017) uses multiple regression to model the Elbas price in her thesis, while

Tanger̊as and Mauritzen (2014) construct a regression model to examine the difference between

the Elspot and Elbas prices. The German intraday market (GIME) resembles Elbas in that it

allows for continuous trading of electricity. For the GIME, Pape et al. (2016) attempt to model

the hourly price by combining a fundamental supply-stack model with a linear regression model,

while Kiesel and Paraschiv (2017) develop an asymmetric econometric model that accounts for

two different market regimes. Additionally, Wolff and Feuerriegel (2017) and Hagemann (2013)

apply multiple regression to model the intraday price and the difference between the day-ahead

and intraday price, respectively.

Although the aforementioned studies present ways of modelling intraday prices, they incorporate

one or more input variables that would not be available to Elbas market participants ahead of

gate closure for a certain delivery hour. As intraday markets also differ regarding design and

regulation, models developed for the GIME, albeit also continuous, may not simply be applied to

Elbas.4 In large part as it was not the goal of these studies, most existing models can therefore

not be used in practice to obtain actionable Elbas price predictions.

Even though few studies explicitly model the Elbas price, price estimates are an important

component in specialised multi-stage optimisation models, of which there are a few. In these

models, price estimates must be available ahead of time, allowing the market participant to act

so as to optimise buy/sell decisions. Using the mean, maximum and minimum Elbas prices

six hours ahead of delivery, Bourry and Kariniotakis (2009) model the price as a triangular

distribution, from which they obtain an estimate of the proportion of accepted bids, in their

optimisation framework for a wind producer. Fodstad, Aarlott, and Midthun (2018) design

an optimisation model for a hydropower plant, and use historical hourly average Elbas prices

to evaluate the potential gains from multi-stage trading. In this context, they mention price

estimates as one of the core challenges related to market modelling parameters. Engmark and

Sandven (2017) incorporate estimates of Elbas premiums, for the Kristiansand area in Norway,

by using historical order depth to construct a demand curve that is then used to derive the

Elbas premium for a given volume.

4For example, gate closure in the GIME is later than in Elbas (Kiesel & Paraschiv, 2017), allowing for the
inclusion of historic variables that would not be possible in Elbas.

5

It appears that most optimisation models estimate Elbas prices based on historical price/bid

data, combined with probabilities. As such, one may expect them to pick up trends that

are unique for a specific delivery day or delivery hour only to a limited extent. We seek to

contribute to current research by constructing a model that can provide forecasts using real-

time information specific for the delivery hour in question. However, the decisions on how to

optimise trading to correct for imbalances are outside the scope of this thesis, especially as there

already exist multiple such frameworks.

Various price models have also been developed for other intraday markets. AI has seen its appli-

cation in intraday price forecasting in the Iberian Electricity Market (MIBEL), where intraday

trading is organised as six auction session.5 Monteiro, Ramirez-Rosado, Fernandez-Jimenez,

and Conde (2016) build a neural network implemented with a multi-layer perceptron (MLP)6 to

forecast the prices in each of these six intraday sessions. They find that prices can be forecasted

with relatively high accuracy by only including hour-of-day and day-of-week dummies, and saw

little improvement from including additional variables. Price forecasting for the MIBEL intra-

day sessions is also explored by Andrade, Filipe, Reis, and Bessa (2017) who utilise probabilistic

forecasting techniques. They agree with Monteiro et al. in that simpler models that primarily

incorporate price information from previous sessions yield the best results.

However, the discrete intraday auction prices in MIBEL are highly correlated, and Andrade et al.

(2017) point out that once there is a price jump between sessions, their preferred model is unable

to pick it up. Furthermore, MIBEL intraday trading is essentially designed as auction-based day-

ahead markets, except with later gate closure times (Andrade et al., 2017). Hence, a clear price

signal is frequently established in the markets. Continuous intraday markets, such as Elbas and

GIME, differ in this regard, as prices are set on a per-trade basis at any point in time within the

markets’ trading hours. Existing literature on the continuous intraday markets suggests that,

in addition to prior market prices, a variety of factors may be relevant when modelling hourly

prices. These factors may in turn provide information that enable models to capture intraday

price jumps — which prior price information alone would not. For example, Pape et al. (2016)

conclude that ramping costs and supply scarcity have significant influences in their model, in

addition to previous price information, Wolff and Feuerriegel (2017) find significant effects of

load and wind/solar in-feed levels, and Hagemann (2013) observes how unexpected outages, in

5These sessions are run day-ahead at 17:00–18:45 and 01:00–21:45, and intraday at 01:00–01:45, 04:00–04:45,
08:00–08:45, and 12:00–12:45.

6Appendix A.1 provides an introduction to MLPs.

6

addition to wind, solar and load forecast errors, contribute to explaining the difference between

hourly day-ahead and intraday prices. Studies focusing on the effects of various intraday price

drivers have been important in identifying which variables to include in models. However, they

are not summarised here, as Chapter 3 provides a thorough discussion of how the Elbas price

may be affected by their findings.

Since a range of factors are found to potentially influence continuous intraday market activity and

prices, we therefore believe deep learning techniques that can leverage manifold input variables

are very interesting to try. Applications of deep learning have been found to outperform more

traditional methods within a variety of fields. Specifically, the use of Recurrent Neural Networks

(RNN)7 with Long Short-Term Memory (LSTM)8 have yielded promising results in predicting

the day-ahead electricity price (Peng, Liu, Liu, & Wang, 2018). LSTM is also applied to weather

forecasting, where both S. Srivastava and Lessmann (2018) and Alzahrani, Shamsi, Dagli, and

Ferdowsi (2017) find that LSTM outperforms other methods in forecasting solar energy, while

Liu, Mi, and Li (2018b) and Liu, Mi, and Li (2018a) successfully integrate LSTM in a multi-

step model for wind speed forecasting. For stock market predictions, LSTM has been found to

outperform memory-free deep learning models in predicting directional movements of constituent

stocks (Fischer & Krauss, 2018), and a hybrid model integrating LSTM yields promising results

in predicting stock price volatility (Kim & Won, 2018).

The performance of deep learning models, including LSTM, on predicting day-ahead electricity

prices is also studied by Lago, De Ridder, and De Schutter (2018), who find that their models

have a better predictive accuracy than the simpler benchmark models in the Belgian market.

Furthermore, they conclude that their MLP model outperforms the other deep learning models

overall, but that their LSTM model achieves higher predictive accuracy during certain deliv-

ery hours. An MLP model with multiple hidden layers is also the preferred method in Lago,

De Ridder, Vrancx, and De Schutter (2018) when analysing how incorporating market integra-

tion improves the accuracy of day-ahead price forecasting in the French and Belgian markets.

Furthermore, Y. Chen, He, and Tso (2017) attempt to predict crude oil prices using an LSTM

model, but it is also here outperformed by other deep learning techniques. The authors suggest

that this may be due to the crude oil market being mainly characterised by shorter-term be-

haviour that is not captured properly by the LSTM model. As both MLP and LSTM models

7These networks are specialised to process sequential input data. Appendix A.2 provides more details on
recurrent neural networks.

8LSTM is a type of recurrent neural networks specialised for learning long-term dependencies. Appendix D.3
provides more details on LSTM.

7

seem promising, but neither is clearly superior on the basis of existing literature, we will employ

both in order to thoroughly evaluate the potential of deep learning in predicting hourly prices

in Elbas.

1.3 Thesis Structure

Chapter 2 gives a brief introduction to the Nordic electricity market. Chapter 3 identifies factors

that may affect the Elbas price, to motivate the selection of input data. Chapter 4 explains how

our data were collected and pre-processed, and provides an exploratory analysis of Elbas trad-

ing characteristics and the volume-weighted price. Chapter 5 describes the methodology used

to develop and evaluate our models, as well as detailed overviews of the final model designs.

Appendix A includes a self-contained technical introduction to how various neural networks

function, as well as more detailed information on the specific methods we employ. Chapter 6

presents and evaluates the performance of our final models, and several benchmarks for compar-

ison. Chapter 7 discusses the implications for the wider potential of other applications of deep

learning in Elbas, as well as the practical hurdles to implementing such solutions. The chap-

ter also outlines the main theoretical limitations and suggests improvements for future work.

Chapter 8 concludes this thesis.

2 The Nordic Electricity Market

This chapter serves as an introduction to the features of the Nordic electricity market that

are of relevance for this thesis. It begins by introducing Nord Pool and its platforms for day-

ahead and intraday trading, Elspot and Elbas, in Section 2.1. Then, Section 2.2 describes the

regulating power market, which is used to secure the electrical stability of the system, and where

participants may incur costs of they exacerbate imbalances. Following the descriptions of the

three physical power markets, Section 2.3 elucidates the mechanisms that affect the decision of

whether to trade in Elbas. Finally, Section 2.4 provides an overview of power production types

and the supply curve in the Nordic countries, as production costs may impact the Elbas prices.

8

2.1 Nord Pool

In the Nordic countries, market participants are offered day-ahead trading in the Elspot market,

and intraday trading in the Elbas, or Electricity Balance Adjustment Service, market. Elspot

and Elbas are both run by Nord Pool, which is owned by the Nordic and Baltic transmission

system operators (TSOs) (Nord Pool, 2016).9 The TSOs are neutral and independent of the

market members (Nord Pool, n.d.).

In addition to the Nordic countries, Nord Pool consists of the Baltic countries for day-ahead

trading, and per January 2018 also Germany10, the Netherlands and Belgium for intraday trad-

ing.11 Due to transmission capacity constraints, there may be several bidding areas, also called

price zones, within a country (Nord Pool, 2018a). Figure 1 shows these bidding areas. As this

thesis focuses on Elbas buyers located in the Nordic countries, the relevant bidding areas are the

Norwegian areas (NO1–NO5), the Swedish areas (SE1–SE4), the Danish areas (DK1–DK2), and

the Finnish area (FI). In addition, we include Elbas trades with a seller from a German bidding

area, since they make up a relatively large share of the electricity sold to the Nordics (Figure

24a, Appendix B.2). The cable connections between the areas are marked with red arrows in

the figure. Maximum cable capacities restrict the flow of power that may be transferred from

one bidding area to another, hence if settled Elspot trades take up capacity on one line, the

capacity that remains for Elbas trading is affected.

2.1.1 The Elspot Market

In Elspot, electricity contracts are settled for power delivered the next day. For each hour, sellers

estimate how much power they can deliver in the specific hour and at what price they are willing

to deliver that volume, while buyers estimate the power they will need to meet the demand in

the specific hour and how much they are willing to pay. Orders for power delivery/purchase

over the next day are entered to the day-ahead trading system, with the deadline for submitting

orders at 12:00 CET. Nord Pool then sets the hourly price so that balance is expected between

demand and supply in each of the following day’s 24 delivery hours (Nord Pool, 2018b).

9The TSOs in the Nordics are: Statnett SF (Norway), Svenska kraftnät (Sweden), Fingrid (Finland), and
Energinet (Denmark). The TSOs in the Baltics are: Elering (Estonia), Litgrid (Lithuania) and Augstsprieguma
tikls (Latvia).

10Elbas is an alternative intraday market for Germany (Scharff & Amelin, 2016), as Germany also is part of
the EPEX Spot intraday market.

11As part of the cross-border intraday market project (XBID), Nord Pool also offers intraday trading in France
and Austria, starting from June 2018 (Nord Pool, 2018g).

9

Figure 1: Bidding areas and potential transmission capacities in Elspot (dark blue areas) and

Elbas (dark blue plus light blue areas) per January 2018. In addition, Nord Pool offers day-

ahead and intraday trading locally in the UK (green), through the N2EX platform. The red

arrows indicate the cable connections between the bidding areas. The illustration is based on

Scharff and Amelin (2016), Nord Pool (2018c), and Statnett (2018).

The Elspot price that balances overall supply and demand is called the system price, and re-

flects equilibrium in a market with no transmission grid bottlenecks (Nord Pool, 2018a). This

theoretical price is used as a reference for trading in the financial electricity markets. In reality,

there are constraints on how much power can be transmitted between areas. As a result, the

Nord Pool market is divided into the bidding areas shown in Figure 1, with individual spot prices

calculated for each. This ensures equilibrium between supply and demand in each area. If there

exists available transmission capacity, electricity may be transferred from an area with surplus

power to an area with a power deficit. This type of congestion management in Elspot may cause

area prices to converge. Still, as long as transmission constraints exist, the bidding areas may

experience spot prices different from the system price, and from the spot prices in other areas.

10

2.1.2 The Elbas Market

For each market participant, settled Elspot trades constitute their binding production or con-

sumption plan, which is submitted to the TSOs (Scharff & Amelin, 2016). The participants

are committed to supply or consume corresponding to the plan, which may be updated until 45

minutes before the start of the delivery hour to incorporate deviations from the participants’

day-ahead commitments. Here, the Elbas market complements the day-ahead market, Elspot,

by providing market participants an opportunity to adjust any imbalances closer to real time.

Elbas is a continuous market, where prices are set based on a pay-as-bid basis for all transactions.

In that way, Elbas resembles a regular stock market, except participants can trade in Elbas 24

hours a day, 365 days a year (Nord Pool, 2018d). For a given day of power delivery, Elbas

opens at 14:00 CET, two hours after the gate closure of the day-ahead market, at which point

participants know which bids were accepted and what volume they are expected to supply or

buy in the day-ahead market. The gate closure in Elbas is 60 minutes before power delivery.

Several types of orders may be traded in Elbas, providing flexibility for market participants.

Orders can be defined for 15 minute, 30 minute and 60 minute power products, in addition to

block and iceberg orders (Nord Pool, 2018e). Block orders are specified by the user, and they

may contain between one and 24 consecutive hourly products. Limit orders are buy or sell orders,

and they are executed at the limit price or higher (lower) for buy (sell) orders. Furthermore,

for block orders only the entire user-defined volume may be executed, while for limit orders the

volume may be partially or entirely executed.12

2.2 The Regulating Market

Any imbalances that arise after the Elspot auction closes at 12:00 CET the day ahead may also

be dealt with through the regulating, or balancing, power market. This market is run by the

TSOs, and its purpose is to secure a constant balance between supply and demand in the hour

of delivery. Producers with flexible power generation may submit bids to the regulating market,

which are activated if necessary to ensure this balance. It opens for bid submission at 13:00

12Elbas also offers some specific types of limit orders. Iceberg orders (IBO) divide the full size of the order
into smaller clips, where each clip only becomes visible to the market when the previous clips have been entirely
executed. IBOs are typically used for large volumes so as to conceal the full order size from the market. Fill-
or-Kill (FoK) orders are another type of limit orders that require the entire volume of the order to be matched
immediately upon submission, or the order is withdrawn from the market. Finally, Immediate-or-Cancel (IoC)
orders resemble FoK orders with the exception that as much as possible of the volume is matched immediately
upon submission, and then the remaining volume is, like FoK orders, withdrawn from the market.

11

CET, which is just after day-ahead results are published and one hour before Elbas trading

begins, and it closes 45 minutes before the hour of delivery (Pires Ferreira, 2016).

Imbalances are handled in the regulating market by computing an imbalance cost that partic-

ipants must pay if they deviate from their binding plans (Scharff & Amelin, 2016). In Elbas,

imbalances are corrected by trading before the delivery hour arrives, after which point partici-

pants pay their eventual imbalance cost in the regulating market. This cost reflects the extra

price that has to be paid to ensure system balance. Appendix B.1 further explains how this

price is derived and thereby how the imbalance costs are calculated. Basically, an up-regulating

price is set above the day-ahead price if more power must be produced, as it incentivises addi-

tional production. Conversely, a down-regulating price, set below the day-ahead price, is used if

production must be reduced, as it incentivises producers with higher marginal costs to purchase

power from other producers rather than produce themselves. The TSOs set the imbalance costs

on a per-area basis, using the same areas as in the Elspot and Elbas market (Figure 1).

2.3 The Decision to Trade in Elbas

Section 2.1 and Section 2.2 presented the three markets for physical power delivery. However,

the question of why a market participant may decide to trade in Elbas deserves more attention,

as it is linked to potential Elbas price drivers. To begin with, we can categorise Elbas market

participants into two groups:

1. Participants who must correct an imbalance in their binding production/consumption plan.

2. Participants who can profit from buying/selling in Elbas and reallocate their own produc-

tion/consumption, but are not in a situation where balancing is necessary.

Both participant types may be either a power consumer or a producer.

The options that are available for a market participant who experiences deviations, either a

surplus or a shortfall, to the volumes settled in Elspot, are marked in blue in Figure 2, which

is based on an equivalent illustration in Mauritzen (2013). To sell/buy power in Elbas is one

option; leaving the imbalance to the regulating market as explained in Section 2.2 is another. If

possible, participants may also utilise internal balancing, such as rescheduling other power plants

within their portfolio to compensate for deviations (Holttinen & Koreneff, 2012; Scharff, 2012).

Hence, not all market participants will consider Elbas as their optimal strategy of improving

imbalances. The main benefit of Elbas trading for participants that experience imbalances, is

12

the possibility to reduce the imbalance costs that they may otherwise incur in the regulating

market (Hagemann, 2013; Mauritzen, 2013; Scharff & Amelin, 2016). In other words, trading in

Elbas may be motivated by expectations of it being the least expensive alternative for balancing.

Figure 2: Decision tree for Elbas trading. The illustration is based on Mauritzen (2013).

However, participants without imbalances — the other type of Elbas participants — may also

find it attractive to trade in Elbas. Producers with flexible power generation, such as hydro and

thermal, have the possibility to offer this unused flexibility to buyers who are willing to pay a

price that exceeds the marginal cost of production (Scharff & Amelin, 2016). Thus, participants

may be able to make a profit by selling power in Elbas that was not profitable to trade in the

day-ahead market. Consumers with flexible consumption may also sell extra power if they find

buyers willing to pay a price that covers the costs of rescheduling their own consumption (Scharff

& Amelin, 2016). Alternatively, these participants may offer the excess power to the regulating

market, but they will not know beforehand whether their bids will be accepted or not. Finally,

Elbas may be used by participants to optimise their committed production/consumption plans

— for example, producers may find it less costly to buy a given volume of electricity from an

Elbas seller than to produce the same volume by generating their own (Scharff & Amelin, 2016).

13

2.4 Nordic Power Production

Although electricity is a homogeneous good, power production can vary considerably in terms

of production method, and hence, production costs. In total, about 400 TWh of electricity is

generated annually in the Nordics. Hydro makes up more than half of this production, and

almost all Norwegian generation comes from hydro power plants (International Energy Agency,

2016d). In Sweden and Finland, nuclear power production is also a major energy source —

providing around 35–41% of domestic generation (International Energy Agency, 2016b, 2016e).

Wind constitutes the largest share of Danish electricity generation (International Energy Agency,

2016a), and is the third largest energy source in the Nordics as a whole with a share of 8%.

Hence, wind is the most important vRES in the Nordics. In Germany, solar is also an important

vRES in addition to wind, and in total they constitute 18% percent of German generation

(International Energy Agency, 2016c).

The types of power production determine in turn the shape of the merit-order curve, which

represents supply in an electricity market. This curve plays an important role for price setting,

as it represents the marginal costs of power production (Hagemann, 2013; Hagemann & Weber,

2013). In the merit-order curve, all energy sources are arranged in increasing order of marginal

cost as shown in Figure 3. Renewable energy sources, such as hydro and wind, have close to

zero marginal cost. The costs then increase depending on energy source, with coal, oil and gas

being the most expensive. As Figure 3 illustrates, the annual Nordic consumption usually lies

in a volume range where coal is the most expensive energy source.

Figure 3: The merit-order curve shows how marginal cost of production varies with energy type.

CHP is combined heating and power production. The illustration is based on Nord Pool (2018f).

14

3 Identification of Elbas Price Determinants

This chapter provides a synopsis of factors that may affect the Elbas price. Its objective is to

better understand the dynamics of the Elbas market and to establish relevant variables to include

in the models. It is also of importance in identifying variables that potentially influence the

price, but are omitted from the models due to lack of data. Section 3.1 examines how available

production and transmission capacities in the intraday market may affect the Elbas price, before

Section 3.2 considers the types of imbalances that may occur, and how the magnitude of these

can impact the price. Then, Section 3.3 evaluates how participants’ strategic behaviour may

lead to prices that deviate from what would be expected if only physical market factors had

an effect. All sections also evaluate to what extent we are able to take the given factor into

account in the models. Finally, Section 3.4 provides concluding thoughts on the various price

determinants and their interplay.

3.1 Available Intraday Capacities

In general, the closer the market works to its capacity constraints, the higher the intraday

prices may be (Hagemann, 2013; Hellström et al., 2012). This section outlines how available

capacities and their effect on the price may be captured in the models. Section 3.1.1 evaluates

the influence of available production capacities, before Section 3.1.2 considers capacities related

to the transmission grid.

3.1.1 Production Capacities

Available intraday production capacities are the ones not committed in the day-ahead market,

and they may impact on intraday prices as the marginal cost of production is dependent on

the type of energy source available (Section 2.4). If there is a power deficit, intraday demand

for power will increase. The cost of the next marginal plant, which must be activated to meet

this additional demand, will be higher than the day-ahead price.13 Consequently, the intraday

price must exceed the day-ahead price so as to incentivise additional production beyond day-

ahead volumes, ceteris paribus. Conversely, excess intraday supply may have to be offered at

prices below the day-ahead price for producers to have an incentive to buy power to fulfil their

day-ahead commitments instead of generating their own — and in that way, absorb intraday

13The cheaper energy sources are already committed in the day-ahead market.

15

supply surpluses. It is worth mentioning that the presence of ramping costs — that is, the

costs associated with ramping up14 or down15 — a power plant, may require intraday prices

to be even higher (lower) than marginal costs of production for additional (less) production

to occur (Hagemann, 2013; Pape et al., 2016). As it represents the marginal cost of the last

committed day-ahead production unit,16 the day-ahead equilibrium between demand and supply

(the merit-order curve) for a given delivery hour can shed light on how the intraday price reacts

to intraday power imbalances (Hagemann, 2013). This equilibrium can be represented in the

models through data on Elspot settlements for all Nordic bidding areas, namely Elspot price

and buy/sell data.

As the merit-order curve for the Nordic electricity market is steeply increasing for higher pro-

duction volumes, the higher the volume settled in the day-ahead market, the higher the intraday

price must be to stimulate additional production (Hagemann, 2013). Furthermore, it is not un-

common for smaller companies to choose to close their intraday positions during office hours

instead of employing a shift-team during out-of-office hours (Hagemann & Weber, 2013), which

seems to also be the case in Elbas where the majority of trades are settled during office hours

(Scharff & Amelin, 2016). In periods with less available production capacities, due to fewer

participants trading in the market, intraday demand and supply curves are steeper (Hagemann,

2013), which may lead to more extreme price impacts if imbalances occur. Hence, in addition

to Elspot data, incorporating hourly and daily dummies for power delivery time may allow the

models to recognise delivery periods for which intraday trading activity is systematically lower

or higher.

When it comes to available production capacity, data explicitly representing the types of energy

sources committed in the day-ahead market may also be of relevance. In particular, hydro pro-

duction constitutes a considerable share of Nordic power production (Section 2.4), its marginal

cost of production is close to zero (Tanger̊as & Mauritzen, 2014),17 and hydro units can be

rescheduled nearer gate closure than e.g. thermal power plants (Scharff & Amelin, 2016). As

such, periods with relatively high levels of hydro reservoir content may contribute to restraining

14Up-ramping costs cover costs such as depreciation, additional maintenance, and loss of life expectancy for
machinery, in addition to balancing and fuel costs necessary to reach scheduled output (Hagemann, 2013).

15Down-ramping costs include reduced lifetime of machinery parts exposed to high pressure and heat, increased
inspection and repairs costs, and the opportunity cost of not being able to start up fast enough to deliver in future
hours with potentially higher prices (Hagemann, 2013).

16Or alternatively, the marginal cost of the first available intraday production unit, all else being equal.
17The main cost in hydro production is the opportunity cost — the so-called water value — which reflects the

expectations about the future value of hydro resources (Tanger̊as & Mauritzen, 2014). Hence, hydro power may
be traded in the intraday market if the intraday price exceeds the water value.

16

intraday prices from accelerating, while periods with lower levels may be more exposed to price

jumps (Knapik, 2017). Including data on hydro reservoir content and inflow in the models may

capture these dynamics. However, hydro data are only available with a weekly resolution, while

the Elbas price is predicted on an hourly level. Though potentially important to the price, hydro

data are therefore not included in our dataset.

3.1.2 Transmission Capacities

Just as transmission capacities may result in different spot prices for different bidding areas

(Section 2.1.1), transmission capacities may also affect intraday prices. Scharff and Amelin

(2016) look at trading within and between areas, and observe that Elbas is, to a large extent,

used for cross-border trading — which requires available line capacity. However, they find that

several lines were unavailable for intraday trading for at least a third of all hours in their dataset.

In particular, one may expect lower system-wide prices when there is abundant transmission

capacity, while periods with less intraday line capacity may result in higher prices overall.18

Data on available Elspot and Elbas transmission capacities between bidding areas may capture

their potential intraday price impact, and is therefore included.19 We do not, however, include

flow data — that is, continuously updated scheduled intraday capacity; ex-post, we only have

final numbers available and cannot deduce what the scheduled intraday flow was at the time

of prediction. Instead, we include volumes for settled Elbas trades — if any — for each given

delivery hour. Though these data do not provide information on which lines are occupied by

the settled trades, they may partly capture increased flow in the transmission grid as a whole.

3.2 Magnitude of Power Imbalances

With a better understanding of how available intraday capacities may affect the degree to which

intraday imbalances have an impact on the price, we now move on to considering why imbalances

may arise in the first place. In the literature, two types of imbalances in particular are mentioned

in relation to developments in intraday trading and price, namely forecast errors and unforeseen

18Available transmission capacities also impact to what extent the Elbas market is integrated across the Nordic
bidding areas (Fridolfsson & Tanger̊as, 2009), and therefore whether one system-wide price may be representative
for each respective area.

19By including both Elspot and Elbas capacities, we can get additional information about the dynamics in the
market, and the models may be able to learn additional patterns. If Elbas capacities e.g. are low, we would not
be able to tell if this is due to capacity being taken up in the day-ahead market or that there is a malfunction on
the line so that capacity is unavailable both in Elspot and Elbas, unless we also include the Elspot capacities.

17

power outages. Forecast errors can in turn be separated between those related to intermittent,

or vRES, energy production and those related to the electricity load.

In general, negative forecast errors or unplanned power outages can be expected to result in

increased intraday demand due to power shortages, and may as such drive up prices, ceteris

paribus. Positive forecast errors, on the other hand, are expected to result in lower intraday

prices due to excess production, which indirectly incentivises producers to substitute their own

production with power bought in the intraday market. The rest of this section explains how

we may account for vRES forecast errors (Section 3.2.1), load forecast errors (Section 3.2.2),

and power outages (Section 3.2.3) in our models. However, it should be noted that not all

participants would balance deviations in the intraday market; if possible, power plants may

first internally match opposing deviations in their portfolio or ramp up flexible plants, before

trading the net difference in the market (Hagemann, 2013; Hagemann & Weber, 2013). The

total impact of imbalances on intraday price and trading may therefore be lower than expected

by only looking at the magnitude of deviations.

3.2.1 Intermittent Energy Production Forecast Errors

Intermittent energy generation, such as wind and solar, is strongly dependent on real-time

weather conditions. Changes in weather forecasts can therefore cause surpluses or deviations

from planned and committed day-ahead vRES generation levels that are reflected in intraday

price movements. The inclusion of data on weather forecasts may capture this effect of vRES

forecast errors on the price in our models. In the Elspot market, particularly wind speed is rel-

evant when modelling the system price (Mosquera-López, Uribe, & Manotas-Duque, 2017), and

for Elbas, wind forecast errors are found to correlate with the probability of trading (Mauritzen,

2013). This is not surprising, as wind energy makes up a relatively large share of the Nordic

production, while solar energy only constitutes a minor share (International Energy Agency,

2016a, 2016b, 2016d, 2016e). In the GIME, both the level of wind and solar energy, and forecast

errors with respect to these energy sources, seem to have a significant influence on the price

(Hagemann, 2013; Wolff & Feuerriegel, 2017). As Germany is integrated in the Elbas market,

solar energy may also impact on the Elbas price.

As we make the prediction six hours in advance, the latest available weather forecasts at that

time should, ideally, be compared to those that were available before gate closure in the day-

18

ahead market. However, technical limitations20 only allow us to use one weather forecast per

delivery hour. Hence, we have chosen the most recent. As we also include Elspot settlement data,

the information loss by not including double forecasts per delivery hour may be mitigated.21

To further compensate for the lack of minimum two forecasts, we also incorporate production

prognoses for each bidding area, as some bidding areas — such as the DK1 and DK2 areas

(Mauritzen, 2013) — may be characterised by producing more wind power than others.22 Still,

it is important to be aware that using only one weather forecast per delivery hour does not

directly capture forecast errors.

Production may also depend on seasonal effects (Wolff & Feuerriegel, 2017), in that solar energy

may only be produced during hours with sun and that certain months experience more sun or

wind than others. Including monthly — in addition to the aforementioned daily and hourly —

dummy variables may enable the models to account for seasonal production patterns.

3.2.2 Load Forecast Errors

It is not only the intraday supply side that may be affected by weather forecast errors; electricity

load may also shift as a result of changes in weather. In particular, temperature is found to be

an important price driver in the Nordic electricity market due to its influence on electricity load

(Hellström et al., 2012; Knapik, 2017; Mosquera-López et al., 2017). Furthermore, stronger wind

than predicted day-ahead can mean that more people stay inside and use appliances, resulting

in higher electricity consumption than would be expected (Mauritzen, 2013). The same applies

to heavier rainfall or less sunshine than forecasted day-ahead.23

The load forecast error in Elbas is difficult to estimate. Actual consumption data are published

continuously. However, as the data are revised and final numbers are not available until days

later, we have excluded these data from our models. Consumption prognoses for each bidding

20Section 4.3 provides more details on the technical limitations.
21For example, a relatively high day-ahead price, without production being unusually high, can indicate that

renewable energy sources constitute a low share of the energy mix in that hour. If the weather forecast in
question then shows relatively high levels of wind, the model may be able to derive that a positive forecast error
has occurred.

22As such, if production for example is low in these bidding areas, while the most recent forecasts show strong
winds for the delivery hour in question, it may indicate a positive forecast error.

23To be clear, people would not stay inside because the weather forecasts were wrong, as some impotent form
of puerile pouting over the sudden realisation of day-ahead markets’ mistake. Rather, weather different than
day-ahead markets expect can lead to other consumption or production levels than were incorporated in the
pricing.

19

area are available day-ahead, and including these may partially mitigate the problem.24 In this

regard, it is also relevant to take seasonal effects into account. Consumption is systematically

higher during day hours than night hours (Hagemann, 2013; Hagemann & Weber, 2013), and

during weekdays than weekends (Hagemann & Weber, 2013; Tanger̊as & Mauritzen, 2014). The

aforementioned seasonal dummies may allow for such patterns to be accounted for.

3.2.3 Unplanned Power Outages

Production failures, in particular for coal and hydro, have been found to increase the Elbas

price compared to the Elspot price (Tanger̊as & Mauritzen, 2014), and depending on the size

of the outages, they may help explain price jumps in Elbas. This may especially be the case

during weekdays when less capacity is available than during weekends (Tanger̊as & Mauritzen,

2014). Nord Pool has a reporting system called Urgent Market Messages (UMMs), where in-

formation about power outages is published. The effect of unplanned outages may be included

in price models through extracting relevant information about outage size and duration from

these UMMs. Only outages that happen after the closure of the day-ahead market may lead to

purchases in the intraday market (Hagemann & Weber, 2013; Tanger̊as & Mauritzen, 2014).

In addition to day-of-the-week effects, the influence of unplanned outages on intraday prices may

also vary depending on the hour of the day. As the electricity demand is lower at night, a share

of the power plants that default may not be operating anyway as their marginal costs are above

the day-ahead prices in this period. If so, there will be no need for compensating the outages in

the intraday market (Hagemann, 2013). Hence, reported outages are not necessarily reflected

in price movements in the intraday market. Combining the UMM data with aforementioned

hourly and daily dummy variables may account for different effects of power plant outages over

the course of the day and the week.

3.3 Strategic Behaviour

Strategic behaviour among market participants may distort intraday prices beyond that of the

physical market conditions assessed in Section 3.1 and Section 3.2. This section seeks to explain

how such strategic behaviour may depend on the market participants’ available price information

24For example, if consumption is scheduled day-ahead to be lower than usual, while the updated weather
forecasts show that the temperature will be fairly low too, it might indicate that scheduled consumption will not
represent actual consumption.

20

at the time of decision making (Section 3.3.1) and to what extent the participants may exhibit

market power (Section 3.3.2).

3.3.1 Available Price Information

As intraday trading happens continuously, market participants may be expected to consider

information about Elspot prices, the previous Elbas prices and/or the regulating prices when

they make their trading decisions. Botnen Holm (2017) finds that prices in Elbas correlate with

Elspot prices, though Elbas price spikes were not necessarily reflected in the day-ahead market.

Pape et al. (2016) also include the day-ahead price in their fundamental model for determining

the intraday price, and they find that doing so improves the model compared to a model where

the day-ahead price is left out. Hence, they suggest that using day-ahead price information is

beneficial when forecasting the intraday price. In our models, this can be done by including the

aforementioned Elspot spot prices for each bidding area and the system price.

Past Elbas price information may also be of relevance. In GIME, including previous intraday

prices is found to improve model performances (Kiesel & Paraschiv, 2017; Pape et al., 2016).

Price information from previous intraday auctions are also important in predicting the next

MIBEL intraday price (Andrade et al., 2017; Monteiro et al., 2016). Information on past Elbas

prices can be incorporated in our models in two ways, namely the Elbas volume-weighted prices

for previous hours of power delivery — that are available to participants at the time of prediction

— and the Elbas volume-weighted prices for trades already settled for the hour of power delivery

in question at the prediction time.

Imbalance costs for a given delivery hour are not available ex-ante, but both Scharff and Amelin

(2016) and Mauritzen (2013) explain how expected imbalance costs are related to market par-

ticipants’ incentives to trade in Elbas to adjust their deviations. There is reason to believe that

these expectations about future imbalance costs are, at least partially, based on the costs for

previous delivery hours that market participants observe during the course of the day. However,

by comparing intraday prices to regulating prices, Scharff and Amelin find that it may be hard

for market participants to predict the direction of regulating prices. Thus, the way previous

imbalance costs affect the intraday price is not definite. Still, due to the strong interaction

between the Elbas and the regulating market, we consider it relevant to include regulating price

data for previous hours of power delivery available at the time of prediction.

21

3.3.2 Market Power

Though electricity is a homogeneous product, and the Nordic and Baltic electricity market con-

sists of over 370 producers (Nord Pool, 2018f), a few companies constitute larger shares than

others (NordREG, 2014).25 In addition, as transmission bottlenecks may constrain the possi-

bilities of importing electricity from other bidding areas, these producers may constitute even

larger shares in their local markets (Fridolfsson & Tanger̊as, 2009; Tanger̊as & Mauritzen, 2014).

