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Abstract 

The discovery rate of pricing factors has increased substantially in the last decades. Whereas 

the number of factors discovered was about one per annum in the period 1980 – 1991, it has 

risen to about 18 per year in the last decade (Harvey, Liu, & Zhu, 2016). 

This thesis investigates whether the proposed factors co-skewness and co-kurtosis are in fact 

priced in equity markets, and how sensitive the pricing of these factors are to the portfolio 

sorting methodology. Just as the market beta represents an asset´s co-variance with the market, 

relative to the variance of the market, the higher-order co-moments, co-skewness and co-

kurtosis, are analogous to non-linear variations of the market beta. Given the esoteric nature 

of these concepts, we also include a more ad-hoc measure of skewness, FMAX, which is a 

proxy for lottery demand.  

We review the pricing of higher-order co-moments with new methods of portfolio sorting. 

Intuitively, the choice of test assets should not matter, as a pricing model should price all 

assets, not just subsets of assets. However, Daniel and Titman (2012) show that sorting on a 

single factor (HML in their case) effectively eliminates most of the variation independent of 

that factor. Furthermore, we apply the latest adjustments to the CRSP data supported in the 

asset pricing literature. More specifically, we use univariate, triple-sorted and industry 

portfolios in our analysis. To illustrate the effect of the portfolio sorting, we also include the 

more widely known factors SMB (size), HML (value) and the excess market return in our 

analysis. 

We utilise a Fama-MacBeth regression methodology to find the risk premia for the market, 

SMB, HML, co-skewness, co-kurtosis and FMAX, in the different portfolio settings. 

Moreover, we follow up on the study by Chung, Johnson and Schill (2006) and check whether 

co-skewness and co-kurtosis proxy for the SMB and HML factors.  

Our results indicate that all the aforementioned factors are sensitive to the portfolio sorting 

methodology. Co-skewness and co-kurtosis does seem to add some explanatory power 

(adjusted R-squared) to the Fama-French model and CAPM, but do not appear to be priced 

factors. Moreover, we find limited evidence of the SMB and FMAX factors being priced. The 

only factor that exhibits some consistency across sorting methodologies is the HML (value) 

factor.   
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1. Introduction 

Since the inception of the Capital Asset Pricing Model (CAPM) and its subsequent empirical 

failure (see e.g. Jensen, Black and Scholes (1972)), a large share of asset pricing research has 

been concerned with finding additional factors, beyond beta, that explain the prices of assets. 

There is currently a plethora of these proposed factors documented in the finance literature, 

ranging from market factors and behavioural biases, to firm characteristics, even including 

firms’ political campaign contributions (Harvey, Liu, & Zhu, 2016).  

Perhaps the most popular extension to the CAPM is the Fama-French Three-Factor Model, 

which incorporates a size (SMB) and value (HML) effect (Fama & French, 1993). Fama and 

French argue that small companies have less access to funding and that firms with a high book-

to-market-ratio can be in financial distress, i.e. investors should be rewarded for investing in 

these firms. This explanation has been directly opposed by several researchers, e.g Daniel and 

Titman (1993). Apart from the model itself, one of the pivotal contributions of Fama and 

French is the construction of factor-mimicking portfolios which can be utilised in empirical 

asset pricing tests. They create a portfolio which, for e.g. the size effect, goes long in a set of 

stocks with low market capitalisations and short in large caps. Despite Fama and French 

offering a compelling explanation for why their factors should be priced, the model lacks a 

grounding in economic theory.  

An alternative to the Fama-French model is an extension of the CAPM incorporating 

systematic higher-order moments, usually in the form of a four-moment CAPM. Where beta 

is an expression for the systematic second central moment, i.e. (co)variance, the systematic 

third and fourth moments can also be expressed in a similar manner. As we will show 

theoretically, the pricing of higher-order moments can be obtained by a Taylor-expansion of 

an investor’s utility function. In terms of empiricism, studies such as Kraus and Litzenberger 

(1976) and Harvey and Siddique (2000) find empirical evidence of co-skewness being priced, 

whereas Dittmar (2002) finds evidence that co-kurtosis is priced. Finally, Chung, Johnson and 

Schill (2006) argue that the value and size effects are proxies for higher-order moments. In 

general, however, the body of studies supporting these empirical findings appear limited.  

More recently, Daniel and Titman (2012), have argued that the way test assets are grouped 

into portfolios, by similar characteristics, effectively eliminates most of the variation 

independent of the variable being sorted on. The authors go on to claim that the univariate and 
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bivariate portfolio sorts on e.g. size and book-to-market-ratios, which is a popular choice, has 

led to false discovery of factors. Moreover, in an extensive meta-analysis of asset pricing 

factors, Harvey, Liu and Zhu  (2016) identify 316 candidate pricing factors, published in top 

journals, and also argue that most of these are likely false.  

Since the seminal papers of Fama & French, and the studies supporting the pricing of higher-

order moments, there have been updates in the data material, i.e. in the database of the Center 

for Research in Securities Prices (CRSP). Additionally, Shumway (1997) discovered a severe 

selection bias in the CRSP data related to delistings. In light of these findings and the recent 

criticism of the test asset methodology, we empirically review the pricing of higher-order 

moments, and also test the Fama-French Three-Factor model to illustrate the arguments of 

Daniel and Titman (2012). We also include a more ad-hoc measure of higher moments, 

FMAX. Given the findings of Chung et al. (2006) indicating that higher-order moments proxy 

for the Fama-French Three-Factor model, we review these results with newer data and sample 

adjustments. Note, however, that Chung et al. (2006) include moments up to the 10th order, 

while we limit ourselves to the 4th , i.e. co-kurtosis.  

We first test these models in univariate-sorted portfolios, and follow Daniel and Titman’s 

(2012) suggestions for portfolios and also create portfolios based on a triple-sorting procedure, 

in addition to industry-affiliation portfolios. Moreover, we apply the adjustment to the CRSP 

data that are justified in the asset pricing literature, some of which were documented after the 

models were first published. Additionally, we utilise both monthly, quarterly and semiannual 

return frequencies in our empirical tests. The interested reader is referred to the Appendix for 

other results using different portfolio weighting-methods and return calculations.  

This thesis is structured as follows: We begin with a literature review, in Section 2, which first 

provides a quick recap of CAPM and the Fama-French model. Thereafter, we provide a formal 

derivation of how higher-order moments enters asset pricing, based on previous literature, and 

also touch upon behaviouristic explanations. In Section 3, we outline our Fama-MacBeth 

methodology and expand on the portfolio sorting methodology. Furthermore, in Section 4, we 

detail our data collection and sample structuring, before providing some descriptive statistics 

for the samples. In the empirical analysis in Section 5, we test the candidate factors across the 

different portfolios and discuss the results. Lastly, we evaluate the robustness of our results in 

Section 6, and finally conclude on the results, in addition to providing suggestions for further 

research in Section 7.   
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2. Literature Review 

In this section, we will present literature and economic theories relevant to our study. First, 

we provide a short recap of the CAPM and the Fama-French Three-Factor model. This is 

followed by a examination of expected utility theory, where we, based on previous papers, 

derive utility functions for investors taking into account the effects of higher-order moments. 

We also review criticism of higher-order moments in asset pricing. Finally, we discuss how a 

behaviouristic model of utility, Cumulative Prospect Theory, can lead to the pricing of 

skewness and how we can go about measuring it. 

2.1 The CAPM and the Fama-French Model 

The Capital Asset Pricing Model (CAPM), as developed by Sharpe (1964), Lintner (1965) and 

Mossin (1966), is one of the main pillars of financial economics. CAPM enjoys widespread 

use both in academia, and among finance professionals. CAPM’s central prediction is that 

there is a positive linear relationship between market-related risk, beta, and expected returns. 

In other words, investors receive a risk premium for investing in assets which covary with the 

market portfolio. Thus, as CAPM only relies on beta to compute expected returns, it is an 

intuitive and easy model to apply in practice. 

Like all models, CAPM is simplification of reality, and it relies on assumptions such as no 

transaction costs, no informational asymmetry, homogeneous expectations, unlimited 

borrowing and lending at the risk-free rate etc. However, there is one important assumption 

which is necessary for the CAPM to obtain, which is of special interest to our thesis, namely 

that investors have quadratic utility functions or that assets have normally distributed returns 

(Berk, 1997). Despite the theoretical appeal of the CAPM, a number of anomalies have arisen 

since its inception. Generally, empirical evidence fails to back up the linear relationship 

between beta and expected returns. A number of studies have found that low-beta assets have 

higher risk-adjusted returns than high-beta assets (Frazzini & Pedersen, 2014). Another 

prediction of the CAPM is that the expected payoff to taking on idiosyncratic risk is zero. 

Nevertheless, Ang, Hodrick, Xing and Zhang (2006) provide compelling evidence that 

exposure to idiosyncratic risk is associated with lower returns, which is dubbed the 

“idiosyncratic volatility puzzle”.  



 8 

Furthermore, a plethora of studies have identified non-market factors which appear to carry a 

risk premium, i.e. opposing CAPM’s central prediction. These non-market factors can further 

be divided into common factors (affecting all assets) and firm-specific characteristics factors. 

Harvey, Liu and Zhu (2016) conduct a survey of proposed asset pricing factors in top finance 

and economics journals since the invention of CAPM, where they identify 103 different 

common factors and 202 different characteristics-based factors. Needless to say, there is 

compelling evidence that CAPM is not sufficient to explain asset prices.  

Of the proposed characteristics factors, two of the most prominent are the value and size-

premium, as proposed by Fama and French (1992). Fama and French proxy firm size with the 

observed market capitalisation and value with the book-to-market ratio. Moreover, they form 

factor-mimicking portfolios that go long in high book-to-market and short in low book-to-

market equities for the value premium. For the size premium, they form portfolios that go long 

in small cap equities and short in large caps. Subsequently, Fama and French (1993) suggest 

an extension to the classic CAPM by incorporating the size and value factors. This model is 

known as the Fama-French Three-Factor model. The Fama-French model has also been 

extended to include other factors, such as e.g. firm profitability (RMW) and capital 

expenditure (CMA), as described in Fama and French (2014). However, for the purpose of 

this study, we limit ourselves to testing the Three-Factor model 
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2.2 Utility theory and the rationale for higher moments 

The key element of asset pricing models is the pricing of risk. Markets yield higher returns 

than savings accounts and T-bills, but also comes at the price of higher volatility. 

Consequently, it is only reasonable that this risk is compensated for (i.e. priced, yielding the 

investor a premium). In the CAPM, this is represented by the market beta, effectively 

reflecting the asset´s sensitivity to the systematic risk, meaning the covariance between the 

asset and the market, relative to the overall variance of the market. Arditti (1967) identifies 

several risk variables and their relationship to the required rate of return. He finds it convenient 

to divide them in to two groups; (a) those directly related to the probability distribution of 

returns (i.e. moments of the distribution of returns), and (b) those that are intertwined with the 

financial policies of the company (i.e. dividend-earnings, debt-equity ratios etc.). This study 

will focus on the former. 

The CAPM elegantly incorporates the mean return as well as the variance. Thus, it heavily 

relies on the assumption that returns follow a distribution that can be completely described by 

the two first moments alone or quadratic utility. Asset pricing models are founded on the basis 

of utility functions. Accordingly, the mean and variance should therefore completely describe 

E(U) if we assume the CAPM is correct. Scott & Horvath (1980) states that this is only the 

case for the normal, the uniform and the binomial distributions. Thus, it may be inadequate to 

restrict an asset pricing model to the first two moments of the return distribution. 

In his 1967 paper, Arditti expands the utility function using Taylor series expansion to 

illustrate how higher moments enter the utility function. Through what he terms a common-

sense result he concludes that a risk averse investor will be reluctant to invest if the investment 

presents him the possibility, however small, of a substantial loss with only a limited gain. This 

asymmetry factor is reflected in the skewness measure. From this it follows that risk averters 

like positive skewness and dislike negative skewness. Arditti (1967) goes on by stating that 

attention in research has been centred on the second and third moments of return´s distribution 

because higher-order moments of the returns add little or no additional information about the 

return´s distributive features. This claim was later refuted by Levy (1969) to some extent. Levy 

(1969) argues that even if higher moments add no additional information about the distribution 

they should nonetheless be included in the utility function. Only in the special case of a 

restricted utility function can they be disregarded. He also adds that if the distribution can be 

well-described by the first moments, then the higher-order moments are approximate functions 
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of the aforementioned moments. That, however, need not imply that they are small in terms 

of magnitude. Nonetheless, Levy (1969) comes to the same conclusion as that of Arditti when 

evaluating skewness preference. Relating it to real world concepts, he concludes that investors 

will prefer positive asymmetry like that of a lottery´s, and consequently dislike negative 

asymmetry which further substantiates why there is a market for insurance policies. 

As per Levy´s discussion, only two cases "opens" for neglecting higher moments; (a) if all the 

higher moments tend to zero (i.e. approximately symmetric), or (b) if we assume a cubic utility 

function, consequently resulting in derivatives of higher orders than three to be zero, so that 

U(W) only depends on the first three derivatives. This notion is also supported by Jean (1971), 

adding that without a specific form of utility function, we cannot decide on the appropriateness 

of estimation by investigating the remainder terms of the Taylor series expansion. It is 

infeasible to evaluate the adequacy of utility functions. However, the distribution of asset 

returns can be investigated, both theoretically and empirically. Jean (1971) illustrates that 

leveraged capital structures will result in skewed payments to shareholders (i.e. non-

symmetric). Thus, returns are most likely not symmetrically distributed and skewness may 

affect prices. Hagerman (1978) also confirms this notion, finding empirical evidence that 

strongly suggests a symmetric distribution is not a reasonable feature to assume for asset 

returns. To see how skewness can impact the investor´s investment decision, Simonson (1972) 

presents the following graph, illustrating a typical return distribution for three assets: 

Figure 1 – Return distributions (Simonson, 1972)  
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Figure 1 illustrates representative return distributions that the investor is faced with. 

Distribution A and B have equal mean and variance. Nonetheless, asset A will be favoured 

over asset B since asset B has a larger downside potential (negative skewness). Similarly, asset 

C, whose variance and skewness matches that of asset B, will clearly be preferred to asset B 

due to its higher mean. However, in terms of choosing between asset A and asset C, it is not 

clear which asset will be favoured. This will depend on whether or not the additional utility 

related to asset C´s higher mean more than offsets the disutility stemming from its negative 

skewness. A similar example is presented by Scott and Horvath (1980). Through mathematical 

derivation they also further ascertain the skewness preference claims of Markovitz (1952), 

Arditti (1967) and Levy (1969). They conclude that "the preference direction is positive 

(negative) for positive (negative) values of every odd central moment and negative for every 

even central moment" pp. 916.  

To better understand how higher-order moment preference enter the utility functions that lay 

the foundation for asset pricing, we present the Taylor series expansion of the utility function. 

Our derivation and notation follows that of Jean (1971), who´s derivation is similar to the one 

by Farrar (1962): 

Define a time-invariant function, U(W), where U represents the individual investor´s utility 

and W represents the money-value (wealth). Also, let W be a random variable subject to some 

statistical distribution. By applying Taylor series expansion around the mean cash flow, E(W), 

we have 

𝑈(𝑊) =  𝑈[𝐸(𝑊)] + 𝑈´[𝐸(𝑊)] [𝑊 − 𝐸(𝑊)] +
𝑈´´[𝐸(𝑊)][𝑉−𝐸(𝑊)]2

2!
+

𝑈´´´[𝐸(𝑊)][𝑉−𝐸(𝑊)]3

3!
+ ⋯ +

𝑈(𝑘)[𝐸(𝑊)][𝑉−𝐸(𝑊)]𝑘

𝑘!
+ ⋯.  

We can subsequently take the expected value over W, on both sides to obtain the expected 

utility, 

𝐸[𝑈(𝑊)] =  𝑈[𝐸(𝑊)] + 𝑈´[𝐸(𝑊)] 𝐸[𝑊 − 𝐸(𝑊)] +
𝑈´´[𝐸(𝑊)]

2!
𝐸[𝑊 − 𝐸(𝑊)]2 +

𝑈´´´[𝐸(𝑊)]

3!
𝐸[𝑊 − 𝐸(𝑊)]3 + ⋯ +

𝑈(𝑘)[𝐸(𝑊)]

𝑘!
𝐸[𝑊 − 𝐸(𝑊)]𝑘 + ⋯ .  

The first expression, U[E(W)], reflects the utility function evaluated around the mean cash 

flow. The second term will be zero since E[W-E(W)] is zero. More interestingly, the third term 

(1) 

(2) 
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is the product of a constant, 
𝑈´´[𝐸(𝑊)]

2!
, and the variance of the cash flows. Conversely, the 

remainder terms are also a constant multiplied by a higher-order moment around the mean of 

W. 

In his paper, Jean (1971) also derives the risk premium for any given moment. We do not 

include his derivations, but present his conclusions: 

Define w ≡ W – E(W) 

Then the risk premia for asset i can be expressed as 

[𝐸(𝑅𝑀)−𝑅𝑓]

𝜎2(𝑅𝑀)
𝐸(𝒘𝑖𝒘𝑀) =

[𝐸(𝑅𝑀)−𝑅𝑓]

𝜎2(𝑅𝑀)
𝐶𝑜𝑣(𝑅𝑖 , 𝑅𝑀) for the second moment (variance) 

[𝐸(𝑅𝑀)−𝑅𝑓]

𝑚3(𝑅𝑀)
𝐸(𝒘𝑖𝒘𝑀

2 ) =
[𝐸(𝑅𝑀)−𝑅𝑓]

𝑚3(𝑅𝑀)
𝐶𝑜𝑠(𝑅𝑖 , 𝑅𝑀, 𝑅𝑀) for the third moment (skewness) 

[𝐸(𝑅𝑀)−𝑅𝑓]

𝑚𝑛(𝑅𝑀)
𝐸(𝒘𝑖𝒘𝑀

𝑛−1) then represent the risk premia for the nth moment 

In this case, the nth moment is defined as mn = E[RM - E(RM)]n 

Since return distributions empirically have shown to be non-symmetrical and therefore not 

completely described by the mean and variance, the higher moments should thus be 

considered, according to Levy (1969), Jean (1971) and Scott & Horvath (1980). However, 

they all emphasise that this is conditional upon whether the utility function permits it or not. 

Kraus and Litzenberger (1976) corroborate on this. To establish an exact ordering of risky 

portfolios using the mean, variance and skewness of the returns, one generally have to assume 

that the investor has a cubic utility function. Obviously, this is necessary to enable derivatives 

up to the third order. However, the suitability of such a utility function is rather questionable 

if we are to assume that the utility function should exhibit the traits of a risk averting 

individual. Kraus and Litzenberger (1976) refer to Arrow (1971), who establish three desirable 

properties of the utility function: 

(1) Positive marginal utility of wealth (i.e. more is better than less, so U´(W) > 0) 

(2) Decreasing marginal utility for wealth (i.e. risk aversion, so U´´(W) < 0) 

(3) Non-increasing absolute risk aversion (i.e. no reduction in nominal amount invested in 

risky assets as the wealth increases, so − 𝑈´´(𝑊) 
𝑈´(𝑊) 

 ≤ 0) 



 13 

 

Without imposing condition (3) the utility function would imply that the risky asset portfolio 

is an inferior good. These desired properties are only upheld by the logarithmic, the power and 

the negative exponential utility functions. The aforementioned functions are non-polynomials 

and thus the commonly used quadratic utility function does not comply with the set of 

conditions. Furthermore, the cubic utility function will also fall short in this regard, as Levy 

(1969) proves that it only exhibits decreasing marginal utility for wealth for a limited domain 

of positive wealth levels. As such, choosing the "correct" utility function may be infeasible 

and consequently boil down to a problem of minimising the unrealistic behavioural 

implications it entails, as a "best estimate". Not unlike any mathematical model, the expected 

utility theory is merely an abstract simplification of the complex reality. Thus, its validity is 

hardly measurable and there is no guarantee for its reliability. Nonetheless, despite the 

previous derivations´ unreliability concerning real world application, they serve an important 

role of revealing the possibility of higher-order moment pricing. 

Having introduced higher-order moments to the utility function, we need a market relation to 

obtain an asset pricing model that we can test empirically. Fortunately, Rubinstein (1973) 

derives this market relation assuming a separable cubic utility function: 

Assume a perfect and competitive securities market consisting of I investors and J securities. 

Let Wi represent the present (positive) wealth of investor i, and let sij reflect the investor´s 

dollar-investment in security j. The rational investor will maximise his expected utility of 

wealth, Ei[Ui(W̃i)], subject to his budget constraint, Wi = ∑jsij. 

To corroborate: 

- Ui is investor i´s continuously differentiable measurable utility-of-wealth function for 

which Ui´> 0 

- Rj (random variable) is unity plus the rate of return of security j 

- W̃i = ∑jsijRj (random variable) is investor i´s future wealth 

- Ei is an expectation operator reflecting investor i´s subjective assessments 

 

By applying the exact Taylor series expansion around Ei(W̃i) and subsequently taking the 

expectation over Wi on both sides yields the same result as Equation 2 by Jean (1971), however 

presented more generalised: 
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𝐸𝑖[𝑈𝑖(�̃�𝑖)] = ∑
𝑈𝑖

(𝑛)

𝑛!

∞

𝑛=0

𝑚𝑖𝑛 

where: 

- Ui
(n) is the nth derivative of Ui evaluated at Ei(W̃i) 

- min = Ei[W̃i - Ei(W̃i)]n is the nth central moment of W̃i 

 

Further, define the nth co-moment σin(Rj,W̃i) = Ei[(Ri - Ei(Ri))(W̃i - Ei(W̃i))n-1] for n≥2 and 𝜃𝑖𝑛 ≡

−𝑈𝑖
(𝑛)

(𝑛−1)!𝐸𝑖[𝑈𝑖
′(�̃�𝑖)]

. Rubinstein (1973) forms the Lagrangian and the first-order conditions to 

maximise expected utility. He then subtracts a hypothetical asset k from the resulting solution. 

