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Abstract

A trading strategy incorporating s-scores and conditional mean returns in the Black-

Litterman model is backtested over a 13-year period, 01.01.2005-29.12.2017, on the

OBX index at the Oslo Stock Exchange. Estimating the trading signals using dif-

ferent techniques, and conducting a constrained optimisation, daily NOK-neutral

long-short active portfolio weights are computed. In combination with the bench-

mark weights, the strategy is found to yield substantial profits gross and net of costs,

but statistical evidence in support of a superior strategy hypothesis is lacking, i.e. the

results are with a high probability a product of randomness. Seemingly, the strategy

seems to benefit from volatility, outperforming the benchmark during the financial

crisis, to then underperform in the low volatility years, 2016 and 2017. Additionally,

with the high concentration of Energy companies in the chosen benchmark, the

possibilities to make profitable trades in other sectors are capped, as seen by the low

percentage share of strong trading signals becoming active positions within these

sectors, and the poor performance of non-Energy sector-based portfolios. This thesis

finds some support for previous research, in that high volatility regimes are linked

to better performance and which sectors are fitting for a mean-reversion strategy.
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Chapter 1

Introduction

Following the seminal work of Harry Markowitz on portfolio optimisation, Black and
Litterman (1990) offered an approach that overcame some of the instabilities of the tra-
ditional mean-variance framework 1 by introducing the idea of an equilibrium model for
asset returns and subjective views about assets performance. The equilibrium expected
excess returns (prior distribution) are based on the market portfolio, which is a product
of the CAPM and is as an intuitive starting point, since it is directly linked linked to the
market. Views are then able to shift the portfolio weights away from the prior based on
investor’s confidence. Consequently, a practitioner must synthesise private information
into explicit return estimates and quantify uncertainty.

A few years prior to the Black-Litterman model, it is said that pairs trading originated
within Morgan Stanley Vidyamurthy (2004) as a way of automating investment decisions.
Following the technological advances and exponential growth in data, a wide range of
quantitatively oriented hedge funds have emerged, many focusing on the use of different
statistical arbitrage strategies. These strategies have existed side by side with the Black-
Litterman model, until Liew and Roberts (2013) attempted to combine them in their
paper "U.S. Equity Mean-Reversion Examined".

The aim here, is to explore the same combination they employ on a set of liquid
Norwegian equities, the constituents of the OBX index, from 2005 through 2017 and
identify if such a blend consistently outperforms the index (benchmark). Assuming a
zero daily risk-free rate, the strategy utilises statistical arbitrage to form views on the
one-day expected excess return of the constituents, which is then combined with zero-
equilibrium expected returns (Da Silva et al., 2009), in the Black-Litterman model to
produce posterior return estimates. From this, a set of active positions are generated,
1See Michaud (1989)
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tilting the total portfolio weights away from the benchmark. Applying the findings of
Liew and Roberts, view confidence is directly linked to the extent of mispricing between
the constituents and their industries represented by SPDR MSCI Europe sector ETFs,
measured by the s-score.

The literature 2, confirms the richness of research done within tactical asset allocation,
statistical arbitrage and Black-Litterman as isolated fields of research, but coverage of
their combination is limited. As such, my choice of topic contributes to uncharted territory,
by blending pairs trading with the Black-Litterman model within active management. To
the best of my knowledge, the only paper trying to bridge these is Liew and Roberts
(2013).

Where previous research paint with a broad brush, 3 this thesis focuses on a single
index, the OBX. Generating active positions to tilt the benchmark weights using statistical
arbitrage and the Black-Litterman model appears to be the first of its kind. Additionally,
existing literature is mainly focused on U.S equities, but here the Norwegian equity market
is considered.

The work presented draws most of its inspiration from the papers by Avellaneda and
Lee (2010) and (Liew and Roberts, 2013). Both present impressive results, measured by
strategy returns, as well as risk adjusted measures, such as Sharpe ratios. However, none
of them explicitly address the challenges of converting Sharpe ratios from one frequency
to another. Following Lo, autocorrelation and non-IID returns are corrected for when
aggregating Sharpe ratios from a daily to a yearly frequency.

Using daily data from Børsprosjektet, along with publicly available information ob-
tained from Newsweb, I reconstruct the OBX index weights for the period 03.01.2005 to
31.12.2017. This serves as input to construct the passive component of the trading strategy.
Then, I pair each constituent in the OBX index with an ETF based on the constituent’s
GICS 4 code. With daily returns on these ETFs, obtained from Datastream, I calibrate
the Ornstein-Uhlenbeck process and compute daily s-scores for each constituent.

Based on expected one-day excess returns and covariance matrices, the latter being
estimated using an equally weighted approach as well as an exponential weighted moving
averages approach, the derived posterior return estimates results in a set of active weights,
that together with the benchmark weights form the total portfolio. With these weights,
portfolio returns, and performance measures are computed and reported.
2For a full review see appendix E
3Avellaneda and Lee consider a trading universe consisting of 1, 417 stocks across 15 sectors and Liew and
Roberts utilise 500 securities, covering nine sectors.

4Global Industry Classification Standard
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The remainder of this thesis is structured as follows: Section 2 provides the theoretical
base for every strategy component, section 3 describes the data, and provides descriptive
statistics, section 4 outlines how the results are obtained, before they are presented and
discussed in section 5. Finally, in section 6, some limitations and possible extensions are
reflected upon, before some concluding remarks are offered.
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Chapter 2

Theory

This chapter introduces the central theory. Intuition for statistical arbitrage is provided,
with emphasis on pairs trading. Then key elements of the Ornstein-Uhlenbeck process is
considered, the original Black-Litterman model is derived, modifications used are high-
lighted and insights on the link between Black-Litterman and active management is given.
Longer derivations are found in the appendices. For notation, bold uncapitalized letters,
symbols and numbers represent vectors, bold capitalised letters and symbols represents
matrices and regular symbols represent numbers.

2.1 The Fundamentals of Pairs Trading

Pairs trading is based on the simple concept of exploiting price disparity between similar
securities, with the expectation of profit when the imbalance is corrected. Asymmetries
are detected by monitoring the spread 1 of pairs of securities with a history of co-movement.
Profits are generated by going long the relatively undervalued security and shorting the
other when the imbalance passes a predetermined threshold. This idea assumes the
existence and continuation of an equilibrium relationship, and is exposed to divergence
risk 2.

Consider the two simulated stock prices depicted in figure 2.1. Each follow a non-
stationary stochastic process, but they never move too far apart, indicating that common
factors are determining their growth.
1Distance from equilibrium relationship
2The risk of the securities not reverting to the equilibrium relationship.
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Figure 2.1: Cointegrated Stock Prices Simulated
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This plot illustrates two cointegrated securities. The series are simulated using a
random walk with an imposed covariance structure.

2.2 Relative Value Model for Equity Pricing

Before modelling the cointegrated residual process, the systematic component must be
factored out of the stock return process, with time, t, being measured from 03.01.2005.
In accordance with Avellaneda and Lee (2010), returns are quantitatively compared with
a set of factors, using an M factor linear model, exclusively based on price data. Thus,
stock returns are assumed to follow

dSi(t)

Si(t)
= αidt+

M∑
k=1

βik
dFk(t)

Fk(t)
+ dXi(t) (2.1)

∀i = 1, ..., N

∀k = 1, ...,M

Where

M∑
k=1

βik
dFk(t)

Fk(t)
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Are the systematic components of the individual stock returns. Following Liew and
Roberts (2013), the model employed here is simplified to

dSi(t)

Si(t)
= αidt+ βij

dFj(t)

Fj(t)
+ dXi(t) (2.2)

∀i = 1, ..., N

∀j = 1, ..., J

Consequently, individual returns are assumed to depend on a single factor. Fj is the
price of the jth ETF used to describe the stock’s sector. Note that βij is the factor
loading of ETF j on stock i. To arrive at the idiosyncratic component, each security is
regressed against its sector ETF, serving as a proxy for the stock’s peer group. Hence the
idiosyncratic term is given by

αidt+ dXi(t) (2.3)

Hence, the idiosyncratic term consists of a drift term and a residual component. The
drift captures company specific qualities, which can make it consistently over- or underper-
form its industry. dXi(t) describes the irrational behaviour not captured by these factors
or industry, and is what will be modelled using a mean-reverting and stationary stochastic
process.

2.3 The Ornstein-Uhlenbeck Process

Results regarding the Ornstein-Uhlenbeck process is presented here, with full derivations in
appendix A. As stated in section 2.2, dXi(t) is the increment of a mean-reverting stationary
stochastic process. The chosen model need to incorporate the considerations discussed in
section 2.2. Moreover, it must allow for observed anomalies in the relationship between a
security and its sector ETF. By this, the increment, dXi(t) is assumed to satisfy

dXi(t) = κi [θi −Xi(t)] dt+ σidBi(t), κi > 0 (2.4)

Which is the continuous time representation of a stationary autoregressive model of
order one. The objective is to capture the dynamics related to overreactions and other

6



factors driving temporal mispricing. Assuming efficient markets, such anomalies should
be short-lived and the process should have a zero unconditional expectation to reflect this.
This property is demonstrated in (A.9). Furthermore, the one-day conditional expectation
is given by

E{dXi(t)|Fs, s ≤ t} = κi[θi −Xi(t)]dt (2.5)

With a sign depending on θi −Xi(t). This fits with the observation that the spread
should mean revert from above if the stock is relatively overvalued compared to the ETF
and vice versa. Assuming the parameters of the process to be constant over the chosen
period, equation (2.4) admits the solution

X(t) = e−κtX(0) + θ
[
1− e−κt

]
+ σ

∫ t

0

e−κ(t−s)dB(s) (2.6)

2.4 Signals

The cointegrated residual process aims at two things: Estimating the one-day expected ex-
cess return and generating signals- the relative distance between stock and ETF. Following
Avellaneda and Lee (2010), the s-score is defined as

si =
Xi(t)− θi
σeq,i

(2.7)

And it measures the number of standard deviations the cointegrated residual is from
its theoretical equilibrium level. By this representation, the effect of the drift term αidt

is assumed insignificant to the overall process. See figure 2.2 for Statoil’s s-scores during
2016.
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Figure 2.2: S-score Statoil
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This plot depicts equation (2.7) for Statoil over in 2016. The light blue bands are
placed at the ±1.5σ mark.

With a pure pairs trading strategy, the s-score would signal when to initiate long and
short positions. Here, it will determine confidence in the one-day expected excess returns
within the Black-Litterman model. If the drift component is not negligible, (2.7) must
be modified. The drift is accounted for by considering the conditional expected residual
return over dt.

E{dXi(t)|Fs, s ≤ t} = αidt+ κi (θi −Xi(t)) dt

= κi

(
αi
κi

+ θi −Xi(t)

)
dt

This, in combination with (2.7), yields

E{dXi(t)|Fs, s ≤ t} = κi

(
αi
κi
− σeq,isi

)
dt

Which suggests that the modified s-score is given by

smod,i = si −
αi

κiσeq,i
(2.8)
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Incorporating the drift in the signal ensures that if it is positive, the modified s-score
is reduced, increasing the threshold before a short signal is created. Thus, it embeds a
momentum-strategy.

2.5 Black-Litterman

The Black-Litterman model combines private views with the market view, resulting in
blended expected excess returns. This should yield more stable portfolios than the
Markowitz framework. The latter is known for being highly sensitive to inputs and is
prone to produce extreme portfolios. In their original paper, Black and Litterman started
with the mean-variance framework postulated by Markowitz and reverse engineered it.
Within the model, optimal portfolio weights are given by

ω∗ = (δΣ)−1µ (2.9)

Where

δ: Risk aversion parameter
Σ: Covariance matrix of market portfolio
µ: Expected excess return vector

Instead of using this to compute the optimal weights, they assumed that the market
portfolio, ωmkt, was the equilibrium portfolio. With the market weights being optimal,
they backed out the implied returns using

Π = δΣωmkt (2.10)

This was a substantial shift away from previous techniques. For the equilibrium
portfolio to admit the form suggested by Black and Litterman, they used the mean-
variance framework and the Capital Asset Pricing Model (CAPM), making the model
internally inconsistent. By assuming the CAPM holds, it follows that investors have
homogeneous beliefs, which is in clear contradiction with the aim of incorporating private
information in the estimation of expected excess returns. Regardless of this tension, the
model is popular in the industry.