Joint ownership of power plants is also common.26 Furthermore, there exist both economic and

political barriers to entering the market (Tanger̊as & Mauritzen, 2014). As such, it is relevant to

consider the degree to which market power may be present in Elbas.27 Dominating players may

be able to influence prices so as to obtain a profit margin, in addition to covering their power

plant’s marginal and ramping costs (Hagemann, 2013; Hagemann & Weber, 2013). For example,

they may apply trading strategies such as retention of capacity or offering it at non-competitive

prices to maximise profit. This may ultimately drive up intraday prices.

In particular, Tanger̊as and Mauritzen (2014) analyse to what extent producers may exercise

market power in Elspot and Elbas, and find that Elbas prices tend to exceed Elspot prices

during weekdays, while the relationship is reversed during weekends. The authors discuss how

the day-ahead planned power production, and consequently also the transmission constraints,

tend to be higher during weekdays than weekends, leaving less capacity for the Elbas market in

these periods. Consequently, the observed price relationships may be due to producers exercising

seller power in Elbas during weekdays.

It is challenging to fully account for the effects of participants exercising market power on the

Elbas price in our models, as each individual participant is likely to behave based on unobservable

factors such as the participant’s market share and marginal production cost. As we do not know

which participants are involved in a given Elbas trade, these factors are difficult to estimate.

However, if market power to some degree is the explanation for the price effects observed by

Tanger̊as and Mauritzen (2014), another important aspect related to a participant’s ability

to influence prices is highlighted; market power may not be constant, but rather depend on

temporal effects. The possibility of producers exercising market power during peak hours where

25In terms of Nordic generation capacity, Vattenfall holds a market share of 19%, Fortum and Statkraft 12%
each, and E.ON. 7% (NordREG, 2014).

26For example, Vattenfall, Fortum and E.ON jointly own all Swedish nuclear power (Tanger̊as & Mauritzen,
2014).

27In fact, Hagemann and Weber (2015) find that Elbas trading in Denmark is best described by an oligopolistic
market model.

22

the market operates close to its capacity constraints, is also brought up in the context of the

UK market (Hagfors et al., 2016). On the other hand, the argument can be made that off-peak

hours are exposed to the use of market power. Section 3.1.1 explained how trading activity may

affect intraday prices in the context of available production capacities. In addition, competition

is likely reduced in these periods as smaller companies do not necessarily participate in the

market. With fewer participants, opportunities for dominating participants to exercise market

power may increase (Hagemann & Weber, 2013).28 Given these temporal patterns, the way in

which we may incorporate — at least partially — the effects of market power is through the

aforementioned production and transmission capacity variables (Section 3.1) and the dummies

for hour-of-day and day-of-week effects.

3.4 Conclusion

Liberalised electricity exchanges are complex markets, and their intraday markets are no ex-

ceptions. For the purposes of clarity, potential price determinants are subdivided into broader

categories in this chapter. It should, however, be noted that these may be strongly intercon-

nected, and it may be difficult to conclude how a given factor affects the market prices in

isolation. For example, hour-of-day or day-of-week effects on the intraday price may both be

explained by variations in load forecast errors and by variations in available intraday production

and transmission capacities. And a combination of the these factors may in turn affect the pos-

sibility to exercise market power. Also, it is argued how higher day-ahead production volumes

may lead to higher intraday prices. However, the effect may also be the opposite; Hagemann

(2013) found that higher day-ahead prices rather showed tendencies to reduce, than increase, the

intraday price. This unexpected finding is explained by the fact that relatively high day-ahead

prices often occur due to relatively low predicted shares of wind and solar energy — hence, the

probability of increased wind and solar production in the intraday market is higher than the

probability of a decrease, consequently leading to lower, instead of higher, intraday prices. As

these examples illustrate, it can be very challenging to deduce how each factor affect the intraday

price due to the interplay between them being highly complex and at times even unexpected —

a complexity which strongly motivates the use of deep learning in modelling the price.

28There are also factors that may limit the use of market power by a participant altogether. For example,
Nord Pool or the TSOs are likely to detect producers that hold back power, e.g. wind, so as to increase price
(Mauritzen, 2013).

23

4 Data

Section 4.1 introduces the data used in this thesis. It consists of almost 2GB of market data

supplied by Nord Pool, and over 300GB of weather forecast maps from SMHI supplied by

Montel — all of which cover the period from November 2011 to December 2017. Extensive

pre-processing is necessary to make them conform to data structures accepted by our machine

learning libraries, and to constitute a complete and consistent timeline. The market data consists

of thousands of separate files of differing formats that must be combined into a single dataset

with one observation per consecutive hour of power delivery. The required pre-processing steps

are covered in Section 4.2. The weather forecast data, however, effectively consist of images

that must be transformed to constitute a complete timeline of matrices that can be mapped to

the market dataset. This necessitates a different set of pre-processing steps, which are covered

in Section 4.3. Section 4.4 describes how we split the resulting timeline of two aligned datasets

into training, validation, and test subsets. Finally, Section 4.5 provides an exploratory analysis

of Elbas trading characteristics and the volume-weighted price.

4.1 Data Collection

Table 1 presents an overview of all datasets used in this thesis, including sources, the number

of files per year, the time of publication, and data resolutions. Each of the datasets are briefly

described in the following two sections. We limit the datasets’ time period to start on November

2, 2011, as this is when Sweden was split into four bidding areas to better manage congestion in

the power transmission grid (Nord Pool, 2009).29 The last hour of power delivery is midnight30

on December 31, 2017. In total, this corresponds to 54,048 consecutive delivery hours. After

the pre-processing steps, this is reduced to 53,400 observations with some gaps in the timeline.

The historic Nord Pool market data files, with the exception of UMMs, are stored as daily or

weekly files on their FTP-server. These are the files we merge and pre-process. However, for

market participants, the data is published at the time specified in Table 1. To build models

that could feasibly be implemented in practice, we therefore limit the models’ access to data

depending on what would be available in practice when making a prediction.

29I.e. the first hour of power delivery is 00:00–00:59 on November 2, 2011.
30Hour 24, i.e. the window 23:00–23:59.

24

Dataset Source
File
format

Files per
year

Published
Data
resolution

Elbas ticker Nord Pool CSV 365 Continuously Continuously

Elspot file Nord Pool SDV 52
Day ahead at
12:42 CET

Hourly

Regulating prices Nord Pool SDV 52
1–2 hours after hour of
power delivery

Hourly

Elspot capacity Nord Pool SDV 52
Day ahead around
10:00 CET

Hourly

Elbas capacity Nord Pool SDV 52
Day ahead around
14:00–15:00 CET

Hourly

Operating Nord Pool SDV 52
Day ahead around
14:00–15:00 CET

Hourly

Urgent market
messages

Nord Pool XML
Approx.
10–15,000

Continuously Continuously

Weather data Montel GRIB 604 00:00 and 12:00 UTC Each 3rd hour

Table 1: Information about the collected market and weather datasets.

4.1.1 Nord Pool Market Data

The Elbas ticker files contain data on each individual Elbas trade. Each file contains information

on the time of trade, delivery hour of the power traded, price and quantity, the parties’ respective

bidding areas, and whether the trade was cancelled or executed. The Elspot files contain price

and buy/sell volume data for each hour of power delivery and for each bidding area. The files

are published the day ahead, usually at 12:42 CET. Regulating power data for each hour of

power delivery and for each bidding area are found in the regulating prices files. The data is

published 1 to 2 hours after the end of each delivery hour (Scharff & Amelin, 2016). The Elspot

and Elbas capacity files contain data on transmission capacities between bidding areas for each

hour of power delivery. Elspot capacities are published around 10:00 CET the day ahead. Elbas

capacities are given as initial available capacities per delivery hour in the market. They are

published the day ahead after trades are settled in Elspot, normally around 14:00 CET.

The separate files with operating data for each Elspot country contain prognoses for production

and consumption for each hour of power delivery. The data are published around 14:00–15:00

CET the day ahead. Finally, the urgent market messages (UMMs) are stored as XML-files with

one per published message, totalling around 10, 000–15, 000 per year. UMMs are categorised as

either concerning production, consumption, transmission capacity, or market information. They

provide information about the volumes concerned, the time over which the outages will last, and

25

various metadata. New UMMs are published continuously, but we only include those available

at the time a prediction is made, and that were published after the Elspot gate closure.

4.1.2 SMHI Weather Forecasts via Montel

The weather forecast data take the form of gridded binary (GRIB) files, which are commonly

used for meteorological maps. Each contains forecasts of five weather properties for all of Europe,

made at a given date and time for a given number of hours ahead. Since these maps always cover

the exact same geographical area, we treat these five properties as five channels of an image —

similarly to the one black and white channel in greyscale images, or the red, green, and blue

(RGB) channels in a colour image. These five properties, referred to as bands, are:

• Temperatures in Kelvin, at 2 metres above ground.

• Total precipitation in metres.

• Wind vector component U in metres per second, at 10 metres above ground.31

• Wind vector component V in metres per second, at 10 metres above ground.

• Surface net solar radiation in Joules per metres squared.

Forecasts are made at (UTC) noon and midnight every day for horizons up to 240 hours, in

steps of three or six hours. Since the market data is a complete timeline of all 24 hours each

date, we are therefore missing forecasts for two thirds of our delivery hours. Another limitation

is that the weather data only contain forecasts, but no observed weather; their differences at

hours preceding that of delivery could potentially be very informative when predicting the price.

4.2 Pre-Processing of Market Data

For the most part, the historic market data files seem formatted for human readability. As such,

a number of pre-processing steps is necessary to extract the relevant data, then to transform and

store it in data structures accepted by our machine learning libraries.32 The purpose of these

steps is to get a complete and tidy time series from November 2, 2011 to December 31, 2017 with

one row per consecutive hour of power delivery, one column per feature (i.e. input variable), and

31A detailed explanation of atmospheric air flow vectors is provided by George Mason University (n.d.).
32We used the open-source softwares R and Python for the pre-processing, and the open-source machine

learning libraries scikit-learn and Keras for building the neural networks.

26

one column for the output value (i.e. the response variable). As this thesis focuses on buyers in

the Nordic countries in Elbas, we filter to data related to Nordic bidding areas, where relevant.

For the Elbas ticker data, trades between a Nordic buyer and German seller are also included,

as explained in Section 2.1.

For each dataset provided by Nord Pool in Table 1, the data from the raw files are read in

for processing using the open-source language R. In order to combine the datasets into one

consistent time series with one row per delivery hour, the datasets must have the same grain, or

level of detail. Some have higher grain and must therefore be aggregated — such as the Elbas

ticker data at the level of individual trades. Others have a long format where a given delivery

hour is repeated for different values of some variable, and must be transposed to a wide format

with such combinations instead stored as separate features — such as the Elspot files, with spot

prices for multiple areas expressed as separate rows for the same delivery hour, which must

instead be transposed to one row of separate columns.

The rest of this section describes key pre-processing steps. After the Nord Pool datasets have

been transformed and compiled into one cohesive time series, the resulting market dataset is

exported to Python and pre-processed further for use in modelling. The resulting sets of in total

328 final input variables are summarised in Table 14 in Appendix F.

Limiting to the data available for market participants

To build models that can feasibly be used in practice, we limit their access to data based on

what is realistically available to market participants when making a prediction six trading hours

in advance of delivery. As such, the latest available Elbas price is that of the delivery hour that

precedes it by six hours,33 hence we add corresponding lagged variables of the price and volume.

Regulating prices and dominating directions are also published one to two hours after delivery

(Scharff & Amelin, 2016), hence the related variables are lagged by eight hours.

Dealing with missing input values

Nearly 3% of the 264 input variables’ values are missing, but the vast majority belong to 6

features with nearly 100% sparsity34. Dropping these variables reduces it to 0.3%35, but our

33Market participants can see individual trades, but we aggregate the last six hours into one volume-weighted
price. Hence, the latest available such price is that of six hours ago. Section 4.2.1 provides more details.

34Sparse data have a lot of gaps, or missing values.
35Table 16 and Table 19 in Appendix F.2 give an overview of the remaining 46 variables with missing values,

and how many that are missing for each.

27

models cannot handle missing values directly. We therefore replace them with the value zero.36

For any relevant feature, we also add a ”missing” indicator saying whether the associated feature

was missing for the corresponding observation. This combination of zeroimputation and missing-

indicators37 was successful in other work, both related to deep learning (Lipton, Kale, & Wetzel,

2016) and linear modelling (Wooldridge, 2016).

Outliers and missing output values

Similarly to Lago, De Ridder, Vrancx, and De Schutter (2018), we do not omit outliers of the

output variable, in order to train models that are better at predicting significant spikes in the

price. However, the dependent variable is missing for 156 of 54, 048 observations. When the

preceding and succeeding values exist, the missing value is simply imputed linearly. This more

than halves the number of missing values, and the remaining gaps are removed by dropping the

corresponding dates of power delivery.38 The resulting dataset contains 53,400 observations.

One-hot-encoding categorical variables

Similarly to dummy variables in traditional methods, one-hot-encoding splits categorical vari-

ables into indicator variables corresponding to each level of the category. This makes it easier for

the model to capture their meaning, as it might otherwise treat them as ordinal variables whose

relative order of levels holds meaning — such as a quality rating. Thus, we one-hot-encode cat-

egorical variables related to the hour, weekday, month, and each Nordic buyer area’s regulating

price dominating direction. The number of features therefore increases from 264 to 328.

Standardising continuous numeric variables

Neural networks have been found to perform better when continuous numeric variables have

similar scales (Hastie, Tibshirani, & Friedman, 2009). Common approaches are to either scale

variables in the range [0, 1] — referred to as normalisation — or to centre each variable around

zero mean and with unit variance — referred to as standardisation.39 Normalising is simpler and

makes no assumptions of the distribution of the variables, but is sensitive to outliers. Standardis-

ing is less susceptible to outliers, but assumes the variables follow a Gaussian distribution. Most

36For some variables the value 0 already has meaning, in which case replacing missing values with zeroes
indubitably adds noise. However, there are so few such cases that we asses the downside to be negligible,
compared to using a more convoluted strategy of handling missing values.

37There are more sophisticated methods that potentially could have been used. However, due to time con-
straints and the degree of missing values being limited in scale, we chose the imputation/indicator approach.

38Alternatively we could drop only the observations, but we would like to build sequential models based on
whole days of data. Hence, we drop the 27 dates that contain the remaining 72 missing delivery hours of prices.

39Appendix C provides details.

28

of our numeric variables are relatively normally distributed40, hence we standardise them all41

based on their parameters in the training set42. Standardisation is done before missing values

are replaced, so the non-missing values are unaffected by the imputation. The one-hot-encoded

categorical variables and ”missing” indicators are excluded, as these are already binary.

4.2.1 Calculating Aggregated Elbas Buyer Prices

As there may be several Elbas trades for each hour of power delivery, we use a volume-weighted

average price (VWP) of trades for a given hour of power delivery as the hourly intraday buyer

price. This is the output variable our models will be trained to predict. A similar approach is

taken by e.g. Knapik (2017) and Tanger̊as and Mauritzen (2014)43 in their analyses. For each

hour of power delivery, h, the volume-weighted average price, VWPh, is calculated as:

VWP h =

∑N
n=1(Pn,h × Vn,h)∑N

n=1 Vn,h
(1)

where Pn,h is the price (EUR/MWh) and Vn,h is the volume (MWh) in trade n for delivery in

hour h. N is the total number of transactions for hour h.

As we predict an aggregate VWP over the six hours remaining until delivery, it is likely some

trades for the corresponding hour have already been settled. This information is available to

traders, and we engineer a feature that captures the VWP over all hours of trading up to the

point where a prediction is made. We do not divide it into shorter intervals, as this resulted

in excessive data sparsity, which would necessitate extensive imputation and make it too noisy

to be useful. Hence, we predict the near VWP, whereas this additional feature of information

on preceding trades is the far VWP. An illustration of calculating these two prices is provided

in Figure 4. The far price for delivery at hour 18 is calculated by aggregating trades settled

between when the corresponding Elbas market opened at 14:00 CET the preceding day, and

when we make a prediction at the beginning of hour 12. The near price is what our model aims

to predict, and represents an aggregate of any trades settled from, and including, hour 12 and

when trading closes at the end of hour 16.

40Appendix C.1 shows the distributions of some of the continuous numeric variables.
41A possible improvement could be to instead normalise those variables that are clearly non-normal, but we

saw impact on performance from we tested doing so.
42We thus avoid passing information from the validation or test sets to the training set in allowing variables’

values and distributions in those sets to influence what the model sees during training. These sets should be
out-of-sample, and are therefore scaled using parameters computed on the training set.

43Tanger̊as and Mauritzen (2014) compute the volume-weighted average on a daily frequency.

29

Figure 4: Calculation of a far and a near volume-weighted average intraday price (VWP), with

price prediction for power delivered during hour 18 as an example.

4.3 Pre-Processing of Weather Data

The GRIB files cannot be consumed by our neural networks directly, hence the binary data must

first be extracted and restructured as consistent tensors44. Each such file contains forecasts of

five weather properties, or bands, as explained in Section 4.1.2, which effectively represent five

maps of Europe. Similarly to colour images with the three channels red, green, and blue (RGB),

we treat these five bands as five channels of one image, as they cover the exact same geographical

area. The file structure is consistent until the middle of 2017, so that we can simply assign each

band to the correct channel based on its ordering in the binary file. Starting with July 2017,

however, the ordering of the five bands not only changes, but also varies — seemingly randomly.

Trying to manually ensure consistency among these shuffled bands would be impractical due

to the amount of data. Instead, we fit a designated machine learning model to automatically

re-order these input data by learning to classify bands using aggregate measures.

The complete set of files is over 300GB, hence we need to limit it considerably if we are to

feasibly include weather forecast data in models built in the time and on the hardware available.

Once we have limited the scope of the data, we also scale the images — similarly to the market

data — to improve model performance. Finally, each forecast’s set of five bands is mapped to

corresponding delivery hours so that it can be joined with the market data and, therefore, the

associated volume-weighted Elbas prices. Each raw GRIB file is read into R, where the relevant

matrix that comprises each band is separated and extracted, then converted and exported to

44Tensors are the basic data structures for storing numerical data used by most modern deep learning systems
(Chollet, 2018). They are a generalisation of 2-dimensional matrices to an arbitrary number of dimensions.

30

Python, where the below steps are performed. The resulting weather dataset is just shy of

6.5GB, which fits into memory alongside the market data on the available hardware.

Cropping and downsampling the images

The original maps cover all of Europe. Since we limit the market data to Nordic buyer and seller

areas (with the addition of Germany among the latter), we reduce the enclosed geographical

area correspondingly by cropping the images to that region. Each image is also downsampled

by reducing squares of four contiguous pixels to one that contains their average value. Halving

both dimensions reduces image sizes, or resolution, by 75%. An example is shown in Figure 5.

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(a) Cropped original

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(b) Cropped downsampled

Figure 5: Downsampling a temperature forecast for Northern Europe by averaging.

Limiting to one forecast per delivery hour

Each delivery hour is mapped to one forecast (i.e. set of five bands), and the rest dropped. Each

mapped forecast is the latest available for the given delivery hour when the prediction is made

six trade hours in advance. Although we would like to incorporate multiple forecasts for each

delivery hour to let the neural networks map changes in the forecasts, this would come at the

cost of a proportionate increase in memory use45. Though there are a few solutions that could

be engineered46, we consider this simplification necessary due to time and resource constraints.

Interpolating absent forecasts

Since forecasts are only made at midnight and noon with horizons in increments of three hours,

there exist no forecast for two thirds of the delivery hours in the timeline. These are therefore

45Strictly speaking, the datasets do not have to fit into memory. However, retrieving it from the solid state
drive would significantly slow down the preparation of every batch during training and evaluation.

46Such as downsampling further, or creating new images that correspond to the difference between two or more
forecasts.

31

linearly interpolated using the latest available forecasts for the closest preceding and succeeding

delivery hours whose forecasts exist.47

Normalising the weather data

Similarly to the market data, the resulting images are scaled to improve model performance.

Traditional images’ pixel values are in the range [0, 255], and therefore typically scaled to [0, 1]

by dividing by 255. In contrast, our ”images” correspond to weather properties that are not

necessarily within similarly fixed ranges.48 Instead, we normalise49 each band’s values to [0, 1]

based on the extreme values of each band observed in the training set.

Rectifying inconsistent input data with machine learning

The last six months of randomly ordered bands must be made consistent with the rest of the

weather data. Rather than attempting to do it manually, which would be very time-consuming

and arguably unreliable, we instead treat the nearly 6 years of consistent data as a training set

and fit a Random Forest classifier to automatically re-order the inconsistent bands. The model

classifies bands with over 80% accuracy on the data with known ordering, as estimated using

10-fold cross-validation. All errors stem from it struggling to separate the wind vectors. After

we manually impose additional decision rules based on more likely sequential orderings50, the

model agrees with our own best guess in well over 95% of cases on the inconsistently ordered

data.51 Though not ideal, we assert that this level of input weather data quality is sufficient, as

the alternative would be having to halve the test set.

4.3.1 Matching with the Volume-Weighted Average Price

The resulting set of scaled weather forecast maps, or images with 5 channels of 55 by 55 pixels,

comprise a complete timeline corresponding to that of our market dataset. As such, we can map

47Due to the six-hour difference between when a prediction is made and the delivery hour arrives, the most
recent forecast available for the closest preceding hour may not be the same as when the price was predicted for
that hour. In other words, a more updated forecast for that hour may have arrived in the meantime. If so, this
updated forecast is used to interpolate.

48For instance, temperatures are measured in Kelvin with no a priori hard limits — other than some absolute
extreme like 0 degrees Kelvin, which would never be observed (even in northern Scandinavia). Hence, scaling by
pre-determined values such as these would compress the pixel values between an artificially constrained range.

49Normalisation is explained in Appendix C.
50Random Forests process each sample individually, and therefore do not capture sequential information unless

explicitly included as distinct features.
51Since the correct order of the shuffled data is unknown and the training data does not have that problem,

the only way to evaluate the impact of these manually defined decision rules is to compare the model’s resulting
restructuring with our own best guess. Though we are clearly fallible, the model agrees in slightly less than 100%
of cases. Hence, since we cannot do much better, we feel confident in using the Random Forest model to rectify
the last six months of weather input data.

32

a corresponding price to each set of forecasts, as illustrated in Figure 6.52 Designing a neural

network using only this data effectively amounts to placing a camera in front of a televised

weather report and instructing it to predict a price in Euros. As absurd as it may sound, we

did test a few such networks to assess whether the weather data seemed to hold any predictive

power. These networks did surprisingly well, especially if also given explicit information about

the time of day and time of year — essentially showing the camera a clock and a calendar for

context, so that the networks would not have to waste capacity on determining its location on

seasonal curves. Appendix D.6 provide details on these experiments.

Figure 6: Forecasts of the five bands and the corresponding VWP (EUR/MWh) at delivery

hours in intervals of 36 hours, starting at midnight on November 2, 2011. From the top, each

row corresponds to a band: temperature, precipitation, two wind vectors, and solar radiation.

4.4 Splitting into Training, Validation, and Test Sets

The challenge of all supervised53 machine learning is capturing patterns in the training data

that allow the model to generalise its performance to unseen data (Hastie et al., 2009). During

training, the algorithm adjusts its parameters by learning statistical structures in the training

52Note that all plots of the weather data are heat maps that colour pixels based on their relative value within
that band; hence, a given shade of red in one band has no relationship with the same shade in another, or even
between images of the same band (as the range in each image may differ).

53Where the desired outcome, at least on the training data, is known, so that the algorithm can strive to be
as correct as possible in as many cases as possible.

33

set, but will at some point start memorising relationships that are specific to this data rather

than representative of the true data-generating process (Chollet, 2018). They will, in other

words, tend to overfit to the training data, so that we need a separate test set on which to

estimate their performance on unseen data. However, most machine learning methods involve

one or more hyperparameters that control some aspect of how the method is applied (Hastie et

al., 2009), where deep learning is particularly notorious for having many such hyperparameters

(Chollet, 2018). These are defined externally, and usually tuned by evaluating how models with

different configurations perform on a validation set54. Since one is therefore indirectly overfitting

to this set, it should be separate from the test data (Chollet, 2018).

The combined dataset constitutes a continuous timeline55. Since we would like to build models

that explicitly capture this temporal structure, we simply split the timeline into three contiguous

sections, rather than creating three randomly sampled sets. Some form of resampling or cross-

validation might yield more robust and reliable estimates of model performance on unseen

data (Hastie et al., 2009), but would be cumbersome to implement while keeping the temporal

structure intact, and be prohibitively time-consuming due to repeated training of deep learning

networks that are inherently computationally costly to fit (Chollet, 2018). Instead, we argue

that we have sufficient data for a train–validation–test split to yield reliable results. Thus, we set

the test set to consist of the last year of data, and the validation set to consist of the preceding

year. These sets therefore each contain 8, 760 observations, while the training set contains the

preceding 35, 880 observations — constituting a 68–16–16 split of the data.

4.5 Exploring the Data

Before proceeding to the methodology employed in the thesis, we take a closer look at trading in

Elbas and the near VWP. In addition to enhancing our understanding of the market, trading and

price characteristics are important when evaluating the practical reliability of models. Section

4.5.1 explores various aspects of trading in the Elbas market. Then, Section 4.5.2 examines the

near Elbas VWP, its development over the training, validation and test sets periods and how

the price level and volatility may depend on delivery hour.

54Machine learning models will generally overfit to the training data for most hyperparameter values within
reasonable ranges, meaning the training set is an effective basis on which to tune these values.

55Except a handful of gaps after we remove 27 dates where at least one delivery hour is missing its output
value.

34

4.5.1 Characteristics of Elbas Trading

This section examines the distributions of trades per delivery hour, prices and volumes per

trades, and the degree of variation in trade prices in our dataset. The dataset contains all trades

in the complete timeline over the period November 2, 2011 to December 31, 2017.

Trading activity

Many trades may be settled in Elbas for power delivered during a given delivery hour. More

than 10 transactions are settled for most delivery hours, as shown in Figure 7a, with an average

of 23 trades per delivery hour (Table 15, Appendix F.2). However, there are examples of up

to 986 trades being settled for one single hour of power delivery. The distribution in Figure 7b

shows that trading activity may vary depending on the delivery hour in question. More trades

are settled for power delivery in the second half of the day than in the first. This is not surprising

as the probabilities of forecast errors or other unforeseen events increase the more time passes

from the settlements in the Elspot market. In addition, similarly to the findings in Scharff and

Amelin (2016), trading activity in our dataset tends to match office hours (Figure 25, Appendix

B.3), which may also explain why there are more trades settled for later delivery hours than for

earlier. Regardless of the reason, we conclude that the trading markets for the later delivery

hours seem to be more liquid than the markets for the earlier ones.

(a) Number of trades across seven buckets (b) Number of trades across delivery hours

Figure 7: Number of Elbas trades per delivery hour.

Trade prices and volumes

Figure 8 shows how the trade prices and volumes are distributed in our dataset. Per Figure 8a,

the Elbas price range 25–35 EUR/MWh includes approximately 40% of the trades. Expanding

the range to 15–45 EUR/MWh covers 80%. On average, the price per trade was approximately

35

33 EUR/MWh, while the highest and lowest prices observed in the period were 555 EUR/MWh

and -150 EUR/MWh, respectively (Table 15, Appendix F.2). Figure 8b shows that a majority of

Elbas trades concern relatively low volumes, with volumes of 0–10 MWh and 10–20 MWh as the

most frequent categories, respectively; together, they account for nearly 80% of trades.56 The

average volume traded is 10 MWh, and the highest observed is 890 MWh (Table 15, Appendix

F.2). The fact that most trades concern relatively low volumes may be advantageous to market

participants, in that it allows for more flexibility in meeting the desired buy volume.

(a) Trade prices (b) Trade volumes

Figure 8: Prices and volumes per Elbas trade.

Variation in trade price

Figure 9 shows how the variation in trade price is distributed, where spread is measured both by

the interquartile range (IQR),57 and the distance between the lowest and highest trade price for

a given hour. For the majority of delivery hours, the IQR is within 0–10 EUR/MWh. However,

as pointed out by Scharff and Amelin (2016), trades for power delivered during the same hour

may vary significantly in price. This tends to be the case also in our dataset, as the spread

between the maximum and minimum price exceeds 10 EUR/MWh for several delivery hours.

56An explanation of the observed low trade volumes may be the use of Iceberg orders (IBO) in Elbas. IBOs
conceal the full order size from the market by dividing it into smaller clips (Nord Pool, 2018e).

57The prices may divided into quartiles, where each quartile represents 25% of the observations. The first
quartile represents the bottom 25%, the second 50%, the third 75% and finally, the fourth quartile covers all
observations. The interquartile range is the distance between the first quartile and the third quartile.

36

Figure 9: Variation in Elbas trade price for the same hour of power delivery. There is a long tail

to the right beyond 40 EUR/MWh, however, due to very few observations, it is left out here.

4.5.2 The Elbas Volume-Weighted Average Price

Price development

Figure 10 shows the development of the near Elbas VWP over the dataset timeline, split into the

training, validation and test sets, and Table 2 provides summary statistics for the near Elbas

VWP for each of the three sets. Both the highest and the lowest VWP over the full period

occurred around the beginning of 2012, and their respective values were 259.55 EUR/MWh and

-75.68 EUR/MWh. Hence, the training set contains the most extreme values observed in the

period. In the validation set, the VWP peaked in the beginning of 2016, and dropped below

zero (to -22.84 EUR/MWh) once, at the end of 2016. The test set period generally exhibits less

extreme fluctuations, with peaks just above 100 EUR/MWh, and the lowest point just below

zero at the end of 2017.

In the training set, the IQR goes from 25.63 EUR/MWh to 38.83 EUR/MWh, with a median

of 32.09 EUR/MWh. The values are somewhat lower for the validation set, where the IQR is

21.91–34.16 EUR/MWh and the median is 27.58. For the test set, the upper limit of the 1st

quartile is similar to that in the training set, but the 3rd quartile ends on a value that is slightly

lower. The median, 29.97 EUR/MWh, is also slightly lower.

37

Figure 10: Development in the near Elbas volume-weighted average price over the period Novem-

ber 2, 2011 to December 31, 2017. The training set period (dark blue), validation set period

(”middle” blue) and test set period (light blue) are also indicated.

Dataset Minimum 1st Qu. Median Mean 3rd Qu. Maximum Stdev

Training set -75.68 25.63 32.09 32.83 38.83 259.55 13.07

Validation set -22.84 21.91 27.58 29.19 34.16 196.74 12.07

Test set -6.324 26.26 29.97 30.95 34.36 113.56 9.07

Table 2: Summary statistics for the near Elbas VWP in the training, validation and test sets.

Near VWP across delivery hours

The level and volatility of electricity prices may vary depending on delivery time (Hagfors et al.,

2016), which is also the case in our dataset, as shown in Figure 11. The near VWP is generally

higher and more volatile, measured by the standard deviation, during delivery hours 7–20, with

notable peaks around hours 8–9 and 18–19. As such, gauging how performance varies across

delivery hours may be relevant when contrasting the different models and benchmarks.

38

(a) Distribution (b) Volatility

Figure 11: Distribution and volatility of the near VWP across delivery hours. Data is from the

test set period.

5 Methodology

Per Section 1.1, we aim to address the research questions:

1. To what extent can deep learning predict the volume-weighted average Elbas price six hours

ahead of a given hour of power delivery, and how reliable are the forecasts in practice?

2. What does this suggest about the potential of deep learning in wider applications in the

Elbas market, and what are the salient hurdles to implementing such AI agents?

We therefore need a set of metrics to evaluate and compare how various models perform on our

prediction problem. This allows us to both asses in absolute terms how well various implemen-

tations of deep learning perform, but also to compare against benchmarks to assess the relative

value-add versus the added complexity of these implementations. To this end, we define and

develop a set of simple heuristics and baselines from more traditional techniques to serve as

benchmarks. With this empirical harness in place, we experiment extensively with a range of

various deep learning implementations, before selecting a final set of model designs with which

to thoroughly evaluate the effectiveness and pragmatic value of deep learning in intraday electric

markets. In the interest of brevity, the focus is on these final implementations, rather than all

the underlying experiments that lead up to them.

The following sections outline the choice of metrics (i.e. how we measure success), the simple

39

domain-based heuristic baselines, the more traditional benchmark models used, and finally the

design and implementation of the various deep learning networks developed. We assume the

reader has some knowledge of more traditional techniques in keeping the descriptions of these

to a minimum, but do provide simple summaries in Appendix E. Seeing as deep learning is the

focus of this thesis, we provide some brief descriptions of how various types of deep learning

function, but focus on the reasoning behind our design choices and on providing a sufficiently

detailed overview for reproducability. Appendix A is intended to be a self-contained introduction

to how various forms of neural networks work from a technical, albeit accessible perspective, and

includes more detailed explanations of established concepts used in our implementations. The

specific sections of the appendix are referenced for convenience in footnotes, where relevant.

5.1 Model Evaluation

For a given problem we assume there is a true, unknown relationship f∗ between the observed

outcome y and the input predictors x such that y = f∗(x)+ε, where ε is an independent random

error term with assumed variance of 0 (Hastie et al., 2009). We estimate this relationship to

make predictions that are as close to the true outputs as possible: ŷ = f(x) ≈ y, where ε

averages to zero and is excluded. Our main concern is getting accurate predictions rather than

knowing the exact functional form of f∗. This accuracy depends on a reducible and an irreducible

error. The former can be mitigated by better statistical learning methods or ways to estimate

f , but the former stems from the ε component of the true y, which by definition is random and

cannot be predicted using x (Hastie et al., 2009). Most supervised58 machine learning algorithms

tune a set of parameters to estimate f with the goal of minimising some loss function — i.e.

some chosen measure of how well the model performs. For regression problems, it is common to

use either the Mean Absolute Error (MAE) or Mean Squared Error (MSE) — alternatively the

Root Mean Squared Error (RMSE) — although it is possible to use tailor-made loss functions

to reward or penalise specific behaviours (Chollet, 2018).

We choose MAE as the loss function, for two reasons. First, we want models that can be

better relied upon in typical day-to-day situations. Second, we believe such models will better

complement analysts and decision-makers — or even specialised models — that are better suited

to spotting exceptional situations, such as price spikes. As Equation 2 shows, MAE is calculated

58Supervised problems are where the output is known, so that the algorithm can iteratively improve its per-
formance compared to a defined ”correct” answer.

40

as the mean of the absolute deviation between the predicted value ŷ and true value y, over

the samples i = 1, ..., N . Hence, MAE penalises all errors proportionately, which increases

performance in general, but at the cost of greater magnitudes of peak errors. In other words,

being better across the board means that the model will miss by more when it first does miss.

MAE =
1

N

N∑
i=1

|ŷi − yi| (2)

Although we use MAE as the loss function to train the models, RMSE is also reported as an

additional performance metric to inform model choice and design. RMSE is calculated as the

square-root of the MSE, as shown in Equation 3. As the deviation between predicted and target

values is squared, RMSE penalises larger deviations more severely. Hence, reporting both MAE

and RMSE allows for a deeper understanding and evaluation of models’ merits and limitations.

RMSE =

√√√√ 1

N

N∑
i=1

(ŷi − yi)2 (3)

The MAE and RMSE metrics are reported on both the validation and test sets, as the latter is

truly unseen data and a better representation of how our models would perform in practice.