Assuming that k is the risk-free asset and imposing homogenous subjective probabilities he 

then derives the following fundamental theorem:  

𝐸(𝑅𝑗) = 𝑅𝐹 + ∑ 𝜃𝑖𝑛𝜎𝑛(𝑅𝑗 , �̃�𝑖)

∞

𝑛=2

 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗 (𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑖𝑒𝑠) 

More generally, if we do not define asset k and do not assume homogenous subjective 

probabilities then the necessary equilibrium conditions follow: 

∑ 𝐸𝑖(𝑅𝑗)𝑖

𝐼
=

∑ 𝐸𝑖(𝑅𝑘)𝑖

𝐼
+

∑ 𝜃𝑖𝑛𝜎𝑖𝑛(𝑅𝑗 − 𝑅𝑘, �̃�𝑖)𝑖

𝐼
 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑗, 𝑘.   

According to Rubinstein (1973): 

… co-moments are the appropriate individual measures of security risk since the 

co-moments reflect the contribution of a marginal increase in the holdings of a 

security to the corresponding central moments of individual future wealth, which 

are the appropriate measures of portfolio risk in parameter-preference models. 

Each co-moment is weighted by the ratio θin reflecting the corresponding 

individual measure of risk aversion (pp. 65). 

Again, letting k be the risk-free asset and assuming homogenous subjective probabilities. 

Moreover, recognising that each sum over i reduces to I multiplied by the summand. Finally, 

since all assets must be held in equilibrium we equate to a function of the future value of the 

(market) W̃i portfolio:  

(3) 

(4) 

(5) 
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𝐸[𝑅𝑗] = 𝑅𝐹 + ∑ 𝜆𝑖𝑏𝑖𝑗

𝑁

𝑖=2

 

Equation (6) represents the generalised version of the security market line, but rather than 

using one co-moment there are an arbitrary number. Chung et al. (2006) clarifies, explaining 

that "bij is the ith-order systematic co-moment between Rj and RM, and λi is the market measure 

of risk aversion for the ith co-moment" (pp. 926) 

 

For example, when assuming a separable cubic utility function, Rubinstein (1973) derives the 

following market relation:  

𝐸(𝑅𝑗) = 𝑅𝐹 + λ2𝐶𝑜𝑣(𝑅𝑗 , 𝑅𝑀) + λ3𝐶𝑜𝑠(𝑅𝑗 , 𝑅𝑀, 𝑅𝑀) 

where Cos is co-skewness, RM denotes the market portfolio return, and λ2 and λ3 are market 

measures of risk aversion. Kraus and Litzenberger (1976) derive an equation of the same form. 

Kraus and Litzenberger (1976) also develop the empirical model to test equation (7). The 

explicit empirical model is given by:  

�̅�𝑖 = 𝛼 + 𝜆1𝛽𝑖 + 𝜆2𝛾𝑖 + 𝑢𝑖 𝑓𝑜𝑟 𝑖 = 1,2, … , 𝑁 𝑤ℎ𝑒𝑟𝑒 �̅�𝑖 =
𝑅𝑖 − 𝑅𝑓
̅̅ ̅̅ ̅̅ ̅̅ ̅̅

�̅�𝑓

, 

𝛽𝑖 =
∑ (𝑟𝑖𝑡 − �̅�𝑖)(𝑟𝑀𝑡 − �̅�𝑀)𝑡

∑ (𝑟𝑀𝑡 − �̅�𝑀)2
𝑡

, 𝛾𝑖 =
∑ (𝑟𝑖𝑡 − �̅�𝑖)(𝑟𝑀𝑡 − �̅�𝑀)2

𝑡

∑ (𝑟𝑀𝑡 − �̅�𝑀)3
𝑡

 

Ri is the dividend-adjusted return for the i´th asset, and RM is the market portfolio return. 

Furthermore, Rf is the risk-free return and ui is the error term assumed to be a random 

independently distributed variable. The �̅�𝑖 is the risk-free rate deflated excess rate of return of 

asset i. In this three-moment version of the CAPM, the constant term α should be zero to 

correspond to the risk-free rate intercept (Rf) in Sharpe-Lintner version of the CAPM. The 

factor premiums, meaning the estimated coefficients λ1 and λ2, should in sum be equal to the 

market risk premium (λ1 + λ2= rM). More precisely, λ1 should be positive, and λ2 should have 

the opposite sign as that of the skewness of the market portfolios.  

 

(6) 

(7) 

(8) 
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2.3 Criticism of higher-order moments in asset pricing 

Two main arguments persist as to not include higher-order moments than four in asset pricing. 

The first refers to the argument made by Arditti (1967), as we have previously mentioned. He 

argues that most research has been developed around the first three moments since moments 

above this add little or no additional information about the distribution of the returns. This is 

even more true for moments above kurtosis. Levy (1969) corrected him from a purely 

theoretical point of view, arguing to include all higher-order moments in the utility functions, 

as long as they exist. Though from a more pragmatic point of view, to include them in an asset 

pricing model would simply be a question of whether we have reason to believe they are 

priced. This brings us to the next premise. The interpretation of kurtosis has not been without 

disputes in the academic community. Several claims as to how to interpret it has been refuted, 

and only purely mathematical or vague intuitive interpretations persists. As it seems that the 

academic community "struggles" in some sense with the interpretation, it would be 

unreasonable to assume that investors exhibit any clearer intuition of the measure. Thus, one 

could make the argument that moments above the kurtosis lacks intuition. Consequently, any 

consistent pricing of these higher-order moments will be very unlikely.  

 

 



 17 

2.4 Behavioural Asset Pricing and the FMAX factor  

The asset pricing literature we have reviewed thus far all have one thing in common. That is, 

the underlying assumption of rational investors. In classical asset pricing models, we usually 

assume that investors are rational and risk-averse. This assumption has come under stern 

scrutiny in recent decades. The perhaps most prominent alternative explanation to classical 

utility theory, is prospect theory, or cumulative prospect theory.  

Prospect theory was first proposed by behavioural psychologists Kahneman and Tversky 

(1979), where the authors heavily criticise expected utility theory as a positive economic 

theory. One of the main points of prospect theory is that people think of risky outcomes in 

relation to a reference point, as opposed to their final wealth. Moreover, Kahneman and 

Tversky (1979) argue that people value gains and losses of equal size differently, assigning 

the pain of loss to be roughly twice the size of the pleasure of a gain. Consequently, under 

prospect theory investors exhibit loss-aversion, as opposed to risk-aversion.  

Furthermore, the authors argue that people tend to overweight the probability of extreme 

outcomes. For example, under prospect theory, people are risk-seeking over gains with low 

probability, which can explain the observed demand for lotteries. A lottery ticket yields a 

negative expected wealth, but also provides a very small probability of drastically increasing 

wealth. Apart from prospect theory, several behavioural biases also contradict the rationality 

of investors, such as overconfidence, herd behaviour, confirmation bias etc.  

Like all theories of choice, prospect theory is not without its weaknesses. Firstly, in applying 

prospect theory to asset pricing, it can be shown that prospect theory in its original form 

violates first-order stochastic dominance, which violates the axioms of expected utility theory. 

Therefore, Tversky and Kahneman (1992) propose a modification to expected utility theory, 

called Cumulative Prospect Theory (CPT). Under CPT, the aforementioned probability 

weighting is applied to the cumulative probability function instead of individual outcomes. 

There are also further reasons to question the applicability of CPT in asset pricing. As 

described in e.g. Kahneman (2011), the development of CPT is based on a series of lab 

experiments. One can argue that the test subjects in these experiments are not representative 

of finance professionals, and thus do not suffice to explain the behaviour of the marginal price 

setters in capital markets. Additionally, one can surmise that irrational investors should be 

competed out of the capital markets. 
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Despite these concerns, CPT has received a lot of attention in behavioural finance and asset 

pricing. For example, Benartzi and Thaler (1995) show that the observed equity premium is 

more consistent with CPT than classical expected utility models, whereas Kumar (2009) finds 

evidence of lottery demand in the stock market, and that individual investors behave less 

rationally than institutional investors. Cumulative Prospect Theory has wide applications in 

finance in general. However, in the behavioural asset pricing literature, one notion is of 

particular interest to our study, namely the pricing of skewness in asset returns. Thus far, we 

have argued that investors have a preference for positive skewness due to the decreased left-

tail risk caused by a positively skewed distribution. Barberis and Huang (2008) show that, 

theoretically, the probability weighting properties of CPT lead to a demand for positive 

skewness. Moreover, the authors link this positive skewness to lottery demand, a point which 

is also corroborated by Kumar (2009).  

Therefore, it might be that a preference for positive skewness is caused by the long right tail 

in positively skewed asset return distributions, which offers a low probability of a large gain. 

Whether skewness preferences are caused by rational investors concerned with the risk of ruin, 

or irrational investors who like lotteries is challenging to assess, as lottery demand is very 

difficult to quantify. Nonetheless, several authors have made attempts at finding a good proxy 

for lottery demand. Perhaps the most prominent of these proxies is the MAX-factor, as 

proposed by Bali, Cakici and Whitelaw (2011). In short, the MAX-factor is simply the average 

of a stock’s five highest returns in the previous month, where the idea is that a high realisation 

of the MAX-factor is a proxy for lottery payoff. Although such a factor could easily proxy for 

other known asset pricing factors, e.g. momentum, the authors demonstrate that high-MAX-

stocks have lower returns than low-MAX stocks when controlling for the most common 

pricing factors.  

Bali, Brown, Murray and Tang (2017) further show that the MAX-factor can explain one of 

the most persistent pricing anomalies in finance, namely the low-beta anomaly. Moreover, the 

authors create a factor portfolio in the spirit of Fama and French, called FMAX. This factor 

portfolio is available at Turan Bali’s website, and we include it as a pricing factor in the 

analysis section of this paper. A final argument in favour of a more ad-hoc approach to 

skewness, i.e. lottery-stocks, is simply the esoteric nature of higher-order co-moments. The 

concept of higher-order co-moments is difficult to grasp, and we believe it is not widely 

understood. As such, it is difficult to believe all investors consider the co-skewness, co-

kurtosis etc. of their investments.  
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3. Methodology 

3.1 The Fama-MacBeth procedure 

To determine the risk premia of co-skewness, co-kurtosis, SMB, HML and FMAX, we utilise 

the Fama-MacBeth regression methodology, as developed by Fama and Macbeth (1973). The 

method is popular in empirical asset pricing and consists of a two-pass regression technique. 

In the first pass, factor loadings for assets (portfolios) are found through rolling time-series 

regression for each asset against the proposed risk factors. Thereafter, in the second pass, the 

risk premium at each time t is found by cross-sectionally regressing the portfolio returns 

against the factor loadings from the first pass. Finally, the T set of coefficients are averaged 

across time, which gives the final estimate of a factor’s risk premium.  

The motivation behind the Fama-MacBeth procedure, is to correct for cross-sectional 

correlation between assets. This is an important aspect of asset pricing studies, as equities are 

susceptible to the same cross-sectional shocks. For example, if at time t, a macroeconomic 

announcement unexpectedly indicates the economy is dropping into a recession, we do not 

expect two assets i’s and j’s reaction to be uncorrelated. Rather, we generally expect their 

reactions to be highly correlated, of course depending on the asset.  

In spite of its intuitive nature and correction for cross-sectional correlation, the Fama-MacBeth 

method fails to adjust for autocorrelation. Although this is not a major concern, as equities 

tend to exhibit low or zero autocorrelation, we address autocorrelation further in Section 6.3. 

Moreover, the Fama-MacBeth procedure has a widely-known errors-in-variables (EIV) 

problem. This EIV problem arises from the fact that the explanatory variables in the second 

pass regression are the estimated coefficients from the first pass, which are subject to 

measurement errors, and thus deviate from “true coefficients”. Consequently, the standard 

errors of the cross-sectional regression may be biased. In the context of Fama-MacBeth 

regressions, the EIV problem is specifically addressed by Shanken (1992). However, the 

correction proposed by Shanken is beyond the scope of this thesis. 
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We rely heavily on the Fama-MacBeth methodology, but make some adjustments to the 

method for the purpose of our study. First of all, in the original paper, the authors only examine 

the market beta, and consequently the market risk premium. We expand our model to also 

include the Fama-French risk factors SMB and HML (Fama & French, 1992), in addition to 

co-skewness, co-kurtosis and FMAX.  

Moreover, in Fama & MacBeth (1973), for the first step, the authors use an initial estimation 

period for each portfolio’s beta with the market of 5 years. In the subsequent 5 years (the 

testing period), the portfolio betas are kept constant from year t to year t + 5. With our 

approach, in step 1, a portfolio’s coefficient for a given factor, for each time t, is computed 

utilising exactly 5 years of trailing returns. As such, we run N x (T – 5 yrs.) time-series 

regressions, where N is the number of portfolios. To illustrate, for monthly returns in the 

univariate size-sorted portfolios, we run 25 x (1020-60) = 25,500 time-series regressions in 

the sample period 1931-2016. The regression we run in the first pass is illustrated in Equation 

9.  

𝑅𝑖,𝑡 = 𝑎𝑖 +  𝛽 𝑖,𝑡𝑅𝑀,𝑡−𝜏 + 𝑠𝑖,𝑡 𝑆𝑀𝐵𝑡−𝜏 + ℎ𝑖,𝑡 𝐻𝑀𝐿𝑡−𝜏 + 𝑒𝑖,𝑡  

Where 𝜏 = t – 5 years and each coefficient is portfolio i’s sensitivity to each risk factor. The 

perhaps most striking feature of Equation 9 is that we do not estimate higher-order co-moment 

beta coefficients by means of regression. Instead, we follow Chung et al. (2006) in their 

definition of higher-order systematic co-moments, with a slight adjustment and compute co-

moment of order n according to Equation 10. Chung et al. (2006) argue that their non-centered 

measure of higher-order co-moments are more reliable. However, in their study, they also 

estimate higher-order co-moments up to order 10. The denominator in Equation 10 can tend 

toward 0 for odd centred co-moments when calculating co-moments beyond the 4th order (co-

kurtosis). Our only odd co-moment is the 3rd (co-skewness), and therefore centring the co-

moments does not affect the reliability of our estimates in any notable manner. Moreover, 

centred co-moments are closer to intuition and theory, e.g. when n = 2 in Equation 10, the 

expression evaluates to the market beta.  

 

𝛽𝑖 ,𝑛 ,𝑡 =  
∑𝜏

𝑇(𝑅𝑖,𝑡−𝜏 − 𝑅�̅�)(𝑅 𝑖,𝑡−𝜏  − �̅�𝑀)𝑛−1 

∑𝜏
𝑇(𝑅𝑀,𝑡−𝜏 −  �̅�𝑀)𝑛

    (10) 

(9) 
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Where 𝛽 is the nth co-moment coefficient for portfolio i at time t. Note, however, that for 

practical reasons we chose to rename the co-skewness and co-kurtosis coefficients γ and 𝛿, 

respectively, in accordance with Kraus & Litzenberger (1976). 

In the second step, the coefficient estimates are utilised as independent variables in a cross-

sectional regression. For each time period t, we regress the portfolio returns at time t against 

the time t - 1 coefficient estimates to find the risk premium for each factor. This produces the 

following set of cross-sectional regression equations:  

 

𝑅𝑖,𝑡 =  𝛼𝑡 + 𝜆𝑡
(𝛽)

�̂�𝑖,𝑡−1 + 𝜆𝑡
(𝑠)

�̂�𝑖,𝑡−1 + 𝜆𝑡
(ℎ)

ℎ̂𝑖,𝑡−1 + 𝜆𝑡
(𝛾)

�̂�𝑖,𝑡−1 + 𝜆𝑡
(𝛿)

�̂�𝑖,𝑡−1  +  휀𝑖,𝑡   

 

Where λ is the factor risk premium, and the explanatory variables are the estimated coefficients 

from Equation 9 and 10. 

We run this cross-sectional regression with different specifications, adding and excluding 

factors. For example, the first cross-sectional regression for a given return interval includes 

SMB, HML and market beta, whereas the second include the aforementioned factors in 

addition to the third and fourth co-moment coefficients. Finally, we have specifications 

including the FMAX factor as well. Also note that we run the cross-sectional returns of 

portfolio i at time t, versus the t - 1 factor loading. Hence, we explain conditional expected 

returns with the proxy for ex ante factor loadings conditioned by the information available at 

time t. If instead using ex-post factor loadings, one would assume investors could perfectly 

predict the factor loadings a period in advance.  

Our final estimate of the risk premium is then the average of each time period’s risk premium, 

i.e.:  

�̂� =  �̅�𝑇 

 

(11) 

(12) 
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Finally, the standard error of the factor risk premium is computed as:  

𝑆. 𝐸(�̂�) =  
𝜎(�̂�𝑡)

√𝑇
 

We can then use a t-test to test the significance of the final risk premia estimates. However, 

we also use the Newey-West adjustment for our standard error estimates and significance 

testing (Newey & West, 1987).  Additionally, we test the joint significance of the SMB and 

HML factors, and the 3rd and 4th co-moment with a Wald test.  

 

 

(13) 
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3.2 Portfolio sorting 

In empirically evaluating the performance of asset pricing models, one essentially has two 

options with regards to test assets.  Either, you utilise the entire universe of assets, or group 

assets into portfolios based on certain criteria, usually a firm characteristic such as book-to-

market or size. Intuitively, the choice should not matter to a great extent, as an asset pricing 

model should price all assets, not just subsets of assets. However, utilising portfolios as test 

assets is a common practice in empirical asset pricing. The motivation behind creating 

portfolios as test assets, is to address the EIV concerns when using estimated betas as 

regressors, which is outlined in Section 3.1. This reasoning was first proposed by Blume 

(1970):  

The reason is that if an investor’s assessments of 𝛼𝑖 and 𝛽𝑖were unbiased and the errors 

in these assessments were independent among the different assets, his uncertainty 

attached to his assessments of �̅� and �̅�, merely weighted averages of the 𝛼𝑖′𝑠 and 𝛽𝑖′𝑠, 

would tend to become smaller, the larger the number of assets in the portfolios and the 

smaller the proportion in each asset. Intuitively, the errors in the assessments of 𝛼𝑖 and 

𝛽𝑖 would tend to offset each other. (pp. 156) 

Put in other words, Blume’s point is that by grouping assets with similar βs (factor loadings) 

together, one reduces the estimation error of β, as the estimation errors offset each other. 

Furthermore, he argues that portfolios as test assets increases the precision of the risk premium 

estimates and therefore, he only examines portfolios with 20 assets or more in his study. 

Similar arguments have also been made in influential asset pricing papers, such as Black, 

Jensen and Scholes (1972), and Fama and MacBeth (1973). Moreover, according to Ang, Liu 

and Schwarz (2017) “The majority of modern asset pricing papers testing expected return 

relation in the cross section now use portfolios” (pp. 2). Additionally, grouping assets into 

portfolios reduces the computational capacity needed to perform the analysis.  

Despite the abovementioned advantages of utilising portfolios as test assets, the portfolio 

approach has come under scrutiny in recent years. Several recent studies have pointed to the 

sort methodology as the driver of the significance of SMB and HML compared to other 

candidate risk factors. Daniel and Titman (2012) present an interesting conundrum; a plethora 

of factors have been proposed and tested as significant, as explanations for the value-effect 
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(HML), and these factors generally exhibit low correlation with each other. This implies that 

the models have different pricing kernels, which in and of itself is not a theoretical problem, 

given incomplete markets. However, the different models must project the proposed factors 

into the asset return space identically. Although Daniel and Titman (2012) do not directly test 

the implication of the models’ projection of various factors into asset return space, they argue 

it is unlikely it would be satisfied. Moreover, the authors argue that the culprit of the 

significance of seemingly contradictory asset pricing models is the sorting methodology 

employed in testing these models. Through grouping assets with similar characteristics 

together in portfolios, one effectively eliminates any variation that is independent of said 

characteristics. Thus, one lacks the statistical power to reject the proposed risk factor when it 

is being sorted on. Consequently, the authors conclude: 

... even if the loadings on a proposed factor are only loosely correlated with the 

expected returns of the individual assets in the economy, the sorting procedure will 

result in a set of test portfolios that exhibit a strong relationship between loadings on 

the proposed factor and expected returns (Daniel & Titman, 2012, pp. 109). 

The authors move on to propose a triple-sort procedure, whereby one first sort equities on the 

basis of size, thereafter on BTM, and finally on the equities’ 60-month market beta. 

Alternatively, they suggest testing asset pricing models on industry-affiliation portfolios. 

Lewellen, Nagel and Shanken (2010) argue along the same lines in favour of industry 

portfolios. Other researchers argue in favour of abandoning the portfolio sorting methodology 

entirely. Ang, Liu and Schwarz (2017), directly oppose the view of Blume (1970) presented 

earlier. They argue that grouping equities into portfolios destroys information, and show both 

analytically and empirically that more accurate estimates of factor loadings do not result in 

more precise factor risk premia estimates. On the contrary, they argue that using portfolios as 

test assets reduces the precision of risk premia estimates.  

Taking into account the criticisms of the portfolio approach, we utilise several different sorting 

methodologies. Due to limited computational capacity, we opted not to employ the individual 

stock methodology of Ang, Liu and Schwarz (2017).  

To check the robustness of SMB, HML, and higher-order risk premia across portfolios, we 

perform our analysis on three different sorting methodologies. Our univariate portfolio sorts 

are based on size and book-to-market, and we form 25 portfolios for each characteristic. We 
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chose 25, as this is a common number of test assets in comparable studies. Additionally, 

although we do want to maximise cross-sectional variation in each of the factors, we note that 

there are between 6-10 assets in each portfolio in the first ten years of our sample period. 