Now, the model is briefly explained, and its main results presented. Then practical
considerations when applying the model in active management is discussed. Derivations
are found in appendices B and C.
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The Master Formula

The base of the Black-Litterman model is that expected returns are

r ∼ N (µ,Σ) (2.11)

Where the objective is to model these parameters. The expected value, µ is a random
vector, assumed to be distributed according to

µ ∼ N (Π ,Σπ) (2.12)

Hence, expected market returns are assumed unknown, and estimated with uncertainty,
Σπ, which is defined to be Σπ = τΣ, stating that the uncertainty of the mean estimate
is proportional to the uncertainty of the returns, with τ representing the scaling factor.
Given that both the mean and the returns are stochastic variables, total uncertainty of
the prior distribution is equal to Σr = Σ +Σπ

3. Thus, expected returns are modelled
as

r ∼ N (Π ,Σr) (2.13)

The posterior distribution is often referred to as the master formula. Assuming that
the investment universe consists of N securities at time t, the following applies

E(r) =
[
(τΣ)−1 + PᵀΩ−1P

]−1 [
(τΣ)−1Π + PᵀΩ−1Q

]
(2.14)

Where

ΠNx1: Vector of equilibrium expected excess returns
ΣNxN : Covariance matrix of equilibrium expected excess returns
PkxN : Pick matrix
Ωkxk: Diagonal covariance matrix of views expressing uncertainty
Qkx1: Vector of view’s expected excess returns
τ1x1: Scaling parameter
E(r)Nx1: The posterior returns estimate

3This relationship assumes that the uncertainty of the unknown mean is uncorrelated with the variance
of the returns
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From (2.14), the posterior estimate of expected excess returns is a weighted average
between the equilibrium returns and the returns from investor’s views (second term). The
average is then scaled, so the weights sum to one (first term). This can also be written
as

E(r) = Π + τΣPᵀ [PτΣPᵀ + Ω]−1 [Q−PΠ] (2.15)

Which illustrates that, in the absence of views, the posterior estimate is equal to the
equilibrium returns. The covariance matrix of E(r) is

Σpm =
[
(τΣ)−1 + PᵀΩ−1P

]−1 (2.16)

This represents the uncertainty in the posterior mean estimate, and not the variance
of the returns (Walters et al., 2014). The variance of the posterior distribution is then
the sum of the variance for the returns themselves and the variance of the estimate of the
mean, Σp = Σ +Σpm.

Parameters

Π is the implied expected excess returns from the constituents of the equilibrium portfolio
and Σ is the covariance matrix. The pick matrix expresses which assets the investor has
a view on, where each row represents a view for a total of k rows, and one column for
each asset in the trading universe, N in total. Views can either be absolute (Statoil has a
5 % upside) or relative (Statoil will outperform Aker BP by 2 %). For the absolute view,
the row in the pick matrix corresponding to that view would have 1 in the column for
Statoil. In the second case the row corresponding to the view would have 1 in the column
for Statoil and -1 in the column for Aker BP.

Assuming that views are uncorrelated, Ω is the diagonal matrix capturing uncertainty.
Hence, ∀i 6= j, ωij = 0. Q is the vector with excess return estimates, specified by the
investor, while τ is the proportionality factor, linking variance of assets’ returns and the
unknown mean return.

In this thesis, an alternative to the original model is used, where the unknown mean
return, µ, is treated as a point estimate. Alas, this result in Σπ = τΣ = 0, and that τ
disappears. Therefore, the covariance matrix of the returns Σ, and not Σp is taken as
input in the optimisation routine. Accordingly, the posterior expected returns are defined
as

11



E(r) = Π + ΣPᵀ [PΣPᵀ + Ω]−1 [Q−PΠ] (2.17)

Bridging Black-Litterman and Active Management

This section discusses the practical considerations of implementing the model. Since it
was originally derived under the mean-variance framework, where the investor seeks to
maximise expected utility of wealth as a function of wealth level, it does not directly map
over to active management, where the objective is to maximise wealth in excess of the
benchmark portfolio (Lee, 2000). Because of this discrepancy, naive implementation will
result in suboptimal trades and unintentional risk taking. The points emphasised in this
section is largely derived from Da Silva et al. (2009) and Lee (2000). Complete results
and derivations are found in appendix C.

The following definitions apply

ωB: Vector of benchmark portfolio weights
ωa: Vector of active portfolio weights
ωGMV P : Vector of minimum variance portfolio weights
µGMV P : Expected excess return minimum variance portfolio
µ: Expected excess return vector
µ: Expected excess equilibrium return vector
δ: Total risk aversion parameter
δT : Active risk aversion parameter
Σ: Covariance matrix
λ: Lagrangian multiplier (MV optimisation)
λT : Lagrangian multiplier (Active optimisation)

Given the objective of the investor in the total risk and return framework, along with
assumptions outlined in C, expected utility is determined by the portfolio’s expected
return and variance.

E{U(W )} = −e−δ(µp−
δ
2
σ2
p) (2.18)

And is maximised by solving

arg max
ω

ωᵀµ− ωᵀΣω

subject to ωᵀ1 = 1

(2.19)
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Which admits the solution

ω∗ = ωGMV P + ωS + ωT (2.20)

Where

ωS =
1

δ

Σ−1(µ1ᵀ − 1µᵀ)Σ−1

1ᵀΣ−11
1

ωT =
1

δ

Σ−1 [(µ− µ)1ᵀ − 1(µ− µ)ᵀ]Σ−1

1ᵀΣ−11
1

Hence, in the mean-variance framework, the optimal portfolio consists of three com-
ponents, the global minimum variance portfolio, a strategic (ωS) and a tactical (ωT )
component. The strategic part increases the weights for assets with higher equilibrium
excess returns, as seen by, ωS, µ1ᵀ − 1µᵀ, which compares the equilibrium returns for
all assets, i and j, i 6= j. Each matrix element is defined as µij = µi − µj. If the sign of
the term is positive, the portfolio weight, ωi is increased compared to its weight in the
minimum variance portfolio ωGMV P,i, and vice versa for asset j.

ωGMV P + ωS, the strategic mix is known as the benchmark portfolio in active man-
agement (Lee, 2000). Given that the objective of an active investment manager is to
outperform his benchmark, the expected utility can be expressed in terms of alpha and
tracking error (TE) 4.

E{U(W )} = −e−δT (α−TE2) (2.21)

Which is maximised by solving

arg max
ωa

ωᵀ
aµ− ωᵀ

aΣωa

subject to ωᵀ
a1 = 0

(2.22)

The solution can be written as

ω∗
a =

1

δT

Σ−1 [µ1ᵀ − 1µᵀ]Σ−1

1ᵀΣ−11
1 (2.23)

4TE is the volatility of the alpha.
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Comparing this to ωT in the mean variance framework, it is apparent why using the
Black-Litterman model in an active setting will result in unwanted positions.

ωT =
1

δ

Σ−1 [(µ− µ)1ᵀ − 1(µ− µ)ᵀ]Σ−1

1ᵀΣ−11
1

ω∗
a =

1

δT

Σ−1 [µ1ᵀ − 1µᵀ]Σ−1

1ᵀΣ−11
1

When maximising utility in the active risk-return domain, a position in asset i is
opened if µi > µj. In the mean-variance framework the same action only occurs if the
difference in expected excess returns between asset i and j is larger than what it is expected
to be in equilibrium. This is clearly seen by limiting the scope to two assets, where the
jth element of the ith row in

(µ− µ)1ᵀ − 1(µ− µ)ᵀ

Is equal to

(µi − µj)− (µi − µj)

Which goes to show that a tactical position is only opened if the difference in expected
excess returns for two assets is larger than what the difference should be in equilibrium,
whereas in the active management paradigm, the equilibrium is ignored. Consequently,
any difference is perceived as an alpha opportunity.

To illustrate how the differences in objectives affect the optimal portfolio when using
the Black-Litterman model as is, assume that the investor does not have any views, and
derive the optimal portfolio starting with (C.14)

ω∗
a =

Σ−1

δT

(
µ− 1

1ᵀΣ−1µ

1ᵀΣ−11

)

=
Σ−1

δT
(µ− ωᵀ

GMV Pµ1)
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Without any views, expected excess returns (µ) should equal equilibrium expected
excess returns (µ), where equilibrium returns are given by (2.10), and can be substituted
into (C.14), giving

ω∗
a =

δ

δT
(ωB − ωGMV P ) (2.24)

No views should not lead to active positions. As shown in (2.24), this is not the case,
unless the minimum variance portfolio is the benchmark, which is rarely the case. Thus,
implementing the Black-Litterman model without any adjustments results in unwarranted
active positions. Essentially the discrepancy arises because of how mean-variance and
active management define equilibrium. The former allows for differences between asset i
and j in equilibrium, while the latter does not. Consequently, in active management, active
trades are initiated to restore equilibrium from what is perceived as a disequilibrium.

Next, the consequences with regards to risk and return are outlined. In appendix C
the perceived upsides and hidden downsides of naively using the Black-Litterman model
is derived. What it shows is that with no information the active portfolio will yield an
information ratio (IR) equal to

IR = δ
√
σ2
B − σ2

GMV P

Clearly, having no information yields a positive information ratio, and the observed
upside is proportional to the benchmark’s volatility. A riskier benchmark increases the
number of active positions and gives the illusion of a positive alpha, but with a net beta
exposure to the benchmark, as seen by

βa =
δ

δT

(
1− σ2

GMV P

σ2
B

)
> 0

And total beta is

βp = 1 + βa > 1

With the portfolio volatility being
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σp = σB

√
βa

(
δ

δT
+ 2

)
+ 1 > σB

In conclusion, the illusionary alpha opportunity embeds unwanted systematic and
total portfolio risk. Since the objective of active management cannot be achieved in the
mean-variance framework, potential corrections are summarised below.

A potential countermeasure is to switch out the implied excess expected returns that
solve the reverse Sharpe Ratio optimisation with a vector of implied expected excess
returns that implicitly solve the information ratio optimisation problem (Da Silva et al.,
2009). Formally, use a Π that solves

0 =arg max
ωa

(ωa + ωB)ᵀΠ − λωᵀ
aΣωa (2.25)

subject to all other constraints

Instead of solving the problem proposed in Black and Litterman (1992)

0 =arg max
ωa

(ωa + ωB)ᵀΠ − λ(ωa + ωB)ᵀΣ(ωa + ωB)

subject to no constraints

ChoosingΠ such that all elements are equal, Πi = Πj, ∀i 6= j result in the equilibrium
return vector becoming constant Π = c. This in conjunction with the constraint ωa1 = 0

makes the first term of (2.25) disappear, leaving a tracking error minimisation problem,
which can always be solved by taking no active positions (ωa = 0). Therefore, any constant
Π will implicitly solve (2.25) regardless of other constraints. The rationale for fixingΠ is
that in an uninformed case, the belief a priori for the expected excess returns should be that
they are equal. Since any constant vector satisfies this, setting Π = 0 is an appropriate
choice 5. Additionally, ωB is removed from the objective function. The portfolio is then
constructed by solving the optimisation problem to arrive at ωa and defining

ω = ωa + ωB (2.26)

5Corresponding to saying that without information the assets should yield the risk-free rate.
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Chapter 3

Data

The two main data sources are Børsprosjektet and Datastream. From the former, daily
data on the constituents of the OBX index was pulled, and daily data on sector ETFs was
downloaded from the latter for the time period 01.01.2005 to 31.12.2017.

3.1 Securities Information

From Børsprosjektet, daily data for Oslo Børs (OSE) was downloaded and relevant infor-
mation from this was pulled by first constructing a semi-annual list of all the constituents
in the OBX from 1H 2005 to 2H 2017. This was done using Newsweb, OSE’s messaging
system for listed companies and financial instruments, searching for messages with the
title "Oslo Børs- Index constituents OBX xH 20xx" under the category "Melding fra Oslo
Børs". These press releases 1 informed of the upcoming index constituents and the repre-
sentative number of shares for each company. The extracted variables were

Ticker: Identification symbol
Company name: Public name
ISIN: Unique company identifier
Sub industry: According to Global Industry Classification Standard (GICS)
Shares: Free float number of shares
Dates: Start and end date for each constituent’s period

For the studied period, there are 67 unique companies that constitutes the OBX index.
Knowing each period’s composition, the following variables were gathered from the OSE
1For 1H 2005 to 2H 2006 the relevant information was downloaded from Datastream.
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dataset.
LogReturnAdjGeneric Logarithmic returns based on close prices and adjusted for dividends and corporate actions2

Bid Unadjusted Bid prices
Offer Unadjusted Offer prices
Last Unadjusted Close prices
AdjOpen Opening prices adjusted for dividends and corporate actions
GICS Eight digit code describing which sub sector the company belongs to

Also, a dataset on all stock splits and reversals occurring for listed companies between
1980 and 2017 was downloaded from Børsprosjektet to correct for issues outlined in section
3.3

Table 3.1: Descriptive Statistics- OBX Constituents

Statistic N Mean St.Dev Min Max Skewness Kurtosis No.Stocks

Energy 2, 280 -0.104 0.584 -1.094 0.822 -0.378 43.537 29

Materials 3, 258 -0.180 0.635 -0.894 0.644 -1.418 70.630 2

Industrials 2, 932 -0.026 0.575 -0.573 0.775 0.396 30.485 8

Consumer Discretionary 2, 496 -0.014 0.480 -0.744 0.416 -1.126 54.282 4

Consumer Staples 2, 740 0.151 0.410 -0.572 0.268 -0.394 20.490 7

Health Care 1, 167 0.319 0.601 -0.559 0.494 0.624 41.740 2

Financials 2, 307 0.019 0.405 -0.401 0.283 -0.350 15.580 6

Technology 1, 944 0.087 0.515 -1.234 0.342 -4.440 159.867 8

Telecom 3, 262 0.085 0.306 -0.300 0.136 -1.156 22.094 1

Utilities n.a. n.a. n.a. n.a. n.a. n.a. n.a. 0

This table provides descriptive statistics for the constituents of the OBX index between 2005 and 2017,
divided into sectors. N denotes the average number of observations within each sector, Mean is the daily
mean return for all stocks in the sector annualised, as is the St.Dev. No.Stocks is the number of companies
within each sector.