5.2 Benchmark Models

Two categories of benchmarks are developed: simple domain-based heuristics, and models from

among more traditional econometric and machine learning methods. The simple heuristics

reflect the degree to which we are able to predict the near Elbas VWP without building a

model, while the econometric and machine learning models represent simpler approaches to

price modelling than deep learning — although they require much of the same data preparation.

The simple heuristics are explained in Section 5.2.1, while Section 5.2.2 covers the methodology

for developing the econometric and machine learning benchmarks. The benchmark models only

use the Nord Pool market data, as it would have been very cumbersome and too computationally

expensive to also integrate the weather data.

41

5.2.1 Simple Heuristics

We define six simple heuristic benchmarks, beginning with benchmarks that use the Elbas price

information that is available to the market participants at the time of prediction. Two such

approaches are to always predict that the near Elbas VWP will equal the previous observed

values. Here, variables lagged with 6 and 24 hours are particularly relevant. The 6-hour lagged

near VWP represents the latest available Elbas price information at the time of prediction, as

the prediction is done six trade hours in advance. The 24-hour lagged near VWP reflects the

VWP for a given hour the day before, and may capture patterns in the Elbas price that depend

on the hour of power delivery. Another way of incorporating available Elbas price information

is to predict the near VWP in a given hour to simply be the mean of the near VWP, which in

the training set is 32.83 EUR/MWh. For observations where it exists, the far VWP — that is,

the volume-weighted price of all trades concerning the given delivery hour that have occurred

before the time of prediction — may also be a good indicator of the near VWP.59

The Elspot market’s system-wide and area spot prices might also be effective simple heuristic

benchmarks. While the spot prices are calculated per bidding area, the system price is calculated

for the market as a whole, similarly to the near Elbas VWP that is aggregated across all Nordic

bidding areas. In terms of specific area spot prices, the Swedish bidding area SE3 has the highest

volume bought in Elbas over the period November 2, 2011 to December 31, 2017 (Figure 24b

in Appendix B.2). In total, the volumes bought by buyers in SE3 constitute 24% of all volume

bought in Elbas. As such, the spot price in SE3 may have a larger influence on the near Elbas

VWP compared to the spot prices in other bidding areas.

5.2.2 Econometrics and Simpler Machine Learning

The benchmark models from more traditional methods are run on a laptop using the open-source

software R, so as to be representative of approaches that require minimal investment in software

or hardware. Except from lags, no variables were engineered for the benchmark models beyond

those available in the deep learning dataset.60 We avoid generating new variables in order to

make the benchmark approaches comparable to the more advanced deep learning approaches —

that is, we would like any differences in performance to be due to the technique employed, rather

59For about 13% of the observations, there is no far VWP that may be used to predict the near VWP.
60For example, one could have considered to aggregate the capacity variables to variables containing total

capacity in and out of each bidding area.

42

than the data used. The rest of this section explains the methodology employed to deal with each

of the following elements in constructing the econometric and machine learning benchmarks:

1. How to incorporate the temporal structure of the dataset, as there is a gap of 6 hours

between prediction time and delivery hour.

2. How to deal with the high dimensionality of the dataset.

3. How to account for non-linear relationships between the variables.

Capturing the temporal structure

Since there is a gap of six hours between the time at which we make the price prediction and

the hour we make the prediction for, time-series models that incorporate directly preceding

output(s) as input(s) when making a prediction — such as autoregressive integrated moving

average (ARIMA) models — have not been employed. If we make the prediction at time h− 6

for the near Elbas VWP at hour h, we do not know at the time of prediction, h − 6, the

VWP for the hours h − 1, h − 2, h − 3 and so on. The latest VWP we have information

about is the one at h − 6. To leverage the temporal structure of the dataset, we instead add

lagged variables manually. They are included for the dependent variable, the near VWP, and

among the independent variables for the Elspot system price and the spot prices in the various

bidding areas. These variables have been identified to have the highest correlation between their

lags and the near VWP at time h = 0.61 To avoid a considerable expansion in the dataset’s

dimensionality, we do not add lags for the remaining variables.

Handling high-dimensionality

Our dataset contains a high number of variables. To identify the variables that are most impor-

tant for predicting the near Elbas VWP six hours ahead, we have tried a number of techniques.

These are briefly described below, while Appendix E expands on their theoretical frameworks.

• Variable selection based on literature: As the importance of previous price information is

highlighted in literature, we build a linear regression model with only Elspot prices (system

price and area spot prices) and prior Elbas prices (near VWP lag and far VWP) as inputs.

• Feature selection62: We apply automated feature selection using random forest (RF) and

multivariate adaptive regression splines (MARS), where, for each method, the most im-

portant variables are extracted. A linear model is then fitted, using least squares, on the

61Specifically, for each variable, we add 22–26 hours and 46–50 hours lags.
62Details are provided in Appendix E.2.

43

reduced set of variables.

• Shrinkage methods63: All input variables are included, but a regularisation term, Ω(β), is

added to the loss function to shrink the coefficient estimates towards zero. This is done to

reduce the variance, at the expense of slightly higher bias. We tested both ridge regression,

LASSO64, and elastic nets, which are hybrids between ridge regression and LASSO. The

tuning parameter λ controls the extent of regularisation imposed on the loss function, and

the optimal values are found using cross-validation. For the elastic nets, we experiment

with α values of 0.2, 0.4, 0.6 and 0.8.65

• Principal component regression66: This is a feature extraction method where dimensional-

ity is reduced by linearly transforming the original input variables to principal components.

Each component captures the largest (remaining) variance amongst all linear combinations

of the set of variables. The n first components are then used to fit a linear model using

least squares, where we let n vary from 10 to 200 in steps of 5 components. We choose the

number of components, N , that results in the lowest MAE on the validation set.

Accounting for non-linear relationships

We experiment with integrating second and third degree polynomial terms in the linear models

to allow for non-linear relationships between the near VWP and the independent variables. To

further account for non-linear relationships, we also build a non-linear baseline model using the

gradient boosting algorithm67, which has been found to perform well in, for instance, predicting

intraday prices in the MIBEL (Andrade et al., 2017). The optimal number of trees, t, in the

model is found by letting t vary from 100 to 10, 000 with interval steps of 50 trees. We select

the number of trees, T , that results in the lowest MAE on the validation set.

5.3 Deep Learning

Deep learning is particularly well-suited to the aforementioned three areas of focus: there are spe-

cialised network types for sequential data that capture temporal structures; they essentially au-

tomate feature engineering and -selection by prioritising and learning hierarchies of increasingly

abstract representations of the inputs, making them especially well-suited to high-dimensional

63Details are provided in Appendix E.1.
64Least Absolute Shrinkage and Selection Operator
65The higher the value of α, the higher weight put on the LASSO term, while a lower value of α puts a higher

weight on the ridge regression term.
66Details are provided in Appendix E.3.
67Details are provided in Appendix E.4.

44

data (Chollet, 2018); finally, they can learn arbitrarily complex non-linear mappings, and are

therefore theoretically suited to approximating virtually any non-linear relationship (Goodfellow

et al., 2016). In addition, there are specialised network types for image processing, which will

enable us to fully utilise our weather forecast maps.

We begin with networks that only use the market data. This allows for more direct comparisons

with our benchmark models, as these then use the exact same input data. Additionally, it allows

us to evaluate the value-add of also incorporating the weather forecast data, as these networks

should arguably beat those that only use market data to justify the increased complexity and

computational cost. We build a set of final architectures with increasing complexity and spe-

cialisation, in order to comprehensively evaluate the efficacy and feasibility of deep learning for

predicting intraday electricity prices. The first networks are the jack-of-all-trades type, followed

by networks specialised for explicitly processing sequential data. To incorporate the weather

data we use networks specialised for image processing, as part of a larger architecture that also

utilises the market data to make predictions using all the available information.

5.3.1 A Brief Introduction to Deep Learning

Neural networks approximate the target function y = f∗(x) as ŷ = f(x;θ) by learning the set of

network parameters θ (Goodfellow et al., 2016) — of which a neural network can have millions.

Generally, such networks can be depicted as a directed flow of data from raw inputs to an output

via a chain of functions that extract increasingly complex and abstract representations (Chollet,

2018). This chain consists of hidden layers that constitute the learned mapping f . Informally,

the number of hidden layers defines the network’s depth, which loosely determines the complexity

of functions the network can compute. Each hidden layer l consists of a number of computational

units, also called neurons or nodes, that transform input data into representations more useful

for solving the given problem (Borovykh, Bohte, & Oosterlee, 2017). Each neuron accepts a

vector of inputs x from the preceding layer — either x(l−1) from the input layer or h(l−1) from a

hidden layer — and performs an affine transformation z = w>x+b, where w and b are learned as

constituent parts of θ (Goodfellow et al., 2016). To map non-linear representations, a non-linear

activation function68 g(z) is applied, such that h = g(w>x+ b). The resulting activation is then

passed forward to the neurons in the next layer in the network until, ultimately, the output layer

— in our case, a single node with no activation — takes the features h = f(x;θ) from the units

68Sometimes referred to as a transfer function.

45

in the final hidden layer and outputs a prediction ŷ (Chollet, 2018).69

The network learns the parameters θ through repeated exposure to the training data by min-

imising the provided loss function C(ŷ,y) = C(f(x;θ),y), which computes a distance score

between the network’s predictions ŷ and the true targets y (Goodfellow et al., 2016). Since all

constituent functions are differentiable, the gradient ∇ of the loss with respect to the network

parameters, ∇θC(θ), can be calculated using the chain rule. An optimiser algorithm then de-

scends the loss function by updating θ accordingly.70 While adding depth increases a network’s

capacity to map more abstract and, potentially, informative features, it also makes it more

likely that the gradient will vanish71 due to repeated multiplication as it is propagated through

the network. This has been a persistent challenge with deep or complicated forms of neural

networks, as it hinders training and causes performance to stagnate.

The generalist neural network

The quintessential deep learning model is arguably the multi-layer perceptron (MLP), often

referred to as fully-connected networks (Goodfellow et al., 2016). This type of network is used

frequently on a wide variety of problems, and has been found to perform well on day-ahead

electricity price forecasting (Lago, De Ridder, & De Schutter, 2018; Lago, De Ridder, Vrancx,

& De Schutter, 2018). Using a sliding window, such networks can incorporate a number of

time steps of preceding input values to indirectly capture the temporal dimension when making

predictions. The window length, or the lookback, defines how many time steps, or lags, that are

included. An approach to mitigating vanishing gradients in feed-forward networks such as these

is to add residual connections72 (RC), which help signals propagate through deep networks (He,

Zhang, Ren, & Sun, 2015). Another is applying batch normalisation73 (BN), which has also

been found to improve the performance of deep feed-forward networks (Ioffe & Szegedy, 2015).

Capturing the temporal dimension

While fully-connected networks treat time series as a single temporal point by collapsing time

steps of the same features into separate features, recurrent networks74 are specialised for se-

quential data, and can incorporate much longer sequences than would be practical otherwise. A

recurrent network temporally generalises its mappings, meaning a given pattern will be recog-

69Since we are predicting a continuous numeric price, we do not need to apply a non-linear transformation in
the output layer.

70The approach is therefore commonly referred to as gradient descent.
71Become infinitesimally small or explode (mathematically, to be clear) from repeated multiplication.
72Details are provided in Appendix A.1.5.
73Details are provided in Appendix A.1.6.
74Details are provided in Appendix A.2.

46

nised no matter where in the sequence it appears, rather than having to appear in the exact

same place as before (Chollet, 2018). Long Short-Term Memory75 (LSTM) is one attempt at

mitigating vanishing gradients76 in recurrent networks by introducing self-loops that facilitate

propagation of the gradient in very long sequences, where these loops are contextual rather

than fixed (Goodfellow et al., 2016). An extension is using bidirectional layers77, which also

process input sequences in the reverse temporal order. These significantly improve performance

on a range of problems where the full sequence is necessary to disambiguate signals, such as

speech recognition (Graves, Jaitly, & Mohamed, 2013). Our market data is a strictly causal eco-

nomic time series, but bidirectional LSTM networks have performed surprisingly well on other

seemingly ill-suited problems, such as traffic speed prediction (Cui, Ke, & Wang, 2018).

Processing the weather forecast images

The simplest approach to processing the weather forecast images would arguably be to use a

fully-connected network that flattens each image into a vector and treats each of the 15, 125

pixels as distinct parameters. As such, it will only recognise a spatial pattern if it appears in

the same part of the map as before — like with a temporal dimension (Chollet, 2018).78 An

alternative is using convolutional networks79, which are specialised for grid-like data such as

2-dimensional images80 (Goodfellow et al., 2016). These learn to recognise spatial patterns no

matter where they appear. In addition to this translation invariance, they also learn spatial

hierarchies of patterns, from initially small, local patterns to larger, more complex patterns

made up of the underlying ones (Chollet, 2018). For example, it can learn to recognise a car in

an image as a combination of certain edges, textures, and shapes. Presumably, similar spatial

hierarchies also apply to weather patterns in forecast images.

The final deep learning models

Section 5.3.4 elucidates the design and implementation of the two final windowed fully-connected

networks with residual connections and batch normalisation. The two final recurrent networks

75Details are provided in Appendix D.3.
76Details are provided in Appendix D.3.
77Details are provided in Appendix A.2.1.
78Visual recognition problems are usually translation invariant in nature (Chollet, 2018), hence fully-connected

networks tend to perform relatively poorly. Weather forecasts might be an exception, as a weather pattern’s
location is presumably more important than the fact that the pattern appears; e.g. heavy rainfall over parts
of Norway with significant hydro-power production is likely more consequential than deep in the Barents Sea.
Nevertheless, our experiments showed convolutional networks to generalise better on the weather data, and at
lower computational cost. As such, we use these.

79Details are provided in Appendix A.3.
80These can also be used with 1-dimensional time series, but after extensive experimentation we found these

to perform poorly on our problem.

47

are covered in Section 5.3.5. Before an amalgamating architecture that combines market and

weather data can be implemented, we first need a way to capture the temporal structure of the

weather forecasts. This is covered in Section 5.3.6, followed by the resulting final amalgamating

network in Section 5.3.7. The most significant computational cost by far lies in training these

networks, where the time needed to do so varies greatly; fitting one of the residual networks takes

approximately 17 minutes, one of the LSTMs takes 2.5 hours, and one of the final amalgamating

architectures takes 5.5 hours. Although training one of each final architecture can be done in a

day, trying different variations and configurations can be prohibitively time-consuming81.

Technical implementation and requirements

All data processing and neural network building was done in Python v3.6 via Jupyter Notebooks

— the most important of which are available in our public Github repository82. Data pre-

processing was largely performed using the open-source Pandas v0.22.0 and Numpy v1.12.1

libraries. Neural networks were implemented in the open-source Keras v2.1.3 library83, using the

TensorFlow v1.1.0 backend on a Graphical Processing Unit (GPU) with NVIDIA’s CUDA v8.0

toolkit and cuDNN v6.0 library. Keras reduces the technical expertise required to implement

deep learning considerably, but there is still some programming knowledge needed — not to

mention competence in machine learning. Networks were trained and evaluated on a desktop

computer with a GTX 980 Ti GPU with 6GB VRAM, an Intel i7 4790k CPU, and 16GB of

RAM. Though originally designed for computer games, GPUs are fortuitously excellent at the

matrix multiplications involved in fitting neural networks. As such, they are generally much

better suited to deep learning than CPUs (Chollet, 2018); indeed, our scripts ran more than

an order of magnitude faster on our GPU. Hence, we would argue that a desktop computer

with a relatively powerful GPU and at least a modicum of technical expertise are minimum

requirements for implementing deep learning projects in practice.

5.3.2 Designing Network Architectures

Most machine learning methods involve one or more hyperparameters that control some aspect

of how the method is applied (Hastie et al., 2009). Ideally, one would select their values empir-

ically via an exhaustive evaluation of how various configurations affect model performance on

81Not to mention that the desktop computer used to do so is an awful roommate when it’s spewing out hot
air at 80 degrees Celsius and running five fans at over 1, 000 RPM.

82Publicly available at: https://github.com/johannes-kk/Elbas-Deep-Learning
83There are many alternative deep learning frameworks, such as MXNet, Caffe, PyTorch, or using TensorFlow

directly, but these are generally more technically involved and, arguably, unnecessary for our purposes.

https://github.com/johannes-kk/Elbas-Deep-Learning

48

a validation set, or via a resampling technique. However, such a grid search quickly becomes

prohibitively expensive as the number of parameters increases (Chollet, 2018). Even more re-

fined versions, such as trying a random subset of possible configurations via a random sweep

or using genetic algorithms, can also be impractical for the same reason. In addition to having

notoriously many hyperparameters to tune, deep learning also require that one defines the net-

work’s topology, i.e. the types, ordering, and configuration of the functional components that

comprise the network (Goodfellow et al., 2016). We refer to the combination of a network’s

hyperparameter values and topology as its architecture.

Though the same automated approaches can be used to designing architectures as for optimising

hyperparameters, these can be extremely expensive to run, especially due to the high compu-

tational cost of fitting neural networks (Chollet, 2018). We therefore instead use an iterative

approach that combines experimentation and inspiration from other research to pursue a more

guided path through the space of possible architectures. Networks will generally overfit to the

training data, hence we evaluate them on the validation set and use this performance to select

architectures for further development. Like an automated approach would, we are therefore

indirectly overfitting to the validation data. Hence, after designing the final set of architectures,

we evaluate these on the test set to get a more realistic estimate of their performance on unseen

data. Our experimentation resulted in hundreds of candidate architectures evaluated on the

validation set, but in the interest of brevity we only include the final architectures here.

Design choices common for all architectures

We make a set of design choices common to all architectures we evaluate, both to reduce the

space of possible architectures to try and to make our approach more internally consistent.

These are rooted in a combination of findings from research and our own empirical results:

• Loss function: The networks minimise MAE on the training set. This choice over alterna-

tives like MSE is explained in Section 5.1.

• Activation function84: Where relevant, we use Rectified Linear Units (ReLU). These are

a good default choice, and mitigate vanishing gradients (Goodfellow et al., 2016).

• Mini-batch size85: After some experimentation, we use 128 as an effective compromise

between accurate estimates of the gradient and hardware memory use86.

84Details are provided in Appendix A.1.1.
85Details are provided in Appendix A.1.3.
86Multiples of 2 fit better onto CPU or GPU cache since these are binary. We tested 64, 128, and 256.

49

• Optimiser algorithm87: ADAM is used with default values, as these are generally effective

(Goodfellow et al., 2016). We also tested RMSprop and NADAM88, but found them to be

inferior.

• Learning rate schedules89: To help networks escape local minima during training, we spec-

ify that the learning rate should be halved when training loss plateaus. This is triggered

upon no improvement in three or five epochs, depending on the total number of epochs.

• Regularisation90: Dropout has been found to outperform alternative cheap regularisation

methods, can be combined with other methods, and does not limit the possible architec-

tures (Goodfellow et al., 2016). As such, we use it extensively in our networks. Experiments

with norm penalties suggested that they constrain training performance without justifiable

improvements on the validation set, and are therefore not used.

• Epochs91: Depending on each architecture’s general pattern of convergence and time

needed per round of exposure to the training data, the number of epochs is set to ei-

ther 30 or 100, after some experimentation.

5.3.3 Evaluating the Final Architectures

One popular approach to fighting overfitting is the minimum validation loss (MVL) model se-

lection method, where the algorithm records the network parameters whenever validation loss

improves, and picks those that generalised best rather than those from the last update (H. Chen,

Lundberg, & Lee, 2017). Another popular approach is using ensembling methods, where dif-

ferent models are fit and combined to make predictions that are, usually, and on the whole,

more accurate than those of any of its constituents (Dietterich, 2000). The simplest method

is arguably random initialisation ensembling (RIE), where the same architecture is used to fit

multiple models whose predictions are averaged. However, even this can be computationally

prohibitive due to the cost of training large neural networks on comprehensive datasets. Check-

point ensembling (CE) is an inexpensive way to capture some of the generalisation gains from

ensembling without the need to fit multiple networks; rather than picking the best weights, CE

combines the predictions from the best checkpoints of weights during training, as measured on

87Details are provided in Appendix A.1.3.
88ADAM with Nesterov momentum. See Goodfellow et al. (2016) for more details.
89Details are provided in Appendix A.1.3.
90Details are provided in Appendix A.1.4.
91Details are provided in Appendix A.1.2.

50

the validation set (H. Chen et al., 2017). The model corresponding to the weights at the end

of various successful epochs may be particularly adroit in its respective subspace of prediction

problems. By combining the best of these checkpoints, one might get a model that generalises

better to the complete space of all possible prediction problems (H. Chen et al., 2017).

Consequently, for each of our final architectures we use the MVL method to extract the best

weights and evaluate the resulting performance, but also use CE to try to improve perfor-

mance further. Following He, Zhang, Ren, and Sun (2016)’s example, we initialise and run each

architecture five times, and report the median for each relevant metric. Although it is computa-

tionally costly, we get more reliable estimates of each architecture’s performance and robustness

by assessing five models’ performance using MVL and CE. Since we are fitting five models for

each architecture, we also perform RIE by averaging predictions across the five models using

their respective minimum validation loss weights.

5.3.4 Windowed Market Models: Deep Residual Networks

With inspiration from He et al. (2016), we design a deep multi-layer perceptron (MLP) with

residual connections between consecutive stacks, or blocks, of three hidden layers. After ex-

tensive experimentation, we found such networks to perform better by also adding residual

connections from the original flattened input data where there were such connections between

stacks. Residual connections are added together rather than concatenated, per He et al. (2016).

As experimentation showed that networks with residual connections clearly outperformed those

without, we have no version without them.

These networks only use the market data. They use a sliding window of input data to capture

the temporal dimension, meaning lookback lags of each input variable are included. Since MLPs

only accept a vector of input data for each sample in the mini-batch, the input layer flattens the

temporally multi-dimensional input data. Fully-connected networks treat these combinations of

lag and variable as individual features, but should generalise with sufficient data and training.

Experiments showed that window lookback lengths of between 6 and 18 hours worked best, so

we use 12 hours. The architecture consists of six blocks of three hidden layers, for a total of

eighteen hidden layers. The first block uses 512 nodes with 50% dropout at the end of the block,

the following two use 256 with 45%, the two after that use 128 with 40%, and the last uses 64

with 30%. Adding significantly more depth did not seem to improve performance. Hence, we

stop at eighteen layers. The output layer is, as always, a single node with no activation.

51

We make two versions of the architecture: one with some additions and adjustments based on

experimentation, and one that is more faithful to He et al. (2016)’s pre-activation residual blocks.

The first architecture, ResNet 1, applies ReLU after each hidden layer, with batch normalisation

applied at the end of the block prior to adding residual connections, and dropout after. Figure 12

illustrates the ResNet 1 architecture. The second architecture, ResNet 2, more closely resembles

the residual block proposed by He et al. (2016); batch normalisation and ReLU are applied, in

that order, before each hidden layer, with dropout applied after residual connections are added

at the end of each block. Figure 13 visualises ResNet 2. For both architectures, exhaustive

model topologies are presented in Appendix D.1 and Appendix D.2, respectively.

Figure 12: ResNet 1 network architecture. Uses the market data with a sliding window of 13

hours (including the delivery hour in question) of input values. Three residual blocks, or stacks,

are shown for readability, but the full architecture uses six. Each block consists of three equally

wide hidden fully-connected feed-forward layers, with ReLU activations applied after each layer.

Batch normalisation (BN) is applied at the end of each block, followed by adding any relevant

residual connections (RC), indicated by arrows, and dropout. The first block uses 512 nodes

with 50% dropout at the end of the block, the following two use 256 with 45%, the two after

that use 128 with 40%, and the last uses 64 with 30%.

Figure 13: ResNet 2 network architecture. Uses the market data with a sliding window of 13

hours. Three residual blocks, or stacks, are shown for readability, but the full architecture uses

six. The architecture is the same as ResNet 1, except that ReLU and batch normalisation (BN)

are applied before each hidden fully-connected feed-forward layer. Residual connections (RC)

and dropout are applied, in that order, at the end of each block.

52

5.3.5 Sequential Market Models: LSTM Networks

We design two LSTM recurrent networks that only use the market data. Some of our exper-

imentation with recurrent architectures is summarised in Table 13 in Appendix D.7. While

LSTMs have seen tremendous success on state-of-the-art problems (Goodfellow et al., 2016),

there have been attempts to simplify it by dropping unnecessary components or redesigning it

altogether. One of these is the gated recurrent units (GRU), which is theoretically less com-

putationally costly, but also has less representational power (Chollet, 2018). As such, we first

experiment with various architectures using LSTM or GRU to select which is best suited for

our problem, and conclude much the same; as expected, LSTM outperforms GRU at a higher

computational cost, but we incur this extra time to get models that are in fact better. We found

negligible performance gains from going significantly deeper than two or three hidden layers.

The recurrent networks consistently perform better the longer the window is, but these longer

sequences also come at proportionately higher cost, so there is a practical upper limit. The first

recurrent architecture, referred to simply as the LSTM, therefore uses a window size of 21 days,

i.e. 505 time steps (including the corresponding delivery hour). It consists of one hidden layer

of 512 LSTM nodes with 40% dropout on both the recurrent connections and the activations.

This architecture is illustrated in Figure 14, while Appendix D.3 contains the exhaustive model

topology.

Figure 14: LSTM network architecture. Uses the market data with an input sequence length

of 505 hours (21 days). Consists of one hidden layer of 512 LSTM nodes with 40% dropout on

both the recurrent connections and activations.

The second recurrent architecture, the BD-LSTM, is a bidirectional LSTM, which combines a

traditional recurrent network that steps chronologically through time with another that steps

in the opposite direction, illustrated in Figure 15. The exhaustive model topology is included

in Appendix D.4. We try bidirectional recurrent networks in case they pick up some valuable

patterns by also evaluating the inputs in the reverse chronological order. In our case, this means

stepping backwards from time τ to 1 rather than evaluating the complete temporal sequence,

53

as that would incorrectly incorporate information from the future. Although a shorter sequence

negates part of the benefit of LSTMs, namely to capture long-term dependencies, the network

uses a window of 7 days, i.e. 169 time steps. This is largely a practical consideration due to the

computational cost of bidirectional networks, and because experimentation showed deteriorating

performance when the sequences grew much longer — presumably because, as the ideal length

for our residual networks suggests, the most important information might be contained in the

most recent observations, hence the reversed order going further back than this might only

be adding noise. It consists of a bidirectional LSTM layer (i.e. two layers) with 512 nodes

followed by a standard LSTM layer with 256. All layers use 40% dropout on both the recurrent

connections and the activations.

Figure 15: BD-LSTM network architecture. Uses a window of 169 hours (7 days). Consists of

a bidirectional LSTM layer with 512 nodes, followed by a regular LSTM layer with 256 nodes.

All use 40% dropout on both the activations and recurrent connections.

5.3.6 Processing Spatio-Temporal Weather Data

Each weather forecast is a five-channel geospatial image processing problem, but we have se-

quences of such forecasts. To properly incorporate this temporal dimension, we can use a

time-distributed convolutional pyramid92. Time-distributed layers repeat a given operation for

each temporal slice of the input93, i.e. learn a shared set of parameters used to compute a sepa-

rate output for each time step. We therefore convolve over each forecast as usual, but maintain

the time steps which can then be picked up by a mechanism specialised to sequences — such as

recurrent layers. An alternative is using 3-dimensional convolutions, which in this case convolve

over one temporal and two spatial dimensions. This has the downside of being translation-

invariant in the temporal dimension, which would likely fail to capture the relative importance

of more recent observations — or vice versa. We nevertheless tested such architectures, but

92Details are provided in Appendix A.3.1.
93See the Keras documentation: https://keras.io/layers/wrappers/#timedistributed

https://keras.io/layers/wrappers/##timedistributed

54

found them to perform poorly and have an unjustifiably high computational cost.

The parts of our neural networks designed to process weather forecast images are therefore time-

distributed convolutional pyramids where we, after extensive experimentation, use convolutional

kernels of dimensions 3×3 with a stride94 of 1 and ReLU activations. We use valid padding95 in

Keras, which does not pad with zeroes, but rather restricts the kernel to traversing only within

the image. Each convolution layer is followed by a max pooling layer with a 2 × 2 kernel and

stride 2. These layers are all time-distributed, so that the temporal dimension is maintained by

applying the convolutional pyramid separately to each time step of forecasts. This architecture

does not make much sense to run by itself, but is used as a component of a more involved

architecture that combines market and weather data.

5.3.7 Market & Weather Model: Multi-Input Network

In order to create neural networks that utilise all of the available data, we design an amalga-

mating multi-input architecture, referred to as the Multi LSTM ResNet, that leverages both the

temporal structure of the market data and the spatio-temporal structure of the weather data.96

Compared to the 328 features per sample of market data, a single five-channel weather forecast

image contains 15,125 parameters. Including additional time steps of forecasts is therefore much

more computationally costly than with the market data. Since longer windows of market data

seem advantageous, particularly with recurrent networks, we design the architecture so that

it accepts two different sequence lengths. This architecture consists of three pipes, or distinct

sequences of hidden layers: one each for the market and weather data, and one that combines

their outputs to process the high-level features and make a final prediction.

Designing such a network is more involved, as we must coerce two different spatio-temporal

structures to conform so that they can be used as a combined input. A simple approach is to

make a pipe that outputs a set of features without a temporal component. This could be either

to flatten each pipe’s output to collapse the temporal dimension — which could erase potentially

94The stride is the number of steps the convolution takes when extracting the next patch. With no stride
(stride of 1), successive receptive fields will overlap somewhat, which is usually desirable when searching for local
patterns.

95The kernel, or receptive field covers an area that might extend outside the image when near the edges. We
therefore either need to restrict the kernel so that it stays within the image, or use some method of adding a
border of zeroes around the edges so that the kernel activation is not mathematically undefined due to undefined
values.

96The more exhaustive and arguably correct name would be: Multi-input time-distributed spatial convolutional
pyramid long short-term memory residually connected network.

55

valuable temporal relationships — or to finish each with a recurrent layer. We have used both

approaches when designing networks that only take in market data, but choose to do only the

latter when designing the final amalgamating architecture. This is both a result of the findings

in Section 6.1.2, and an educated simplification of the space of possible architectures.

After comprehensive experimentation, we design an amalgamating network architecture that

combines recurrent layers to consolidate the temporal dimensions, a time-distributed spatial

convolutional pyramid, and a residual network to capture non-linear combinations of the result-

ing discrete spatio-temporal high level market and weather features. Figure 16 illustrates this

architecture, and Appendix D.5 presents the exhaustive model topology.

Figure 16: Multi LSTM ResNet network architecture. The top pipe takes in sequences of 7

weather forecast image sets, and consists of a convolutional pyramid with four rounds of time-

distributed spatial 3× 3 convolutions and 2× 2 max pooling from 32 to 256 filters, followed by

an LSTM layer with 64 nodes, and 50% dropout on the activations and recurrent connections.

The bottom pipe takes in sequences of 505 hours (21 days) of market data, and consists of two

stacked LSTM layers, both with 256 nodes and 50% dropout on the activations and recurrent

connections. The two pipes’ outputs are merged via concatenation, and the resulting 320 features

processed by a sequence of three residual blocks of respectively 256, 128, and 64 units with

respectively 50%, 40%, and 30% dropout. Each consists of three fully-connected layers with

ReLU activations. Batch normalisation is applied at the end of each block, followed by adding

residual connections, and dropout.

The market pipe uses a sequence length of 21 days and consists of two stacked recurrent LSTM

layers with 256 nodes and 50% dropout on the recurrent connections and activations. The

weather pipe uses a window length of 6 hours, and consists of a convolutional pyramid with

four rounds of time-distributed spatial 3 × 3 convolutions and 2 × 2 max pooling from 32 to

256 filters, followed by an LSTM layer with 64 nodes and 50% dropouts. The resulting outputs

are concatenated, resulting in a one-dimensional vector of 320 features, and processed by a

56

sequence of three residual blocks of respectively 256, 128, and 64 units. Each consists of three

fully-connected layers with ReLU activations and post-activation batch-normalisation, and a

dropout amount that decreases from 50% to 30%. The final layer is, as usual, a fully-connected

layer with one node and no activation function, which makes the corresponding prediction of

volume-weighted price.

6 Analysis and Results

Section 6.1 assesses the overall respective performances of the non deep learning benchmark

approaches and the deep learning models, before Section 6.2 evaluates performance in greater

detail by considering how the models perform across delivery hours, trading activity, price levels,

and in detecting unusually high or low prices. In this way, we can evaluate potential strengths

or weaknesses among the models that are not revealed on an aggregate level. Finally, Section

6.3 wraps up this chapter by gauging to what extent deep learning can predict the near volume-

weighted average Elbas price six hours ahead of a given hour of power delivery, and how reliable

our forecasts are in practice.

6.1 Model Performance Results

This section first presents the results from using approaches which do not apply deep learning

techniques when predicting the near VWP (Section 6.1.1). They serve as benchmarks against

which the performance of the deep learning models can be judged. Then, Section 6.1.2 assesses

the performance of each of the five final deep learning models.

6.1.1 Benchmark Models

Simple heuristics

We begin by considering the simple heuristics, which are the benchmarks that only use one

historic price variable to predict the near Elbas VWP in a given delivery hour. Table 3 sum-

marises the performance of each of these six simple approaches, in order of ascending MAE on

the validation set. Predicting the near VWP to be the same as the spot price in the SE3 bidding

area is the simple benchmark approach with the lowest validation set MAE of 2.96 EUR/MWh.

In comparison, the system price baseline achieves an MAE of 4.15 EUR/MWh, and the base-

57

lines using available Elbas price information have at best an MAE of 4.81 EUR/MWh through

the far VWP baseline. The SE3 heuristic also obtains the lowest MAE on the test set, 3.43

EUR/MWh. Though the corresponding RMSE values are somewhat higher than the MAE

values, 5.94 EUR/MWh for the validation set and 5.65 EUR/MWh for the test set, the SE3

baseline is still the one that results in the lowest RMSE among the simple benchmark models.

That the simple heuristic of predicting the near Elbas VWP to be the SE3 price achieves an

MAE as low as 2.96 EUR/MWh, indicates that a large share of the VWP may be explained

by the day-ahead spot prices. This is not unreasonable as the spot prices represent the market

situation after the day-ahead settlements. If there are few deviations in the intraday market,

one would expect prices to be on the same level. Additionally, the spot prices probably also send

a strong price signal to market participants trading in Elbas. However, the correlation between

the SE3 spot price and the near VWP is stronger during both the training and validation set

period than during the test set period, hence the MAE on the test set is higher than on the

validation set.97

Simple Benchmark
Validation Test

MAE RMSE MAE RMSE

Predicting spot price in SE3 of
corresponding delivery hour

2.9555 5.9388 3.4278 5.6467

Predicting system price of
corresponding delivery hour

4.1459 7.5390 4.4676 7.0356

Predicting far VWP from the
corresponding delivery hour

4.8094 7.5873 4.0038 6.2014

Predicting VWP of corresponding
delivery hour of previous day

5.3167 10.1989 6.0267 9.0201

Predicting 6-hour lagged VWP
(delivery hour 6 hours prior)

7.2566 12.2718 7.1669 10.2758

Predicting mean VWP from
training set

9.0018 12.6057 6.6829 9.2645

Table 3: Mean absolute error (MAE) and root mean squared error (RMSE) of simple heuristics

baselines, in order of ascending MAE on the validation set. All values are in EUR/MWh.