Hence, a larger number of portfolios, such as the 50 portfolios used by Chung et al. (2006) 

could potentially make our factor loading estimates prone to estimation error. Moreover, 

following Daniel and Titman (2012) we create portfolios based on their triple sort and also use 

industry portfolios provided by Kenneth French (2017). For the triple sort, we first sort into 

three size portfolios. Each size portfolio is then split into three new portfolios based on book-

to-market. Finally, the nine size and BTM portfolios are each split into 5 portfolios based on 

market beta. I.e., we are left with 45 size, BTM and beta sorted portfolios. Further details about 

the portfolio selection can be found in the data section of this paper.  
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4. Data 

4.1 Description of Data 

Our main sources of data are The Center for Research in Security Prices (CRSP) and the 

CRSP/Compustat Merged (CCM) database. We retrieve monthly price data, an adjustment 

factor to correct prices for distributions, index returns, shares outstanding, Standard Industrial 

Classification (SIC) codes, CRSP share codes, delisting codes, delisting returns and the 

bid/ask-spread for all U.S. equities in the CRSP universe from 30. June 1926 – 30. June 2016 

(CRSP, 2017). Moreover, we retrieve book value per share from CCM, for all securities in the 

CCM database (CRSP/Compustat Merged, 2017). Furthermore, we collect the CRSP 

PERMNO, from both databases, which is a unique 5-digit code identifying securities. In 

addition to identifying securities within our dataset, we use the PERMNOs to match firms’ 

book values from CCM with the data items retrieved from CRSP. When downloading CCM 

data, one is faced with the choice of the quality of links that connects data in CRSP and CCM. 

We chose only the most well-documented link types, “LC” and “LU”, which correspond to 

links where the link research is complete, or unresearched links that match by the unique 

identifier CUSIP. This is the default setting in CRSP (CRSP, 2013). 

We also collect monthly U.S. risk-free rates, small-minus-big (SMB) and high-minus-low 

(HML) factors, in addition to returns on 17 industry portfolios from the Kenneth French Data 

Library (French, 2017). All Kenneth French data is collected on a monthly basis from July 

1926 – June 2016. Finally, we retrieve the FMAX factor portfolio from the website of Turan 

Bali from July 1970 – June 2016 (Bali, 2017).  

The result of our data collection is a sample consisting of 1081 months of price data for 31,566 

U.S. companies in total. However, the first 10 years of the sample is used for pre-formation 

betas and beta estimation on the portfolio level. Thus, we effectively have 80 years, or 960 

months of return observations.  

We initially attempted to include daily and weekly data in the analysis as well. This would 

have been interesting, as CRSP in 2006 added daily stock prices in the period 1926-1962 

(Houlihan & Treuthart, 2011). Therefore, this daily data has not been examined to a great 

extent.  However, the combination of selecting and calculating portfolios; calculating rolling 

higher-order co-moments; and rolling betas for each period is very computationally 
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demanding. Thus, utilising daily or weekly data is simply too computationally demanding to 

complete within a reasonable amount of time.   

4.2 Sample Structuring 

4.2.1 Basics and Characteristics Calculation 

In order to obtain excess returns of the portfolios, we subtract the 30-day risk-free rate 

provided by French, from the raw portfolio returns. Moreover, we divide prices by CRSP’s 

adjustment factor to obtain dividend- and stock split adjusted returns.   

The market value of each equity is calculated as the product of the price and common shares 

outstanding at 30. June for each year t. Both CRSP and CCM provide data for common shares 

outstanding. However, we notice that CRSP’s figures appear to be more reliable and there are 

fewer missing values. Although the numbers are largely comparable, number of shares 

outstanding in CCM exhibit large variance for certain shares, despite no change in the 

adjustment factor for shares outstanding. This leads us to believe there is a greater frequency 

of mistyping in CCM, and thus we opt for common shares outstanding from CRSP.  

In order to compute the book-to-market ratio for each security, we divide the CCM book equity 

from the fiscal year ending in calendar year t – 1 by the market value as of December 31 in 

year t – 1.  

We calculate each equity’s beta as the regression slope between excess stock returns and 

excess market returns for 5 years leading up to June in year t. Thus, an equity must have 60 

months of consecutive return data to be included in a portfolio. We apply this 60-month 

requirement to portfolios that are not sorted on beta as well, in order to ensure the assets 

included in the various portfolios are comparable.  

Finally, we select portfolios at the end of June in year t, and examine returns from July year t 

through June year t +1 before portfolios are rebalanced at the end of June year t +1 and so 

forth. The reason for selecting portfolios in June, following Fama and French (1992), is to 

ensure that all firms’ book values are known at the time of portfolio selection. The book value 

of a firm with fiscal year end in December is not public until that firm publishes their annual 

report in year t + 1. The fact that all firms are required to file their 10 – K reports within 60 to 

90 days of their fiscal year end to the U.S. Securities and Exchange Commission (SEC, 2009) 
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would call for portfolio selection to occur at the end of March in year t. However, as noted by 

Fama and French (1992), “… on average 19.8 % of firms do not comply” pp. 429. This point 

has also been backed up by newer research, e.g. Dalton et al. (2013) find that 8.5 % of firms 

filed their 10 – K reports late in the period 2000-2007. 

4.2.2 Share Type, Industry and Characteristics Exclusions 

We keep only equities with share codes 10 and 11, which corresponds to U.S. ordinary 

common shares. Following Lo and Wang (Lo & Wang, 2003), we note that this excludes 

ADRs, REITs, closed-end funds and similar assets whose turnover is usually low and might 

be difficult to interpret in the usual sense (pp. 220).  

Moreover, following e.g. Fama and French (1992) financial firms (SIC codes 6000 – 6999) 

are eliminated from our sample. We also drop regulated utilities (SIC codes 4900 – 4949), 

following Covas and Den Haan (2011) and Bhojraj et al (2009).  

We find that some of the stocks in our sample has a negative book value. Given the fact that 

listed companies have a limited liability structure, negative book values can be difficult to 

interpret. According to Brown, Lajbcygier and Li (2008): “… most empirical research in 

accounting and finance… exclude negative BE[book equity] stocks” pp.98. Therefore, we 

follow the norm and do the same, and remove negative-BTM stocks, which account for less 

than 1 % of our sample.  

4.2.3 Liquidity 

Many of the aforementioned adjustments also implicitly adjust our sample for illiquidity. For 

example, requiring 60 months of returns exclude many small firms with thin trading. Similarly, 

keeping only U.S. ordinary common shares also removes several illiquid assets.  

When collecting price data from CRSP, the bid/ask-average is also reported, if there was no 

trade in an equity in a given month. Although the bid/ask-average can be seen as a proxy for 

the price in a given month, it is by no means a perfect proxy. When buying (selling) a stock, 

you have to pay the asking (bid) price. Therefore, the bid/ask average does not represent the 

true price an investor could achieve in the market, and thus return calculations based on 

bid/ask-averages do not represent true returns.  
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Nonetheless, we do wish to utilise the information conveyed by bid/ask-averages in some 

meaningful manner. Unfortunately, there is little guidance in previous literature with regards 

to how one should handle CRSP bid/ask averages. Consequently, we create our own 

restrictions for when we allow a bid/ask-average to proxy for a market clearing price.  

The ratio of bid/ask-spreads divided by the bid/ask-averages must not exceed 2 %. This rule 

ensures that the bid/ask-average is close to the actual price an investor could achieve in the 

market. We do, however, make one exception from this rule. If a bid/ask-average, which does 

not meet the aforementioned requirement, appears at month t, we keep it if the prices at t – 1 

and t +1 are market clearing prices. We make this exception, because if not, the 60-months of 

valid returns required to be included in a portfolio would be violated for a large number of 

shares. This argument is particularly important in periods where market-wide variation in 

liquidity results in less trading across all assets.  

Applying the same line of reasoning, we also exclude penny stocks (price below $1) from our 

sample, which tend to be illiquid and are noisy due to large bid/ask-spreads. 

4.2.4 Survivorship and Delisting Bias 

In order to avoid survivorship bias in the sample, it is essential to include the delisting return 

when a stock stops trading. Delistings are usually the result of major firm-specific events, such 

as bankruptcy and mergers & acquisitions. Therefore, delistings are often associated with large 

returns, both positive and negative. Delisting returns, along with a delisting code 

corresponding to the reason behind a delisting, is provided by CRSP. However, as discovered 

by Shumway (1997), the CRSP delisting returns are missing to a much greater extent when 

the delisting is caused by poor performance than when it is caused by events that lead to 

positive returns. Consequently, there is a delisting bias in the CRSP data. If ignored, the 

average return of companies in distress (which are more likely to be delisted due to default) 

would tend to be overstated. To illustrate the potential severity of not correcting for this bias, 

Shumway and Warther (1999) find that the empirically observed size effect on the NASDAQ 

exchange is in fact a result of the CRSP delisting bias. When correcting for the bias, they find 

no evidence of a size effect. Thus, we follow Shumway (1997), Acharya & Pedersen (2005) 

and many other recent studies in adjusting for this bias. The correction is performed by setting 

the delisting return to -30 % when the CRSP delisting code is 500, 520, 551-574, and 580, 

most of which are related to performance reasons. Although it is by no means a perfect 
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correction, the return is set to -30 %, as this is the average delisting returns found by Shumway 

(1997) for the aforementioned delisting codes, and is the approach suggested by the author. 

4.2.5 Portfolios 

After performing the aforementioned calculations and adjustments, we sort the equities into 

portfolios. We create 25 portfolios sorted independently on size and book-to-market-ratio, and 

45 portfolios triple-sorted on size, BTM and beta. We also utilise the industry portfolios from 

Kenneth French’s webpage (French, 2017). 

The size breakpoints for the portfolios are based on the full sample. This deviates somewhat 

from the approach of Fama and French (1992), which use breakpoints based on a subsample 

of only stocks listed on the NYSE. However, this would result in unequal number of assets 

across the portfolios and according to Bali, Engle & Murray (2016) “…most analyses … in 

the empirical asset pricing literature use breakpoints calculated using the full [CRSP] sample 

of stocks” pp. 188. Additionally, the authors show that the choice between using size 

breakpoints based on NYSE or the full CRSP sample has very limited impact.  

When calculating returns, we rebalance weights for each period based on the availability of 

returns information. For a given period, if an equity in a portfolio is missing a return, the total 

market value of the portfolio is re-calculated, excluding the equity in question. Thus, we ensure 

a correct weight for the remaining equities in the portfolio when calculating the portfolio 

return.  
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4.3 Descriptive statistics and the normality assumption 

TABLE 1 Summary Statistics of Portfolio Returns

Monthly Quarterly Semiannual Monthly Quarterly Semiannual

Number of port-

folio-period

observations 25,500 8,500 4,250 13,800 4,600 2,300

Mean .0076 .0264 .0499 .0077 .0251 .0489

Variance .0066 .0335 .0540 .0041 .0168 .0317

Skewness 2.0710 4.6100 2.4220 -.0188 .3920 .7190

Kurtosis 29.730 53.510 22.230 6.215 4.951 5.717

Jarque-Bera

statistic  777,286 **  933,506 **  69,657 **  5,944 **  847 **  906 **

Kolmogorov

statistic .0905** .1276** .0963** .0357** .0445** .0604**

Number of port-

folio-period

observations 24,840 8,280 4,140 15,300 5,100 2,550

Mean .0078 .0255 .0495 .0074 .0241 .0478

Variance .0050 .0197 .0376 .0043 .0187 .0333

Skewness .3160 .6020 .9810 .7690 2.9800 1.0470

Kurtosis 8.071 6.031 7.409 14.660 36.860 10.710

Jarque-Bera

statistic  27,033 **  3,669 **  4,018 **  88,170 **  251,132 **  6,783 **

Kolmogorov

statistic .0502** .0604** .0707** .0621** .0946** .0697**

* Significant at the 5 % level

** Significant at the 1 % level

NOTE. - The sample consists of monthly, quarterly and semiannual returns (non-annualised) of 25 equal-sized, equally-

weighted portfolios (Panel A and B), 45 equal-sized, equally-weighted portfolios (Panel C), and 15 equally-weighted

portfolios (Panel D). Portfolios are formed end-of-June each year, using all CRSP common stocks (Panel A, B and C), or

stocks exclusively from NYSE, AMEX and NASDAQ (Panel D), excluding financials and utilit ies. In Panel A the

portfolios are sorted on market value, consisting of returns from July 1931 to June 2016. In panel B the portfolios are

sorted on book-to-market-ratio, consisting of returns from July 1970 to June 2016. Portfolios in Panel C are triple-sorted

on size, book-to-market and market beta (in that order), and consist of returns from July 1970 to June 2016. Lastly,

Panel D consists of portfolios sorted on their four digit SIC code, consisting of returns from July 1931 to June 2016. The

breakpoints for the size portfolios are determined end-of-June year t . The book-to-market-ratios are computed using

market value in December year t-1 and book value at fiscal year-end in calendar year t-1 . Market betas are obtained by

estimating the CAPM regression equation for excess returns, using 5 years of trailing returns. SIC codes for fiscal year

ending in calendar year t-1 are obtained from Compustat when available. Otherwise, CRSP SIC codes are used for June of

year t . The sample used in each column is comprised of returns for the entire set of portfolios.

A. Size-Sorted Portfolios B. Book-To-Market-Sorted Portfolios

C. Triple-Sorted Portfolios D. Industry-Sorted Portfolios
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4.3.1 Descriptive statistics 

The descriptive statistics paint a fairly consistent picture across portfolio sorts (and thus 

sample period lengths). The mean equally-weighted excess return for the different samples are 

closely formed around 0.75 % (monthly), 2.5 % (quarterly) and 4.9 % (semiannual). This is 

despite the fact that the equities in the samples are substantially different in the different sorts. 

Variance, however, shows discrepancies. The size-sorted portfolios stick out with significantly 

higher variance than the three other sorts. Since the means are relatively similar across all four 

sorts, this leads us to believe that a major cause of the larger variance stems from the broader 

period it covers. The horizon entails one more financial crisis, which was classified as the 

worst depression of modern history (i.e. the Great Depression). The same is true for the 

industry-sorted portfolio returns. This has translated into a higher skewness, seeing that the 

size portfolios are the only sample where skewness is substantially above 1. The exception is 

quarterly returns in the industry-sorted portfolios. Another type of exception is the negative 

skewness for monthly BTM-sorted returns. Even though the skewness is below zero 

historically, given the low negative deviation from zero, it might as well have a true skewness 

that is positive. Thus, we would expect a negative risk premium (i.e discount) as Scott & 

Horvath (1980) have argued a positive preference for positive skewness, a feature the market 

seems to exhibit. The size-sorted portfolios have higher kurtosis than the rest, unsurprisingly. 

Both monthly, quarterly and semiannual returns have double-digit kurtosis. Same goes for 

industry-sorted portfolios, though at lower levels. When comparing the size and BTM-sorted 

portfolios, our results very much align with those of Chung et al. (2006). The size-sorted 

descriptive statistics are higher, in general, compared to the BTM-sorted portfolios. They also 

find small but negative skewness for return frequencies of monthly or shorter. 

4.3.2 Normality 

This study investigates a thesis that relies on the predisposition of non-normally distributed 

asset returns. As explained in Section 2.2, the CAPM implicitly assume normally distributed 

asset returns (or quadratic utility functions). For there to be a reason to include higher-order 

moments into the CAPM, there must also exist such higher moments. As such, asset returns 

must deviate from the normal distribution for there to be pricing of higher-order moments in 

the first place. A crucial part of this study is therefore to establish whether asset returns are in 

fact normally distributed or not, before any pricing models are worth testing. 
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To test the null-hypothesis of normal returns against non-normality, several tests can be 

utilised. The most popular, due to its power for a given significance, is the Shapiro-Wilk test. 

Unfortunately, the test is not recommended for sample sizes above 2000 because the 

probability of Type I-errors becomes rather substantial. This is an issue for most tests of 

normality. Other extensions of the Shapiro-Wilk test have been suggested, such as the Shapiro-

Francia test. However, our samples are far larger than the recommended sample size limits. 

This is not to say that that is not the case for the tests we choose to use as well. However, 

opting for the Kolmogorov-Smirnov test is due to two reasons. First, it is a fairly common test 

in research studies of this sort, making our results more comparable to previous studies on the 

subject. Second, the test is non-parametric. That is, it does not utilise specific parameters of 

the sample distribution but rather deviations of the sample distribution from a continuous 

cumulative distribution function. In this case, the empirical sample distribution and the 

cumulative distribution function of the normal distribution. Since it has been argued that 

moments above kurtosis still convey some information about the distribution, we find it 

convenient to utilise a test like this in addition to the well-known, parametric test of Jarque-

Bera. The Jarque-Bera test on the other hand relies solely on the two parameters, skewness 

and excess-kurtosis, where the two parameters are compared with the same parameters of the 

normal distribution (i.e. both are zero). As such, we find the two tests, one parametric, one 

non-parametric, to be sufficient. Due to the large probability of falsely rejecting normality, we 

find visual inspection of Q-Q-plots to be necessary as well. 

4.3.3 Results 

Both the Jarque-Bera and the Kolmogorov-Smirnov test statistics are significant at the 1 % 

level for all frequencies. Thus, both formal tests indicate that the null-hypothesis of normally 

distributed returns should be rejected. Visual inspection of Figure 2 strongly supports this as 

well. All returns show substantial deviations from the normal distribution´s quintiles. The 

deviations are most substantial in the monthly return data where deviations are to be found in 

both of ends. For the quarterly and semiannual returns, deviations from the normal distribution 

quintiles are in the upper end. This finding adds further support to the large amount of studies 

criticising the assumption of normally distributed returns, such as Hagerman (1978). These 

results fit very well within our hypothesis and allow us to move on to test the potential pricing 

of higher-order moments. 
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Figure 2 – Q-Q-plots for normality testing 
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5. Analysis 

To enable a clear understanding of the estimates in the upcoming tables, we will quickly 

review how they are obtained. Firstly, factor coefficients are obtained using time-series 

regressions (or computed manually), utilising exactly 5 years of prior data. This is performed 

with a rolling time window, for each asset (portfolio) i. Secondly, returns are then regressed 

on the factor coefficients obtained from the time-series regression, where coefficients one 

period prior is used. These second-pass regressions are done cross-sectional for each time t, 

across all test assets (portfolios). The coefficients from the second-pass are then averaged to 

obtain the final estimate, which are the ones presented in the tables. Thus, the estimates for 

any labelled variable represent that variable´s (i.e. factor´s) premium. To review the regression 

equations please refer to Appendix 9.1.1.  

The Fama-MacBeth procedure has an additional benefit not yet mentioned. By obtaining λ(k) 

= E[mf(k)], where m is the pricing kernel, and f(k) is the return of factor k, we have a measure of 

factor k´s correlation with the true discount factor. As such, testing λ(k) = 0 asks if factor k is 

priced. The usual regression coefficient in a multiple regression, β(k), is a regression coefficient 

of m on f(k). Consequently, testing β(k) = 0 will simply answer whether factor k helps explain 

the price of an asset, to a greater extent than other factors. Since we want to test asset pricing 

models with different factors, the fundamental question is therefore whether the factors are 

priced. This implies λ(k) is the most appropriate measure. 
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5.1 Univariate portfolios 

5.1.1 Size-sorted portfolios 

TABLE 2 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with Co-moments

Size-Sorted Portfolios

Mean

Return Market  (RM) SMB HML Co-skewness Co-kurtosis Adjusted R ²

Frequency Periods Equation β s h γ δ [Joint Test]

Monthly 960 (I) .0030 .0024* .0007 .296

(1.26) (2.12) (.44) [4.9*]

(II) .0044 .0029* .0008 -.0010 .314

(1.56) (2.31) (.47) (-.56) [3.5*]

(III) .0019 .0031* .0027 -.0036 .0044 .326

(.36) (1.98) (1.29) (-1.01) (.73) [2.5]

(IV) .0074* .159

(1.99)

(V) .0028 .0018 .227

(.76) (.95)

(VI) .0060 -.0016 -.0014 .250

(.92) (-.41) (-.21) [2.5]

Quarterly 320 (I) -.0024 .0099** .0006 .364

(-.39) (2.97) (.16) [6.0**]

(II) .0042 .0115** .0019 -.0035 .376

(.62) (3.16) (.45) (-.99) [4.5*]

(III) -.0028 .0075 .0061 -.0123 .0163 .387

(-.17) (1.29) (.86) (-.87) (.67) [2.4]

(IV) .0302** .220

(3.01)

(V) .0258* -.0050 .265

(2.44) (-1.15)

(VI) .0173 -.0065 .0035 .306

(.80) (-.79) (.14) [2.5]

Semiannual 160 (I) .0116 .0171** .0055 .370

(1.12) (2.74) (.87) [6.1**]

(II) .0265* .0207** .0207* -.0118 .381

(1.98) (3.02) (2.01) (-1.65) [4.4*]

(III) .0502 .0194 .0083 .0027 -.0376 .386

(1.54) (1.51) (.52) (.16) (-.98) [2.7]

(IV) .0364** .205

(2.86)

(V) .0612*** -.0255** .258

(3.59) (-3.19)

(VI) .0318 -.0183 .0170 .293

(1.01) (-1.28) (.47) [2.5]

* Two-tail significance at the 5 % level

** Two-tail significance at the 1 % level

NO TE. - The sample consists of monthly, quarterly and semiannual returns (non-annualised) of 25 equal-sized, equally-weighted portfolios.