3.2 Exchange Traded Funds Information

From Datastream, daily adjusted 3 prices (P), denominated in EUR for State Street
Global Advisors’ MSCI Europe GICS sector ETFs were downloaded. These funds track
the performance of European large and mid-sized companies in different sectors, according
to GICS (SPDR, 2018).
3Dividends and other events to ensure comparability over time
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Table 3.2: Descriptive Statistics- Exchange Traded Funds

Statistic N Mean St.Dev Min Max Skewness Kurtosis Constituents Return Mkt.Cap

Energy 3, 265 0.050 0.238 -0.097 0.100 -0.190 4.790 17 0.029 76, 868.300

Materials 3, 265 0.076 0.286 -0.148 0.130 -0.010 8.190 43 0.077 32, 304.690

Industrials 3, 265 0.076 0.238 -0.142 0.125 -0.110 10.590 90 0.083 24, 320.490

Consumer Discretionary 3, 262 0.076 0.222 -0.119 0.134 0.040 9.360 70 0.074 28, 068.180

Consumer Staples 3, 264 0.101 0.159 -0.064 0.061 -0.250 4 42 0.076 78, 883.010

Health Care 3, 265 0.076 0.175 -0.077 0.078 -0.270 5.180 27 0.045 77, 393.410

Financials 3, 265 0 0.286 -0.139 0.144 -0.010 9.920 85 -0.002 47, 008.870

Technology 3, 265 0.050 0.238 -0.131 0.108 -0.320 6.840 18 0.019 42, 173.880

Telecom 3, 263 0.050 0.190 -0.094 0.085 -0.180 5.370 20 0.031 35, 145.740

Utilities 3, 264 0.050 0.206 -0.138 0.112 -0.480 10.040 21 0.048 22, 468.520

This table displays descriptive statistics for the SPDR MSCI Europe GICS ETFs. N is the number
of observations, Mean is the daily mean return annualised, St.Dev is the daily volatility annualised,
Constituents is the number of securities in each ETF according to SPDR, Return is the fund’s annualised
return since inception and MktCap is the average constituent’s market capitalisation per end of April
2018.

3.3 Adjustments and Other Considerations

During the data processing, several issues arose. When constructing the OBX constituents
list it became clear that companies were added and subtracted between scheduled revisions,
making it necessary to adjust the list on a daily basis, resulting in active use of Newsweb
to search for information on inter-period changes.

Additionally, some companies performed stock splits or reversals while being a con-
stituent, requiring the adjustment of the number of representative shares. Lastly, the price
data had some missing observations, which were padded using the last price forward.
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Chapter 4

Methodology

The objective of this chapter is to clearly state how the results presented in section 5
are generated. Each phase of the process is reviewed, emphasising the link between
theory and implementation. First, the reconstruction of the OBX index is outlined, before
signal estimation is explained. Following this, parameter settings in the Black-Litterman
model are discussed, and the optimisation problem is formalised along with practical
considerations. Lastly, some issues with backtesting are considered.

4.1 Reconstructing the OBX Index

Given the high frequency, long-short nature of the strategy, selecting a benchmark is
important, since the trading universe must consist of liquid securities. Therefore, the
OBX index, comprised of the 25 most liquid companies on OSE is chosen. Hence, each
constituent’s weight must be computed, to obtain ωB, and is given by

ωOBXi,t =
MCi,t

Σn
i=1MCi,t

, ∀i = 1, . . . , n (4.1)

Where MCi,t is the market capitalisation of company i at day t, and is computed
according to

MCi,t = pi,tqi,t (4.2)

qi,t is the number of free float shares each constituent is represented by in the index
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at any given day, and pi,t is the corresponding price, which is determined by the pricing
algorithm given by OSE (2017) 1.

pi,t =


bidi,t, if bidi,t > tradei,t

aski,t, if aski,t > 0 and aski,t < tradei,t

tradei,t otherwise

Using data on bid, offer and last (trade) prices, a merged dataset with correct prices
according to the algorithm was produced. In their methodology, OSE adjust prices for
dividend and other corporate actions. Using adjusted price series from Børsprosjektet
resulted in wrong index weights, because Børsprosjektet seems to adjust the entire price
series for such actions, creating large price discrepancies between the downloaded prices
and the prices used by OSE. Thus, unadjusted prices were used, as they were closer to
the actual prices. Taking a random sample of days uncovered that the estimated weights
do not deviate much from the actual weights 2. To determine qi,t, adjustments outlined
in section 3.3 were necessary, and a few occurrences of irregular changes to the index
composition were discovered. These are summarised in table E.4.

It is further assumed that companies are tradeable up until the day they leave the
index, effectively disregarding the notion of illiquidity in stocks about to exit. In addition
to compositional changes, some companies perform stock splits or reversals while being a
constituent. This requires the adjustment of the representative number of shares, for the
affected companies. In the case of a stock split/reversal at t∆q, which is trev1 ≤ t∆q ≤ trev2,
and the company is a constituent for t ≥ trev2, then the number of shares for the next
period is assumed to apply from t∆q instead of trev2 3. If a company is not a constituent
in the period after the split/reversal, the split/reversal ratio is used, i.e. if there is a 2:1
split, the number of index shares is multiplied by two. These adjustments are summarised
in table E.5.

With daily data on each constituent’s representative number of shares and the correct
prices according to the pricing algorithm, the weights were computed using equation
(4.1).
1Note that trade is often referred to as the close price and bid the offer price
2The estimation error seemed to occur at the fourth decimal for the sample.
3trev1 and trev2 represents times of index revisions.
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4.2 The Mean-Reversion Model

This section provides details on estimating the parameters of the Ornstein-Uhlenbeck
process and computation of s-scores. First, stock returns are decomposed in accordance
with (2.2), in which each company is matched with a sector ETF 4, and the residuals are
estimated from

ri,t = β0,i + βirETFj ,t + νi,t, t = 1, . . . , 70 (4.3)

Returns are chronologically ordered, such that rETFj ,70 is the last observed return.
Given the model in (2.2)

αidt = β0,i ⇔ αi =
1

dt
β0,i =

1

∆t
β0,i

∆t corresponds to 1
daysyear

, and the number of days in a year is set to 252, as is
done by Avellaneda and Lee and Liew and Roberts. Accordingly, αi = β0 ∗ 252 is the
estimate of permanent differences between security i and its sector. Security returns are
logarithmic and based on close prices adjusted for dividends and other corporate actions,
following

ri,t = ln

(
padjclose,i,t
padjclose,i,t−1

)

Both Avellaneda and Lee and Liew and Roberts use a 60- day regression window on
the basis that it incorporates one earnings cycle, which likely reflects natural fluctuations
in the share price over the cycle. In this thesis, exponential weighted moving averages
(EWMA) is one of two techniques used to estimate the covariance matrices. To include
a sufficient amount of history in these matrices, a 70 days estimation window is chosen.
For consistency, the same estimation window is used for the stock decomposition and the
computation of the s-scores.

The sum of residuals process for security i at time t is defined as

Xi,t = Σ70
k=1νt−k+1

4Some companies are reclassified during the period making daily matching a necessity.
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This can be seen as a discrete adaptation of the continuous Ornstein-Uhlenbeck process,
with parameters: κi, θi, σi and σeq,i, which can be estimated by

Xi,t = ai + biXi,t−1 + ζt

Compared with equation (2.6), it follows that

ai = θi
(
1− e−κi∆t

)
bi = e−κi∆t

Var(ζt) = σ2
i

1− e−2κi∆t

2κi

Leading to

κi = − ln(b) ∗ 252

θi =
a

1− b

σi =

√
Var(ζt)2κi

1− b2

σeq,i =

√
Var(ζt)
1− b2

It follows from the use of OLS regression that, Xi,t = Xi,70 = 0. Consequently, the
s-score is equal to

si =
−θi
σeq,i

As opposed to many techniques reviewed in section D.2, the existence of a cointegrated
relationship between a security and its sector-ETF is assumed, rather than tested for. To
limit uncritical use, securities need to mean revert fast, resulting in signals only being
used if the characteristic time-scale for mean reversion (Avellaneda and Lee, 2010)

τi =
1

κi
(4.4)
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is lower than T1 = 70
252

= 0.28. Another approach is to limit the number of stocks to
the ones with mean reversion times less than or equal to half a period (κi ≥ 252

35
= 7.2),

which implies that b from the AR(1) regression needs to be 0 ≤ b ≤ 0.97 5.

The s-score above assumes that the drift term is negligible. Therefore, a set of scores
that considers the drift is calculated. Moreover, given the potential high variance of the
θi estimator, a centred version is also computed, expressed as

θ̄i =
ai

1− bi
−
〈

a

1− b

〉

The brackets denote averaging over all the stocks in the OBX index at time t.

4.3 Parameter Settings in Black-Litterman

Equilibrium/Prior Expected returns

As outlined in section 2.5, prior returns, Π , are set to zero. Holding a market-neutral
portfolio leads to returns stemming from dXi,t, where the unconditional expectation is
zero, i.e. with no information, the expected net-return is zero 6. The Ornstein-Uhlenbeck
process aligns with this reasoning 7.

Covariance Matrix

Using a 70-days estimation window, the covariance matrices are estimated using an
equally weighted as well as the EWMA approach, where λ = 0.94 in accordance with
Morgan et al. (1996). The securities that comprise the matrix at time t are the ones
registered with a signal at time t, meaning that a stock might be a constituent without
being in the set where active positions might be taken.

Pick Matrix

Here, views are expressed on expected returns in absolute terms for all securities with
an estimated s-score. Therefore, the pick matrix equals INxN at time t.

Views

The views vector, Q is estimated according to (2.5), where the elements are the one-day
expected excess returns for assets with an estimated s-score at time t.
5−252 ln(b) ≥ 7.2⇔ b ≤ 0.97
6Assuming αi = 0
7Given that its unconditional mean is zero.
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Confidence in Views

He and Litterman (1999) proposes to quantify confidence, Ω, according to

Ω = diag(Pᵀ(τΣ)P)

Relying on Liew and Roberts, confidence is quantified by exploiting the information
embedded in the s-scores regarding the mean-reversion state of nature. A larger s-score in-
dicates a larger deviation from equilibrium. Consequently, the likelihood of mean-reversion
should increase confidence in the expected excess return estimate. Therefore, absolute s-
scores are daily grouped into quintiles, and confidence values, [0.1, 0.01, 0.001, 0.0001, 0.00001],
are assigned based on these, where a smaller number corresponds to greater confidence.

Posterior Distribution of Expected Returns

Conditioned on the parameter settings, the posterior returns vector is given by

E(r) = ΣPᵀ [PΣPᵀ + Ω]−1 Q (4.5)

4.4 Portfolio Optimisation

From section 2.5, the optimisation problem becomes

arg max
ωa

ωᵀ
aE(r)− λωᵀ

aΣωa

subject to all other constraints

The constraints follow Liew and Roberts, and are

Beta neutrality within each industry

βᵀ
Sjωa = 0, ∀j where Sj , {i : i ∈ sector j}

All active positions must sum to zero

ωᵀ
a1 = 0
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When shorting, there must be constraints on how much leverage is allowed for

1 ≤ (ωa + u)ᵀ1 ≤ Λ (4.6)

1 ≤ uᵀ1 ≤ Λ (4.7)

ui ≥ 0, ∀i (4.8)

Furthermore, it is not allowed to short (go long) securities expected to mean revert
from below (above). Hence

ωa,i ≥ 0, ∀i ∈ BTO, where BTO , {i : si,t < 0}

ωa,i ≤ 0, ∀i ∈ STO, where STO , {i : si,t > 0}

Where BTO denotes the set of securities in the universe at time t that are relatively
undervalued and expected to mean-revert from below. STO denotes the set of securities
that are relatively overvalued and expected to mean-revert from above.

Demanding true equality of the beta neutrality constraint rarely leads to a solution,
so the sector exposure has a slack of ±0.001. Leverage is given by

Λ =
Long Market Value + |Short Market Value|

Equity

And set to two, resulting in a NOK-neutral long-short active portfolio.

During the financial crisis, there were instances where all s-scores were negative, giving
no valid solution to the optimisation problem, i.e. exploiting mean-reversion is not possible.
In these instances all active weights were set to zero, making the portfolio equal to the
benchmark.

4.5 Backtesting

It is easy to (unintentionally) cheat when conducting a backtest, and report superior
results, which are not reproducible when managing real capital. A common mistake is to
trade on the same returns used to generate the signal. rt = pt

pt−1
− 1 is the return form
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t − 1 to t. If rt generates the signal and profits are made using rt+1, then the implicit
assumption is that the strategy can form a signal and trade on pt, since rt+1 = pt+1

pt
.

Thus, signals are generated in the afternoon using day t’s close prices and trading is done
the following morning, using the previous afternoon’s generated signals and the opening
prices at time t+ 1

2
, before profits are made at time t+ 3

2
. Given the 70-days estimation

window, the first signal is created on 20.04.2005 from returns between 10.01.2005 and
20.04.2005, with the portfolio being initiated using adjusted opening prices on 21.04.2005.
28.12.2017 is the last day where signals are generated. The last rebalancing occurs using
the following morning’s opening prices, while that day’s returns are given by

r29.12.2017 =
padjclose29.12.2017

padjopen29.12.2017

− 1

Even though this is a high frequency strategy, where trading costs are important to
consider, a simple approach is taken. To not underestimate these unknowns a total cost of
50 basis points (bp) is used and incorporates trading costs and slippage. Portfolio equity
at time t is assumed to be given by the following P&L 8

Et+∆t = Et + Etrf∆t+ΣN
i=1Citrit −

(
ΣN
i=1Cit

)
rf∆t (4.9)

−ΣN
i=1|Ci(t+∆t) − Cit|ε (4.10)

Where, Et is the equity at time t, Cit is the NOK amount invested in stock i at time
t, rit is the return on stock i over the period (t, t + ∆t) 9. rf is the interest rate. For
simplicity, long rates are assumed equal to short rates, and set equal to the risk free rate
10. ε is the combined one way term incorporating transaction costs and slippage.