Econometrics and simpler machine learning

The performances of the more advanced benchmarks are summarised in Table 4. For each dis-

tinct approach, only the top performer, based on lowest MAE on the validation set, is included.98

Not surprisingly, all of the more advanced benchmarks outperform the best simple heuristic that

97The correlation between the SE3 spot price and the near Elbas VWP is 0.86 during the training set period,
0.88 during the validation set period, and 0.78 during the test set period.

98For example, the elastic net models with other values of α than 0.2 are left out.

58

predicts the VWP to be the SE3 spot price. The best model, measured in terms of MAE on the

validation set, is the non-linear gradient boosting model, which obtains a validation set MAE

of 2.69 EUR/MWh. Its test set MAE is 3.04 EUR/MWh. Again, we observe that the test set

MAE exceeds the validation set MAE. This is not surprising as we tuned hyperparameters so as

to minimise the MAE on the validation — and not the test — set. However, it may also partly

be due to the fact that the correlation between the near VWP and the SE3 spot price is lower

during the test set period than the training and validation set period. As the SE3 spot price

is consistently identified as an important variable in the models due to its strong correlation

with the near VWP, we would expect the models to predict with slightly higher errors when the

correlation between these two variables is somewhat weaker.

Model
Validation Test

MAE RMSE MAE RMSE

Gradient boosting,
N of trees = 1,000

2.6931 4.9436 3.0388 4.8079

MARS feature selection,
linear and polynomial terms

2.7282 4.9111 3.0235 4.7522

Elastic net,
alpha = 0.2, lambda = 0.2553

2.7631 5.0894 3.0944 4.8061

LASSO,
lambda = 0.0511

2.7642 5.0923 3.0845 4.7962

Ridge regression,
lambda = 1.2357

2.8302 5.0974 3.1962 4.8662

RF feature selection,
N of trees = 1,000, linear terms

2.8319 5.3848 3.1301 4.9216

Principal component regression,
N of components = 115

2.8331 5.2064 3.2853 5.0119

Linear regression,
Elspot and prior Elbas prices

2.8531 5.3772 3.0836 4.8840

Table 4: Mean absolute error (MAE) and root mean squared error (RMSE) of econometrics and

simpler machine learning baselines, in order of ascending MAE on the validation set. All values

are in EUR/MWh.

The second best performance is achieved through feature selection using MARS, combined with

fitting a linear model with both linear and polynomial terms. Here, the MAE is approximately

2.73 EUR/MWh on the validation set, which is only slightly above the MAE for gradient boost-

ing. On the test set, the model obtains a marginally lower MAE than gradient boosting, at

3.02 EUR/MWh. The gradient boosting and the model employing MARS feature selection also

59

perform better in terms of RMSE than the other models.99 As the remaining models all yield

higher errors on both the validation and test sets, we conclude that models allowing for non-

linear relationships achieve the best performances, which in turn is promising for deep learning.

6.1.2 Deep Learning Models

So far we have seen that it is possible to predict the near Elbas VWP with relatively good

accuracy six hours ahead of the delivery hour. Furthermore, simply predicting the near VWP

to be the spot price in SE3 gave an MAE of 2.96 EUR/MWh on the validation set, while applying

gradient boosting improved the MAE to 2.69 EUR/MWh. The question then is whether deep

learning can improve this further.

We recall from Section 5.3 that the two final ResNet models consist of one where ReLU is applied

after each layer while batch normalisation is only applied after each stack of three layers (ResNet

1), and one where ReLU and batch normalisation are applied, in that order, before each layer

(ResNet 2). The two final LSTM models differ in that one is a bidirectional network (BD-

LSTM), while the other (LSTM) only incorporates the original temporal structure. Finally, the

Multi LSTM ResNet integrates weather data with market data. Table 5 and Table 6 summarise

the performances of each of these final models on the validation and test sets, respectively. Each

table presents both the MAE and RMSE using minimum validation loss (MVL), checkpoint

ensembling (CE) and random initialisation ensembling (RIE). The models were run five times

each, but in the tables, only the median performance per column is presented for MVL and CE.

Appendix D contains the results per run for each of the five models. RIE, on the other hand, is

an ensemble of the MVLs from each of the five runs.

Some findings are common across all models. First, comparing the models’ results on the

validation set to those on the test set, there are signs that we have been indirectly overfitting to

the validation data. As with the benchmark models, all MAEs and RMSEs on the test set are

consistently higher than their counterparts on the validation set, with some differences being

rather stark; some MAEs are nearly 0.50 EUR/MWh higher. However, this may also be partly

due to the aforementioned weaker correlation between the near VWP and the SE3 spot price in

the test set. Second, all deep learning models do in fact achieve a lower MAE than the simpler

benchmarks on both the validation and test sets. Considering the MVL MAE values, they obtain

99Except the elastic net and LASSO, that obtain marginally lower RMSE values on the test set than gradient
boosting.

60

Model

Validation

MVL CE RIE

MAE RMSE MAE RMSE MAE RMSE

ResNet 1 2.3738 4.4474 2.3636 4.4267 2.3390 4.4135

Resnet 2 2.4089 4.4930 2.3549 4.4284 2.3411 4.4246

LSTM 2.3553 3.4757 2.2475 3.3728 2.2464 3.3544

BD-LSTM 2.5423 3.9569 2.4168 3.8373 2.3551 3.7617

Multi LSTM ResNet 2.3383 3.5277 2.2854 3.4525 2.2482 3.3856

Table 5: Mean absolute error (MAE) and root mean squared error (RMSE) of the deep learn-

ing models (median run per column) on the validation set. MVL is minimum validation loss,

CE is checkpoint ensembling, and RIE is random initialisation ensembling. All values are in

EUR/MWh.

Model

Test

MVL CE RIE

MAE RMSE MAE RMSE MAE RMSE

ResNet 1 2.7082 4.7409 2.6922 4.7222 2.6789 4.6917

ResNet 2 2.7029 4.7459 2.6776 4.7074 2.6567 4.6956

LSTM 2.8278 4.3563 2.7414 4.2803 2.7131 4.2377

BD-LSTM 2.8510 4.3781 2.7439 4.3147 2.6983 4.2964

Multi LSTM ResNet 2.7824 4.3390 2.7359 4.2672 2.7242 4.2443

Table 6: Mean absolute error (MAE) and root mean squared error (RMSE) of the deep learning

models (median run per column) on the test set. MVL is minimum validation loss, CE is check-

point ensembling, and RIE is random initialisation ensembling. All values are in EUR/MWh.

a margin of between 0.15–0.35 EUR/MWh on the validation set and 0.17–0.32 EUR/MWh on

the test set. The CE MAE improves this margin to 0.27–0.44 and 0.28–0.34 respectively, which

is again marginally improved using RIE to 0.33–0.44 (validation) and 0.30–0.36 (test). Still, the

deep learning models are predicting the near VWP with, at best, an average absolute error of

2.25 EUR/MWh on the validation set and 2.66 EUR/MWh on the test set.

Third, there seem to be inklings of consistent improvements from ensembling. In particular,

there is no doubt that ensembling improves performance for the LSTM models, especially on

unseen data. Overall, the largest enhancement tends to come from CE, while RIE only provides

slightly better results. Still, these early signs of the impact of ensembling could, perhaps,

warrant extending to more sophisticated forms of ensembling, or ensembling altogether very

different models. Finally, the MAE values are considerably lower than the RMSE values on

61

both the validation and test sets, which is not surprising as the models were trained with the

objective of minimising MAE, and not RMSE. Hence, we allow the models to miss more when

they first miss, as it is not punished as hard as it would have been had RMSE been used instead.

From Table 5, we conclude that the LSTM and Multi LSTM ResNet models perform better than

the other three, reaching RIE MAE values of 2.25 EUR/MWh and RIE RMSE values of about

3.35–3.39 EUR/MWh. The RIE MAE values of the other models are about 0.1 EUR/MWh

higher, while the RIE RMSE values are around 0.4 EUR/MWh higher for the BD-LSTM model

and more than 1 EUR/MWh higher for the ResNet models. The considerable reductions in

RMSE are not surprising, as the ResNet models do not have as much context with which to

predict extreme spikes, while the models with LSTM units do as they incorporate much longer

sequences and may learn patterns regardless of where in the sequence they appear. There are,

however, only small differences between LSTM and Multi LSTM ResNet, and it is not entirely

clear which is better than the other. Hence, the inclusion of the weather forecast images does not

seem to yield noticeable improvements in performance. One should, however, keep in mind that

the time to train the weather models were limited, and that we only were able to include one

weather forecast per hour — thus, limiting the extent to which forecast errors are represented

in the models.100

Inspecting the results for the test set in Table 6, a different picture of the models’ performances

emerges. Here, the ResNet models consistently achieve lower MAE values than the LSTM

models — albeit at the cost of higher RMSE values, in terms of which the LSTM models still

outperforms the ResNet models. Multi LSTM ResNet also has a higher MAE than the ResNet

models. Furthermore, it can be noted that, in terms of MAE, ResNet 2 achieves marginally lower

errors than ResNet 1 on the test set. In contrast, ResNet 1 generally performed better than

ResNet 2 on the validation set (Table 5). BD-LSTM also improves its performance compared

to LSTM, in fact obtaining slightly lower RIE MAE than the latter. For the in-depth analysis,

we want to include one model from each of the three distinct architectures. However, the best

models should be identified from their validation set performances, as the purpose of the test

set is to evaluate the models’ performances on unseen data. Despite the improved performances

of ResNet 2 and BD-LSTM on the test set compared to the validation set, we therefore move

on with the ResNet 1, LSTM, and Multi LSTM ResNet models for the in-depth analysis.

100Forecast errors may be more important in explaining intraday trading and prices than the current forecasts
in isolation (Chapter 3).

62

6.2 In-Depth Analysis of Model Performance

So far, we have seen that the deep learning models outperform the simpler benchmarks in terms

of both MAE and RMSE. However, these are aggregate measures. A model that is stable in

most situations may be preferred to one that performs extremely well in some and quite poorly

in others. This is especially relevant since Elbas trading for the different delivery hours may

vary considerably in terms of trading activity and price (Section 4.5). For this reason, we will

now examine the performance of the models based on the delivery hour in question (Section

6.2.1), the trading activity for the delivery hour in question (Section 6.2.2), and the level of the

true near Elbas VWP in the delivery hour in question (Section 6.2.3). As unusually high or low

price levels are found to potentially cause challenges for electricity price models (Botnen Holm,

2017; Lu, Dong, & Li, 2005; Voronin, 2013) — and as Section 6.2.3 will show, our models are

no exceptions — Section 6.2.4 finally evaluates to what extent the different models may predict

that a price will rise above or fall below certain limits, though potentially failing to predict the

precise VWP. All analyses are conducted on the test set to evaluate the models’ performances

on unseen data.

For the deep learning models, we evaluate the performance in this section using the RIE values,

as this ensembling approach is found to yield the best results. The best simple heuristic — the

SE3 spot price — and the gradient boosting benchmark model (GBM) are also included in the

following analyses so as to evaluate whether deep learning is in fact consistently better than

the benchmarks. Gradient boosting is selected as the best candidate among the more advanced

benchmark models, as it obtained the lowest MAE on the validation set. In the figures in the

following sections, the benchmarks’ performances are displayed in nuances of red, while nuances

of blue are used for the deep learning models.

6.2.1 Performance across Delivery Hours

Different delivery hours may be characterised by different market conditions, for example due

to variations in the number of active participants, the level of available intraday capacities, and

potentially the extent to which participants may exercise market power. The plots in Figure 17

reveal how the performances of the deep learning models are not even over the course of the day,

but vary depending on the delivery hour in question. In particular, it seems to be the case that

the hours over which the near VWP exhibits higher volatility (Section 4.5.2) are characterised

63

by higher prediction errors. Here, all models exhibit the same pattern. Specifically, the MAE

and RMSE peak around delivery hours 8–9, and a new peak around hours 18–19. Recall that

these were also the hours when the near VWP volatility peaked, as well.

(a) MAE (b) RMSE

Figure 17: Variation in model performance depending on delivery hour. For the deep learning

models, MAE and RMSE are the random initialisation ensembling (RIE) values. The perfor-

mances are evaluated on the test set data.

Furthermore, from Figure 17a, which shows performance measured by MAE, it becomes evident

that the deep learning models are not superior to the simpler gradient boosting model — and

only slightly better than the simplest baseline — for the first eight hours of the day. It is in the

hours where prices are more volatile that the deep learning models are noticeably better than the

simpler benchmarks. The same pattern emerges in Figure 17b, which shows the corresponding

RMSEs. Interestingly, the ResNet 1 model has especially high RMSE during the night hours 1–7

compared to the other deep learning models. In fact, starting with delivery hour 10, its RMSE is

indistinguishable from those of the LSTM and Multi LSTM ResNet models. The higher RMSE

of ResNet 1 in Table 6 can therefore likely be attributed to its poor performance over the first

hours of the day. In conclusion, the LSTM and Multi LSTM ResNet models stand out as the

models with the best overall performances over the course of the day.

64

6.2.2 Performance across Trading Activity

Trading activity, measured in the number of settled trades for a given hour of power delivery,

can differ considerably (Section 4.5.1). For some hours, only a few trades may be settled, while

for others, the number may approach — or even exceed — 100. Figure 18 shows how the models

perform across various activity levels per given delivery hour.

(a) MAE (b) RMSE

Figure 18: Variation in model performance depending on number of trades. For the deep

learning models, MAE and RMSE are the random initialisation ensembling (RIE) values. The

performances are evaluated on the test set data.

Performance appears to be negatively correlated with trading activity levels for all models; i.e.

when trading activity in Elbas is higher, it becomes harder to predict the average price. When

the number of trades for a given delivery hour is low, the simpler gradient boosting benchmark

model actually performs better than the deep learning models. However, when trading activity

increases, the deep learning models start outperforming the simpler benchmarks. This can be

regarded as an advantage of the deep learning models; accurate price predictions may generally

be more valuable when there is higher activity in the market and multiple trades to choose

between. However, when trading activity is at its highest, with more than 100 transactions

settled for one delivery hour, the MAE values of the deep learning models also increase sharply

from around 3 EUR/MWh to about 4.25 EUR/MWh (Figure 18a). Still, the simpler benchmarks

have higher MAE values in this range, between 4.5–5 EUR/MWh.

65

In terms of RMSE, we again see that ResNet 1 performs worse than the other deep learning

models for certain levels of trading activity. Unsurprisingly, this mainly occurs at lower activity

levels; recall that trading activity is lower for the first hours of the day (Figure 7b), and that

ResNet 1 perform worse during these hours (Figure 17b). The performances of the other two

deep learning models are, once again, difficult to distinguish. Due to their better relative perfor-

mance when trading activity increases, we conclude that LSTM and Multi LSTM ResNet still

emerge as superior to ResNet 1.

6.2.3 Performance across Price Levels

The interquartile range (IQR) for the near Elbas VWP in the test set is 26.26–34.36 EUR/MWh

(Table 2, Section 4.5.2). That is, half of the delivery hours experience prices within a span of

10 EUR/MWh. However, prices may deviate significantly from the IQR in certain hours, with

minimum and maximum prices of respectively -6.32 and 113.56 EUR/MWh. However, it is not

clear how models’ performances may vary depending on the level of the true near Elbas VWP.

Figure 19 therefore shows the MAE and RMSE for the models over nine near VWP buckets.

(a) MAE (b) RMSE

Figure 19: Variation in model performance depending on the true near Elbas VWP level. For

the deep learning models, MAE and RMSE are the random initialisation ensembling (RIE)

values. The performances are evaluated on the test set data.

66

Unsurprisingly, the predictive errors for all models reach their lowest point when the true near

Elbas VWP is approximately within the IQR — i.e. the 25–35 EUR/MWh bucket. The more

the near VWP deviates in a positive direction, the higher are the predictive errors for all models,

with MAEs up to 25 EUR/MWh and RMSEs up to 30 EUR/MWh for the deep learning models,

and values closer to 30 EUR/MWh and 35–40 EUR/MWh, respectively, for the two benchmarks.

The errors also increase sharply when the near VWP deviates in a negative direction, albeit

to a lesser degree, with MAEs around 20 EUR/MWh for all models when the near VWP is

zero or below. From both Figure 19a and Figure 19b, we can see that when prices are lower

than the typical near VWP range, the different approaches are not as distinguishable. On the

other hand, the deep learning models obtain lower errors compared to the simpler benchmarks

when prices are higher. Still, the high MAEs and RMSEs render even the deep learning models

considerably less reliable when price levels are especially high.

6.2.4 Detecting Unusually High or Low Price Levels

The results in Section 6.2.3 may suggest that the models are basically useless once prices start to

deviate from the most common price range of about 25–35 EUR/MWh, but this is not necessarily

the case. Figure 20 plots the near VWP predictions from using the Multi LSTM ResNet model

(red) compared to the true values (blue), over a three-week period where the price was at times

quite volatile. The stippled lines are included to mark the test set IQR. Looking at the figure,

it becomes evident that the Multi LSTM ResNet model follows the true price fluctuations fairly

well — even when the prices are outside of the IQR — and that it mainly falls short when it

comes to predicting the full magnitude of price fluctuations.

A model’s ability to predict when prices will deviate — as opposed to predicting the exact

fluctuation — may also be useful for market participants. The model may, for example, indicate

when the near VWP is likely to go outside the range within which it is usually able to provide

accurate prediction, and prudently involve a human decision-maker. Hence, we also consider

the different models’ ability to detect unusually high or low prices as a criterion that is relevant

to take into account when settling on a preferred model. Potential applications related to the

detection of deviating prices are further discussed in Chapter 7; here, we will evaluate to what

extent the models manage to do so. That is, instead of asking what the exact price will be, we

ask whether the near VWP will exceed a certain limit — like, for example, 50 EUR/MWh —

and evaluate each model’s success rate in anticipating such events.

67

Figure 20: Near Elbas VWP predictions from using the Multi LSTM ResNet model (red) com-

pared to the true values (blue), over a three-week period with at times quite volatile prices. The

stippled bands mark the lower and upper limit of the test set interquartile range (IQR).

Figure 21 presents the degree to which the models are able to correctly predict that the near

VWP would be lower (21a) or higher (21b) than a certain limit.101 For the lower price limits,

Figure 21a shows that when the the limit is set lower, the models struggle more to predict

that the price will drop below it. If the limit is set around the lower band of the IQR — i.e.

around 26 EUR/MWh — the Multi LSTM ResNet model correctly anticipates about 75% of

price movements that drop below it, compared to about 69% for LSTM and ResNet 1, about

66% for gradient boosting, and about 57% for the SE3 heuristic. If the limit is instead set at

around 20 EUR/MWh, the shares drop to below 45% for all models. The deep learning models

generally tend to perform slightly better than the benchmarks — albeit the gradient boosting

model is almost on the same level — until the limit is set below 17 EUR/MWh. Below this

limit, the Multi LSTM ResNet model, in particular, does not perform as well as the other deep

learning models, and is also worse than the simpler benchmarks, which on their side perform as

well or better than the LSTM and ResNet 1 models.

Figure 21b shows that the models’ ability to anticipate that a price will exceed a given limit

decreases as the limit is increased. For limits not much higher than the upper bound of the

IQR — i.e. around 35 EUR/MWh — the ResNet 1 model anticipates about 85% of cases,

101We let the limits for the higher price range vary from the 75th to the 97.5th percentile of the near VWP,
and for the lower price range from the 25th to the 2.5th percentile.

68

(a) Lower prices (b) Higher prices

Figure 21: The share of correctly classified lower (21a) or higher (21b) prices for different levels

of the near Elbas VWP.

followed by LSTM, gradient boosting, and Multi LSTM ResNet with shares around 80%. The

SE3 heuristic predicts correctly 67% of the time, and generally performs worse than the other

models regardless of where the limit is set. The ResNet 1 model is overall best at anticipating

exceed price movements over the higher price ranges, but the higher the limit is set, the closer the

other deep learning models get to ResNet 1. Gradient boosting starts to struggle significantly,

relative to deep learning, as the limit is set higher. If set above 50 EUR/MWh, gradient

boosting is on the same level as the SE3 heuristic, with both anticipating about 43% of cases.

In comparison, all of the deep learning models anticipate about 53% of cases — though they too

struggle considerably more when the limit is much higher than the upper bound of the IQR.

In summary, the deep learning models generally tend to be better than gradient boosting at

anticipating when the price will cross some upper or lower threshold. All soundly beat the SE3

heuristic, except when the limit is set below 17 EUR/MWh102. All models struggle more as the

thresholds move further away from the IQR. There is, however, a trade-off in deciding where

to set the limits; closer to the IQR means the models are more likely to anticipate movements

that cross the thresholds, but if this is used to decide when to involve a human decision-maker,

it may negate some of the gains in automation as it will also be triggered more often.

102This is likely a situation where day-ahead prices contain most of the predictive power for such events. Put
differently, the deep learning models learn to build on the SE3 baseline, but never to take it completely at face
value. This is one of the few situations where the latter is a disadvantage.

69

6.3 Conclusion

We find that it is possible to predict the near Elbas VWP six trade hours in advance with

an accuracy of up to an MAE of 2.25 EUR/MWh on the validation set, and 2.66 EUR/MWh

on the test set. In general, the deep learning models yield a lower predictive error than the

benchmarks. For all deep learning models, the margin is approximately 0.33–0.44 EUR/MWh

on the validation set and 0.30–0.36 on the test set, when comparing the RIE MAE for the

deep learning models with the MAE of the gradient boosting model. This corresponds to

improvements of up to 16% (validation) and 12% (test). Compared to the simplest baseline

of predicting the SE3 spot price, the networks are approximately 21% more accurate on the

validation data and 25% on the test data. Hence, using deep learning to predict the near Elbas

VWP price may in fact yield significantly better performance.

The in-depth evaluation revealed that deep learning tends to perform better, relative to the other

approaches, for delivery hours where the price is volatile and where trading activity is higher

— although deep learning also struggles more during these periods. Among the deep learning

models, LSTM and Multi LSTM ResNet yield the best results on the validation set, while

ResNet 1 is superior on the test set in terms of MAE. We also find that the higher RMSE values

of ResNet 1 stem from its worse performance for delivery hours with lower trading activity, in

particular hours 1–7. All models struggle when the near Elbas VWP reaches unusually high or

low levels. However, the deep learning models have generally shown a better ability than the

benchmarks to anticipate that the price will deviate from the interquartile range.

In conclusion, the LSTM and the Multi LSTM ResNet models are difficult to distinguish in

terms of MAE and RMSE. That said, we assert that the model with the best potential for

predicting the near Elbas VWP is the Multi LSTM ResNet model, for multiple reasons. Firstly,

it is designed to use all available data, including the weather data that we know from literature

may have a significant influence on intraday prices. There is a limitation in that, due to technical

limitations, we do not include comparable forecasts from the day-ahead market. If included,

these may improve the performance of this particular model further. Secondly, the Multi LSTM

ResNet model gains less from ensembling, but is still comparable to the other models, which

suggests that if one were to take the time to train more diversified versions it would be even

better. This model is, however, also more computationally expensive to fit.

70

7 Discussion

Although deep learning shows great promise, there are some non-negligible barriers to imple-

menting it. Considering the numerous variables involved — such as how much to buy or how

long one is willing to wait — and ways of utilising the forecasts, any attempt to precisely esti-

mate the potential value-add of our deep learning models to a buyer in Elbas would arguably

be futile or too specific to generalise. Similarly, while there are some largely universal prerequi-

sites for successful deep learning projects, the need for — and therefore cost of — preparatory

groundwork can vary greatly. Organisations that are already relatively data-driven will have

fewer hurdles to overcome in implementing deep learning, whereas those without effective data

curation or a culture of data driven decision making will likely need to incur greater costs to

reap the benefits. As such, our focus here is on how our models can be improved, the wide range

of other applications of deep learning in intraday electricity markets, and how deep learning —

as a subset of artificial intelligence — fits into the greater picture of automation. Consequently,

we aim to give the reader sufficient insight to envisage the potential value-adds of such projects

under the specific conditions of his or her organisation.

7.1 The Potential of Deep Learning

Though the performance margin between our network and the simple SE3 heuristic is arguably

relatively small — considering the vast difference in complexity — at 21–25% on the unseen data,

the simple heuristic is already performing at full potential. In contrast, while our networks are

already better, we assert that, if anything, they demonstrate promising potential, and that there

is no reason to expect that we have exhausted the potential of deep learning on the problem

we have defined. Furthermore, while our architectures can likely be improved further, there

are also a myriad of other ways deep learning can be implemented in the Elbas market. Other

methods, such as gradient boosting, could be coerced toward similar ends, but would arguably

be much more cumbersome to use. In contrast, there are specialised types of deep learning

appropriate to a wide range of applications that both perform better and are, arguably, easier

to use (Chollet, 2018). These specialised variations also mean deep learning can open up new

avenues of applications, or facilitate the use of data that is too unorthodox to be practically

71

usable by more traditional techniques — such as, presumably, weather forecast maps103.

Improving our neural networks

Due to time constraints, we had to make some simplifying choices when designing our neural

networks. It is likely that more thoroughly tuning some of the hyperparameters and network

topologies would improve their performances further. We performed much of the experimenta-

tion needed to identify promising avenues of possible network architectures, but since some of

these have now been found, a more thorough search of the possible configurations will likely yield

architectures that perform even better. In particular, we left the hyperparameters of the opti-

mising algorithm at their default values. Fine-tuning these would likely improve the network’s

performance (Goodfellow et al., 2016) — especially in conjunction with checkpoint ensembling

(H. Chen et al., 2017). Similarly, the window of preceding market- and weather data the net-

work has access to when making predictions is an important decision, and can likely be adjusted

further now that promising architectures have been identified. In the same way, training the

networks for longer, introducing other forms of regularisation, or tuning other hyperparamters

more extensively could all improve performance further.

Additionally, the networks will only become better with more data (Chollet, 2018), where an

additional year increases the dataset our networks were trained on by approximately 16%. Cru-

cially, we had to greatly simplify the weather forecast data due to time- and resource constraints;

incorporating multiple forecasts for each hour of delivery to capture changes in expected weather

conditions, both over time and after the day-ahead price is set, would presumably allow the

networks to more reliably anticipate deviations between the day-ahead and intraday prices —

especially as the importance of variable renewable energy sources, with their dependence on

concurrent weather conditions, continues to increase (Scharff & Amelin, 2016).

Other applications of deep learning in Elbas

Our neural networks are superior on the problem we have defined. While this has merit in

itself, we also assert that it suggests such techniques could be highly successful in other related

applications as well. There are specialised types of deep learning for different purposes, such as

reading in or outputting sequential data, or processing images — or combinations of both. For

example, Section 6.2.4 shows that our final network tends to anticipate unusually high or low

prices. Considering our choice of loss function did not particularly reward such behaviour, a

103We cannot reasonably assert that these have been unusable without deep learning as there are other ways
to use them. However, forms of deep learning specialised for image processing greatly simplify the process, and
are, arguably, better suited for that purpose.

72

network trained on a more customised loss function would likely be better at predicting major

deviations in prices. These networks could be used in conjunction; our network automatically

buys power in the intraday market104, while the more customised network recognises when to in-

volve a human decision-maker with domain expertise — e.g. when the situation deviates outside

a learned norm, or if the automated network is insufficiently confident in its prediction. This

would automate the laborious task of business-as-usual trading, and reserve decision makers’

valuable attention for situations where their insight is best put to use.

A possible extension is therefore having the networks output some confidence level or probability

that the error will lie within some margin — in addition to the intraday price itself. This

could be used as above to involve decision-makers as needed, or facilitate better ensembling by

giving an amalgamating model additional context with which to combine predictions from its

constituent submodels. On this note, while we have used some ensembling, performance could

likely be improved further by ensembling deep and wide, which combines deep learning with more

shallow methods (Chollet, 2018). Another alternative is a network that outputs a sequence of

price developments over the next, e.g. 4–8, hours for each hour of delivery. This would give

decision makers continuously updated and refined forecasts of aggregated or trade-level prices

as the delivery hour approaches, with which to better adjust their power-balancing tactic.

Gains from automation

Deep learning automates important parts of the model building that previously required deep

domain expertise (Chollet, 2018). It therefore lowers the barriers to developing an artificial

intelligence for a given domain. In addition, the largest challenge lies in developing the model.

However, once built, it can be used to automate processes that previously required laborious

and repetitive analyses by human experts.105 Presumably, many participants in Elbas primarily

trade during office hours due to the costs of employing workers outside these periods. Deep

learning could be used to automate some of the work during office hours, or, since our network

performs relatively well during off-peak hours (Figure 17b), handle some basic trading outside

office hours. A detailed overview of the gains from automation is beyond the scope of this thesis,

but if anything, we would argue that the effectiveness of our models demonstrate the potential

of deep learning as a way to automate previously manual or, even, hitherto unhandled processes.

As such, it can help take repetitive decisions out of the hands of individuals, both to reduce

their laborious tasks so they can focus on what truly adds value, and to eliminate subjective

104Based on strategies or needs specified either manually or by another dedicated AI.
105Doing so over longer periods of time warrants intermittent re-training of the models, however.

73

and subconscious factors from what should arguably be objective and rational decisions.

7.2 Practical Barriers to Deep Learning

For all its promise, deep learning has a potentially daunting list of prerequisites. Deep learning

is notoriously ”data hungry” (Chollet, 2018), and requires extensive and meticulously curated

data. Such models are only as good as the data they are fed106, hence one must incur the

cost of building robust and accurate data pipelines before operational deep learning is feasible.

Furthermore, though deep learning automates part of what was traditionally domain-specific

model-building necessarily reserved for experts in that domain, it still requires a certain level of

technical proficiency to implement. An advantage is that such expertise is predominantly needed

during the development of these models (Gu et al., 2018); supervising their operational use and

keeping them up-to-date over time is less demanding. Similarly, while training the networks

requires significant computational power, they need fewer — though not negligible — resources

to make predictions once fit.107 As such, the varying needs for technical infrastructure can

be met by renting cloud-based computing power during development and training, and instead

running the final models on simpler — potentially in-house — infrastructure for operational use.

Consequently, utilising AI techniques like deep learning requires certain types of technically

adroit human capital. While these are relatively scarce and, therefore, may command a high

price (Metz, 2017), it is not necessarily more expensive than the traditional approach of hiring

domain experts. Electricity pricing is a very complicated market where, if you want forecasts,

you either buy them at a premium from a provider or hire your own in-house experts. With

deep learning, we argue that the need for expensive domain experts is reduced (Chollet, 2018),

and — while there is an up-front cost of technical experts, data curation, and computational

power — that these are generally more accessible and cost less in the long run — in part

because deep learning can automate some of what would be a more repetitive and recurring

process for domain experts. Another key consideration is that while the initial hurdles to

implementing deep learning successfully are certainly notable, once those hurdles are overcome

it is much easier to implement other projects that branch out — especially if they use much of

the same infrastructure and data pipelines. The same holds if an organisation already intends

to implement simpler machine learning projects, as much of the prerequisite groundwork is the

106See ”garbage in, garbage out”: https://en.wikipedia.org/wiki/Garbage in, garbage out
107On our relatively modest hardware, making predictions for a full year of data takes less than 10 seconds.

Hence, individual predictions in a production setting would effectively be instantaneous.

https://en.wikipedia.org/wiki/Garbage_in,_garbage_out

74

same. However, it is important to not underestimate the potential for incurring significant

upkeep of operationalised deep learning systems (Sculley et al., 2014).

7.3 The ”Black Box” Critique

A common criticism of deep learning and other relatively complex forms of machine learning is

that such models lack interpretability (Kumar, Taylor, & Wong, 2017; Shickel, Tighe, Bihorac,

& Rashidi, 2017; Zhang & Zhu, 2018). The way they make predictions, the argument goes,

is an opaque ”black box” whose inner workings are indiscernible. Certainly, the desire for an

unequivocal mapping of how such a model arrives at its conclusions is understandable; perhaps

there are legal requirements for providing indubitable reasons for some outcome (Knight, 2017)

— such as why a credit application was denied. Reverse-engineering why a complex neural

network made the prediction or drew the conclusion it did can be difficult. Fortunately, there is

a lot of promising recent research toward this end, such as attention mechanisms for recurrent

networks (Brown, Tuor, Hutchinson, & Nichols, 2018). As such, the black box problem might

therefore attenuate in time, although this could be offset by AI systems becoming more complex.

At the same time, we posit that some of these criticisms stem from outmoded ideas of artificial

intelligence and a quixotic imperative that their decisions should always be perfectly transparent.

In some situations there is a clear need, but in many others this is arguably wishful thinking and

unnecessary. Does the patient really care108 how an AI discovers a malignant tumour, if it does

so more reliably than doctors (Pande, 2018)? Similarly, should an intraday electricity market

participant elect not to utilise an AI that outperforms all domain experts simply because we

cannot discern its reasoning? As such, while we certainly acknowledge the black box problem

associated with deep learning, we also make the argument that this, like anything else, should

be a pragmatic consideration undistracted by idealism.

7.4 Theoretical Limitations and Avenues for Further Research

For a model to be able to make accurate predictions of the intraday price, the market mecha-

nisms that truly affect the price must be well captured by the input variables. In this regard,

strategic behaviour among market participants poses a particular challenge. Contrary to physi-

108Of course, doctors and academia might find this insight invaluable in furthering their understanding of the
disease or in developing a cure, but from the perspective of the ”market participant”, accuracy and accessibility
are arguably all that matter.

75

cal market factors such as available intraday capacities, the individual bidding behaviour of one

participant is difficult — if not impossible — for other participants to account for in a price

model. Additionally, there may even be challenges related to physical market factors and their

true impact on the price. The fact that not all participants would turn to Elbas trading if they

experience an imbalance in their portfolio — for example, they may instead balance internally or

leave the imbalance to the regulating market — can weaken the model’s ability to detect patterns

from the underlying data. Furthermore, some variables that, from a theoretical perspective, can

impact the price — such as hydro reservoir content and inflow, updated consumption estimates,

and transmission flow data — are not incorporated in our model due to a lack of data. Further

research utilising deep learning may want to consider how these limitations might better be

accounted for, given the available data.

We aggregate trading, both at a theoretical system-wide price for Nordic buyers and over the last

six hours of delivery, partially due to high sparsity if the intraday prices are kept at their original

grain of individual bidding areas or individual trades. There was a trade-off between aggregating

to reduce gaps in the data, and keeping sufficient detail to both be informative and give buyers

sufficient time to plan their strategy using the resulting forecasts. In aggregating trades across

the Nordic countries, the model is applicable to a buyer from any Nordic bidding area — albeit

under the assumptions that the bidding areas are in fact integrated into one single market, and

that trades may happen between any two areas. Bottlenecks in the transmission grid system

may limit the degree to which this is the case for every hour of power delivery (Fridolfsson &

Tanger̊as, 2009). In particular, this model may not predict a price that is representative for

the Nordic countries regardless of bidding area, in periods with high congestion and limited

transmission capacity left for Elbas trading. Due to the potential influence of transmission

grid bottlenecks in hindering market integration, further research may want to consider the

volume-weighted price per buyer bidding area, and not for the Nordic region as a whole.