Portfolios are formed end-of-June each year, using all CRSP common stocks, excluding financials and utilit ies. The portfolios are sorted on

market value, consisting of returns from July 1931 to June 2016. The breakpoints for the size portfolios are determined end-of-June year t. For 

each period, portfolio returns are regressed on a combination of the factor loadings of SMB (s) and HML (h) , and the co-moment coefficients

of variance (β), skewness (γ), and kurtosis (δ). The market , SMB and HML loadings are computed with a 5-year rolling regression for each

point in time, where portfolio excess returns are regressed on the excess market return, and the SMB and HML factors. The co-moment

coefficients are manually computed as the co-moment between the portfolio excess return and the market excess return, divided by the latter's

moment of the same order, using 5 years of trailing data (see Equation 10). As such, the market beta being regressed on differs between equations

(I)-(III) and (IV)-(VI). The final coefficient estimates presented in this table are the mean coefficients across the sample and represent the

factor premium. The coefficients are reported with their respective t-statistics in parentheses. The joint test is a Wald test for joint significance

of the SMB and HML premium estimates (equations (I)-(III)), and the co-skewness and co-kurtosis  premium estimates (equation (VI)).
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The Fama-French Three-Factor Model with co-moment extensions 

Looking at the original Fama-French Three-Factor Model, equation (I), the first interesting 

thing to notice is the consistent significance of the size factor premium across return 

frequencies. The size premium is significant at the 1 % level both for quarterly and semiannual 

return frequencies, and below the 5 % for monthly returns. Moreover, the t-statistic for the set 

of factors across equations (I) to (III) changes both sign and magnitude for some specifications 

and return frequencies. Furthermore, the size factor premium t-statistics are fairly robust for 

all specifications, across all return frequencies. This is one of the issues pointed out by Daniel 

and Titman (2012). Since the portfolios are sorted on size, we are effectively maximising the 

cross-sectional variation in the SMB factor and will consequently lack statistical power to 

reject the SMB factor. With the exception of equation (II) with semiannual returns, the two 

additional factors, market and HML, show no statistical significance. Thus, based on portfolios 

sorted on size, they do not appear to be priced in a statistical sense. Only in one instance are 

all three factors significant, namely semiannual returns with co-skewness coefficient included.  

The inclusions of co-skewness and co-kurtosis coefficients, γ and 𝛿, add little explanatory 

power to the model, evident by the low increase in the mean adjusted R-squared. Effectively, 

approximately 1 % additional variation can be explained by each of the co-moment 

coefficients (adjusted for the number of explanatory variables). However, neither are near any 

statistical significance in equations (II) and (III), and this applies for all return frequencies. 

Since Chung et al. (2006) have argued that SMB and HML might proxy for higher-order 

moments, we test their joint significance in all three model specifications, (I)-(III). The two 

factors are jointly significant in the original Three-Factor model. However, the significance 

level decreases to 5 %, from 1%, for quarterly and semiannual returns when co-kurtosis is 

included. Joint significance is then disappearing when co-kurtosis is added as well. While this 

is not anywhere near clear evidence, Chung et al. (2006) show that most of this drop in joint 

significance can be attributed to the systematic moment and not the fact that additional 

variables are added in general. Because no return frequency show evidence of all three factors 

being priced in equation (I), subsequently testing whether SMB and HML proxy for higher-

order moments makes less sense. Consequently, we do not find any conclusive evidence for 

their hypothesis for the size sorted portfolios. Instead, the results of the size sorted portfolios 

rather indicate that the Three-Factor model does not price all the factors it proposes as 

explanatory for asset prices. Thus, we move on to test CAPM which has a broader base of 

theoretical support. 
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The Capital Asset Pricing Model with co-moment extensions 

The original CAPM, represented by equation (IV), give evidence of market risk being priced, 

when considering no other factors. The longer return frequencies yield higher significance, as 

with the previous model. Nonetheless, the CAPM fails to explain the majority of variation 

observed in asset returns. Only 16 % to 20 % of the variation in asset returns can be attributed 

to the historical market beta, depending on the return frequency. This notion does not support 

our hypothesis since we have argued that the higher the order of the moment, the less 

additional information is conveyed. As such, if moments of the return distribution are to 

explain all of the variation, a substantial amount of co-moment coefficients would 

consequently have to be added. However, we have also argued that moments above kurtosis 

are unlikely to be priced at all. Thus, we do not expect the inclusion of co-skewness (γ) and 

co-kurtosis (𝛿) to give a large increase in the R-squared. Equations (V) and (VI) supports this 

notion. Although their inclusion yields a more substantial increase in the R-squared when 

compared to the Fama-French Three-Factor model, the expanded CAPM only explains 

approximately 30 % of the variation at best. This is less than the original Fama-French Three-

Factor model. For the longer return frequencies, the market risk premium (λ()) remains 

significant when co-skewness is included (equation (V)). The co-skewness premium (λ(γ)) 

itself is only significant for semiannual returns. When the co-kurtosis coefficient is included, 

none of the premiums are significant. There are two seemingly contradictory effects at play 

here. On the one hand, co-kurtosis is not significant, nor are the two other factors. This 

evidence, coupled with the lack of joint significance of co-skewness and co-kurtosis, goes 

against the hypothesis of a higher-order CAPM. However, given that the other factors become 

insignificant and that the mean adjusted R-squared increases, this would indicate that some 

additional variation is explained by co-kurtosis. This is in line with the results of Chung et al. 

(2006). We also note that the reduction in t-statistics could be due to a multicollinearity effect, 

as this could inflate the standard errors. We would like to note that the significance in the 3-

moment CAPM (equation (V)) for semiannual returns goes to show how looking at only one 

return frequency could be insufficient in determining risk premia of pricing factors. 

General comments 

We have, for simplicity and space purposes, chosen not to report the constant term in the 

tables. However, in our sample, the average historical value-weighted market excess return is 

0.66 % (monthly), 2.13 % (quarterly) and 4.19 % (semiannual). The constant terms are 

therefore substantial, and in most specifications, significant, which is likely due to low effects 
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and limited explanatory power. However, if the models were correctly pricing the assets, this 

term should be zero. It therefore seems that neither the Fama-French model nor the CAPM 

and their extensions are sufficient pricing models.  

Our findings support the theoretical findings of Scott and Horvath (1980). When translated to 

the co-skewness coefficient, their implicit theoretical prediction of the sign of the premium 

would be negative. This is because a positive change in skewness is preferred by the investors 

and consequently will yield a discount (negative premium) in the required return. Although 

the majority is not significant, all but two specifications have negative co-skewness premiums. 

Accordingly, the co-kurtosis premiums should be positive. This also seems to be the case, 

though not conclusively. The co-kurtosis premium is, however, never statistically significant. 

The longer return frequencies offer more significance and higher explanatory power. We 

believe this to be caused by the lower amount of noise in the return data. 
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5.1.2 Book-To-Market-Sorted Portfolios 

TABLE 3 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with Co-moments

Book-To-Market-Sorted Portfolios

Mean

Return Market (RM) SMB HML Co-skewness Co-kurtosis Adjusted R ²

Frequency Periods Equation β s h γ δ [Joint Test]

Monthly 492 (I) -.0029 -.0001 .0055*** .218

(-.81) (-.06) (3.33) [3.7*]

(II) -.0055 -.0013 .0059*** .0023 .224

(-1.36) (-.63) (3.55) (.95) [2.7]

(III) -.0144* -.0028 .0071** -.0043 .0147 .232

(-2.09) (-1.15) (2.98) (-.79) (1.57) [2.3]

(IV) -.0076 .088

(-1.93)

(V) -.0102* .0031 .142

(-2.39) (1.19)

(VI) -.0075 -.0031 .0079 .165

(-1.06) (-.50) (.78) [2.1]

Quarterly 164 (I) -.0005 .0057 .0124** .242

(-.06) (1.17) (2.82) [3.8*]

(II) .0026 .0066 .0117* -.0013 .248

(.26) (1.24) (2.18) (-.32) [3.1]

(III) .0196 .0083 -.0002 -.0060 -.0138 .265

(.88) (1.12) (-.03) (-.54) (-.50) [2.7]

(IV) -.0105 .099

(-.95)

(V) -.0079 -.0069 .135

(-.69) (-1.81)

(VI) -.0125 -.0118 .0067 .185

(-.48) (-.94) (.19) [2.3]

Semiannual 82 (I) .0057 .0061 .0226** .286

(.40) (.81) (2.85) [4.4*]

(II) .0169 -.0000 .0351* -.0071 .294

(.61) (-.01) (2.20) (-.45) [3.5*]

(III) .0064 .0001 .0309 .0297 -.0272 .302

(.15) (.01) (1.60) (.71) (-.41) [2.5]

(IV) .0044 .137

(.26)

(V) .0124 -.0046 .199

(.49) (-.33)

(VI) .0188 .0048 -.0164 .230

(.44) (.21) (-.32) [2.5]

* Two-tail significance at the 5 % level

** Two-tail significance at the 1 % level

NO TE. - The sample consists of monthly, quarterly and semiannual returns (non-annualised) of 25 equal-sized, equally-weighted portfolios.

Portfolios are formed end-of-June each year, using all CRSP common stocks, excluding financials and utilit ies. The portfolios are sorted on book-

to-market-ratio, consisting of returns from July 1970 to June 2016. The book-to-market-ratios are computed using market value in December

year t -1 and book value at fiscal year-end in calendar year t-1 . For each period, portfolio returns are regressed on a combination of the factor

loadings of SMB (s) and HML (h) , and the co-moment coefficients of variance (β) , skewness (γ) , and kurtosis (δ) . The market, SMB and HML

loadings are computed with a 5-year rolling regression for each point in time, where portfolio excess returns are regressed on the excess market

return, and the SMB and HML factors. The co-moment coefficients are manually computed as the co-moment between the portfolio excess

return and the market excess return, divided by the latter's moment of the same order, using 5 years of trailing data (see Equation 10). As such, the 

market beta being regressed on differs between equations (I)-(III) and (IV)-(VI). The final coefficient estimates presented in this table are the

mean coefficients across the sample and represent the factor premium. The coefficients are reported with their respective t-statistics in

parentheses. The joint test is a Wald test for joint significance of the SMB and HML premium estimates (equations (I)-(III)), and the co-skewness

and co-kurtosis premium estimates (equation (VI)).
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The Fama-French Three-Factor Model with co-moment extensions 

As evident from Table 3, when sorting on book-to-market ratio, the HML factor is now the 

most significant factor across return frequencies and specifications. Similar to Table 2, the 

sorting procedure entails more consistent t-statistics for the factor that is sorted on. Moreover, 

the SMB factor is no longer significant in any of the regression specifications. In contrast to 

the results from the size-sorted portfolios, the original Fama-French Three-Factor model (I) 

yields lower explanatory power for the BTM-sorted portfolios. Note, however, that this sample 

is smaller due to book equity data limitations in the CMM database. In this sample, the 

historical excess market return is 0.767 % (monthly), 2.506 % (quarterly), 4.886 % 

(semiannual).  

In line with the previous table are the insignificance of the two other factors not being sorted 

on. One specification does, however, yield negative significant market risk premium (λ()), 

namely equation (III). Since this is monthly returns with co-skewness and co-kurtosis included 

it may very well be a result of noisy data. Therefore, it could possibly be a false positive, which 

we would expect one out of 20 times, given a 5 % significance level. The value-premium is 

less significant for the longer return frequencies and becomes insignificant when both co-

moment coefficients are added. This notion supports the hypothesis of Chung et al. (2006). 

The inclusion of co-skewness and co-kurtosis adds less explanatory power to the model than 

in the case of size-sorted portfolios. The initially lower R-squared of the model makes it less 

surprising that the joint significance of SMB and HML is lower than in the previous table. 

However, joint significance is reduced when co-moment coefficients are included just as we 

would expect if SMB and HML were proxies for higher-order moments. The lack of a 

complete set of significant factors in the Fama-French Three-Factor model makes the 

hypothesis of Chung et al. (2006) obsolete yet again.  

The Capital Asset Pricing Model with co-moment extensions 

The original CAPM (IV) does not suffice to explain the variation in returns for the BTM-

sorted sample. Market risk premiums are insignificant across return frequencies and negative 

for monthly and quarterly returns. The market beta proves to explain as little as 8.8 % of 

monthly asset returns. This is interesting since it counterintuitively indicates that market risk 

does not explain a great deal of the variation in asset returns. It is therefore not surprising that 

CAPM and its co-moment extensions yields lower explanatory power for this sample. 

However, the inclusion of the co-moment coefficients adds approximately 5 % additional 
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explanatory power to the model. The co-moment coefficients are nonetheless not jointly 

significant. As such, the BTM-sorted sample does not provide evidence of a higher-order 

moment CAPM. This further goes against Chung et al.´s (2006) hypothesis of HML and SMB 

being proxies for higher-order moments. However, as noted earlier, when sorting on a single 

factor, Daniel and Titman (2012) argue that the test lacks statistical power to reject the 

proposed factors. 

 

Interesting in this sample is that it seems longer return frequencies have somewhat lower t-

statistics in general. This does not align with what we found in the size-sorted sample. In 

general, the signs of the co-moment coefficients align with what we would expect. However, 

certain specifications yield negative market and co-kurtosis premiums.  
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5.2 Portfolio sorts suggested by Daniel & Titman 

5.2.1 Triple-Sorted Portfolios  
TABLE 4 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with Co-moments

Triple-Sorted Portfolios

Mean

Return Market (RM) SMB HML Co-skewness Co-kurtosis Adjusted R ²

Frequency Periods Equation β s h γ δ [Joint Test]

Monthly 492 (I) -.0018 .0028 .0025 .218

(-.60) (1.72) (1.63) [7.4**]

(II) -.0026 .0017 .0042** .0014 .224

(-.77) (1.04) (2.84) (.61) [4.9*]

(III) -.0020 .0014 .0032 -.0004 .0006 .232

(-.36) (.76) (1.69) (-.09) (.09) [3.8*]

(IV) .0015 .088

(.47)

(V) -.0051 .0059 .142

(-1.53) (1.68)

(VI) -.0001 .0057 -.0062 .165

(-.01) (.95) (-.78) [3.6*]

Quarterly 164 (I) -.0059 .0106* .0077 .242

(-.72) (2.30) (1.69) [8.6**]

(II) .0004 .0116* .0083 -.0012 .248

(.05) (2.53) (1.63) (-.31) [7.0**]

(III) -.0050 .0103 .0048 -.0061 .0119 .265

(-.33) (1.96) (.67) (-.58) (.55) [4.2*]

(IV) .0073 .099

(.71)

(V) .0086 -.0066 .135

(.79) (-1.58)

(VI) -.0068 -.0103 .0164 .185

(-.36) (-1.49) (.73) [3.5*]

Semiannual 82 (I) .0025 .0146* .0140 .286

(.22) (2.03) (1.71) [7.4**]

(II) .0035 .0155 .0324 .0006 .294

(.17) (1.78) (1.75) (.05) [5.8**]

(III) .0140 .0255* .0274 .0153 -.0273 .302

(.42) (2.41) (1.33) (.81) (-.62) [3.6*]

(IV) .0092 .137

(.62)

(V) .0246 -.0125 .199

(1.05) (-1.06)

(VI) -.0109 -.0260 .0475 .230

(-.28) (-1.66) (1.11) [2.8]

* Two-tail significance at the 5 % level

** Two-tail significance at the 1 % level

NO TE. - The sample consists of monthly, quarterly and semiannual returns (non-annualised) of 45 equal-sized, equally-weighted portfolios.

Portfolios are formed end-of-June each year, using all CRSP common stocks, excluding financials and utilit ies. The portfolios are triple-sorted on

market value, book-to-market-ratio and market beta (in that order), consisting of returns from July 1970 to June 2016. The breakpoints for the size

portfolios are determined end-of-June year t . The book-to-market-ratios are computed using market value in December year t-1 and book value at

fiscal year-end in calendar year t-1 . Market betas are obtained by estimating the CAPM regression equation for excess returns, using 5 years of

trailing returns. For each period, portfolio returns are regressed on a combination of the factor loadings of SMB (s) and HML (h), and the co-

moment coefficients of variance (β) , skewness (γ), and kurtosis (δ). The market, SMB and HML loadings are computed with a 5-year rolling

regression for each point in time, where portfolio excess returns are regressed on the excess market return, and the SMB and HML factors. The co-

moment coefficients are manually computed as the co-moment between the portfolio excess return and the market excess return, divided by the

latter's moment of the same order, using 5 years of trailing data (see Equation 10). As such, the market beta being regressed on differs between

equations (I)-(III) and (IV)-(VI). The final coefficient estimates presented in this table are the mean coefficients across the sample and represent the

factor premium. The coefficients are reported with their respective t-statistics in parentheses. The joint test is a Wald test for joint significance of

the SMB and HML premium estimates (equations (I)-(III)), and the co-skewness and co-kurtosis premium estimates (equation (VI)).
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Moving on to the triple-sorted portfolios following Daniel and Titman (2012), as described in 

Section 3.2, the results change notably compared to the single-sorted portfolios. As expected, 

the significance of the SMB and HML premia taken separately in Table 4, are less pronounced 

than in Table 2 and 3. Examining first the Fama-French Three-Factor model (I), we see that 

none of that factors are significant at the 5 % level for the monthly return frequency, whereas 

the SMB premium is significant at the 5 % level for quarterly and semiannual returns. Perhaps 

more interestingly, is that both SMB and HML separately are significant at the 10 % level, 

and have a stronger joint significance than in the single-sorted portfolios.  

In contrast to the single-sorted portfolios, the joint significance of SMB and HML is sustained 

when adding co-skewness and co-kurtosis, i.e. in (II) and (III). Moreover, there is virtually no 

indication that co-skewness or co-kurtosis is priced, when controlling for the SMB and HML 

factors. The CAPM with co-moment extensions (IV – VI) paint a slightly different picture. 

Although neither co-skewness nor co-kurtosis is individually significant, they are jointly 

significant at the 5 % level for the monthly and quarterly return frequencies, a commonly 

observed feature when multicollinearity is present. However, the four-moment CAPM yields 

less explanatory power than the Fama-French Three-Factor model.  

The results we have presented so far gives a clear indication that the critique of Daniel and 

Titman (2012) is valid. Sorting independently on one factor indeed appears to eliminate a lot 

of the cross-sectional variation of other factors. 

  



 45 

5.2.2 Industry-Sorted Portfolios 

TABLE 5 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with Co-moments

Industry-Sorted Portfolios

Mean

Return Market (RM) SMB HML Co-skewness Co-kurtosis Adjusted R ²

Frequency Periods Equation β s h γ δ [Joint Test]

Monthly 960 (I) -.0033 -.0000 .0023* .237

(-1.39) (-.02) (2.01) [2.5]

(II) -.0054 .0014 .0026* .0024 .268

(-1.87) (.90) (2.00) (1.24) [2.6]

(III) .0079 .0060* .0020 .0046 -.0173* .301

(1.12) (2.57) (.91) (1.25) (-2.09) [2.5]

(IV) -.0021 .109

(-.94)

(V) -.0017 .0010 .145

(-.63) (.60)

(VI) .0064 .0026 -.0101 .189

(.99) (.71) (-1.30) [1.8]

Quarterly 320 (I) -.0100 .0015 .0077* .229

(-1.69) (.46) (2.07) [2.6]

(II) -.0051 .0027 .0119** -.0020 .252

(-.64) (.66) (2.86) (-.41) [2.6]

(III) -.0280 -.0027 .0095 -.0097 .0328 .294

(-1.29) (-.33) (1.04) (-.48) (.96) [2.6]

(IV) -.0062 .096

(-1.12)

(V) -.0086 .0010 .135

(-1.11) (.21)

(VI) -.0232 -.0206 .0391 .197

(-1.20) (-.88) (1.14) [2.0]

Semiannual 160 (I) -.0064 .0011 .0128* .239

(-.66) (.20) (1.98) [2.6]

(II) .0002 .0012 .0099 -.0012 .268

(.02) (.17) (.95) (-.14) [2.5]

(III) -.0638 -.0325 -.0470* -.0557 .1203 .309

(-1.27) (-1.59) (-2.41) (-1.90) (1.81) [2.4]

(IV) -.0076 .110

(-.82)

(V) -.0027 -.0015 .165

(-.22) (-.24)

(VI) -.0046 -.0303 .0327 .215

(-.14) (-1.54) (.75) [2.0]

* Two-tail significance at the 5 % level

** Two-tail significance at the 1 % level

NO TE. - The sample consists of monthly, quarterly and semiannual returns (non-annualised) of 15 equally-weighted portfolios obtained from

Kenneth French's Data Library. Portfolios are formed end-of-June each year, using stocks from NYSE, AMEX and NASDAQ, excluding financials

and utilit ies. The portfolios are sorted on their four digit SIC code, consisting of returns from July 1931 to June 2016. For each period, portfolio

returns are regressed on a combination of the factor loadings of SMB (s) and HML (h), and the co-moment coefficients of variance (β),  skewness 

(γ), and kurtosis (δ). The market, SMB and HML loadings are computed with a 5-year rolling regression for each point in time, where portfolio

excess returns are regressed on the excess market return, and the SMB and HML factors. The co-moment coefficients are manually computed as

the co-moment between the portfolio excess return and the market excess return, divided by the latter's moment of the same order, using 5 years

of trailing data (see Equation 10). As such, the market beta being regressed on differs between equations (I)-(III) and (IV)-(VI). The final coefficient 

estimates presented in this table are the mean coefficients across the sample and represent the factor premium. The coefficients are reported with

their respective t-statistics in parentheses. The joint test is a Wald test for joint significance of the SMB and HML premium estimates (equations

(I)-(III)), and the co-skewness and co-kurtosis premium estimates (equation (VI)).