4.6 Measuring Performance

Most of the performance measures reported in section 5 are computed using standard
techniques, but for transparency an overview is provided. Among the return statistics,
holding period return is the annualised return and is calculated following
8It is the same as Avellaneda and Lee uses.
9Effectively from open at day t to open at time t+ 1, i.e. ∆t = 1

252
10Assumed to be zero.
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HPR p.a. =

[
1 +

EquityT − Equityt0
Equityt0

] 1
m

− 1

Where m is the number of years. The yearly mean and median is simply the mean
and median daily returns annualised by

Mean/Medianreturn p.a. = (1 +Mean/Mediandailyreturn)n − 1

Where n is the number of compounding days. Annual volatility is the daily volatility
of the portfolio’s returns scaled up by the square root of the number of days in a year 11.
Skewness is measured using the sample estimator, given by

ˆSkewness =
1
n
Σn
i=1(ri − r̄)3[

1
n−1

Σn
i=1(ri − r̄)2

] 3
2

The reported kurtosis, measuring the shape of the returns’ probability distribution, is
in excess of the normal distribution. Estimation is done in accordance with

ˆKurtosis =
1
n
Σn
i=1(ri − r̄)4[

1
n
Σn
i=1(ri − r̄)2

]2 − 3

Maximum drawdown is measured as any deviation below the maximum cumulative
return at time t, with the size being measured in percentage of that maximum cumulative
return (Bacon, 2011, p 88). Alpha is computed as the difference between strategy and
benchmark annualised returns, with tracking error being the volatility of the excess return,
computed by

TrackingError =

√
Σ

(rstrategy − rbenchmark)2

σdaily
√

252

Using alpha and tracking error, information ratio is the ratio between them. Converting
Sharpe ratios from daily to yearly frequency is often done by scaling up by the square
root of the number of days in a year, which is valid if returns are IID (Lo, 2002). Correct
11Equal to 252 trading days.
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aggregation when returns are not IID involves adjusting for autocorrelation in returns,
assuming they follow an AR(1) process, the time conversion is consequently given by

SRyearly = SRdaily

√
n

[
1 +

2ρ

1− ρ

(
1− 1− ρn

n(1− ρ)

)]− 1
2

Where ρ is the autocorrelation coefficient, and n is the number of days in a year. For
more details, see Lo (2002).

4.7 Testing Strategy Returns

To test if the strategy significantly outperform the benchmark, a martingale test, the
compound excess return test (CERT), put forward in Foster and Young (2010), is applied.
This test is strict, saying that to believe that the strategy is superior, it must outperform
the benchmark by a factor of 20 12, because the strategy’s historical returns may have
come from a process with positive probability of loosing everything 13. The strategy’s
return generating process is assumed to be a black-box, as it was proposed as a method
of separating skilled from non-skilled fund managers. The test makes no assumptions
regarding the parametric distribution of returns or serial dependence, it is easy to compute
and it corrects for unobserved tail risk, hence it is appealing.

Based on Foster and Young (2010) the benchmark portfolio starts at one, and at time
t it has grown by a factor, (1 + rt,a). Given a zero daily risk free-rate, the ratio

At =
1 + rt,a
1 + rt,f

= 1 + rt,a ≥ 0

is the multiplicative excess return from the benchmark in relation to the risk-free rate.
For the strategy, the ratio is

Bt =
1 + rt,s
1 + rt,f

= 1 + rt,s ≥ 0

Next, by setting Bt , MtAt, the factor Mt shows by how much the strategy over- or
underperform the benchmark in period t. Mt ≥ 0, is a non negative martingale. An alpha
12Given a significance level of 5%
13Black Swan exposure.
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of zero translates into the set of martingales, Mt, where the conditional expectation is
one, as opposed to a set of martingales with conditional expectation larger than one being
characteristic of strategies with a positive alpha Foster and Young (2010). As such, the
null hypothesis of zero alpha becomes

H0 : ∀t, E[Mt|At−1, . . . , A1,Mt−1, . . . ,M1] = 1 (4.11)

For each t, 1 ≤ t ≤ T , define

Ct ,
∏

1≤s≤t

Ms (4.12)

To be the compound excess return of the strategy to the benchmark up to time t. The
probability that this series was generated by a strategy unable beat the market is at most
min1≤t≤T

1
Ct
. Here, the significance level is set to 5%.
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Chapter 5

Results

Many trading strategies look superior in a backtest, but fails out of sample. Therefore,
relying only on an in-sample test is not adequate to unequivocally establish profitability.
Despite this, only the “would-have-been” historical performance is considered here. In
this section, performance results for the best performing strategy variation is presented
with a discussion on sources of profitability and the statistical significance of the return
generating process is treated. For a discussion of results regarding mean-reversion for the
constituents and gross performance of all portfolios (benchmark, reference and strategy
variations), see appendix E

Out of the eighth strategy variations tested 1, the combination of EWMA covariance,
drift and non-centred means (SABL B3) performed best based on total return and risk
adjusted performance measures. For a full discussion, see section E.2. Thus, in this section,
its results after transaction costs are presented and compared to the benchmark portfolio.
Performance is broken down by year and sector. The latter entails forming portfolios that
are limited to active bets within each sector and mapping their theoretical returns, to
see which sector(s) are responsible for value creation. Furthermore, drawdowns, rolling
returns and statistical significance are discussed. Transaction costs are assumed to be
constant. Although unrealistic, the estimate is conservative, to limit the overestimation of
results after costs. Potential improvements and remedies are discussed in chapter 6.
1For a description of all variations, see table E.2
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Figure 5.1: Comparing SABL With the OBX Index
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The top panel plots the cumulative returns of the benchmark portfolio and the SABL B3
portfolio from 2005 to 2017. The lower left panel shows the drawdowns for both portfolios,
while the lower right panel plots the one-year rolling average return for the same portfolios. All
plots are after transaction costs.

It is apparent that during the strong markets of 2005 and 2006, the strategy took some
unprofitable positions, growing slower than the benchmark. By mid-2008 the SABL B3
and the benchmark were close in value, before experiencing the same drawdown. The
largest discrepancy occurs in the last quarter of 2008, when the market saw some extreme
intraday movements. The strategy portfolio had daily movements of ±20% and saw 12
days of movements of more than 10%, where the market only saw one. This resulted in
the SABL B3 neutralising the entire downturn, ending up with positive value creation for
the year.

The market was better in 2009, returning 60% while the strategy returned 52%. Where
the large increase in value in 2008 was due to some extreme movements, the strong
performance in 2009 seems to be caused by steady compounding, as the strategy only saw
eight ±10% intraday moves. Furthermore, post 2009, the strategy and the benchmark
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share a common trend, with the strategy exhibiting higher volatility, as is also seen by the
lower right panel, in which the one-year rolling average return in 2009-2010 far exceeds
the benchmark, only to fluctuate around it post 2010.

In the lower left panel, the relatively steep increase in SABL B3’s value in 2009
compared to the benchmark is visible, as its drawdowns are consistently lower. The
market’s drawdowns in 2012-2014 and 2017 are much lower than for the strategy, explaining
the strategy’s relatively poor performance these years, also seen from table 5.1.

Table 5.1: Performance SABL B3 and OBX

Year 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017

SABL B3

HPR -0.008 0.252 0.151 0.761 0.523 0.183 -0.176 0.133 -0.122 0.656 0.056 -0.008 −0.059

Yearly mean 0.067 0.386 0.248 1.857 0.877 0.344 0.012 0.209 -0.082 0.764 0.149 0.118 −0.025

Ann.Volatility 0.389 0.447 0.397 0.989 0.644 0.503 0.636 0.358 0.301 0.340 0.411 0.486 0.271

Skewness -0.250 -0.255 -0.514 0.338 0.133 -0.290 -0.639 -0.089 -1.456 0.779 0.388 -0.840 0.421

Kurtosis 0.558 3.830 3.243 2.195 2.079 3.110 3.713 0.343 6.697 3.321 1.429 4.589 2.420

Ann.SR -0.105 0.567 0.427 0.749 0.852 0.362 -0.462 0.384 -0.576 1.658 0.110 -0.073 -0.348

Alpha -0.439 -0.033 0.126 2.349 -0.002 0.140 0.077 0.021 -0.315 0.685 0.092 -0.079 -0.245

Tracking Error 0.360 0.405 0.394 0.934 0.623 0.462 0.531 0.328 0.283 0.320 0.374 0.467 0.263

Information Ratio -1.220 -0.082 0.321 2.514 -0.003 0.303 0.144 0.063 -1.114 2.139 0.247 -0.169 -0.934

MaxDD 0.294 0.322 0.201 0.652 0.313 0.336 0.575 0.256 0.313 0.134 0.252 0.450 0.284

OBX

HPR 0.317 0.336 0.121 -0.529 0.603 0.152 -0.115 0.134 0.199 0.043 0.024 0.164 0.188

Yearly mean 0.506 0.382 0.149 -0.459 0.717 0.186 -0.082 0.155 0.210 0.056 0.043 0.192 0.198

Ann.Volatility 0.186 0.250 0.214 0.531 0.361 0.241 0.271 0.187 0.115 0.156 0.190 0.216 0.117

Skewness -0.379 -0.260 -0.211 -0.167 -0.211 0.072 -0.194 -0.146 -0.278 0.369 -0.025 -0.088 -0.207

Kurtosis 2.186 3.139 0.016 1.902 0.273 1.588 1.041 0.612 0.711 2.828 1.481 1.294 0.091

Ann.SR 2.464 1.474 0.530 -1.703 1.747 0.634 -0.579 0.727 1.800 0.153 0.021 0.759 1.778

MaxDD 0.157 0.202 0.166 0.648 0.211 0.188 0.281 0.152 0.081 0.161 0.171 0.152 0.057

This table breaks down the performance of the overall best strategy and the benchmark by year. Strategy
results are reported after costs.

In table 5.1 it is shown how the strategy yields positive returns during the financial
crisis while the OBX falls by 53%, and how it experiences five years of negative returns
against two years for the benchmark. Resulting from the crash of the oil price in 2014,
the benchmark, with a heavy concentration of Energy companies, yielded 4.3%, mean-
while the strategy returned 66%, indicating that the expected return estimates had high
accuracy.

Given that two out the top three years for the strategy, measured by Sharpe Ratio,
is two of the most volatile years for the market, and two of the worst years are two of
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the market’s calmest years, it might be that the strategy performs best in high volatility
regimes. Despite this, 2011 being a volatile year, was not lucrative for the strategy,
returning −17% and 2014 being a low-volatility year earned high returns. Risk adjusted,
the strategy outperforms on Sharpe ratio four years, delivers top quartile information
ratios in two (Grinold and Kahn, 2000, p.114) and returns positive alpha in six out of 13
years. In other words, it does not consistently outperform the benchmark on neither a
total return or a risk adjusted basis.

A decomposition of portfolio performance by sector can uncover which factors drive it,
and figure 5.2 plots the performance of the sector portfolios.

Figure 5.2: Return Decomposition SABL B3
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This panel plots the cumulative returns for different sectors, i.e. the performance
of sector portfolios. Each one is constructed by only taking the active bets in that
sector. Performance is reported before costs. Note that the y axis is log scale with a
base of 10.

The dominance of Energy companies in the trading universe is further emphasised
here, showing how this sector is the largest driver for overall portfolio value, although
the large returns of late 2008 is also due to Financials, Consumer Staples and Industrials.
Supplementing the insights from table 5.1, the high returns 2014 is mainly attributed
to the Energy sector, its portfolio value increasing sharply at the beginning of the year.
Additionally, Industrials and Consumer Staples increased towards the end of the year,
while all other sectors were flat. The poor performance in 2011 is also mostly driven by
the Energy sector, as well as a decline in the Materials portfolio.

One of the most profitable sectors in Liew and Roberts (2013) was Technology, which
is one of the least profitable here, mainly because the index consists of few Technology
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companies. From 2005 to 2007, only three index constituents are in the sector, two of
them from the Tandberg system. Following this, the number of relevant companies in the
OBX is too low to take positions, until 2014. This lack of sector representatives seems to
be a general problem for all industries except Energy. Additionally, the cross-section of
companies within each sector being in the index at the same time is narrow. Effectively,
at any given time, there is not enough diversity in the benchmark for positions to be
taken.

Furthermore, as shown in table 3.2 the Utilities sector has no representatives, Telenor is
the only Telecom company and in Health Care there are two companies, Algeta and Nordic
Nanovector, which are not in the index at the same time. Consequently, no active trades
are made in these, effectively reducing the sector sample from ten to seven. The remaining
ones have a total of 36 companies, 29 of them being Energy companies. To highlight the
extent of this, active positions are decomposed, comparing trading signals with active
positions, to see how effectively strong signals are utilised in each industry.