A way to solve the issue of missing outputs could be to develop a model that both predicts

if trades will happen in a given bidding area, and if so, the price.109 Also, if market liquidity

increases in the future — for example due to the forthcoming cross-border intraday trading ini-

tiative110 — the basis for modelling the price for each bidding area separately may be improved.

109There are some network types that can incorporate such gaps by reading variable-length input sequences,
but given the time constraint for this thesis, we found these to be too complicated for our purpose.

110The Cross-Border Intraday Market Project (XBID) will enable continuous trading of electricity across 12
European countries, where orders submitted by market participants in one country can be matched by orders
submitted by market participants in any other country within the project, given that transmission capacity
between the two countries is available.

76

The extent to which Elbas may be considered as one integrated market with one price — and

hence, whether price models may be constructed on an aggregated level or must be adapted

for each separate bidding area or groups of bidding areas — can also be an interesting avenue

for further research. Finally, the correlation between the spot prices and the intraday prices

are high, as suggested by the spot price in SE3 being a relatively good prediction for the near

Elbas VWP. Due to this high correlation, further research may consider modelling the difference

between the spot and intraday prices, instead of the exact intraday price.

8 Conclusion

Trading power in Nord Pool’s intraday market Elbas allows participants to modify their positions

close to real-time. However, doing so profitably is not trivial, as prices can fluctuate significantly

over time and vary greatly between trades for the same hour of power delivery. Hence, access

to reliable predictions of the baseline price that is reasonable over some window of trading

can be very valuable in adjusting tactical trading decisions. To this end, we develop models

that, for each delivery hour, predict a volume-weighted average price over the last six hours of

trading for Nordic buyers. Trading activity is usually concentrated in this window, which gives

the buyer flexibility from many offers and sufficient time in which to utilise the predictions in

making better trades. We use deep learning in an effort to comprehensively capture the market’s

complexity and intricacies — in part by exploiting as much of the available data as possible –

and to demonstrate the broader potential of artificial intelligence in intraday electricity markets.

We find that deep learning provides relatively accurate and reliable predictions of hourly volume-

weighted prices under normal conditions in Elbas. After developing and evaluating a range of

such models, we conclude that the best neural network is that which combines sequences of

comprehensive market data with sequences of weather forecast images. The average price across

all delivery hours in the test dataset is 30.95 EUR/MWh, where the predictions of this network

are, on average, off by a magnitude of 2.72 EUR/MWh. The best simple heuristic is to always

predict that this price will equal the day-ahead spot price in the SE3 bidding area for the

corresponding delivery hour. Our network soundly beats this baseline by 21–25%, albeit at

significant added complexity. It also outperforms a range of benchmark models we develop from

among more traditional methods — most of which require largely the same data preparation as

deep learning. The best of these is gradient boosting, which our network beats by 12–16%.

77

In addition to outperforming all benchmarks on aggregate levels, the network also tends to

perform better when prices are volatile or when trading activity is high. It also anticipates

major fluctuations in prices with some consistency, which suggests that a specialised AI could

be quite successful at it. Furthermore, while most benchmarks are already performing at full

potential, there is no reason to believe that our network is; refining the architecture, fine-tuning

hyperparameters, or including more market data once available could all improve performance.

Importantly, due to time and resource constraints we only incorporate one weather forecast

per delivery hour. While simple experiments of networks that only used these forecasts when

predicting prices were surprisingly successful, including them in networks that were already

using the market data had a negligible effect. Since weather is important for electricity intraday

markets — and will only become more so as the share of vRES in the energy mix continues to

rise — we expect networks that instead process sequences of multiple weather forecasts for each

delivery hour to deliver notable gains, as those capture important updates in the forecasts.

While we find that deep learning is superior in predicting a theoretical system-wide aggregated

intraday price, we also argue that, if anything, this thesis demonstrates the wider potential of

deep learning in a range of applications in such markets. There are specialised types of deep

learning — not to mention of artificial intelligence, more broadly — for a range of AI problems

relevant to intraday electricity markets, such as predicting sequences of prices, predicting prices

in specific bidding areas, forecasting other values such as consumption levels, or image processing.

There are, however, some notable prerequisites for market participants to realistically develop

operational deep learning systems. Among these is the need for comprehensive and reliable data

curation, as well as technical expertise and significant computational power — at least during

the development phase, though one should also be aware of the potential for accumulating high

upkeep costs of such systems. Nevertheless, these up-front investments and upkeep costs are not

necessarily greater than the long-term implications of relying on domain experts or persisting

with wholly manual repetitive processes. Artificial intelligence is making impressive strides in a

range of industries, and while it is important to have realistic expectations and to be cognisant

of the salient pitfalls, there is little reason to think electricity intraday markets are different.

78

References

Alzahrani, A., Shamsi, P., Dagli, C., & Ferdowsi, M. (2017). Solar Irradiance Forecasting Using

Deep Neural Networks. Procedia Computer Science, 114 , 304–313.

Andrade, J. R., Filipe, J., Reis, M., & Bessa, R. J. (2017). Probabilistic Price Forecasting

for Day-Ahead and Intraday Markets: Beyond the Statistical Model. Sustainability , 9 ,

1990–2019.

Borovykh, A., Bohte, S., & Oosterlee, C. W. (2017). Conditional Time Series Forecasting with

Convolutional Neural Networks. ArXiv e-prints. (arXiv: 1703.04691v4)

Botnen Holm, T. (2017). The future importance of short term markets: An analyse of intraday

prices in the Nordic intraday market; Elbas (Master’s Thesis). Norwegian University of

Life Sciences (NMBU).

Bourry, F., & Kariniotakis, G. (2009). Strategies for Wind Power Trading in Sequential Short-

Term Electricity Markets. European Wind Energy Conference (EWEC) 2009, Marseille:

France (2009).

Brown, A., Tuor, A., Hutchinson, B., & Nichols, N. (2018). Recurrent Neural Network At-

tention Mechanisms for Interpretable System Log Anomaly Detection. ArXiv e-prints.

(arXiv:1803.04967v1)

Brownlee, J. (2017). Long Short-Term Memory Networks With Python. Machine Learning

Mastery . Retrieved from https://machinelearningmastery.com/deep-learning-with

-python/.

Chen, H., Lundberg, S., & Lee, S.-I. (2017). Checkpoint Ensembles: Ensemble Methods from a

Single Training Process. ArXiv e-prints. (arXiv:1710.03282v1)

Chen, Y., He, K., & Tso, G. K. F. (2017). Forecasting Crude Oil Prices: a Deep Learning based

Model. Procedia Computer Science, 122 , 300–307.

Chollet, F. (2018). Deep Learning with Python. Shelter Island, New York: Manning Publications

Co.

Cui, Z., Ke, R., & Wang, Y. (2018). Deep Stacked Bidirectional and Unidirectional LSTM

Recurrent Neural Network for Network-wide Traffic Speed Prediction. ArXiv e-prints.

(arXiv:1801.02143v1)

Dietterich, T. G. (2000). Ensemble Methods in Machine Learning. Lecture Notes in Computer

https://machinelearningmastery.com/deep-learning-with-python/
https://machinelearningmastery.com/deep-learning-with-python/

79

Science, 1857 , 1–15.

Engmark, E., & Sandven, H. (2017). Stochastic multistage bidding optimisation for a Nordic

hydro power producer in the post-spot markets (Master’s Thesis). Norwegian University of

Technology and Science (NTNU).

Fischer, T., & Krauss, C. (2018). Deep learning with long short-term memory networks for

financial market predictions. European Journal of Operational Research, 270 , 654–669.

Fodstad, M., Aarlott, M. M., & Midthun, K. T. (2018). Value-Creation Potential from Multi-

Market Trading for a Hydropower Producer. Energies, 11 , 16–31.

Fridolfsson, S.-O., & Tanger̊as, T. P. (2009). Market power in the Nordic electricity wholesale

market: A survey of the empirical evidence. Energy Policy , 37 , 3681–3692.

Garnier, E., & Madlener, R. (2015). Balancing forecast errors in continuous-trade intraday

markets. Energy Systems, 6 , 361–388.

George Mason University. (n.d.). Wind: u and v Components. Virginia Weather and Climate

Data Development Web Site. Retrieved from http://colaweb.gmu.edu/dev/clim301/

lectures/wind/wind-uv. (Accessed: 2018-06-10)

Gers, F. A., Schmidhuber, J., & Cummins, F. (2000). Learning to forget: Continual prediction

with LSTM. Neural computation, 12 , 2451–2471.

Goodfellow, I., Bengio, Y., & Courville, A. (2016). Deep Learning. Cambridge, Massachusetts:

The MIT Press.

Graves, A., Jaitly, N., & Mohamed, A.-r. (2013). Hybrid Speech Recognition with Deep Bidi-

rectional LSTM. Automatic Speech Recognition and Understanding (ASRU), 2013 IEEE

Workshop on. IEEE , 273–278.

Gu, J., Wang, Z., Kuen, J., Ma, L., Shahroudy, A., Shuai, B., . . . Chen, T. (2018). Recent

advances in convolutional neural networks. Pattern Recognition, 77 , 354–377.

Hagemann, S. (2013). Price Determinants in the German Intraday Market for Electricity: An

Empirical Analysis (EWL Working Paper). University of Duisburg-Essen.

Hagemann, S., & Weber, C. (2013). An Empirical Analysis of Liquidity and its Determinants

in the German Intraday Market for Electricity (EWL Working Paper). University of

Duisburg-Essen.

Hagemann, S., & Weber, C. (2015). Trading Volumes in Intraday Markets – Theoretical Ref-

http://colaweb.gmu.edu/dev/clim301/lectures/wind/wind-uv
http://colaweb.gmu.edu/dev/clim301/lectures/wind/wind-uv

80

erence Model and Empirical Observations in Selected European Markets (EWL Working

Paper). University of Duisburg-Essen.

Hagfors, L. I., Bunn, D., Kristoffersen, E., Staver, T. T., & Westgaard, S. (2016). Modeling the

UK electricity price distributions using quantile regression. Energy , 102 , 231–243.

Hastie, T., Tibshirani, R., & Friedman, J. (2009). Elements of Statistical Learning – Data

Mining, Inference, and Prediction (2nd ed.). Springer.

He, K., Zhang, X., Ren, S., & Sun, J. (2015). Deep Residual Learning for Image Recognition.

ArXiv e-prints. (arXiv:1512.03385v1)

He, K., Zhang, X., Ren, S., & Sun, J. (2016). Identity Mappings in Deep Residual Networks.

ArXiv e-prints. (arXiv:1603.05027v3)

Hellström, J., Lundgren, J., & Haishan, Y. (2012). Why do electricity prices jump? Empirical

evidence from the Nordic electricity market. Energy Economics, 34 , 1774–1781.

Henriot, A., & Glachant, J.-M. (2013). Melting-pots and salad bowls: The current debate on

electricity market design for integration of intermittent RES. Utilities Policy , 27 , 57–64.

Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9 ,

1735–1780.

Holttinen, H., & Koreneff, G. (2012). Imbalance Costs of Wind Power for a Hydro Power

Producer in Finland. Wind Engineering , 36 , 53–67.

International Energy Agency. (2016a). Denmark - Energy System Overview. International

Energy Agency . Retrieved from https://www.iea.org/media/countries/Denmark.pdf.

International Energy Agency. (2016b). Finland - Energy System Overview. International Energy

Agency . Retrieved from https://www.iea.org/media/countries/Finland.pdf.

International Energy Agency. (2016c). Germany - Energy System Overview. International

Energy Agency . Retrieved from https://www.iea.org/media/countries/Germany.pdf.

International Energy Agency. (2016d). Norway - Energy System Overview. International Energy

Agency . Retrieved from https://www.iea.org/media/countries/Norway.pdf.

International Energy Agency. (2016e). Sweden - Energy System Overview. International Energy

Agency . Retrieved from https://www.iea.org/media/countries/Sweden.pdf.

Ioffe, S., & Szegedy, C. (2015). Batch Normalization: Accelerating Deep Network Training by

Reducing Internal Covariate Shift. ArXiv e-prints. (arXiv:1502.03167v3)

https://www.iea.org/media/countries/Denmark.pdf
https://www.iea.org/media/countries/Finland.pdf
https://www.iea.org/media/countries/Germany.pdf
https://www.iea.org/media/countries/Norway.pdf
https://www.iea.org/media/countries/Sweden.pdf

81

James, G., Witten, D., Hastie, T., & Tibshirani, R. (2017). An Introduction to Statistical

Learning. Springer.

Kiesel, R., & Paraschiv, F. (2017). Econometric analysis of 15-minute intraday electricity prices.

Energy Economics, 64 , 77–90.

Kim, H. Y., & Won, C. H. (2018). Forecasting the volatility of stock price index: A hybrid model

integrating LSTM with multiple GARCH-type models. Expert Systems with Applications,

103 , 25–37.

Kingma, D. P., & Ba, J. (2014). Adam: A Method for Stochastic Optimization. ArXiv e-prints.

(arXiv:1412.6980v9)

Knapik, O. (2017). Modeling and forecasting electricity price jumps in the Nord Pool power

market (CREATES Research Paper 2017-7). Aarhus University.

Knight, W. (2017). The Dark Secret at the Heart of AI. MIT Technology Review . Retrieved

from https://www.technologyreview.com. (Accessed: 2018-06-10)

Kumar, D., Taylor, G. W., & Wong, A. (2017). Opening the Black Box of Financial

AI with CLEAR-Trade: A CLass-Enhanced Attentive Response Approach for Explain-

ing and Visualizing Deep Learning-Driven Stock Market Prediction. ArXiv e-prints.

(arXiv:1709.01574v1)

Lago, J., De Ridder, F., & De Schutter, B. (2018). Forecasting spot electricity prices: Deep

learning approaches and empirical comparison of traditional algorithms. Applied Energy ,

221 , 386–405.

Lago, J., De Ridder, F., Vrancx, P., & De Schutter, B. (2018). Forecasting day-ahead electricity

prices in Europe: The importance of considering market integration. Applied Energy , 211 ,

890–903.

Lipton, Z. C., Kale, D. C., & Wetzel, R. (2016). Modeling Missing Data in Clinical Time Series

with RNNs. ArXiv e-prints. (arXiv:1606.04130v5)

Liu, H., Mi, X., & Li, Y. (2018a). Smart multi-step deep learning model for wind speed

forecasting based on variational mode decomposition, singular spectrum analysis, LSTM

network and ELM. Energy Conversion and Management , 159 , 54–64.

Liu, H., Mi, X.-w., & Li, Y.-f. (2018b). Wind speed forecasting method based on deep learning

strategy using empirical wavelet transform, long short term memory neural network and

Elman neural network. Energy Conversion and Management , 156 , 498–514.

https://www.technologyreview.com

82

Lu, X., Dong, Z. Y., & Li, X. (2005). Electricity market price spike forecast with data mining

techniques. Electric Power System Research, 73 , 19–29.

Mauritzen, J. (2013). Now or Later? Trading wind power closer to real-time and how poorly

designed subsidies lead to higher balancing costs (Discussion Paper). Norwegian School of

Economics (NHH).

Metz, C. (2017). Tech Giants Are Paying Huge Salaries for Scarce A.I. Talent. The New York

Times. Retrieved from https://www.nytimes.com. (Accessed: 2018-06-10)

Monteiro, C., Ramirez-Rosado, I. J., Fernandez-Jimenez, L. A., & Conde, P. (2016). Short-Term

Price Forecasting Models Based on Artificial Neural Networks for Intraday Sessions in the

Iberian Electricity Market. Energies, 9 , 721–745.

Mosquera-López, S., Uribe, J. M., & Manotas-Duque, D. F. (2017). Nonlinear empirical pricing

in electricity markets using fundamental weather factors. Energy , 139 , 594–605.

Nord Pool. (n.d.). The Nordic Electricity Exchange and The Nordic Model for a Liberalized

Electricity Market. Nord Pool . Retrieved from https://www.nordpoolgroup.com/

globalassets/download-center/rules-and-regulations/the-nordic-electricity

-exchange-and-the-nordic-model-for-a-liberalized-electricity-market.pdf.

Nord Pool. (2009). No. 113/2009 CORRECTION - Svenska Kraftnät’s commitment to establish

Bidding Areas in Sweden. Nord Pool . Retrieved from https://www.nordpoolgroup.com/

message-center-container/newsroom/tso-news/2009/12/No-1132009-CORRECTION

---Svenska-Kraftnats-commitment-to-establish-Bidding-Areas-in-Sweden-/.

(Accessed: 2018-05-20)

Nord Pool. (2016). 2016 Annual Report. Nord Pool . Retrieved from https://

www.nordpoolgroup.com/globalassets/download-center/annual-report/

annual-report 2016.pdf. (Accessed: 2018-02-25)

Nord Pool. (2018a). Bidding Areas. Nord Pool . Retrieved from https://www.nordpoolgroup

.com/the-power-market/Bidding-areas/. (Accessed: 2018-02-18)

Nord Pool. (2018b). Day-ahead market. Nord Pool . Retrieved from https://www

.nordpoolgroup.com/the-power-market/Day-ahead-market/. (Accessed: 2018-03-09)

Nord Pool. (2018c). Elbas initial capacity. Nord Pool . Retrieved from https://www

.nordpoolgroup.com/Market-data1/Intraday/Market-data13/Initial-capacity/

Norway4/?view=table. (Accessed: 2018-02-18)

https://www.nytimes.com
https://www.nordpoolgroup.com/globalassets/download-center/rules-and-regulations/the-nordic-electricity-exchange-and-the-nordic-model-for-a-liberalized-electricity-market.pdf
https://www.nordpoolgroup.com/globalassets/download-center/rules-and-regulations/the-nordic-electricity-exchange-and-the-nordic-model-for-a-liberalized-electricity-market.pdf
https://www.nordpoolgroup.com/globalassets/download-center/rules-and-regulations/the-nordic-electricity-exchange-and-the-nordic-model-for-a-liberalized-electricity-market.pdf
https://www.nordpoolgroup.com/message-center-container/newsroom/tso-news/2009/12/No-1132009-CORRECTION---Svenska-Kraftnats-commitment-to-establish-Bidding-Areas-in-Sweden-/
https://www.nordpoolgroup.com/message-center-container/newsroom/tso-news/2009/12/No-1132009-CORRECTION---Svenska-Kraftnats-commitment-to-establish-Bidding-Areas-in-Sweden-/
https://www.nordpoolgroup.com/message-center-container/newsroom/tso-news/2009/12/No-1132009-CORRECTION---Svenska-Kraftnats-commitment-to-establish-Bidding-Areas-in-Sweden-/
https://www.nordpoolgroup.com/globalassets/download-center/annual-report/annual-report_2016.pdf
https://www.nordpoolgroup.com/globalassets/download-center/annual-report/annual-report_2016.pdf
https://www.nordpoolgroup.com/globalassets/download-center/annual-report/annual-report_2016.pdf
https://www.nordpoolgroup.com/the-power-market/Bidding-areas/
https://www.nordpoolgroup.com/the-power-market/Bidding-areas/
https://www.nordpoolgroup.com/the-power-market/Day-ahead-market/
https://www.nordpoolgroup.com/the-power-market/Day-ahead-market/
https://www.nordpoolgroup.com/Market-data1/Intraday/Market-data13/Initial-capacity/Norway4/?view=table
https://www.nordpoolgroup.com/Market-data1/Intraday/Market-data13/Initial-capacity/Norway4/?view=table
https://www.nordpoolgroup.com/Market-data1/Intraday/Market-data13/Initial-capacity/Norway4/?view=table

83

Nord Pool. (2018d). Intraday trading. Nord Pool . Retrieved from https://www.nordpoolgroup

.com/TAS/intraday-trading/. (Accessed: 2018-02-15)

Nord Pool. (2018e). Order types. Nord Pool . Retrieved from https://www.nordpoolgroup

.com/TAS/intraday-trading/order-types/. (Accessed: 2018-02-25)

Nord Pool. (2018f). Producers. Nord Pool . Retrieved from https://www.nordpoolgroup.com/

the-power-market/The-market-members/Producers/. (Accessed: 2018-03-02)

Nord Pool. (2018g). Successful XBID launch. Nord Pool . Retrieved from

https://www.nordpoolgroup.com/message-center-container/newsroom/feature/

2018/06/successful-xbid-launch/. (Accessed: 2018-06-19)

NordREG. (2014). Nordic Market Report 2014 – Development in the Nordic

Electricity Market. NordREG - Nordic Energy Regulators. Retrieved from

http://www.nordicenergyregulators.org/wp-content/uploads/2014/06/

Nordic-Market-Report-2014.pdf. (Accessed: 2018-03-02)

Pande, V. (2018). Artificial Intelligence’s ‘Black Box’ Is Nothing to Fear. The New York Times.

Retrieved from https://www.nytimes.com. (Accessed: 2018-06-10)

Pape, C., Hagemann, S., & Weber, C. (2016). Are fundamentals enough? Explaining price

variation in the German day-ahead and intraday power market. Energy Economics, 54 ,

376–387.

Peng, L., Liu, S., Liu, R., & Wang, L. (2018). Effective long short-term memory with differ-

ential evolution algorithm for electricity price prediction. Energy . (In Press, Accepted

Manuscript)

Pires Ferreira, P. (2016). Volume and Price in The Nordic Balancing Power Market (Master’s

Thesis). Norwegian University of Technology and Science (NTNU).

Scharff, R. (2012). On Distributed Balancing of Wind Power Forecast Deviations in Competitive

Power Systems (Licentiate Thesis). KTH School of Electrical Engineering.

Scharff, R., & Amelin, M. (2016). Trading behaviour on the continuous intraday market ELBAS.

Energy Policy , 88 , 544–557.

Sculley, D., Holt, G., Golovin, D., Davydov, E., Phillips, T., Ebner, D., . . . Young, M. (2014).

Machine Learning: The High-Interest Credit Card of Technical Debt. SE4ML: Software

Engineering for Machine Learning (NIPS 2014 Workshop).

Shen, X., Chen, Y.-C., Tao, X., & Jia, J. (2017). Convolutional Neural Pyramid for Image

https://www.nordpoolgroup.com/TAS/intraday-trading/
https://www.nordpoolgroup.com/TAS/intraday-trading/
https://www.nordpoolgroup.com/TAS/intraday-trading/order-types/
https://www.nordpoolgroup.com/TAS/intraday-trading/order-types/
https://www.nordpoolgroup.com/the-power-market/The-market-members/Producers/
https://www.nordpoolgroup.com/the-power-market/The-market-members/Producers/
https://www.nordpoolgroup.com/message-center-container/newsroom/feature/2018/06/successful-xbid-launch/
https://www.nordpoolgroup.com/message-center-container/newsroom/feature/2018/06/successful-xbid-launch/
http://www.nordicenergyregulators.org/wp-content/uploads/2014/06/Nordic-Market-Report-2014.pdf
http://www.nordicenergyregulators.org/wp-content/uploads/2014/06/Nordic-Market-Report-2014.pdf
https://www.nytimes.com

84

Processing. ArXiv e-prints. (arXiv:1704.02071v1)

Shickel, B., Tighe, P., Bihorac, A., & Rashidi, P. (2017). Deep EHR: A Survey of Recent

Advances in Deep Learning Techniques for Electronic Health Record (EHR) Analysis.

ArXiv e-prints. (arXiv:1706.03446v2)

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., & Salakhutdinov, R. (2014). Dropout:

A simple way to prevent neural networks from overfitting. Journal of Machine Learning

Research, 15 , 1929–1958.

Srivastava, S., & Lessmann, S. (2018). A comparative study of LSTM neural networks in

forecasting day-ahead global horizontal irradiance with satellite data. Solar Energy , 162 ,

232–247.

Statnett. (2018). The power system right now. Statnett . Retrieved from http://www.statnett

.no/en/Market-and-operations/. (Accessed: 2018-02-18)

Tanger̊as, T. P., & Mauritzen, J. (2014). Real-time versus day-ahead market power in a hydro-

based electricity market (Discussion Paper). Norwegian School of Economics (NHH).

Voronin, S. (2013). Price spike forecasting in a competitive day-ahead energy market (PhD

Dissertation). Lappeenranta University of Technology.

Weron, R. (2014). Electricity price forecasting: A review of the state-of-the-art with a look into

the future. International Journal of Forecasting , 30 , 1030–1081.

Wilson, D. R., & Martinez, T. R. (2003). The general inefficiency of batch training for gradient

descent learning. Neural Networks, 16 , 1429–1451.

Wolff, G., & Feuerriegel, S. (2017). Short-term dynamics of day-ahead and intraday electricity

prices. International Journal of Energy Sector Management , 11 , 557–573.

Wooldridge, J. M. (2016). Introductory Econometrics – A Modern Approach (6th ed.). Boston,

Massachusetts: Cengage Learning.

Zhang, Q., & Zhu, S.-C. (2018). Visual Interpretability for Deep Learning: a Survey. ArXiv

e-prints. (arXiv:1802.00614v2)

http://www.statnett.no/en/Market-and-operations/
http://www.statnett.no/en/Market-and-operations/

85

Appendix

A Theory: Deep Learning

A.1 The Multi-Layer Perceptron

Given a vector of inputs x with a corresponding output y, the function f∗ represents the true

data-generating process, i.e. y = f∗(x). The objective of neural networks is to approximate this

target function with the function f . This is done by learning the network’s parameter values θ

— which consist of potentially millions of weights and biases — through repeated exposure to

the data, i.e. ŷ = f(x;θ) ≈ y.

The typical example of a deep learning model is the multi-layer perceptron (MLP) — also called

fully-connected feed-forward networks — which is effectively a chained set of functions that

map input values to an output. They can be depicted as a directed flow of data from raw

inputs to one — or a vector of multiple — output(s) via a chain of increasingly complex and

abstract representations, by passing the data through the learned function f (Goodfellow et

al., 2016). Each step in this chain is a layer, l. These define the architecture of the model,

where layers are expressed as interlinked functions in a chain. They are the core constituent

parts of the network, and transform the input data into representations more useful for solving

the given problem (Chollet, 2018) — such as predicting a price. A network may consist of an

arbitrary number L of such layers, so that f(x,θ) = f (L)...(f (2)(f (1)(x;θ(1)))).111 The design

and composition of these functions determine the hypothesis space, namely the set of functions

the model is able to select as its solution (Goodfellow et al., 2016). Figure 22 depicts an example

of a fully-connected feed-forward neural network.

A layer in the network can be represented as consisting of a number of units i = 1, ...,Ml

(Borovykh et al., 2017), also called nodes or neurons — hence neural network. Informally,

the number of layers, L, defines the depth of the network (Goodfellow et al., 2016). There are

three types of layers: input, hidden, and output. The input layer112 does not transform the

data, but simply passes the input values to the units in the next layer, and hence, it is here

not counted as a layer in l. A sequence of hidden113 layers l = 1, ..., L − 1 follows the input

111θ(1) represents the parameters for layer 1 and θ the parameters for the full network, i.e. θ = θ(1), ...,θ(L).
112This layer is also called the visible layer, which refers to the variables being observable.
113The term hidden reflects that the values of the layers are not directly given by the data, but instead deter-

mined by the model.

86

layer. These transform the input data by extracting increasingly abstract representations that

are more meaningful than their original form. The final hidden layer outputs a set of hidden

features h(L−1) = f (L−1)(...(f (2)(f (1)(x)))) to the output layer, which makes a final prediction

ŷ.114 The connections between the units in one layer l and the units in the preceding layer are

the layer’s weights, i.e. the matrix W(l). As we only have one unit in the output layer, this

layer’s weights is the vector w(L).

Figure 22: Multi-layer perceptron with L layers and Ml units in each layer. The weights of each

layer is denoted as the matrix Wl for the hidden layers, and the vector wL for the output layer

as it consists of one single unit. A vector of inputs x = x1, x2, ..., xt is propagated through the

network to produce the prediction ŷ. An affine transformation z
(l)
i is performed in each unit.

For the hidden layers, a non-linear activation is applied on top of z
(l)
i to produce h

(l)
i which is

fed forward in the network.

A.1.1 Activation Functions

Each neuron i in a hidden layer l accepts a vector of inputs, which is either x from the input layer

to the first hidden layer or h(l−1) from the preceding hidden layer, and performs an affine trans-

formation which outputs z
(1)
i (Goodfellow et al., 2016). For a unit in the first hidden layer, the

transformation is z
(1)
i = w

(1)
i
>x + b

(1)
i — that is, the inputs are multiplied with their respective

weights, w
(1)
i , and added a bias, b

(1)
i . In the following hidden layers, h(l−1) is received as input,

hence z
(l)
i = w

(l)
i
>h(l−1) + b

(l)
i . To map non-linear representations, z

(l)
i is followed by applying a

114In our case, since we are predicting a continuous numeric price, we do not need to apply a non-linear
transformation in the output layer.

87

non-linear activation function115 g, such that the resulting activation h
(l)
i passed forward to the

units in the next layer in the network, is h
(l)
i = g(z

(l)
i). In fully-connected networks, most hidden

layers are distinguished only by the choice of activation function g. While this is still a highly

active area of research with few guiding theoretical principles, Rectified Linear Units (ReLU)

are a good default choice (Goodfellow et al., 2016). These apply g(z
(l)
i) = max{0, z(l)i }, which

replaces all negative activations with zero. This means that the first derivative of the rectifying

operation is 1 wherever the neuron is active, while the second derivative is almost 0 everywhere.

As such, the gradients are large and consistent wherever the neuron is active, which mitigates

the problem of vanishing gradients (more on that later).

A.1.2 Gradient-Based Learning

The network’s weights are randomly initialised as small, random values, hence the network

initially out performing poorly (Chollet, 2018). After propagating a batch of N samples,

randomly drawn from the training data, through the network, the network’s loss function

C(ŷ,y) = C(f(x;θ),y) computes a distance score between the resulting predictions ŷ and

the true targets y. By iteratively adjusting the parameters θ based on repeated exposure to the

training data, the network aims to minimise the loss. Each such round is referred to as an epoch,

and it is completed when the algorithm has seen a number of samples corresponding to the full

training data set.116 Choosing the number of epochs involves a trade-off between opportunities

for the network to learn, and computational cost.117

Similarly to how input data x is fed forward through the hidden layers to produce a prediction ŷ,

the resulting error must be fed backward to compute each parameter’s contribution to the loss.

As neural networks are designed so that all constituent functions are differentiable, the gradient

∇ of the loss function C with respect to the parameters θ — i.e. ∇θC — can be calculated by

applying the chain rule.118 The gradient contains all partial derivatives of the loss function with

respect to each network parameter, which an optimiser algorithm uses in combination with a

learning rate to adjust the parameters so that it descends the loss function.119 It then repeats

this until some stopping condition is met.

115Sometimes referred to as a transfer function.
116Each sample may be drawn more than one time, hence each unique observation in the training set may not

have been propagated through the network at the completion of one epoch.
117Despite a trade-off, there is an upper limit to how many epochs are desirable, as the network will start

overfitting to the training data the higher the number of epochs.
118The chain rule computes the derivative of composite functions as ∇xz = (∂y

∂x
)>∇yz.

119The approach is therefore commonly referred to as gradient descent.

88

A.1.3 Optimisation Algorithms

Optimising algorithms in machine learning usually decompose the loss function as a sum over

training examples, where weight updates are computed by estimating the expected value of the

loss over a subset of the training data. Most algorithms used in deep learning are mini-batch

methods, often referred to as stochastic methods, which use more than one observation but less

than the entire set at a time. A larger batch size provides a more accurate estimate of the gradient

and requires less computational time per parameter update, while a smaller batch can offer a

regularising effect (Wilson & Martinez, 2003). Though a larger batch is generally preferable,

it also requires more hardware as more data needs to fit alongside the model parameters in

memory. When training networks on a GPU, it is common to select a power of 2 as the batch

size — usually between 32 and 256 (Goodfellow et al., 2016).

The stochastic gradient descent (SGD) family of optimiser algorithms draw a mini-batch of B

samples from the training set, then computes the gradient ĝ of the loss with respect to the

parameters for that mini-batch as ĝ = 1
B∇θ

∑B
b=1C(f(x(b),θ), y(b)). Each iteration k has a

learning rate εk. To update the parameters θ, ĝ is multiplied by the learning rate, and the sum

is subtracted from the previous parameter values, i.e. θnew = θold− εkĝ. Setting an appropriate

learning rate is paramount to model convergence, which is consistently among the hardest design

choices (Goodfellow et al., 2016). Adaptive learning rate methods use separate rates for each

parameter and adjust these during training, in addition to incorporating concepts like decay

and momentum. Among these, ADAM (Kingma & Ba, 2014) is a popular choice. The default

values are generally a safe choice (Goodfellow et al., 2016), hence we use the default ADAM

throughout. In addition, we specify that the learning rate should be halved when the training

loss plateaus.

A.1.4 Fighting Overfitting

As with any other machine learning method, neural networks entail a trade-off between opti-

misation, i.e. performing optimally on the training data, and generalisation, i.e. performing

well on unseen data (Chollet, 2018). Overfitting occurs when the network starts using rote

memorisation to reduce its training loss, rather than capturing the underlying patterns of the

data-producing process. The best remedy is procuring additional training data such that the

model will generalise better (Chollet, 2018). Alternatively, regularisation methods constrain

89

how much and/or what information the network can store, which forces it to prioritise the more

salient patterns in the data. This should presumably help the network generalise better, and

ideally not come at the expense of higher training loss (Goodfellow et al., 2016).

Introducing weight regularisation, such as L1 and L2 norm penalties,120 is one traditional ap-

proach.121 An alternative is to reduce the capacity of the network, i.e. the number of learnable

parameters, though there is a risk of the network under-performing. Unfortunately, there are

few theoretical guiding principles (Chollet, 2018), so the most reliable approach is experimen-

tation. Another method is early stopping, where the algorithm records the network parameters

whenever validation loss improves, and uses those that generalised best rather than the latest

when training ends (Goodfellow et al., 2016). We use this method, which is sometimes also

referred to as the minimum validation loss model selection method (H. Chen et al., 2017).

Dropout is a computationally cheap technique applied to hidden layers during training, where

it randomly drops a share — usually between 0.2, and 0.5 — of neurons on the forward and

backward pass for each set of inputs (Chollet, 2018). The network is forced to not rely excessively

on a few features, but rather disperse its weights and learn redundant mappings. A network

with dropout is also effectively smaller, which constrains its capacity and indirectly regularises

it. Using dropout is also analogous to bagging122 a plethora of neural networks, which improves

generalisation but would usually be extremely expensive (Goodfellow et al., 2016). Dropout

has been empirically found to outperform alternative cheap regularisation methods, can be

combined with other methods, and does not limit the possible architectures (N. Srivastava,

Hinton, Krizhevsky, Sutskever, & Salakhutdinov, 2014). As such, we use it extensively in our

networks.