 
In a similar fashion to the triple-sorted portfolios, we also expect utilising industry portfolios 

will yield results that are different to the univariate-sorted portfolios, as there is not a clear 
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factor structure in the portfolio construction process. Nonetheless, we do expect there to be 

some systematic differences in value and size across industries, e.g. financials (utilities) tend 

to have a low (high) book-to-market ratio (hence, the exclusion).  

As evident from Table 5, in the Fama-French Three-Factor regression (I), the value effect is 

statistically significant across all return frequencies, although less pronounced than in the 

book-to-market sorted portfolios. Adding co-skewness to the Three-Factor model does seem 

to impact the significance of the size premium somewhat. Utilising monthly returns, the co-

skewness premium is positive, but not significant. Moreover, the significance of the value 

premium remains unchanged. For the quarterly and semiannual returns, the co-skewness 

premium is negative and insignificant. However, for the semiannual returns, adding the co-

skewness premium leads to the value premium becoming insignificant, whereas it leads to an 

increase for the quarterly returns.  

When adding co-kurtosis to the regression (III), the value premium becomes statistically 

insignificant for the monthly and quarterly return frequencies, but negative and significant for 

the semiannual return frequency. Moreover, in the monthly return frequency, the size premium 

suddenly becomes statistically significant, and the co-kurtosis premium appears to be negative 

and priced in this instance. However, given the fact that the co-kurtosis premium (λ(𝛿)) is not 

significant in (VI), and of the opposite sign to what we would expect from theory, we believe 

this might be a false positive. Furthermore, the size and value premiums do not appear to be 

jointly significant in any of the specifications, in contrast to the triple-sorted portfolios. 

Additionally, adding co-skewness and co-kurtosis appears to increase explanatory power 

somewhat over the Fama-French Three-Factor model. 

In further contrast to the triple-sorted portfolios, the CAPM with co-moment extensions (IV – 

VI) yield no statistical significance whatsoever, neither separately nor jointly.  
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5.3 Proxying lottery demand with FMAX factor 

In this section, we will repeat the analysis in Section 5.1 and 5.2, utilising the same portfolios, 

but substituting higher-order moments with the FMAX-factor, as described in Section 2.4. 

Tables 6 and 7 (8 and 9) are analogous to tables 2 and 3 (4 and 5) earlier in the analysis section. 

They contain regression results for the CAPM (III), Fama-French Three-Factor model (I), 

Fama-French Three-Factor + FMAX (II) and RM + FMAX (IV), for monthly, quarterly and 

semiannual returns. It should be noted, however, since FMAX is a function of the daily returns 

in the previous month, the monthly return frequencies have the most intuitive interpretation. 

From tables 8 (triple-sorted) and 9 (industry-sorted), it is clear that triple-sorted and industry 

sorted portfolios alter the results notably, also with respect to the FMAX-factor.  
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5.3.1 Univariate Portfolios 

TABLE 6 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with FMAX factor

Size-Sorted Portfolios

Mean

Return Market (RM) SMB HML FMAX Adjusted R ²

Frequency Periods Equation β s h f [Joint Test]

Monthly 492 (I) .0020 .0023 -.0004 .309

(.50) (1.40) (-.16) [5.1*]

(II) -.0036 -.0009 .0056*** -.0024 .228

(-1.04) (-.51) (3.36) (-.81) [3.5*]

(III) -.0076 .128

(-1.93)

(IV) -.0052 -.0073* .139

(-1.31) (-2.37)

Quarterly 164 (I) -.0079 .0120* -.0052 .379

(-.80) (2.50) (-.86) [5.5*]

(II) -.0066 .0098* -.0015 .0038 .400

(-.73) (2.17) (-.25) (.47) [4.7*]

(III) .0320* .203

(2.14)

(IV) .0187 .0223* .319

(1.61) (2.23)

Semiannual 82 (I) .0137 .0165* -.0010 .389

(.85) (2.05) (-.11) [5.6*]

(II) .0115 .0162* -.0013 .0163 .398

(.71) (2.01) (-.14) (1.50) [4.5*]

(III) .0504* .214

(2.46)

(IV) .0295 .0368* .286

(1.61) (2.29)

* Two-tail significance at the 5 % level

** Two-tail significance at the 1 % level

NO TE. - The sample consists of monthly, quarterly and semiannual returns (non-annualised) of 25 equal-sized, equally-weighted portfolios.

Portfolios are formed end-of-June each year, using all CRSP common stocks, excluding financials and utilit ies. The portfolios are sorted on market

value, consisting of returns from July 1970 to June 2016. The breakpoints for the size portfolios are determined end-of-June year t . For each

period, portfolio returns are regressed on a combination of the factor loadings of market excess return (β),  SMB (s),  HML (h)  and FMAX (f).  The 

loadings are computed with a 5-year rolling regression for each point in time, where portfolio excess returns are regressed on the excess market

return, and the SMB, HML and FMAX factors, in different specifications. The final coefficient estimates presented in this table are the mean

coefficients across the sample and represent the factor premium. The coefficients are reported with their respective t-statistics in parentheses.

The joint test is a Wald test for joint significance of the SMB and HML premium estimates (equation (I) & (II)).

 

Firstly, we again notice that the critique of Daniel and Titman (2012) seems very valid. In 

Table 6 (size-sorted portfolios), the size premium is statistically significant, apart from the 

monthly returns frequency, whereas in Table 7 (BTM-sorted portfolios), the value premium is 

consistently statistically significant. Adding the FMAX-factor to the Fama-French Three-

Factor model does not seem to alter the statistical significance of the Fama-French factors to 

a great extent, and the FMAX factor is insignificant in these specifications. The exception is 

the monthly returns in Table 6, where the value premium becomes significant at the 0.1 % 

level when adding FMAX. Additionally, the size and value premia are jointly significant both 

before and after adding the FMAX-factor. 
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TABLE 7 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with FMAX factor

Book-To-Market-Sorted Portfolios

Mean

Return Market (RM) SMB HML FMAX Adjusted R ²

Frequency Periods Equation β s h f [Joint Test]

Monthly 492 (I) -.0029 -.0001 .0055*** .218

(-.81) (-.06) (3.33) [3.7*]

(II) -.0036 -.0009 .0056*** -.0024 .228

(-1.04) (-.51) (3.36) (-.81) [3.5*]

(III) -.0076 .088

(-1.93)

(IV) -.0052 -.0073* .139

(-1.31) (-2.37)

Quarterly 164 (I) -.0005 .0057 .0124** .242

(-.06) (1.17) (2.82) [3.8*]

(II) -.0002 .0066 .0124** -.0039 .255

(-.02) (1.40) (2.82) (-.63) [3.5*]

(III) -.0105 .099

(-.95)

(IV) .0022 -.0134* .163

(.25) (-2.19)

Semiannual 82 (I) .0057 .0061 .0226** .286

(.40) (.81) (2.85) [4.4*]

(II) .0092 .0072 .0208** -.0061 .306

(.69) (1.04) (2.69) (-.57) [3.7*]

(III) .0044 .137

(.26)

(IV) .0214 -.0101 .210

(1.39) (-.90)

* Two-tail significance at the 5 % level

** Two-tail significance at the 1 % level

NO TE. - The sample consists of monthly, quarterly and semiannual returns (non-annualised) of 25 equal-sized, equally-weighted portfolios.

Portfolios are formed end-of-June each year, using all CRSP common stocks, excluding financials and utilit ies. The portfolios are sorted on book-

to-market-ratio, consisting of returns from July 1970 to June 2016. The book-to-market-ratios are computed using market value in December

year t-1 and book value at fiscal year-end in calendar year t-1 . For each period, portfolio returns are regressed on a combination of the factor

loadings of market excess return (β), SMB (s), HML (h) and FMAX (f). The loadings are computed with a 5-year rolling regression for each point

in time, where portfolio excess returns are regressed on the excess market return, and the SMB, HML and FMAX factors, in different

specifications. The final coefficient estimates presented in this table are the mean coefficients across the sample and represent the factor

premium. The coefficients are reported with their respective t-statistics in parentheses. The joint test is a Wald test for joint significance of the

SMB and HML premium estimates (equation (I) & (II)).

 
In concurrence with Bali et al. (2017), we find evidence of FMAX being priced in equation 

(IV). For the monthly returns, the FMAX-factor is negative, significant at the 5 % level, and 

very close to being significant at the 1 % level. Interestingly, for the quarterly returns, FMAX 

is positive and significant in the size portfolios, but negative and significant in the BTM-

portfolios. The quarterly FMAX-factor is also negative and significant at the 5 % level, while 

the semiannual one is insignificant.  

  



 50 

5.3.2 Triple-Sorted and Industry Portfolios 

TABLE 8 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with FMAX factor

Triple-Sorted Portfolios

Mean

Return Market (RM) SMB HML FMAX Adjusted R ²

Frequency Periods Equation β s h f [Joint Test]

Monthly 492 (I) -.0018 .0028 .0025 .297

(-.60) (1.72) (1.63) [7.4**]

(II) -.0014 .0028 .0024 -.0017 .311

(-.47) (1.77) (1.59) (-.65) [6.4**]

(III) .0015 .141

(.47)

(IV) .0009 -.0017 .211

(.28) (-.62)

Quarterly 164 (I) -.0059 .0106* .0077 .310

(-.72) (2.30) (1.69) [8.6**]

(II) -.0038 .0090* .0087* -.0029 .325

(-.45) (2.07) (2.05) (-.43) [6.8**]

(III) .0073 .173

(.71)

(IV) .0047 -.0000 .238

(.46) (-.00)

Semiannual 82 (I) .0025 .0146* .0140 .294

(.22) (2.03) (1.71) [7.4**]

(II) .0051 .0141* .0110 -.0031 .306

(.45) (2.08) (1.40) (-.28) [6.5**]

(III) .0092 .154

(.62)

(IV) .0147 .0011 .208

(1.09) (.09)

* Two-tail significance at the 5 % level

** Two-tail significance at the 1 % level

NO TE. - The sample consists of monthly, quarterly and semiannual returns (non-annualised) of 45 equal-sized, equally-weighted portfolios.

Portfolios are formed end-of-June each year, using all CRSP common stocks, excluding financials and utilit ies. The portfolios are triple-sorted on

market value, book-to-market-ratio and market beta (in that order), consisting of returns from July 1970 to June 2016. The breakpoints for the

size portfolios are determined end-of-June year t. The book-to-market-ratios are computed using market value in December year t-1 and book

value at fiscal year-end in calendar year t-1. Market betas are obtained by estimating the CAPM regression equation for excess returns, using 5

years of trailing returns. For each period, portfolio returns are regressed on a combination of the factor loadings of market excess return (β),  SMB 

(s), HML (h) and FMAX (f). The loadings are computed with a 5-year rolling regression for each point in time, where portfolio excess returns are

regressed on the excess market return, and the SMB, HML and FMAX factors, in different specifications. The final coefficient estimates presented

in this table are the mean coefficients across the sample and represent the factor premium. The coefficients are reported with their respective t-

statistics in parentheses. The joint test is a Wald test for joint significance of the SMB and HML premium estimates (equation (I) & (II)).

Similar to what we observed in the former half of the analysis, in the results from the triple-

sorted portfolios, the size premium appears to be priced to a varying extent, whereas the value 

premium appears to be priced in the industry portfolios. The value premium in Table 9 is 

always significant at the 10 % level, whereas it is consistently significant at the 5 % level in 

Table 5 (industry-sorted portfolios). This is most likely due to the sample size. As the FMAX-

factor is only available from 1970, the sample size in Table 9 is almost half as that of the 

sample in Table 5. Furthermore, the Fama-French factors are jointly significant in 

specifications (I) & (II) in Table 8 across all return frequencies, but insignificant in Table 9.   
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TABLE 9 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with FMAX factor

Industry-Sorted Portfolios

Mean

Return Market (RM) SMB HML FMAX Adjusted R ²

Frequency Periods Equation β s h f [Joint Test]

Monthly 492 (I) -.0030 .0009 .0031 .257

(-.81) (.39) (1.83) [2.5]

(II) -.0060 .0018 .0031 -.0016 .303

(-1.55) (.79) (1.79) (-.54) [2.5]

(III) -.0020 .128

(-.56)

(IV) -.0016 -.0019 .194

(-.41) (-.69)

Quarterly 164 (I) -.0129 .0032 .0118* .223

(-1.41) (.65) (2.13) [2.5]

(II) -.0004 .0014 .0091 .0009 .289

(-.04) (.30) (1.83) (.13) [2.3]

(III) -.0074 .092

(-.91)

(IV) .0021 .0003 .192

(.24) (.05)

Semiannual 82 (I) -.0151 .0035 .0196* .260

(-1.13) (.43) (2.29) [2.6]

(II) -.0160 .0024 .0172* -.0085 .309

(-1.26) (.30) (2.36) (-.78) [2.5]

(III) -.0089 .138

(-.68)

(IV) -.0031 -.0077 .220

(-.22) (-.65)

* Two-tail significance at the 5 % level

** Two-tail significance at the 1 % level

NO TE. - The sample consists of monthly, quarterly and semiannual returns (non-annualised) of 15 equally-weighted portfolios obtained from

Kenneth French's Data Library. Portfolios are formed end-of-June each year, using stocks from NYSE, AMEX and NASDAQ, excluding financials

and utilit ies. The portfolios are sorted on their four digit SIC code, consisting of returns from July 1970 to June 2016.For each period, portfolio

returns are regressed on a combination of the factor loadings of market excess return (β), SMB (s), HML (h) and FMAX (f). The loadings are

computed with a 5-year rolling regression for each point in time, where portfolio excess returns are regressed on the excess market return, and the

SMB, HML and FMAX factors, in different specifications. The final coefficient estimates presented in this table are the mean coefficients across

the sample and represent the factor premium. The coefficients are reported with their respective t-statistics in parentheses. The joint test is a

Wald test for joint significance of the SMB and HML premium estimates (equation (I) & (II)).

As with the single-sorted portfolios, adding FMAX to the Fama-French model, does not appear 

to alter the significance of the Fama-French factors notably. However, the mean adjusted R-

squared does increase by a few percentage points when adding FMAX. Perhaps the most 

interesting result in tables 8 and 9 is that the pricing of FMAX in equation (IV), as we observed 

in the single-sorted portfolios, seems to have vanished completely. Thus, we have reasons to 

believe that the pricing of the FMAX-factor is also subject to the portfolio-sorting critique of 

Daniel and Titman (2012), and that FMAX might not be robust across different kinds of test 

assets.  
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6. Robustness 

6.1 Normality of residuals 

To enable hypothesis testing of the estimations conducted in this study, we rely on the 

assumption of normally distributed errors. We evaluate whether our estimates exhibit this 

necessary condition by predicting the residuals for the regressions and test for normality. 

However, as previously discussed, the Jarque-Bera and the Kolmogorov-Smirnov tests have a 

strong tendency to reject normality for large samples. Thus, we opt for visual inspections as 

well. Almost all the formal tests reject normality. Only 4 out of the 120 regressions have 

residuals where formal tests could not reject normality, either by JB-test statistic, KS-test 

statistic, or both. A similar figure also reflects the number of rejections on a 5 % confidence 

level while the rest of the residuals where rejected at 1 %. By inspecting Q-Q-plots of the 

residuals we find that the residuals are not sufficiently normally distributed for inference. 

Residual deviations from the normal distribution are more prominent in the upper quintile with 

larger positive residuals, albeit they are evident in both ends of the residual distributions, 

generating the well-known S-shape. 

6.2 Cross-sectional correlation 

Some of the motivation behind the Fama-MacBeth procedure is to correct for cross-sectional 

correlation between assets. This is an important aspect of asset pricing studies, as equities are 

susceptible to the same shocks in the cross-section. For example, if at time t, a macroeconomic 

announcement unexpectedly indicates the economy is dropping into a recession, we do not 

expect asset i’s and j’s reaction to be uncorrelated. Rather, we generally expect their reactions 

to be highly correlated, of course depending on the asset. Nonetheless, Cochrane (2005) show 

explicitly that the Fama-MacBeth procedure delivers standard errors that are appropriately 

corrected for cross-sectional dependence and we are therefore not concerned with this issue. 

6.3 Autocorrelation and Heteroscedasticity 

For inference, we need the standard errors to be correct to avoid making Type I- or Type II-

errors unnecessarily. If the standard errors are biased in either direction, this will pave way for 
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incorrect inference that could otherwise be avoided. Heteroscedasticity and autocorrelation 

will affect the standard errors in this unwanted manner. 

In spite of its intuitive nature and correction for cross-sectional correlation, the Fama-MacBeth 

procedure fails to adjust for autocorrelation. Although this is not a major concern, as equities 

tend to exhibit zero autocorrelation, we address and visually inspect for autocorrelation.  

We believe that it is unlikely that the error terms will be correlated more than a year back in 

time. Consequently, we evaluate the autocorrelation for time horizons of 12 months, 4 quarters 

or 2 half-years, depending on the return frequency. By inspecting correlograms 

(autocorrelation plots) there are signs of autocorrelation for the most part of the estimated 

regressions. Testing for heteroscedasticity, we first plot the fitted values against the squared 

residuals. A majority of the scatterplots reveal substantial heteroscedasticity. This is also the 

case when we address the heteroscedasticity with the more formal method of the simplified 

White´s test. We therefore choose to report our results with Newey-West heteroskedastic and 

autocorrelation adjusted standard errors. 

6.4 Errors-in-Variables 

The Fama-MacBeth procedure has a widely-known errors-in-variables (EIV) problem. This 

EIV problem arises from the fact that the explanatory variables in the second pass regression 

are the estimated βs from the first pass, which are subject to measurement errors, and thus 

deviate from “true βs”. Consequently, the standard errors of the cross-sectional regression may 

be (downward)biased. In the context of Fama-MacBeth regressions, the EIV problem is 

specifically addressed by Shanken (1992) who derives a formal way of adjusting for this. 

Moreover, using the Generalised Method of Moments (GMM) approach would provide 

standard errors corrected for this issue. However, this is beyond the scope of this master thesis 

and we will therefore suggest employing these as further research on the topic. 

6.5 Multicollinearity 

When we are regressing on multiple co-moments, we obviously must expect multicollinearity. 

This does not cause our coefficients to be biased, but incremental changes to the input data 

would result in substantially different estimators, even changing their signs. In addition to 
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affecting the estimators, multicollinearity can also affect the standard errors by inflating them 

(O'Brien, 2007).  

When such multicollinearity is present, one will often find joint significance for the affected 

estimators despite these estimators being individually insignificant. This was, however, not a 

prominent feature in our data.  

On the issue of the standard errors, Rubinstein (1973) argues that even though the estimators 

become insignificant due to multicollinearity one cannot conclude that the variance and 

skewness have no effect on the expected return. As Rubinstein (1973) puts it; " The 

insignificance is attributable to the purely statistical problem of multicollinearity rather than 

any economic factor." 

6.6 Consistency 

We believe that by employing several nuances of the same data we can utilise the data better. 

By this we mean that the data can give a better understanding of the world, despite the results 

being insignificant. To elaborate, we utilise the same data, but we use different sorting 

methodologies on that data. We then use different methodologies to calculate the return, both 

simple and logarithmic. Moreover, different return frequencies are used, and portfolio returns 

are calculated on a value-weighted basis as well as an equally-weighted basis. This allows us 

to investigate the robustness of our results. If results are fairly consistent across several or all 

of these features, then it provides a strong indication, even though the results may themselves 

be insignificant.  

Because we do not find any results showing strong signs of relevance, checking the same 

results across all combinations of methodologies are not necessary. Despite this, a quick 

review of the results indicate that the data is at least somewhat consistent. We also note that 

the predicted signs of the co-skewness and co-kurtosis are highly consistent across the 

aforementioned combinations of features in the data. Refer to Appendix 9.2 for these results. 
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7. Closing remarks 

7.1 Conclusions 

Throughout this paper, we have demonstrated that the choice of test assets has a great impact 

on the results of empirical asset pricing tests. We originally set out to study how robust the 

pricing of higher-order moments is across portfolio sorting methodologies. Nonetheless, we 

have also discovered that one of the most well-documented asset pricing models in finance, 

the Fama-French model, also appears to be prone to the critique put forth by Daniel & Titman 

(2012).  

We find limited evidence that our measures of higher-order moments, co-skewness and co-

kurtosis, in addition to the more ad-hoc measure FMAX, are priced in the stock market. Only 

in the size-sorted portfolios, with semiannual returns, in the regression containing only beta 

and co-skewness, do we find co-skewness to be statistically significant ((V) in Table 2). 

Similarly, the only instance in which we found statistical significance for co-kurtosis was in 

the industry-sorted portfolios, with monthly returns, when adding co-skewness and co-kurtosis 

to the Fama-French Three-Factor model (III in Table 5). However, in this case, the co-kurtosis 

is negative, i.e.  the opposite sign of what is predicted by theory. The FMAX measure appears 

to be priced in the portfolios sorted on a single factor, but we find a statistically significant 

FMAX of the opposite signs. However, as previously stated, the monthly returns frequencies 

have the most intuitive interpretation for the FMAX-factor, where we find, in concurrence 

with Bali et al. (2017) a negative FMAX-factor. Nonetheless, when testing the FMAX-factor 

in the triple and industry-sorted portfolios, the FMAX-factor is nowhere near being 

statistically significant.  

In the size- and book-to-market-sorted portfolios, we initially find that the SMB and HML 

factors are jointly significant, but they are no longer significant when adding co-skewness and 

co-kurtosis to the regression. However, in the triple sorted portfolios, the SMB and HML 

factors remain jointly significant despite adding both co-skewness and co-kurtosis. Moreover, 

in the industry-sorted portfolios we do not find any evidence of the Fama-French factors being 

jointly significant. We also find that co-skewness and co-kurtosis are jointly significant for the 

monthly and quarterly return frequencies in the triple-sorted portfolios, but not in any other 

instances. 
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Given the lack of evidence, and the degree to which statistical significance is impacted by the 

portfolio sorting methodology, we believe neither the higher-order moments, co-skewness and 

co-kurtosis, nor FMAX to be priced in the market. The existing literature that supports the 

pricing of higher-order moments is limited, and the reason we reach an opposite conclusion 

does not necessarily only stem from using different portfolio sorting methodologies. Some of 

the adjustments we have made were not mainstream in the asset pricing literature at the time 

several of these studies were published.  