Table 5.2: Utilization of Strong Signals

Sector Energy Materials Industrials Consumer Discretionary Consumer Staples Financials Technology

Number of strong signals 6, 555 824 1, 302 1, 018 1, 604 1, 459 508

Number of active positions 19, 838 1, 614 1, 991 1, 079 2, 398 2, 735 1, 134

Number of strong trades 4, 034 339 431 151 471 551 245

Trade share 0.203 0.210 0.216 0.140 0.196 0.201 0.216

Signal share 0.615 0.411 0.331 0.148 0.294 0.378 0.482

This table shows if and how strong signals end up in active trades. Number of strong signals is the sum
of signals within each sector larger than 1.5 in absolute value, number of strong trades is the sum of all
the strong signals that actually results in an active position being taken. Trade share is the ratio between
the number of strong trades and the total number of active trades. Signal share is the ratio between the
number of strong trades and the total number of strong signals.

Table 5.2 shows how the number of positions and strong signals in the Energy sector
is x1.8 and x0.97 the number of active positions and strong signals in all other industries
combined. In the Energy sector, 62% of all strong signals culminate in an active position,
while utilisation drops below 50% for the others, demonstrating how high concentration
of Energy companies leads to few stock pairs in the other sectors. This, in combination
with the beta-neutrality and long-short constraints, likely reduces the utilisation of strong
signals, since a long (short) position within one sector requires the opposite position in
another company in the same sector, and a small set of potential matches means fewer
outcomes where the opposite position is feasible. Consequently, it could be interesting to
see if a broader universe or less restrictive constraints increase signal utilisation.
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The strategy increases the investor’s investment by a factor, Mt larger than the bench-
mark, so the statistical significance of this factor is tested 2, to see if alpha is the product
of a superior trading strategy or if it is a product of randomness. The null hypothesis is
given by equation (4.11).

Figure 5.3: Multiplicative Excess Strategy Return to

Benchmark
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This panel plots the ratio of cumulative returns of the strategy to the benchmark,
Ct as given by equation (4.12), which represents the multiplicative excess return of
the strategy relative to the OBX.

Based on this, the probability that the strategy’s return series cannot beat the market
is min1≤t≤T

1
Ct

= 0.29. Hence, there is not enough evidence to confidently state that the
strategy is superior.

In conclusion, there have been years where the combination of statistical arbitrage and
the Black-Litterman model has extracted positive mean-reversion alpha before and after
transaction costs, with the SABL B3 portfolio delivering a total return in excess of the
benchmark, although not always large enough to compensate for the increased risk. In
addition to lacking statistical evidence in support of a superior strategy hypothesis, the
dominant Energy sector, along with optimisation constraints and low variability in the
composition of constituents, results in low utilisation of strong signals in other sectors. This
effectively caps the possibility for profitable trades outside the Energy industry, hinging
its success on that sector. Hence, while it seems to have potential, it might benefit from
a larger trading universe with less skew towards a single industry, meaning it is probably
not a good fit for the Norwegian stock market.
2See section 4.7.
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Chapter 6

Summary and Conclusion

6.1 Limitations and Areas of Further Research

While the results provide interesting insights, much can be improved or expanded on. Thus,
the aim here is to briefly outline some limitations and aspects that could be interesting
to investigate further.

Costs

Using constant transaction costs is too simplistic for a real-world representation, given
dynamic markets, where liquidity is an important driver, which disappears at the first sign
of trouble. Therefore, assuming constant costs during the financial crisis is unrealistic,
and true costs would likely reduce the returns of 2008 substantially. Moreover, the role of
slippage is ignored, assuming that 50 bp will cover it. Effectively, what is a real challenge
for any sizeable fund is ignored. As such, not addressing slippage directly likely leads to
an underestimation of the strategy’s real market impact.

In addition to the points mentioned above, transaction costs could also be addressed
directly in the optimisation routine, by introducing a penalty term, restricting the number
of trades taken. Another approach would be to obtain exposure to the benchmark by
holding an ETF and taking the active positions by trading options and/or swaptions. This
was briefly mentioned in Dahlquist and Harvey (2001).

Following the profit & loss equation given in section 4, stated by Avellaneda and
Lee, the long and short rates are assumed equal and equal to the risk-free rate (which is
assumed to be zero), effectively saying that the investor can short for free. This is clearly
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not realistic.

Essentially, there are two areas of improvement within the cost aspect. One is to use
dynamic trading costs and more realistic long and short rates, the other is to actively
manage them. The latter either directly in the optimisation routine or indirectly, using
derivatives.

Estimation

Strategy implementation required the estimation of a large number of parameters, permit-
ting a wide range of techniques, but given the time limit, some interesting alternatives were
left out. The residual process estimation was done using a single factor model consisting
of European sector ETFs as the explanatory variable within the OLS framework, with a
70-days estimation window. Alternatively, a multifactor model or PCA could be applied.
Moving away from OLS, Kalman filter shows potential according to Chen et al., and
it would be interesting to see how it performs in conjunction with the Black-Litterman
model. Both Avellaneda and Lee and Liew and Roberts state that the 60-days window
they use may not be the optimal, and that such a choice should be carefully considered.
Using 70 days was the result of the trade-off between including enough information into
the EWMA covariance matrices and not taking too long for a stock to be included in the
trading universe.

The covariance matrix is a central input variable in the Black-Litterman model and the
optimisation routine, and was here estimated using two standard techniques. To improve
performance, one could explore the effect of using volatility models from the GARCH class.
Within the literature on the Black-Litterman model there is little coverage on how to
quantify view certainty, with Liew and Roberts being one of the few to provide a concrete
solution. Expanding on their approach it could be interesting to see how other functional
forms would alter the results, given how it affects the weight of the views in the blending
of the prior and conditional distributions.

Furthermore, both papers 1 introduce volume weighted average returns when estimat-
ing factor exposure, finding this to improve performance, meaning such an implementation
could be beneficial. The argument for this is, according to Avellaneda and Lee, to discour-
age open-to-short signals for stocks that rally on high trading volume and open-to-buy
signals that form on stocks that fall on high volumes.

Survivorship bias is not present as the trading universe is coherent with the historical
1Avellaneda and Lee (2010) and Liew and Roberts (2013)
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composition of the index, but data mining is an issue, since the strategy is implemented
using different estimation techniques. Thus, randomness being the profit driver is a
possibility. Hence, the strict CERT test was used as a remedy, which showed that it could
not be excluded as the source of performance. Despite this, the variations in the strategy
were decided upon before downloading and looking at the data, and not fit to it, somewhat
reducing the bias.

6.2 Conclusion

Applying a strategy that uses statistical arbitrage as a source of views in the Black-
Litterman model, this thesis has investigated its performance on the constituents of the
OBX index, and is the first to do so. The key finding is that six of eight strategy variations
yields annualised holding period returns above benchmark before costs with positive
information ratios. After costs, the best version still outperforms, but the statistical
evidence for a superior strategy hypothesis is lacking. As such one cannot conclude that
the performance is not a product of randomness.

Yearly performance shows how profits are mainly generated during 2008, 2009 and
2014. This, in combination with the years of weakest performance being years of low
volatility, indicates that the strategy performs better in high volatility regimes. Upon
closer investigation, the positive net return of 2008 was largely due to a few extreme days
in the last quarter, while the high return in 2009 was the product of steady compounding.
A structural problem with Norwegian equities is the large concentration of companies
in the Energy sector, resulting in low variability within the other sectors represented in
the index. Along with optimisation constraints, this led to a minor percentage share of
strong trading signals being transformed into active portfolio positions. Consequently,
the possibility for profitable trades outside the Energy industry is capped, hinging the
strategy’s success on the Energy sector. On that notion, it became clear that this strategy
may be more suited for a larger market with a greater number of liquid stocks more evenly
distributed across different industries.

From the estimation perspective, the main takeaway was that, in conflict with others,
using a shrinkage estimator for the means of the Ornstein-Uhlenbeck processes underper-
formed the standard estimator. Seemingly, centred means reduce the size of the expected
returns and confidences, producing active positions that does not benefit fully from the
high volatility and erratic market regimes of 2008 and 2009. Consequently, the strategy
may better serve as a specialised strategy to investment managers searching to profit from
high volatility regimes than on a stand-alone basis.
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Appendix A

The Ornstein-Uhlenbeck Process

In this appendix, the solution of the stochastic differential equation governing the Ornstein-
Uhlenbeck process is derived. Different statistical properties of the process are also con-
sidered. Starting with the SDE

dXi(t) = κi [θi −Xi(t)] dt+ σidBi(t), κi > 0 (A.1)

It can be solved using a general framework for solving linear stochastic differential
equations. The setup requires the arithmetic Brownian motion and the geometric Brownian
motion.

Solving General Linear Stochastic Differential Equations

To show its solution using a general framework, one can use the methodology on how to
solve general linear SDEs. Starting with a general linear SDE

dX(t) = [b1(t)X(t) + b2(t)]dt+ [σ1(t)X(t) + σ2(t)]dB(t), 0 ≤ t ≤ T

X(0) = x0
(A.2)

Where

x0 ∈ L2(Ω) independent of B = B(t), 0 ≤ t ≤
b1, b2, σ1 and σ2 are deterministic functions on [0, T ]

Note that the coefficients also satisfy the linear growth condition and the global lipschitz
condition. Alas, for a given (Ω,F ,P) and B Brownian motion, there exists a (unique)
strong solution.
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By looking at (A.2) it is evident that the SDE is a linear combination of the SDEs for
an arithmetic and geometric Brownian motion. Hence, solving for X(t) entails expressing
the process as the product of an ABM (Z(t)) and a GBM (Y (t)). Based on the solutions to
these, the drift and dispersion terms of X(t) can be determined such that X(t) = Y (t)Z(t).
This means that

dX(t) = Y (t)dZ(t) + Z(t)dY (t) + dY (t)dZ(t) (A.3)

The solution to the arithmetic Brownian motion SDE is given by

X(t) = X(0) + µt+ σB(t) (A.4)

And the geometric Brownian motion SDE admits the following solution

X(t) = X(0)e(µ−
1
2
σ2)t+σB(t) (A.5)

Substituting in (A.4) and (A.5) in (A.3), yields

dX(t) = Y (t)[µZ(t)dt+ σZ(t)dB(t)] + Z(t)[µY (t)Y (t)dt+ σY (t)Y (t)dB(t)]

+ [µZ(t)dt+ σZ(t)dB(t)][µY (t)Y (t)dt+ σY (t)Y (t)dB(t)]

= {[µZ(t) + σZ(t)σY (t)]Y (t) + µY (t)X(t)} dt+ [σZ(t)Y (t) σY (t)X(t)] dB(t) (A.6)

Equating this with (A.2), the drift and diffusion coefficients are given by

µY (t) = b1(t), σY (t) = σ1(t), µZ(t) =
b2(t)− σZ(t)σY (t)Y (t)

Y (t)
, σZ(t) =

σ2(t)

Y (t)
(A.7)

Solution

Based on this, obtaining the solution for (A.1) is straightforward. From (A.7), it is clear
that

b1(t) = κ, b2(t) = κθ, σ1(t) = σY (t) = 0, σ2(t) = σ
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Since σY (t) = 0, the geometric Brownian motion SDE becomes and ordinary differential
equation, with solution

dY (t)

Y (t)
= −κdt⇒ Y (t) = e−κt, Y (0) = 1

And

µZ(t) =
κθ

Y (t)
= κθeκt

σZ(t) =
σ2(t)

Y (t)
= σeκt

Leading to

Z(t) = Z(0) +
∫ t
0
κθeκsds+

∫ t
0
σeκsdB(s)

Z(0) = X(0)

X(t) then becomes

X(t) = Z(t)Y (t)

= e−κt
[
X(0) +

∫ t

0

κθeκsds+

∫ t

0

σeκsdB(s)

]

X(t) = e−κtX(0) + θ
[
1− e−κt

]
+ σ

∫ t

0

e−κ(t−s)dB(s) (A.8)

Properties

The unconditional expectation of the increments of the Ornstein-Uhlenbeck process is
zero

E{dXi(t)} = E {κi [θi −Xi(t)] dt+ σidBi(t)}

= κiθidt− κiE[Xi(t)]dt+ σiE[dBi(t)]

= κi{θi − E[Xi(t)]}dt

= κi[θi − θi] = 0 (A.9)
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Conditional mean equal to

E{dXi(t)|Fs, s ≤ t} = κi[θi −Xi(t)]dt (A.10)

Which is the daily predicted returns. The sign of the forecast depends on the sign of
θi − Xi(t), since κi > 0. Fs is the σ-algebra generated by the Brownian motion of the
process.