A.1.5 Residual Connections

While adding depth increases a network’s capacity, it also exacerbates the problem of vanishing

gradients: the gradient can explore or become infinitesimally small through repeated multipli-

cation as it is back-propagated through a deep sequence of layers, which hampers training and

120This approach adds a parameter norm penalty Ω(θ) to the loss function (Goodfellow et al., 2016). L2 adds
the norm penalty Ω(θ) = 1

2
||w||22 which drives the weights towards zero, while L1 adds Ω(θ) = ||w||1 which may

cause a subset of weights to become zero, resulting in higher sparsity than L2 regularisation.
121After comprehensive experimentation, we found that these excessively constrained optimisation without a

proportionate improvement in generalisation, hence we do not employ them.
122Bootstrap aggregation, or simply bagging, consists of repeated random resampling of the data, and fitting a

model on each such subsample. For a given set of inputs, the predictions from these separate models are tallied
up, and a final aggregated prediction made — for instance by majority vote or averaging (Hastie et al., 2009).

90

impedes convergence. Residual connections make the outputs from earlier layers available to

later layers, by adding the input to a given stack of consecutive layers to its output (He et al.,

2015). This effectively creates a shortcut in the network that facilitates the propagation of both

forward and backward signals (Chollet, 2018). Also, rather than hoping the stack accurately fits

an underlying ideal mapping H(x), we instead let it fit a residual function F (x) = H(x)−x.123

He et al. (2015) demonstrate that deep networks find learning such perturbations relative to

identity mappings easier than having to learn an entirely new mapping.

Deep residual networks have become popular for their impressive performance and training

convergence (He et al., 2016). Residual connections add no extra parameters and therefore

come at no added computational cost, making them even more attractive for practitioners (He

et al., 2015). The residual block — the stack of similar hidden layers at the end of which the

stack’s input signal is added — proposed by He et al. (2015) applies batch normalisation and

ReLU after each layer except for the last, where ReLU is instead applied after the shortcut

has been added. In contrast, Ioffe and Szegedy (2015) apply batch normalisation after ReLU is

applied, hence there seems to be no consistent guideline for their ideal ordering. He et al. (2016)

propose an alternative residual block design where batch normalisation and ReLU activations are

applied before each constituent layer’s activations, rather than after. They find that such pre-

activation makes the network converge around a slightly higher training loss, but also achieves

a lower test loss — presumably due to the regularising effect of batch normalisation.

A.1.6 Batch Normalisation

Although we centre input data around zero with unit variance to help the networks learn and

generalise better, such standardisation should be a concern after every transformation; there is

no reason to expect that a layer’s output is Gaussian because its input is (Chollet, 2018). Many

activation functions are saturating in that they coerce values of a linear input beyond some

threshold(s) to a confined range, in which case the differential is virtually zero, hence gradients

could vanish. Changes in the distribution of activations due to changing weights during training,

known as covariate shift, are likely to move many activations into saturating regions, which slows

training and hampers convergence (Ioffe & Szegedy, 2015). ReLUs are a popular remedy since

they are only saturating in the negative direction, but do not entirely eliminate the probability

123If the dimensions of F (x) and x are different, we can simply perform a linear projection with no activation
function or bias to ensure the same number of dimensions.

91

of the optimiser becoming stuck in a saturation region.

Batch normalisation, implemented in Keras124 as a type of layer, records an exponential mov-

ing average of the feature-wise means and variances seen during training (Chollet, 2018), and

applies a transformation at the mini-batch level that centres the preceding layers’ activations

around zero with unit variance. The layer standardises each feature independently, and intro-

duces pairs of parameters that scale and shift the standardised values to maintain the network’s

representational power (Ioffe & Szegedy, 2015). This makes the distribution of inputs to the sub-

sequent layer more stable, which helps gradient propagation and accelerates training — thereby

enabling deeper networks (Chollet, 2018). Reducing covariate shift via batch normalisation has

been found to mitigate vanishing gradients and accelerate training (Ioffe & Szegedy, 2015).

A.1.7 Checkpoint Ensembling

The complex hypothesis space of neural networks (Chollet, 2018) allows them to capture a great

diversity of interactions between features, but this also makes them susceptible to mapping

suboptimal relationships between features due to sampling noise or insufficient data (H. Chen et

al., 2017). In addition to regularisation, another popular approach is to use ensembling methods,

where different models125 are combined to make predictions that are more accurate than those of

any of its constituents (Dietterich, 2000). The simplest ensembling method is arguably random

initialisation ensembling (RIE), where the same architecture is trained multiple times with

different random weight initialisations, and the predictions simply averaged. RIE is less effective

than ensembling different classes of models as it is hard for a single architecture to capture the

same range of feature representations, though neural networks’ stochastic nature attenuates this

limitation (H. Chen et al., 2017; Goodfellow et al., 2016).

As an alternative, checkpoint ensembles (CE) combine predictions from the best checkpoints

of weights from all epochs of a single model’s training run, as measured on the validation set

(H. Chen et al., 2017). As the network traverses its parameter space, the combination of the

gradient and learning rate sends it meandering around local optima. The model corresponding

to the weights at the end of each epoch may be particularly adept at making predictions in its

respective subspace of prediction problems. By combining some of the best such checkpoints,

one might get a model that generalises better to the complete space of all possible prediction

124See documentation: https://keras.io/layers/normalization/#batchnormalization
125Ideally, these combine different classes of models with very different hypothesis spaces in order to capture a

more diverse set of efficacious feature representations with relatively independent errors.

https://keras.io/layers/normalization/##batchnormalization

92

problems (H. Chen et al., 2017). Checkpoint ensembling has been found to improve performance

over selecting only the best weights (H. Chen et al., 2017), by capturing parts of the gains from

traditional ensembling techniques, without the computational cost of repeated training runs.

A.2 Recurrent Neural Networks

Feed-forward networks treat time series as a single temporal point by collapsing time steps

of the same features into separate features. They also cannot be shown a series of successive

samples in sequence, as each sample is processed independently (Chollet, 2018). In contrast,

recurrent networks are specialised to process sequential input data, and can incorporate much

longer sequences than would be practical with less specialised network types (Goodfellow et

al., 2016). Due to parameter sharing, recurrent networks also share the same parameter values

across time steps, which makes them able to handle variable-length input or output sequences.

It also enables the network to temporally generalise its mappings, as a recognised pattern will

be picked up no matter where in the sequence it appears (Chollet, 2018). In contrast, a fully-

connected network will only pick up a pattern if it occurs in the exact same place in the input

sequence as before.

Recurrent networks iterate through a given sequence while keeping an internal state of infor-

mation on what it has seen (Chollet, 2018). Ideally, this state is reset after each sequence is

processed, so that a single sequence is treated as one sample. In practice, the use of mini-batches

means state is reset after each batch. Hence, there is a certain trade-off between representational

power and computational cost. The network is in other words recurrent in that it has connec-

tions that make available the state from previous activations in the sequence when making a

prediction. In a sense, the network has memory.

For a given window length, or lookback, a recurrent network considers a sequence of τ =

lookback+ 1 input vectors x(t), where t = 1, ..., τ . The unfolded recurrence after t steps, i.e. the

state at time t, can be represented by a function g(t) that takes the whole preceding sequence

of inputs (x(t),x(t−1), ...,x(1)), i.e. h(t) = g(t)(x(t), ...,x(1)) = f(h(t−1),x(t);θ), where h denotes

that the state is the network’s hidden units (Goodfellow et al., 2016). To predict a price given

a preceding sequence of input values, the network learns to use the state h(t) as a lossy sum-

mary126 of what the network deems to be the relevant parts of this history. The function g(t)

126The variable-length sequence of preceding inputs (x(1), ...,x(t)) is reduced to a fixed-size vector h(t), hence
some information is necessarily lost.

93

takes the whole preceding sequence of inputs and would amount to fitting a separate such trans-

formation for each time step, but unfolding it makes it equivalent to the repeated application of

some function f . Hence, the network uses the same transition function f between states, rather

than relying on a history of states. This means the network can trivially generalise to arbitrary

sequence lengths, and is also much easier to train.

Computing the gradient through a recurrent network is done much the same way by applying

the traditional back-propagation algorithm to the unrolled computational graph, called back-

propagation through time (BPTT). Recurrent networks can be designed for a wide variety of

cases, but we use them to take a fixed-length input sequence to make a single prediction — for

each sample in the dataset. Like fully-connected networks, recurrent networks can sometimes

generalise better with the added representational capacity afforded by stacking additional layers,

but is less certain to do so.

A.2.1 Bidirectional Recurrent Networks

Most recurrent networks are causal in that they evaluate sequences of inputs in chronological

order. Bidirectional networks also iterate in the opposite direction, which can improve perfor-

mance on problems where the entire sequence is relevant or where information from two distant

points may be needed in conjunction to disambiguate some signal (Goodfellow et al., 2016). Put

simply, they combine a traditional recurrent network that steps chronologically through time

with another that steps in the opposite direction. This has significantly improved performance

on problems such as reading handwriting and speech recognition (Brownlee, 2017). We try

bidirectional recurrent networks in case they pick up some valuable patterns by also evaluating

the inputs in the reverse chronological order. In our case, this means stepping backwards from

time τ to 1 rather than evaluating the complete temporal sequence, as that would incorrectly

incorporate information from the future.

A.2.2 Long Short-Term Memory

Some of the most successful contemporary sequence models are gated recurrent neural networks,

such as the long short-term memory (LSTM) networks and networks using gated recurrent units

(GRU). Such networks were designed with paths whose derivatives do not vanish in an attempt

to address the problem of vanishing gradients in recurrent networks. They do this by introducing

94

connection weights that may change at each time step, so that the network can learn to choose

when to reset its state to zero, rather than it having to be defined manually (Goodfellow et al.,

2016).

LSTM introduces self-loops which facilitate propagation of the gradient in very long sequences

(Hochreiter & Schmidhuber, 1997), and where the weight on this self-loop is contextual rather

than constant (Gers, Schmidhuber, & Cummins, 2000). This weight is gated, i.e. controlled by

another unit, so that its value can be changed dynamically (Goodfellow et al., 2016). In a sense,

the LSTM adds another track to carry information, so that older signals do not gradually vanish

as the network continues iterating down the sequence (Chollet, 2018). While simpler recurrent

networks have the outer state recurrence, LSTM ”smart” nodes (Brownlee, 2017) therefore also

have the internal self-loop, more parameters, and a set of gating units that contextually adapt

information flow (Goodfellow et al., 2016).

A.3 Image Processing: Convolutions and Pooling

Similarly to how recurrent networks are specialised for sequential input data, convolutional

networks are specialised for grids of values, such as 1-dimensional time series or 2-dimensional

images (Goodfellow et al., 2016). Compared to fully-connected layers that learn global patterns,

convolutional layers learn local patterns (Chollet, 2018). Rather than having every input unit

interact with every output unit, convolutional layers use fewer operations. In addition to reduced

memory usage and computational cost, convolution layers also have other desirable properties:

they learn translation invariant patterns, meaning it learns to recognise a pattern in an image

no matter where it appears; they learn spatial hierarchies of patterns, from initially small, local

patterns to larger, more abstract and increasingly complex patterns made up of the underlying

ones (Goodfellow et al., 2016).

An image consists of two spatial dimensions (height and width) and a depth of some channels;

a grey-scale image has one channel, whereas a colour image has three: red, green, and blue. A

convolution operation slides some kernel, also called a receptive field, across the input grid, and

computes some transformations at every possible location. Typical kernel dimensions are 3× 3

or 5 × 5 with a stride — the number of steps the convolution takes when extracting the next

patch — of 1127 (Chollet, 2018). The key is that these transformations are the same for each

127With no stride (stride of 1), successive receptive fields will overlap somewhat, which is usually desirable when
searching for local patterns.

95

extracted patch, i.e. that the convolution looks for the same learned patterns in each spot. The

resulting vectors are applied a non-linear activation function, then spatially reassembled into a

feature map where the ”pixel” values are now these activations (Chollet, 2018).

While the original image has some given channel axis depth, the resulting feature maps from

each convolutional layer can be arbitrarily deep. The width and height can shrink depending

on the padding and kernel dimensions, but the depth depends on the number of filters specified.

Filters encode different aspects of the input map or image, the number of which is specified as

one of the layer’s parameters alongside the kernel dimensions, type of padding, and activation

function — among others. As such, each filter learns to look for a certain pattern, and outputs

a map with its activations at all possible locations in the input map (Chollet, 2018). The stack

of these maps constitute the layer’s output feature map.

After a non-linear activation function has been applied to the output of the convolutions, it is

typically followed by pooling to further refine the map to a form of summary statistic (Goodfellow

et al., 2016). A popular method is max pooling, which outputs the maximum value found in

each channel of rectangular grids in the input map. It is typically used with a 2 × 2 kernel

with stride 2, to effectively downsample the feature map in both dimensions by a factor of two

(Chollet, 2018). This reduces the number of feature map coefficients to compute, and more

directly promotes hierarchical filters by making successive convolutions span increasingly larger

spatial areas (Chollet, 2018).

A.3.1 Convolutional Pyramids

New record-setting convolutional architectures are announced with such frequency that defin-

ing a generally ”best” architecture is impractical (Goodfellow et al., 2016). Instead, we design

convolutional networks following the guiding principle of convolutional pyramids: large recep-

tive fields are often necessary for the network’s structured understanding of low-level image

processing tasks, but stacking sufficient layers or using adequately wide kernels can become

cost-prohibitive (Shen, Chen, Tao, & Jia, 2017). Starting with the spatially wide (and high)

input images with few channels, we stack successive convolution and pooling layers that progres-

sively downsample the spatial dimensions while adding filters, thereby resulting in a pyramid

of decreasing spatial footprint and increasing depth. This enables a spatial-filter hierarchy of

increasingly wide fields, without sacrificing computational efficiency (Shen et al., 2017).

96

B Additional Information about Elbas

B.1 Prices in the Regulating Market

Figure 23 shows how the regulating price is derived. If there is a need for more power to be

delivered in a given hour, the TSOs set the price so that up-regulation occurs (price above

the market/Elspot price), which is the situation shown in the figure. If, on the other hand,

there is a need for less power to be delivered in a given hour, the price is set so that down-

regulation occurs (price below the market/Elspot price). Thus, the regulating prices are used to

incentivise more or less power being produced in each hour of delivery. If consumption exceeds

planned production, a higher price incentivises more producers to deliver power in a given hour.

If production exceeds consumption, a lower price incentivises more producers to buy cheap

power from other producers instead of generating their own, and as such, reducing overall power

production.

Figure 23: Up- and down-regulation in the regulating market. The illustration is based on:

Nord Pool (n.d.).

Table 7, which is based on Table 4 in Scharff and Amelin (2016), shows how production and

consumption imbalances are settled.128 For consumption imbalances, one price is used for set-

128Production imbalances are calculated as the difference between the latest submitted production plan after
settlements in the Elspot market and the observed production. Consumption imbalances are calculated as the
latest submitted production/consumption plan after Elspot, adjusted for trading in Elbas, and observed consump-
tion (Scharff & Amelin, 2016). The binding plan may be updated until 45 minutes before power delivery. Any
changes to the production plan that is not corrected through Elbas trading, goes into the consumption imbalance,
which implies that the production imbalance only reflects the deviations during the delivery hour.

97

tlement and it reflects the dominating direction of regulating power in a given hour. That is, it

equals the up-regulating price if the dominating direction is up, and the down-regulating price

if the dominating direction is down. For production imbalances, on the other hand, a two-price

system is applied in settlements. Hence, if the dominating direction is up, producers with a pro-

duction deficit pay the up-regulation price, while producers with a production surplus receive

the day-ahead price. Conversely, if the dominating direction is down, the producer with a deficit

pay the day-ahead price while the producers with a surplus receive the down-regulation price.

The purpose of the two-price system is to ensure that no market participants may profit from

balancing in real-time compared to trading the corresponding power in the day-ahead market

(Scharff & Amelin, 2016).

Own position in
regulating market

Up-regulation No regulation Down-regulation

Production deficit
(= prod. purchase)

Pay:
Pup × Edeficit

Pay:
Pda × Edeficit

Pay:
Pda × Edeficit

Production excess
(= prod. sale)

Receive:
Pda × Eexcess

Receive:
Pda × Eexcess

Receive:
Pdown × Eexcess

Consumption deficit
Pay:
Pup × Edeficit

Pay:
Pda × Edeficit

Pay:
Pdown × Edeficit

Consumption excess
Receive:
Pup × Eexcess

Receive:
Pda × Eexcess

Receive:
Pdown × Eexcess

Table 7: Imbalance price settlement for production imbalances (two-price system) and consump-

tion imbalances (one-price system). Source: Scharff and Amelin (2016).

98

B.2 Elbas Trade Volumes per Area and Country

(a) Trade between Elbas countries (b) Total volume per buyer bidding area

Figure 24: Volume traded over the period November 2, 2011 to December 31, 2017.

B.3 Trading Activity across Trade Hours

Figure 25: Number of trades (measured in 1000 transactions) per trade hour. The data includes

trades over the period November 2, 2011 to December 31, 2017 with a buyer from a Nordic

bidding area.

99

C Standardisation or Normalisation?

Many methods in machine learning — in particular neural networks — have been found to

perform better when continuous numeric variables have similar scales (Hastie et al., 2009). Two

common approaches are, based on the training data, to either scale variables to be in the range

[0, 1] or to centre each variable around zero mean and with unit variance. The nomenclature is

not consistent in academia, but we refer to these methods as normalisation and standardisation,

respectively. Specifically, each value xi,j in observation i of variable j can be standardised by

utilising the mean and standard deviation of j in the training set: si,j =
xi,j−µj
σj

. Similarly,

they can instead be normalised via the minimum and maximum values of j in the training set:

ni,j =
xi,j−minj

maxj−minj
. Normalising is simpler and makes no assumptions on the distribution of each

variable, but is very sensitive to outliers as these could determine the minimum and maximum

values used to scale all values between 0 and 1. Similarly, one would like to know a priori that

no values of greater magnitude appear in the out-of-sample set(s); though not a requirement, if

this is not generally met the point of scaling is somewhat defeated. In contrast, standardising

is much less susceptible to outliers, but makes the strong assumption that each variable follows

a Gaussian distribution. It still works if not, but model performance might deteriorate if highly

non-normal variables are standardised (Brownlee, 2017). A possible approach is to combine

normalisation and standardisation, determining on a per-variable basis which to use depending

on the variable’s distribution and/or presence of outliers.

C.1 Distribution Plots

These plots show the training set distribution for some examples of the continuous numeric

variables, with a superimposed Gaussian probability density function (black curve) using the

corresponding variable’s test set mean and standard deviation. If the curve perfectly envelops

the actual distribution, then the variable is perfectly Gaussian, and standardising it is exactly

the right approach. If the variable is clearly not normally distributed, then standardising it may

be detrimental to performance, and it is perhaps better to normalise it.

100

Win_VWP_Near Win_VWP_Far Win_Volume_Far Win_VWP_Near_Lag Win_Volume_Near_Lag

Spot_PR_DK1 Spot_PR_DK2 Spot_PR_FI Spot_PR_NO1 Spot_PR_NO2

Spot_PR_NO3 Spot_PR_NO4 Spot_PR_NO5 Spot_PR_SE1 Spot_PR_SE2

Spot_PR_SE3 Spot_PR_SE4 Spot_PR_SP1 Spot_OM_Buy_DK1 Spot_OM_Buy_DK2

Spot_OM_Buy_FI Spot_OM_Buy_NO1 Spot_OM_Buy_NO2 Spot_OM_Buy_NO3 Spot_OM_Buy_NO4

Spot_OM_Buy_NO5 Spot_OM_Buy_SE1 Spot_OM_Buy_SE2 Spot_OM_Buy_SE3 Spot_OM_Buy_SE4

Spot_OM_Buy_SP1 Spot_OM_Sell_DK1 Spot_OM_Sell_DK2 Spot_OM_Sell_FI Spot_OM_Sell_NO1

Spot_OM_Sell_NO2 Spot_OM_Sell_NO3 Spot_OM_Sell_NO4 Spot_OM_Sell_NO5 Spot_OM_Sell_SE1

Spot_OM_Sell_SE2 Spot_OM_Sell_SE3 Spot_OM_Sell_SE4 Cap_DK1_DK1A Cap_DK1_DK2

Cap_DK1A_DK1 Cap_DK1A_NO2 Cap_DK1A_SE3 Cap_DK2_DK1 Cap_DK2_SE4

Figure 26: Plots showing the training set distribution for some examples of the continuous

numeric variables, with a superimposed Gaussian probability density function (black curve)

using the corresponding variable’s test set mean and standard deviation.

101

D Deep Learning Models

D.1 ResNet 1

Model topology

input_1: InputLayer
input:

output:

(None, 13, 328)

(None, 13, 328)

flatten_1: Flatten
input:

output:

(None, 13, 328)

(None, 4264)

dense_1: Dense
input:

output:

(None, 4264)

(None, 512)
dense_4: Dense

input:

output:

(None, 4264)

(None, 512)

dense_9: Dense
input:

output:

(None, 4264)

(None, 256)

dense_13: Dense
input:

output:

(None, 4264)

(None, 256)

dense_18: Dense
input:

output:

(None, 4264)

(None, 128)

dense_22: Dense
input:

output:

(None, 4264)

(None, 128)

dense_27: Dense
input:

output:

(None, 4264)

(None, 64)
dense_2: Dense

input:

output:

(None, 512)

(None, 512)

dense_3: Dense
input:

output:

(None, 512)

(None, 512)

batch_normalization_1: BatchNormalization
input:

output:

(None, 512)

(None, 512)

add_1: Add
input:

output:

[(None, 512), (None, 512)]

(None, 512)

dropout_1: Dropout
input:

output:

(None, 512)

(None, 512)

dense_5: Dense
input:

output:

(None, 512)

(None, 256)

dense_8: Dense
input:

output:

(None, 512)

(None, 256)
dense_6: Dense

input:

output:

(None, 256)

(None, 256)

dense_7: Dense
input:

output:

(None, 256)

(None, 256)

batch_normalization_2: BatchNormalization
input:

output:

(None, 256)

(None, 256)

add_2: Add
input:

output:

[(None, 256), (None, 256), (None, 256)]

(None, 256)

dropout_2: Dropout
input:

output:

(None, 256)

(None, 256)

dense_10: Dense
input:

output:

(None, 256)

(None, 256)

add_3: Add
input:

output:

[(None, 256), (None, 256), (None, 256)]

(None, 256)

dense_11: Dense
input:

output:

(None, 256)

(None, 256)

dense_12: Dense
input:

output:

(None, 256)

(None, 256)

batch_normalization_3: BatchNormalization
input:

output:

(None, 256)

(None, 256)

dropout_3: Dropout
input:

output:

(None, 256)

(None, 256)

dense_14: Dense
input:

output:

(None, 256)

(None, 128)

dense_17: Dense
input:

output:

(None, 256)

(None, 128)
dense_15: Dense

input:

output:

(None, 128)

(None, 128)

dense_16: Dense
input:

output:

(None, 128)

(None, 128)

batch_normalization_4: BatchNormalization
input:

output:

(None, 128)

(None, 128)

add_4: Add
input:

output:

[(None, 128), (None, 128), (None, 128)]

(None, 128)

dropout_4: Dropout
input:

output:

(None, 128)

(None, 128)

dense_19: Dense
input:

output:

(None, 128)

(None, 128)

add_5: Add
input:

output:

[(None, 128), (None, 128), (None, 128)]

(None, 128)

dense_20: Dense
input:

output:

(None, 128)

(None, 128)

dense_21: Dense
input:

output:

(None, 128)

(None, 128)

batch_normalization_5: BatchNormalization
input:

output:

(None, 128)

(None, 128)

dropout_5: Dropout
input:

output:

(None, 128)

(None, 128)

dense_23: Dense
input:

output:

(None, 128)

(None, 64)

dense_26: Dense
input:

output:

(None, 128)

(None, 64)
dense_24: Dense

input:

output:

(None, 64)

(None, 64)

dense_25: Dense
input:

output:

(None, 64)

(None, 64)

batch_normalization_6: BatchNormalization
input:

output:

(None, 64)

(None, 64)

add_6: Add
input:

output:

[(None, 64), (None, 64), (None, 64)]

(None, 64)

dropout_6: Dropout
input:

output:

(None, 64)

(None, 64)

dense_28: Dense
input:

output:

(None, 64)

(None, 1)

102

input_1: InputLayer
input:

output:

(None, 13, 328)

(None, 13, 328)

flatten_1: Flatten
input:

output:

(None, 13, 328)

(None, 4264)

dense_1: Dense
input:

output:

(None, 4264)

(None, 512)
dense_4: Dense

input:

output:

(None, 4264)

(None, 512)

dense_9: Dense
input:

output:

(None, 4264)

(None, 256)

dense_13: Dense
input:

output:

(None, 4264)

(None, 256)

dense_18: Dense
input:

output:

(None, 4264)

(None, 128)

dense_22: Dense
input:

output:

(None, 4264)

(None, 128)

dense_27: Dense
input:

output:

(None, 4264)

(None, 64)
dense_2: Dense

input:

output:

(None, 512)

(None, 512)

dense_3: Dense
input:

output:

(None, 512)

(None, 512)

batch_normalization_1: BatchNormalization
input:

output:

(None, 512)

(None, 512)

add_1: Add
input:

output:

[(None, 512), (None, 512)]

(None, 512)

dropout_1: Dropout
input:

output:

(None, 512)

(None, 512)

dense_5: Dense
input:

output:

(None, 512)

(None, 256)

dense_8: Dense
input:

output:

(None, 512)

(None, 256)
dense_6: Dense

input:

output:

(None, 256)

(None, 256)

dense_7: Dense
input:

output:

(None, 256)

(None, 256)

batch_normalization_2: BatchNormalization
input:

output:

(None, 256)

(None, 256)

add_2: Add
input:

output:

[(None, 256), (None, 256), (None, 256)]

(None, 256)

dropout_2: Dropout
input:

output:

(None, 256)

(None, 256)

dense_10: Dense
input:

output:

(None, 256)

(None, 256)

add_3: Add
input:

output:

[(None, 256), (None, 256), (None, 256)]

(None, 256)

dense_11: Dense
input:

output:

(None, 256)

(None, 256)

dense_12: Dense
input:

output:

(None, 256)

(None, 256)

batch_normalization_3: BatchNormalization
input:

output:

(None, 256)

(None, 256)

dropout_3: Dropout
input:

output:

(None, 256)

(None, 256)

dense_14: Dense
input:

output:

(None, 256)

(None, 128)

dense_17: Dense
input:

output:

(None, 256)

(None, 128)
dense_15: Dense

input:

output:

(None, 128)

(None, 128)

dense_16: Dense
input:

output:

(None, 128)

(None, 128)

batch_normalization_4: BatchNormalization
input:

output:

(None, 128)

(None, 128)

add_4: Add
input:

output:

[(None, 128), (None, 128), (None, 128)]

(None, 128)

dropout_4: Dropout
input:

output:

(None, 128)

(None, 128)

dense_19: Dense
input:

output:

(None, 128)

(None, 128)

add_5: Add
input:

output:

[(None, 128), (None, 128), (None, 128)]

(None, 128)

dense_20: Dense
input:

output:

(None, 128)

(None, 128)

dense_21: Dense
input:

output:

(None, 128)

(None, 128)

batch_normalization_5: BatchNormalization
input:

output:

(None, 128)

(None, 128)

dropout_5: Dropout
input:

output:

(None, 128)

(None, 128)

dense_23: Dense
input:

output:

(None, 128)

(None, 64)

dense_26: Dense
input:

output:

(None, 128)

(None, 64)
dense_24: Dense

input:

output:

(None, 64)

(None, 64)

dense_25: Dense
input:

output:

(None, 64)

(None, 64)

batch_normalization_6: BatchNormalization
input:

output:

(None, 64)

(None, 64)

add_6: Add
input:

output:

[(None, 64), (None, 64), (None, 64)]

(None, 64)

dropout_6: Dropout
input:

output:

(None, 64)

(None, 64)

dense_28: Dense
input:

output:

(None, 64)

(None, 1)

Figure 27: Model topology ResNet 1.

103

Results per run

Run

Validation Test

MVL CE MVL CE

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

1 2.3942 4.4517 2.3623 4.4401 2.7122 4.7409 2.6922 4.6670

2 2.3738 4.4256 2.3642 4.4196 2.6793 4.7478 2.6894 4.7581

3 2.3797 4.4474 2.3636 4.4267 2.7477 4.7217 2.7108 4.7222

4 2.3710 4.4964 2.3654 4.4788 2.7074 4.7887 2.6942 4.7970

5 2.3530 4.4014 2.3403 4.4190 2.7082 4.5967 2.6671 4.6220

Mean 2.3743 4.4445 2.3592 4.4368 2.7110 4.7192 2.6907 4.7133

Std. 0.0149 0.0352 0.0106 0.0249 0.0244 0.0727 0.0156 0.0699

Table 8: MAE and associated RMSE for five runs of ResNet 1. The median performer is

highlighted. All values are in EUR/MWh.

Training plots

0 20 40 60 80 100
Epoch

2.0

2.5

3.0

3.5

4.0

4.5

M
AE

 (
)

Training loss
Validation loss

(a) Run 1

0 20 40 60 80 100
Epoch

2.0

2.5

3.0

3.5

4.0

4.5

M
AE

 (
)

Training loss
Validation loss

(b) Run 2

0 20 40 60 80 100
Epoch

2.0

2.5

3.0

3.5

4.0

4.5

M
AE

 (
)

Training loss
Validation loss

(c) Run 3

0 20 40 60 80 100
Epoch

2.0

2.5

3.0

3.5

4.0

4.5

M
AE

 (
)

Training loss
Validation loss

(d) Run 4

104

0 20 40 60 80 100
Epoch

2.0

2.5

3.0

3.5

4.0

4.5

M
AE

 (
)

Training loss
Validation loss

(e) Run 5

Figure 28: Training plots ResNet 1.

D.2 ResNet 2

Model topology

input_2: InputLayer
input:

output:

(None, 13, 328)

(None, 13, 328)

flatten_41: Flatten
input:

output:

(None, 13, 328)

(None, 4264)

batch_normalization_241: BatchNormalization
input:

output:

(None, 4264)

(None, 4264)

dense_1124: Dense
input:

output:

(None, 4264)

(None, 512)

dense_1129: Dense
input:

output:

(None, 4264)

(None, 256)

dense_1133: Dense
input:

output:

(None, 4264)

(None, 256)

dense_1138: Dense
input:

output:

(None, 4264)

(None, 128)

dense_1142: Dense
input:

output:

(None, 4264)

(None, 128)

dense_1147: Dense
input:

output:

(None, 4264)

(None, 64)
activation_1: Activation

input:

output:

(None, 4264)

(None, 4264)

dense_1121: Dense
input:

output:

(None, 4264)

(None, 512)

batch_normalization_242: BatchNormalization
input:

output:

(None, 512)

(None, 512)

activation_2: Activation
input:

output:

(None, 512)

(None, 512)

dense_1122: Dense
input:

output:

(None, 512)

(None, 512)

batch_normalization_243: BatchNormalization
input:

output:

(None, 512)

(None, 512)

activation_3: Activation
input:

output:

(None, 512)

(None, 512)

dense_1123: Dense
input:

output:

(None, 512)

(None, 512)

add_241: Add
input:

output:

[(None, 512), (None, 512)]

(None, 512)

dropout_241: Dropout
input:

output:

(None, 512)

(None, 512)

batch_normalization_244: BatchNormalization
input:

output:

(None, 512)

(None, 512)

dense_1128: Dense
input:

output:

(None, 512)

(None, 256)
activation_4: Activation

input:

output:

(None, 512)

(None, 512)

dense_1125: Dense
input:

output:

(None, 512)

(None, 256)

batch_normalization_245: BatchNormalization
input:

output:

(None, 256)

(None, 256)

activation_5: Activation
input:

output:

(None, 256)

(None, 256)

dense_1126: Dense
input:

output:

(None, 256)

(None, 256)

batch_normalization_246: BatchNormalization
input:

output:

(None, 256)

(None, 256)

activation_6: Activation
input:

output:

(None, 256)

(None, 256)

dense_1127: Dense
input:

output:

(None, 256)

(None, 256)

add_242: Add
input:

output:

[(None, 256), (None, 256), (None, 256)]

(None, 256)

dropout_242: Dropout
input:

output:

(None, 256)

(None, 256)

batch_normalization_247: BatchNormalization
input:

output:

(None, 256)

(None, 256)

add_243: Add
input:

output:

[(None, 256), (None, 256), (None, 256)]

(None, 256)

activation_7: Activation
input:

output:

(None, 256)

(None, 256)

dense_1130: Dense
input:

output:

(None, 256)

(None, 256)

batch_normalization_248: BatchNormalization
input:

output:

(None, 256)

(None, 256)

activation_8: Activation
input:

output:

(None, 256)

(None, 256)

dense_1131: Dense
input:

output:

(None, 256)

(None, 256)

batch_normalization_249: BatchNormalization
input:

output:

(None, 256)

(None, 256)

activation_9: Activation
input:

output:

(None, 256)

(None, 256)

dense_1132: Dense
input:

output:

(None, 256)

(None, 256)

dropout_243: Dropout
input:

output:

(None, 256)

(None, 256)

batch_normalization_250: BatchNormalization
input:

output:

(None, 256)

(None, 256)

dense_1137: Dense
input:

output:

(None, 256)

(None, 128)
activation_10: Activation

input:

output:

(None, 256)

(None, 256)

dense_1134: Dense
input:

output:

(None, 256)

(None, 128)

batch_normalization_251: BatchNormalization
input:

output:

(None, 128)

(None, 128)

activation_11: Activation
input:

output:

(None, 128)

(None, 128)

dense_1135: Dense
input:

output:

(None, 128)

(None, 128)

batch_normalization_252: BatchNormalization
input:

output:

(None, 128)

(None, 128)

activation_12: Activation
input:

output:

(None, 128)

(None, 128)

dense_1136: Dense
input:

output:

(None, 128)

(None, 128)

add_244: Add
input:

output:

[(None, 128), (None, 128), (None, 128)]

(None, 128)

dropout_244: Dropout
input:

output:

(None, 128)

(None, 128)

batch_normalization_253: BatchNormalization
input:

output:

(None, 128)

(None, 128)

add_245: Add
input:

output:

[(None, 128), (None, 128), (None, 128)]

(None, 128)

activation_13: Activation
input:

output:

(None, 128)

(None, 128)

dense_1139: Dense
input:

output:

(None, 128)

(None, 128)

batch_normalization_254: BatchNormalization
input:

output:

(None, 128)

(None, 128)

activation_14: Activation
input:

output:

(None, 128)

(None, 128)

dense_1140: Dense
input:

output:

(None, 128)

(None, 128)

batch_normalization_255: BatchNormalization
input:

output:

(None, 128)

(None, 128)

activation_15: Activation
input:

output:

(None, 128)

(None, 128)

dense_1141: Dense
input:

output:

(None, 128)

(None, 128)

dropout_245: Dropout
input:

output:

(None, 128)

(None, 128)

batch_normalization_256: BatchNormalization
input:

output:

(None, 128)

(None, 128)

dense_1146: Dense
input:

output:

(None, 128)

(None, 64)
activation_16: Activation

input:

output:

(None, 128)

(None, 128)

dense_1143: Dense
input:

output:

(None, 128)

(None, 64)

batch_normalization_257: BatchNormalization
input:

output:

(None, 64)

(None, 64)

activation_17: Activation
input:

output:

(None, 64)

(None, 64)

dense_1144: Dense
input:

output:

(None, 64)

(None, 64)

batch_normalization_258: BatchNormalization
input:

output:

(None, 64)

(None, 64)

activation_18: Activation
input:

output:

(None, 64)

(None, 64)

dense_1145: Dense
input:

output:

(None, 64)

(None, 64)

add_246: Add
input:

output:

[(None, 64), (None, 64), (None, 64)]

(None, 64)

dropout_246: Dropout
input:

output:

(None, 64)

(None, 64)

dense_1148: Dense
input:

output:

(None, 64)

(None, 1)

105

input_2: InputLayer
input:

output:

(None, 13, 328)

(None, 13, 328)

flatten_41: Flatten
input:

output:

(None, 13, 328)

(None, 4264)

batch_normalization_241: BatchNormalization
input:

output:

(None, 4264)

(None, 4264)

dense_1124: Dense
input:

output:

(None, 4264)

(None, 512)

dense_1129: Dense
input:

output:

(None, 4264)

(None, 256)

dense_1133: Dense
input:

output:

(None, 4264)

(None, 256)

dense_1138: Dense
input:

output:

(None, 4264)

(None, 128)

dense_1142: Dense
input:

output:

(None, 4264)

(None, 128)

dense_1147: Dense
input:

output:

(None, 4264)

(None, 64)
activation_1: Activation

input:

output:

(None, 4264)

(None, 4264)

dense_1121: Dense
input:

output:

(None, 4264)

(None, 512)

batch_normalization_242: BatchNormalization
input:

output:

(None, 512)

(None, 512)

activation_2: Activation
input:

output:

(None, 512)

(None, 512)

dense_1122: Dense
input:

output:

(None, 512)

(None, 512)

batch_normalization_243: BatchNormalization
input:

output:

(None, 512)

(None, 512)

activation_3: Activation
input:

output:

(None, 512)

(None, 512)

dense_1123: Dense
input:

output:

(None, 512)

(None, 512)

add_241: Add
input:

output:

[(None, 512), (None, 512)]

(None, 512)

dropout_241: Dropout
input:

output:

(None, 512)

(None, 512)

batch_normalization_244: BatchNormalization
input:

output:

(None, 512)

(None, 512)

dense_1128: Dense
input:

output:

(None, 512)

(None, 256)
activation_4: Activation

input:

output:

(None, 512)

(None, 512)

dense_1125: Dense
input:

output:

(None, 512)

(None, 256)

batch_normalization_245: BatchNormalization
input:

output:

(None, 256)

(None, 256)

activation_5: Activation
input:

output:

(None, 256)

(None, 256)

dense_1126: Dense
input:

output:

(None, 256)

(None, 256)

batch_normalization_246: BatchNormalization
input:

output:

(None, 256)

(None, 256)

activation_6: Activation
input:

output:

(None, 256)

(None, 256)

dense_1127: Dense
input:

output:

(None, 256)

(None, 256)

add_242: Add
input:

output:

[(None, 256), (None, 256), (None, 256)]

(None, 256)

dropout_242: Dropout
input:

output:

(None, 256)

(None, 256)

batch_normalization_247: BatchNormalization
input:

output:

(None, 256)

(None, 256)

add_243: Add
input:

output:

[(None, 256), (None, 256), (None, 256)]

(None, 256)

activation_7: Activation
input:

output:

(None, 256)

(None, 256)

dense_1130: Dense
input:

output:

(None, 256)

(None, 256)

batch_normalization_248: BatchNormalization
input:

output:

(None, 256)

(None, 256)

activation_8: Activation
input:

output:

(None, 256)

(None, 256)

dense_1131: Dense
input:

output:

(None, 256)

(None, 256)

batch_normalization_249: BatchNormalization
input:

output:

(None, 256)

(None, 256)

activation_9: Activation
input:

output:

(None, 256)

(None, 256)

dense_1132: Dense
input:

output:

(None, 256)

(None, 256)

dropout_243: Dropout
input:

output:

(None, 256)

(None, 256)

batch_normalization_250: BatchNormalization
input:

output:

(None, 256)

(None, 256)

dense_1137: Dense
input:

output:

(None, 256)

(None, 128)
activation_10: Activation

input:

output:

(None, 256)

(None, 256)

dense_1134: Dense
input:

output:

(None, 256)

(None, 128)

batch_normalization_251: BatchNormalization
input:

output:

(None, 128)

(None, 128)

activation_11: Activation
input:

output:

(None, 128)

(None, 128)

dense_1135: Dense
input:

output:

(None, 128)

(None, 128)

batch_normalization_252: BatchNormalization
input:

output:

(None, 128)

(None, 128)

activation_12: Activation
input:

output:

(None, 128)

(None, 128)

dense_1136: Dense
input:

output:

(None, 128)

(None, 128)

add_244: Add
input:

output:

[(None, 128), (None, 128), (None, 128)]

(None, 128)

dropout_244: Dropout
input:

output:

(None, 128)

(None, 128)

batch_normalization_253: BatchNormalization
input:

output:

(None, 128)

(None, 128)

add_245: Add
input:

output:

[(None, 128), (None, 128), (None, 128)]

(None, 128)

activation_13: Activation
input:

output:

(None, 128)

(None, 128)

dense_1139: Dense
input:

output:

(None, 128)

(None, 128)

batch_normalization_254: BatchNormalization
input:

output:

(None, 128)

(None, 128)

activation_14: Activation
input:

output:

(None, 128)

(None, 128)

dense_1140: Dense
input:

output:

(None, 128)

(None, 128)

batch_normalization_255: BatchNormalization
input:

output:

(None, 128)

(None, 128)

activation_15: Activation
input:

output:

(None, 128)

(None, 128)

dense_1141: Dense
input:

output:

(None, 128)

(None, 128)

dropout_245: Dropout
input:

output:

(None, 128)

(None, 128)

batch_normalization_256: BatchNormalization
input:

output:

(None, 128)

(None, 128)

dense_1146: Dense
input:

output:

(None, 128)

(None, 64)
activation_16: Activation

input:

output:

(None, 128)

(None, 128)

dense_1143: Dense
input:

output:

(None, 128)

(None, 64)

batch_normalization_257: BatchNormalization
input:

output:

(None, 64)

(None, 64)

activation_17: Activation
input:

output:

(None, 64)

(None, 64)

dense_1144: Dense
input:

output:

(None, 64)

(None, 64)

batch_normalization_258: BatchNormalization
input:

output:

(None, 64)

(None, 64)

activation_18: Activation
input:

output:

(None, 64)

(None, 64)

dense_1145: Dense
input:

output:

(None, 64)

(None, 64)

add_246: Add
input:

output:

[(None, 64), (None, 64), (None, 64)]

(None, 64)

dropout_246: Dropout
input:

output:

(None, 64)

(None, 64)

dense_1148: Dense
input:

output:

(None, 64)

(None, 1)

106

input_2: InputLayer
input:

output:

(None, 13, 328)

(None, 13, 328)

flatten_41: Flatten
input:

output:

(None, 13, 328)

(None, 4264)

batch_normalization_241: BatchNormalization
input:

output:

(None, 4264)

(None, 4264)

dense_1124: Dense
input:

output:

(None, 4264)

(None, 512)

dense_1129: Dense
input:

output:

(None, 4264)

(None, 256)

dense_1133: Dense
input:

output:

(None, 4264)

(None, 256)

dense_1138: Dense
input:

output:

(None, 4264)

(None, 128)

dense_1142: Dense
input:

output:

(None, 4264)

(None, 128)

dense_1147: Dense
input:

output:

(None, 4264)

(None, 64)
activation_1: Activation

input:

output:

(None, 4264)

(None, 4264)

dense_1121: Dense
input:

output:

(None, 4264)

(None, 512)

batch_normalization_242: BatchNormalization
input:

output:

(None, 512)

(None, 512)

activation_2: Activation
input:

output:

(None, 512)

(None, 512)

dense_1122: Dense
input:

output:

(None, 512)

(None, 512)

batch_normalization_243: BatchNormalization
input:

output:

(None, 512)

(None, 512)

activation_3: Activation
input:

output:

(None, 512)

(None, 512)

dense_1123: Dense
input:

output:

(None, 512)

(None, 512)

add_241: Add
input:

output:

[(None, 512), (None, 512)]

(None, 512)

dropout_241: Dropout
input:

output:

(None, 512)

(None, 512)

batch_normalization_244: BatchNormalization
input:

output:

(None, 512)

(None, 512)

dense_1128: Dense
input:

output:

(None, 512)

(None, 256)
activation_4: Activation

input:

output:

(None, 512)

(None, 512)

dense_1125: Dense
input:

output:

(None, 512)

(None, 256)

batch_normalization_245: BatchNormalization
input:

output:

(None, 256)

(None, 256)

activation_5: Activation
input:

output:

(None, 256)

(None, 256)

dense_1126: Dense
input:

output:

(None, 256)

(None, 256)

batch_normalization_246: BatchNormalization
input:

output:

(None, 256)

(None, 256)

activation_6: Activation
input:

output:

(None, 256)

(None, 256)

dense_1127: Dense
input:

output:

(None, 256)

(None, 256)

add_242: Add
input:

output:

[(None, 256), (None, 256), (None, 256)]

(None, 256)

dropout_242: Dropout
input:

output:

(None, 256)

(None, 256)

batch_normalization_247: BatchNormalization
input:

output:

(None, 256)

(None, 256)

add_243: Add
input:

output:

[(None, 256), (None, 256), (None, 256)]

(None, 256)

activation_7: Activation
input:

output:

(None, 256)

(None, 256)

dense_1130: Dense
input:

output:

(None, 256)

(None, 256)

batch_normalization_248: BatchNormalization
input:

output:

(None, 256)

(None, 256)

activation_8: Activation
input:

output:

(None, 256)

(None, 256)

dense_1131: Dense
input:

output:

(None, 256)

(None, 256)

batch_normalization_249: BatchNormalization
input:

output:

(None, 256)

(None, 256)

activation_9: Activation
input:

output:

(None, 256)

(None, 256)

dense_1132: Dense
input:

output:

(None, 256)

(None, 256)

dropout_243: Dropout
input:

output:

(None, 256)

(None, 256)

batch_normalization_250: BatchNormalization
input:

output:

(None, 256)

(None, 256)

dense_1137: Dense
input:

output:

(None, 256)

(None, 128)
activation_10: Activation

input:

output:

(None, 256)

(None, 256)

dense_1134: Dense
input:

output:

(None, 256)

(None, 128)

batch_normalization_251: BatchNormalization
input:

output:

(None, 128)

(None, 128)

activation_11: Activation
input:

output:

(None, 128)

(None, 128)

dense_1135: Dense
input:

output:

(None, 128)

(None, 128)

batch_normalization_252: BatchNormalization
input:

output:

(None, 128)

(None, 128)

activation_12: Activation
input:

output:

(None, 128)

(None, 128)

dense_1136: Dense
input:

output:

(None, 128)

(None, 128)

add_244: Add
input:

output:

[(None, 128), (None, 128), (None, 128)]

(None, 128)

dropout_244: Dropout
input:

output:

(None, 128)

(None, 128)

batch_normalization_253: BatchNormalization
input:

output:

(None, 128)

(None, 128)

add_245: Add
input:

output:

[(None, 128), (None, 128), (None, 128)]

(None, 128)

activation_13: Activation
input:

output:

(None, 128)

(None, 128)

dense_1139: Dense
input:

output:

(None, 128)

(None, 128)

batch_normalization_254: BatchNormalization
input:

output:

(None, 128)

(None, 128)

activation_14: Activation
input:

output:

(None, 128)

(None, 128)

dense_1140: Dense
input:

output:

(None, 128)

(None, 128)

batch_normalization_255: BatchNormalization
input:

output:

(None, 128)

(None, 128)

activation_15: Activation
input:

output:

(None, 128)

(None, 128)

dense_1141: Dense
input:

output:

(None, 128)

(None, 128)

dropout_245: Dropout
input:

output:

(None, 128)

(None, 128)

batch_normalization_256: BatchNormalization
input:

output:

(None, 128)

(None, 128)

dense_1146: Dense
input:

output:

(None, 128)

(None, 64)
activation_16: Activation

input:

output:

(None, 128)

(None, 128)

dense_1143: Dense
input:

output:

(None, 128)

(None, 64)

batch_normalization_257: BatchNormalization
input:

output:

(None, 64)

(None, 64)

activation_17: Activation
input:

output:

(None, 64)

(None, 64)

dense_1144: Dense
input:

output:

(None, 64)

(None, 64)

batch_normalization_258: BatchNormalization
input:

output:

(None, 64)

(None, 64)

activation_18: Activation
input:

output:

(None, 64)

(None, 64)

dense_1145: Dense
input:

output:

(None, 64)

(None, 64)

add_246: Add
input:

output:

[(None, 64), (None, 64), (None, 64)]

(None, 64)

dropout_246: Dropout
input:

output:

(None, 64)

(None, 64)

dense_1148: Dense
input:

output:

(None, 64)

(None, 1)

Figure 29: Model topology ResNet 2.

107

Results per run

Run

Validation Test

MVL CE MVL CE

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

1 2.3863 4.3225 2.3476 4.3791 2.7721 4.6800 2.6972 4.7074

2 2.4126 4.4930 2.3699 4.4675 2.7029 4.7459 2.6776 4.7783

3 2.4244 4.5616 2.3440 4.4171 2.7446 4.8454 2.6721 4.7382

4 2.3864 4.4851 2.3606 4.4284 2.6857 4.7842 2.7052 4.6529

5 2.4089 4.5622 2.3549 4.4701 2.6902 4.7088 2.6647 4.6453

Mean 2.4037 4.4849 2.3554 4.4324 2.7191 4.7529 2.6834 4.7044

Std. 0.0169 0.0978 0.0103 0.0379 0.0377 0.0649 0.0172 0.0565

Table 9: MAE and associated RMSE for five runs of ResNet 2. The median performer is

highlighted. All values are in EUR/MWh.

Training plots

0 20 40 60 80 100
Epoch

2.0

2.5

3.0

3.5

4.0

4.5

M
AE

 (
)

Training loss
Validation loss

(a) Run 1

0 20 40 60 80 100
Epoch

2.0

2.5

3.0

3.5

4.0

4.5

M
AE

 (
)

Training loss
Validation loss

(b) Run 2

0 20 40 60 80 100
Epoch

2.0

2.5

3.0

3.5

4.0

4.5

M
AE

 (
)

Training loss
Validation loss

(c) Run 3

0 20 40 60 80 100
Epoch

2.0

2.5

3.0

3.5

4.0

4.5

M
AE

 (
)

Training loss
Validation loss

(d) Run 4

108

0 20 40 60 80 100
Epoch

2.0

2.5

3.0

3.5

4.0

4.5

M
AE

 (
)

Training loss
Validation loss

(e) Run 5

Figure 30: Training plots ResNet 2.

D.3 LSTM

Model topology

input_1: InputLayer
input:

output:

(None, 505, 328)

(None, 505, 328)

lstm_1: LSTM
input:

output:

(None, 505, 328)

(None, 512)

dense_1: Dense
input:

output:

(None, 512)

(None, 1)

Figure 31: Model topology LSTM.

109

Results per run

Run

Validation Test

MVL CE MVL CE

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

1 2.3620 3.4672 2.2765 3.3728 2.8084 4.3270 2.7414 4.2589

2 2.4457 3.5324 2.3361 3.4574 2.8278 4.3563 2.7421 4.2803

3 2.3553 3.4757 2.2829 3.3613 2.7772 4.2948 2.7217 4.2369

4 2.3545 3.4842 2.2416 3.3471 2.8324 4.4001 2.7370 4.2815

5 2.3249 3.4516 2.2475 3.3809 2.8521 4.3718 2.7731 4.3210

Mean 2.3685 3.4822 2.2769 3.3839 2.8196 4.3500 2.7431 4.2757

Std. 0.0455 0.0306 0.0376 0.0430 0.0283 0.0406 0.0187 0.0312

Table 10: MAE and associated RMSE for five runs of LSTM. The median performer is high-

lighted. All values are in EUR/MWh.

Training plots

0 5 10 15 20 25 30
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

M
AE

 (
)

Training loss
Validation loss

(a) Run 1

0 5 10 15 20 25 30
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

M
AE

 (
)

Training loss
Validation loss

(b) Run 2

0 5 10 15 20 25 30
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

M
AE

 (
)

Training loss
Validation loss

(c) Run 3

0 5 10 15 20 25 30
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

M
AE

 (
)

Training loss
Validation loss

(d) Run 4

110

0 5 10 15 20 25 30
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

M
AE

 (
)

Training loss
Validation loss

(e) Run 5

Figure 32: Training plots LSTM.

D.4 BD-LSTM

Model topology

input_2: InputLayer
input:

output:

(None, 169, 328)

(None, 169, 328)

bidirectional_2(lstm_3): Bidirectional(LSTM)
input:

output:

(None, 169, 328)

(None, 169, 1024)

lstm_4: LSTM
input:

output:

(None, 169, 1024)

(None, 256)

dense_2: Dense
input:

output:

(None, 256)

(None, 1)

Figure 33: Model topology BD-LSTM.

111

Results per run

Run

Validation Test

MVL CE MVL CE

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

1 2.4622 3.9569 2.3826 3.7868 2.7471 4.3706 2.7223 4.3147

2 2.4663 4.0374 2.4263 3.8505 3.0154 4.6683 2.7663 4.3642

3 2.5453 3.9105 2.3819 3.7579 2.8510 4.3758 2.7189 4.3082

4 2.5448 3.9375 2.4589 3.8373 2.8325 4.3781 2.7439 4.2886

5 2.5423 4.0348 2.4168 3.8624 2.8548 4.4886 2.7500 4.3573

Mean 2.5122 3.9754 2.4133 3.8190 2.8602 4.4563 2.7403 4.3266

Std. 0.0438 0.0578 0.0324 0.0447 0.0972 0.1284 0.0198 0.0327

Table 11: MAE and associated RMSE for five runs of BD-LSTM. The median performer is

highlighted. All values are in EUR/MWh.

Training plots

0 5 10 15 20 25 30
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

M
AE

 (
)

Training loss
Validation loss

(a) Run 1

0 5 10 15 20 25 30
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

M
AE

 (
)

Training loss
Validation loss

(b) Run 2

0 5 10 15 20 25 30
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

M
AE

 (
)

Training loss
Validation loss

(c) Run 3

0 5 10 15 20 25 30
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

M
AE

 (
)

Training loss
Validation loss

(d) Run 4

112

0 5 10 15 20 25 30
Epoch

1.5

2.0

2.5

3.0

3.5

4.0

M
AE

 (
)

Training loss
Validation loss

(e) Run 5

Figure 34: Training plots BD-LSTM.

D.5 Multi LSTM ResNet

Model topology

input_2: InputLayer
input:

output:

(None, 7, 55, 55, 5)

(None, 7, 55, 55, 5)

time_distributed_1(conv2d_1): TimeDistributed(Conv2D)
input:

output:

(None, 7, 55, 55, 5)

(None, 7, 53, 53, 32)

time_distributed_2(max_pooling2d_1): TimeDistributed(MaxPooling2D)
input:

output:

(None, 7, 53, 53, 32)

(None, 7, 26, 26, 32)

time_distributed_3(conv2d_2): TimeDistributed(Conv2D)
input:

output:

(None, 7, 26, 26, 32)

(None, 7, 24, 24, 64)

time_distributed_4(max_pooling2d_2): TimeDistributed(MaxPooling2D)
input:

output:

(None, 7, 24, 24, 64)

(None, 7, 12, 12, 64)

time_distributed_5(conv2d_3): TimeDistributed(Conv2D)
input:

output:

(None, 7, 12, 12, 64)

(None, 7, 10, 10, 128)

time_distributed_6(max_pooling2d_3): TimeDistributed(MaxPooling2D)
input:

output:

(None, 7, 10, 10, 128)

(None, 7, 5, 5, 128)

time_distributed_7(conv2d_4): TimeDistributed(Conv2D)
input:

output:

(None, 7, 5, 5, 128)

(None, 7, 3, 3, 256)

time_distributed_8(max_pooling2d_4): TimeDistributed(MaxPooling2D)
input:

output:

(None, 7, 3, 3, 256)

(None, 7, 1, 1, 256)
input_1: InputLayer

input:

output:

(None, 505, 328)

(None, 505, 328)

lstm_1: LSTM
input:

output:

(None, 505, 328)

(None, 505, 256)
time_distributed_9(flatten_1): TimeDistributed(Flatten)

input:

output:

(None, 7, 1, 1, 256)

(None, 7, 256)

lstm_2: LSTM
input:

output:

(None, 505, 256)

(None, 256)
lstm_3: LSTM

input:

output:

(None, 7, 256)

(None, 64)

concatenate_1: Concatenate
input:

output:

[(None, 256), (None, 64)]

(None, 320)

dense_1: Dense
input:

output:

(None, 320)

(None, 256)

dense_4: Dense
input:

output:

(None, 320)

(None, 256)

dense_9: Dense
input:

output:

(None, 320)

(None, 128)

dense_14: Dense
input:

output:

(None, 320)

(None, 64)
dense_2: Dense

input:

output:

(None, 256)

(None, 256)

dense_3: Dense
input:

output:

(None, 256)

(None, 256)

batch_normalization_1: BatchNormalization
input:

output:

(None, 256)

(None, 256)

add_1: Add
input:

output:

[(None, 256), (None, 256)]

(None, 256)

dropout_1: Dropout
input:

output:

(None, 256)

(None, 256)

dense_5: Dense
input:

output:

(None, 256)

(None, 128)

dense_8: Dense
input:

output:

(None, 256)

(None, 128)
dense_6: Dense

input:

output:

(None, 128)

(None, 128)

dense_7: Dense
input:

output:

(None, 128)

(None, 128)

batch_normalization_2: BatchNormalization
input:

output:

(None, 128)

(None, 128)

add_2: Add
input:

output:

[(None, 128), (None, 128), (None, 128)]

(None, 128)

dropout_2: Dropout
input:

output:

(None, 128)

(None, 128)

dense_10: Dense
input:

output:

(None, 128)

(None, 64)

dense_13: Dense
input:

output:

(None, 128)

(None, 64)
dense_11: Dense

input:

output:

(None, 64)

(None, 64)

dense_12: Dense
input:

output:

(None, 64)

(None, 64)

batch_normalization_3: BatchNormalization
input:

output:

(None, 64)

(None, 64)

add_3: Add
input:

output:

[(None, 64), (None, 64), (None, 64)]

(None, 64)

dropout_3: Dropout
input:

output:

(None, 64)

(None, 64)

dense_15: Dense
input:

output:

(None, 64)

(None, 1)

113

input_2: InputLayer
input:

output:

(None, 7, 55, 55, 5)

(None, 7, 55, 55, 5)

time_distributed_1(conv2d_1): TimeDistributed(Conv2D)
input:

output:

(None, 7, 55, 55, 5)

(None, 7, 53, 53, 32)

time_distributed_2(max_pooling2d_1): TimeDistributed(MaxPooling2D)
input:

output:

(None, 7, 53, 53, 32)

(None, 7, 26, 26, 32)

time_distributed_3(conv2d_2): TimeDistributed(Conv2D)
input:

output:

(None, 7, 26, 26, 32)

(None, 7, 24, 24, 64)

time_distributed_4(max_pooling2d_2): TimeDistributed(MaxPooling2D)
input:

output:

(None, 7, 24, 24, 64)

(None, 7, 12, 12, 64)

time_distributed_5(conv2d_3): TimeDistributed(Conv2D)
input:

output:

(None, 7, 12, 12, 64)

(None, 7, 10, 10, 128)

time_distributed_6(max_pooling2d_3): TimeDistributed(MaxPooling2D)
input:

output:

(None, 7, 10, 10, 128)

(None, 7, 5, 5, 128)

time_distributed_7(conv2d_4): TimeDistributed(Conv2D)
input:

output:

(None, 7, 5, 5, 128)

(None, 7, 3, 3, 256)

time_distributed_8(max_pooling2d_4): TimeDistributed(MaxPooling2D)
input:

output:

(None, 7, 3, 3, 256)

(None, 7, 1, 1, 256)
input_1: InputLayer

input:

output:

(None, 505, 328)

(None, 505, 328)

lstm_1: LSTM
input:

output:

(None, 505, 328)

(None, 505, 256)
time_distributed_9(flatten_1): TimeDistributed(Flatten)

input:

output:

(None, 7, 1, 1, 256)

(None, 7, 256)

lstm_2: LSTM
input:

output:

(None, 505, 256)

(None, 256)
lstm_3: LSTM

input:

output:

(None, 7, 256)

(None, 64)

concatenate_1: Concatenate
input:

output:

[(None, 256), (None, 64)]

(None, 320)

dense_1: Dense
input:

output:

(None, 320)

(None, 256)

dense_4: Dense
input:

output:

(None, 320)

(None, 256)

dense_9: Dense
input:

output:

(None, 320)

(None, 128)

dense_14: Dense
input:

output:

(None, 320)

(None, 64)
dense_2: Dense

input:

output:

(None, 256)

(None, 256)

dense_3: Dense
input:

output:

(None, 256)

(None, 256)

batch_normalization_1: BatchNormalization
input:

output:

(None, 256)

(None, 256)

add_1: Add
input:

output:

[(None, 256), (None, 256)]

(None, 256)

dropout_1: Dropout
input:

output:

(None, 256)

(None, 256)

dense_5: Dense
input:

output:

(None, 256)

(None, 128)

dense_8: Dense
input:

output:

(None, 256)

(None, 128)
dense_6: Dense

input:

output:

(None, 128)

(None, 128)

dense_7: Dense
input:

output:

(None, 128)

(None, 128)

batch_normalization_2: BatchNormalization
input:

output:

(None, 128)

(None, 128)

add_2: Add
input:

output:

[(None, 128), (None, 128), (None, 128)]

(None, 128)

dropout_2: Dropout
input:

output:

(None, 128)

(None, 128)

dense_10: Dense
input:

output:

(None, 128)

(None, 64)

dense_13: Dense
input:

output:

(None, 128)

(None, 64)
dense_11: Dense

input:

output:

(None, 64)

(None, 64)

dense_12: Dense
input:

output:

(None, 64)

(None, 64)

batch_normalization_3: BatchNormalization
input:

output:

(None, 64)

(None, 64)

add_3: Add
input:

output:

[(None, 64), (None, 64), (None, 64)]

(None, 64)

dropout_3: Dropout
input:

output:

(None, 64)

(None, 64)

dense_15: Dense
input:

output:

(None, 64)

(None, 1)

Figure 35: Model topology Multi LSTM ResNet.

114

Results per run

Run

Validation Test

MVL CE MVL CE

MAE RMSE MAE RMSE MAE RMSE MAE RMSE

1 2.3498 3.5415 2.3031 3.4525 2.7740 4.3489 2.7359 4.3236

2 2.3383 3.4533 2.2854 3.4003 2.8253 4.3390 2.7241 4.2574

3 2.3984 3.5398 2.3277 3.5034 2.8569 4.3914 2.7589 4.3072

4 2.3246 3.4578 2.2688 3.3844 2.7746 4.2580 2.7360 4.2315

5 2.2898 3.5277 2.2842 3.4897 2.7824 4.3288 2.7269 4.2672

Mean 2.3402 3.5040 2.2938 3.4461 2.8026 4.3332 2.7364 4.2774

Std. 0.0396 0.0446 0.0225 0.0527 0.0370 0.0483 0.0137 0.0375

Table 12: MAE and associated RMSE for five runs of Multi LSTM ResNet. The median per-

former is highlighted. All values are in EUR/MWh.

Training plots

0 5 10 15 20 25 30
Epoch

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
AE

 (
)

Training loss
Validation loss

(a) Run 1

0 5 10 15 20 25 30
Epoch

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
AE

 (
)

Training loss
Validation loss

(b) Run 2

0 5 10 15 20 25 30
Epoch

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
AE

 (
)

Training loss
Validation loss

(c) Run 3

0 5 10 15 20 25 30
Epoch

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
AE

 (
)

Training loss
Validation loss

(d) Run 4

115

0 5 10 15 20 25 30
Epoch

2.0

2.5

3.0

3.5

4.0

4.5

5.0

M
AE

 (
)

Training loss
Validation loss

(e) Run 5

Figure 36: Training plots Multi LSTM ResNet.

D.6 Weather Models

To assess whether weather data can at all be used to predict intraday electricity prices, we

perform some experiments with models using only the weather data. Naturally, these neural

networks face a challenging task, as this is essentially akin to placing a camera in front of a

weather report and asking it to give us a price in Euros. The only market data available to

these models is the output itself, which can really only be captured at an aggregate level, either

explicitly by bias terms or implicitly in nodes’ weights. We might therefore expect that networks

with access only to weather forecasts will tend to very nearly or exactly predict the mean or

median price from the training set in most cases, perhaps with some adjustments to match

cyclical patterns for instance in time of day or the season of the year. Since the only available

market data in this setting is the output price, the only comparable simple heuristic baseline

is the mean volume weighted price from the training set, with corresponding MAEs of 9.00

EUR/MWh and 6.68 EUR/MWh respectively on the validation and test sets.

The convolutiopnal networks we experiment with fit well to the training set, but the performance

on the validation set is rather volatile, and it begins overfitting almost immediately. Efforts to

mitigate this using additional dropout, reducing capacity, or introducing weight shrinkage did not

help noticeably. Similarly, the simpler multi-layer perceptrons successfully fits on the training

data, but its validation set loss is also unstable. The best validation set MAEs achieved by

these simple CNNs and MLPs are EUR 7.65 and EUR 7.68, respectively. Though very similar,

the models’ validation set loss are so erratic that it is hard to conclude anything definitive

with regards to their ability to generalise to unseen data. Nevertheless, their best MAEs are,

somewhat surprisingly, a fair amount better than the EUR 9.00 of always predicting the average

116

price from the training set (Table 3, Section 6.1.1). That said, these networks might have to

spend most of their representational ability on deciphering the delivery hour’s temporal position

in some cyclical pattern, rather than any deviations or patterns in the data compared to such

norms. Presumably, the networks might primarily be picking up on seasonal (in terms of winter

and summer) and time-of-day patterns using solar radiation and temperature.

In this regard, fully-connected networks can easily be given some additional context with which

to map representations of the weather forecast data that better capture deviations from cyclical

patterns. Since such networks flatten the input data and treat each combination of time step

and input variable as a separate feature, we can simply append to the end of that tensor a set

of indicator variables for the corresponding hour of the day, week day, and month. We would

expect a network that is given such context to be able to more accurately predict prices at any

given delivery hour — even if it only has access to weather data, in addition to these indicators

— as it will not have to waste as much representational capacity on inferring cyclical patterns.

0 100 200 300 400 500
Validation set index

0

25

50

75

100

125

150

175

200

VW
P

(
)

Target
Prediction

(a) Without seasonal indicators.

0 100 200 300 400 500
Validation set index

0

25

50

75

100

125

150

175

200

VW
P

(
)

Target
Prediction

(b) Giving the same network explicit seasonal indi-

cator variables inreases accuracy by a healthy mar-

gin.

Figure 37: Price predictions by a simple MLP on a subset of the validation set, using only

weather forecast images and, in one case, seasonal indicators.

Figure 37 (left) shows the individual predictions of a very simple MLP in a subset of the val-

idation set time frame. The exact same architecture is then trained again on an extension of

the weather forecast data with added indicator variables, and the corresponding plot is shown

in Figure 37 (right). Compared to the MAE of EUR 7.65 achieved without any explicit context,

including these indicator variables reduce this to minimum validation loss to 7.20. This latter

network can more easily use temporal context to detect patterns in weather properties relative

117

to the delivery hour’s temporal position. For instance, it might be more confident that a fore-

casted temperature is abnormally low if it already ”knows” that the corresponding hour is in

the middle of the day during summer — otherwise it could simply be night-time or the middle

of the winter.

Somewhat surprisingly, networks without the added explicit context provided by indicator vari-

ables do not simply resort to predicting some constant or near-constant price, but in fact seem

to vary their predictions based on recognised weather patterns. In Figure 37a, we see that the

MLP is able to not only discern some cyclical intraday pattern, but also has some longer-term

fluctuations. That being said, the network seems to revert to some global average, as it evidently

lacks the confidence to make large steps outside this average when predicting prices based solely

on weather data. The inclusion of explicit indicator variables in Figure 37b clearly increases

the network’s willingness to take such risks129, as the magnitude of the cyclical fluctuations is

greatly increased, as well as the deviations from the loosely discernible global tendency. Com-

paring Figure 37a and Figure 37b, it is impressive the extent to which the network is in fact

able to predict the near Elbas VWP based solely on forecasted weather at the corresponding

delivery hour — not even the weather preceding it, or the difference between predicted and

actual weather — along with some very simple contextual temporal information.

Consequently, convolutional neural networks perform better than we might expect considering

their translation invariance, and are not necessarily beat by simpler fully-connected neural net-

works using the same data. However, it is trivial to give the latter additional temporal context

using indicator variables, which improves their performance considerably. As such, it seems

that neural networks given only a single forecast of five weather bands are able to discern some

pattern that can help it predict volume-weighted prices better than simply guessing some global

measure — especially if also given some simple temporal context. Nevertheless, it is not clear

that including this weather data will improve the performance of networks that already have

access to market data, as any information from weather forecasts might already be captured

by that data. That being said, the fully-connected networks that combine weather forecasts

and temporal context evidently do more than simply predict using only the latter, which would

suggest that the weather data includes some information with predictive value beyond simply

conveying seasonal or cyclical effects.

129Predicting a price that is very different from some global average is a risk in that being more wrong is
penalised more by the loss function, hence it needs sufficient confidence in having recognised some pattern in the
data to justify taking such steps outside the norm.

118

D.7 Results LSTM vs. GRU

Model specifications LSTM GRU

Model
Look-
back
(days)

Hidden
layer 1

Hidden
layer 2

MAE RMSE
s/

epoch
MAE RMSE

s/
epoch

1 7 48 3.0492 5.0532 70 2.9851 4.9471 55

2 14 48 2.9826 4.7248 135 2.9644 4.8112 107

3 7 72 72 2.646 4.4994 128 2.8146 5.0104 100

4 14
72

(0.2, 0.3)
72

(0.2, 0.3)
2.5771 4.1661 259 2.6931 4.9741 200

5 7
256

(0.2, 0.3)
2.5872 4.2477 83 2.7102 4.8597 65

6 14
256

(0.2, 0.3)
2.5990 4.1915 158 2.7249 4.7481 128

7 14
256

(0.2, 0.3)
256

(0.2, 0.3)
2.6063 4.1749 304 2.7265 4.9212 240

8 21
256

(0.2, 0.3)
2.5925 3.9643 238 2.5823 4.0816 193

9 14
512

(0.2, 0.3)
2.6200 4.2375 199 2.6831 4.6738 156

10 7
256

(0.2, 0.3)
256

(0.2, 0.3)
2.6199 4.2241 161 2.8084 5.1020 121

11 14
512

(0.2, 0.3)
512

(0.2, 0.3)
2.6827 4.2760 504 2.8127 4.7704 331

12 14
512

(0.2, 0.3)
512

(0.2, 0.3)
2.7574 4.3825 513 3.0478 5.3720 337

13 21
512

(0.2, 0.3)
2.4665 3.8010 307 2.5911 4.1012 232

14 21
512

(0.2, 0.3)
512

(0.2, 0.3)
2.4595 3.8225 942 2.5471 4.0585 655

15 30
512

(0.2, 0.3)
2.5397 3.8538 545 2.6018 4.0580 371

Table 13: Performance of models with respectively LSTM and GRU layers. Model 12 is exactly

the same as model 11, except it is stateful. All other models are stateless. MAE and RMSE are

in EUR/MWh.