We believe that stock returns are non-normal, as corroborated by the normality statistics in 

Table 1. Furthermore, we believe investors both should be, and are more concerned with 

extreme downside deviation than CAPM suggests. However, historical co-skewness and co-

kurtosis are not necessarily good measures of ex-ante market expectations of co-skewness and 

co-kurtosis. As pointed out previously, there are also a number of issues with the Fama-

MacBeth methodology, but improving on this methodology has been outside the scope of this 

thesis. Therefore, it could very well be the case that higher-order moments are priced in the 

market, but that our study suffers from measurement errors in this respect. The manner in 

which extreme downside deviation is priced is yet to discovered, if at all, and is perhaps a line 

of research that deserves more attention.  

Finally, the most interesting result from this study has been the notable observed impact 

portfolio sorting methodologies has on the statistical significance of proposed asset pricing 

factors. Of all our tested factors, HML, or the value effect, shows the greatest promise, as it is 

the one that is most consistently statistically significant, or close to being significant, across 

the portfolio sorting methodologies. Nonetheless, the statistical significance of the HML factor 

also varies greatly with the portfolio sorting, and only in the case of book-to-market-sorted 

portfolios does it meet the hurdle suggested by Harvey, Liu and Zhu (2016), namely a t-

statistic greater than 3. As previously mentioned, Harvey, Liu and Zhu (2016), find 316 

different factors, when only surveying top journals, and argue that most of these are likely 

false on the grounds of data mining and regression methodologies. We also find it highly 

unlikely that such a vast array of factors are priced in the market, and believe that portfolio 

sorting methodologies might have added to the false discovery rate.  
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7.2 Suggestions for further research 

As commented on throughout this thesis, our methodology does not come without its flaws. 

Correcting the errors-in-variables (EIV) issue in the Fama-MacBeth methodology has been 

beyond the scope of this thesis. However, several methods exist to mitigate this issue. A 

common procedure to reduce the EIV concerns in Fama-MacBeth, is the correction for 

potential time-series correlation of the variance-covariance matrix suggested by Shanken 

(1992). 

Although the Fama-MacBeth procedure is still widely used in asset pricing research, 

Generalised Method of Moments (GMM), as developed by Hansen (1982), is currently seen 

as superior to the Fama-MacBeth methodology. According to Cochrane (2005), GMM is “the 

easy and elegant way to account for the effects of “generated regressors” such as the β in the 

cross-sectional regression…” (pp. 241). Consequently, repeating the analysis with GMM 

could yield better estimates of risk premia.  

In addition to improving upon the regression methodology, improvements can also be made 

in terms of the measurement of ex ante expectations of higher-order moments. Historical 

skewness and kurtosis are not necessarily good measures what the market expects these 

parameters to be. Rehman and Vilkov (2012) and Conrad, Dittmar and Ghysels (2013) are 

both papers that have employed a methodology where they find the implied ex ante skewness 

from equity options and use it in asset pricing tests. Interestingly, these studies find a negative 

and positive relation between ex ante skewness and subsequent returns, respectively. 

According to Schneider, Wagner and Zechner (2017), the different conclusions reached in the 

two aforementioned studies, is due to the construction of the skewness measures. Another 

issue with this approach is the liquidity of options. Utilising equity options for finding ex ante 

skewness means you have to restrict the sample to equities which have a healthy option 

liquidity, i.e. most equities with small market capitalisations would have to be excluded. 

Nonetheless, utilising ex ante expectations of higher-order moments appear to be a line of 

research which is gaining in popularity.  

Finally, we believe several asset models should be reviewed critically in light of the criticisms 

of the testing methodology. Given the vast array of existing asset pricing factors, perhaps 

future research efforts should to a greater extent focus on how we go about testing these 

candidate factors.  
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9.1 Regression Equations 

9.1.1 Tables 2 to 5 (Co-moment coefficients) 

(I) First-pass (time-series): 

𝑅𝑖,𝑡 = 𝑎𝑖 + 𝛽𝑖,𝑡𝑅𝑀,𝑡 + 𝑠𝑖,𝑡𝑆𝑀𝐵𝑡 + ℎ𝑖,𝑡𝐻𝑀𝐿𝑡 + 𝑒𝑖,𝑡 

Second-pass (cross-sectional): 

𝑅𝑖,𝑡 = 𝛼𝑡 + 𝜆𝑡
(𝛽)

�̂�𝑖,𝑡−1 + 𝜆𝑡
(𝑠)

�̂�𝑖,𝑡−1 + 𝜆𝑡
(ℎ)

ℎ̂𝑖,𝑡−1 + 휀𝑖,𝑡 

(II) First-pass (time-series):  

𝑅𝑖,𝑡 = 𝑎𝑖 + 𝛽𝑖,𝑡𝑅𝑀,𝑡 + 𝑠𝑖,𝑡𝑆𝑀𝐵𝑡 + ℎ𝑖,𝑡𝐻𝑀𝐿𝑡 + 𝑒𝑖,𝑡 

�̂�𝑖,𝑡 =
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3𝑡
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1

𝑡 − 𝜏
∑ 𝑅𝑗
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Second-pass (cross-sectional): 
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(𝛽)
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(III) First-pass (time-series):  

𝑅𝑖,𝑡 = 𝑎𝑖 + 𝛽𝑖,𝑡𝑅𝑀,𝑡 + 𝑠𝑖,𝑡𝑆𝑀𝐵𝑡 + ℎ𝑖,𝑡𝐻𝑀𝐿𝑡 + 𝑒𝑖,𝑡 

�̂�𝑖,𝑡 =
∑ (𝑅𝑖,𝑗 − �̅�𝑖,𝑡)(𝑅𝑀,𝑗 − �̅�𝑀,𝑡)

2𝑡
𝑗=𝜏

∑ (𝑅𝑀,𝑗 − �̅�𝑀,𝑡)
3𝑡

𝑗=𝜏

 𝑤ℎ𝑒𝑟𝑒 �̅�𝑡 =
1

𝑡 − 𝜏
∑ 𝑅𝑗

𝑡

𝑗=𝜏
 

�̂�𝑖,𝑡 =
∑ (𝑅𝑖,𝑗 − �̅�𝑖,𝑡)(𝑅𝑀,𝑗 − �̅�𝑀,𝑡)

3𝑡
𝑗=𝜏

∑ (𝑅𝑀,𝑗 − �̅�𝑀,𝑡)
4𝑡

𝑗=𝜏

 𝑤ℎ𝑒𝑟𝑒 �̅�𝑡 =
1

𝑡 − 𝜏
∑ 𝑅𝑗

𝑡

𝑗=𝜏
 

Second-pass (cross-sectional): 

𝑅𝑖,𝑡 = 𝛼𝑡 + 𝜆𝑡
(𝛽)

�̂�𝑖,𝑡−1 + 𝜆𝑡
(𝑠)

�̂�𝑖,𝑡−1 + 𝜆𝑡
(ℎ)

ℎ̂𝑖,𝑡−1 + 𝜆𝑡
(𝛾)

�̂�𝑖,𝑡−1 + 𝜆𝑡
(𝛿)

�̂�𝑖,𝑡−1 + 휀𝑖,𝑡 

(IV) First-pass (time-series):  

�̂�𝑖,𝑡 =
∑ (𝑅𝑖,𝑗 − �̅�𝑖,𝑡)(𝑅𝑀,𝑗 − �̅�𝑀,𝑡)𝑡

𝑗=𝜏

∑ (𝑅𝑀,𝑗 − �̅�𝑀,𝑡)
2𝑡

𝑗=𝜏

 𝑤ℎ𝑒𝑟𝑒 �̅�𝑡 =
1

𝑡 − 𝜏
∑ 𝑅𝑗

𝑡

𝑗=𝜏
 

Second-pass (cross-sectional): 

𝑅𝑖,𝑡 = 𝛼𝑡 + 𝜆𝑡
(𝛽)

�̂�𝑖,𝑡−1 + 휀𝑖,𝑡 

(V) First-pass (time-series):  

�̂�𝑖,𝑡 =
∑ (𝑅𝑖,𝑗 − �̅�𝑖,𝑡)(𝑅𝑀,𝑗 − �̅�𝑀,𝑡)𝑡

𝑗=𝜏

∑ (𝑅𝑀,𝑗 − �̅�𝑀,𝑡)
2𝑡

𝑗=𝜏

 𝑤ℎ𝑒𝑟𝑒 �̅�𝑡 =
1

𝑡 − 𝜏
∑ 𝑅𝑗

𝑡

𝑗=𝜏
 

�̂�𝑖,𝑡 =
∑ (𝑅𝑖,𝑗 − �̅�𝑖,𝑡)(𝑅𝑀,𝑗 − �̅�𝑀,𝑡)

2𝑡
𝑗=𝜏

∑ (𝑅𝑀,𝑗 − �̅�𝑀,𝑡)
3𝑡

𝑗=𝜏

 𝑤ℎ𝑒𝑟𝑒 �̅�𝑡 =
1

𝑡 − 𝜏
∑ 𝑅𝑗

𝑡

𝑗=𝜏
 

Second-pass (cross-sectional): 

𝑅𝑖,𝑡 = 𝛼𝑡 + 𝜆𝑡
(𝛽)

�̂�𝑖,𝑡−1 + 𝜆𝑡
(𝛾)

�̂�𝑖,𝑡−1 + 휀𝑖,𝑡 
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(VI) First-pass (time-series):  

�̂�𝑖,𝑡 =
∑ (𝑅𝑖,𝑗 − �̅�𝑖,𝑡)(𝑅𝑀,𝑗 − �̅�𝑀,𝑡)𝑡

𝑗=𝜏

∑ (𝑅𝑀,𝑗 − �̅�𝑀,𝑡)
2𝑡

𝑗=𝜏

 𝑤ℎ𝑒𝑟𝑒 �̅�𝑡 =
1

𝑡 − 𝜏
∑ 𝑅𝑗

𝑡

𝑗=𝜏
 

�̂�𝑖,𝑡 =
∑ (𝑅𝑖,𝑗 − �̅�𝑖,𝑡)(𝑅𝑀,𝑗 − �̅�𝑀,𝑡)

2𝑡
𝑗=𝜏

∑ (𝑅𝑀,𝑗 − �̅�𝑀,𝑡)
3𝑡

𝑗=𝜏

 𝑤ℎ𝑒𝑟𝑒 �̅�𝑡 =
1

𝑡 − 𝜏
∑ 𝑅𝑗

𝑡

𝑗=𝜏
 

�̂�𝑖,𝑡 =
∑ (𝑅𝑖,𝑗 − �̅�𝑖,𝑡)(𝑅𝑀,𝑗 − �̅�𝑀,𝑡)

3𝑡
𝑗=𝜏

∑ (𝑅𝑀,𝑗 − �̅�𝑀,𝑡)
4𝑡

𝑗=𝜏

 𝑤ℎ𝑒𝑟𝑒 �̅�𝑡 =
1

𝑡 − 𝜏
∑ 𝑅𝑗

𝑡

𝑗=𝜏
 

Second-pass (cross-sectional): 

𝑅𝑖,𝑡 = 𝛼𝑡 + 𝜆𝑡
(𝛽)

�̂�𝑖,𝑡−1 + 𝜆𝑡
(𝛾)

�̂�𝑖,𝑡−1 + 𝜆𝑡
(𝛿)

�̂�𝑖,𝑡−1 + 휀𝑖,𝑡 

 

9.1.2 Tables 6 to 9 (FMAX factor) 

(I) First-pass (time-series): 

𝑅𝑖,𝑡 = 𝑎𝑖 + 𝛽𝑖,𝑡𝑅𝑀,𝑡 + 𝑠𝑖,𝑡𝑆𝑀𝐵𝑡 + ℎ𝑖,𝑡𝐻𝑀𝐿𝑡 + 𝑒𝑖,𝑡 

Second-pass (cross-sectional): 

𝑅𝑖,𝑡 = 𝛼𝑡 + 𝜆𝑡
(𝛽)

�̂�𝑖,𝑡−1 + 𝜆𝑡
(𝑠)

�̂�𝑖,𝑡−1 + 𝜆𝑡
(ℎ)

ℎ̂𝑖,𝑡−1 + 휀𝑖,𝑡 

(II) First-pass (time-series):  

𝑅𝑖,𝑡 = 𝑎𝑖 + 𝛽𝑖,𝑡𝑅𝑀,𝑡 + 𝑠𝑖,𝑡𝑆𝑀𝐵𝑡 + ℎ𝑖,𝑡𝐻𝑀𝐿𝑡 + 𝑓𝑖,𝑡𝐹𝑀𝐴𝑋𝑡 + 𝑒𝑖,𝑡 

Second-pass (cross-sectional): 

𝑅𝑖,𝑡 = 𝛼𝑡 + 𝜆𝑡
(𝛽)

�̂�𝑖,𝑡−1 + 𝜆𝑡
(𝑠)

�̂�𝑖,𝑡−1 + 𝜆𝑡
(ℎ)

ℎ̂𝑖,𝑡−1 + 𝜆𝑡
(𝑓)

𝑓𝑖,𝑡−1 + 휀𝑖,𝑡 

(III) First-pass (time-series):  

𝑅𝑖,𝑡 = 𝑎𝑖 + 𝛽𝑖,𝑡𝑅𝑀,𝑡 + 𝑒𝑖,𝑡 

Second-pass (cross-sectional): 

𝑅𝑖,𝑡 = 𝛼𝑡 + 𝜆𝑡
(𝛽)

�̂�𝑖,𝑡−1 + 휀𝑖,𝑡 

(IV) First-pass (time-series):  

𝑅𝑖,𝑡 = 𝑎𝑖 + 𝛽𝑖,𝑡𝑅𝑀,𝑡 + 𝑓𝑖,𝑡𝐹𝑀𝐴𝑋𝑡 + 𝑒𝑖,𝑡 

Second-pass (cross-sectional): 

𝑅𝑖,𝑡 = 𝛼𝑡 + 𝜆𝑡
(𝛽)

�̂�𝑖,𝑡−1 + 𝜆𝑡
(𝑓)

𝑓𝑖,𝑡−1 + 휀𝑖,𝑡  
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9.2 Other results 

9.2.1 Simple returns – Value-weighted assets vs. value-weighted 
market 

Table 2 (Size-sorted) – co-moment coefficients 

TABLE 2 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with Co-moment Expansions

Size-Sorted Portfolios

Mean

Return Market (RM) SMB HML Co-skewness Co-kurtosis Adjusted R ²

Frequency Periods Equation β s h γ δ [Joint Test]

Monthly 960 (I) .0050* .0027* .0003 .279

(2.11) (2.42) (.22) [4.8*]

(II) .0043 .0025* .0026 -.0000 .302

(1.40) (1.97) (1.60) (-.02) [3.3]

(III) .0029 .0019 .0036 -.0047 .0057 .317

(.67) (.97) (1.77) (-1.07) (.81) [2.0]

(IV) .0075** .216

(2.60)

(V) .0091** -.0013 .247

(2.59) (-.73)

(VI) .0089 -.0063 .0034 .263

(1.47) (-1.49) (.45) [1.8]

Quarterly 320 (I) .0032 .0089** .0030 .342

(.52) (2.63) (.81) [5.8**]

(II) .0115 .0111** .0060 -.0064 .351

(1.63) (3.06) (1.49) (-1.91) [4.4*]

(III) .0001 .0067 .0087 -.0240 .0283 .362

(.01) (1.16) (1.35) (-1.33) (1.02) [2.3]

(IV) .0247** .209

(2.69)

(V) .0216* -.0039 .245

(2.29) (-1.03)

(VI) .0125 -.0117 .0126 .280

(.71) (-1.18) (.60) [2.2]

Semiannual 160 (I) .0048 .0132* .0097 .334

(.46) (2.18) (1.56) [5.4*]

(II) .0140 .0151* .0228* -.0056 .341

(1.14) (2.38) (2.32) (-.99) [4.0*]

(III) -.0063 .0041 .0133 -.0115 .0271 .353

(-.19) (.33) (.80) (-.70) (.66) [2.7]

(IV) .0259* .179

(2.32)

(V) .0470** -.0213** .221

(3.01) (-3.18)

(VI) .0095 -.0309* .0443 .259

(.34) (-2.04) (1.39) [2.3]  
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Table 3 (BTM-sorted) – co-moment coefficients 

TABLE 3 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with Co-moment Expansions

BTM-Sorted Portfolios

Mean

Return Market (RM) SMB HML Co-skewness Co-kurtosis Adjusted R ²

Frequency Periods Equation β s h γ δ [Joint Test]

Monthly 492 (I) .0001 .0024 .0019 .155

(.02) (1.43) (1.24) [2.4]

(II) -.0011 .0033 .0016 .0010 .163

(-.30) (1.71) (1.03) (.44) [2.3]

(III) -.0040 .0008 .0020 -.0008 .0072 .176

(-.72) (.29) (1.00) (-.18) (.89) [2.2]

(IV) .0056 .072

(1.61)

(V) .0011 .0038 .086

(.28) (1.87)

(VI) -.0087 -.0003 .0135 .105

(-1.22) (-.06) (1.54) [1.5]

Quarterly 164 (I) -.0131 .0035 .0090* .168

(-1.75) (.91) (2.08) [2.9]

(II) -.0212** .0006 .0047 .0050 .172

(-2.64) (.14) (.99) (1.23) [2.7]

(III) -.0294 -.0015 .0081 .0064 .0054 .186

(-1.67) (-.26) (1.11) (.96) (.28) [2.6]

(IV) -.0024 .050

(-.28)

(V) -.0100 -.0031 .075

(-1.11) (-.62)

(VI) -.0201 .0003 .0028 .118

(-1.05) (.04) (.13) [2.0]

Semiannual 82 (I) -.0025 .0049 .0114 .158

(-.31) (.93) (1.56) [3.1]

(II) -.0159 .0050 .0106 .0135 .164

(-1.34) (.82) (1.14) (1.50) [2.9]

(III) -.0204 -.0046 .0191 .0202 -.0019 .170

(-.52) (-.36) (1.36) (.73) (-.04) [2.6]

(IV) .0073 .044

(.62)

(V) -.0059 .0085 .064

(-.43) (.92)

(VI) .0220 .0211 -.0412 .091

(.58) (1.35) (-.98) [1.7]  



 69 

Table 4 (Triple-sorted) – co-moment coefficients 

TABLE 4 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with Co-moment Expansions

Triple-Sorted Portfolios

Mean

Return Market (RM) SMB HML Co-skewness Co-kurtosis Adjusted R ²

Frequency Periods Equation β s h γ δ [Joint Test]

Monthly 492 (I) -.0024 .0033* .0012 .290

(-.89) (2.30) (.81) [7.6**]

(II) -.0011 .0034* .0009 -.0009 .300

(-.37) (2.23) (.60) (-.48) [5.3**]

(III) -.0015 .0043* .0000 -.0000 -.0007 .308

(-.35) (2.07) (.00) (-.00) (-.12) [3.8*]

(IV) .0047 .170

(1.52)

(V) .0023 .0020 .202

(.64) (.95)

(VI) .0047 .0055 -.0064 .214

(.78) (1.40) (-.90) [2.3]

Quarterly 164 (I) -.0046 .0103** .0054 .292

(-.69) (2.65) (1.24) [8.2**]

(II) -.0051 .0104** .0065 .0037 .298

(-.72) (2.77) (1.29) (1.22) [6.3**]

(III) -.0166 .0086 .0069 .0021 .0139 .305

(-1.23) (1.83) (1.08) (.43) (1.00) [3.7*]

(IV) .0075 .158

(.82)

(V) .0086 -.0045 .206

(.91) (-1.19)

(VI) -.0013 -.0060 .0087 .228

(-.08) (-.98) (.54) [3.0]

Semiannual 82 (I) -.0025 .0154* .0131 .273

(-.28) (2.34) (1.63) [7.3**]

(II) -.0159 .0156* .0319* .0131 .284

(-1.21) (2.09) (2.16) (1.65) [5.9**]

(III) .0084 .0295* .0175 .0189 -.0293 .291

(.31) (2.61) (.92) (.91) (-.77) [4.0*]

(IV) .0036 .127

(.31)

(V) .0060 -.0015 .152

(.41) (-.23)

(VI) .0010 -.0125 .0134 .182

(.03) (-.55) (.30) [2.5]  
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Table 5 (Industry-sorted) – co-moment coefficients 

TABLE 5 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with Co-moment Expansions

Industry-Sorted Portfolios

Mean

Return Market (RM) SMB HML Co-skewness Co-kurtosis Adjusted R ²

Frequency Periods Equation β s h γ δ [Joint Test]

Monthly 960 (I) -.0021 -.0008 .0021 .259

(-.84) (-.49) (1.43) [2.7]

(II) -.0020 .0023 .0033* -.0002 .300

(-.68) (1.24) (1.97) (-.10) [2.7]

(III) -.0043 -.0027 .0020 .0038 .0060 .327

(-.69) (-.83) (.82) (.76) (.56) [2.4]

(IV) -.0042 .125

(-1.61)

(V) -.0008 -.0006 .181

(-.25) (-.27)

(VI) -.0051 -.0010 .0075 .217

(-.65) (-.19) (.73) [1.9]

Quarterly 320 (I) .0032 -.0026 .0086* .271

(.47) (-.65) (2.04) [2.8]