The process, (A.8), has an expected value

E[Xi(t)] = E
{
e−κitXi(0) + θi

(
1− e−κit

)
+ σi

∫ t

0

e−κi(t−s)dB(s)

}
= θi

(
1− e−κit

)
(A.11)

And a variance of

Var [Xi(t)] = Var
{
e−κitXi(0) + θi

(
1− e−κit

)
+ σi

∫ t

0

e−κi(t−s)dB(s)

}

= Var
{
σi

∫ t

0

e−κi(t−s)dB(s)

}

= σ2
i

{
E

[(∫ t

0

e−κi(t−s)dB(s)

)2
]
−
[
E
(∫ t

0

e−κi(t−s)dB(s)

)]2}

= σ2
i

[
1

2κi
e−κi(t−s)

]t
0

=
σ2
i

2κi

(
1− e−κit

)
(A.12)

Letting time increase towards infinity, the equilibrium distribution for this process
becomes normal with

E{Xit(t)} = θi (A.13)

Var{Xi(t)} =
σ2
i

2κi
(A.14)
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Appendix B

Black-Litterman

In this section, the master formula in the Black-Litterman model, equation (2.14) is derived.
The approach in this thesis relies on using point estimates for the expected excess returns.
As such only the formula for E(r) is derived and not the formula for posterior variance,
since this is irrelevant. There are many different approaches to derive the Black-Litterman
model, but here the way of Theil’s mixed estimation method will be used, which relies
on the use of generalised least squares estimation, where the beta estimate represents
the E(r). As a starting point, recall the objective of ordinary least squares, which is to
minimise the sum of squared residuals. The following will primarily use matrix notation,
and all letters and symbols in bold represents vectors and matrices.

The error term is defined as

ε = y − xβ

and residuals as

e = y − xβ̂

This leads to sum of squared residuals being SSR = eᵀe. The best estimate for beta,
β̂ is given by the first order condition of minimising SSR.

∂SSR

∂β̂
= 0

β̂OLS = (xᵀx)−1xᵀy (B.1)
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If E(ε) = 0 and Var(ε) = σ2I, then (B.1) is BLUE. In the case of financial time series,
it is long been established that asset returns exhibit volatility clustering, resulting in
Var(ε) 6= σ2I. As such, OLS is not suited for financial time series econometrics. With het-
eroskedasticity the expectation is that Var(ε) = Ξ 6= σ2I. The improved approach should
therefore be a transformation ensuring that the error term is homoskedastic. Assuming
Ξ is symmetric and positive definite, there exists a matrix A such that

Ξ = AAᵀ ⇒ A−1Ξ(A−1)ᵀ = I

Premultiplying the OLS model by A−1 yields

A−1y = A−1xβ + A−1ε

With

ỹ = A−1y, x̃ = A−1x, ξ = A−1ε

The distributional parameters of the new error term, ξ is

E(ξ) = E(A−1ε) = A−1E(ε) = 0

Var(ξ) = Var(A−1ε) = A−1Ξ(A−1)ᵀ = I

Showing that the transformed model has a homoskedastic error term. Relying on (B.1),
the solution to the new model is

β̂GLS = (x̃ᵀx̃)−1x̃ỹ

=
[
(A−1x)ᵀA−1x

]ᵀ
(A−1x)ᵀA−1y

=
[
xᵀ(A−1)ᵀA−1x

]−1
xᵀ(A−1)ᵀA−1y

β̂GLS =
[
xᵀΞ−1x

]−1
xᵀΞ−1y (B.2)
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Applying this framework to obtain (2.14), it is assumed that the prior distribution of
returns follows a simple linear model on the form

Π = xβ + ζ

Where

ΠNx1: Equilibrium returns
xNxN : Identity matrix (IN) with factor loadings
βNx1: Unknown means of the return generating process
ζNxN : Residuals matrix with E(ζ) = 0, Var(ζ) = E(ζᵀζ) = Θ (invertible)

Along with the prior, the investor has private beliefs to be blended with the prior
information. This is modelled in the same way as the prior, and the relationship admits
the form

Q = Pβ + η

Where

Qkx1: Private views returns
PkxN : Matrix mapping views to assets
βNx1: Unknown means of return generating process
ηkx1: Residuals vector with E(η) = 0, Var(η) = E(ηᵀη) = Ω (invertible)

Writing the two models in combination gives

[
Π

Q

]
=

[
x

P

]
β +

[
ζ

η

]
(B.3)

In order to apply (B.2) to (B.3), one needs to know the expression for the variance of
the error term.

Var

{[
ζ

η

]}
= E

{[
ζ

η

] [
ζᵀ ηᵀ

]}
= E

{[
ζζᵀ ζηᵀ

ηζᵀ ηηᵀ

]}

Since prior information and private views are assumed to be independent of each other,
the error terms are also independent, resulting in the above expression being reduced
to
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E

{[
ζζᵀ 0

0 ηηᵀ

]}
=

[
E(ζζᵀ) 0

0 E(ηηᵀ)

]
=

[
Θ 0

0 Ω

]
(B.4)

With this, the GLS estimate of beta becomes

β̂GLS =

[xᵀ Pᵀ
] [Θ 0

0 Ω

]−1 [
xᵀ

Pᵀ

]
−1 [

xᵀ Pᵀ
] [Θ 0

0 Ω

]−1 [
Π

Q

]

=

{[
xᵀΘ−1 PᵀΩ−1

] [x

P

]}−1{[
xᵀΘ−1 PᵀΩ−1

] [Π
Q

]}

β̂GLS =
[
xᵀΘ−1x + PᵀΩ−1P

]−1 [
xᵀΘ−1Π + PᵀΩ−1Q

]
(B.5)

In the Black-Litterman model there is only one factor per asset. As such x is an
identity matrix and it can be dropped from (B.5). This leaves

β̂GLS =
[
Θ−1 + PᵀΩ−1P

]−1 [
Θ−1Π + PᵀΩ−1Q

]
To arrive at (2.14), set Θ−1 = (τΣ)−1 and E(r) = β̂GLS
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Appendix C

Active Management

The aim of this section is to provide transparent derivations of results used in section 2.5.
To ensure this, the derivations are done in small steps, but key results will be marked by
numbered equations. This chapter is largely based on Lee (2000), chapter 2 and Da Silva
et al. (2009), but connects the two to provide insight on the relationship between the
Black-Litterman model and active management.

Mean-Variance Paradigm

As described by von Neumann andMorgenstern, the objective of the investor is to maximise
expected utility of wealth. Assuming constant relative risk aversion and that asset returns
follow a multivariate normal distribution, the expected utility of wealth can be represented
as

E{U(W )} = −e−δ(µp−
δ
2
σ2
p) (C.1)

Here, µp = ωᵀµ is the expected return on the portfolio, and σ2
p = ωᵀΣω is the

portfolio variance. Maximising expected utility is achieved by

arg max
ω

ωᵀµ− ωᵀΣω

subject to ωᵀ1 = 1

(C.2)

Solving this optimisation problem is done through the first order conditions of the
Lagrangian.
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L = ωᵀµ− δ

2
ωᵀΣω − λ(ωᵀ1− 1)

First order conditions are

∂L
∂ω

= µ− δΣω − 1λ = 0

⇒ ω∗ =
1

δ
Σ−1(µ− 1λ) (C.3)

∂L
∂λ

= ωᵀ1 = 1

⇔ 1ᵀω = 1 (C.4)

Inserting (C.3) in (C.4) yields

1ᵀω = 1ᵀ

[
1

δ
Σ−1 (µ− 1λ)

]
= 1

⇒ δ = 1ᵀΣ−1µ− 1ᵀΣ−11λ

⇒ λ =
1ᵀΣ−1µ

1ᵀΣ−11
− δ

1ᵀΣ−11
(C.5)

Setting (C.5) back into (C.3) results in

ω∗ =
Σ−1

δ

[
µ−

(
1ᵀΣ−1µ

1ᵀΣ−11
− δ

1ᵀΣ−11

)
1

]

=
Σ−1µ

δ
− Σ

−11

δ

(
1ᵀΣ−1µ

1ᵀΣ−11
− δ

1ᵀΣ−11

)

=
Σ−1µ

δ
+

Σ−11

1ᵀΣ−11

(
1− 1ᵀΣ−1µ

δ

)

Note that ωGMV P = Σ−11
1ᵀΣ−11

. As such, the above can be rearranged, such that

52



ω∗ = ωGMV P +
Σ−1µ

δ
− 1ᵀΣ−1µ

δ

Σ−11

1ᵀΣ−11

= ωGMV P +
Σ−1

δ

(
µ− 1

1ᵀΣ−1

1ᵀΣ−11
µ

)
(C.6)

To progress, the concept of equilibrium returns µ, which is often used as input in
portfolio optimisation will often not equal expected returns, as the economy rarely is in
equilibrium. With this, (C.6) can be rewritten as

ω∗ = ωGMV P +
Σ−1

δ

[
µ− µ+ µ− 1

1ᵀΣ−1(µ− µ+ µ)

1ᵀΣ−11

]

= ωGMV P +
Σ−1

δ

(
µ− 1

1ᵀΣ−1µ

1ᵀΣ−11

)
+
Σ−1

δ

(
µ− µ− 1

1ᵀΣ−1(µ− µ)

1ᵀΣ−11

)

= ωGMV P +
1

δ

Σ−1

1ᵀΣ−11

(
µ1ᵀΣ−11− 1µᵀΣ−11

)
+

1

δ

Σ−1

1ᵀΣ−11

[
(µ− µ)1ᵀΣ−11− 1(µ− µ)ᵀΣ−11

]
ω∗ = ωGMV P +

1

δ

Σ−1(µ1ᵀ − 1µᵀ)Σ−1

1ᵀΣ−11
1 +

1

δ

Σ−1 [(µ− µ)1ᵀ − 1(µ− µ)ᵀ]Σ−1

1ᵀΣ−11
1 (C.7)

The optimal portfolio weights when maximising the expected utility when regarding
total return and total risk, consists of three terms. This can be rewritten as

ω∗ = ωGMV P + ωS + ωT (C.8)

Where

ωS =
1

δ

Σ−1(µ1ᵀ − 1µᵀ)Σ−1

1ᵀΣ−11
1

ωT =
1

δ

Σ−1 [(µ− µ)1ᵀ − 1(µ− µ)ᵀ]Σ−1

1ᵀΣ−11
1

This shows that the optimal portfolio weights consists of three different components
when maximising expected utility of wealth in the mean-variance paradigm. The optimal
weights are decided by the weights in the global minimum variance portfolio, a strategic
bet and a tactical bet.
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Active management Paradigm

In this part, the focus is shifted from total risk and return, and instead the optimal portfolio
is derived when the investor only concerns himself with active risk and return. Such a
situation is common in the investment industry, where managers are ranked based on by
how much they can beat their benchmark portfolio. In this setting, ωGMV P + ωS makes
up the benchmark portfolio. In this part, the assumption is that the investor does not
measure utility based on level of wealth, as determined by the total risk and return of the
portfolio, but rather by how much risk and return is generated in excess of a benchmark
index.

In this setting, it is sufficient to express the utility of the investor in terms of alpha and
tracking error. The portfolio’s alpha is the excess return over then benchmark portfolio,
and tracking error is the standard deviation of the alpha. Assuming either quadratic
utility, or that alphas from active positions are follows a multivariate normal distribution
with a constant relative risk aversion concerning tracking error, expected utility is

E[U(W )] = −e−δT (α−TE2) (C.9)

Where

α = ωᵀ
aµ

TE2 = Var(α) = ωᵀ
aΣωa

δT measures the risk tolerance for active risk 1, and is to be distinguished from δ which
is the tolerance for total risk. To maximise (C.9), the following must be solved

arg max
ωa

ωᵀ
aµ− ωᵀ

aΣωa

subject to ωᵀ
a1 = 0

(C.10)

The Lagrangian is thus

L = ωᵀ
aµ−

δT
2
ωᵀ
aΣωa − λTωᵀ

a1

1Tracking error
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And first order conditions

∂L
∂ωa

= µ− δTωaΣ − λT1 = 0

⇒ ω∗
a =

Σ−1

δT
(µ− 1δT ) (C.11)

∂L
∂λT

= ωᵀ
a1 = 0⇔ 1ᵀωa = 0 (C.12)

Inserting (C.11) in (C.12) yields

0 = 1ᵀΣ
−1

δT
(µ− 1λT )

0 = 1ᵀΣ−1µ− 1ᵀΣ−11λT

λT =
1ᵀΣ−1

1ᵀΣ−11
µ = ωGMV Pµ (C.13)

Substituting (C.13) back in (C.11), results in

ω∗
a =

Σ−1

δT

(
µ− 1

1ᵀΣ−1µ

1ᵀΣ−11

)
(C.14)

=
1

δT

Σ−1

1ᵀΣ−11
µ1ᵀΣ−11− 1

1

δT

Σ−1

1ᵀΣ−11
µᵀΣ−11

ω∗
a =

1

δT

Σ−1 [µ1ᵀ − 1µᵀ]Σ−1

1ᵀΣ−11
1 (C.15)

Also, note that (C.15) can be rewritten as

ω∗
a =

Σ−1

δT
(µ− µGMV P1) (C.16)
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Bringing it Home

Optimal solution

To show how the two parts combine, start with (C.14) and substitute µ with µ, which
in the Black-Litterman model is determined by (2.10). This results in

ω∗
a =

Σ−1

δT
(µ− ωᵀ

GMV Pµ1)

=
Σ−1

δT
(δΣωB − ωᵀ

GMV P δΣωB)1)

=
δ

δT
(ωB −Σ−1ωᵀ

GMV PΣωB1) (C.17)

Using the budget constraint from the mean-variance optimisation problem, the follow-
ing applies

ωᵀ
GMV PΣωB =

1ᵀΣ−1

1ᵀΣ−11
ΣωB

=
1ᵀωB

1ᵀΣ−11

=
1

1ᵀΣ−11
= σ2

GMV P (C.18)