119

E Theory on Benchmark Models

E.1 Shrinkage Methods

Shrinkage methods add a regularisation term, Ω(β), to the loss function, C(ŷ, y) so that the

regularised loss function, C̃(ŷ, y), is:

C̃(ŷ, y) = C(ŷ, y) + λΩ(β) (4)

where ŷ is a linear model f(x, β) = β0 +
∑p

j=1 βjxj with j = 1, ..., p inputs in x and β the

estimated coefficients. The values of β are chosen so that the expression in Equation 4 is

minimised. The tuning parameter, λ, controls the extent of regularisation imposed on the loss

function, and it is usually selected through cross-validation.

Ridge regression

In ridge regression, the regularisation term is the sum of the squared coefficients, β, that is,

Ω(β) =
∑p

j=1 β
2
j . Ridge regression can also be expressed as an optimisation problem where the

loss function, C(ŷ, y), is minimised subject to the constraint
∑p

j=1 β
2
j ≤ s. When s approaches

infinity, λ approaches zero. At zero, the restriction is no longer binding and no shrinkage is

imposed. Alternatively, the closer s gets to zero, the stronger the shrinkage imposed on the

linear model.

LASSO

In the LASSO, or the Least Absolute Shrinkage and Selection Operator, method, the regu-

larisation term is set to equal the sum of the absolute values of the coefficients, β, that is

Ω(β) =
∑p

j=1 |βj |. Expressed as an optimisation problem, LASSO minimises the loss function,

C(ŷ, y), subject to the constraint
∑p

j=1 |βj | ≤ s. When the tuning parameter, λ, is sufficiently

large, LASSO sets some coefficients to zero. Thus, LASSO performs feature selection, in con-

trast to ridge that may shrink coefficients considerably but never sets them exactly equal to

zero. Hence, in a sparse dataset, where not all variables are relevant, LASSO would perform

best, while in a dense dataset, where all variables have relevance, ridge would be preferred.

Elastic net

Elastic nets are hybrids between ridge regression and LASSO, where the regularisation term is

expressed as the weighted sum of the ridge and LASSO terms: Ω(β) =
∑p

j=1(α|βj |+ (1−α)β2j).

120

The value of α is used to indicate the weight between ridge regression (α = 0) and LASSO

(α = 1) — hence, for elastic nets that are a hybrid between ridge and LASSO, α = (0, 1).

E.2 Feature Selection

Random Forest

Random forest is a bootstrap aggregation, or bagging, technique that combines the results from

multiple trees grown from random data samples. Hastie et al. (2009) describe how the random

forest algorithm is implemented to make predictions in regression problems. To grow each

random forest tree, Tb, where b = 1, ..., B, the algorithm draws a bootstrap sample, Z∗, with N

observations from the training data. The tree, Tb, is then grown by randomly selecting m of p

variables, identifying the best split point among the m variables, and then split the node into

two sub-nodes at that point. For each terminal node of the tree, this procedure is repeated until

reaching the minimum node size, nmin. The ensemble of trees over b = 1, ..., B is {Tb}B1 . In

regression, the algorithm uses this ensemble, {Tb}B1 , to make a prediction ŷ at point x by taking

the average of the ensemble:

ŷ =
1

B

B∑
b=1

Tb(x) (5)

The variables that have the highest importance in the random forest model can then be extracted

and used to fit a linear model.

Multivariate Adaptive Regression Splines (MARS)

Another approach for feature selection is to extract the most important features from a multi-

variate adaptive regression splines (MARS) model. MARS splits a function, at the value x = t,

into two piecewise linear basis functions, called a reflected pair :

(x− t)+ =

x− t if x > t

0 otherwise

and (t− x)+ =

t− x if x < t

0 otherwise

(6)

where + means the positive part (Hastie et al., 2009). Then, the MARS model takes a form

121

that resembles a linear model as shown in Equation 7 below. The exception is that instead of

using the variables, x, directly as inputs, the MARS model uses hm(x), where each hm(x) is a

function in the collection of basis functions or the product of two or more of the functions in

(Hastie et al., 2009). The variables that have the highest importance when fitting the MARS

model in Equation 7 can then be extracted and used to fit a linear model.

f(x) = β0 +

M∑
m=1

βmhm(x) (7)

E.3 Feature Extraction

Principal Component Analysis

Principal component analysis (PCA) performs an orthogonal linear transformation of a set of

variables, X. Hence, PCA is not a feature selection method, as the components are derived

from combinations of all the original variables (James, Witten, Hastie, & Tibshirani, 2017).

The first principal component, z1, has the direction v1 resulting in the transformation z1 = Xv1

having the largest variance amongst all linear combinations of the set of variables, X. Then,

each subsequent principal component, zi = Xvi, for i = 1, ...,M , is derived so that the variance

is maximised subject to being orthogonal to the earlier components (Hastie et al., 2009).

The n first principal components of a set of variables, X, can be extracted and used to fit

a model, instead of using the original variables (James et al., 2017). The components are

uncorrelated, hence, PCA removes potential weakness of one or more of the original variables,

X, being strongly correlated.

E.4 Gradient Boosting

Boosting methods combine many weak learners130 so as to achieve a higher predictive accuracy

(Hastie et al., 2009). To minimise the loss, new learners are added one at a time. In the gradient

boosting algorithm, decision trees are used as the weak learners. Decision trees are found to

have the potential of outperforming classical approaches when the relationship between input

variables and the dependent variable is a highly non-linear and complex (James et al., 2017).

Hastie et al. (2009) describes each step in the gradient boosting algorithm. First, the algorithm

130A weak learner is one that performs only slightly better than random guessing.

122

is initialised with a single terminal node tree outputting the prediction f0(x) as:

f0(x) = arg minγ

N∑
i=1

C(yi, γ) (8)

where i = 1, 2, ..., N are the training observations, yi their corresponding true targets, C a loss

function selected for the regression problem, and γ a constant assigned to the single terminal

node of the initial tree. Furthermore, γ is assigned so that the sum of the loss for all observations

i is minimised. To improve predictive accuracy, new trees are added using a gradient descent

procedure. For each iteration m = 1, 2, ...,M and for each of the training observations i, the

negative gradient of the loss function, rim, is computed as:

rim = −[
∂C(yi, f(xi))

∂f(xi)
]f=fm−1 (9)

where f(xi) is the prediction from iteration m − 1. The negative gradient gives the direction

of the steepest descent, and adding a new tree in this direction will reduce the loss. This is

done by fitting a tree with the objective to predict the negative gradient rim, as rim reflects the

prediction error of the the previous trees in the sequence. The terminal nodes of the new tree

are j = 1, 2, ..., Jm, and in iteration m they represent the regions rjm. For each j = 1, 2, ..., Jm,

γjm — the constant assigned to node j in iteration m — is computed as:

γjm = arg minγ
∑

xi∈Rjm

C(yi, fm−1(xi) + γ) (10)

Hence, γjm is assigned so that the the loss when predicting the true value yi from fm−1(xi) + γ

is minimised. Finally, the update from iteration m is:

fm(x) = fm−1(x) +

jm∑
j=1

γjmI(x ∈ Rjm) (11)

where fm−1(x) is the prediction from iteration m − 1 and
∑jm

j=1 γjmI(x ∈ Rjm) the new tree.

Finally, after the last iteration M , the resulting prediction ŷ is:

ŷ = fM (x) (12)

123

F Market Data Variables

F.1 Extracted Variables

Dataset Variable Unit
Level of
aggregation

Lagged

Elbas ticker

Near Elbas VWP (output) EUR/MWh Nordic

Lagged near Elbas VWP EUR/MWh Nordic h− 6

Lagged near Elbas volume MWh Nordic h− 6

Far Elbas VWP EUR/MWh Nordic

Far Elbas volume MWh Nordic

Elspot file
Elspot prices EUR/MWh Per area

Elspot volumes MWh Per area

Regulating prices

Up-regulation price EUR/MWh Per area h− 8

Down-regulation price EUR/MWh Per area h− 8

Dominating direction
Up = 1;
No = 0;
Down = −1

Per area h− 8

Consumption imbalance
price

EUR/MWh Per area h− 8

Production imbalance
prices (sales/purchases)

EUR/MWh Per area h− 8

Elspot capacity
Elspot transmission
capacities

MW Per area

Elbas capacity
Elbas initial transmission
capacities

MW Per area

Operating data
Consumption prognosis MW Per area

Production prognosis MW Per area

UMM data

Total number of UMMs Count Nordic

Number of production
UMMs

Count Nordic

Volume reported in
production UMMs

MWh Nordic

Number of consumption
UMMs

Count Nordic

Volume reported in
consumption UMMs

MWh Nordic

Seasonal
dummies

Hour-of-day 1− 24

Day-of-week 1− 7

Month 1− 12

Table 14: Extracted variables per market dataset. All (except day-of-week and month dummies)

are observed on an hourly frequency.

124

F.2 Summary Statistics

Summary statistics are calculated on the complete dataset.

Elbas ticker variables

Variable Minimum 1st Qu. Median Mean 3rd Qu. Maximum Stdev

N of trades 1.00 13.00 20.00 23.02 29.00 986.00 16.48

Price per trade -150.00 25.60 31.20 32.88 38.00 555.00 13.58

Volume per trade 0.00 5.00 10.00 16.82 20.00 890.00 24.64

Table 15: Summary statistics for the Elbas ticker data.

Variable Min 1st Qu. Median Mean 3rd Qu. Max Stdev NAs

Win VWP Near -75.68 25.00 30.90 31.93 37.47 259.55 12.41 0

Win VWP Far -54.16 25.00 30.74 31.54 36.88 253.90 12.02 7313

Win Volume Far 0.10 33.00 80.00 130.03 170.00 3355.60 155.59 7313

Win VWP Near Lag -75.68 25.00 30.91 31.93 37.47 259.55 12.42 5

Win Volume Near Lag 0.10 120.40 216.10 276.44 363.70 3180.50 228.48 5

Table 16: Summary statistics for the near and far Elbas VWP and volume variables.

Elspot price variables

Variable Min 1st Qu. Median Mean 3rd Qu. Max Stdev NAs

Spot PR DK1 -200.00 24.09 30.63 31.16 37.11 2000.00 22.60 0

Spot PR DK2 -200.00 25.36 31.57 32.77 38.85 253.92 13.93 0

Spot PR FI 0.32 27.52 33.53 34.97 40.57 300.01 13.64 0

Spot PR NO1 0.59 23.30 28.38 28.56 33.39 234.38 10.19 0

Spot PR NO2 0.59 23.26 28.28 28.23 33.06 210.00 9.23 0

Spot PR NO3 1.14 25.12 30.13 30.48 35.21 253.92 10.27 0

Spot PR NO4 1.46 23.86 28.27 28.98 33.89 253.92 10.03 0

Spot PR NO5 0.59 22.88 28.30 28.17 33.08 210.00 9.59 0

Spot PR SE1 0.32 25.04 30.45 30.79 35.86 253.92 10.93 0

Spot PR SE2 0.32 25.04 30.47 30.80 35.87 253.92 10.93 0

Spot PR SE3 0.32 25.10 30.62 31.23 36.22 253.92 11.67 0

Spot PR SE4 0.32 25.42 31.01 32.11 37.41 253.92 12.44 0

Spot PR SP1 1.14 24.54 29.34 29.64 34.50 224.97 9.90 0

Table 17: Summary statistics for the Elspot price variables.

125

Elspot volume variables

Variable Min 1st Qu. Median Mean 3rd Qu. Max Stdev NAs

Spot OM Buy DK1 515.70 1432.50 1911.10 1963.18 2403.60 4499.90 660.84 0

Spot OM Buy DK2 673.90 1337.00 1646.90 1690.61 2048.10 3034.50 468.33 0

Spot OM Buy FI 3171.70 5411.60 6189.20 6270.52 7032.82 11163.40 1182.38 0

Spot OM Buy NO1 1529.70 2812.00 3769.30 3978.39 5039.95 8299.00 1400.01 0

Spot OM Buy NO2 1529.60 3731.10 4303.10 4259.90 4811.10 6839.60 826.40 0

Spot OM Buy NO3 856.10 2150.20 2490.00 2445.31 2796.90 3860.30 525.46 0

Spot OM Buy NO4 905.70 1478.30 1738.80 1746.04 2008.80 2662.90 332.44 0

Spot OM Buy NO5 534.50 1525.20 1829.75 1835.07 2199.62 3361.40 525.11 0

Spot OM Buy SE1 754.20 1054.40 1175.00 1195.03 1322.00 1946.20 184.40 0

Spot OM Buy SE2 955.40 1419.10 1631.15 1654.81 1866.80 2845.50 309.32 0

Spot OM Buy SE3 4658.20 7706.30 9092.25 9246.99 10621.60 16353.20 2012.12 0

Spot OM Buy SE4 1172.10 2504.80 3075.90 3136.54 3741.10 5632.90 866.45 0

Spot OM Buy SP1 22634.00 34284.65 39086.10 39980.50 45187.55 65311.10 7850.75 0

Spot OM Sell DK1 142.70 1372.20 1942.90 1989.91 2566.72 4916.00 827.95 0

Spot OM Sell DK2 68.50 677.00 1015.70 1020.01 1323.70 2799.40 463.99 0

Spot OM Sell FI 1946.90 3836.10 4620.45 4664.38 5496.50 8799.70 1114.26 0

Spot OM Sell NO1 902.80 1831.30 2211.70 2434.57 2784.90 5932.30 873.75 0

Spot OM Sell NO2 771.60 4271.98 5308.15 5547.16 6833.75 9975.50 1782.97 0

Spot OM Sell NO3 243.60 1284.58 1747.65 1799.47 2236.10 3542.20 631.26 0

Spot OM Sell NO4 626.30 1950.40 2436.55 2450.19 2888.50 4120.10 677.66 0

Spot OM Sell NO5 406.10 1877.40 3236.75 3197.29 4226.12 7397.80 1481.71 0

Spot OM Sell SE1 433.90 1677.28 2586.55 2555.66 3375.10 4884.60 1006.38 0

Spot OM Sell SE2 656.40 3461.40 4681.05 4470.35 5593.95 7734.20 1413.37 0

Spot OM Sell SE3 4462.10 7466.68 8939.55 8886.13 10329.90 12353.40 1668.99 0

Spot OM Sell SE4 67.60 491.70 734.50 761.16 990.12 2265.50 337.36 0

Table 18: Summary statistics for the Elspot volume variables.

126

Elbas capacity variables

Variable Min 1st Qu. Median Mean 3rd Qu. Max Stdev NAs

Cap DK1 DK1A 0.00 1161.00 2141.00 2053.36 2989.00 4484.50 1152.71 456

Cap DK1 DK2 0.00 0.00 65.00 217.77 459.23 1190.00 260.85 336

Cap DK1A DK1 0.00 483.00 1203.00 1373.43 2120.00 4578.00 1093.38 456

Cap DK1A NO2 0.00 717.00 1550.00 1462.48 1954.62 3064.00 954.04 216

Cap DK1A SE3 0.00 0.00 391.05 490.31 740.00 1420.00 486.19 288

Cap DK2 DK1 0.00 600.00 895.55 836.50 1190.00 1200.00 370.08 336

Cap DK2 SE4 0.00 1029.75 1860.45 1729.72 2511.00 3000.00 935.94 744

Cap FI SE1 0.00 1813.08 2491.00 2162.82 2600.00 2600.00 579.90 360

Cap FI SE3 0.00 1351.92 2025.00 1827.37 2400.00 2700.00 647.62 456

Cap NO1 NO2 0.00 1733.90 2669.00 2610.67 3554.80 5450.00 1192.89 600

Cap NO1 NO3 0.00 0.00 0.00 0.14 0.00 200.00 4.00 720

Cap NO1 NO5 0.00 944.00 1527.00 1696.57 2393.45 4400.00 970.55 768

Cap NO1 SE3 0.00 0.00 387.00 907.63 1708.28 4240.00 1082.27 504

Cap NO2 DK1A 0.00 0.00 212.25 673.16 1222.03 3264.00 844.41 216

Cap NO2 NO1 0.00 634.48 1498.65 1531.20 2271.00 5300.00 1078.12 600

Cap NO2 NO5 0.00 100.00 250.00 289.56 400.00 900.00 239.73 792

Cap NO3 NO1 0.00 0.00 0.00 0.17 0.00 250.00 5.23 744

Cap NO3 NO4 0.00 291.70 500.55 495.46 729.00 1100.00 284.13 672

Cap NO3 SE2 0.00 195.00 600.00 655.01 1096.00 1600.00 500.35 504

Cap NO4 NO3 0.00 0.00 77.00 239.53 436.00 1050.00 297.81 672

Cap NO4 SE1 0.00 0.00 235.00 329.13 649.00 1200.00 343.93 480

Cap NO4 SE2 0.00 0.00 0.00 80.58 150.00 1000.00 117.68 504

Cap NO5 NO1 0.00 214.00 700.00 1042.84 1682.10 4200.00 1008.05 768

Cap NO5 NO2 0.00 115.00 300.00 273.64 400.00 800.00 187.40 816

Cap SE1 FI 0.00 0.00 0.00 306.25 552.75 1998.00 463.40 360

Cap SE1 NO4 0.00 364.68 548.00 536.52 750.00 1150.00 311.52 480

Cap SE1 SE2 0.00 2074.00 2799.00 2664.01 3300.00 5474.00 881.01 360

Cap SE2 NO3 0.00 217.00 762.00 723.88 1131.00 1600.00 523.30 504

Cap SE2 NO4 0.00 100.00 250.00 223.09 400.00 1000.00 146.65 504

Cap SE2 SE1 0.00 3300.00 3555.00 3673.91 4295.23 6600.00 891.57 360

Cap SE2 SE3 0.00 1524.78 3086.50 3311.02 4988.55 9748.00 2169.81 432

Cap SE3 DK1A 0.00 157.85 680.00 639.70 1028.65 1420.00 474.12 288

Cap SE3 FI 0.00 0.00 39.00 365.66 689.83 2700.00 499.34 456

Cap SE3 NO1 0.00 1287.62 2245.00 2259.82 3339.93 4240.00 1260.76 504

Cap SE3 SE2 0.00 8788.73 10643.30 10366.12 12260.00 14600.00 2427.29 432

Cap SE3 SE4 0.00 593.15 1575.40 1848.30 2918.10 6582.00 1471.61 576

Cap SE4 DK2 0.00 149.00 707.10 842.70 1331.00 3000.00 735.76 744

Cap SE4 SE3 0.00 3650.45 4970.85 4755.16 5964.00 7400.00 1524.23 576

Table 19: Summary statistics for the Elbas capacity variables.

127

Elspot capacity variables

Variable Min 1st Qu. Median Mean 3rd Qu. Max Stdev NAs

Spot UE DK1 DK1A 246.00 1690.00 1740.00 1786.73 2272.00 2372.00 424.52 0

Spot UE DK1 DK2 0.00 590.00 590.00 558.54 590.00 600.00 121.39 0

Spot UE DK1A DK1 250.00 1610.00 1630.00 1705.97 2212.00 2312.00 413.50 0

Spot UE DK1A NO2 0.00 950.00 1000.00 1115.27 1532.00 1632.00 369.19 0

Spot UE DK1A SE3 0.00 355.00 740.00 560.39 740.00 740.00 218.25 0

Spot UE DK2 DK1 0.00 600.00 600.00 566.61 600.00 600.00 126.20 0

Spot UE DK2 SE4 27.00 1050.00 1700.00 1396.81 1700.00 1700.00 416.09 0

Spot UE FI SE1 0.00 1065.00 1110.00 1076.16 1150.00 1230.00 159.58 0

Spot UE FI SE3 0.00 1200.00 1200.00 1092.79 1200.00 1350.00 254.40 0

Spot UE NO1 NO2 400.00 1700.00 1700.00 1672.36 1900.00 2900.00 294.70 0

Spot UE NO1 NO3 -350.00 -50.00 50.00 78.61 200.00 550.00 162.54 0

Spot UE NO1 NO5 0.00 300.00 300.00 419.25 650.00 650.00 161.12 0

Spot UE NO1 SE3 0.00 1050.00 1747.50 1565.89 2105.00 2145.00 568.97 0

Spot UE NO2 DK1A 0.00 950.00 950.00 1073.36 1432.00 1632.00 353.65 0

Spot UE NO2 NO1 700.00 2100.00 2600.00 2528.94 3100.00 3500.00 657.94 0

Spot UE NO2 NO5 0.00 100.00 250.00 217.09 300.00 400.00 100.67 0

Spot UE NO3 NO1 -550.00 -200.00 -50.00 -78.61 50.00 350.00 162.54 0

Spot UE NO3 NO4 0.00 0.00 0.00 7.78 0.00 200.00 28.14 0

Spot UE NO3 SE2 0.00 600.00 600.00 578.70 600.00 600.00 89.87 0

Spot UE NO4 NO3 0.00 600.00 900.00 737.64 900.00 1000.00 217.46 0

Spot UE NO4 SE1 0.00 350.00 650.00 503.22 650.00 700.00 188.19 0

Spot UE NO4 SE2 0.00 100.00 150.00 121.76 150.00 250.00 50.71 0

Spot UE NO5 NO1 0.00 700.00 2600.00 2343.82 3600.00 3900.00 1312.67 0

Spot UE NO5 NO2 0.00 300.00 300.00 352.16 500.00 600.00 118.70 0

Spot UE SE1 FI 50.00 1440.00 1470.00 1419.60 1510.00 1580.00 208.42 0

Spot UE SE1 NO4 0.00 400.00 450.00 375.53 450.00 550.00 118.96 0

Spot UE SE1 SE2 1100.00 3000.00 3300.00 3115.35 3300.00 3300.00 294.23 0

Spot UE SE2 NO3 0.00 600.00 900.00 813.27 1000.00 1000.00 218.91 0

Spot UE SE2 NO4 0.00 100.00 250.00 185.41 250.00 250.00 82.86 0

Spot UE SE2 SE1 2900.00 3300.00 3300.00 3299.82 3300.00 3300.00 8.48 0

Spot UE SE2 SE3 3100.00 6200.00 6600.00 6551.92 7000.00 7300.00 561.49 0

Spot UE SE3 DK1A 0.00 680.00 680.00 580.92 680.00 680.00 187.14 0

Spot UE SE3 FI 0.00 1200.00 1200.00 1115.76 1200.00 1350.00 225.73 0

Spot UE SE3 NO1 0.00 1158.00 1850.00 1613.54 2095.00 2095.00 546.29 0

Spot UE SE3 SE2 800.00 7300.00 7300.00 7296.79 7300.00 7300.00 142.67 0

Spot UE SE3 SE4 2600.00 4400.00 4900.00 4688.48 5100.00 5600.00 595.41 0

Spot UE SE4 DK2 0.00 1300.00 1300.00 1195.42 1300.00 1300.00 264.32 0

Spot UE SE4 SE3 0.00 2000.00 2000.00 1996.42 2000.00 2000.00 81.74 0

Table 20: Summary statistics for the Elspot capacity variables.

128

Regulating price variables (1): Down- and up-regulating prices

Variable Min 1st Qu. Median Mean 3rd Qu. Max Stdev NAs

Reg RN DK1 -217.02 21.00 27.81 27.53 34.03 183.40 13.32 0

Reg RN DK2 -217.02 22.00 28.69 29.06 35.22 253.92 13.53 0

Reg RN FI -1000.00 23.68 29.85 30.62 36.82 300.01 16.16 0

Reg RN NO1 -25.55 20.70 26.00 26.00 31.42 234.38 9.84 0

Reg RN NO2 -25.55 20.66 25.96 25.74 31.21 149.10 9.10 0

Reg RN NO3 -25.55 22.17 27.84 27.58 33.00 253.92 10.14 0

Reg RN NO4 -25.55 21.00 26.17 26.34 31.70 253.92 9.86 0

Reg RN NO5 -25.55 20.41 25.96 25.73 31.29 203.08 9.41 0

Reg RN SE1 -66.89 21.88 27.88 27.62 33.28 253.92 10.60 0

Reg RN SE2 -66.89 21.95 27.90 27.66 33.30 253.92 10.59 0

Reg RN SE3 -66.89 22.00 28.00 28.03 33.59 253.92 11.20 0

Reg RN SE4 -66.89 22.13 28.25 28.62 34.19 253.92 11.86 0

Reg RO DK1 -199.99 25.80 31.99 34.45 39.00 2000.00 26.42 0

Reg RO DK2 -199.99 26.97 32.90 36.88 40.86 1999.00 25.47 0

Reg RO FI 0.32 28.85 35.00 40.22 43.39 3000.00 41.41 0

Reg RO NO1 0.59 24.12 29.58 30.37 34.75 1999.00 17.12 0

Reg RO NO2 0.59 24.07 29.48 29.88 34.36 500.00 12.42 0

Reg RO NO3 1.14 26.14 31.41 32.79 37.04 500.00 15.38 0

Reg RO NO4 1.46 24.50 29.57 31.02 35.47 500.00 14.70 0

Reg RO NO5 0.59 23.87 29.42 29.77 34.40 500.00 12.72 0

Reg RO SE1 0.32 26.09 31.50 32.99 37.22 1999.00 18.66 0

Reg RO SE2 0.32 26.09 31.54 33.03 37.25 1999.00 18.78 0

Reg RO SE3 0.32 26.21 31.73 33.86 37.82 1999.00 20.77 0

Reg RO SE4 0.32 26.54 32.15 35.38 39.06 1999.00 23.54 0

Table 21: Summary statistics for the down- and up-regulating price variables. All variables have

53,400 observations.

129

Regulating price variables (2): Imbalance prices

Variable Min 1st Qu. Median Mean 3rd Qu. Max Stdev NAs

Reg RC DK1 -217.02 22.32 29.17 30.85 36.10 500.00 19.73 0

Reg RC DK2 -217.02 23.26 30.00 33.23 37.44 1999.00 25.88 0

Reg RC FI -1000.00 24.65 31.14 35.93 39.58 3000.00 42.82 0

Reg RC NO1 -25.55 21.43 27.04 27.82 32.99 1999.00 17.19 0

Reg RC NO2 -25.55 21.39 27.00 27.39 32.73 500.00 12.65 0

Reg RC NO3 -25.55 23.00 28.93 29.90 35.00 500.00 15.71 0

Reg RC NO4 -25.55 21.71 27.29 28.36 33.46 500.00 14.92 0

Reg RC NO5 -25.55 21.10 27.00 27.34 32.79 500.00 12.89 0

Reg RC SE1 -66.89 22.53 28.87 29.84 35.00 1999.00 18.83 0

Reg RC SE2 -66.89 22.63 28.91 29.92 35.00 1999.00 18.95 0

Reg RC SE3 -66.89 22.88 29.03 30.69 35.37 1999.00 20.93 0

Reg RC SE4 -66.89 23.00 29.40 31.95 36.00 1999.00 23.72 0

Reg RP DK1 -200.00 25.73 31.97 34.42 39.00 2000.00 26.43 0

Reg RP DK2 -200.00 26.94 32.88 36.85 40.83 1999.00 25.49 0

Reg RP FI 0.32 28.82 35.00 40.16 43.31 3000.00 41.39 0

Reg RP NO1 0.59 24.09 29.55 30.35 34.73 1999.00 17.12 0

Reg RP NO2 0.59 24.04 29.46 29.85 34.35 500.00 12.42 0

Reg RP NO3 1.14 26.10 31.38 32.76 37.01 500.00 15.36 0

Reg RP NO4 1.46 24.46 29.52 30.97 35.43 500.00 14.68 0

Reg RP NO5 0.59 23.85 29.40 29.75 34.38 500.00 12.72 0

Reg RP SE1 0.32 26.07 31.50 32.96 37.20 1999.00 18.65 0

Reg RP SE2 0.32 26.07 31.52 33.01 37.24 1999.00 18.77 0

Reg RP SE3 0.32 26.19 31.70 33.83 37.79 1999.00 20.77 0

Reg RP SE4 0.32 26.51 32.13 35.35 39.04 1999.00 23.52 0

Reg RS DK1 -217.02 21.00 27.89 27.59 34.11 183.40 13.35 0

Reg RS DK2 -217.02 22.03 28.77 29.15 35.36 253.92 13.59 0

Reg RS FI -1000.00 23.77 29.94 30.74 36.94 300.01 16.22 0

Reg RS NO1 -25.55 20.74 26.02 26.03 31.45 234.38 9.85 0

Reg RS NO2 -25.55 20.70 25.99 25.77 31.25 149.10 9.12 0

Reg RS NO3 -25.55 22.23 27.89 27.62 33.04 253.92 10.16 0

Reg RS NO4 -25.55 21.00 26.20 26.37 31.74 253.92 9.87 0

Reg RS NO5 -25.55 20.45 25.99 25.76 31.31 203.08 9.42 0

Reg RS SE1 -66.89 21.92 27.90 27.67 33.32 253.92 10.62 0

Reg RS SE2 -66.89 21.99 27.96 27.71 33.33 253.92 10.61 0

Reg RS SE3 -66.89 22.02 28.02 28.09 33.65 253.92 11.25 0

Reg RS SE4 -66.89 22.19 28.32 28.70 34.30 253.92 11.93 0

Table 22: Summary statistics for the imbalance price variables.

130

Consumption and production prognosis variables

Variable Min 1st Qu. Median Mean 3rd Qu. Max Stdev NAs

Op CE DK1 1184.00 1853.00 2205.00 2255.64 2649.00 3687.00 481.52 0

Op CE DK2 725.00 1261.00 1519.00 1519.50 1749.00 2545.00 325.81 0

Op CE FI 0.00 8328.00 9265.00 9404.42 10468.00 15280.00 1483.53 0

Op CE SE1 548.00 964.00 1120.00 1146.77 1290.00 2145.00 232.34 48

Op CE SE2 878.00 1628.00 1873.00 1911.16 2170.00 3613.00 377.61 48

Op CE SE3 5039.00 8275.00 9786.00 9967.78 11494.00 18215.00 2196.13 24

Op CE SE4 1345.00 2283.00 2748.00 2800.99 3260.00 5165.00 672.92 24

Op PE DK1 71.00 1051.00 1518.00 1607.10 2081.00 5014.00 774.15 0

Op PE DK2 60.00 555.00 846.00 866.95 1160.00 2437.00 392.14 0

Op PE FI 667.00 6398.00 7416.00 7451.49 8469.00 12328.00 1440.25 0

Op PE NO1 988.00 1937.00 2331.00 2614.67 3002.00 6309.00 1000.70 0

Op PE NO2 875.00 4438.00 5640.00 5830.58 7278.00 10016.00 1867.47 0

Op PE NO3 358.00 1481.00 1982.00 1974.16 2441.25 3788.00 633.73 0

Op PE NO4 1000.00 2285.00 2769.00 2798.18 3278.00 4601.00 717.20 0

Op PE NO5 686.00 2312.00 3102.00 3288.93 4062.00 7256.00 1245.16 0

Op PE SE1 351.00 1610.00 2514.00 2481.45 3295.00 4839.00 1001.60 0

Op PE SE2 873.00 3703.00 4991.00 4791.51 5984.00 8265.00 1499.19 0

Op PE SE3 4644.00 7932.00 9741.50 9566.08 11176.00 13570.00 1868.54 0

Op PE SE4 192.00 531.00 796.00 862.35 1130.00 2342.00 406.32 0

Table 23: Summary statistics for the consumption and production prognosis variables.

Urgent market messages (UMM)

Variable Min 1st Qu. Median Mean 3rd Qu. Max Stdev NAs

UMM Tot Cnt 0.00 0.00 1.00 1.85 3.00 15.00 2.16 0

UMM PE Vol 0.00 0.00 0.00 74.51 0.00 8835.00 278.50 0

UMM PE Cnt 0.00 0.00 0.00 0.30 0.00 14.00 0.82 0

UMM CE Vol 0.00 0.00 0.00 4.86 0.00 3000.00 50.50 0

UMM CE Cnt 0.00 0.00 0.00 0.03 0.00 6.00 0.22 0

Table 24: Summary statistics for the urgent market message (UMM) variables.

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Problem Definition
	Literature Review
	Thesis Structure

	The Nordic Electricity Market
	Nord Pool
	The Elspot Market
	The Elbas Market

	The Regulating Market
	The Decision to Trade in Elbas
	Nordic Power Production

	Identification of Elbas Price Determinants
	Available Intraday Capacities
	Production Capacities
	Transmission Capacities

	Magnitude of Power Imbalances
	Intermittent Energy Production Forecast Errors
	Load Forecast Errors
	Unplanned Power Outages

	Strategic Behaviour
	Available Price Information
	Market Power

	Conclusion

	Data
	Data Collection
	Nord Pool Market Data
	SMHI Weather Forecasts via Montel

	Pre-Processing of Market Data
	Calculating Aggregated Elbas Buyer Prices

	Pre-Processing of Weather Data
	Matching with the Volume-Weighted Average Price

	Splitting into Training, Validation, and Test Sets
	Exploring the Data
	Characteristics of Elbas Trading
	The Elbas Volume-Weighted Average Price

	Methodology
	Model Evaluation
	Benchmark Models
	Simple Heuristics
	Econometrics and Simpler Machine Learning

	Deep Learning
	A Brief Introduction to Deep Learning
	Designing Network Architectures
	Evaluating the Final Architectures
	Windowed Market Models: Deep Residual Networks
	Sequential Market Models: LSTM Networks
	Processing Spatio-Temporal Weather Data
	Market & Weather Model: Multi-Input Network

	Analysis and Results
	Model Performance Results
	Benchmark Models
	Deep Learning Models

	In-Depth Analysis of Model Performance
	Performance across Delivery Hours
	Performance across Trading Activity
	Performance across Price Levels
	Detecting Unusually High or Low Price Levels

	Conclusion

	Discussion
	The Potential of Deep Learning
	Practical Barriers to Deep Learning
	The "Black Box" Critique
	Theoretical Limitations and Avenues for Further Research

	Conclusion
	References
	Appendix
	Theory: Deep Learning
	The Multi-Layer Perceptron
	Activation Functions
	Gradient-Based Learning
	Optimisation Algorithms
	Fighting Overfitting
	Residual Connections
	Batch Normalisation
	Checkpoint Ensembling

	Recurrent Neural Networks
	Bidirectional Recurrent Networks
	Long Short-Term Memory

	Image Processing: Convolutions and Pooling
	Convolutional Pyramids

	Additional Information about Elbas
	Prices in the Regulating Market
	Elbas Trade Volumes per Area and Country
	Trading Activity across Trade Hours

	Standardisation or Normalisation?
	Distribution Plots

	Deep Learning Models
	ResNet 1
	ResNet 2
	LSTM
	BD-LSTM
	Multi LSTM ResNet
	Weather Models
	Results LSTM vs. GRU

	Theory on Benchmark Models
	Shrinkage Methods
	Feature Selection
	Feature Extraction
	Gradient Boosting

	Market Data Variables
	Extracted Variables
	Summary Statistics