(II) -.0000 -.0030 .0110* .0085 .297

(-.00) (-.64) (2.19) (1.72) [2.6]

(III) -.0157 -.0113 .0132 .0229 .0010 .327

(-.75) (-1.25) (1.54) (.85) (.03) [2.3]

(IV) -.0094 .128

(-1.48)

(V) -.0036 .0021 .186

(-.43) (.46)

(VI) -.0342 .0043 .0329 .235

(-1.77) (.23) (1.14) [2.1]

Semiannual 160 (I) -.0016 -.0031 .0136* .284

(-.16) (-.38) (1.99) [2.9]

(II) .0071 .0010 .0092 -.0022 .316

(.48) (.12) (1.03) (-.22) [2.6]

(III) -.0296 -.0181 -.0432 -.0022 .0401 .355

(-.60) (-.90) (-1.85) (-.07) (.59) [2.4]

(IV) -.0096 .109

(-.96)

(V) .0080 -.0127 .190

(.71) (-1.93)

(VI) .0064 -.0109 .0050 .249

(.18) (-.41) (.10) [2.4]  
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Table 6 (Size-sorted) – FMAX factor 

TABLE 6 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with FMAX factor

Size-Sorted Portfolios

Mean

Return Market (RM) SMB HML FMAX Adjusted R ²

Frequency Periods Equation β s h f [Joint Test]

Monthly 492 (I) .0053 .0026 .0001 .292

(1.37) (1.68) (.03) [5.1*]

(II) .0030 .0030 .0002 .0001 .315

(.80) (1.89) (.10) (.02) [4.5*]

(III) .0077* .212

(1.99)

(IV) .0063 .0050 .215

(1.50) (1.45)

Quarterly 164 (I) .0023 .0102* .0025 .366

(.23) (2.20) (.40) [5.7**]

(II) .0052 .0092* .0041 .0022 .388

(.55) (2.13) (.77) (.29) [5.0*]

(III) .0274* .202

(1.98)

(IV) .0262* .0202* .291

(2.23) (2.14)

Semiannual 82 (I) .0035 .0132 .0083 .346

(.22) (1.72) (1.01) [4.9*]

(II) .0013 .0129 .0103 .0048 .360

(.08) (1.68) (1.25) (.41) [4.6*]

(III) .0312 .173

(1.86)

(IV) .0205 .0245 .243

(1.20) (1.65)  

Table 7 (BTM-sorted) – FMAX factor 

TABLE 7 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with FMAX factor

Book-To-Market-Sorted Portfolios

Mean

Return Market (RM) SMB HML FMAX Adjusted R ²

Frequency Periods Equation β s h f [Joint Test]

Monthly 492 (I) .0001 .0024 .0019 .155

(.02) (1.43) (1.24) [2.4]

(II) .0026 .0032 .0013 .0009 .164

(.73) (1.90) (.85) (.36) [2.3]

(III) .0056 .072

(1.61)

(IV) .0013 -.0013 .076

(.34) (-.47)

Quarterly 164 (I) -.0131 .0035 .0090* .168

(-1.75) (.91) (2.08) [2.9]

(II) -.0159* .0040 .0075 -.0055 .180

(-2.09) (1.07) (1.79) (-1.02) [2.9]

(III) -.0024 .050

(-.28)

(IV) -.0037 -.0122* .089

(-.43) (-2.23)

Semiannual 82 (I) -.0025 .0049 .0114 .158

(-.31) (.93) (1.56) [3.1]

(II) -.0008 .0059 .0096 -.0033 .190

(-.10) (1.11) (1.41) (-.42) [2.8]

(III) .0073 .044

(.62)

(IV) .0043 -.0092 .100

(.38) (-.99)  
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Table 8 (Triple-sorted) – FMAX factor 

TABLE 8 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with FMAX factor

Triple-Sorted Portfolios

Mean

Return Market (RM) SMB HML FMAX Adjusted R ²

Frequency Periods Equation β s h f [Joint Test]

Monthly 492 (I) -.0024 .0033* .0012 .290

(-.89) (2.30) (.81) [7.6**]

(II) -.0015 .0034* .0014 -.0007 .300

(-.55) (2.38) (1.00) (-.30) [7.1**]

(III) .0047 .170

(1.52)

(IV) .0025 -.0008 .197

(.84) (-.31)

Quarterly 164 (I) -.0046 .0103** .0054 .292

(-.69) (2.65) (1.24) [8.2**]

(II) -.0038 .0095* .0068 -.0046 .304

(-.55) (2.54) (1.65) (-.74) [7.3**]

(III) .0075 .158

(.82)

(IV) .0080 .0005 .209

(.92) (.08)

Semiannual 82 (I) -.0025 .0154* .0131 .273

(-.28) (2.34) (1.63) [7.3**]

(II) -.0010 .0158* .0113 -.0057 .287

(-.11) (2.40) (1.45) (-.55) [6.8**]

(III) .0036 .127

(.31)

(IV) .0033 -.0043 .189

(.30) (-.41)  

Table 9 (Industry-sorted) – FMAX factor 

TABLE 9 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with FMAX factor

Industry-Sorted Portfolios

Mean

Return Market (RM) SMB HML FMAX Adjusted R ²

Frequency Periods Equation β s h f [Joint Test]

Monthly 492 (I) -.0016 .0005 .0012 .256

(-.40) (.20) (.52) [2.5]

(II) .0019 -.0039 .0000 .0011 .298

(.48) (-1.36) (.01) (.36) [2.4]

(III) -.0048 .127

(-1.22)

(IV) .0013 -.0015 .196

(.33) (-.50)

Quarterly 164 (I) .0150 -.0004 .0072 .270

(1.39) (-.07) (1.14) [2.7]

(II) .0171 -.0058 -.0017 .0073 .339

(1.61) (-.98) (-.30) (.91) [2.4]

(III) -.0095 .129

(-.98)

(IV) .0144 .0017 .246

(1.35) (.23)

Semiannual 82 (I) .0083 -.0008 .0152 .316

(.61) (-.06) (1.68) [3.0]

(II) .0038 .0097 .0135 .0070 .380

(.30) (.66) (1.47) (.51) [2.7]

(III) -.0064 .121

(-.44)

(IV) .0039 -.0035 .241

(.30) (-.28)  
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9.2.2 Log returns – Equal-weighted assets vs. value-weighted 
market 

Table 2 (Size-sorted) – co-moment coefficients 

TABLE 2 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with Co-moment Expansions

Size-Sorted Portfolios

Mean

Return Market (RM) SMB HML Co-skewness Co-kurtosis Adjusted R ²

Frequency Periods Equation β s h γ δ [Joint Test]

Monthly 960 (I) .0031 .0014 -.0000 .296

(1.32) (1.26) (-.03) [5.1*]

(II) .0030 .0014 .0001 -.0002 .312

(.96) (1.13) (.04) (-.11) [3.5*]

(III) .0018 .0019 .0012 -.0054 .0054 .325

(.36) (1.24) (.60) (-1.13) (.80) [2.5]

(IV) .0055 .154

(1.62)

(V) .0008 .0018 .225

(.20) (.86)

(VI) .0035 -.0019 -.0003 .246

(.57) (-.36) (-.04) [2.5]

Quarterly 320 (I) -.0011 .0057 -.0016 .364

(-.21) (1.76) (-.43) [6.3**]

(II) -.0022 .0046 -.0003 .0019 .377

(-.28) (1.30) (-.07) (.45) [4.3*]

(III) .0046 .0066 .0032 -.0043 -.0007 .389

(.31) (1.25) (.54) (-.46) (-.04) [2.5]

(IV) .0192* .210

(2.11)

(V) .0138 -.0038 .258

(1.32) (-.70)

(VI) .0108 -.0154 .0113 .306

(.56) (-1.48) (.47) [2.7]

Semiannual 160 (I) .0051 .0077 .0042 .367

(.59) (1.32) (.74) [6.4**]

(II) .0261* .0112 .0122 -.0170** .379

(2.17) (1.74) (1.63) (-2.67) [4.7*]

(III) .0344 .0086 .0012 .0039 -.0296 .382

(1.18) (.79) (.10) (.19) (-.74) [2.8]

(IV) .0180 .199

(1.58)

(V) .0367* -.0204* .255

(2.59) (-2.56)

(VI) .0069 -.0450* .0517 .290

(.25) (-2.10) (1.38) [2.6]  
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Table 3 (BTM-sorted) – co-moment coefficients 

TABLE 3 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with Co-moment Expansions

BTM-Sorted Portfolios

Mean

Return Market (RM) SMB HML Co-skewness Co-kurtosis Adjusted R ²

Frequency Periods Equation β s h γ δ [Joint Test]

Monthly 492 (I) -.0035 -.0007 .0055*** .219

(-1.04) (-.37) (3.38) [3.7*]

(II) -.0072 -.0020 .0063*** .0032 .225

(-1.62) (-.92) (3.75) (1.16) [2.7]

(III) -.0141* -.0030 .0073** -.0051 .0145 .233

(-2.05) (-1.26) (3.24) (-.62) (1.28) [2.4]

(IV) -.0086* .083

(-2.44)

(V) -.0103* .0022 .144

(-2.32) (.83)

(VI) -.0091 -.0068 .0113 .163

(-1.38) (-.78) (.97) [2.2]

Quarterly 164 (I) -.0073 .0024 .0134** .244

(-1.07) (.50) (3.08) [4.0*]

(II) -.0043 .0023 .0130* -.0018 .251

(-.44) (.44) (2.56) (-.31) [3.3]

(III) .0231 .0069 -.0011 .0006 -.0298 .266

(1.21) (.97) (-.15) (.04) (-1.08) [2.7]

(IV) -.0280** .088

(-2.85)

(V) -.0133 -.0060 .139

(-1.15) (-1.13)

(VI) -.0079 -.0050 -.0096 .188

(-.38) (-.30) (-.30) [2.5]

Semiannual 82 (I) -.0072 .0007 .0271** .288

(-.75) (.10) (3.25) [4.7*]

(II) .0027 -.0045 .0322** -.0055 .291

(.11) (-.56) (2.67) (-.33) [3.7*]

(III) -.0023 -.0023 .0351* .0267 -.0272 .303

(-.05) (-.18) (2.00) (.64) (-.42) [2.6]

(IV) -.0095 .136

(-.68)

(V) .0059 -.0092 .198

(.27) (-.68)

(VI) .0067 -.0007 -.0063 .227

(.16) (-.03) (-.12) [2.5]  
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Table 4 (Triple-sorted) – co-moment coefficients 

TABLE 4 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with Co-moment Expansions

Triple-Sorted Portfolios

Mean

Return Market (RM) SMB HML Skewness Kurtosis Adjusted R ²

Frequency Periods Equation β s h γ δ [Joint Test]

Monthly 492 (I) -.0044 .0015 .0030* .299

(-1.53) (.95) (2.00) [7.4**]

(II) -.0051 .0014 .0030* .0003 .305

(-1.85) (.88) (2.04) (.18) [6.9**]

(III) -.0050 .0013 .0031* .0090 -.0069 .313

(-1.82) (.82) (2.14) (.58) (-.44) [6.7**]

(IV) -.0040 .113

(-1.01)

(V) .0030 -.0042 .115

(.43) (-.83)

(VI) -.0316 .0130 .0107 .110

(-1.56) (.46) (.29) [1.0]

Quarterly 164 (I) -.0141 .0053 .0094* .316

(-1.83) (1.20) (2.10) [9.0**]

(II) -.0138 .0055 .0088* -.0016 .321

(-1.94) (1.25) (2.00) (-.34) [8.0**]

(III) -.0077 .0064 .0075 .0109 -.0212 .339

(-1.16) (1.48) (1.73) (.39) (-.73) [7.6**]

(IV) -.0099 .108

(-.75)

(V) -.0227 .0035 .109

(-.67) (.18)

(VI) -.0268 .0139 -.0114 .114

(-.39) (.36) (-.16) [1.2]

Semiannual 82 (I) -.0107 .0057 .0188* .302

(-1.10) (.83) (2.11) [7.8**]

(II) -.0051 .0069 .0156 -.0057 .321

(-.52) (.98) (1.87) (-.71) [7.7**]

(III) -.0010 .0081 .0149 -.0259 -.0074 .335

(-.11) (1.15) (1.89) (-1.02) (-.22) [7.4**]

(IV) -.0298 .101

(-1.56)

(V) -.0019 -.0166 .105

(-.07) (-1.20)

(VI) .0316 -.0525 -.0055 .103

(.46) (-.61) (-.04) [1.1]  
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Table 5 (Industry-sorted) – co-moment coefficients 

TABLE 5 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with Co-moment Expansions

Industry-Sorted Portfolios

Mean

Return Market (RM) SMB HML Skewness Kurtosis Adjusted R ²

Frequency Periods Equation β s h γ δ [Joint Test]

Monthly 960 (I) -.0051* -.0004 .0021 .239

(-2.18) (-.28) (1.78) [2.5]

(II) -.0046 .0005 .0019 .0003 .254

(-1.76) (.36) (1.49) (.18) [2.5]

(III) -.0016 .0012 .0019 .0017 -.0048 .261

(-.44) (.81) (1.33) (.36) (-.87) [2.5]

(IV) -.0034 .087

(-1.96)

(V) -.0017 .0001 .120

(-.62) (.08)

(VI) .0056 .0008 -.0077 .159

(.95) (.17) (-.99) [1.7]

Quarterly 320 (I) -.0131* -.0004 .0069 .238

(-2.22) (-.13) (1.80) [2.6]

(II) -.0153* .0002 .0068 .0033 .245

(-2.15) (.06) (1.67) (.89) [2.6]

(III) -.0136 .0015 .0026 -.0017 .0015 .251

(-1.20) (.30) (.50) (-.19) (.11) [2.4]

(IV) -.0089 .081

(-1.91)

(V) -.0125 .0038 .110

(-1.82) (.86)

(VI) -.0030 -.0045 -.0019 .159

(-.17) (-.34) (-.08) [1.8]

Semiannual 160 (I) -.0107 -.0042 .0090 .241

(-1.14) (-.73) (1.33) [2.5]

(II) -.0136 -.0032 .0074 .0077 .248

(-1.22) (-.51) (.98) (1.28) [2.4]

(III) -.0216 -.0098 -.0007 -.0070 .0200 .252

(-1.42) (-1.23) (-.06) (-.34) (.72) [2.1]

(IV) -.0125 .094

(-1.59)

(V) -.0065 -.0011 .142

(-.60) (-.17)

(VI) .0090 -.0234 .0080 .176

(.29) (-1.08) (.18) [1.8]  



 77 

Table 6 (Size-sorted) – FMAX factor 

TABLE 6 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with FMAX factor

Size-Sorted Portfolios

Mean

Return Market (RM) SMB HML FMAX Adjusted R ²

Frequency Periods Equation β s h f [Joint Test]

Monthly 492 (I) .0034 .0016 -.0008 .311

(.88) (.99) (-.32) [5.2*]

(II) .0012 .0016 -.0004 -.0029 .337

(.33) (1.02) (-.16) (-.80) [4.4*]

(III) .0037 .122

(.72)

(IV) .0045 .0026 .233

(1.04) (.68)

Quarterly 164 (I) -.0061 .0079 -.0051 .377

(-.71) (1.73) (-.87) [5.9**]

(II) -.0048 .0059 -.0021 .0043 .405

(-.58) (1.43) (-.37) (.52) [5.1*]

(III) -.0009 .192

(-.09)

(IV) .0170 .0180 .318

(1.53) (1.80)

Semiannual 82 (I) .0045 .0074 .0026 .387

(.35) (.95) (.29) [6.4**]

(II) .0039 .0079 .0028 .0053 .395

(.29) (1.01) (.33) (.52) [5.4*]

(III) .0103 .211

(.58)

(IV) .0113 .0151 .281

(.74) (1.03)  

Table 7 (BTM-sorted) – FMAX factor 

TABLE 7 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with FMAX factor

Book-To-Market-Sorted Portfolios

Mean

Return Market (RM) SMB HML FMAX Adjusted R ²

Frequency Periods Equation β s h f [Joint Test]

Monthly 492 (I) .0001 .0024 .0019 .219

(.02) (1.43) (1.24) [2.4]

(II) .0026 .0032 .0013 .0009 .229

(.73) (1.90) (.85) (.36) [2.3]

(III) .0056 .083

(1.61)

(IV) .0013 -.0013 .133

(.34) (-.47)

Quarterly 164 (I) -.0131 .0035 .0090* .244

(-1.75) (.91) (2.08) [2.9]

(II) -.0159* .0040 .0075 -.0055 .256

(-2.09) (1.07) (1.79) (-1.02) [2.9]

(III) -.0024 .088

(-.28)

(IV) -.0037 -.0122* .163

(-.43) (-2.23)

Semiannual 82 (I) -.0025 .0049 .0114 .288

(-.31) (.93) (1.56) [3.1]

(II) -.0008 .0059 .0096 -.0033 .307

(-.10) (1.11) (1.41) (-.42) [2.8]

(III) .0073 .136

(.62)

(IV) .0043 -.0092 .205

(.38) (-.99)  
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Table 8 (Triple-sorted) – FMAX factor 

TABLE 8 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with FMAX factor

Triple-Sorted Portfolios

Mean

Return Market (RM) SMB HML FMAX Adjusted R ²

Frequency Periods Equation β s h f [Joint Test]

Monthly 492 (I) -.0044 .0015 .0030* .299

(-1.53) (.95) (2.00) [7.4**]

(II) -.0037 .0017 .0031* -.0044 .313

(-1.36) (1.05) (2.06) (-1.63) [6.5**]

(III) -.0040 .113

(-1.01)

(IV) -.0007 -.0041 .208

(-.24) (-1.50)

Quarterly 164 (I) -.0141 .0053 .0094* .316

(-1.83) (1.20) (2.10) [9.0**]

(II) -.0122 .0027 .0111* -.0106 .329

(-1.59) (.67) (2.56) (-1.51) [7.1**]

(III) -.0099 .108

(-.75)

(IV) -.0058 -.0086 .234

(-.64) (-1.17)

Semiannual 82 (I) -.0107 .0057 .0188* .302

(-1.10) (.83) (2.11) [7.8**]

(II) -.0090 .0057 .0187* -.0172 .310

(-.95) (.86) (2.12) (-1.46) [7.2**]

(III) -.0298 .101

(-1.56)

(IV) -.0018 -.0155 .206

(-.15) (-1.28)  

Table 9 (Industry-sorted) – FMAX factor 

TABLE 9 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with FMAX factor

Industry-Sorted Portfolios

Mean

Return Market (RM) SMB HML FMAX Adjusted R ²

Frequency Periods Equation β s h f [Joint Test]

Monthly 492 (I) -.0050 .0005 .0031 .261

(-1.36) (.25) (1.85) [2.5]

(II) -.0075 .0014 .0031 -.0034 .310

(-1.94) (.62) (1.75) (-1.19) [2.5]

(III) -.0044 .093

(-1.53)

(IV) -.0028 -.0041 .196

(-.74) (-1.45)

Quarterly 164 (I) -.0169 .0015 .0115* .236

(-1.85) (.30) (2.04) [2.5]

(II) -.0080 .0003 .0090 -.0044 .298

(-.90) (.05) (1.84) (-.59) [2.3]

(III) -.0103 .065

(-1.47)

(IV) -.0050 -.0050 .200

(-.57) (-.70)

Semiannual 82 (I) -.0184 -.0011 .0176 .265

(-1.42) (-.13) (1.96) [2.6]

(II) -.0179 -.0025 .0159* -.0127 .302

(-1.45) (-.31) (2.12) (-1.17) [2.4]

(III) -.0202 .110

(-1.81)

(IV) -.0109 -.0153 .227

(-.83) (-1.26)  
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9.2.3 Log returns – Value-weighted assets vs. value-weighted 
market 

Table 2 (Size-sorted) – co-moment coefficients 

TABLE 2 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with Co-moment Expansions

Size-Sorted Portfolios

Mean

Return Market (RM) SMB HML Co-skewness Co-kurtosis Adjusted R ²

Frequency Periods Equation β s h γ δ [Joint Test]

Monthly 960 (I) .0051* .0014 -.0001 .278

(2.23) (1.28) (-.05) [4.9*]

(II) .0028 .0006 -.0001 .0014 .301

(.90) (.53) (-.04) (.84) [3.6*]

(III) .0038 .0011 .0002 -.0024 .0020 .312

(.75) (.70) (.09) (-.74) (.35) [2.5]

(IV) .0052 .145

(1.72)

(V) .0011 .0016 .211

(.34) (.98)

(VI) .0024 -.0024 .0021 .232

(.41) (-.65) (.32) [2.4]

Quarterly 320 (I) .0031 .0039 .0021 .343

(.56) (1.19) (.56) [6.0**]

(II) .0065 .0042 .0038 -.0037 .353

(.95) (1.20) (.93) (-1.03) [4.3*]

(III) .0127 .0066 .0065 -.0129 .0024 .368

(.91) (1.27) (1.13) (-1.23) (.12) [2.5]

(IV) .0147 .202

(1.73)

(V) .0104 -.0032 .240

(1.16) (-.74)

(VI) .0069 -.0151 .0131 .281

(.42) (-1.43) (.62) [2.4]

Semiannual 160 (I) .0003 .0047 .0070 .335

(.04) (.83) (1.23) [5.5*]

(II) .0177 .0075 .0129 -.0110 .345

(1.52) (1.19) (1.79) (-1.82) [4.1*]

(III) -.0180 -.0054 .0089 -.0188 .0418 .353

(-.59) (-.51) (.72) (-.82) (.96) [2.6]

(IV) .0092 .178

(.85)

(V) .0283* -.0179* .224

(2.11) (-2.55)