Setting this back into (C.17), gives

ω∗
a =

δ

δT

(
ωB −

Σ−11

1ᵀΣ−11

)

ω∗
a =

δ

δT
(ωB − ωGMV P ) (C.19)

Perceived upside

With this dynamic, in a no-information situation, the portfolio will seemingly return
an alpha governed by
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α = ωᵀ
aµ

=
δ

δT
(ωB − ωGMV P )ᵀδΣωB

=
δ2

δT
(ωᵀ

BΣωB − ω
ᵀ
GMV PΣωB)

α =
δ2

δT
(σ2

B − σ2
GMV P ) (C.20)

The uninformed portfolios tracking error is given by

TE =
√
ωᵀ
aΣωa

=

√
δ

δT
(ωB − ωGMV P )ᵀΣ

δ

δT
(ωB − ωGMV P )

=
δ

δT

√
σ2
B + σ2

GMV P − 2σGMV P,B

TE =
δ

δT

√
σ2
B − σ2

GMV P (C.21)

Observed information ratio is thus

IR =
α

TE
=

δ2

δT
(σ2

B − σ2
GMV P )

δ
δT

√
σ2
B − σ2

GMV P

IR = δ
√
σ2
B − σ2

GMV P (C.22)

Hidden downside

The no-investment view scenario will lead to systematic risk exposure to benchmark
portfolio given by

σa,B = ωᵀ
aΣωB =

δ

δT
(σ2

B − σ2
GMV P )
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βa =
σa,B
σ2
B

=
δ
δT

(σ2
B − σ2

GMV P )

σ2
B

βa =
δ

δT

(
1− σ2

GMV P

σ2
B

)
(C.23)

The total beta of the portfolio is determined by

βp =
(ωa + ωB)ᵀΣωB

σ2
B

= 1 + βa (C.24)

Portfolio volatility is given by

σ2
p = (ωa + ωB)ᵀΣ(ωa + ωB)

σp = σB

√
βa

(
δ

δT
+ 2

)
+ 1 (C.25)
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Appendix D

Literature Review

The central role of investment programs in asset management has led to a diverse body
of literature. This literature review will not cover the field in its entirety, but focus on
the main elements of the applied strategy: Statistical arbitrage and the Black-Litterman
model. A brief review of the different levels of asset allocations is also provided to outline
where this strategy fits in.

D.1 Tactical Asset Allocation

Achieving the optimal blend of risk and return is the central task of any investment
decision. Policy choice can account for more than 90 % of the variation in quarterly
returns, according to Brinson et al. (1995). This shows that a fund manager’s investment
plan should be a determining factor in the allocation process. Dahlquist and Harvey (2001)
states that there are three investment categories: Benchmark, strategic or tactical asset
allocation. Benchmark investing encapsulates the index fund style of investment, strategic
allocation is the formation of views on the future performance of different assets or asset
classes, before taking long-term bets and deviating from the chosen benchmark. Tactical
asset allocation (TAA) is best defined by (Arnott and Fabozzi, 1988, p 4):

Tactical asset allocation broadly refers to active strategies which seek to en-
hance performance by opportunistically shifting the asset mix of a portfolio in
response to the changing patterns of reward available in the capital markets.
Notably, tactical asset allocation tends to refer to disciplined processes for
evaluating prospective rates of return on various asset classes and establish
an asset allocation response intended to capture higher rewards. In the vari-
ous implementations of tactical asset allocation, there are different investment
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horizons and different mechanisms for evaluating the asset allocation decision.

The prospects of TAA being able to increase portfolio performance is explored in
Dahlquist and Harvey (2001). In it the authors outline a framework using conditional
information in the asset allocation process. They find that information only needs a small
degree of predictive power before inflicting large alterations to capital allocation. Conse-
quently, they conclude that active strategies can exceed benchmark investing. Exploring
if TAA in practice can outperform passive investing, is too wide to fully cover. Therefore,
two popular TAA signals are reviewed: Momentum and contrarian.

The momentum strategy has received considerable attention in the literature. Je-
gadeesh and Titman document its results and find that going long previous winners and
shorting previous losers yield an excess return of 12% p.a. on average between 1965 and
1989. They also point out that these returns are not caused by the systematic risk of the
strategy, resulting in a puzzle that was answered by Chordia and Shivakumar (2002), where
they showed how the anomalous returns can be explained by a set of lagged macroeconomic
variables associated with the business cycle.

Opposite of the momentum strategy is the contrarian strategy. Its philosophy is to go
long poor performers and short the strong performers, on the assumption that the market
overreacts to news, implying that winners and losers are relatively over- and undervalued.
Bondt and Thaler (1985) find that portfolios of historical losers outperformed portfolios
of prior winners. Chan (1988) explains this by proposing that the portfolio risk is time-
variant. Hence, abnormal returns are affected by how risk is estimated. Using CAPM
in conjunction with other approaches, he reveals how following heavy losses (gains), a
stock’s beta increases (decreases), rendering the estimation of betas using historical data
inappropriate. As a result, the seemingly abnormal returns are normal compensation for
the strategy’s inherent risk.

D.2 Statitical Arbitrage

The term statistical arbitrage covers a set of quantitative trading strategies, aiming at
exploiting temporal statistical mispricing. Since its inception it has been embraced by the
industry, in contrast to its relatively low popularity by academics 1.

"Pairs Trading: Performance of a Relative-Value Arbitrage Rule" by Gatev et al. is
1As of 22-April-2018, there are 9,895 citations for the central momentum paper by Jegadeesh and Titman
(1993) and 2,347 citations for the central contrarian paper by Jegadeesh (1990) whilst Gatev et al. (2006)
only has 640 citations.
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central in the literature on statistical arbitrage. Using the sum of Euclidean squared
distances (SSD), the authors rank all possible pairs of liquid U.S. stocks between 1962 and
2002 2. From n(n−1)

2
possible pairs, the 20 pairs with the lowest SSDs are traded on over

the next six months. This rule generated excess returns of up to 11% p.a. before costs.
The paper ascribes the returns to an unknown risk factor, after showing high portfolio
correlations between distinct pairs. Moreover, after adjusting the returns using a version
of the Fama and French three factor model, the correlations were still present.

Expanding on the work of Gatev et al., Galenko et al. (2012) develop a similar strategy,
but it is based on a cointegration framework, since the strategy hinges on the assumption
that the pairs revert back to a long-run equilibrium relationship 3. Their methodology
reduces divergence risk present in Gatev et al. (2006).

This source of risk is confirmed in Do and Faff (2010), where the approach of Gatev
et al. is applied on an expanded dataset. They find that 32% of the pairs, formed by
Euclidean distance, do not converge. Moreover, in a later paper, they include transaction
costs and find the strategy by Gatev et al. to be unprofitable (Do and Faff, 2012), while
also trying to establish economically intuitive pairs by only matching securities in the
same industries 4.

Andrade et al. identifies the unknown risk factor proposed by Gatev et al. in their paper
“Understanding the profitability of pairs trading”. Investigating the Taiwanese stock market
between 1994 and 2004, they find the excess return from pairs trading to be compensation
for providing liquidity to uninformed buyers. The connection is established by strong
correlation between strategy profit and uninformed demand shocks in the underlying
securities.

Modifying the approach by Gatev et al., Engelberg et al. (2008) demonstrate how the
strategy’s profitability decays with time and its dependence on the nature of the events
occurring when securities diverge. Essentially, it is suggested that macro level information
affects both securities in a pair at different rates, which is stated to be the main profit
driver. The explanation being that, because of market frictions 5, the information is not
reflected in prices at an equal pace, causing temporal mispricing.

Jacobs and Weber (2013) strengthens the notion that different absorption rates are
2Each price series is constructed as a cumulative total return index, normalized to the first day of a 12
months period, with reinvested dividends.

3For details, see Engle and Granger (1987)
448 industries as proposed by Fama and French, see http://mba.tuck.dartmouth.edu/pages/faculty/
ken.french/Data_Library/det_48_ind_port.html

5Low liquidity etc.
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driving pairs trading returns by observing that trading opportunities are more likely to
open on days where sizeable amounts of new information is released. This alters the
focus from company to market level. Consequently, prices reflect common information at
different velocities, creating temporary deviations from equilibrium.

In addition to cointegration being extensively used to determine suitable pairs, other
techniques are also studied, such as modelling the pair spread as a mean-reverting process.
Elliott et al. (2005) applies such a methodology, relying on the Ornstein-Uhlenbeck process
to describe the spread yields, which generates interesting insights. With it, forecasts
regarding mean-reversion times can be estimated and probabilities for divergence is also
forecastable. Their paper is theoretical and offers no empirical results.

Finally, one of the most influential paper for this thesis is "Statistical Arbitrage in
the U.S. Equities Market" by Avellaneda and Lee. The main idea presented here is to
decompose stock returns into systematic and idiosyncratic factors, before modelling the
assumed cointegrated idiosyncratic component as an Ornstein-Uhlenbeck process.

Based on this trading signals are generated. Furthermore, they use different sets of risk
factors, to investigate the effect on the residual component and the strategy’s performance.
To determine different risk factors, Avellaneda and Lee use Principle Component Analysis
(PCA) on the correlation matrix of the broad equities market, and ETFs. With their mean-
reversion model, they create a dimensionless variable, s-score, measuring the distance of
the residual from its equilibrium value in standard deviations. Trading positions are
initiated when this value crosses certain thresholds 6.

Covering the entire period from 1997 to 2007, Sharpe ratios of 1.44 and 1.10 are
reported for the PCA and ETF approach, respectively. They also find that low volatility
regimes are associated with more factors being needed to explain the variation in the
equity premium. This is linked to strategy performance, with a low number of required
factors being advantageous.

D.3 Black-Litterman

Fisher Black and Robert Litterman contributed to asset allocation with their paper "Asset
Allocation: Combining Investor Views with Market Equilibrium" (Black and Litterman,
1990), in which they renewed the interest in Modern Portfolio Theory, a field with little
6The values are determined empirically and depend on the nature of the trade, i.e. long/short and/or
open/close
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industry interest following its introduction by Harry Markowitz 7. The lacking interest
was attributed to a series of practical challenges 8. Using the framework introduced by
Theil (1971), they provided investors with a model for how they could blend private
information with the implied excess equilibrium returns. Since its introduction, the model
has been widely studied, and alterations have been put forward. Thus, the literature on
the original model is first reviewed, before a selection of papers with alternative definitions
are highlighted.

The paper originated in an internal Research Note within Goldman Sachs Fixed income.
It was later extended and published in the Financial Analysts Journal. In it, intuition for
the model is provided along with partial derivations. Following this, He and Litterman
(1999) provides a reproducible example. Bevan and Winkelmann (1998) describe how
Goldman Sachs use the model in their daily operations.

Expected returns being normally distributed, with an unknown mean, is a central
assumption in the Black-Litterman model. As such, the mean itself is a random variable
with its own distribution. Consequently, uncertainty in the prior estimate of equilibrium
excess returns is needed, and is achieved through the parameter τ . Determining its value
is challenging, but in his paper "The Factor Tau in the Black-Litterman Model" 2013, Jay
Walters attempt to develop an understanding for it and demonstrate proper calibration
techniques.

With τ being difficult to estimate, the literature gives contradictory advice on its
calibration. As a result, alternative models have been proposed, excluding the parameter
entirely. Satchell and Scowcroft (2000) attempts to clarify the Black-Litterman model.
Instead they alter it, using point estimates for the prior returns and the views, contrary
to these being random variables, as in the original paper.

Building on Satchell and Scowcroft, Fusai and Meucci (2003) advocate for another
model adjustment removing τ . Meucci has researched the model extensively by offering
a method on how to incorporate non-normal views (Meucci, 2006), opening up for non-
normality in every parameter Meucci (2008) and demonstrating how to conduct scenario
analysis.

Specifying the covariance matrix, Ω, of private views around the unknown mean return
is also challenging. In "A step-by-step guide to the Black-Litterman model: Incorporating
user-specified confidence levels", Idzorek suggest a simplifying approach, allowing investors
to express confidence in a view as a number between 0 and 100 % . Based on the confidence
7See Portfolio Selection (Markowitz, 1952)
8For further details see Michaud (1989).

63



in each view, the posterior return estimates are tilted away from the prior estimates. A
high degree of confidence results in a large tilt and vice versa.

The use of the Black-Litterman model in active portfolio management is investigated
in Herold (2003). Focusing on generating positive alpha, the paper’s contribution, in
addition to showing how to apply the model in active management, is to propose measures
to judge the validity of views. Herold applies a model using point estimates, similar to
Fusai and Meucci (2003).

Applying the Black-Litterman model in active management poses challenges, as demon-
strated by Da Silva et al. (2009). First, they argue that since active views are the essence
of the model, it must be analyzed within the active management framework. Second,
since it is originally derived under the mean-variance framework, implementing it as is,
in active management results in suboptimal trades and unintentional risk taking. Lastly,
they discuss possible remedies, including setting the equilibrium excess returns to zero,
also proposed by Herold.

What becomes apparent when reviewing the literature on the Black-Litterman model
is the difficulty in finding papers discussing how to generate views. One of these is "U.S.
Equity Mean-Reversion Examined", where Liew and Roberts apply the methodology of
s-scores and conditional mean returns from the Ornstein-Uhlenbeck process , put forward
by Avellaneda and Lee to generate views in the Black-Litterman model .

Their approach offers an elegant way of forming views on a set of securities and
expressing confidence in these. Additionally, they adopt the zero equilibrium excess
returns proposed by Da Silva et al.. Like Avellaneda and Lee (2010), the authors make use
of PCA analysis and ETFs to investigate the source of profitability for their strategy. In
contrast to Avellaneda and Lee (2010), Liew and Roberts find that the larger the number
of components needed to explain a given level of variation is beneficial. This thesis is
largely based on their paper.
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Appendix E

Additional Results

This appendix provides a review of the existing literature, mean-reversion results from the
trading universe and from implementing all strategy varieties before costs. Furthermore,
details about data corrections are outlined.

E.1 Mean-Reversion

Given that the residual process dXi,t is assumed to be cointegrated, the constituents of the
trading universe should have a mean-reversion time of 35 days or less, corresponding to half
the time window used to estimate the parameters of the Ornstein-Uhlenbeck process.

Figure E.1: Empirical Distribution of Mean-Reversion Time
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This plot shows the empirical density of mean-reversion time, τ in days, for the all
securities from 2005 to 2017. Note that the mean reversion time is estimated as 1
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With an expected mean-reversion time of less than ten days and a standard deviation
of seven days across all sectors for the entire period, the constituents exhibit rapid mean-
reversion. The literature has tried to explain the sources of deviation from the equilibrium
relationship between pairs of financial assets. One theory, by Andrade et al., is that price
discrepancies arise from uninformed demand shocks. Given that the constituents of the
OBX is the 25 most liquid companies on OSE, such shocks should be absorbed faster than
for the average stock.

Overall, the securities tend to mean revert quickly. The table below splits mean-
reversion time by sector, to see if this behaviour is a common feature for all the sectors or
not.

Table E.1: Descriptive Statistics- Mean-Reversion Time

Statistic Maximum Third quartile Median Mean First quartile Minimum Fast days Standard deviation

Energy 822.580 11.974 7.900 9.293 5.163 0.972 0.997 7.532

Materials 44.856 12.688 8.731 9.773 5.674 1.363 0.998 5.535

Industrials 48.736 13.767 8.763 10.429 5.891 1.593 0.998 6.117

Consumer Discretionary 63.794 14.314 9.313 11.278 6.448 1.353 0.990 7.165

Consumer Staples 78.646 13.463 9.508 10.630 6.250 1.162 0.994 6.135

Health Care 42.821 15.595 10.392 11.436 6.166 1.294 0.994 6.755

Financials 397.801 11.786 7.794 9.409 5.243 1.014 0.996 7.381

Technology 279.167 12.409 8.446 9.897 5.766 1.506 0.996 7.458

Telecom 137.100 11.151 7.543 8.746 5.327 1.787 0.999 5.286

This table provides insight into the nature of mean reversion for the constituents of the OBX index, based
on a sector division. The row named Fast days are the percentage share of observations that have a mean
reversion time lower than or equal to half a period, 35 days.

All sectors are close in means, with a span from 8.7 to 11.5 days. Furthermore, the
share of fast mean-reversion observations is close to 100% for all industries. The largest
difference is found intra-sector in the max values, where Energy, Financials and Technology
have some observations that do not mean-revert, i.e. the speed of mean reversion, κ is low,
indicating non-stationary time series with unit root. Consequently, for these instances,
the model’s assumptions do not hold, and gives unreliable results.

These findings indicate that the chosen trading universe is appropriate for a mean-
reversion strategy. Additionally, there are no large differences between industries since all
sector distributions are relatively homogeneous. This is a clear advantage considering the
already limited number of stocks in the trading universe.
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E.2 Results for all Portfolios

The essence here is the strategy’s hypothetical performance between 2005 and 2017. To
illustrate it, a selection of performance measures for the benchmark portfolio and reference
portfolios 1 is reported along with gross results for all strategy variations.

Results are split into three categories: Return measures, risk measures and risk adjusted
measures. Furthermore, each of the strategy portfolios have their own names: Statistical
Arbitrage - Black-Litterman (SABL), a code A or B, indicating if the covariance matrices
are estimated using equal weights or with exponential weighted moving averages. Lastly,
the numeric value from one to four indicates whether the drift is included and/or if centred
means are used. The different codes are summarised below.

Table E.2: Portfolio Variations

Portfolio Strategy name Covariance estimation technique Included drift Estimator means

SABL A1 Statistical Arbitrage - Black-Litterman Equal weighted No Uncentred
SABL A2 Statistical Arbitrage - Black-Litterman Equal weighted No Centred
SABL A3 Statistical Arbitrage - Black-Litterman Equal weighted Yes Uncentred
SABL A4 Statistical Arbitrage - Black-Litterman Equal weighted Yes Centred
SABL B1 Statistical Arbitrage - Black-Litterman Exponentailly weighted moving averages No Uncentred
SABL B2 Statistical Arbitrage - Black-Litterman Exponentailly weighted moving averages No Centred
SABL B3 Statistical Arbitrage - Black-Litterman Exponentailly weighted moving averages Yes Uncentred
SABL B4 Statistical Arbitrage - Black-Litterman Exponentailly weighted moving averages Yes Centred

This table describes the different portfolios, and the estimation techniques that they are based on.

1Equal weighted, GMVP A and GMVP B
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Table E.3: Gross Portfolio Performance

Portfolio OBX Equal weight GMVP A GMVP B SABL A1 SABL A2 SABL A3 SABL A4 SABL B1 SABL B2 SABL B3 SABL B4

Returns

Annual HPR 0.102 0.039 0.018 0.015 -0.004 0.155 0.227 0.123 0.002 0.162 0.227 0.119

Daily max 0.116 0.147 0.100 0.113 0.298 0.215 0.250 0.515 0.285 0.241 0.244 0.515

Daily min -0.107 -0.146 -0.089 -0.102 -0.332 -0.312 -0.164 -0.250 -0.194 -0.177 -0.159 -0.247

Yearly mean 0.142 0.092 0.047 0.046 0.108 0.270 0.352 0.245 0.111 0.274 0.352 0.237

Yearly median 0.277 0.332 0.102 0.085 0.263 0.327 0.389 0.359 0.314 0.441 0.329 0.348

Risk

Ann.Volatility 0.259 0.311 0.234 0.243 0.460 0.425 0.429 0.452 0.454 0.420 0.429 0.446

Skewness -0.325 -0.449 -0.048 0.088 -0.153 -0.516 0.110 1.538 0.286 -0.086 0.219 1.553

Kurtosis 6.655 8.831 4.153 5.206 14.627 11.167 7.071 39.753 11.738 7.772 6.615 41.018

MaxDD 0.648 0.676 0.624 0.628 0.734 0.699 0.642 0.731 0.779 0.674 0.581 0.738

Risk adjusted measures

Ann.SR 0.371 0.078 -0.014 -0.026 -0.070 0.393 0.563 0.280 -0.054 0.415 0.568 0.272

Alpha 0 -0.050 -0.096 -0.096 -0.039 0.057 0.192 0.104 -0.039 0.073 0.192 0.075

Tracking Error 0 0.246 0.286 0.294 0.429 0.407 0.407 0.425 0.421 0.386 0.403 0.415

Information Ratio 0 -0.205 -0.334 -0.327 -0.092 0.142 0.471 0.245 -0.095 0.188 0.477 0.180

This table shows a range of performance measures for the trading strategy, including all approaches to
apply it, including the benchmark (OBX) and an equal weighted portfolio in addition to global minimum
variance portfolios. Results are reported before trading costs

Evidently, the difference between using EWMA and equal weights when estimating
the covariance matrix is not big, which is reasonable given the short estimation window.
More surprising is that the EWMA technique underperforms when the drift is included
2. Compared to the benchmark, the reference portfolios yield negative alphas, and lower
Sharpe ratios. The minimum variance portfolios also generate lower means and medians
than the benchmark, but the equal weighted covariance approach is slightly better than
the EWMA. Furthermore, the equal weighted yields a higher median return than the
benchmark, indicating larger or more frequent drawdowns than the benchmark.

For the sake of brevity, the discussion of performance differences will be based on the
B-class portfolios. Comparing these, the effect of centring means is significant when the
drift is excluded, with a spread in holding period returns of 16 percentage points. While
yielding lower returns, the centring of means stabilises the return process since the daily
min and max are less extreme for B2 compared to B1. The latter portfolio’s close-to-zero
holding period return, high mean and median return and positive skew is likely the result
of acute events, which can be seen from its relatively high kurtosis and max drawdown
compared to B2. Risk adjusted measures indicate that, despite B2 outperforming the
index based on holding period returns, it generates an information ratio below what is
top tier, 0.5, according to Grinold and Kahn (2000, p.114).

Including the drift, which is equivalent to incorporating a momentum strategy, further
2When comparing HPR for A4 and B4.
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improves performance. The largest increase is between non-centred and centred means (B1
and B3). Moreover, when the drift is included, non-centred means yield the best results,
while the opposite is true when the drift is excluded. This is surprising, since Avellaneda
and Lee (2010) find that centred means is the superior approach. Although, that paper
does not report results with an included drift, making it difficult to confirm if they see
the same shift.

Including the drift and not centring the means (B3) performs best, with the same
holding period return as A3, but slightly (possibly insignificant) better risk adjusted
measures and lower volatility. Compared to B4, it yields a higher holding period return,
lower volatility, is less skewed with a smaller kurtosis, generates a higher Sharpe ratio
and alpha, lower tracking error and higher information ratio. Having a clear view of the
performance measured by different metrics, the figure below, plots the cumulative returns
before costs for all portfolios.

Figure E.2: The Portfolios Cumulative Returns
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This panel plots the cumulative returns for all varieties of the SABL strategy, the
reference portfolios and the benchmark portfolio. Cumulative returns are plotted
before trading costs. The assumed initial capital is NOK 1000. Note that the y-axis
is log-scale with base 10.

In figure E.2 it is visible how the SABL A/B3 portfolios generate high returns during
the last part of 2008 and 2009, before growing at a slower rate. Hence, using non-centred
means result in positions that mitigates the large market drawdowns during 2008, leaving
A/B3 at a higher value by year-end, which is unique for these two portfolios. The root
cause of the steep increase during these years is explored in section 5.

A reason for the divergence between centred and non-centres means might be that

69



since the latter is a shrinkage estimator aimed at reducing variability at the expense of
introducing bias, it has resulted in significant bias in the expected return estimates, which
does not reflect the actual state for the securities under consideration. Alternatively, the
reduction of variance could have yielded less extreme estimates, giving smaller positions
and reducing returns when these positions turned out to be smart bets. Or it could simply
be due to randomness.

In summary, the SABL B3 delivered the best performance measured by annualised
holding period return and risk adjusted performance measures. Plotting the cumulative
returns for all portfolios before costs, it is evident that a significant part of its value was
accumulated between 2008 and 2011. The aim of the next section is to focus on this
portfolio and the benchmark, by breaking performance down by year and sector, see if
strong trading signals result in active positions and test for significance of returns.
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E.3 Constituent Corrections

Table E.4: Irregular Changes to OBX Constituent List

Date Company Event Adjustment

30.01.2006 Smedvig Serie A Excluded from index, delisted as of 2006-06-18 Company removed
30.06.2006 Teekay Petrojarl Listed on OSE and fast track entry into the OBX Company included
20.10.2006 Teekay Petrojarl Excluded from index Company removed
20.03.2007 Tandberg Television Excluded from index, sold to Ericsson Company removed
15.08.2008 Awilco Offshore Excluded from index, delisted Company removed
02.12.2009 Tandberg ASA Excluded from index, delisted as of 2010-04-28 Company removed
10.01.2011 Subsea 7 Acergy and Subsea 7 INC merged to form Subsea 7 Company and number of stocks changed
20.05.2012 Statoil Fuel and Retail Excluded from index, delisted as of 2012-07-12 Company removed
30.08.2012 Golar LNG Excluded from index, delisted at the same date Company removed
24.02.2014 Algeta Excluded from index, purchased by Aviator Acquisition Company removed
29.09.2014 Aker Demerger of Aker Solutions into Akastor and Aker Solutions Holdings Company and number of stocks changed

This table document the irregular constituent changes in the OBX index between 2005 and 2017. What
is shown is the date of the change, the companies that were affected, a description of the event that took
place and the changes made.

Table E.5: Stock Splits and Reversals

Date Company Event Ratio (new:old)

09.06.2005 Petroleum Geo Services Stock split 3:1
23.06.2005 DNO Stock split 4:1
10.05.2006 Norsk Hydro Stock split 5:1
15.06.2006 TGS NOPEC Geophysical Company Stock split 4:1
16.06.2006 DNO Stock split 4:1
18.12.2006 Petroleum Geo Services Stock split 3:1
27.12.2006 Prosafe Stock split 5:1
30.03.2007 Aker Solutions Stock split 5:1
20.04.2007 Orkla Stock split 5:1
21.01.2014 Marine Harvest Stock reversal 1:10
24.05.2017 Lerøy Seafood Group Stock split 10:1

This table document all the companies performing either stock splits or reversals
while being a constituent in the OBX index. The table states the event dates, the
companies involved, if event was a split or reversal in addition to the conversion ratio
with the number of new shares in the numerator and the number of old shares in the
denominator.
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