(VI) -.0166 -.0581* .0836* .263

(-.60) (-2.46) (2.19) [2.4]  
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Table 3 (BTM-sorted) – co-moment coefficients 

TABLE 3 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with Co-moment Expansions

BTM-Sorted Portfolios

Mean

Return Market (RM) SMB HML Co-skewness Co-kurtosis Adjusted R ²

Frequency Periods Equation β s h γ δ [Joint Test]

Monthly 492 (I) -.0007 .0015 .0019 .156

(-.21) (.90) (1.23) [2.5]

(II) -.0026 .0015 .0023 .0022 .163

(-.59) (.82) (1.40) (.88) [2.3]

(III) .0024 .0015 .0006 .0083 -.0110 .178

(.36) (.70) (.27) (1.29) (-1.26) [2.3]

(IV) .0008 .048

(.24)

(V) -.0046 .0043 .081

(-1.08) (1.92)

(VI) .0005 .0093 -.0114 .107

(.07) (1.40) (-1.28) [1.8]

Quarterly 164 (I) -.0117 .0033 .0063 .171

(-1.66) (.88) (1.50) [3.1]

(II) -.0199* .0000 .0014 .0061 .175

(-2.18) (.01) (.30) (1.13) [2.7]

(III) -.0243 -.0019 .0049 .0156 -.0068 .187

(-1.41) (-.33) (.74) (1.22) (-.30) [2.6]

(IV) -.0076 .041

(-.99)

(V) -.0080 -.0042 .079

(-.75) (-.62)

(VI) -.0192 .0065 -.0032 .118

(-1.07) (.45) (-.13) [2.1]

Semiannual 82 (I) .0030 .0045 .0088 .163

(.35) (.86) (1.19) [3.3]

(II) -.0146 .0015 .0082 .0161 .165

(-1.19) (.26) (.96) (1.65) [2.9]

(III) .0036 -.0010 .0115 .0688 -.0710 .171

(.09) (-.08) (.74) (1.95) (-1.24) [2.6]

(IV) .0013 .043

(.11)

(V) .0043 -.0007 .059

(.30) (-.07)

(VI) .0371 .0529* -.0844 .093

(.98) (2.22) (-1.76) [1.7]  
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Table 4 (Triple-sorted) – co-moment coefficients 

TABLE 4 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with Co-moment Expansions

Triple-Sorted Portfolios

Mean

Return Market (RM) SMB HML Co-skewness Co-kurtosis Adjusted R ²

Frequency Periods Equation β s h γ δ [Joint Test]

Monthly 492 (I) -.0046 .0023 .0017 .291

(-1.74) (1.61) (1.16) [7.5**]

(II) -.0052 .0017 .0025 .0008 .297

(-1.47) (1.09) (1.73) (.45) [5.4**]

(III) -.0035 .0019 .0016 .0006 -.0017 .303

(-.69) (1.06) (.88) (.14) (-.27) [4.1*]

(IV) -.0000 .138

(-.01)

(V) -.0037 .0029 .194

(-1.13) (1.29)

(VI) .0023 .0072 -.0114 .211

(.44) (1.29) (-1.55) [3.1]

Quarterly 164 (I) -.0106 .0059 .0076 .297

(-1.62) (1.57) (1.76) [8.4**]

(II) -.0140 .0059 .0090 .0047 .302

(-1.70) (1.64) (1.85) (1.03) [6.1**]

(III) -.0154 .0049 .0068 .0038 .0038 .308

(-1.10) (1.07) (1.10) (.54) (.24) [3.7*]

(IV) -.0041 .154

(-.48)

(V) -.0034 -.0034 .210

(-.33) (-.62)

(VI) -.0148 -.0094 .0153 .231

(-.95) (-1.03) (.89) [3.2*]

Semiannual 82 (I) -.0104 .0082 .0162 .275

(-1.33) (1.27) (1.93) [7.7**]

(II) -.0226 .0081 .0284* .0114 .283

(-1.72) (1.20) (2.37) (1.38) [6.0**]

(III) -.0047 .0213 .0155 .0140 -.0198 .293

(-.18) (1.94) (.97) (.55) (-.47) [4.0*]

(IV) -.0078 .127

(-.68)

(V) -.0067 -.0005 .149

(-.48) (-.08)

(VI) -.0030 -.0324 .0277 .184

(-.10) (-.99) (.56) [2.6]  
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Table 5 (Industry-sorted) – co-moment coefficients 

TABLE 5 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with Co-moment Expansions

Industry-Sorted Portfolios

Mean

Return Market (RM) SMB HML Co-skewness Co-kurtosis Adjusted R ²

Frequency Periods Equation β s h γ δ [Joint Test]

Monthly 960 (I) -.0045 -.0017 .0017 .260

(-1.83) (-1.13) (1.22) [2.7]

(II) -.0081* -.0014 .0032* .0046* .292

(-2.47) (-.86) (2.03) (2.21) [2.6]

(III) .0005 -.0017 -.0002 .0014 -.0041 .323

(.07) (-.67) (-.08) (.34) (-.46) [2.4]

(IV) -.0054* .127

(-2.22)

(V) -.0065* .0032 .174

(-2.16) (1.64)

(VI) .0023 .0032 -.0086 .215

(.32) (.92) (-1.06) [1.9]

Quarterly 320 (I) -.0026 -.0049 .0089* .273

(-.42) (-1.24) (2.20) [2.9]

(II) -.0155 -.0091* .0099* .0145** .295

(-1.73) (-2.08) (2.12) (2.69) [2.7]

(III) -.0296 -.0173* .0107 .0192 .0081 .324

(-1.50) (-2.05) (1.36) (1.38) (.30) [2.3]

(IV) -.0169** .131

(-2.67)

(V) -.0178* .0072 .184

(-2.13) (1.51)

(VI) -.0418* .0066 .0278 .233

(-2.19) (.56) (1.13) [2.0]

Semiannual 160 (I) -.0115 -.0088 .0101 .287

(-1.15) (-1.13) (1.55) [2.9]

(II) -.0042 -.0084 .0114 -.0017 .316

(-.29) (-.94) (1.29) (-.21) [2.7]

(III) -.0122 -.0162 -.0436* -.0003 .0106 .361

(-.25) (-.86) (-1.99) (-.01) (.13) [2.5]

(IV) -.0220* .119

(-2.14)

(V) -.0013 -.0111 .190

(-.10) (-1.67)

(VI) -.0004 -.0067 -.0004 .260

(-.01) (-.20) (-.01) [2.4]  
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Table 6 (Size-sorted) – FMAX factor 

TABLE 6 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with FMAX factor

Size-Sorted Portfolios

Mean

Return Market (RM) SMB HML FMAX Adjusted R ²

Frequency Periods Equation β s h f [Joint Test]

Monthly 492 (I) .0068 .0015 .0004 .291

(1.87) (.98) (.18) [5.2*]

(II) .0032 .0021 .0005 -.0025 .314

(.91) (1.31) (.24) (-.71) [4.5*]

(III) .0069 .109

(1.54)

(IV) .0063 .0032 .211

(1.72) (.90)

Quarterly 164 (I) .0012 .0056 .0041 .366

(.14) (1.26) (.68) [6.0**]

(II) .0035 .0052 .0045 .0014 .390

(.40) (1.29) (.81) (.17) [5.2*]

(III) .0184 .195

(1.43)

(IV) .0225* .0148 .293

(2.04) (1.56)

Semiannual 82 (I) -.0041 .0061 .0116 .349

(-.33) (.82) (1.40) [5.2*]

(II) -.0067 .0059 .0125 -.0066 .361

(-.51) (.81) (1.47) (-.59) [5.0*]

(III) .0115 .171

(.74)

(IV) .0089 .0071 .241

(.64) (.50)  

Table 7 (BTM-sorted) – FMAX factor 

TABLE 7 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with FMAX factor

Book-To-Market-Sorted Portfolios

Mean

Return Market (RM) SMB HML FMAX Adjusted R ²

Frequency Periods Equation β s h f [Joint Test]

Monthly 492 (I) -.0007 .0015 .0019 .156

(-.21) (.90) (1.23) [2.5]

(II) .0016 .0023 .0013 -.0001 .165

(.47) (1.39) (.85) (-.05) [2.3]

(III) .0008 .048

(.24)

(IV) .0008 -.0025 .075

(.21) (-.91)

Quarterly 164 (I) -.0117 .0033 .0063 .171

(-1.66) (.88) (1.50) [3.1]

(II) -.0134 .0044 .0045 -.0039 .187

(-1.88) (1.16) (1.11) (-.66) [3.0]

(III) -.0076 .041

(-.99)

(IV) -.0080 -.0138* .083

(-1.01) (-2.47)

Semiannual 82 (I) .0030 .0045 .0088 .163

(.35) (.86) (1.19) [3.3]

(II) .0019 .0058 .0082 -.0040 .202

(.22) (1.11) (1.15) (-.46) [3.0]

(III) .0013 .043

(.11)

(IV) -.0006 -.0113 .096

(-.05) (-1.19)  
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Table 8 (Triple-sorted) – FMAX factor 

TABLE 8 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with FMAX factor

Triple-Sorted Portfolios

Mean

Return Market (RM) SMB HML FMAX Adjusted R ²

Frequency Periods Equation β s h f [Joint Test]

Monthly 492 (I) -.0046 .0023 .0017 .291

(-1.74) (1.61) (1.16) [7.5**]

(II) -.0035 .0024 .0020 -.0031 .302

(-1.38) (1.66) (1.42) (-1.23) [7.1**]

(III) -.0000 .138

(-.01)

(IV) .0006 -.0030 .192

(.19) (-1.15)

Quarterly 164 (I) -.0106 .0059 .0076 .297

(-1.62) (1.57) (1.76) [8.4**]

(II) -.0094 .0050 .0091* -.0116 .308

(-1.45) (1.38) (2.18) (-1.77) [7.6**]

(III) -.0041 .154

(-.48)

(IV) .0016 -.0068 .208

(.19) (-1.01)

Semiannual 82 (I) -.0104 .0082 .0162 .275

(-1.33) (1.27) (1.93) [7.7**]

(II) -.0089 .0085 .0155 -.0170 .286

(-1.13) (1.32) (1.86) (-1.55) [7.5**]

(III) -.0078 .127

(-.68)

(IV) -.0084 -.0168 .183

(-.79) (-1.52)  

Table 9 (Industry-sorted) – FMAX factor 

TABLE 9 Fama-MacBeth Regression Results for the Fama-French Model and the CAPM with FMAX factor

Industry-Sorted Portfolios

Mean

Return Market (RM) SMB HML FMAX Adjusted R ²

Frequency Periods Equation β s h f [Joint Test]

Monthly 492 (I) -.0040 -.0006 .0013 .257

(-1.03) (-.23) (.61) [2.5]

(II) -.0006 -.0037 .0002 -.0025 .300

(-.16) (-1.34) (.10) (-.79) [2.4]

(III) -.0045 .135

(-1.18)

(IV) -.0010 -.0050 .199

(-.26) (-1.62)

Quarterly 164 (I) .0090 -.0023 .0101 .267

(.99) (-.41) (1.69) [2.8]

(II) .0102 -.0079 .0009 .0003 .338

(1.16) (-1.45) (.17) (.04) [2.3]

(III) -.0163 .133

(-1.72)

(IV) .0074 -.0043 .242

(.83) (-.61)

Semiannual 82 (I) -.0015 -.0052 .0180* .314

(-.12) (-.43) (2.10) [3.0]

(II) .0052 -.0028 .0167 .0004 .373

(.45) (-.23) (1.93) (.03) [2.6]

(III) -.0153 .127

(-1.09)

(IV) .0007 -.0113 .249

(.06) (-.90)   
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9.3 Residuals 

9.3.1 Formal tests of normality – Tables 2 to 5 

Results of Formal Residual Normality Tests

   Return Kolmogorov-Smirnov Jarque-Bera

Reference Frequency Equation statistic statistic

(I) .0552** 501764.72**

(II) .0499** 304878.22**

(III) .0491** 359755.06**

(IV) .0757** 22611100.**

(V) .0659** 38624472.**

(VI) .0588** 8461175.**

(I) .0625** 369095.16**

(II) .0623** 423181.72**

(III) .0561** 565174.19**

(IV) .0855** 1355909.75**

(V) .0808** 1118933.5**

(VI) .0726** 749133.94**

(I) .0539** 9200.12**

(II) .0538** 10539.33**

(III) .0557** 12889.24**

(IV) .0879** 86971.89**

(V) .0791** 65468.84**

(VI) .0754** 44073.79**

(I) .0304** 2849.78**

(II) .0304** 2715.51**

(III) .0294** 2594.95**

(IV) .0405** 15059.31**

(V) .0361** 4894.14**

(VI) .0317** 4044.19**

(I) .0411** 2128.55**

(II) .0398** 1608.74**

(III) .0349** 1044.22**

(IV) .0515** 6017.06**

(V) .0426** 2736.97**

(VI) .0365** 1776.44**

(I) .0423** 697.97**

(II) .04** 539.75**

(III) .0346* 350.62**

(IV) .059** 1899.5**

(V) .0535** 1606.37**

(VI) .0516** 1519.79**

(I) .047** 40807.21**

(II) .0464** 38732.32**

(III) .0461** 38637.22**

(IV) .057** 84636.44**

(V) .048** 41993.59**

(VI) .0491** 41797.67**

(I) .0486** 7388.54**

(II) .0441** 6475.**

(III) .0446** 5701.52**

(IV) .0548** 7171.82**

(V) .0521** 6547.45**

(VI) .0519** 6610.51**

(I) .0454** 1045.12**

(II) .0441** 622.84**

(III) .0426** 634.49**

(IV) .0626** 2126.41**

(V) .0575** 1871.56**

(VI) .0528** 1776.44**

(I) .0469** 9445.62**

(II) .0418** 9335.8**

(III) .0415** 9335.38**

(IV) .0505** 7754.33**

(V) .0454** 7197.75**

(VI) .0405** 7034.5**

(I) .0374** 1820.4**

(II) .0389** 1746.14**

(III) .0397** 1083.96**

(IV) .0438** 1567.89**

(V) .0392** 1232.52**

(VI) .0372** 1135.92**

(I) .0402** 173.72**

(II) .0309* 158.56**

(III) .0272* 206.67**

(IV) .0381** 205.08**

(V) .0389** 144.25**

(VI) .0285* 179.22**

* Significance at the 5 % level

** Significance at the 1 % level

Table 4

Monthly

Quarterly

Semiannual

Table 5

Monthly

Quarterly

Semiannual

Table 2

Monthly

Quarterly

Semiannual

Table 3

Monthly

Quarterly

Semiannual
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9.3.2 Formal tests of normality – Tables 6 - 9 

Results of Formal Residual Normality Tests  continued

   Return Kolmogorov-Smirnov Jarque-Bera

Reference Frequency Equation statistic statistic

(I) .0444** 33730.66**

(II) .0587** 35416.11**

(III) .0802** 287.1**

(IV) .0583** 42293.36**

(I) .0518** 6597.82**

(II) .1282** 81373.21**

(III) .0875 28.28**

(IV) .0574** 10320.22**

(I) .0394** 596.56**

(II) .1045** 9241.22**

(III) .1121 6.51

(IV) .058** 2020.02**

(I) .0304** 2849.78**

(II) .0425** 11241.44**

(III) .0405** 15059.31**

(IV) .0368** 18753.03**

(I) .0411** 2128.55**

(II) .0623** 4692.13**

(III) .0515** 6017.06**

(IV) .0474** 13821.53**

(I) .0423** 697.97**

(II) .0614** 3948.9**

(III) .059** 1899.5**

(IV) .0523** 1304.65**

(I) .047** 40807.21**

(II) .053** 41303.2**

(III) .057** 84636.44**

(IV) .0475** 56860.23**

(I) .0486** 7388.54**

(II) .0793** 39859.79**

(III) .0548** 7171.82**

(IV) .0549** 6928.55**

(I) .0454** 1045.12**

(II) .0703** 2760.17**

(III) .0626** 2126.41**

(IV) .0536** 1631.51**

(I) .0439** 2825.29**

(II) .0593** 6345.67**

(III) .0459* 32.68**

(IV) .0383** 2255.**

(I) .0426** 928.83**

(II) .0707** 4658.24**

(III) .0586 1.61

(IV) .0331** 292.96**

(I) .0446* 107.05**

(II) .0678** 421.87**

(III) .1067 .89

(IV) .0479** 93.63**

* Significance at the 5 % level

** Significance at the 1 % level

Table 9

Monthly

Quarterly

Semiannual

Quarterly

Semiannual

Table 8

Monthly

Quarterly

Semiannual

Table 6

Monthly

Quarterly

Semiannual

Table 7

Monthly
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9.3.3 Table 2 (Size-sorted) 
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9.3.4 Table 3 (BTM-sorted) 
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9.3.5 Table 4 (Triple-sorted) 
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9.3.6 Table 5 (Industry-sorted) 
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9.3.7 Table 6 (Size-sorted) 
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9.3.8 Table 7 (BTM-sorted) 
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9.3.9 Table 8 (Triple-sorted) 
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9.3.10 Table 9 (Industry-sorted) 
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9.4 Normality of returns 

9.4.1 Simple returns – Value-weighted 

Summary Statistics 

TABLE 1 Summary Statistics of Portfolio Returns

Monthly Quarterly Semiannually Monthly Quarterly Semiannually

Number of port-

folio-period

observations 25,500 8,500 4,250 13,800 4,600 2,300

Mean .0072 .0249 .0470 .0054 .0169 .0333

Variance .0064 .0310 .0493 .0032 .0110 .0215

Skewness 1.9690 4.3380 1.9810 -.1870 .0978 .3830

Kurtosis 28.710 49.520 17.120 5.728 5.320 4.864

Jarque-Bera

statistic  718,561 **  793,022 **  38,106 **  4,359 **  1,039 **  389 **

Kolmogorov

statistic .0862** .1219** .0864** .0341** .0466** .0483**

Number of port-

folio-period

observations 24,840 8,280 4,140 15,300 5,100 2,550

Mean .0067 .0218 .0424 .0104 .0360 .0722

Variance .0046 .0173 .0333 .0064 .0362 .0676

Skewness .1240 .3830 .7620 1.7610 4.5830 2.5760

Kurtosis 7.386 5.433 6.182 21.110 50.840 20.940

Jarque-Bera

statistic  19,972 **  2,245 **  2,147 **  217,032 **  504,188 **  37,022 **

Kolmogorov

statistic .0440** .0563** .0617** .0821** .1193** .0858**

A. Size-Sorted Portfolios

C. Triple-Sorted Portfolios

B. Book-To-Market-Ratio-Sorted Portfolios

D. Industry-Sorted Portfolios
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Q-Q-plots 
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9.4.2 Log returns – Equal-weighted 

Summary Statistics 

TABLE 1 Summary Statistics of Portfolio Returns

Monthly Quarterly Semiannually Monthly Quarterly Semiannually

Number of port-

folio-period

observations 25,500 8,500 4,250 13,800 4,600 2,300

Mean .0045 .0134 .0268 .0056 .0168 .0335

Variance .0061 .0237 .0433 .0042 .0161 .0286

Skewness .2450 .8410 -.0722 -.5320 -.2590 -.1820

Kurtosis 13.400 12.330 6.970 6.817 4.375 4.442

Jarque-Bera

statistic  115,163 **  31,844 **  2,795 **  9,029 **  414 **  212 **

Kolmogorov

statistic .0767** .0826** .0701** .0417** .0545** .0388**

Number of port-

folio-period

observations 24,840 8,280 4,140 15,300 5,100 2,550

Mean .0053 .0159 .0317 .0053 .0158 .0317

Variance .0049 .0187 .0333 .0042 .0157 .0308

Skewness -.3590 -.2450 -.1830 -.2500 .2340 -.5840

Kurtosis 7.452 5.033 5.014 10.580 11.130 7.178

Jarque-Bera

statistic  21,047 **  1,508 **  723 **  36,760 **  14,103 **  1,999 **

Kolmogorov

statistic .0555** .0612** .0478** .0636** .0818** .0715**

A. Size-Sorted Portfolios

C. Triple-Sorted Portfolios

B. Book-To-Market-Ratio-Sorted Portfolios

D. Industry-Sorted Portfolios
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Q-Q-plots 
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9.4.3 Log returns – Value-weighted 

Summary Statistics 

TABLE 1 Summary Statistics of Portfolio Returns

Monthly Quarterly Semiannually Monthly Quarterly Semiannually

Number of port-

folio-period

observations 25,500 8,500 4,250 13,800 4,600 2,300

Mean .0042 .0126 .0252 .0038 .0113 .0226

Variance .0059 .0227 .0414 .0033 .0110 .0207

Skewness .1600 .7270 -.1820 -.6090 -.5090 -.3790

Kurtosis 13.540 12.150 6.719 6.564 4.978 4.801

Jarque-Bera

statistic  118,134 **  30,423 **  2,472 **  8,157 **  948 **  366 **

Kolmogorov

statistic .0755** .0847** .0681** .0418** .0617** .0469**

Number of port-

folio-period

observations 24,840 8,280 4,140 15,300 5,100 2,550

Mean .0044 .0132 .0264 .0074 .0222 .0443

Variance .0047 .0169 .0305 .0059 .0247 .0498

Skewness -.4990 -.3750 -.2320 .3310 .9620 .0887

Kurtosis 7.384 4.934 4.693 11.560 11.840 6.540

Jarque-Bera

statistic  20,918 **  1,485 **  532 **  46,956 **  17,375 **  1,335 **

Kolmogorov

statistic .0525** .0619** .0491** .0710** .0713** .0543**

A. Size-Sorted Portfolios

C. Triple-Sorted Portfolios

B. Book-To-Market-Ratio-Sorted Portfolios

D. Industry-Sorted Portfolios
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Q-Q-plots 
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